
Network structure optimization for social networks
by minimizing the average path length
Wei Du

Xi'an Jiaotong University
Gang Li

Xi'an Jiaotong University
Xiaochen He (xiaochenhe@xjtu.edu.cn)

Xi'an Jiaotong University

Research Article

Keywords: average path length (APL), network characteristics, small-world phenomena, scale-free
property

Posted Date: August 11th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-793079/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Computing on February 16th, 2022. See the
published version at https://doi.org/10.1007/s00607-022-01061-w.

https://doi.org/10.21203/rs.3.rs-793079/v1
mailto:xiaochenhe@xjtu.edu.cn
https://doi.org/10.21203/rs.3.rs-793079/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00607-022-01061-w

Network structure optimization for social networks

by minimizing the average path length

Wei Du1, Gang Li1,2, and Xiaochen He1,3,*

1School of Public Policy and Administration, Xi’an Jiaotong University, Xi’an, 710049, P. R. China
2Center for Administration and Complexity Science, Xi’an Jiaotong University, Xi’an, 710049, P. R. China
3School of Economics and Finance, Xi’an Jiaotong University, Xi’an, 710061, P. R. China
*xiaochenhe@xjtu.edu.cn

ABSTRACT

Network structure plays an important role in the natural and social sciences. Optimization of network structure in achieving

specified goals has been a major research focus. In this paper, we propose a definition of structural optimization in terms of

minimizing the network’s average path length (APL) by adding edges. We suggest a memetic algorithm to find the minimum-APL

solution by adding edges. Experiments show that the proposed algorithm can solve this problem efficiently. Further, we find

that APL will ultimately decrease linearly in the process of adding edges, which is affected by the network diameter.

Introduction

Social networks have been analyzed over the past several decades. Most social network research can be classified into

the following three fields: (1) analysis of network characteristics, which focuses on finding indices to quantify features of

network structure (such as modularity) and utilizing these indices to distinguish broad categories of network structure (such as

small-world phenomena, scale-free property)1–4; (2) exploration of mechanisms of network structure formation using statistical

or dynamic models such as the Watts-Strogatz or Barabási-Albert models5–7; (3) the dynamic evolution of networks, which

focuses on the transformation of network structures based on propagation models8–10. Obviously, network structure plays a

fundamental role in the analysis of social networks, and optimizing network structure can help to improve network performance.

Previous research has shown that a random network with density of 50% has high structural entropy11. Wang et al. showed

that contagious duration can be related to the network spectral radius, so that optimizing the spectral radius by adjusting the

network structure can constrain the contagious duration12. Watts and Strogatz found the small-world network structure by

rewiring network edges through optimization of the clustering coefficient and APL5. Other scholars have concentrated on

improving network characteristics by adjusting network structure13–15. In this paper, we call this process “network structure

optimization”. It is the process of adjusting the network structure (adding, deleting or rewiring edges) to improve performance

with respect to a specified outcome. Although there are different methods of improving structural performance, a standard

definition of structural optimization has yet to be proposed. Generally, a network can be defined as a graph G = (V,E) , where

{vi} ∈V represents the set of nodes; {ei j} ∈ E → {0,1} represents the set of edges, ei j = 1 denotes a relationship between

nodes i and j, and ei j = 0 indicates no relationship between nodes i and j. The definition of “network structure optimization” is

as follows.

Definition 1: For a specific performance PG of a network G, structural optimization can be formulated as the process of

optimizing PG by changing the network structure G = (V,E) to G′ = (V ′,E ′), which produces PG′ such that PG′ < PG.

Problems related to structural optimization have been widely discussed13, 16–18. Barahona et al. treated balance as an

optimization problem19, and Wang et al. proposed that the transformation of an imbalanced network to a balanced one at the

lowest cost is also an optimization problem20. In order to improve the connectivity of wireless ad hoc networks, Cavalcanti et

al. designed an optimal method for adding shortcuts from a percolation perspective21. Yang and Wang proposed a decentralized

small-world optimization method for improving search efficiency22. Schleich et al. found a high-quality solution to improve

small-world properties on vehicular ad hoc networks23. Du et al. presented a more effective method for optimizing small-world

network generating process24 . In this paper, we explore a specific form of structural optimization, namely, optimization of the

average path length (APL). This is useful as it correlates with a set of important indexes such as robustness or transmission

efficiency. Several methods focusing on the optimization of APL have been proposed, but the effectiveness of the optimization

can still be improved, especially for optimization of random networks. This paper proposes a more effective method to

optimize APL. Moreover, some network features of the optimal networks need to be analyzed in order to determine the effect

of optimizing APL on different networks, and this analysis can find out the added edges with which feature can decrease APL

more efficiently. In this paper, we compute several indices related to optimal networks, such as assortative index or network

diameter that relate to the optimal network structure. In the analysis, we also find that APL ultimately decreases linearly in the

process of adding edges, and this occurs because the network diameter affects the optimization of APL, which is ignored in the

previous studies. In addition, this phenomenon can be used to design more effective methods to optimize APL.

To make structural optimization clearer, we discuss the problem in terms of minimizing a specific index. APL is a

fundamental quantity that contains important information for understanding the behaviors of networks25. For example, APL

can be used to analyze topological structures of real world systems such as the World Wide Web7, to measure the transfer

efficiency of a metabolic network26, or to measure robustness with respect to random failures27. To minimize APL, we can

either decrease communication cost28, or increase synchronization29–33. Here, we take APL as the index to be optimized.

Minimizing APL has been the subject of much research. Donetti et al. proposed a new class of networks, named “entangled

networks”, which had small APL and large girths34. To speed up the convergence in Donetti’s model, Xuan et al. suggested a

simulated annealing method to achieve the optimal network by minimizing APL35. Keren explored the reduction of APL in

binary decision diagrams using a spectral technique based on properties of the Walsh spectrum of a Boolean function and its

autocorrelation function36. In this paper, we minimize APL by adding edges; this process can be applied to real optimization

problems such as enterprise mergers or location planning. Specifically, for a connected network G = (V,E) with n = ‖V‖ nodes

and ‖E‖ the initial number of edges, we add k edges (1≤ k ≤
n(n−1)

2
−‖E‖) to produce a network G′ = (V,E ′) with the

minimum APL. Our objective function can be expressed as Eq. (1):

min APL

s.t.‖E ′‖−‖E‖= k
(1)

It should be noted that optimization of APL suffers from combinatorial explosion problem. There can be

(n(n−1)
2
−‖E‖

k

)

ways of adding k edges to a network with n nodes. Since the time to compute APL is O(n3) finding the best solution takes time

O(n2k+3), which is high even for a small size network. This problem can be seen as an amendment to link recommendations,

namely to select from the candidates link recommendations that improve the APL, and many related algorithms can be

employed to accomplish this37, 38. Meyerson and Tagiku first defined this link recommendation as Average Shortest Path

Distance Minimization (ASPDM) and proposed an approximation method (ASPDM Algorithm) to solve this problem39; this

method finds a source vertex S, from which there is a lower value of the sum of path lengths to other nodes, and then adds

edges from S to k other nodes to give a lower APL. The complexity of this method is O(n3), which is quite time-saving, and the

solution was proved to be at least as good a solution, but there still exists a large distance from the global optimal solution.

Upon adding a new edge, the path length of some pairs of nodes will be changed, while the path length of other pairs remains

unchanged; Parotsidis et al. proposed the EdgeEffect Algorithm to maximize the reduction of those changed pairs’ lengths40.

The complexity of the EdgeEffect Algorithm is O(n3 ·‖E‖) , which is higher than that of the ASPDM Algorithm, but the solution

is more effective. Different variants of these algorithms have been considered, leading to qualitatively similar results41, 42.

A greedy algorithm adds edges one by one, and has proved to be the most efficient method in optimizing APL40, 43, 44. In

this paper, we modify this greedy algorithm as follows: a new edge is added at each step; specifically, for the first step, we

choose the edge giving the minimum APL from the (
n(n−1)

2
−‖E‖) nonexistent edges, and for the second step we choose

the best edge from the remaining (
n(n−1)

2
−‖E‖−1) nonexistent edges, and for the kth step we choose the best edge from

the remaining (
n(n−1)

2
−‖E‖− k+1) edges. The total time complexity of this greedy algorithm is O(n5 · k). This algorithm

has difficulty finding the globally optimal solution since it performs a local search. Its solution by adding k edges depends

completely on the solution of adding k−1 edges. Therefore, a new optimizing algorithm that uses a global search technique is

required to find more precise solutions.

The Algorithm

Since most structural optimizations suffer from the combinatorial explosion problem, evolutionary algorithms (such as a genetic

algorithm or simulated annealing) that combine global and local search techniques have been widely used and can be effective

in preventing combinatorial explosion45, 46. In this section, we propose a memetic algorithm combined with a genetic algorithm

and a heuristic local search to minimize the APL.

2/11

Framework

Algorithm 1 gives the framework of our proposed algorithm. We first input the necessary parameters and load the network matrix

to be optimized. Then we generate an initial population by the function Initial_Population(). Before the iteration number reaches

Imax, or the objective function (APL) remains unchanged for 40 iterations, we repeat a process for finding the best solution. In

this repeated process, we first select the parent population for genetic operations by use of the function Tournament_Selection();

then we operate crossover and mutation in the Genetic_Operation() to generate the offspring population; next, we use

Local_Search() to find a better solution after the Genetic_Operation(), which can speed up the convergence; Update_Population()

sorts the objective function of all chromosomes and selects better performing ones to construct a new population.

Algorithm 1 Framework of our algorithm

Input: maximum number of iterations: Imax; size of population: Spop; size of mating pool: Spool ; size of tournament: Stour;

probability of crossover: Pc; probability of mutation: Pm.

Output: the position of added edges; the updating network’s matrix; APL of the updating network.

1: Load: the initial network adjacency matrix;

2: P← Initial_Population(Spop);
3: repeat

4: Pparent ← Tournament_Selection(P,Spool ,Stour);
5: Po f f spring← Genetic_Operation (Pparent ,Pc,Pm);
6: P′o f f spring← Local_Search (Po f f spring);
7: P← Update_Population (P,P′o f f spring);
8: until Termination.

Representation and Initialization

Our target is to determine in which positions we should add new edges to reduce the APL. To this end, we first find the positions

of those pairs of nodes that are not connected (nonexistent edges). Then we give a set of sequence numbers to these positions;

thus our solutions can be encoded as chromosomes consisting of these corresponding sequence numbers. An example is shown

in Fig. 1, where the second entry of the chromosome changes from 2 to 3, so the added edge between Node 1 and Node 4

changes to the edge between Node 2 and Node 4. At initialization, we generate a population and randomly assign a set of

numbers to every element of the chromosomes in the population. To speed up convergence and retain population diversity, we

add two new sub-populations: (1) each element of the chromosomes (i.e., the added edge) connects the two highest degree

nodes; (2) each element of the chromosomes connects the highest degree node and the lowest degree node. In other words, the

initial population can be divided into three parts: solutions with random assignment, assortative connecting assignment and

disassortative connecting assignment.

Genetic operation

The genetic operation consists of two parts: crossover and mutation.

In the crossover procedure, we randomly select two chromosomes from the parent population with probability Pc and

generate two offspring chromosomes. The common elements of the two offspring chromosomes remain unchanged. For the

remaining elements that differ between the chromosomes we give an ordering, and for every unshared element, crossover

operates with probability a: if a < 0.5 , the element remains unchanged; and if a≥ 0.5, the corresponding elements (with the

same ordering number) of the two offspring are swapped. Fig. 2 gives an illustration of crossover. The sequence numbers 11 and

7 are elements common to both offspring chromosomes, so they do not need to exchange. For the other four elements, assuming

that the probability a equals 0.4, 0.8, 0.7, and 0.2, respectively, the first and fourth unshared element remain unchanged since

a < 0.5, and the second and third unshared elements are swapped between the two chromosomes since a≥ 0.5.

In the mutation procedure, we randomly select a chromosome with probability Pm, and for a selected element of the

chromosome, we randomly choose a different sequence number to replace that element.

Local search

By incorporating some prior knowledge, a local search can efficiently reduce useless explorations and speed up the convergence

of genetic algorithms47. In this section, we employ Path Length Learning and Neighbor Learning, respectively.

Path Length Learning is shown in Algorithm 2. We first update the network matrix by decoding the chromosome. Then, we

compute the degrees of nodes connected by the added edges and delete the edge with the minimum sum degree of those pairs of

nodes. Finally, we add a new edge to the pair of nodes that has the longest path length. This learning technique helps produce a

better result.

3/11

1 2 4

1 3 4

Chromosome 1

Chromosome 2

1
4

2 3

5

1 4

2 3

5

1

Node Node Sequence Number

1 3 1

1 4 2

2 4 3

2 5 4

3 5 5

Positions

Figure 1. Illustration of the representation. The upper left table is the position of disconnected edges represented by a set of

sequence numbers. Upper right is an illustration of chromosomes. The lower part is the topological graph corresponding to the

chromosomes. The solid lines represent the existing edges, the dashed lines represent the added edges, and the number near the

node is the sequence number of the node.

91 11 8 10 7 2312 4 7 11 5

231 4 10 912 8 5

Parent

Offspring 11 117 7

a 0.4 0.8 0.7 0.2

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

Figure 2. Illustration of crossover. The first line is the generalized probability a. The upper two chromosomes are parental

chromosomes while the lower two are offspring chromosomes. The small numbers near the elements are the ordering numbers

of the unshared elements, and the elements with the same ordering number are corresponding elements. We check every

unshared element of the two parent chromosomes; if the generalized a < 0.5, the element remains unchanged in the offspring

chromosomes, while if a≥ 0.5, the corresponding elements are swapped.

4/11

Algorithm 2 Path Length Learning

Input: the chromosome Xo f f spring; the adjacency matrix of the initial network M.

Output: Xo f f spring2.

1: Xo f f spring2 = Xo f f spring;

2: Update the matrix M by decoding Xo f f spring;

3: Find the position of the pair of nodes with longest path length of the updated matrix (the position is represented by the

sequence number g);

4: Check every element of Xo f f spring and compute the degrees of nodes connected by the added edge decoded by the element;

5: Find the element i with the minimum sum value of nodes pair degrees;

6: Xo f f spring2(i) = g;

In Neighbor Learning, illustrated in Algorithm 3, for each element in the offspring chromosome, we choose the value of its

best neighbor (a neighbor of an added edge is one of the nonexistent edges sharing one of the same nodes) to judge whether this

choice produces a better result. If the new choice decreases APL, then we accept the new element, and the result improves.

Algorithm 3 Neighbor Learning

Input: the chromosome Xo f f spring2; the number of added edges k; the adjacency matrix of the initial network M.

Output: Xo f f spring2.

1: Xo f f spring3 = Xo f f spring2

2: Update the matrix M by decoding Xo f f spring3;

3: for i = 1; i≤ k; i++ do

4: for m = 1; number of Xo f f spring3(i)’s neighbor; m++ do

5: Xo f f spring3(i) = Xo f f spring3(i)’s neighbor;

6: end for

7: find Xo f f spring3(i)’s neighbor q with minimum APL(Xo f f spring);

8: Xo f f spring3(i) = q;

9: if APL(Xo f f spring3) < APL(Xo f f spring2) then

10: APL(Xo f f spring2) = APL(Xo f f spring3)
11: end if

12: end for

Complexity analysis

If we add k edges to a network of size n, the time complexity of the proposed algorithm can be estimated as follows: At each

iteration, we first need to carry out the crossover
Spool

2
times and mutation Spool times, where Spool is the size of the mating

pool for the genetic operation. Since the time complexity of computing the APL is O(n3), the genetic operation will cost

O(Spool(k+n3)). Second, on performing the path learning, updating the matrix costs time O(k), finding the added edge with

the minimum node degrees costs O(kn), finding the nonexistent edge with longest path length costs O(n3), so the path learning

will cost O(n3 + kn+ k). Third, to perform neighbor learning, we consider n neighbors of each added edge, and it will cost

O(kn4) to compute the APL of all those neighbors. As a result, the complexity of our algorithm is O(kn4) at each iteration. If

the network size n is big enough, the complexity of the Memetic Algorithm is less than that of Greedy Algorithm.

Results

In this section, we test our algorithm on different computer-generated networks. The experiments were carried out on a 2.40

GHz CPU, 4.00 GB Memory and Windows 10 operating system using MATLAB to execute the procedure. Since the algorithm

we proposed is not parameter-free, we need to set some values for these parameters in advance, such as the size of population

or mating pool. Some of these parameters are set to the fixed values that we found by trial and error in order to ensure that

the proposed algorithm has excellent performance. Table. 1 shows the parameters used in the experiments. We first ran our

algorithm on random networks with different network sizes, and compared it with five other methods: (1) add k edges at one

time, where each of the added edges connects the two highest degree nodes (Denoted as Big-Big, which is an assortative

connecting method); (2) add k edges at one time, where each of the added edges connects the highest degree node and the

lowest degree node (denoted as Big-Small, which is a disassortative connecting method); (3) add k edges one by one, with

5/11

Imax Maximum number of iterations 200

Spop Size of population 200

Spool Size of mating pool 100

Stour Size of tournament 2

Pc Probability of Crossover 0.1

Pm Probability of Mutation 0.9

Table 1. Parameters of the experiments.

each of the added edges giving the minimum APL as described in Section 2 (denoted as the Greedy Algorithm). We set k

from 1 to 50; (4) ASPDM Algorithm proposed by Meyerson and Tagiku39; (5) EdgeEffect Algorithm proposed by Parotsidis

et al40. Since evolutionary algorithms have inherent randomness, many of them, including our proposed algorithm, may fall

into a local minimum in some cases. We ran the above-mentioned algorithms ten times. For the results of the mean APL for

these ten runs, the Greedy Algorithm can find the best solutions, while the Memetic Algorithm can find better solutions than

other methods. For finding the minimum APL for these ten runs, the Memetic Algorithm performs best. In order to make the

experimental results easier to comprehend and for convenience, we list only the results of the minimum APL for the ten runs of

these algorithms. We set the number of added edges to 10; Fig. 3 shows the optimizing result with different network sizes.

Compared with the other methods, our algorithm and Greedy Algorithm can always find lower-APL solutions with different

network sizes.

20 30 40 50 60

Network size n

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

A
P

L

Big-Big

Big-Small

Greedy Algorithm

Memetic Algorithm

EdgeEffect Algorithm

ADSPM Algorithm

Figure 3. Optimizing result of APL with different network size.

Then we ran our algorithm on three different networks (random network, regular network and scale-free network of size

30) with different numbers of added edges to explore the effect of each added edges. Fig. 4 shows the optimizing results for

different networks. Since the degrees of regular network nodes are all equal, the results of Big-Big and Big-Small are the same;

here we record just the result of Big-Big on the regular network. Since ASPDM Algorithm adds edges from a source vertex S

to other nodes, which do not connect to S, when all nodes are connected to S in the process of adding edges no more edges will

be added as shown in Fig. 4.

6/11

0 5 10 15 20 25 30 35 40 45 50

Added Edges k

1.6

1.62

1.64

1.66

1.68

1.7

1.72

1.74

1.76

1.78
A

P
L

Big-Big

Big-Small

Greedy Algorithm

Memetic Algorithm

EdgeEffect Algorithm

ASPDM Algorithm

(a) Random network

0 5 10 15 20 25 30 35 40 45 50

Added Edges k

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

A
P

L

Big-Big

Greedy Algorithm

Memetic Algorithm

EdgeEffect Algorithm

ASPDM Algorithm

(b) Regular network

0 5 10 15 20 25 30 35 40 45 50

Added Edges k

1.56

1.58

1.6

1.62

1.64

1.66

1.68

1.7

1.72

1.74

A
P

L

Big-Big

Big-Small

Greedy Algorithm

Memetic Algorithm

EdgeEffect Algorithm

ASPDM Algorithm

(c) Scale-free network

Figure 4. Optimizing results of APL for three different networks.

Compared with the other five methods, our algorithm can find lower-APL solutions except for a few solutions of the Greedy

Algorithm and EdgeEffect Algorithm which do better than the Memetic Algorithm on the regular network (this is because our

priori knowledge is less useful on regular networks). We conclude that in most cases, our proposed algorithm can effectively

minimize APL. Further, we find that the solutions of Big-Small are close to the optimizing solutions in Figs. 4(a) and 4(c). In a

sense, disassortative connecting can find good solutions for minimizing APL. Moreover, we find when the number of added

edges increases to a threshold value, APL begins to decline linearly no matter which method is used. This phenomenon can be

explained by the feature of Critical Diameters48, 49. Specifically, when we add enough edges to the network, the longest path

length of the network becomes 2 (i.e. the network diameter is 2), in which case, if we randomly add a new edge between a pair

of nodes, we can only change the path lengths of these two nodes to 1, and thus the APL can be reduced by just
2

n(n−1)
for

each step, which constitutes a linear decline.

In this section, we analyze the structure of the optimal networks to determine the effect of optimizing APL on different

networks. The assortative index r and cluster coefficient c are important indices for measuring network characteristics50. The

assortative index r measures the characteristic of assortative (or disassortative) mixing, and can be formulated as Eq.(2):

r =
M−1 ∑i jiki−

[

M−1 ∑i
1
2
(ji + ki)

]2

M−1 ∑i
1
2
(ji

2 + ki
2)−

[

M−1 ∑i
1
2
(ji + ki)

]2
(2)

where ji, ki are the degrees of the vertices at the ends of the ith edge.51 The cluster coefficient c measures average local

density (c =
∑v CCv

n
), where CCv =

|E(Γv)|

kv(kv−1)
, |E(Γv)| is the number of edges in the relational neighborhood of node v, and

(kv(kv−1) is the number of possible edges in the relational neighborhood of node v. As APL decreases monotonically, the

Memetic Algorithm results for r and c fluctuate because there can be more than one best solution with different connection

rules that minimizes APL when more edges are added as shown in Figs 5-7. Further, the variation in r and c appears to be quite

different in the three different network models.

7/11

For the random network experiments, as shown in Fig. 5, r does not show a regular trend, but the optimal networks turn

out to be disassortative since most r values are negative, while c shows an increasing trend as more edges are added to the

initial network, which means that a random network is gradually evolving into a small-world network. This figure shows two

interesting phenomena. First, disassortative connection for adding edges may contribute more to the decrease of APL. Second,

decreasing APL in random networks can simultaneously increase the cluster coefficient, which is helpful in constructing

small-world networks.

0 5 10 15 20 25 30 35 40 45 50

Added Edges k

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

A
ss

o
rt

at
iv

e
In

d
ex

 r

Big-Big

Big-Small

Greedy Algorithm

Memetic Algorithm

(a) Assortative index r as a function of added edges.

0 5 10 15 20 25 30 35 40 45 50

Added Edges k

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

C
lu

st
er

 C
o
ef

fi
ci

en
t

c

Big-Big

Big-Small

Greedy Algorithm

Memetic Algorithm

(b) Cluster coefficient c as a function of added edges.

Figure 5. Assortative index r and cluster coefficient c results for the random network.

For the regular network experiments, r and c both decline with the first few edges added as shown in Fig. 6. Thus,

we can conclude that when adding a small number of edges, a disassortative connection is a good choice to decrease APL.

Since a regular network initially has a high cluster coefficient, c will decrease when we add edges in a disassortative way.

However, when we add a larger number of edges to a regular network, the disassortative connection becomes less effective.

This conclusion is different from that for the random network.

0 5 10 15 20 25 30 35 40 45 50

Added Edges k

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

A
ss

o
rt

at
iv

e
In

d
ex

 r

Big-Big

Big-Small

Greedy Algorithm

(a) Assortative index r as a function of added edges.

0 5 10 15 20 25 30 35 40 45 50

Added Edges k

0.45

0.5

0.55

0.6

0.65

0.7

0.75

C
lu

st
er

 C
o
ef

fi
ci

en
t

c

Big-Big

Big-Small

Greedy Algorithm

(b) Cluster coefficient c as a function of added edges

Figure 6. Assortative index r and cluster coefficient c results for the regular network.

For optimization of the scale-free network as shown in Fig. 7, all signs of r are negative, which indicates that optimal

networks are all disassortative. However, c increases as new edges are added, because adding more edges to a scale-free

network, especially linking high-degree nodes with other nodes, has a high probability of constructing more triangles, which

will result in a higher c. The property of connections in scale-free networks is similar to that in random networks, and the

disassortative feature of the connections is more obvious in scale-free networks.

8/11

0 5 10 15 20 25 30 35 40 45 50

Added Edges k

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

A
ss

o
rt

at
iv

e
In

d
ex

 r

Big-Big

Big-Small

Greedy Algorithm

Memetic Algorithm

(a) Assortative index r as a function of added edges.

0 5 10 15 20 25 30 35 40 45 50

Added Edges k

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

C
lu

st
er

 C
o
ef

fi
ci

en
t

c

Big-Big

Big-Small

Greedy Algorithm

Memetic Algorithm

(b) Cluster coefficient c as a function of added edges

Figure 7. Assortative index r and cluster coefficient c results for the scale-free network.

Conclusion

In this paper, we have focused on the optimization of a network by minimizing APL by adding edges, and we propose a

memetic algorithm to find optimal solutions. The experimental results show that our algorithm can minimize APL efficiently.

In the analysis, we also find that APL will ultimately decrease linearly in the process of adding edges, which is directly affected

by the network diameter. Further, we compute the assortative index and cluster coefficient for optimal networks with different

initial network structures and find that these two properties of optimal solutions may be quite different. We optimize only

one indicator, APL, in this paper, but in many cases we need to optimize more than one feature of networks, for example

minimizing APL and maximizing the cluster coefficient at the same time. This multi-objective structural optimization should

be explored in future work.

References

1. Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99,

7821–7826, DOI: 10.1073/pnas.122653799 (2002).

2. Gómez, S., Jensen, P. & Arenas, A. Analysis of community structure in networks of correlated data. Phys Rev E Stat

Nonlin Soft Matter Phys 80, 016114, DOI: 10.1103/PhysRevE.80.016114 (2009).

3. Leicht, E. A. & Newman, M. E. Community structure in directed networks. Phys Rev Lett 100, 118703, DOI: 10.1103/

PhysRevLett.100.118703 (2008).

4. Zhang, X., Nadakuditi, R. R. & Newman, M. E. Spectra of random graphs with community structure and arbitrary degrees.

Phys Rev E Stat Nonlin Soft Matter Phys 89, 042816, DOI: 10.1103/PhysRevE.89.042816 (2014).

5. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442, DOI: 10.1038/30918

(1998).

6. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512, DOI: 10.1126/science.286.

5439.509 (1999).

7. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97, DOI: 10.1103/

revmodphys.74.47 (2002).

8. Schelling, T. C. Dynamic models of segregation†. The J. Math. Sociol. 1, 143–186, DOI: 10.1080/0022250x.1971.9989794

(1971).

9. Bailey, N. T. J. The Mathematical Theory of Infectious Diseases and Its Applications (Hafner Press, New York, 1975), 2nd

edn.

10. Anderson, R. & May, R. Infectious Diseases of Humans (Oxford University Press, Oxford, 1992).

11. Meng., C., Haifeng., D. & Feldman, M. W. A new network structure entropy based on maximum flow. Acta Phys. Sinica

63, 060504, DOI: 10.7498/aps.63.060504 (2014).

12. Yang, W., Chakrabarti, D., Chenxi, W. & Faloutsos, C. Epidemic spreading in real networks: an eigenvalue viewpoint.

25–34, DOI: 10.1109/reldis.2003.1238052 (IEEE Comput. Soc, 2003).

9/11

10.1073/pnas.122653799
10.1103/PhysRevE.80.016114
10.1103/PhysRevLett.100.118703
10.1103/PhysRevLett.100.118703
10.1103/PhysRevE.89.042816
10.1038/30918
10.1126/science.286.5439.509
10.1126/science.286.5439.509
10.1103/revmodphys.74.47
10.1103/revmodphys.74.47
10.1080/0022250x.1971.9989794
10.7498/aps.63.060504
10.1109/reldis.2003.1238052

13. Wang, Y., Zeng, A., Di, Z. & Fan, Y. Enhancing synchronization in growing networks. EPL (Europhysics Lett. 96, DOI:

10.1209/0295-5075/96/58007 (2011).

14. Shi, D., Chen, G., Thong, W. W. K. & Yan, X. Searching for optimal network topology with best possible synchronizability.

IEEE Circuits Syst. Mag. 13, 66–75, DOI: 10.1109/mcas.2012.2237145 (2013).

15. Sun, Y., Du, H., Gong, M., Ma, L. & Wang, S. Fast computing global structural balance in signed networks based on

memetic algorithm. Phys. A: Stat. Mech. its Appl. 415, 261–272, DOI: 10.1016/j.physa.2014.07.071 (2014).

16. Kułakowski, K., Gawroński, P. & Gronek, P. The heider balance: A continuous approach. Int. J. Mod. Phys. C 16, 707–716,

DOI: 10.1142/s012918310500742x (2005).

17. Antal, T., Krapivsky, P. L. & Redner, S. Dynamics of social balance on networks. Phys Rev E Stat Nonlin Soft Matter Phys

72, 036121, DOI: 10.1103/PhysRevE.72.036121 (2005).

18. Facchetti, G., Iacono, G. & Altafini, C. Computing global structural balance in large-scale signed social networks. Proc

Natl Acad Sci U S A 108, 20953–8, DOI: 10.1073/pnas.1109521108 (2011).

19. Barahona, F. On the computational complexity of ising spin glass models. J. Phys. A: Math. Gen. 15, 3241–3253, DOI:

10.1088/0305-4470/15/10/028 (1982).

20. Wang, S. et al. Optimizing dynamical changes of structural balance in signed network based on memetic algorithm. Soc.

Networks 44, 64–73, DOI: 10.1016/j.socnet.2015.06.004 (2016).

21. Cavalcanti, D., Agrawal, D., Kelner, J. & Sadok, D. Exploiting the Small-World Effect to Increase Connectivity in Wireless

Ad Hoc Networks, book section Chapter 53, 388–393. Lecture Notes in Computer Science (2004).

22. Yang, X. & Xiaohua, W. Decentralized small-world optimization strategy. J. Suzhou Univ. (Engineering Sci. Ed. 27,

41–46, DOI: 10.3969/j.issn.1673-047X.2007.03.010 (2007).

23. Schleich, J., Danoy, G., Dorronsoro, B. & Bouvry, P. Optimising small-world properties in vanets: Centralised and

distributed overlay approaches. Appl. Soft Comput. 21, 637–646, DOI: 10.1016/j.asoc.2014.03.045 (2014).

24. Du, H., Fan, J., He, X. & Feldman, M. W. A genetic simulated annealing algorithm to optimize the small-world network

generating process. Complexity 2018, 1–12, DOI: 10.1155/2018/1453898 (2018).

25. Yu, F., Li, Y. & Wu, T.-J. A temporal ant colony optimization approach to the shortest path problem in dynamic scale-free

networks. Phys. A: Stat. Mech. its Appl. 389, 629–636, DOI: 10.1016/j.physa.2009.10.005 (2010).

26. Ma, H. & Zeng, A. P. Reconstruction of metabolic networks from genome data and analysis of their global structure for

various organisms. Bioinformatics 19, 270–277, DOI: 10.1093/bioinformatics/19.2.270 (2003).

27. Wang, B., Tang, H., Guo, C., Xiu, Z. & Zhou, T. Optimization of network structure to random failures. Phys. A: Stat.

Mech. its Appl. 368, 607–614, DOI: 10.1016/j.physa.2005.12.050 (2006).

28. Ashton, D. J., Jarrett, T. C. & Johnson, N. F. Effect of congestion costs on shortest paths through complex networks. Phys

Rev Lett 94, 058701, DOI: 10.1103/PhysRevLett.94.058701 (2005).

29. Lago-Fernández, L. F., Huerta, R., Corbacho, F. & Sigüenza, J. A. Fast response and temporal coherent oscillations in

small-world networks. Phys. Rev. Lett. 84, 2758–2761, DOI: 10.1103/physrevlett.84.2758 (2000).

30. Gade, P. M. & Hu, C.-K. Synchronous chaos in coupled map lattices with small-world interactions. Phys. Rev. E 62,

6409–6413, DOI: 10.1103/physreve.62.6409 (2000).

31. Jost, J. & Joy, M. P. Spectral properties and synchronization in coupled map lattices. Phys. Rev. E 65, DOI: 10.1103/

physreve.65.016201 (2001).

32. Hong, H., Choi, M. Y. & Kim, B. J. Synchronization on small-world networks. Phys Rev E Stat Nonlin Soft Matter Phys

65, 026139, DOI: 10.1103/PhysRevE.65.026139 (2002).

33. Barahona, M. & Pecora, L. M. Synchronization in small-world systems. Phys. Rev. Lett. 89, DOI: 10.1103/PhysRevLett.

89.054101 (2002).

34. Donetti, L., Hurtado, P. I. & Munoz, M. A. Entangled networks, synchronization, and optimal network topology. Phys Rev

Lett 95, 188701, DOI: 10.1103/PhysRevLett.95.188701 (2005).

35. Xuan, Q., Li, Y. & Wu, T.-J. Optimal symmetric networks in terms of minimizing average shortest path length and their

sub-optimal growth model. Phys. A: Stat. Mech. its Appl. 388, 1257–1267, DOI: 10.1016/j.physa.2008.12.020 (2009).

36. Keren, O. Reduction of average path length in binary decision diagrams by spectral methods. IEEE Transactions on

Comput. 57, 520–531, DOI: 10.1109/tc.2007.70811 (2008).

10/11

10.1209/0295-5075/96/58007
10.1109/mcas.2012.2237145
10.1016/j.physa.2014.07.071
10.1142/s012918310500742x
10.1103/PhysRevE.72.036121
10.1073/pnas.1109521108
10.1088/0305-4470/15/10/028
10.1016/j.socnet.2015.06.004
10.3969/j.issn.1673-047X.2007.03.010
10.1016/j.asoc.2014.03.045
10.1155/2018/1453898
10.1016/j.physa.2009.10.005
10.1093/bioinformatics/19.2.270
10.1016/j.physa.2005.12.050
10.1103/PhysRevLett.94.058701
10.1103/physrevlett.84.2758
10.1103/physreve.62.6409
10.1103/physreve.65.016201
10.1103/physreve.65.016201
10.1103/PhysRevE.65.026139
10.1103/PhysRevLett.89.054101
10.1103/PhysRevLett.89.054101
10.1103/PhysRevLett.95.188701
10.1016/j.physa.2008.12.020
10.1109/tc.2007.70811

37. Adamic, L. A. & Adar, E. Friends and neighbors on the web. Soc. Networks 25, 211–230, DOI: 10.1016/s0378-8733(03)

00009-1 (2003).

38. Liben-Nowell, D. & Kleinberg, J. The link-prediction problem for social networks. J. Am. Soc. for Inf. Sci. Technol. 58,

1019–1031, DOI: 10.1002/asi.20591 (2007).

39. Meyerson, A. & Tagiku, B. Minimizing Average Shortest Path Distances via Shortcut Edge Addition, 272–285 (Springer

Berlin Heidelberg, 2009).

40. Parotsidis, N., Pitoura, E. & Tsaparas, P. Selecting Shortcuts for a Smaller World, 28–36. Proceedings (Society for

Industrial and Applied Mathematics, 2015). Doi:10.1137/1.9781611974010.4.

41. Papagelis, M., Bonchi, F. & Gionis, A. Suggesting ghost edges for a smaller world, DOI: 10.1145/2063576.2063952

(2011).

42. Lazaridou, K., Semertzidis, K., Pitoura, E. & Tsaparas, P. Identifying Converging Pairs of Nodes on a Budget (2015).

43. Lee, S. H. & Holme, P. A greedy-navigator approach to navigable city plans. The Eur. Phys. J. Special Top. 215, 135–144,

DOI: 10.1140/epjst/e2013-01720-8 (2013).

44. Papagelis, M. Refining social graph connectivity via shortcut edge addition. ACM Transactions on Knowl. Discov. from

Data 10, 1–35, DOI: 10.1145/2757281 (2015).

45. Brusco, M. & Steinley, D. A tabu-search heuristic for deterministic two-mode blockmodeling of binary network matrices.

Psychometrika 76, 612–33, DOI: 10.1007/s11336-011-9221-9 (2011).

46. Ross, B. J. & Zuviria, E. Evolving dynamic bayesian networks with multi-objective genetic algorithms. Appl. Intell. 26,

13–23, DOI: 10.1007/s10489-006-0002-6 (2006).

47. Moscato, P. On evolution, search, optimization, genetic algorithms and martial arts - towards memetic algorithms. Caltech

Concurr. Comput. Program (1989).

48. Du, H., He, X., Du, W. & Feldman, M. W. Optimization of the critical diameter and average path length of social networks.

Complexity 2017, 1–11, DOI: 10.1155/2017/3203615 (2017).

49. Du, H., Wang, J., He, X. & Du, W. A memetic algorithm to optimize critical diameter. Swarm Evol. Comput. 47, 56–65,

DOI: 10.1016/j.swevo.2017.10.001 (2019).

50. Niu, J. & Wang, L. Structural properties and generative model of non-giant connected components in social networks. Sci.

China Inf. Sci. 59, DOI: 10.1007/s11432-015-0790-x (2016).

51. Newman, M. E. J. Assortative mixing in networks. Phys. Rev. Lett. 89, DOI: 10.1103/physrevlett.89.208701 (2002).

Author contributions

X.C.H. designed the project and developed the initial idea. W.D. and G.L. contributed to analyses and interpretations of the

results. All authors wrote the manuscript together.

Additional information

Competing interests:The authors declare no competing interests

11/11

10.1016/s0378-8733(03)00009-1
10.1016/s0378-8733(03)00009-1
10.1002/asi.20591
10.1145/2063576.2063952
10.1140/epjst/e2013-01720-8
10.1145/2757281
10.1007/s11336-011-9221-9
10.1007/s10489-006-0002-6
10.1155/2017/3203615
10.1016/j.swevo.2017.10.001
10.1007/s11432-015-0790-x
10.1103/physrevlett.89.208701

	References

