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Abstract
Based on the virtualization technology and pushed by the softwarization paradigm and
the actual demand for services and resources, commercial cloud data centers know
an unprecedented expansion. The systematic presence of software and the services
generated enabled the development of the already dense application expenses. This
causes, not only a cost explosion, especially when proprietary solutions protected by
licenses are in hand, but also, represents a critical need in terms of software asset and
resource management at the SaaS level. In addition to these costs, inefficient resource
utilization, and the resulting energy represent an important part of the operational
expenditure of data centers and are still a hot topic despite the consolidation initiatives
put in place. The main objective of the consolidation service is to maximize resource
exploitation while minimizing energy consumption and costs, among others. Even so,
we have noticed that the reported literature doesn’t treat license management in the
cloud environment as a whole, especially, from the resource management perspec-
tive and the overwhelming majority of the consolidation work focuses on resource
optimization at the IaaS level. Therefore, we propose a reinforcement learning-based
scheme that allows efficient use of resources and optimizes costs, energy consump-
tion, and resource wastage, while remaining compliant. The experimental results show
that our intelligent consolidator outperforms the baseline approaches according to the
evaluation metrics used regardless of the resource heterogeneity and the data center
dimensionality.
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1 Introduction

With the emergence of new paradigms like softwarization and network virtualization,
the demand for services and resources in cloud data centers (DCs) was accelerated.
The SaaS market represents the most important evolution that remains in 2021, with
$97 billion in global spending [1]. Proprietary solutions are particularly underlined
due to the current economic climate. Managing these services protected by licenses
represents a recent challenge where more than 50% of the incurred costs within a
DC are reserved to software licensing, maintenance, and deployment [2]. Indeed, the
software license charges (software costs) may be included in the VM price (License
Charges Included) when VM-based virtualization technology is used or considered
separately. In the latter case, the cloud user, when deploying the software, considers his
software license (BringYourOwnLicense) [3]. Here, we consider the second scenario.
In addition to the generated costs, non-compliant situations can cause many potential
risks which translate into economic losses. This notion of compliance appeals to the
metric model used in software licensing which remains obscure in commercial cloud
data centers. The most popular licensing method uses declarative licenses, where the
business agreements established are periodically audited to check compliance [4]. In
highly dynamic cloud environments, when resources and licenses should be scaled up
and down rapidly according to the real needs, this method is unsuitable and costly.
Moreover, software licensing is considered as an obstacle for the cloud [5]. Here, we
consider the processor-based licensing, which depends on the number of cores of the
processor and a core processing license factor as in the Oracle database case [6].

From a resource management perspective, energy consumption represents another
important component of operational expenditure in the cloud and can contribute to
global warming due to the enormous emission of carbon and the released temperature.
The amount of energy is significant in the actual big data centers delivering cloud
computing services that contain thousands of computational machines [7]. Energy
consumption is increased with increasing resource utilization within a DC. The poor
management of resources can cause exploitation of only 10% of about 30% cloud
servers [8]. As a result, around 3-13% of global electricity will be used by data centers
by the year 2030 [9].

To cope with the aforementioned problems, consolidation is a suitable technique [8,
10] that allows to run more workloads with lower costs and lowered power demands
without adding newhardware and resources[8]. Throughmigration and optimal alloca-
tion, software licenses are dynamically provisioned and released elastically according
to the real use to prevent under/over utilization of resources. Thus, our approach
tends to maximize the DC utilization by minimizing the wasted resources at physical
machine (PM) and virtual machine (VM) levels and reduce energy consumption along
with costs including license and VM costs, while being compliant.

To this end, we propose a compliance-aware reinforcement learning (RL)-based
intelligent scheme (COMPaRL) to dynamically allocate the migrated software. It is
a proactive approach that handles the compliance and checks the number of installed
instances of each software from the resource scalability step, instead of reactively
auditing the already installed software instances to deal with the compliance consid-
erations. In our model, we consider the heterogeneity of resources at VM and PM and
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the dimensionality of the DC to treat the case of small to relatively big data centers.
These DCs are virtualized according to the VM-container architecture when software
license (SL) applications are packaged in containers that run in VMs since software
licenses require strict security measures. This virtualization solution represents the
best alternative until now [8]. This also is encouraged by the quick deployment of
new SLs along with the agility and lightweight of containers to develop a dynamic
consolidation solution in dynamic and highly changing cloud environments.

The following points summarize the key contributions to address the mentioned
challenges:

(i) An approach for migratable SL candidates selection, theMaximumLicense Cost
(MLC) policy, is implemented. This allowed important savings via migration by
saving the cost of the most expensive software licenses.

(ii) An intelligent software license consolidation (SLC) scheme is proposed which
dynamically reallocates the SLs based on the RL framework.

(iii) A compliance checking algorithm that allows deciding if an allocation is com-
pliant with the processor-based metric before performing the new placement.

(iv) Extensive simulations are conducted to evaluate our proposed scheme con-
sidering different metrics and approaches which show the superiority and the
effectiveness of our approach.

The rest of this paper is structured as follows. In Sect. 2, we present the related work
followed by the formulation of our proposed model in Sect. 3. Section 4 describes our
proposed architecture and its building blocks. In Sect. 5, our intelligent consolidation
approach applying reinforcement learning is presented. The simulation settings and
results analysis are detailed in Sect. 6. Section 7 discusses the major findings and
insights of our work and gives an overview of overheads and scalability through the
consolidation process.While Sect. 8 concludes thework andgives some future outlook.

2 Related work

The workload consolidation at the software level while considering licenses has not
yet taken his interest in the scientific community. Only Sen et al. [2], in their work, con-
sider software license consolidation, seeking to place workloads with similar software
stack on the same PM to reduce the number of software instances, and thus, costs. The
authors consider a typical CRM-web application and they consolidate the software
into several layers. In this work, a classical hardware consolidation (VMs) and a per
server consolidation of software are performed. In the latter, the workload of the same
application is grouped into the same software instances within the same server. This
approach suffers from isolation problems with the lack of dependencies and support to
migrate hosted applications across servers. It also has a security problem because the
fact of consolidating in the stack above the VM without taking security measures, if a
software (application, portal, middleware) is contaminated, it incurs serious security
problems. In our work, the containers that package the software licenses and their
dependencies resolve the isolation problem, and the considered VM-container virtu-
alization architecture allows to resolve the security risks [8]. In [11], Mann considers
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Table 1 Summary of related works on software and/or license consolidation

Work Consolidation level Compliance License
cost

VM
cost

Energy Resource
wastage

Mann [11] VM - � - - -

Sen et al. [2] Hardware, software - � - - -

Tchana et al. [12] Software, VM - - � � -

Our approach COMPaRL Software license � � � � �

the cost of licensed components in virtual machine consolidation. The author seeks
for the selection of suitable VMs to place software components and suitable PMs
to accommodate these VMs, without considering the deployment or consolidation
aspects of these components. Whereas, in our work, we consolidate at the software
level and not the VM. In [12] a software consolidation approach was proposed to opti-
mize energy consumption and costs that do not consider licenses. Another approach
to multi-objective application consolidation was proposed in [13]. It deals with energy
consumption and performance costs. In this work, application consolidation was con-
sidered as VM + container migration and evaluated with some heuristics. Mainly the
operating costs (energy consumption) and the migration costs were discussed. None
of this work considers the resource wastage or compliance aspects (see Table 1).

In [14] and [15], the consolidation of software licenses to optimize costs and energy
was discussed. In these works, heuristic solutions based on the well-known Best Fit
Decreasing (BFD) and First Fit (FF) algorithms [16] which are very popular in VM
consolidation works have been proposed. These solutions have shown motivating
results but compliance and wastage of resources have not been taken into account.

Some virtual machine consolidation work treated resource wastage like [17] and
[18]. In the multi-objective consolidation works like [13, 17], the weighted sum was
used to transform the optimization problem into a single objective problem.

Technically speaking, heuristics, metaheuristics, and reinforcement learning-based
solutions are the most adopted in resource consolidation. A comparison is given here
[8]. We noticed that RL approaches surpass heuristic and metaheuristic solutions [8].
[19] and [20] reported very promising results for virtual machine consolidation based
on reinforcement learning.

The work of [19] seeks a trade-off between energy consumption and performance
without considering resource wastage, costs, or compliance. The works of [20] and
[17] treated only VM placement without migration while in our work, we proposed a
whole dynamic consolidation process of software licenses.Moreover, these twoworks
treat only power consumption and resource wastage at the server level. In addition to
these objectives, in our work, we treat the resource wastage at the VM level and
costs while proposing a compliance checker algorithm that allows only compliant
allocations to be performed.
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Fig. 1 The set of SLs with their resource utilization

Regarding compliance in the cloud, in [21], the authors treat the compliance in the
instantiation step at the time of the software deployment. For that, they proposed a
modeling of the metrics and the necessary information about the software product to
automatize the compliance management, and they do not consider the migration and
dynamic reallocation of software licenses.

Furthermore, in [22] and [23], another aspect of compliance in cloud systems were
addressed. The two works proposed data privacy solutions based on Blockchain tech-
nology to support the General Data Protection Regulation (GDPR) in Europe. In the
work of Aujla et al. [22], a compliance-aware cloud application engineering was pro-
posed to improve transparency on the use of personal data. In the second work, Barati
et al. proposed a new approach for monitoring, auditing, and verifying the operations
performed on a user’s personal data in the cloud.

Besides this important aspect of data compliance, we address here application com-
pliance with the processor-based licensing model. We tackle application compliance
throughout the management and scalability of resources at software and hardware
levels in cloud systems.

3 Systemmodel and problem formulation

The SLC is an NP-hard [12] problem modeled as a bin-packing problem. We consider
a set of physical servers PM = {PMi |i = 1, . . . , NPM } and a set of virtual machines
V M = {V Mj | j = 1, . . . , NVM }with associated resource usage values to execute the
SLs. We consider also a set of software S = {Sk |k = 1, . . . , NS} offered by the SaaS
provider with q resource utilization (Fig. 1) and the associated licenses and fees. The
set of Nl licenses for each software Sk is L = {Lr |r = 1, ..., Nl} (Eq. 4). The set of
software licenses is denoted SL = {SLr

k |k = 1, . . . , NS, r = 1, . . . , Nl}.
They are presented in the Fig. 1 with their resource (CPU, memory, bandwidth,

etc.) requirements. ri designates the resource i, i = 1, 2, . . . , q.
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The relationship that defines if a license belongs to software is formally given by
the Eq. 1.

τ rk =
{
1 Sk is licensed under Lr

0 else
(1)

The relationship between a software license SLr
k and a virtual machine V Mj , a

V Mj and a PMi are given by the Eqs. 2 and 3 successively.

βk
j =

{
1 SLr

k is allocated to V Mj

0 else
(2)

Finally, we express the relationship between a software license SLr
k and a physical

machine PMi as βk
j δ

j
i with i ∈ [1..NPM ], j ∈ [1..NVM ] and k ∈ [1..NS].

δ
j
i =

{
1 V Mj is placed on PMi

0 else
(3)

Our goal is to optimize the total cost (license+VM) along with the overall energy
consumption while minimizing the wasted resources within the DC.

Table 2 summarizes the notations used in the article.

3.1 Processor-basedmetric and compliancemodels

Here, we consider a processor-based model use case of Oracle Database. Thus, fol-
lowing this metric, the number of required licenses shall be determined bymultiplying
the total number of cores of the processor by a core processor factor. All cores on all
multicore chips for each licensed program are to be aggregated before multiplying by
the appropriate core processor licensing factor and all fractions of a number are to be
rounded up to the next whole number” [6]. Hence, for a given PMi , the number of
required licenses NLi for an application licensed under the processor-based model is
given by the Eq. 4.

NLi = Nci ∗ C f (4)

Where Nci is the total number of cores (see Eq. 5), C f in the core factor, Npi is
the number of processor per server, and Cpi is the number of cores per processor.
For example, to license a processor with 6 cores and a core factor of 0.25, we need 2
licenses which is the aggregation of 1.5 (6*0.25).

Nci = Npi ∗ Cpi (5)

To ensure compliance with the considered license model, we propose the Eq. 6 to
account for the number of licenses in each physical machine PMi for each software
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Table 2 Symbols and notations

Symbol Description

NPM ,NVM Number of PMs and VMs in a DC, respectively

NS Number of running software in a DC

Nk
l Number of licenses for each software Sk

τ rk A binary variable indicating if the SLrk belongs to the software Sk and is
licensed under Lr license

βk
j A variable that indicates if the software license SLrk is running in the V M j

δ
j
i A variable that indicates if the V M j is hosted by the PMi

Nk
Li

Number of required licenses of a software Sk for a PMi

Nci Total number of cores of a PMi

Ck
f A core licensing factor of a software Sk

Npi Number of processors per server PMi

Cpi Number of cores per processor in a server PMi

LkPMi
, LkV M j

Number of licenses of the software Sk in a PMi and V M j , respectively

Lr Number of licenses of a given software

NUq
i , NUq

j Normalized utilization of resource q of the PMi and V M j , respectively

NUq
k Normalized utilization of resource q of the SLk

Capqi Capacity of resource q of the PMi

NUc
i , NUc

j Normalized utilization of CPU resource of the PMi and V M j , respectively

NUc
k Normalized utilization of CPU resource of the SLk

Capci Capacity of CPU resource of the PMi

NUm
i , NUm

j Normalized utilization of memory resource of the PMi and V M j , respec-
tively

NUm
k Normalized utilization of memory resource of the SLk

Capmi Capacity of memory resource of the PMi

Pst
i , Pdy

i Static and dynamic power consumption of the PMi , respectively

P f u
i Maximum power consumption of a server when is 100% utilised

NUc
i (t) Normalized CPU utilization of the PMi at time t

Pi (NUc
i (t)) Power utilization of the PMi at time t

Es
i Energy consumption of the PMi

E Total energy consumption in the DC

PEi Power efficiency parameter of a PMi

RWi , RWj Resource wastage of the PMi and V M j , respectively

N Rt
i , N Ro

i Normalized residual resources of the PMi

N Rc
i , N Rm

i Normalized residual CPU and memory resources of the PMi , respectively

N Rt
j , N Ro

j Normalized residual resources of the V M j

N Rc
j , N Rm

j Normalized residual CPU and memory resources of the V M j , respectively

N Rmin
i ,

N Rmax
i

Minimum and maximum residual resources of CPU and memory of PMi ,
respectively
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Table 2 continued

Symbol Description

N Rmin
j ,

N Rmax
j

Minimum and maximum residual resources of CPU and memory of V M j ,
respectively

RW Total resource wastage in the DC

ρ, η Small positive numbers

L fV M j License fees in a V M j

L fSLrk
License fees of the SLrk

R fV M j Renting fees of the V M j

C j , Ci Total cost in a V M j and PMi , respectively

C Total cost in the DC

f , fi Objective functions

Wi Weights (i = 1, 2, 3)

Tmig Migration time of an SL

B Bandwidth

Sk . It is estimated by summing the number of licenses (Lk
V Mj

) in all V Ms hosted in
PMi .

Lk
PMi

=
∑
j

βk
j δ

j
i L

k
V Mj

=
∑
j

∑
r

τ rk βk
j δ

j
i (Lr ) (6)

3.2 Resource utilizationmodel

We define the normalized utilization vector of a PMi as:

NUq
i =

∑
j

δ
j
i NUq

j

Capqi
=

∑
j

∑
k

βk
j δ

j
i NUq

k

Capqi
(7)

The normalized CPU utilization (NUc
i ) of a PMi is estimated by the sum of the

utilization of all software running in all VMs hosted in the PM and is given by Eq. 8.
NUc

j and NUc
k are the normalized CPU utilization of a V Mj and an SLk successively,

and Capci is the CPU capacity of the PMi .

NUc
i =

∑
j

δ
j
i NUc

j

Capci
=

∑
j

∑
k

βk
j δ

j
i NUc

k

Capci
(8)

The normalized memory utilization of a PMi is given by Eq. 9. Where NUc
j , NUm

k
and Capmi represent the normalized memory utilization of the V Mj , that of the SLr

k ,
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and the memory capacity of the PMi successively.

NUm
i =

∑
j

δ
j
i NUm

j

Capmi
=

∑
j

∑
k

βk
j δ

j
i NUm

k

Capmi
(9)

3.3 Power and energymodels

The power consumption of a machine PMi is modeled as the sum of the static (Pst )
and dynamic (Pdy) parts as shown in Eq. 10.

Pi = Pst
i + Pdy

i (10)

The former is defined by the power consumption of the host when no VM is active
and thus no SL runs on the machine. Otherwise, the dynamic part is added to obtain
the total power of a server which is detailed in Eq. 11.

The popular power consumption model [8] defines the power consumption of each
server as a linear function of the CPU.

Pi (NUc
i (t)) =

{
Pst
i + (P f u

i − Pst
i ) ∗ NUc

i (t), NUc
i (t) > 0

0, otherwise
(11)

The energy consumed by a server i is given by the Eq. 12.

Es
i =

∫ t1+�t

t1
Pi (NUc

i (x))dx (12)

This allows estimating the total energy consumed in a DC by Eq. 13.

E =
NPM∑
i=1

Es
i (13)

3.4 Resource wastagemodel

Inspired by [17], we propose a generalized formula to estimate the resource wastage
for q-dimentional PM resources (see Eq. 14).

RWi =
∑q

t=1

∣∣N Rt
i − minqo=1(N Ro

i )
∣∣ + η∑q

t=1 NUt
i

(14)

As we consider the CPU and memory resources, this equation became (see Eq. 15):

RWi =
∣∣N Rmax

i − N Rmin
i

∣∣ + η

NUc
i + NUm

i
(15)
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N Rt
i is the normalized residual resource (CPU, memory) of the host PMi and is given

by the Eq. 16.
N Rt

i = 1 − NUt
i (16)

N Rmax
i denotes the maximum residual resources of memory and CPU utilization

of the given PMi (see Eq. 17).

N Rmax
i = max(N Rc

i , N Rm
i ) (17)

N Rmin
i denotes the minimum residual resources of memory and CPU utilization

of that PM (see Eq. 18).
N Rmin

i = min(N Rc
i , N Rm

i ) (18)

In the same way, we propose the Eq. 19 below to model the resource wastage of a
q-dimensional V Mj .

RWj =
∑q

t=1

∣∣N Rt
j − minqo=1(N Ro

j )
∣∣ + ρ∑q

t=1 NUt
j

(19)

N Rt
j is the normalized residual resource of the virtual machine V Mj and is given

by the Eq. 20.
N Rt

j = 1 − NUt
j (20)

N Rmax
j and N Rmin

j denote the maximum (respectively minimum) residual
resources of memory and CPU utilization (see Eqs. 21 and 22) of a given V Mj .

N Rmax
j = max(N Rc

j , N Rm
j ) (21)

N Rmin
j = min(N Rc

j , N Rm
j ) (22)

Thus, the Eq. 19 became:

RWj =
∣∣N Rmax

j − N Rmin
j

∣∣ + ρ

NUc
j + NUm

j
(23)

ρ and η are small positive numbers. We assume that ρ = η = 0.0001 [17]. The
total resource wastage in the DC is given by Eq. 24.

RW =
NPM∑
i=1

(RWi +
∑
j

δ
j
i RW j ) (24)

3.5 Cost model

The cost of our model is formed by the fees paid for renting a VM (R fV Mj ) within an
hour along with the license cost ( L fV Mj ) which is estimated by the sum of the license
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fees (L fSLrk ) of the software running in a given VM (Eq. 25).

L fV Mj =
∑
k

τ rk βk
j L fSLrk (25)

As we consider processor-based licensing, the license fee is paid once for at least
an instance of software running in a given machine. The total cost of a VM is given
by Eq. 26.

C j = R fV Mj + L fV Mj (26)

In the same way, the cost of a PMi is estimated by the sum of the cost of all VMs
running on it (Eq. 27).

Ci =
∑
j

δ
j
i C j (27)

Finally, the total cost within a DC is given by the Eq. 28.

C =
NPM∑
i=1

Ci (28)

3.6 Problem formulation

The objective functions that reflect the minimization problems are given by Eq. 29.

f =

⎧⎪⎨
⎪⎩
min(E) = ∑NPM

i=1 Ei

min(C) = ∑NPM
i=1 Ci

min(RW ) = ∑NPM
i=1 (RWi + ∑

j δ
j
i RW j )

(29)

To transfer our optimization problem into a mono-objective problem that combines
the energy, resource wastage, and cost objective functions in one function f , we adopt
the most commonly used linear weighted sum aggregation (Eq. 30) [24]. The weights
wi are comprised in the interval [0,1] and verify the Equation

∑n
i=1 wi = 1.

f =
n∑

i=1

wi ∗ fi (30)

In our case, n=3 and f became :

min(w1 ∗ E + w2 ∗ C + w3 ∗ RW ) (31)

w1, w2 and w3 reflect the importance of each objective function in the single-
objective function f. Thus, the final result of the proposedmodel depends on these three
variables. Inspired by [13] and [17], we consider the three objectives of a comparable
magnitude and consider equivalent weights. It is worth noting that normalized values
of the three objectives are considered in the weighted sum function to homogenize the
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different objectives since they have different units. Thus, power consumption within
a PM is normalized by the initial consumption of the DC, and the total cost of a VM
is normalized by the total cost within a PM to have values comparable to resource
wastage. Furthermore, the following constraints are considered:

Lk
PMi

<= Nli ∀i ∈ [1..NPM ], k ∈ [1..NNS ] (32)

The Eq. 32 denotes that the allowed software instances of a given license type must
not exceed the allowed number of that license type following the processor-based
metric. ∑

j

δ
j
i NUc

j < Capci ∀i ∈ [1..NPM ], j ∈ [1..NVM ] (33)

Equations 33 and 34 fix the constraints related to the memory and CPU utilization
limit of a PM which should not be exceeded by CPU and memory utilization of all
hosted VMs.

∑
j

δ
j
i NUm

j < Capmi ∀i ∈ [1..NPM ], j ∈ [1..NVM ] (34)

Likewise, Eqs. 35 and 36 allow ensuring that the CPU and memory utilization of
software licenses that are co-located in a VM does not exceed the limit of CPU and
memory utilization of the VM hosting them.

∑
k

βk
j NUc

k < Capcj∀ j ∈ [1..NVM ], k ∈ [1..NSL ] (35)

Capcj and Capmj represent the resource capacity in terms of memory and CPU of
the V Mj , successively.

∑
k

βk
j NUm

k < Capmj ∀ j ∈ [1..NVM ], k ∈ [1..NSL ] (36)

Equations 37 and 38 ensure that each software license is exactly mapped to one
VM and each VM is hosted by one PM at a time, successively.

NVM∑
j=1

βk
j = 1∀k ∈ [1..NSL ] (37)

NPM∑
i=1

δ
j
i = 1∀ j ∈ [1..NVM ] (38)
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Fig. 2 System architecture of COMPaRL

4 COMPaRL architecture

Here, we detail the proposed architecture for COMPaRL given by Fig. 2 and their
building blocks.

In our proposition, we separate the monitoring and compliance checking which
are distributed parts deployed in every compute host from the allocation of software
licenses instead of a fully centralized architecture as in Entropy [25]. Our proposed dis-
tributed architecture regarding resource monitoring and compliance checking allows
the natural scalability of the system and avoids the single point of failure. The monitor
is responsible for gathering information about resource utilization and getting local
resource states which will be used by the launcher to trigger the consolidation pro-
cess. Based on this information, the modeler estimates the cost, energy, and resource
wastage in the DC, and the selector chooses the software license to migrate according
to an optimal strategy named MLC that will be detailed in the next section. Then,
the intelligent allocator selects, in a first step, the list of virtual machine candidates
for each migrated SL and evaluates the potential allocation to, finally, decide of the
most suitable actions that optimize the DC state based on the RL framework. The
allocator performs a preselection step as will be discussed below. In the next step,
the allocation decision is communicated to the compliance checker to proactively ver-
ify if a given allocation doesn’t escape to compliance by verifying if the number of
licensed instances of the same software surpasses the allowed amount based on the
processor-based metric. If this is the case, the compliance module triggers the alert
(see Algorithm 4) and prevents the allocator to evaluate another allocation and the
process is repeated until a compliant allocation will be found. The last decision of SL
placement is then communicated to the activator/deactivator module to activate new
VMs/PMs when needed and/or stop unused ones. Finally, the DC state is updated to
dynamically start a new consolidation.
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5 Compliance-aware RL-based SLC

The software license consolidation follows a whole process illustrating the main steps
of the proposed intelligent scheme to perform the DC optimization in terms of energy
consumption, resource wastage, and total costs. These steps, detailed below, are per-
formed at runtime according to the utilization level of the PMs. The DC state is
periodically evaluated and the consolidation decision is made based on resource state.

5.1 Consolidation decision

The first step concerns the identification of critical machines. This answers the ques-
tion of when to perform consolidation and migration. In our case, the triggering point
that initiates the consolidation process is based on the physical machine status detec-
tion (over/underloaded). The status of a host is considered as overloaded (OL) if its
utilization reaches or exceeds a static Tol threshold. As well, the underloaded (UL)
status is controlled by a static Tul threshold. If a machine is overloaded, some software
licenses will be selected for migration to resolve the overloaded state. For underloaded
hosts, all running software licenses will be migrated and the PMs switch to the sleep
mode after the migration ends. The process is iteratively and dynamically repeated for
all PMs.

5.2 Migration

After triggering the consolidation process, some SLs have to be selected for migration.
For this step, we propose a novel strategy named MLC that saves the cost of the most
expensive SLs candidates of migration.

Algorithm 1Maximum License Cost for Migration
Require: overloaddPM
1: mx ⇐ 0
2: for V M ∈ overloadedPM do
3: maxC ⇐ mx
4: selectedSL ⇐ NULL
5: for SL ∈ V M do
6: C ⇐ SL.getCost()
7: if C > maxC then
8: maxC ⇐ C
9: selectedSL ⇐ SL
10: end if
11: end for
12: end for
13: return selectedSL

On a critical machine, the critical SL(s) that have the maximum license fees will
be given the highest priority to be migrated and it is added to the list of migratable
SLs. The idea is that if we can migrate the software license with the maximum cost
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in a VM which contains another instance of the same software, we save the cost of
the migrated license. This gives more chance to optimize costs at the maximum and
is given by the Algorithm 1.

5.3 Allocation: destination preselection

Themain idea behind our solution is to select the list of candidate VMswhich contains
at least one instance of the software in question belonging to the same license. In this
case, no license fee would be incurred with this mapping which makes those VMs
very promising for the current allocation (Algorithm 2).

Algorithm 2 Pre-selection of Promising VMs
Require: SLToMigrateList , PM_List
1: SLToMigrateList.sortDecreasingUtilization()
2: for SL ∈ SLToMigrateList do
3: L ⇐ get LicenseT ype(SL)

4: for PM ∈ PM_List do
5: for V M ∈ PM do
6: if there is a software instance in V M with license L then
7: add V M to L_V M
8: end if
9: end for
10: end for
11: select_V Ms(randomV Ms)
12: sortDesreasingOrder(randomVMs)
13: add randomVMs to L_V M
14: end for
15: return L_V M

Firstly, the list of migratable SLs is sorted (line 2) according to the CPU utilization.
Then, for each SL, the type of the license for a given software is determined (line 3)
to check all the VMs within the DC that contains at least one SL of the same license
and add them to the list of promising VM destinations. This list is augmented by some
random VMs sorted in decreasing order to extend the search space and promote the
fullest ones to maximize resource utilization (line 5-11).

5.4 Multi-objective RLmodel for dynamic SL placement

An important step when applying reinforcement learning to a practical problem is
the identification of the state space, action space, and reinforcement signal (reward
function).

5.4.1 State space

The state spacewhich is denotedby St = {St1, St2 , ..., StNPM
, SLcpu

t , SLmem
t , SLVMid

t },
is formed by the detailed informations of the set of NPM elements at time step t. Each
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element of the state space is givenby Sti = {Sstatusti , S
totcpu
ti , Stotmem

ti , S
usedcpu
ti , Susedmem

ti }.
Sstatusti ∈ {active, inactive} is the status of the server PMi at the instant t. Allocating
an SLk to a V Mj changes the state of this VM and thus the PM hosting it.

5.4.2 Action space

For each migrated SL, the action space is defined by a binary variable (PLACE/NOT)
indicating if the SL will be placed into a V Mj for all the preselected VMs in the
previous step if that VM has enough resources to accommodate the SL. We consider
all the VMs in the DC to define the action space and, for a given SL, we evaluate only
the allocation to VMs from the preselected list. If a V Mj is not hosted in a PMi , we
consider the combination of the state Sti and action a j as impossible.

5.4.3 Reward function

In each step, after executing an action a and performing a new allocation, the agent
receives a reward granted by the environment at time t, which is given by:

R = 1

[ 13 (E + C + RW )] (39)

The reward is expressed depending on the objective function tending to minimize the
energy consumption, costs, and resource wastage.

5.4.4 Q-learning based proposed algorithm

Our RL algorithm (see Algorithm 3) is based on the Q-learning technique. Without
any prior knowledge, in the Q-learning algorithm which provided important results
in VM consolidation work like [19, 26], the agent computes and stores a Q-values
Q(s,a) according to the Eq. 40 in a matrix called the Q-table for each state s and action
a in each step. γ and α are positive values less than 1 that, successively, represent
the discount factor determining the importance of the predicted future reward and the
learning rate.

Q(s, a) = (1 − α)Q(s, a) + α(r + γmaxaQ(s′, a)) (40)

The Q-table is formed by the state space in line and the action space in the col-
umn. For each PM in the state space, all the VMs in the DC are represented in a
column and only the cases that reflect a potential allocation are evaluated. To explain
more our strategy, the cases when a given VM is hosted by a PM are considered for
potential allocation and the other cases in the Q-table are frozen. Also, only the pre-
selected VMs are considered and for the others, the given Q-value doesn’t change.
This allows important potential savings when considering only the VMs that run a
software instance with the same license as the migrated software. Moreover, in this
article, we use the ε-greedy policy to ensure the trade-off between the exploration
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Algorithm 3 Intelligent Consolidator
Require: The state set: S = sti , i = 0, 1, ..., NPM
1: The action set: A = a j , j = 0, 1, ..., NVM
2: The reward, R = f (Si , a j )
3: The action selection policy, Q(ε − greedy)
4: ini t Qtable() � initialize the Q-table
5: for ep ∈ episodes do
6: generateStates() � initialize the environment
7: while not_ f inal_state do
8: st ⇐ newState()
9: SList ⇐ get SelectedSLs() � the result of the monitoring step to select the SL to migrate from

UL/OL PMs
10: for SL ∈ SList do
11: V MList ⇐ getV MCandidates() � the list of preselected VMs
12: Choose a suitable action at from A for the state st � the action that verify the resources and

compliance constraints
13: Perform the action at
14: Observe the resulted reward rt and the next state st+1
15: Update the Q_table
16: Q(st , at ) ⇐ (1 − α)Q(st , at ) + α(rt + γmaxaQ(st+1, a))

17: st ⇐ st+1
18: end for
19: update the learning rate
20: update the discount factor
21: end while
22: end for
23: return Q − table

when the agent tries to explore new allocation possibilities and exploitation when it
uses the knowledge already acquired.

5.5 Compliance checking

In situations of non-compliance where the consolidator tends to perform the alloca-
tion of an SL to a machine that consumed all the licenses of this migrated software,
an alert process is triggered according to Algorithm 4. Once receiving this alert, the
consolidation agent chooses another allocation that preserves compliance. This check-
ing process allows to claim the non-conformity behavior to choose another compliant
allocation, but also, it allows to account for the number of non-conform placements
which helps to estimate the potential losses.

6 Model evaluation

In order to reach an optimal data center state in terms of energy consumption, overall
cost, and resource utilization, we implemented the proposed scheme and evaluated
its performances as will be detailed below. Firstly, we present the research questions
we tend to answer through the extensive simulation, then we detail the setting of the
parameters before presenting the results and their analysis.
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Algorithm 4 The Compliance Checker
Require: MigratedSL (to be placed), destinationV M
1: compliant ⇐ f alse � A boolean variable to control if the situation is compliant or not
2: PMpm ⇐ destinationV M .get SourcePM()

3: Licensel ⇐ MigratedSL.get LicenseT ype()
4: maxLicenses ⇐ pm.get N L(l) � return the number of allowed licenses of type l
5: nSLs ⇐ pm.get LicenseCount(l) � return the number of licenses of type l in that pm
6: if nSLs + 1 ≤ maxLicense then
7: compliant ⇐ true
8: end if
9: return compliant

6.1 Research questions

The main research questions addressed in our work are:

• How does the proposed intelligent approach perform compared to the baseline
heuristics?

• To what extent can our MLC policy improve costs within a DC compared to the
baseline policies?

• To what extent can our approaches improve the energy consumption and resource
utilization in homogeneous and heterogeneous DCs regardless of the resources
scales?

6.2 Evaluation environment

6.2.1 Simulation setup

The proposed solution was implemented in java language using Eclipse IDE and JDK
8. and the simulations are carried out on Intel� CoreTM i3-8100 CPU @ 3.60 GHz,
8 GB RAM, Windows 10 (Professional).

The model of our simulation program is shown in the class diagram of Fig. 3.
As stated above, the intelligent RL consolidator agent interacts with the environment
representing the data center composed of a set of servers. It manages and updates the
different states composing the environment. In addition to the intelligent consolidator,
our simulator allows us to perform heuristic-based allocations. We implemented three
heuristic solutions, which will be presented in the compared algorithms section.

In our experiments, we consider homogeneous and heterogeneous resource config-
urations as shown in Table 3. In the homogeneous scenario, all the servers are of type
Haswell (Xeon 2695). To take the values of power consumption of different types of
hosts used in our experiments at different utilization levels we used the SPECpower
benchmark1. For each scenario, to meet the real need in computing resources, we con-
sider the DC dimensionality and planned to experiment with our proposed schemes in
small and relatively large scale resources. For the small scale, we consider a DC with
30 PMs, 100 VMs, 300 SLs (30 software and 10 licenses). For the wide scenario, we
consider 100 PMs, 300 VMs, and 1000 SLs (100 software and 10 licenses). Moreover,

1 https://www.spec.org/.
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Fig. 3 Class design diagram for simulation modeling of software license consolidation

Table 3 Power consumption model for the used physical hosts

Server type Pst (Wh) P f u (Wh) Number of cores Number of CPU

Haswell (Xeon 2695) 70 120 14 2

Ivy Bridge (Xeon 2670) 65 115 10 2

Sandy Bridge (Xeon 2670) 55 105 8 2

the overload and underload threshold values are 0.8 and 0.4 respectively. In addition,
for each PM, we assume a network bandwidth of 1 GB/s and a core factor of 1. For
VMs pricing, we use the common Pay as you go model. M1 medium instances VM
types are used in the homogeneous scenario, which are charged at $0.120 per VM
per hour. For heterogeneous scenarios, we used Azure VMs2 offering the flexibility
to virtualize a wide range of solutions supporting windows server, oracle, SAP, etc.
The used VMs along with their prices are presented in Table 4 below. The DS11-1
v2 VM types are optimized for DB workloads like SQL Server and are adapted to
optimize software licensing costs for customer workloads. The G1 VM type which
belongs to G-series supports large DB workloads, specifically SAP HANA, Hadoop,
SQL Server, etc. Finally, E8a v4 VMs are ideal for enterprise applications that are
memory-intensive. For software pricing, inspired by App Service pricing3 of Azure,
we generated the software license fees randomly in [0, 1). For workloads, inspired
by [27] and [28] we generated synthetic instances to evaluate our solution. Through
normalization, we set the total CPU and memory utilization of a PM as 1 and total
CPU and memory utilization of a VM as 0.25. This allows to run up to 4 VMs per
host.

2 https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/.
3 https://azure.microsoft.com/en-us/pricing/details/app-service/windows/.
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Table 4 Virtual Machines
pricing

Instance type Price ($/hour)

DS11-1 v2 0.149

G1 0.49

E8a v4 0.504

To generate our software synthetic instances, we used the random workload gener-
ator given by Algorithm 5 and we setU∗

CPU = 0.025 andU∗
mem = 0.025. This allows

to run up to 10 SLs in each VM. Then, for each software, a number of licenses are
created (initially 10) and their costs are also randomly generated as mentioned above.
To simplify concerns, we suppose that all software running in the Dc are licensed).
We generated 500 software and created variable licensed instances.

Algorithm 5 Software Synthetic Instances Generation
Require: NS
1: for i=1 to NS do
2: Ui

CPU ⇐ rand(2 ∗U∗
CPU )

3: Ui
mem ⇐ rand(U∗

mem )

4: r ⇐ rand(1.0)
5: if (r < P ∧Ui

CPU ≥ U∗
CPU ) ∨ (r ≥ P ∧Ui

CPU < U∗
CPU ) then

6: Ui
mem ⇐ Ui

mem +U∗
mem

7: end if
8: end for
9: return ≺ Ui

CPU ,Ui
mem 
 Set

Through preliminary experiments on the correlation coefficient P (see Algorithm
5) varying it in [0, 0.25, 0.5, 0.75, 1]we chose P = 1 which showedmore stable results
for the evaluation scenarios designed beforehand.

Finally, our intelligent RL agent was trained using a learning rate of 0.3, a discount
factor, and the exploration/exploitation factor of 1 that are decreased by 99% during
the learning process.

6.2.2 Compared algorithms

For the sake of comparison, regarding the SL selection for migration, we compared
our MLC policy by:

• Maximum Usage (MU) [29]: this strategy tends to select the software license that
has the maximum usage of CPU.

• MinimumMigration Time (MMT) [29]: this is also an adapted version of theMMT
policy to the software license consolidation. This policy tends to select the SL that
have the minimummigration time, the ratio between the amount of memory of the
SLk (NUm

k ) and the bandwidth B (see Eq. 41).

Tmig = NUm
k

B
(41)
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To compare the performance of our intelligent dynamic placement approach,
we extended and implemented the following baseline heuristic algorithms porposed
here [15].

• License Adapted Best Fit Decreasing (LAB): it is an adapted version of the well-
known Best Fit Decreasing (BFD) algorithm [30] to deal with the commercial
software consolidation case. This later applies the best fit rules that tend to place
the SL in the fullest filled machine that fits it after sorting the migratable SL list
in decreasing order of utilization.

• License Adapted First Fit (LAF): it is based on the First Fit algorithm [30] adapted
to SL consolidation, which is a rapid placement algorithm, processing the software
licenses in a queue and places each SL in the first partially filled VM that can meet
its requirements in terms of resources.

• Cost Power-Efficient (CPE): it is an improved version of the LAB using the Eq. 42
to choose the most power-efficient destination machine if two destinations have
the same objective values.

PEi = Uc
i
/P f u

i (42)

6.2.3 Evaluation metrics

The evaluation metrics that we considered in this work are energy consumption, cost,
total resource wastage, number of active PMs, and number of running VMs. They are
described as follows:

• Energy consumption: It depends on the number of active machines and the related
utilization of resources along with their power consumption.

• Cost: Used to estimate, not only the total cost but also the VM and license cost
and show the effects of our MLC policy on these cost components.

• Total resource wastage: This estimates the wasted resources to show the behavior
of our proposed scheme on the resource utilization maximization.

• Number of active PMs: It shows the importance of our consolidation scheme on
the DC optimization by reducing the number of used PMs.

• Number of running VMs: It can impact the operational costs, especially, the total
VM costs which depend on the number of running VMs.

6.3 Results and analysis

In the following, we present the outcomes of our scheme and the analysis of the results
to verify the assumed claims above.

6.3.1 Energy consumption results

Concerning the energy consumption experimental results (Fig. 4), in the majority
of cases, the MU policy, while combined with the LAF and CPE heuristics and RL
approach gave the best results in terms of total energy consumption.

The intelligent approach gave the best savings that reach 68.17% in the large-
scale heterogeneous scenario. This is due to the principle that this policy migrates
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Fig. 4 Energy consumption results in homogeneous/heterogeneous small/large DC

the SLs with the maximum utilization and that allows more chance to maximize
the utilization of active VMs. Especially in the heterogeneous scenario, if the target
PMs have minimum power consumption values this leads to a minimized energy
consumption. Furthermore, we noticed that our intelligent RL approach gave the best
results in terms of energy consumption than the heuristics in all the DC dimensions
and resource scenarios. Their gain varies between 62.4% in small-scale heterogeneous
scenarios and 71.38% in the large-scale homogeneous scenario when combined with
MMT policy (Fig. 4).

For the heuristic solutions, the LAB approach gave the worst results since it selects
the machines which have the lower resource capacity of CPU, which limits the con-
solidation possibilities and leads to the use of the maximum number of PMs as can
be seen in Fig. 6. The best savings realized by this approach are 11.09% in a large-
scale heterogeneous scenario. The CPE approach which is based on LAB surpasses
this later since it selects the most power-efficient PM destination. It realized 45.1%
gains in the small-scale heterogeneous scenario and uses less number of hosts (see
Fig. 6). Except in homogeneous small scale, while combined with the MU policy, the
LAF heuristic gave similar results or slightly surpasses the CPE approach in terms
of energy. This is because the CPE approach selects the most power-efficient PMs
only from the machines with the lower capacity of CPU resources while in the LAF
approach, the first available host that can accommodate the SL in question is selected,
and not necessarily the fullest one. Even if this led to executing more migrations to
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Fig. 5 RL training results of energy consumption in homogeneous/heterogeneous small/large DC

reach an optimal state, this heuristic realized important savings that reached 45.1% in
the small-scale heterogeneous scenario.

As we can see in Fig. 5 in the RL training results, in the small scale DCs, the RL
agent converges rapidly to the optimized results (at around 2000 episodes), while in
large scenarios, it takes more time (around 5000 episodes). This is due to the size
of the DC when the wide scenario needs more time to reach an optimal state. In the
homogeneous scenario, the MMT policy gave the best energy values as it selects the
SLs with minimum memory utilization, which is correlated to the CPU utilization.
Thus, while combined with the RL approach, using the ε-greedy policy that selects
the best actionwith themaximum rewardwhen the exploitation rate is important, gives
the best results. This can be seen in the training results of Fig. 5, especially, in the
last episodes when the exploration rate decreases and the agent exploit the acquired
competencies.

The results in terms of the used number of PMs are equivalent to the energy con-
sumption results as Fig. 6 shows since the energy consumption is proportional to the
CPU utilization and the amount of power consumed by these PMs.

6.3.2 Cost results

Regarding costs, it is worth noting that the total cost results are similar to the license
cost which represent the most important part of the total cost. Furthermore, the MLC
policy represents the best results in terms of license cost and total cost while combined
with all the allocation policies in all scenarios as shown in Figs. 7 and 8. This is due
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Fig. 6 Number of active PMs in homogeneous/heterogeneous small/large DC

to the act that it migrates the most expensive software license which, once finding a
destinationmachine that accommodates at least one other instance of softwarewith the
same license, is paid once according to the processor-based licensing model adopted.
This allows saving the cost of the most expensive SLs independently of the placement
strategy. The MLC policy, while combined with our RL approach, allowed the best
savings that vary from62.58% savings in small scale homogeneous scenario to 73.49%
savings in the wide scenario with homogeneous resources in terms of license cots, and
from61.64% savings to 71% savings in terms of total cost in small scale heterogeneous
and large scale homogeneous scenarios successively. The LAB heuristic showed the
worst results in all cases because it uses the maximum amount of PMs and also VMs
(Figs. 6 and 11) whichmaximizes the total cost due to the inherent VM cost. Their best
gains are estimated by 49.81% savings in terms of license costs and 45.49% in terms of
total costs in the large-scale homogeneous scenario. LAF and CPE heuristics showed
similar behaviors in themajority of the scenarioswhen the savings reached 57.71%and
53.9% in small-scale heterogeneous scenario scenarios in terms of license costs and
total costs successively. Figure 9 confirms the findings below and shows that the MLC
policy gave the best results during the training of the RL agent with remarkable savings
compared to theMMT andMU policies. These gains increase with the agent lifecycle.
The total VMcosts are proportional to the number of runningVMs as shown in Figs. 10
and 11 and the gains reached 68.66% in the large-scale homogeneous scenario with
68.66% savings in the number of running VMs by RL_MMT scheme.
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Fig. 7 Total cost in homogeneous/heterogeneous small/large DC

It is worth highlighting that the results in terms of total VM costs and the number
of used VMs are identical. As the number of VMs decreases, the user’s monetary
costs and thus the total cost decrease. This gives more opportunities to reduce the
number of active servers and implicitly reduces resource utilization and energy con-
sumption, which guarantees a win-win strategy for both customer and provider in the
competitive multi-cloud environments of today. In addition, our approach enables cost
minimization not only in heterogeneous scenarios but also in homogeneous DC. This
is because the total cost mainly depends on the license cost, which varies depending
on the instances of the software that this license belongs to and the license model used.

6.3.3 Resource wastage results

From the Fig. 12 that shows the training results of the RL agent, we notice that with
some fluctuations at the beginning, the MU policy converges to optimized results of
resource wastage, especially with heterogeneous resources. This is due to the fact
that migrating the SLs with the highest CPU utilization allows better utilization of
the destination machines and with the heterogeneous scenario, some target machines
could accommodate more SLs which maximizes their utilization and thus minimizes
the wasted resources.

In addition, if theminimumnumber ofmachines are used in amore efficientway, the
amount of resource wastage will be minimized which is the case of the RL approach.
The heuristic algorithms and RL approach showed similar behavior in terms of wasted
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Fig. 8 Licence cost in homogeneous/heterogeneous small/large DC

Fig. 9 RL training results of total cost in homogeneous/heterogeneous small/large DC
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Fig. 10 VM cost in homogeneous/heterogeneous small/large DC

resources. The LAB approach always gave slightly high values because it allows using
the maximum number of machines that are less utilized causing a less efficient use
of the resource. The best savings are noted in large-scale scenarios that prove the
scalability of our approaches and the efficient use of resources that increase with the
size of the DC scenarios. The gains reached 77.45% in the wide homogeneous DC.

6.3.4 Sensitivity analysis of UL/OL on DCs

To study the impact of the static thresholds used in the consolidation decision on the
energy consumption, costs, and resource wastage, we vary the values of UL and OL
thresholds and analyze their effects in this section.We consider UL thresholds of 40%,
50%, and 60%, and OL thresholds of 80%, 90%, and 100%.

Through the results shown in Figs. 13 and 14, we can notice that with all the
threshold values, our approach realizes important gains in all the scales with all the
resource scenarios. In themajority of cases, aUL equal to 40% and anOL equal to 80%
gave the best gains, which validates our choice of the threshold values. Furthermore,
despite some fluctuations due to the random workload nature, in more than half of
the cases, a UL of 40% gives the best results than 50%, and a UL of 50% gives the
best results than 60% while varying the UL threshold (see Fig. 13) with the different
optimization objectives. Also, in more than half of the cases, an OL of 80% gives
the best results than 90%, and an OL of 90% gives the best results than 100% while
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Fig. 11 Number of running VMs in homogeneous/heterogeneous small/large DC

varying the OL threshold (see Fig. 13) with the different optimization objectives.
The higher values of UL can cause an over-consolidation when more underutilized
servers could be identified. In addition, the higher values of the OL threshold can
increase the likelihood that the machines could not offer the demanded resources by
the migrated SLs. In these cases, more machines (VMs/PMs) could be activated to
place these migrated SLs. This can affect migration costs due to the probable increase
in migration number and time. We plan to study this aspect in our future work.

7 Discussions and insights

This section is devoted to discussing the major findings of our work and presenting
some open discussions and some insights into overheads and scalability.

7.1 Key findings

As per the results presented and analyzed in the previous section, we can argue that
the intelligent SL allocator comes with the best results in terms of energy, resource
wastage, and costs while combined with our proposed MLC migration strategy. In
our scheme, we considered only the actions related to the preselected VMs in each
allocation, which allows saving time and memory. Also, determining a list of pre-
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Fig. 12 RL training results of total resource wastage in homogeneous/heterogeneous small/large DC

Fig. 13 Effects of UL threshold on the gains in the DC realized by our approach
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Fig. 14 Effects of OL threshold on the gains in the DC realized by our approach

selected VMs for each SL can be a pain in the ass, especially when the number
of SLs is so important. In addition, in some cases, even if the available resources are
sufficient to host themigrated SL, if the allowed number of licenses in a givenmachine
is already used, it is not possible to place this SL in that PM. These contradictory
constraints can affect the results and limit the consolidation possibilities. Moreover,
we noted attempts at non-compliant consolidation which reached 16147 in the small-
scale heterogeneous scenario and 215570 in the large-scale homogeneous scenario
by the LAB_MLC scheme. These consolidation attempts, if they have been executed
will result in huge losses in terms of the cost caused by the non-compliance. Finally,
the MLC policy supposes the existence of other instances of software with the same
license in the destination VM. If this constraint is not fulfilled, the migration could be
more costly due to the fees of the migrated SL.

7.2 Open discussion and limitations of COMPaRL

Today, many organizations aremigrated tomulti-cloud and hybrid cloud environments
implying many deployment modes (private and public cloud, on-premises hardware,
Edge systems, etc.) for many reasons like modernization, and managing unforeseen
situations such as COVID 19, and cloud bursting to handle peak demands. This trans-
formation creates more complex systems. In a hybrid cloud, public components and
private components are integrated and work together due to the managed shared data
coming from similar sources. Some application components are orchestrated in the
public cloud through micro-services, for example, using Docker container and Kuber-
netes technologies. To handle this complexity, and for reasons of uniformity and
flexibility, we used the same model for both private and public clouds. For private
clouds, our approach can be used to optimize energy consumption. In our model, we
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considered the energy consumption optimization instead of the energy cost due to
temporal and spatial heterogeneity because electricity prices usually vary according
to time and geographic location [8]. But, optimizing energy consumption implicitly
optimizes energy costs as they are proportional [13] and the latter is based on per unit
energy cost.

For public components, the VM cost is optimized for the consumer but also, mini-
mizing the number of VMs offers more opportunities to minimize the number of the
hostingPMs,which in turn allows for optimizing the energy consumption as servers are
themost consumers in the data center.With the competitiveness of today’s multi-cloud
environments with the multiplied choices, if the provider can offer more optimized
options for the customers this allows stay competitive while optimizing the resource
wastage and the energy consumption. Considering the license cost in our model also
allows us to avoid non-compliant situations and thus their economic penalties to the
provider’s profile.

Nevertheless, the major limitation of our strategy is the weight selection of the
optimization model due to the heterogeneity of the objectives with different units.
Normalization is done before weighting the objective function. But, this is still insuf-
ficient to use our model in hybrid clouds, especially given that we used the same cost
model for both types of VMs when the costs of running a VM on a private cloud are
not fixed per hour but instead deviate on the energy cost. An in-depth study is planned
in this regard.

Moreover, we treated here the processor-based metric that allows us to accurately
determine the number of cores per physical machine, and therefore the number of
licenses in that machine, as in [21]. This is due to the lack of models that describe or
formalize the licensing rules in virtualized cloud systems.

In addition, we control the compliance per physical machine based on the total
number of licenses. Thus, an allocation is considered non-compliant if the total license
number per PM is exceeded independently of how it is counted based on the total
number of cores or threads. If each virtual CPU (vCPU) ismapped to only one physical
CPU core (depends on the CPU affinities), then our model can be used with public
cloud VMs with virtual CPUs and hyperthreading offerings. Otherwise, an extension
of our model to consider vCPU offerings is a necessity. This is also encouraged by
the fact that VM resizing makes it possible to constrain the number of VM vCPUs to
reduce license costs and ensure vertical scalability.

7.3 Discussion of overheads

We discussed in [8] the virtualization overheads when hosting a VM can increase the
CPU usage by 11%-17% compared to containerized and traditional methods. This is
mostly caused by the use of supplementary software for virtualization. Nevertheless,
the security and isolation levels that offer a VM and the scalability and lightness of
containers were amongst the first reasons for considering a VM-container virtualiza-
tion here. This is encouraged by the fact that the overheads generated by the abstraction
rules (cgroups and namespaces) for isolation in workload containerization are mini-
mal. Thus, there is no significant performance overhead impact of adding a container
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to a hypervisor-based solution in terms of resources. In addition to the virtualization
architecture, the generated overhead along the consolidation process is not negligible.
The most important part is caused by live migration which introduces energy overhead
to the providers due to the copy of memory and the state of the processes. Indeed, if the
migration is carried out over a long period of time, it will result in huge resource uti-
lization, which will increase the application execution time and lead to more resource
wastage, resulting in performance degradation. The migration cost is affected by the
different migration policies for the same combination of migrated objects [8] caused
by themigration duration and the additional consumed energy. This increases the over-
head of data transmissions. The number of migrations is another factor increasing the
migration overhead and causing the unnecessary usage of resources and affecting the
application performance. In the current work, we do not consider the above-mentioned
overhead components for reasons of simplicity since, to the best of our knowledge, our
work is the first to address compliance with the processor-based licensing metric in
resource consolidation at the SaaS level. Thus, we believe that our strategyminimizing
resource wastage can decrease the generated migration overhead. Also, considering
the virtualization overhead, the migration overhead parameters, and minimizing the
migration number can minimize the overhead along with the migration process. This
will be addressed in future work.

7.4 Scalability discussion and insights

Instead of the generated overhead and costs, live migration allows a flexible and scal-
able resource allocation [31]. Scalability is one of the benefits of adopting virtualized
cloud systems when resources are scaled up and down according to customers’ actual
needs.

After a scalability test here [14] in terms of execution timewhile varying the number
of software and the number of licenses alternately, we realized that the basic version
of the LAB heuristic proved its scalability. In terms of time, CPE is an improvement
of the LAB heuristic which, in addition to this latter, performs a simple test to choose
the machine having the best power efficiency. While the LAF heuristic is a rapid
allocator compared to the two other heuristics. For the intelligent allocator, in the
reinforcement learning method, if additional state variables are considered, the state
space grows exponentially. This typical dimensionality problem of the RL technique
has been addressed in our work by minimizing the number of possible actions for
each state thus the number of state-action combinations. Indeed, our agent evaluates
the allocation only for the preselected VMs in each time step as stated above. This
minimizes not only the computation time needed to determine an optimal policy but
also the disk space to store the Q-table updates since its dimensions increase with the
state/action spaces. In addition to our strategy, considering a parallel Q-learning can
help to further optimize the time to resolve the RL dimensionality challenge. This will
be deeply studied in our future work.

Besides that, the scalability of a multi-objective RL-based solution has been proven
on VM consolidation cases in [20].

123



Intelligent and compliant dynamic software license . . . 2781

Furthermore, in our previous survey, we discussed some architectural aspects in work-
load consolidation in general which affect scalability. Here, we proposed a partially
distributed architecture to guarantee scalability which is planned to be extended in
a fully decentralized solution in the future. We believe that a totally decentralized
approach could offer more opportunities for better scalability.
Blockchain technology showed its strengths for resource management in virtualized
cloud systems in terms of energy consumption optimization [32] and privacy man-
agement [22], among others. We believe that the ledger technology, based on the
transfer of value (software licenses in our case), also allows facilitating the task of
auditing in a software asset management process (SAM) and manages licenses and
their compliance transparently and securely.

Yet, distributing the consolidation decision via a multi-agent system [33] could
help parallelize the single RL agent, resolving the dimensionality problem of the
RL technique and ensuring better scalability. This allows auto-scaling and a totally
automated solution via the self-organization of the agents in addition to the automation
offered by the RL solution. Indeed, scaling resources in an optimized and automated
manner ensures elasticity [34]. In our work, the optimization process makes it possible
to avoid wasting resources and the energy generated thanks to horizontal scalability
[34]. This resulted in more efficient use of resources and optimized energy and costs
[14]. Our automatic solution, in addition to the elastic management of resources and
software licenses, focuses on compliance.

8 Conclusion and outlook

This article proposes an RL-based approach for compliance-aware software license
consolidation in commercial cloud environments, namely COMPaRL. The presented
and analyzed results showed the efficiency of our scheme when the proposed RL
allocator surpasses the heuristic approaches with more important savings in all the
optimized objectives regardless of the resource heterogeneity in small and relatively
big data centers. Especially, in terms of costs, while combined with our proposed
MLC policy, the intelligent approach realized the best results. Moreover, our scheme
realized up to 71.38%, 73.49%, 71%, 68.66%, and 77.45% savings in terms of energy
consumption, license costs, total costs, VM costs, and resource wastage, respectively.
We can conclude that our approach increases the automation of license and resource
optimization and ensures elasticity and compliance. It enables resource efficiency,
energy savings across the cloud stack and reduces overall costs.

Looking into the other aspects related to the consolidation service, such as migra-
tion costs, performance, and affinity, many extensions will be added in future work.
The first direction consists to consider other metrics and licensing models. This direc-
tion is another dimension of extension to the actual work. The second direction is to
implement and test other scalarization functions and a Pareto approach in our future
multi-objective RL work instead of the weighted sum. As a third direction, we plan
to conduct more tests on other different standard datasets, once possible, in order to
definitively confirm the performance and robustness of our proposedmodel. The fourth
direction is to test our approach with other models based on deep reinforcement learn-
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ing techniques in order to give academics and practitioners more amplification on how
to deal with the problem of Software License Consolidation in Cloud environments.
Finally, we believe that, in addition to the options above, a Blockchain-based license
management strategy can ensure visibility and help track the real usage of the software
licenses in highly virtualized cloud data centers.
We are also motivated to investigate and test the effects of Federated machine learning
methods while combined with multi-agent deep reinforcement learning and a decen-
tralized Blockchain-based solution. Further large studies are planned in this respect.

Data availability The dataset generated during the current study is available from the corresponding author
on reasonable request.
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