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Abstract The rapid evolution of smart services and Internet of Things (IoT)
devices accessing cloud data centers can lead to network congestion and in-
creased latency. Fog computing, focusing on ubiquitously connected hetero-
geneous devices, addresses latency and privacy requirements of workflows ex-
ecuting at the network edge. However, allocating resources in this paradigm
is challenging due to the complex and strict Quality of Service constraints.
Moreover, simultaneously optimizing conflicting objectives, e.g., energy con-
sumption and workflow makespan increases the complexity of the schedul-
ing process. We investigate workflow scheduling in fog-cloud environments to
provide an energy-efficient task schedule within acceptable application com-
pletion times. We introduce a scheduling algorithm, Energy Makespan Multi-
Objective Optimization (EM-MOO), that works in two phases. First, it models
the problem as a multi-objective optimization problem and computes a trade-
off between conflicting objectives while allocating fog and cloud resources, and
schedules latency-sensitive tasks (with lower computational requirements) to
fog resources and computationally complex tasks (with low latency require-
ments) on cloud resources. We adapt the Deadline-Aware stepwise Frequency
Scaling (DAFS) approach to further reduce energy consumption by utiliz-
ing unused time slots between two already scheduled tasks on a single node.
Our evaluation using synthesized and real-world applications shows that our
approach reduces energy consumption, up to 50%, as compared to existing
approaches with minimal impact on completion times.

Samia Ijaz, Ehsan Ullah Munir, Saima Gulzar Ahmad
COMSATS University Islamabad, Wah Campus, Pakistan
E-mail: {samia_s; ehsan; saimagulzarahmad}@ciitwah.edu.pk

M. Mustafa Rafique
Department of Computer Science, Rochester Institute of Technology, United States
E-mail: mrafique@cs.rit.edu

Omer F. Rana
School of Computer Science & Informatics, Cardiff University, United Kingdom
E-mail: ranaof@cardiff.ac.uk



2 Samia Ijaz et al.

Keywords Cloud Computing · Fog Computing · Workflow Scheduling ·
Makespan · Energy Consumption · DVFS

1 Introduction

The use and adoption of heterogeneous Internet of Things (IoT) devices has
revolutionized Information and Communication Technology (ICT) [?]. IoT
have extended internet connectivity beyond conventional devices such as tablets
and phones to a wide range of smart devices such as TV, wearable appliances,
vehicles and surveillance cameras [?]. These smart connected devices are in-
tegrated into many applications, e.g. intelligent traffic control systems, health
monitoring units and security systems. The IoT market is growing rapidly
and billions of devices are expected to be connected to the Internet to provide
valuable services to the users [?]. The deluge of data being generated needs
fast processing and analysis to extract valuable information.

Over the last decade, the storage, analysis, and computations associated
with data-intensive applications are performed on resources hosted at cen-
tralised cloud data centers [?]. However, due to this centralisation, cloud com-
puting is experiencing challenges to meet the requirements of latency-sensitive
IoT applications that require real-time response times [?]. As cloud data cen-
ters are further away from data generation sources, by the time the data
arrives at the cloud center for analysis and processing, it might already be too
late to extract useful information from the received data. Moreover, with the
predicted increase in the number of connected IoT devices and large physical
distances between these devices and cloud data centers, the conventional archi-
tecture will be unable to handle communication requirements for transmitting
large data volumes over public networks to a centralised location, due to traf-
fic congestion and communication costs [?]. Therefore, a computing paradigm
suitable for handling the variety, velocity, and volume of the data generated
by IoT devices is needed.

Fog computing architectures provide cloud-like services near the edge of the
network [?,?]. The network edge is transformed into a distributed computing
paradigm by connecting edge devices to provide storage and computation ser-
vices to run IoT applications [?,?]. Fog nodes [?] can be deployed near an IoT
data source, such as near bus terminals, on University premises or at shopping
malls, to offer services for time-critical applications. The computationally-
intensive application tasks are offloaded to the cloud data centers for process-
ing and long-term storage while lightweight and time-sensitive tasks can be
processed locally on edge devices [?].

In practice, IoT applications are generally composed of modules that ex-
ecute tasks (e.g. microservices), where each module carries out part of the
overall processing (either independently or with dependency/data flow con-
straints between tasks) [?]. Workflow is one of the most commonly used mod-
els in these applications and can be represented as a directed acyclic graph
(DAG) [?]. An application workflow can be executed across a number of dif-
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ferent types of fog-cloud systems that make up the execution environment for
such workflows.

Workflow scheduling algorithms must take dependency constraints and re-
source properties into account, aiming to improve effective resource utilization
(i.e. make most effective use of the available resources), whilst minimising the
overall completion time (or makespan) of the application. It is a well-known
NP-complete problem [?] and should be optimized using approximate solutions
in near polynomial time [?].

Apart from makespan, energy consumption is another crucial parameter in
a fog-cloud environment. The energy consumption of cloud data centers has
increased considerably during the last decade subsequently resulting in soaring
economic costs of energy apart from operational expenses and environmental
impacts. Moreover, the resource constrained nature of fog nodes makes energy
a serious challenge since they usually run on batteries or have access to limited
(renewable) energy, or are deployed in areas with limited and unreliable energy
sources [?]. Therefore, green cloud computing has received significant attention
in both academia and industry and reducing energy consumption in emerging
fog-cloud infrastructure has become a major issue [?].

A scheduling algorithm that can minimize the makespan of an applica-
tion but consume considerable energy is not an optimal choice for use on
fog resources. This becomes more challenging when multiple conflicting objec-
tives must be satisfied simultaneously. For instance, it is challenging to reduce
makespan while also reducing the energy consumption required to complete
application processing. Therefore, a bi-objective optimization approach is re-
quired for finding the right compromise between these optimization objectives.

The scheduling problem has been widely explored for cloud environments,
either as a unique objective or a multi-objective optimization problem, how-
ever, it is not well-studied for fog-cloud infrastructures. In this paper, we first
formulate the problem as a multi-objective optimization model that consid-
ers both makespan minimization and reduction in energy consumption. Since
both the objectives are conflicting in nature, we apply an adaptive weighted
bi-objective cost function. The value of the weight indicates which criteria
(makespan or energy) is considered to be more important by a user. The over-
all aim is to obtain the right compromise between application completion time
and energy consumed during workflow execution.

A common power management practice is the Dynamic Voltage and Fre-
quency Scaling (DVFS) technique [?]. DVFS permits the dynamic adjustment
of frequency and voltage of a processor. The voltage regulators in modern
multi-core processors enable each core to operate at a different frequency and
voltage level [?]. We apply a frequency scaling technique to achieve further
reduction in energy consumption by utilizing DVFS on the underlying proces-
sors while satisfying application completion time constraints. This is achieved
by availing possible gaps (empty slots) in a schedule between tasks. We per-
form experimental evaluation and compare our approach with existing work
on synthesized and real-world application workflows, e.g. Cybershake [?] and
Montage [?]. The results show that our approach generates efficient sched-
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ules with optimized energy consumption. Specifically, we make the following
contributions in this paper.

The rest of this paper is organized as follows. We summarize related work
in Section 2. Section 3 introduces the fog-cloud architecture that we consider
in this paper. In Section 4, we formally define the problem addressed in this
paper and present its proposed solution in Section 5. We present performance
evaluation of our solution in Section 6. Finally, we conclude the paper in
Section 7.

2 Related Work

There have been several studies that address the workflow scheduling prob-
lem in heterogeneous computing systems. The NP-hard nature of the problem
demands more heuristic approaches to approximate optimal solutions.

Heterogeneous Earliest Finish Time (HEFT) is the most commonly adopted
scheduling algorithm [?]. HEFT operates in two phases; the task prioritization
phase and the processor selection phase. First phase assigns priorities to the
tasks on the basis of their upward ranks while the second phase chooses suit-
able processor for the task execution considering the minimal task completion
time. Another well-known algorithm in this category is Predict Earliest Finish
Time (PEFT) [?]. In PEFT, the Optimistic Cost Table (OCT) is computed
to assign priorities to tasks and it also helps in determining the most ap-
propriate processor for task execution in the scheduling phase. Both HEFT
and PEFT are single-objective optimization approaches that take into account
only makespan minimization while EM-MOO is a multi-objective optimization
approach that considers energy consumption along with makespan.

In [?], a makespan minimization algorithm Minimal Optimistic Processing
Time (MOPT) is introduced that modifies the prioritization phase by com-
puting Optimistic Processing Times (OPT) of tasks on all processing nodes
and then ranks are assigned based on average OPT values. The node selection
phase improves the entry task duplication feature by allowing duplication only
in case this helps in minimizing the completion time of successor tasks. Again,
MOPT is a single-objective optimization technique as compared to our pro-
posed work in this article. A hybrid meta-heuristic approach combining the
Genetic Algorithm (GA) and Ant Colony Optimization (ACO) is suggested
in [?] for minimizing makespan in a multi-processor cloud environment. The
bottom level (b-level) of a task is used to assign priorities. The b-level is maxi-
mum execution time a task takes to traverse all levels of the graph. Then, ACO
is applied to identify a suitable path that is further improved by applying GA.

One of the few studies that consider task scheduling in fog computing as
a DAG scheduling problem is presented in [?]. It introduces Cost-Makespan
aware Scheduling (CMaS) algorithm to satisfy the user’s QoS requirements of
makespan and cost optimization and proposes a utility function to determine
the tradeoff between both these objectives. The obtained schedule is improved
by the task reassignment phase.
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Task Scheduling in Fog Computing (TSFC) algorithm is based on the clas-
sification mining algorithm [?]. The association rules obtained from the I-
Apriori algorithm are combined with the task completion times without taking
bandwidth into account between machines. Task scheduling in fog computing
supported software-defined embedded systems (FC-SDES) [?] minimizes the
makespan. It proposes a low-complexity 3-phase algorithm that incorporates
task scheduling, resource management, and I/O request balancing.

The computational requirements of users have increased significantly as a
result of cloud computing and the emergence of fog paradigm, therefore en-
ergy consumption has become a challenging objective for optimization [?,?].
This is an active research area and efforts are being made towards develop-
ing workflow scheduling algorithms that consider energy consumption factors.
Next, we summarize energy optimization algorithms used in cloud and fog
environments.

DVFS-enabled Energy Efficient Workflow Task Scheduling (DEWTS) al-
gorithm is a state of the art algorithm in the cloud environment that applies
Dynamic Voltage and Frequency Scaling (DVFS) technique to optimize en-
ergy usage during unused time slots in the scheduling process [?]. The core
idea is to turn-off the less utilized machines and reassign their tasks to the
turned-on machines. Next, the algorithm utilizes idle time slots of the ma-
chines under lower frequency and voltage to allocate tasks and obtain reduced
power consumption.

The energy-efficient scheduling problem in a mobile cloud environment is
investigated in [?]. This approach, Energy Makespan in Mobile Cloud Com-
puting (EM-MCC), starts by allocating tasks to machines using the least-delay
scheduling approach followed by task reassignment phase that migrates tasks
among the local cores or cloud nodes to reduce energy usage. The DVFS tech-
nique is then applied for further energy reduction of mobile devices. EM-MCC
is one of the algorithms used in the evaluation process of our proposed work.
One of the limitations of EM-MCC is that its task migration phase increases
the computational complexity of the algorithm.

In [?], an energy-aware processor merging (EPM) algorithm in a heteroge-
neous parallel and distributed framework is presented. EPM turns off the most
effective machine in terms of energy saving. To overcome the high computa-
tional complexity of EPM, it introduces a less complex quick EPM (QEPM)
algorithm that simply turns off machines with minimum energy consumption.
However, QEPM consumes more energy than EPM. In [?], authors handle
multiple conflicting objective problems in cloud environments by introducing
a pareto-based multi-objective hybrid approach, hybrid Particle Swarm Opti-
mization algorithm (HPSO). The algorithm tries to optimize energy, budget
and schedule length of the application by generating a set of Pareto optimal
solutions. DVFS approach is used to optimize energy consumption.

An energy-efficient scheduling algorithm for placing tasks on nodes based
on their remaining CPU time and energy state is proposed in [?]. Improved
Round Robin (IRR) and DVFS approaches are followed to achieve energy-
efficient scheduling. The strategy aims to place delay-sensitive tasks to fog
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Table 1: Summary of related work.

Approach Objective Limitation

CPU time, round robin pol-
icy [?]

Makespan Suitable only in the fog computing
environment

List scheduling [?] Makespan High energy consumption
Task migration/DVFS [?] Makespan, energy High computational complexity

due to task migration
Processor merging [?] Energy High computational complexity
Heuristic [?] Makespan, cost Small dataset used for experimen-

tation
Hybrid meta-heuristic [?] Makespan High computational complexity
Convex optimization [?] Time, energy Not suitable for distributed fog en-

vironment
Heuristic [?] Makespan Does not consider dependent task

scheduling

devices effectively. Execution time and power optimization for task allocation
in fog-cloud environments is studied in [?]. The problem is split into three
separate domains; fog, cloud, and WAN. Existing optimization approaches
are applied to provide solutions to each sub-problem. The study reveals that
fog computing boosts performance as latency and bandwidth are minimized.
However, more WAN communications increase overall execution delays and
workload on fog nodes increases their energy consumption.

We present a summary of the common scheduling algorithms in Table 1.
Although the problem has widely been studied for the cloud environment,
there is much space for the NP-hard scheduling problem to be explored in the
fog-cloud paradigm. Moreover, existing work mostly focuses on single objec-
tive optimization that reduces performance especially in environment where
complex applications generated from real-time IoT devices need to be exe-
cuted. To overcome limitations in the existing studies, we have proposed a
simplified and less complex solution to the workflow scheduling problem for
finding a tradeoff between energy consumption and makespan. This approach
has not been explored much in the fog-cloud context in the related studies.
Moreover, our algorithm utilizes DVFS on the underlying processors in order
to fill empty scheduling slots and thus, achieves reduced energy consumption
with adaptive deadline adjustment.

3 Fog Enabled Cloud System Architecture

The fog-cloud system architecture, shown in Fig. 1, typically has three lay-
ers [?]. The terminal layer or bottom layer consists of IoT devices, e.g., home
appliances, sensors, wearable devices, smartphones and smart vehicles [?].
These devices send requests and data to the higher-level layers for applica-
tion processing. In this paper, we consider IoT devices that are sources of data
generation and do not have capabilities to process the generated data.

The fog computing layer is the intermediate layer between IoT devices and
cloud data centers and is generally deployed near IoT devices. It is formed by
a large number of nodes residing near the edge of the network, e.g., routers,
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Fig. 1: Fog-cloud architecture.

access points, switches, base stations with limited computation, transmission,
and temporary storage nodes [?]. Users can access the fog nodes to obtain the
required services. The fog layer is connected with the cloud data centers to
satisfy complex computing and storage requirements. The nodes at this layer
are organized in a hierarchical fashion. The lower level layer is expected to be
one or two hops away from the end-users to provide services with low, i.e., few
milliseconds, latency requirements [?].

The uppermost cloud layer of the fog-cloud platform comprises of multiple
high-performance cloud servers and provides powerful computation and per-
manent storage services for IoT applications [?]. This layer provides computing
services for compute-intensive workloads, and efficient and reliable storage fa-
cilities for persistent data. It is desirable to only offload compute-intensive
tasks to the cloud layer as it is further away from data sources and incurs high
communication delays to transfer the input and output data.

There is a dedicated fog node, known as fog broker, in the fog layer that
plays the role of centralized management and task scheduler [?]. It is respon-
sible for collecting user requests, managing resources on fog and cloud nodes
and generating most suitable schedules for the input workflows.

4 Problem Definition

In this section, we provide a formal definition of the problem tackled in this
paper. Workflow scheduling in the fog-cloud system is defined as the problem
of allocating tasks of the workflow to the machines of the target system in
a way that an optimal schedule is achieved with a tradeoff between energy
consumption and makespan minimization. For ease of understanding, Table 2
provides a description of notation used in this paper.



8 Samia Ijaz et al.

Table 2: Major notations used in this paper.

Symbol Notation

DAG Directed Acyclic Graph
V Set of all the tasks
E Set of all edges showing dependencies in workflow
ei,j Edge/dependency between vi and vj
N Set of all the processing nodes
vi The ith task in the workflow
nj The jth node in the system
pred(vi) The predecessor task of vi
succ(vi) The successor task of vi
W (vi, nj) Computational weight of vi on nj

CC(vi) Average data transfer time associated with vi
MST (vi, nj) Minimum Start Time of vi on nj

MCT (vi, nj) Minimum Completion Time of vi on nj

AST (vi, nj) Actual Start Time of vi on nj

ACT (vi, nj) Actual Completion Time of vi on nj

M The makespan of the workflow
ec(vi, nj) Energy consumed while executing vi on nj

fnj
Actual operating frequency of nj

EC Total energy consumption for the workflow
OPT (vi, nj) Optimistic Processing Time of vi on nj

α Weight/tradeoff factor for the cost function
Dmax Maximum deadline limit

4.1 Application Model

An application workflow is defined as a set of interdependent tasks and is mod-
eled as a Directed Acyclic Graph, DAG = (V,E) whose vertices are the tasks
and edges describe data dependencies between them. Let V = {v1, v2, ...vt} be
the set of t tasks in the workflow and E is the set of edges. An edge ei,j ∈ E de-
fines the data flow dependency from task vi to vj with a precedence constraint
that the processing of vi must be complete before vj could be initialized as
former is a predecessor task. The set of all direct predecessors and successors
of vi are represented as pred(vi) and succ(vi) respectively. A task vi without
any predecessor is known as entry task ventry, and a task without any succes-
sor is called an exit task, vexit. In this model, we consider only one entry task
and one exit task. Therefore, if a DAG has more entry/exit tasks, a dummy
task with zero computation and communication costs is added. This does not
have any impact on the schedule.

The size of each task is measured in million instructions and each task
appears only once in a schedule. Moreover, we assume Non-Preemptive Ex-
ecution (NPE) of tasks in our model. A task uses two types of inputs: (i)
from a predecessor task; (ii) from other data sources on a cloud/fog platform.
However, only one of these may be present in some instances.

4.2 System Model

The target fog-cloud system has heterogeneous computational nodes: fog and
cloud nodes. Former have lower computational capabilities and are located
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closer to data generation source while latter have higher computational capa-
bilities but are far from data source.

We define the target system S = (N,L) as a directed graph where N =
{n1, n2, ...np} is representing the set of all processing nodes and li,j ∈ L denotes
the link that connects ni and nj . Each node in N may be a cloud (Nc) or a
fog node (Nf ). Therefore,

N = Nc ∪Nf (1)

such that, w(Nf ) < w(Nc)∀N , i.e., as described earlier, computation capability
w(Nf ) of fog nodes is assumed to be less than that of cloud nodes w(Nc)
due to physical constraints on fog devices. Also, higher stability of LAN as
compared to WAN results in better bandwidth between fog nodes than that
of cloud nodes. The computational capacity of a node is measured in million
instructions per second (MIPS). Let, xi,j represents the task allocation matrix.
If vi is allocated to nj , then xi,j = 1, else xi,j = 0.

4.3 Makespan Model

The makespan represents overall completion time of the application. Minimiz-
ing makespan for workflow applications is a crucial problem in the fog-cloud
environment to achieve efficient schedules. Suppose a task vi is scheduled on a
node nj . Let MST (vi, nj) and MCT (vi, nj) be the Minimum Start Time and
Minimum Completion Time for vi on nj respectively and nj is available for
the execution of vi. If vi is the entry task then,

(2)MST (ventry, nj) = 0

For remaining tasks in the graph, MST and MCT are computed recursively,
starting from the top, as described in Eq. 3 and Eq. 4 respectively.

(3)MST (vi, nj) = max
vp∈pred(vi)

{ACT (vp) + CC(vi)}

MCT (vi, nj) = MST (vi, nj) +W (vi, nj) (4)

where the parameter CC(vi) represents average transfer time when all the
input data has been transferred to the selected node nj for execution of vi.
The cost will be zero in case both the parent and child tasks are assigned
to the same node. The term W (vi, nj) represents the computation time of
vi on nj . After a task is scheduled on a node, the MST and MCT become
Actual Start Time (AST) and Actual Completion Time (ACT) of the task
respectively. Eventually, the makespan (M) of the application is equal to the
actual completion time of the last task, vexit, of the workflow i.e.

M(DAG) = ACT (vexit) (5)
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4.4 Energy Model

In this study, we adopt the classic power model to analyze power and energy
consumption [?]:

P = Pstatic + Pdynamic (6)

where, Pstatic is the power consumption when the system does not execute any
workload, i.e. it is power used when the system is turned on. Dynamic power
dissipation Pdynamic, is the dominant and expensive component of energy and
is defined as:

Pdynamic = C.Vdd
2.f (7)

where C is the capacitance load, Vdd is the supply voltage and f is the fre-
quency. Since f ∝ V β

dd for (0 < β < 1), or Vdd ∝ f1/β i.e. the frequency-
dependent dynamic power is,

Pdynamic ∝ fγ where γ = 1 + 2/β ≥ 3.
Therefore, in our study, we represent power consumption as:

P = Pstatic + C.fγ (8)

The maximum operating frequency of the node nj is fmax
nj

and there are
L scaling factors (an,1 < an,2... < an,L = 1). To acquire our objective of mini-
mizing energy consumption, we will execute the tasks at the lowest frequency
whilst ensuring that the completion time deadline is met. Therefore, the actual
operating frequency on which nj might operate can be computed as:

fnj
= anj ,l.f

max
nj

(9)

The power consumed by nj on that particular frequency would be:

P (nj) = Pstatic + anj
.fγj

nj
(10)

Therefore the energy consumption for processing vi on nj is computed as:

ec(vi, nj) = P (nj).W (vi, nj) (11)

where W (vi, nj) is the computation time of vi on nj . The total energy con-
sumption by nj for executing all tasks v assigned to it is computed as:

ectotal(nj) =
∑

v∈V

ec(v, nj) (12)

The energy consumption function for running the complete workflow ap-
plication is obtained by:

EC(DAG) =
∑

n∈N

ectotal(n) (13)

where n can be a cloud or a fog node.
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4.5 Multi-objective Optimization Model

When the processing nodes operate at higher frequencies, the performance of
the system increases in terms of reduced application completion time but at the
cost of higher energy consumption. The two objectives, energy consumption
and makespan are therefore conflicting in nature and the energy-makespan
tradeoff is faced for appropriate node selection to run the application tasks.
The joint minimization of both objectives is a multi-objective optimization
problem (MOO). Our objective is to introduce a workflow scheduling solution
that achieves a tradeoff for this MOO problem.

We address the scheduling problem in two phases to achieve the desired
objectives. First, we formulate a MOO model for the optimization of makespan
(M(DAG)) and energy consumption (EC(DAG)) for a workflow application
DAG(V,E) with a set V of tasks with aforementioned constraints and a set
N as:

Minimize

{

M(DAG)

EC(DAG)

subject to the following constraints,
xi,j ∈ {0, 1}, ∀vi ∈ V&∀nj ∈ N

∑p
n=1 xi,j = 1, ∀vi ∈ V

The constraints specify that a task can only be allotted to a single node.
The ever increasing demand for cloud computing and the power-constrained

nature of fog devices makes energy consumption a challenging factor. There-
fore, in the second phase of our work, we employ a step-wise frequency scaling
technique for further reduction in energy consumption. To achieve this, we
have put a deadline constraint on the overall execution time of the application
produced in the previous phase and then the schedule gaps among the tasks
are utilized. This helps in achieving further reduction in energy consumption.
Mathematically,

Minimize(EC(DAG))
subject to,

M(DAG) < D
where, D is the deadline for the entire workflow that is computed based

on the value of makespan obtained in the first phase.

5 Energy-Makespan based Multi-Objective Optimization
(EM-MOO)

We design a novel workflow scheduling algorithm EM-MOO to minimize en-
ergy consumption and makespan and find a tradeoff between these conflicting
objectives. Fig. 2 shows the proposed methodology and the interactions be-
tween different components. Initially, the algorithm assigns ranks to the tasks
to determine their scheduling order. Next, an appropriate processing node is
selected for each task based on the bi-objective cost function.
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Fig. 2: Proposed methodology: EM-MOO algorithm.

5.1 Task Selection Phase

The task selection phase assigns weights to tasks to determine their execution
order, primarily to achieve efficient schedules during the node selection phase.
We assign weights to the tasks based on their Optimistic Processing Times
(OPT), which is the key parameter that defines the overall completion time of
the workflow application [?]. OPTs are computed before tasks are mapped to
any node and are therefore called optimistic. To compute OPT for a task vi
on a node nj , OPT (vi, nj), first the Optimistic Minimum Start Time (OMST)
of vi on nj is determined using the following equation.

OMST (vi, nj) = max
vp∈pred(vi)

[

min
nw∈N

{OMST (vp, nw) +W (vp, nw) + CC(vi)}

]

(14)

The inner function of Eq. 14 calculates the OPTs for the predecessors of
vi. Then, the OPT (vi, nj) is computed as:

OPT (vi, nj) = OMST (vi, nj) +W (vi, nj) (15)

where W (vi, nj) is the computation cost of vi on nj . Once the OPT values
for all tasks have been computed, the rank assignment is calculated using the
following equation.

rankopt(vi) =

∑p
j=1 OPT (vi, nj)

p
(16)

Finally, a Task Priority Queue (TPQ) is maintained with the tasks ar-
ranged in the increasing order of rankopt and the task with the least rank
value has the highest priority. Thus, priority is given to smaller tasks that
result in reducing the waiting time for execution of the other tasks.
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5.2 Node Selection Phase

The highest priority task vi from TPQ is picked for execution that can only
begin when all the predecessor tasks of vi have completed execution and the
input data of vi has reached the target execution node. The MST and MCT
for vi are computed on all nj ∈ N using Eq. 3 and Eq. 4 respectively. Besides
the minimum completion time, the proposed algorithm also incorporates the
energy consumption for selecting an appropriate node by using Eq. 11.

The proposed solution provides the joint optimization of minimum com-
pletion time and energy usage. However, time and energy are different metrics
with different units. Therefore, to make these metrics comparable, we apply
normalization to both the objectives so they are normalised to lie between 0
and 100. The normalized value for MCT (vi, nj) is obtained as:

MCTn(vi, nj) =100×

MCT (vi, nj)−minp∈N MCT (vi, p)

maxp∈N MCT (vi, p)−minp∈N MCT (vi, p)

(17)

and the energy consumption is normalized as:

ecn(vi, nj) = 100×
ec(vi, nj)−minp∈N ec(vi, p)

maxp∈N ec(vi, p)−minp∈N ec(vi, p)
(18)

Using Eq. 17 and Eq. 18 we can define a weighted bi-objective function
that computes tradeoff between the two objectives.

F (vi, nj) = αMCTn(vi, nj) + (1− α)ecn(vi, nj) (19)

where α (0 6 α 6 1) is the weight/tradeoff factor. We use the terms weight
and tradeoff interchangeably in this paper. Note that for α = 0 or 1, the func-
tion becomes a single objective optimization problem with energy or makespan
minimization respectively. Task vi is assigned to the node nj that provides the
minimum value of the cost function. After vi is scheduled on nj , MST (vi, nj)
and MCT (vi, nj) become the Actual Start Time, (AST (vi)), and the Actual
Completion Time, (ACT (vi)), of vi respectively and the makespan of the en-
tire workflow is equal to the ACT (vexit) as defined in Eq. 5. Similarly, total
energy consumption for workflow scheduling is obtained by Eq. 13. The algo-
rithm to determine the schedule and mapping of tasks to nodes is presented
in Algorithm 1.

5.3 Deadline Aware stepwise Frequency Scaling Algorithm (DAFS)

The scheduling algorithm attempts to find minimum completion time and en-
ergy consumption during task execution and depends on the value of tradeoff
factor α. In that phase, we assume the nodes are operating at a maximum
frequency that results in higher energy consumption. To further reduce en-
ergy consumption, we apply a stepwise frequency scaling approach. However,
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Algorithm 1: Energy-Makespan Multi-objective Optimization (EM-
MOO) algorithm.

Input: Application graph, DAG = (V,E), A set N of processing nodes, N =
p⋃

j=1
{nj}.

Output: A schedule S with optimal mapping v tasks on n nodes operating at
maximum frequency.

begin
for all tasks vi ∈ V do

for all nodes nj ∈ N do
Compute OMST (vi, nj) and OPT (vi, nj) using Eq. 14 & Eq. 15
respectively.

Generate a Task Priority Queue (TPQ) by sorting the tasks based on
the increasing mean OPT value.

while the unscheduled task queue is non-empty do
Select the highest priority task vi from the list.
Compute MST, MCT, ec for vi on each nj ∈ N , using Eq. 3, Eq. 4 and
Eq. 11 respectively.

Normalize MCT & ec to MCTn & ecn using Eq. 17 and Eq. 18 respectively.
Compute cost function F (vi, nj) from the Eq. 19.
Schedule task vi to the node nj that minimizes F (vi, nj) for vi.

decreasing the operating frequency of a node can result in increased task com-
pletion times and makespan for the entire workflow. For real-world applica-
tion workflows, the output schedule must meet the application performance
requirements and the completion time specified by the user at the time of job
submission. In our algorithm, this deadline is dependent on the value of weight
parameter α. We classify maximum deadline limit Dmax into two categories
based on α, loose deadline and tight deadline. In the case of former, we restrict
the deadline not to be more than 25% of the original makespan obtained in
the previous phase while the latter case does not allow to increase more than
10% of the previous makespan. For α ≥ 0.5, the user is inclined more towards
makespan. Therefore, we observe a tight deadline limit, i.e.,

Dmax = 1.1× Ttotal (20)

For α 6 0.5, we set deadline limit in an adaptive way such that for α =
0, it may not increase more than 25% of the initial makespan (Ttotal). The
deadline is adaptively chosen as,

Dmax = I × Ttotal (21)

where

I =











1.15 for α = 0.5 & 0.4

1.2 for α = 0.3 & 0.2

1.25 for α = 0.1 & 0.0

Our proposed approach does not change the task to node mapping pro-
duced in the node selection phase and thus avoids task rescheduling during
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Algorithm 2: Deadline Aware stepwise Frequency Scaling Algorithm.

Input: An application schedule S for DAG = (V,E), generated by the EM-MOO
algorithm

Output: A schedule S´ with modified execution frequency of v tasks on same
processing nodes p as in EM-MOO.

begin
for each task vi in application workflow do

l=1
while l < L do

Compute the modified completion time CT (vi, nj) of vi when
executed on l-th frequency on the same processing node nj .

if ∃ another task vk on nj then
deadlinelim1=ASTk

else
deadlinelim1=Dmax ⊲ Using Eq. 18. In this case, vi is last task on
nj

if vi 6∈ exit task then
deadlinelim2=minvs∈succ(vi)

AST (vs)

else
deadlinelim2=Dmax

if CT (vi, nj)≤ deadlinelim1 & deadlinelim2 then
allocate l-th frequency to vi.
update ACT (vi, nj).

the DAFS phase. The precedence constraints and communication delays in-
volved before task execution can generate slack time between two consecutive
tasks’ execution on a single node. Our algorithm uses these slack times dur-
ing the stepwise frequency scaling phase. For a task vi scheduled on nj , we
compute slack time, SlackT ime, of vi using Eq. 22. SlackT imevi is the max-
imum value that can be added to the completion time of vi without affecting
the start time of the next scheduled task vk on nj , and the start time of the
successor tasks, vs ∈ succ(vi), of vi.

SlackT imevi
= min

[

AST (vk), min
vs∈succ(vi)

{AST (vs)}
]

(22)

and the slack time for the exit task, i.e., SlackT imevexit
, is computed as,

SlackT imevexit
= Dmax −ACT (vexit) (23)

We begin with the lowest frequency scaling factor and try vi execution
on each frequency level (with total L levels) iteratively until we acquire a
frequency level from which further reduction will result in delayed task com-
pletion times and higher makespan. The pseudo-code of the algorithm is given
in Algorithm 2.

6 Performance Analysis and Evaluation

We develop the simulation platform to evaluate the proposed algorithm in
MATLAB environment. The UML Diagram of the implementation setup is
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Fig. 3: UML Diagram of EM-MOO Implementation.

Fig. 4: Experimental Setup.

shown in Fig. 3 while Fig. 4 displays the experimental setup. We consider 40
processing nodes, out of which 15 are fog nodes (FN) and 25 are cloud nodes
(CN) [?]. The processing capability of fog nodes is assumed to be lesser than
that of cloud nodes and bandwidth in fog environment is higher than the cloud
environment. We evaluate our work in two environments. The first environ-
ment considers synthesized workflows comprising of [100–500] tasks while for
every evaluation, task size is randomly generated from [5000–50000] MI tasks.
The density /shape parameter determines height of the graph. The processing
capacity of the fog nodes is [10–500] MIPS and that of the cloud nodes is
[500–1500] MIPS. For fog environment, the bandwidth is fixed at 1024 Mbps
while the bandwidth for cloud environment is set as [10, 100, 512, 1024]. The
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Fig. 5: Synthesized workflows: Average makespan as a function of the number
of tasks.

second set is carried out on two types of benchmark workflows, i.e, Cyber-
shake [?] and Montage [?], provided by the Pegasus workflow management
system. To evaluate our work, we implemented EM-MCC [?], PEFT [?] and
MOPT [?] algorithms. EM-MCC is multi-objective that optimizes energy as
well as makespan, however, PEFT and MOPT are single objective makespan
optimization approaches.

6.1 Performance Metrics

Three comparative metrics are used to evaluate our proposed work from var-
ious perspectives. The first metric used is makespan, which is the primary
optimization objective and is widely used for evaluating workflow scheduling
algorithms. It gives completion time of the entire workflow application. En-
ergy consumption is another important metric that we consider in our multi-
objective optimization approach. We conduct 1000 iterations for each set of
experiments and compare average makespan and average energy consumption
of EM-MOO with comparative algorithms. Moreover, to demonstrate that our
work can acquire better tradeoff between energy and makespan than compara-
tive approaches, we compute a third metric energy-makespan tradeoff (EMT)
for all the algorithms as:

EMT (Ai) =

min
Ak∈Alg

[EC(Ak)]

EC(Ai)
×

min
Ak∈Alg

[M(Ak)]

M(Ai)
(24)

where Alg = {A1, A2, ...Ak} is the set of all the algorithms. The maximum
achievable EMT for any algorithm is 1, which is possible only if the algo-
rithm produces the best results for both makespan and energy as compared to
other algorithms. Otherwise, the higher the EMT for an algorithm, the better
tradeoff it has achieved between both metrics.

6.2 Evaluation using Synthesized Workflows

Fig. 5 shows the average makespan comparison of the algorithms as a function
of the workflow size that ranges from 100 to 500 tasks. PEFT and MOPT
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Fig. 6: Synthesized workflows: Average energy consumption as a function of
the number of tasks.

Fig. 7: Synthesized workflows: Boxplot of makespan as a function of the
number of tasks.

produce reduced makespan as compared to EM-MOO and EM-MCC because
the former algorithms consider only makespan optimization while the latter
also incorporates energy consumption. EM-MOO produces better makespan
as compared to EM-MCC as it puts strict deadline limits during step-wise fre-
quency scaling phase by using α while the latter decreases energy consumption
at the cost of increased makespan.

Fig. 6 illustrates that although PEFT and MOPT provide better perfor-
mance in terms of makespan as compared to EM-MOO, the energy consump-
tion by both algorithms is very high. On the other hand, our approach con-
tributes towards achieving a balance between the optimization of makespan
and energy consumption. The results confirm that the EM-MOO algorithm
makes effective use of schedule gaps (slack). By putting a limit on the maxi-
mum deadline of the application with respect to the value of α, the improve-
ments achieved in terms of energy reduction for workflows with 100 tasks are
17.12% as compared to EM-MCC and almost 50% as compared to both MOPT
and PEFT. Similar improvements can be observed for other workflow sizes.
Although both EM-MOO and EM-MCC do not change processing nodes dur-
ing the frequency scaling phase, EM-MOO makes better resource utilization
by considering the energy consumption parameter during the node selection
phase apart from the completion time.
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Fig. 8: Synthesized workflows: Boxplot of energy consumption as a function
of the number of tasks.
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Fig. 9: Synthesized workflows: Energy-Makespan tradeoff.

A statistical analysis of the outputs for both metrics, i.e., makespan and
energy consumption, are shown in Fig. 7 and Fig. 8 respectively. The plots show
minimum, first quartile (25%), median, third quartile (75%) and maximum
values from all the iteration results produced by the algorithms. The outcomes
show the better performance of EM-MOO over other algorithms as discussed
above.

Fig. 9 provides the energy-makespan tradeoff comparison of EM-MOO with
comparative algorithms. The proposed approach, EM-MOO, achieves the high-
est tradeoff for all workflow sizes as compared to its competitors. For workflow
size of 500 tasks, EM-MOO achieves 12%, 33%, and 39% improvement as com-
pared to EM-MCC, MOPT, and PEFT respectively. The cost function and
adaptive deadline-aware stepwise frequency scaling phase help our approach
in achieving a better tradeoff between the conflicting objectives.

We also examine the behavior of EM-MOO by varying the number of cloud
nodes and observing the impact on makespan and energy consumption for a
fixed number of workflow tasks. We use 40 processing nodes in fog and cloud
environment and change the computing environment by increasing the number
of cloud nodes from 5 nodes to 25 nodes. The result of this experiment is shown
in Fig. 10. We observe that increasing the number of cloud nodes provides
better processing capability and leads to reduced makespan. The significant
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Fig. 10: Synthesized workflows: Impact of the number of cloud nodes on
makespan.
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Fig. 11: Synthesized workflows: Impact of the number of cloud nodes on
energy consumption.

Table 3: Energy consumption-Makespan per weight factor value.
α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M 3403.8 3072 2625.3 2247.1 2247.1 1849.7 1849.7 1713.2 1713.2 728.53 542.73

EC 30560 35614 41920 50056 50056 54951 54951 63143 63143 86027 88339

impact due to an increase in cloud nodes on energy consumption is displayed
in Fig. 11.

Table 3 shows makespan and energy consumption for all values of the
weight factor for a synthesized DAG with 100 tasks. Note that the refinement
in makespan or energy reduction is linked with the value of the weight factor.
Thus, depending upon the end-user requirements, the weight factor can be ad-
justed within the range (0 6 α 6 1) such that one of the objectives is achieved
by realizing an acceptable compromise for the other objective. Fig. 12a and
Fig. 12b show the graphical representation of the data.

6.3 Evaluation using Real World Application Workflows

In the second set of experiments, we use real-world workflow applications Cy-
bershake [?] and Montage [?], which are widely used for evaluating scheduling
algorithms, from the Pegasus workflow management system. Cybershake is
used by the Southern California Earthquake Center (SCEC) to identify the
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Fig. 12: Makespan and Energy consumption as a function of weight factor
(α).
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Fig. 13: Cybershake application: Average makespan as a function of the num-
ber of tasks.

earthquake within the region. It is relatively simpler workflow, but it can han-
dle large datasets. Montage application workflow is employed in space industry
to create mosaics of the sky by stitching together the input images. The size
of workflow depends on the number of input images used to create the mosaic.

The analysis for Cybershake application is carried out on workflow sizes of
30, 50 and 100 tasks. The average makespan comparison is shown in Fig. 13
that indicates better EM-MOO performance as compared to EM-MCC but
higher makespan as compared to MOPT and PEFT due to their single objec-
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Fig. 14: Cybershake application: Average energy consumption as a function
of the number of tasks.

Fig. 15: Cybershake application: Boxplot of makespan as a function of the
number of tasks.

Fig. 16: Cybershake application: Boxplot of energy consumption as a function
of the number of tasks.

tive optimization approach. The comparison of the average energy consump-
tion can be analyzed in Fig. 14. The performance of EM-MOO is better than
other popular alternatives that we have used in this paper. By restricting the
deadline according to the value of α, the reductions in energy consumption
are 9%, 29% and 30% as compared to those of EM-MOO, MOPT, and PEFT
respectively for workflows with 100 tasks. Similar improvement trends are ob-
served for workflows with 30 and 50 tasks. Fig. 15 and Fig. 16 provide the
performance analysis of makespan and energy consumption, respectively, for
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Fig. 17: Montage application: Average makespan as a function of the number
of tasks.
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Fig. 18: Montage application: Average energy consumption as a function of
the number of tasks.

Fig. 19: Montage application: Boxplot of makespan as a function of the num-
ber of tasks.

varying number of tasks, and show that EM-MOO consumes less energy as
compared to other alternatives while providing an acceptable makespan.

Similar experiments are conducted for Montage application, using work-
flows with 25, 50 and 100 tasks. Again, we note from Fig. 17 that the average
makespan obtained by EM-MOO is better than EM-MCC as we have ap-
plied tight deadline constraints during the frequency scaling phase resulting
in realizing a better tradeoff between energy consumption and makespan ob-
jectives. Since MOPT and PEFT are single objective makespan optimization
algorithms, they generate lower makespans at the cost of high energy consump-
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Fig. 20: Montage application: Boxplot of energy consumption as a function
of the number of tasks.

tion, as shown in Fig. 18. The EM-MOO achieves a minimum improvement of
11.75% in terms of energy consumption for Montage workflow with 100 tasks
compared to EM-MCC, to a maximum improvement of 43.33% for 25 tasks as
compared to the PEFT approach. The average makespan for a similar number
of nodes is improved by 3.54% from EM-MCC and decreased from PEFT by
20%. This is because our multi-objective approach is intended towards achiev-
ing a better tradeoff by putting a limit on the workflow completion time.
Fig. 19 and Fig. 20 provide boxplot analysis of the algorithms using Montage
application for makespan and energy consumption respectively. Since PEFT
and MOPT are single objective optimization approaches, they produce a lower
makespan compared to EM-MOO but at the cost of high energy consump-
tion. Overall, the EM-MOO algorithm achieves minimum energy consumption
within acceptable makespan as compared to other algorithms.

These results show that our approach achieves a good tradeoff between
conflicting objectives and is a viable option for energy-efficient time-sensitive
applications.

We analyze the computational complexity of the proposed algorithm in
terms of workflow size t, the number of processing nodes p, and edge count
e. The task selection phase takes O(t × p) time to compute the optimistic
processing times of the tasks, O(t) time for rank assignment and O(tlogt)
time for task sorting. The node selection phase requires O(t × p) time. The
complexity therefore, becomes O(t2× p)+O(tlogt)+O(p). For the worst-case
scenario with dense graphs, e becomes t2 and complexity increases to O(t2×p).
The stepwise frequency scaling phase has O(t × l) complexity where l is the
number of frequency scaling levels. The overall computational complexity of
the algorithm becomes O(t2×p) which is comparable to PEFT and MOPT but
less than the EM-MCC algorithm that has higher complexity of O(t3× p) due
to task migration phase. Thus, the proposed EM-MOO achieves a trade-off
between energy and makespan with significantly less complexity.
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7 Conclusion

With the rapid increase in latency-sensitive applications and with the evo-
lution of power-constrained Internet of Things (IoT) devices, the workflow
scheduling problem remains a crucial yet open challenge. The fog-cloud archi-
tecture provides a promising platform for the efficient processing of emerging
applications because computing resources and services are distributed in fog
nodes and lie near the edge of the network making them a viable alternative for
data processing. The processing time of workflow applications and energy con-
sumption of the cloud data centers and power-constrained IoT devices during
the process are key challenges in the integrated IoT and cloud computing envi-
ronments. In this paper, we propose a scheduling algorithm, energy-makespan
multi-objective optimization (EM-MOO), to find a tradeoff between these con-
flicting objectives of reducing energy consumption and makespan. Initially, a
weighted bi-objective cost function is introduced for selecting a processing
node that minimizes task completion time and energy consumption based on
a user-defined weighting factor. Next, we perform a further reduction in en-
ergy consumption by applying deadline constrained frequency scaling. The
proposed work ensures completion of the workflow applications within the
proposed deadline whilst also reducing energy consumption. The evaluation of
our proposed approach using synthetic and real-world applications show that
our proposed approach achieves better tradeoff between energy consumption
and makespan as compared to the popular alternatives.

In future, we plan to explore meta-heuristics such as differential evolu-
tion and particle swarm optimization to solve the multi-objective optimization
problem in fog-cloud paradigms.


