
Computing (2024) 106:1151–1175
https://doi.org/10.1007/s00607-022-01119-9

SPEC IAL ISSUE ART ICLE

A distributed task orchestration scheme in collaborative
vehicular cloud edge networks

Shilpi Mittal1 · Rajan Kumar Dudeja2 · Rasmeet Singh Bali3 ·
Gagangeet Singh Aujla4

Received: 6 February 2022 / Accepted: 8 September 2022 / Published online: 14 October 2022
© The Author(s) 2022

Abstract
The next generation vehicular networks would be expected to support a wide array
of cutting edge applications concerning intelligent transportation system (ITS). Due
to this reason, the scale and complexity of ITS-based compute-intensive tasks has
exhibited a phenomenal increase and will continue to grow in future. Thus, a large
quantity of data requiring different levels of processing is generated, that necessities the
need of in-vehicle computational resources as well as collaboration from technologies
like, cloud and edge computing. This has led to the development of paradigms such as
vewehicular cloud computing (VCC) and vehicular edge computing (VEC). Although
VCC provides rich computing resources of the cloud servers to process tasks but it is
affected due to long latency and instability of connections. In contrast, VEC provides
compute resources closer to the data source to offset the relatively higher latency
but the task requester should be able to perceive the computing and communication
environment so as to allocate tasks effectively. Thus, it is essential to utilize both edge
and cloud capabilities to create a collaborative cloud edge network that can cater to the
demand of vehicular networks. A distributed task orchestration framework (DTOF)
supporting a Vehicle-to-Vehicle based task orchestration scheme has been proposed
that utilizes the vehicular movements along urban roads for creation of vehicular
edges. The edge creation process utilizes an innovative light weight string processing
algorithm based on hashing technique. The performance of DTOF has been evaluated
based on extensive simulation by considering Chandigarh city road maps and the
obtained results exhibit the satisfactory performance of DTOF for task orchestration.

B Gagangeet Singh Aujla
gagangeet.s.aujla@durham.ac.uk

1 University Institute of Computing, Chandigarh University, Mohali, Punjab, India

2 Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura,
Punjab, India

3 Department of Computer Science Engineering, Chandigarh University, Mohali, Punjab, India

4 Durham University, Durham, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-022-01119-9&domain=pdf
http://orcid.org/0000-0002-2870-8938

1152 S. Mittal et al.

Keywords Vehicular edge computing · Task orchestration · String hashing ·
Vehicle-to-vehicle communication

Mathematics Subject Classification 93A14 · 93A15

1 Introduction

The evolution of technologies in the domain of vehicular communications has become
the key enabler for the rapid development of large number of applications based on
intelligent transportation system (ITS). Coupled with emergence of smart vehicles,
the scale and complexity of ITS-based computer-intensive tasks has exhibited a phe-
nomenal increase and will continue to grow in future also. It is estimated that in next
five years, the scale of in-vehicle equipment could reach nearly two billion resulting in
30 terabytes of data generation in a single day [1]. This will aggravate the requirement
of the communication and processing capabilities related to the number of applica-
tions processing such a large volume of data. Thus, a modern vehicular network is
required that is capable of addressing these issues so as to make it better equipped
for handling future challenges especially with the advent of autonomous vehicles in
near future. Although the autonomous vehicles of future are expected to produce large
quantities of data that will require different levels of real time processing, the devel-
opment of in-vehicle computational resources that are able to meet these processing
requirements requires a huge effort. Highly dynamic topology and heterogeneity of
computational capabilities coupled with varying traffic conditions are some other bot-
tlenecks that will hinder the effective deployment of future vehicular applications. To
address these issues, vehicular adhoc networks (VANETs) [2] are being integrated
with different types of technologies such as Cloud Computing, Fog Computing and
Edge Computing that has led to the development of paradigms designated as vehicular
cloud computing (VCC) [3], vehicular fog computing (VFC) [4] and vehicular edge
computing (VEC) [5] respectively.

One of the key requirements of these hybrid vehicular networks will be the realiza-
tion ofmassive data transmission alongwith controllable latency. TraditionalVehicular
Cloud Computing, facilitates execution of applications by allowing vehicles to offload
their computational tasks to cloud data center by leveraging the rich computing and
storage resources of the cloud servers to process tasks [6]. However, since most of
these clouddata centers function through remote access, applications deployed through
VCC are affected due to long latency time and instability of connections due to highly
dynamic structure of VANETs. It also imposes a huge amount of stress on the load of
network back-haul. VFC and VEC have been envisioned as two of the most promis-
ing technologies that keep in overcoming above issues. In VFC, the cloud service is
pushed to the network edge called fog servers that act as fog gateways. The computa-
tion and storage resources are moved to proximity of users, which helps in reducing
latency along with decreasing response time to a large extent. But, networks based
on VFC often lead to large deployment cost due to relatively higher infrastructural
requirements. Fog based computational models also have a number of limitations,
such as better usability in geographically constrained environments, support for only

123

A distributed task orchestration scheme in collaborative... 1153

certain applications or requiring infrastructure-based centralized controls. The emer-
gence of VEC has been considered to be the next developmental step to support the
ever-growing computation-intensive and latency-sensitive services in ITS [7, 8].

In VEC, the data, applications and computing power is pushed away from the
centralized network to extremes to offset the relatively higher latency in a remote
cloud environment that sometimes affects Quality of Service. This helps to increase the
computing capabilities by minimizing the need for remote data processing in the case
of VCC, while also alleviating the requirement of additional infrastructure required
in VFC. In VEC network, computational nodes can be deployed in cellular towers,
Road-Side Units, as well as within connected vehicles. The proximity of data and
computing process in VEC along with its implementation effectiveness has become
the key reason for VEC becoming the preferred technology for task orchestration in
vehicular environment. This is done by partitioning a given task into different jobs
and allocating them for execution to neighboring vehicles that then process these jobs
and transmit the result back to requester. Increasing number of connected vehicles
and the limited communication resource poses one of the most critical challenge for
deployment of VEC [9, 10]. This is because, VEC is generally implemented either
through a statically aligned roadside infrastructure or through a group of dynamic
vehicles moving along the road. In both the cases computation tasks are first offloaded
to edge nodes, for processing andonce the process in completed the result is transmitted
back [5]. One important aspect that the task requester needs to consider is that it should
be able to perceive the computing environment so as to allocate tasks effectively. This
approach called the reactive approach incurs additional time overheads whenever a
task allocation needs to be done. On the other hand in proactive approach, stored
information about vehicles can used for task allocation. Although, proactive approach
requires additional storage, but it results in much more efficient vehicular edges.

In all these scenarios, any effective task orchestration scheme based on VEC
requires a synchronised interaction between various computing and communication
resources. Figure 1 describes the communication and computation process among
vehicles through a VEC based framework. The figure depicts both the dynamic and
static scenarios of vehicle edge creation. In both scenarios a vehicle can act as either
a client vehicle or an edge server node. The client vehicle offloads task to nearest
edge server for computing. In the case of dynamic scenario, vehicles rely on only
V2V communication whereas in the case of static scenario, V2I come into the scene
wherein a server edge is installed beside some RSUs for accomplishing task orches-
tration. Once a particular task is offloaded to edge server, it may compute the task at its
own or distribute it among the vehicles. Task orchestration process deals with provid-
ing accurate response with minimum latency to the requester and is divided into task
offloading, task computation and task execution management phases. Effective task
computation in a vehicular environment can be considered to be the primary motive
for deployment of VEC. In VEC, the task to be processed is first uploaded along with
required data to the nearby edge server. This process is referred to as task offloading
and edge servers then perform the computation based on the task requirements such as
computation power, size of task offload and resource utilization. A properly designed
task computation scheme helps in reducing latency and bandwidth usage by minimiz-
ing the need for long distance communications in conventional vehicular networks.

123

1154 S. Mittal et al.

Fig. 1 Communication and computation scenario in vehicular edge computing

However, design of a suitable task computation scheme in VEC depends on factors
such as channel allocation mechanism, edge nodes dynamics and optimality of task
allocation. These processes are handled through task execution management module.

For a VEC, an optimal task orchestration depends on a number of diverse factors
that need to be taken into consideration. A tightly coupled task reduces flexibility
thereby resulting in higher latency for the allocated task. Channel allocation is also
an important factor due to heterogeneous nature of vehicular communication systems.
Since the vehicles or edge servers are equipped with multi-interfaces having differ-
ent channel media such as conventional wireless or cellular communication efficient
medium utilization also becomes a critical factor for VEC on account of this het-
erogeneity and dynamic vehicle density. Thirdly, a vehicular edge network requires
an almost constant computational architecture for achieving efficient task computa-
tion. In-spite of relatively high mobility of vehicles, an almost constant count of edge
servers is required for managing the tasks effectively. Mobility of vehicles could also
contribute to computation overheads on account of frequent handover in a VEC. The
above factors also constrain the effective deployment of edge computing in VANETs
since it entails requirement of additional infrastructure. This has resulted in limited
applicability of edge based infrastructure in vehicular environment. Also processing
large amount of data on resource-limited vehicle terminals is a huge challenge in
VEC. Besides, frequent handovers due to short-distance communication range and
high mobility also cause significant problem in VEC. Due to above reasons, recent
research works for developing an edge network based on vehicular environment have
focused towards minimal utilization of infrastructure.

123

A distributed task orchestration scheme in collaborative... 1155

1.1 Research contributions

In this direction, we have proposed a distributed task orchestration framework (DTOF)
that is based on collaborative cloud edge network.An infrastructure less vehicular edge
computing approach has been proposed where vehicles are used as network terminals
that distribute task offloading locally. The proposed scheme creates an vehicular edge
through vehicles that are moving on the roads and it also facilitates task orchestration
and handling other edge functionalities through vehicle-to-vehicle communications.
This is achieved by exploiting the predictable nature of vehicular traffic movement
as well as discrete small time intervals for which the vehicles are stationary. The
selection of edge nodes will be based on their destination and would be replicated on
subsequent edge points whenever an edge needs to be created. This decentralized task
orchestration approach will help in reducing data transmission latency and will put
compute closer to where it is collected. The main contribution of the proposed work
are as follows:

– A predictive distribution based edge vehicle identification scheme is proposed that
assists in edge management and task orchestration.

– We propose a novel and light weight edge initialization model where the edge
vehicles can seamlessly join and leave the edges.

– We propose procedure for task orchestration in proposed vehicular edge, which
makes optimal decision on the allocation of communication and computing
resources by observing the STATE of the VEC server.

– Finally, we conduct extensive simulations and results that the proposed DTOF
scheme is efficient and highly reliable.

1.2 Organization

The remainder of this paper is organized as follows. Section 2 describes edge com-
puting schemes along with some key proposals for implementing a VEC in vehicular
network. Section 3 describes the proposed VEC Architecture and System Model for
implementing Distributed Task Orchestration Scheme. The formulation and the corre-
sponding solution for task orchestration and computation in VEC are discussed along
with the proposed algorithms under urban scenarios is proposed in this section. Sim-
ulation results are presented to evaluate the performance achieved by our proposed
methods in Sect. 4. Finally, Sect. 5 draws the conclusion.

2 Literature review

Hassan et al. [11] presented a survey on edge computing with respect to 5G and anal-
ysed some of the key services of edge computing in 5G networks. The key roles of
edge computing for local storage and computation, local data storage and decision
making, and local operations and security is also described. It also analysed the use of
edge computing in technologies like Software Defined Network, Network Function
Virtualization, Radio Access Technology etc. through 5G network. Raza et al. [12]

123

1156 S. Mittal et al.

focused on issues related to extending role of edge computing in VANETs. Specifi-
cally, the key architectural concepts related to vehicular edge communication along
with its applications and services is also analysed. Comparative analysis of cloud
computing and edge computing from the perspective of vehicular communications
is also presented. Dziyauddin et al. [13] provided a comprehensive review of content
caching and computation offloading in Vehicular Edge Computing. Some of the major
challenges leading to bottlenecks in integration of VEC were also analysed and some
of the key factors that can improve content delivery and content caching for future
applications was also discussed. Dai et al. [14] proposed a Proof-of-Utility method to
speedup block verification process from the perspective of security and privacy. Deep
reinforcement learning (DRL) and Blockchain approaches are included into vehicular
network with an aim of providing improved security for content caching and delivery.
By exploiting the property of dynamic and decentralized one hop transactions of DRL
and Blockchain, the proposed work introduced Blockchain at static vehicles and RSUs
and DRL when the vehicles are mobile for content caching.

VEC is an important technology that can be used for reducing the task execution
overheads for end users. Thus task orchestration functionalities such as task offloading
and task computation are the major considerations in implementing efficient Vehic-
ular Edge based Networks. A large number of task offloading and task computation
approaches have been proposed in the literature. Huang et al. [1] proposed distributed
reputation management based task management system to evaluate trustworthiness of
cooperative vehicle by improving the problem of reputation in VEC. The proposed
scheme focuses on the behaviour of users through a reward mechanism that achieves
better task management. This system also addresses the issues of potential attacks in
the network through a reputation management model. Huang et al. [15] investigated
a parked vehicle edge computing approach where parked vehicles are deployed as
edge nodes for implementing a task computation scheme. The parked vehicles that
are a part of this edge are managed through edge servers. This approach provides an
effective solution for task computations through reduced computation cost.

Stahpit et al. [16] proposed an algorithm to reduce the computation load in the net-
work without the support of fog or cloud resources for real time applications. Instead
of cloud or fog servers, smart cameras are utilized to compute taskwith the cooperation
of its nearest cameras in the distribution manner. Pedestrians and mobile nodes are
also used for task offloading to these cameras in this algorithm. Liu et al. [5] proposed
a scheme to improve the quality of services while offloading tasks in VEC. The key
objective of this scheme is to achieve delay optimization in different vehicular speed
based road scenarios. A cost reduction based offloading algorithm is also proposed
that specifically focuses on one-to-one and one-to-many task offloading strategies in
the network. Dressler et al. [17] proposed a solution to manage distributed data in
VEC using micro cloud based network model. A Macro-Micro-Cloud approach is
developed for location-based services to increase the quality of service by reducing
the communication cost in sparse networks when no neighbouring vehicle is available
in network. This scheme is evaluated specifically for a V2V as well as Cellular Vehic-
ular edge communication scenarios. Xu et al. [18] proposed a vehicle-2-everything
(V2X) based computation offloading method that integrates V2X technology with
task offloading. In this method, non-dominated sorting genetic algorithm is utilized

123

A distributed task orchestration scheme in collaborative... 1157

for load balancing based on determination of effective routing paths for task compu-
tation. Simple additive weighting and multiple criteria decision making strategies are
used for optimizing task offloading in vehicular network.

Tran and Pompili [19] proposed a holistic approach for offloading task and allo-
cation of resources in multi edge servers in a VEC. Task offloading and resource
allocation problems are individually evaluated for achieving relatively closely optimal
solutions through the application of heuristic algorithms for solving the NP hard algo-
rithms. Li et al. [20] proposed a task offloading and computation model for enhancing
performance in a vehicular network. The scheme considers multitask offloading along
with different size of computation cost. A low complexity algorithm is also proposed to
reduce the computation delay that is evaluated through task offloading from different
lane scenarios and discrete speed of vehicles. Luo et al. [21] proposed an Edge-based
Vehicular Content Distribution algorithm to improve the content distribution in VEC.
Content and vehicle priority relationship are considered as key parameters in this
algorithm. Zhang et al. [22] proposed algorithms to overcome the issue in the scenario
of vehicles moving out from a network without completing its task. The algorithm
considers two different vehicular transitions scenarios based on weather the mobil-
ity pattern for a vehicle is known or unknown. It is also implemented for highways,
streets and real time road scenarios to evaluate its suitability for different vehicular
conditions.

Zhang et al. [23] proposed a task offloading scheme based on multi-agent load bal-
ancing distribution for managing resources and computation in VEC. It also focuses
performance benefits of balancing the computation load thereby highlighting its supe-
rior performance compared with traditional related schemes. Zhao et al. [24] proposed
a handover scheme based on simple additive weight algorithm and greedy expecta-
tion maximization algorithm in VEC. These algorithms attempt to reduce handover
overhead by reducing parameters such as computation cost, consumption of trans-
mitted energy and task completion time. Cha et al. [7] proposed a distributed virtual
edge creation scheme in a VEC environment. It utilizes free and available computing
resources for edge management where as the edge nodes coordinate with each other to
orchestrate the task by using distributed processing. Xue and An [25] proposed a task
offloading scheme for a mobile edge computing based on Non-Orthogonal Multiple
Access to improve the Quality of Service in VEC. This task offloading and resource
allocation scheme works with multiple edge nodes to offload data to multiple edge
servers at different locations at the same time. Lv et al. [26] proposed a task offloading
scheme based on trajectory prediction in Vehicular network. This scheme provides
handover services between adjacent RSU’s when a moving vehicle is processing task
while driving. Deep reinforcement learning techniques are used in this model for for
performing task offloading and computation management. The comparative analysis
of existing work related to the proposed work has been shown in Table 1.

Although a number of schemes have been proposed that deal with task orchestration
but majority of these schemes rely on infrastructure or static vehicles for performing
task orchestration. Also, most of these schemes do not evaluate feasibility of VEC
with respect to a real time task computation process. Therefore, this work proposes
a Distributed Task Orchestration scheme that only utilizes vehicles on road and V2V
communication for task orchestration in a vehicular edge environment. The next sec-

123

1158 S. Mittal et al.

Ta
bl
e
1

C
om

pa
ra
tiv

e
an
al
ys
is
of

lit
er
at
ur
e
re
vi
ew

R
ef
er
en
ce
s

Y
ea
r

O
bj
ec
tiv

e
C
om

m
un
ic
at
io
n

Sc
en
ar
io

V
2V

V
2R

U
rb
an

H
ig
hw

ay
R
ur
al

[1
5]

20
18

O
pt
im

iz
e
re
so
ur
ce

al
lo
ca
tio

n,
ta
sk

di
st
ri
bu
tio

n
�

�
�

×
×

[1
6]

20
19

E
ffi
ci
en
tt
as
k
of
flo

ad
in
g,
co
m
pu

ta
tio

na
ll
oa
d
ba
la
nc
in
g

�
�

�
×

×
[1
8]

20
19

O
pt
im

iz
ed

ta
sk

co
m
pu
ta
tio

n
�

�
�

×
�

[1
9]

20
19

O
pt
im

iz
ed

ta
sk

of
flo

ad
in
g,
re
so
ur
ce

al
lo
ca
tio

n
�

�
�

�
�

[2
0]

20
20

R
es
ou

rc
e
al
lo
ca
tio

n
fo
r
ta
sk

co
m
pu

ta
tio

n
�

�
�

�
×

[2
2]

20
20

R
ed
uc
e
la
te
nc
y
du

ri
ng

ta
sk

of
flo

ad
in
g
an
d
co
m
pu

ta
tio

n
�

�
�

�
×

[2
3]

20
21

R
ed
uc
e
la
te
nc
y
an
d
im

pr
ov
e
lo
ad

ba
la
nc
in
g

�
�

�
�

×
[7
]

20
21

Id
le
re
so
ur
ce

ut
ili
za
tio

n
fo
r
ta
sk

co
m
pu

ta
tio

n
�

×
�

×
×

[2
5]

20
21

E
ffi
ci
en
tt
as
k
of
flo

ad
in
g
an
d
re
so
ur
ce

al
lo
ca
tio

n
�

�
�

×
×

[2
6]

20
21

Ta
sk

of
flo

ad
in
g
w
hi
le
m
ob

ili
ty

�
�

�
�

×

123

A distributed task orchestration scheme in collaborative... 1159

tion describes the Architecture and System Model for the proposed task orchestration
scheme.

3 Proposed framework

Task orchestration process is one of the critical issues for enabling effective com-
putation in vehicular networks. An efficient task orchestration procedure will reduce
latency and improve the applicability of these networks in different domains. The
proposed dynamic task orchestration framework (DTOF) focuses on optimizing task
computation in vehicular networks by implementing edge computing infrastructure
as a back-haul. It considers a vehicular edge computing system (VECS) consisting of
cloud servers that function as centralized computing facility. The cloud servers per-
form static vehicular and task allocation data management activities that is required
for edge generation and alignment as well as for task orchestration which is then
distributed to edges equipped with their own local storage through a primary edge
vehicle.

In the proposed system model, if any vehicular application on board that is running
on vehicles moving along urban roads needs additional resources for satisfying its
computational requirements, it uses the available VECS infrastructure for meeting
them. In DTOF, edge servers distribute data for computation among other co-operative
edge computing devices and edge management is performed solely based on V2V
communication. This V2V based edge management distinguishes DTOF from most
of the contemporaryVECS and also achieves effective task orchestration through these
dynamically created edges. Following key assumptions have beenmade for describing
the network architecture and system model of DTOF.

– The network is assumed to have a maximum vehicular density of N vehicles along
a road segment and edge capacity of K vehicles where K ≤ N for all values of N
and K .

– The maximum number of road segments connected to a particular road junction
has been assumed to be four with each segment containing two bidirectional lanes.

– Every vehicle is assigned a unique V _I D that is used for identification of that
vehicle as well as for managing its static information stored on the cloud.

– Edge network is controlled by a primary edge server called PEi which is a vehicle
residing in the same edge network and is responsible for task orchestration.

– The primary edge server is responsible for edge creation, edge alignment and other
edge management tasks.

– Every vehicle is installed with a container for facilitating task orchestration.
– All vehicles have heterogeneous resource capabilities and edges are dynamically
created whenever any task to be orchestrated has additional computational require-
ments that cant be fulfilled by the resources of a single vehicle.

123

1160 S. Mittal et al.

Fig. 2 Proposed layered architecture

3.1 Network architecture

Figure 2 describes the layered architecture, that consists of three layers used for task
orchestration process in DTOF. Layer I designated as Data Communication & Gen-
eration Layer consists of vehicular nodes equipped with sensors and actuators that
act as individual processing elements in VECS. In the proposed architecture, Data
Communication & Generation Layer is primarily responsible for facilitating network
functionalities related to route selection and initialization of vehicles for edge net-
work. The sensing and transmission between central cloud and edge is also facilitated
through this layer. Layer I functionalities also include edge network initialization and
task offloading between edge network.

Layer II called Edge Computing Layer is mainly responsible for processes related
to edge computation and edge maintenance. In Layer II, selected edge nodes analyze
the data flow and distribute task among edge nodes while they are moving on the road.
When an edge node leaves the edge or a new node joins the network it utilizes Layer II
services. Layer III known as Cloud Computation Layer contains functionalities such
as Vehicle Route Generation and user application interfaces are provided through this
layer to VECS. It is also responsible for task orchestration by tracing the vehicles in
edge network and the initialization of edge network at Layer I. The Layer III is also
responsible for initiating actions when a task reaches a state that results in exception.

3.2 Systemmodel

DTOF performs its key functionalities in three different phases that are named as Vehi-
cle Route Initialization, Edge Alignment and Task Orchestration Phase respectively.
The dynamically organized vehicular edge network is formed on the basis of distance

123

A distributed task orchestration scheme in collaborative... 1161

to be travelled by vehicles through prior consideration of designated route that every
vehicle needs to cover while it is moving towards its destination. This is achieved
through a novel route initialization algorithm that has been proposed for computing
the route to be taken by vehicles as they move towards their respective destinations.
The Vehicle Route Initialization algorithm uses current location of each vehicle for
performing edge management and task allocation through a lightweight procedure.
DTOF also uses minimal cloud-edge interplay by considering both the cloud network
as well as the dynamically created edge as independent functional units with very
minimal interaction for task orchestration.

3.2.1 Vehicle route initialization phase

To initiate the edge formation process, vehicle route initialization is performed for
every vehicle travelling along the city road. All road segments within a city have
been grouped into sectors that are identified through a distinct sector number and road
intersections at each sector that are called as road junctions. Every road junction is
designated through a unique junction ID called JI D . Each road segment has also been
assigned a road ID called RI D that has been considered to be the unique identifier for
each road segment. The roads within a city can now be represented as an undirected
graph G(V,E) with each vertex in V designating a junction and all the edges in E
indicating the various road segments that join these sectors in both directions.

To facilitate edge formation in the graph based model, the naming notation used for
road segments considers the direction of moving vehicle along with the name of that
road segment. The parameter RI D is the identifier for every road segment within the
city and is defined as a string of alphanumeric characters. The numeric value in the
string represents JI D , that represents the connecting junction between adjacent lanes.
The alphabetic value associated with each lane is provided on the basis of direction in
which the vehicle is moving along that road segment. For a road segment having two
JI D at either end, the lower valued JI D preferred for assigning RI D value. Figure 3
depicts these road segments names along with corresponding graph for these roads.
As shown in the figure, character following the JI D contains symbolsU , D , L and R
that designate theU P , DOWN , LEFT or RIGHT direction of the lane depending
on whether the vehicles travel on North, South, East or West direction respectively
along that segment. For example, road between the junctions 11 and 12 on South-
North direction in Fig. 3 is represented by 11U and 11D, respectively. Similarly, road
between junctions 1 and 11 on East-West direction is represented by 11R and 11L in
West-East direction.

Figure 3 also shows the complete route information for vehicles along the road.
Here vehicle named Vehicle_A has been shown to travel through a path that passes
through junctions 21, 22, 23, 13, 3 respectively to reach its destination. The parameter
RI represents the concatenated string containing the PAT HI D connecting the route
taken as it will move towards its final destination. Thus for Vehicle_A the value
assigned to RA is 21U22U23L13L3U . Similarly, RI is calculated for every vehicle
I that is currently travelling on the city roads. These strings are then locally stored
in every vehicle to indicate the complete path being travelled by that vehicle. These

123

1162 S. Mittal et al.

Fig. 3 Route identification in proposed framework

strings are also used in an efficient prefix string matching algorithm for determining
vehicles travelling along the same route so as to include them in the edge network.

Table 2 depicts the important symbols used in the DTOF along with their brief
descriptions. The Vehicle Route Setup is initiated as soon as some vehicle starts its
journey by selecting its destination. The credentials of this vehicle along with its
intended destination are transmitted for cloud based processing. The cloud first val-
idates these credentials from its repository and also performs registration if setup
operation is being performed for the first time for some vehicle. A centralized route
selection algorithm is then invoked for computing the optimized route that is then
transmitted back as a string to that vehicle.

Algorithm 1 explains the steps followed for implementing the process of Vehicle
Route Initialization. The main step in the process of route initialization is to calculate
the route from its source to destination by concatenating the RI with calculated shortest
PAT HI D for a vehicle.A shortest_Path function has been used to get the shortest route
from source to destination. Further, to calculate the total distance between source and
destination, A Find_Path_Length function has been defined that is based on shortest
path computation process of Graphs. An additional function called Get_Path_ID has
also been defined, which returns the PAT HI D for the next route to be travelled by
the vehicle. The edge alignment process is then performed using this RI based on the
movement of vehicle along the identified path from source and destination.

3.2.2 Edge alignment phase

The proposed scheme uses an innovative string matching technique for edge forma-
tion and alignment that assists in seamless creation and efficient management of the
formed edges. These on-demand dynamic edge’s are established using a lightweight

123

A distributed task orchestration scheme in collaborative... 1163

Table 2 Notations of variables and functions used in DTOF

Symbol name Description

VI D Vehicle ID

JI D Junction ID

RI D Road segment ID

RI Route ID

N Total distance between source and destination

P Primary vehicle

E Edge vehicle

K Prefix string length

I Path ID based on the following junction towards destination

PAT HI D Path ID

I nsert () Enter destination of smart vehicle

State () Enters the state of vehicle

Push () To get data from cloud to vehicle

Find_Path_Length () Returns the total route length

Get_Path_I D () Returns the path between one junction to next junction

Shortest_Path () Returns the shortest Path between source and destination

Concat () Merge the current RI with next PAT HI D

Push_Back () To store data from vehicle to cloud

S [i] Prefix of i th character of the string corresponding to Primary edge

H (S [i]) Hash function of S [i]
Transmit () Return the calculated Hash value

Γ Random prime number

Binary_Search() Binary search method

Eligible () Check the eligibility of vehicle to join edge

string prefix matching procedure. This is based on maximizing the duration of con-
nection among edge members by utilizing the predicted route of vehicle’s as they
move towards their respective destinations. The process of edge creation starts at road
junctions when the vehicles are stationary so as to produce a homogeneous depiction
about vehicular routes for improving efficiency of edge creation procedure while also
producing effective edges.

The vehicle selection procedure relies on application of binary search on the lengths
to find the longest common prefix. It is based on the premise that if a prefix of length
K is common to both strings, then all prefixes with length smaller than K are also
common to both. Similarly, if a prefix of length K is not common to both strings, then
no prefixwith length greater than K will be common to both.Because of thismonotony,
one half of the search space between Low and High is discarded, every time a query
for determining whether the length Mid is a common prefix or not, is performed.
The value of median is computed as Mid = (Low + High)/2. Subsequently, string
values of all the vehicles within transmission range is then compared with hashes
of primary vehicle to determine the common prefix. This will correspond to largest

123

1164 S. Mittal et al.

Algorithm 1 Vehicle-Route-Initialization Algorithm
Input: vehicle details, start location, destination
1: State(Vi) ← ON ;
2: I nsert (Final Destination);
3: Push(Vi , V I D

i , V Start
i , V Final

i);
4: Find_Shortest_Path(V I D

i , V Start
i , V Final

i)

5: N = Find_Path_Length(Vi);
6: Ri ← NULL;
7: I = 0;
8: while(N �= NULL)

9: PAT H [I] = Get_Path_I D(V Start
i , Ji , J j , V

Final
i);

10: N − −;
11: I + +;
12: end while
13: for X ← 0 to I do
14: Concat(Ri , PAT H [X]);
15: end for
16: Push_Back(Ri , V I D

i , V Start
i , V Final

i);

common predicted duration for each edge vehicle. The hash computation is done using
the following equation,

Hash(S[i]) = Hash(S[i − 1]) + S[i] ∗ Γ (i−1) (1)

where, S[i] denotes the prefix of first i characters of the string corresponding to
primary edge whose hash is to be generated and Γ is a random prime number having
length greater than a predefined value N . The value of N is dependent on the number
of distinct characters used for designating Ri

P . In case of current implementation of
DTOF, this value has been taken as 36 corresponding to 26 alphabets and 10 numeric
digits used for creating Ri . The same procedure is used for computing hashes of all
other member vehicles that are currently active in the edge,

∀ i | Hash(T [i]) = Hash(T [i − 1]) + T [i] ∗ Γ (i−1) (2)

Once these hash values have been generated, binary search is then applied on the
lengths of each vehicle, to determine their longest common prefix with the primary
string S. In each iteration, the procedure selects a vehicle and the string (RI) of length
M for the computation, its and proceeds as follows:

We set the initial indexes as Low = 0, High = min(N , M) + 1. In each iteration
the invariant property that, Low will always indicate length of common prefix and
High will always indicate a length of uncommon prefix, is maintained. Since the
efficiency of task orchestration process is dependent on effectiveness of string being
processed, the edge creation step maintains linear time complexity. The preprocessing
takes O(N + M) corresponding to two linear for loops that calculates prefix hashes
of the two strings. Binary search takes O(log(min(N , M)), hence overall complexity
is O(N + M + log(min(N , M)) or just O(N + M) as log(min(N , M)) is a lower
order of magnitude than O(N + M) and can be ignored in the asymptotically growth
of the algorithm. Algorithm 2 describes the main steps involved in the process of edge

123

A distributed task orchestration scheme in collaborative... 1165

alignment process. In the first step, eligible vehicles are verified and added onto the
edge based on their intended destination. The task orchestration is then performed
using this edge based on vehicles moving along the same road segment.

Algorithm 2 Edge-Alignment
Input: Path-Rank, Junction-Details.
Notation: P=Primary vehicle, E=Edge Vehicles
1: H(SP) = H(SP−1) + Γ (P−1);
2: N = Find_Path_Length(VI);
3: Transmit(H(SP)

4: for each E ← 1 to N do
5: H(SE) = H(SE−1) + Γ (E−1);
6: ME = Find_Path_Length(VE);
7: LCPK = Binary_Search(0.Min(N , ME);)

8: Transmit(LCPE)

9: end for
10: for each E ← 1 to N do
11: if (Eligible (VE) == 1) then
12: Transmit(EDGE_J O I N)

13: end if
14: end for

3.2.3 Task orchestration

To initiate the task orchestration process, a vehicle equipped with computational and
caching capabilities is assigned a task that requires edge computational capabilities.
This node then attains the role of primaryvehicle (PEI) and starts the edge realignment
process with its neighbouring nodes as soon as the vehicles reach its nearest junction.
If an existing edge is available in its vicinity, the primary vehicle initiates the task
orchestration process. In case an edge is not available, process of edge establishment
is initiated through the edge alignment phase. After the edge member vehicles V ′

p,
are added onto the edge, task allocation is performed by selecting vehicles according
to their ΣI values. Finally, once the edges have been initialized, the vehicles start
running and perform their respective task, till it is completed. The last phase of the
framework relates to how a vehicle leaves the edge. As vehicles move towards their
destinations, the value of RI also keeps on reducing at each road junction. As this value
reaches under the set threshold, it initiates the exit process of vehicle from the edge
network. Before its exit, if a vehicle falls into the category of edge node, it transfers task
computation information to the primary server vehicle of the edge network. After the
task hands-off, required statistical information based on task orchestration performed
by that vehicle is also updated on the cloud server and the vehicle then leaves the edge
by transmitting an EDGE_LE AV E message. However in case the exiting vehicle is
a primary edge, it results in its task being aborted by transmitting a T ASK_ABORT
message and the edge vehicles setting their STATUS flag to I DLE . Subsequently,
the edge is reorganised at the next junction followed by next orchestration of the next
task.

123

1166 S. Mittal et al.

Fig. 4 Route-map from sector 5 to sector 36 Chandigarh, India

4 Implementation and simulation results

In order to evaluate performance of the proposed scheme, a series of experiments
and simulations have been conducted using Network Simulator 3.29 (NS3) [27] and
SUMO [28]. The evaluation results have specifically focused on issues related to
edge initialization and task orchestration at different points along the road. Edge will
be initialized during the time when the vehicles are waiting at road junctions while
task orchestration will be done as they move towards their destinations. To evaluate
performance, we have considered an urban area road map of Chandigarh city in India.
As shown in Fig. 4 that has been created using OpenStreetMap [29] that shows the
roadside scenario of Chandigarh depicting various points of traffic junctions along the
road.These encircled points designate road junctionswhere edge network initialization
is initiated whenever the vehicles stop at any of these points.

Table 3, depicts some sample route descriptions of roads in Chandigarh containing
source, destination and RI . For each route, a unique RI is generated that depends on
its corresponding route length and number of junctions that lie along that route. These
RI ’s have been generated using Edge-Alignment Algorithm, that is involved at the
centralized cloud server. Each RI is obtained by concatenating all the JI D that lie
within that route. Since the distance between source to destination points of different
routes are dependent on the number of junctions on that route, the length of RI ’s
will vary. Therefore, For the routes shown in Table 3, the length of RI ’s varies from
9 characters that contains three junctions (01,02,07) to 27 characters containing 9
junctions (19,20,26,02,03,07,27,28,29).

Figure 4 shows the route directions for the case when any vehicle moves along a
route having the source as Sukhna-Lake in Sector 5while destination has been assumed
to be Sector 36 that covers a total distance 6.9 km. To cover this route a vehicle will
take at least 6 roundabout exits. These roundabout exits named as road junctions in our
scheme indicate points where edge management is being performed so as to facilitate
efficient edge management and task allocation. Based on the Route setup method, the
computed Route ID of R1 is "01U02L03U04U05U06L" with length 18 character long

123

A distributed task orchestration scheme in collaborative... 1167

Table 3 Different routes of Chandigarh City

Route description

Route Source Destination Route ID (String) Length (km)

R1 SEC 5 SEC 22 “01L02U07U” 4.6

R2 SEC 5 SEC 36 “01U02L03U04U05U06L” 6.9

R3 SEC 11 SEC 43 “19U20U21U22U23R24U25L” 7.2

R4 SEC 5 SEC 43 “01U02U07U08U09U10L” 7.3

R5 SEC 26 SEC43 “33U34L35L07U08U09U10L” 7.8

R6 SEC 11 SEC 32 “19U20R26R02U03R07R27U28U29R” 8.3

R7 SEC 5 SEC 48 “11R12L13U14U15U16U17R18U” 11

Table 4 System parameters for
simulation in NS3

Parameters Values

Speed of vehicle [50,80] km/h

Data rate (V2V communication) 27 Mbps

Arrival rate Uniform:[0.165,0.33]/vehicles/s

Average number of vehicles/lane [10,50]

Interval of sending BSM 1 s

Communication protocol DSRC

Bandwidth 10 MHz

Computing power Uniform:[0.1,1] GHz

Simulation time 120 s

as shown in Table 3. Similarly for each Route ID , a character string corresponding to
its Route ID is generated, that is then provided to vehicles thatmove along these routes.
To analyse edge performance in DTOF, NS3 based simulations are used by creating
a network scenario corresponding to these Seven routes with vehicles arriving with
differing arrival rates. The main parameters used in simulation are listed in Table 4.

The simulated model has considered data rate capacity of 27 Mbps with the band-
width of 10 MHz. The speed of the vehicles has been varied from 50 to 80 km/h
and vehicles arrives at random interval of [0.165,0.33] vehicles per seconds during
travelling on route. Simulation follows DSRC protocol by including library "ns3/wifi-
80211p-helper.h" alongwith "ns3/yans-wifi-helper.h". To support mobility in scenario
"ns3/position-allocator.h" and "ns3/mobility-helper.h" libraries are used in NS3. The
number of vehicles has been varied from a minimum value of 10 vehicles per lane
that extends to 50 vehicles per lane. It is also assumed that each vehicle has its own
computation power upto 1 GHz for task execution.

Figure 5 depicts a snapshot of simulation outcome when edge formulation process
is being performed. The color of nodes depicts the type of node, with green color node
in the middle of each lane functioning as primary edge node that communicates with
other cooperative nodes in a distributed manner. Each node in Fig. 5 is identified by a
node number so as to uniquely identify it and network communication between within

123

1168 S. Mittal et al.

Fig. 5 Edge initialization at traffic junction

Fig. 6 On the way edge management

range nodes is achieved using message passing. The edge creation process concludes
once all the eligible nodes join the edge. Now the primary vehicle performs task
orchestration and edge network executes the task by utilizing all the moving vehicles
that have joined the created edge. As the vehicular nodes are constrained by their
transmission limit, there can be a possibility of a node not being in the transmission
range while the edge formation is being performed. Figure 6 shows this condition in
top most edge network where nodes 6, 7 and 8 are out of network coverage and similar
condition is observed for nodes 17 and 24 in respective networks.

To evaluate the performance of the DTOF, parameters related to both communi-
cation and computing power have been considered. The evaluation has been done
with respect to average number of vehicular node per lane that is defined as average
of number of vehicles at different lanes. The key parameters used in our analysis are
latency, packet throughput that are used for evaluating communication efficiencywhile

123

A distributed task orchestration scheme in collaborative... 1169

Fig. 7 Average execution time wrt average number of vehicles per lane

completion ratio, average execution time, number of failures and edge duration time
have been used for analysing task computation effectiveness. These parameters are
calculated from the generated trace files through multiple simulations for evaluating
performance of proposed task orchestration scheme.

Figure 7 describes the impact of data size on average execution time for varying
packet sizes of 1 MB, 2 MB and 4 MB. The graphs indicate that average execution
time decreases as the number of vehicles are increased. Average execution time in
DTOF exhibits a minor variation as the vehicle density is increased. This is due to
the fact that as the number of vehicles is increased within an edge, higher number of
nodes will be available for task orchestration that results in reduced execution time.
Also this provides higher edge density thereby improving the execution rate of edges
in DTOF. Figure 8 illustrates the variation in task completion ratio with respect to
number of vehicles per lane. The value of task completion ratio initially shows a
marginal increase when the average vehicles density increases and then attains an
almost constant value for all three packet sizes. This is due to the fact that at smaller
values of vehicular density, the task completion ratio also has a smaller value due to
availability of limited computational capacity. Subsequently its value increases as the
number of edge vehicles is increased due to higher computational capability of the
created edges and reaches a saturation value from where it maintains a constant value.

Figure 9 depicts the performance of edge maintenance by evaluating the number of
failures in terms of number of vehicles per lane. The obtained values from simulation
indicate that the failure rate shows initial drop as the number of vehicles is increased
and then reaches a minimum threshold value. The graph also shows that a larger task
allocation results in higher task failure rate thereby resulting in relatively higher value
of failure rate for large packets. Figure 10 shows the variation in edge duration time for
different data sizes with respect to average number of edge nodes in the network. The
graph shows that the time for which the edge is computing the allocated task increases

123

1170 S. Mittal et al.

Fig. 8 Completion ratio wrt average number of vehicles per lane

Fig. 9 Number of failures wrt average number of vehicles per lane

as with the size of the task because as the task size will be increased, more time will
be taken to execute it with limited number of resources available in the edge network.

The performance of DTOF is compared with the existing Random (Rand) approach
and Virtual edge scheme [7]. Rand selects the edges nodes randomly within the
single-hop communication range whereas Virtual edge scheme has considered the
link duration between vehicles and the available computational resources jointly while
selecting edge nodes. Figures 11 and 12 show the variation in unexpected disconnec-
tions and edge duration in terms of average vehicular density per lane respectively. As
compared with other two baselines, DTOF improves the stability of edge network by

123

A distributed task orchestration scheme in collaborative... 1171

Fig. 10 Edge duration time wrt average number of vehicles per lane

Fig. 11 Comparative Number of unexpected disconnections wrt average number vehicles per lane

considering the RI and string match for measuring the distance for link-connection
between the edge nodes. Therefore there is less chance to have link disconnection
between edge nodes in DTOF. As a result, number of unexpected disconnections
show relatively lower levels in DTOF. Therefore, it improves the edge stability and
edge duration ensuring higher effectiveness of the created edges for task orchestration.

Figure 13 shows the impact on throughput of each edge network with the increasing
size of edge network. The figure shows that throughput is exponentially increased as
the number of nodes are increased. The reason for this behaviour is that in DTOF,
computing nodesworking in distributedmanner are provided in the edge as the number
of nodes are increased leading to improved packet throughput till it reaches a saturation

123

1172 S. Mittal et al.

Fig. 12 Comparative duration of edge wrt average number of vehicles per lane

Fig. 13 Throughput wrt average number of vehicles per lane

value. Figure 14 illustrate variation in packet latency as a function of average number
of nodes. The value of latency initially decreases by a small value for all the three
packet sizes until it reaches a constant value. This is because of low overhead and light
weight edge alignment process of DTOF that results in minimal data transmission.
Thus, the available channel is utilized more efficiently thereby resulting in low packet
latency in DTOF. The evaluated results exhibit that since the edge alignment process
in DTOF is performed on stationary vehicles, the edge density remains constant while
the vehicles are moving on the route. Also since the task orchestration procedure is
performed seamlessly, the edge duration remains stable resulting in reduced overhead

123

A distributed task orchestration scheme in collaborative... 1173

Fig. 14 Latency wrt average number of vehicles per lane

and minimum disconnections among the nodes in the edge network. This leads to
relatively shorter data transmission time between edge nodes within an edge as well
as higher transmission power utilization as the edge density is increased.

5 Conclusion

An effective vehicular edge computing based framework can be considered to an
important technique for task orchestration through vehicular nodes. VEC also assists
in better resource utilization without using any additional roadside infrastructure.
The proposed distributive task orchestration framework attempts to achieve the above
objectives through a collaborative edge formation schemebasedon a lightweight string
matching algorithm. The obtained simulation results indicate better task completion
ratio and average task execution time compared with existing schemes.In future, we
will focus on optimizing the number of edge members within an edge according to
requirements of different applications. We also extend our approach by considering
intelligent based mechanisms to obtain the better resource utilization by enhancing
the edge alignment process. We will also evaluate the performance of our scheme in
different applications by conducting real-world experiments.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

1174 S. Mittal et al.

References

1. Huang X, Yu R, Kang J, Zhang Y (2017) Distributed reputation management for secure and efficient
vehicular edge computing and networks. IEEE Access 5:25 408-25 420

2. Singh P, Bali RS, Kumar N, Das AK, Vinel A, Yang LT (2018) Secure healthcare data dissemination
using vehicle relay networks. IEEE Internet Things J 5(5):3733–3746

3. Lee E, Lee EK,GerlaM,Oh SY (2014) Vehicular cloud networking: architecture and design principles.
IEEE Commun Mag 52(2):148–155

4. Hou X, Li Y, Chen M, Wu D, Jin D, Chen S (2016) Vehicular fog computing: a viewpoint of vehicles
as the infrastructures. IEEE Trans Veh Technol 65(6):3860–3873

5. Liu L, Chen C, Pei Q, Maharjan S, Zhang Y (2019) Vehicular edge computing and networking: a
survey. Mob Netw Appl 26:1145–1168

6. Tahmasebi M, Khayyambashi MR (2019) An efficient model for vehicular cloud computing with
prioritizing computing resources. Peer-to-Peer Netw Appl 12(5):1466–1475

7. Cha N, Wu C, Yoshinaga T, Ji Y, Alvin Yau KL (2021) Virtual edge: exploring computation offloading
in collaborative vehicular edge computing. IEEE Access 9:37739–37751

8. Singh A, Aujla GS, Bali RS (2021) Container-based load balancing for energy efficiency in software-
defined edge computing environment. Sustain Comput Inform Syst 30:100463

9. Bitam S, Mellouk A, Zeadally S (2015) VANET-cloud: a generic cloud computing model for vehicular
Ad Hoc networks. IEEE Wirel Commun 22(1):96–102

10. Garg D, Kaur A, Benslimane A, Bali RS, Kumar N, Tanwar S, Rodrigues JJ, Obaidat M (2021)
Truclu: trust based clustering mechanism in software defined vehicular networks. In: IEEE global
communications conference (GLOBECOM). IEEE, pp 1–6

11. Hassan N, Yau KLA, Wu C (2019) Edge computing in 5G: a review. IEEE Access 7:127276–127289
12. Raza S, Wang S, Ahmed M, Anwar MR (2019) A survey on vehicular edge computing: architecture,

applications, technical issues, and future directions. Wirel Commun Mob Comput 2019
13. DziyauddinRA,NiyatoD, LuongNC, IzharMAM,HadhariM,Daud S (2019) Computation offloading

and content caching delivery in vehicular edge computing: a survey. Comput Netw 197(July):108228
14. Dai Y, Xu D, Zhang K, Maharjan S, Zhang Y (2020) Deep reinforcement learning and permissioned

blockchain for content caching in vehicular edge computing and networks. IEEE Trans Veh Technol
69(4):4312–4324

15. HuangX, Yu R, Liu J, Shu L (2018) Parked vehicle edge computing: exploiting opportunistic resources
for distributed mobile applications. IEEE Access 6:66649–66663

16. Sthapit S, Thompson J, Robertson NM, Hopgood JR (2019) Computational load balancing on the edge
in absence of cloud and fog. IEEE Trans Mob Comput 18(7):1499–1512

17. Dressler F, Pannu GS, Hagenauer F, Gerla M, Higuchi T, Altintas O (2019) Virtual edge comput-
ing using vehicular micro clouds. In: 2019 International conference on computing, networking and
communications, ICNC 2019, pp 537–541

18. Xu X, Xue Y, Li X, Qi L, Wan S (2019) A computation offloading method for edge computing with
vehicle-to-everything. IEEE Access 7:131-068–131-077

19. Tran TX, Pompili D (2019) Joint task offloading and resource allocation for multi-server mobile-edge
computing networks. IEEE Trans Veh Technol 68(1):856–868

20. Li H, Li X, Wang W (2020) Joint optimization of computation cost and delay for task offloading in
vehicular fog networks. Trans Emerg Telecommun Technol 31(2):1–16

21. Luo Q, Li C, Luan TH, Shi W (2020) EdgeVCD: Intelligent algorithm-inspired content distribution in
vehicular edge computing network. IEEE Internet Things J 7(6):5562–5579

22. Zhang X, Zhang J, Liu Z, Cui Q, Tao X, Wang S (2020) MDP-based task offloading for vehicular edge
computing under certain and uncertain transition probabilities. IEEE Trans Veh Technol 69(3):3296–
3309

23. Zhang Z, Li C, Peng SL, Pei X (2021) A new task offloading algorithm in edge computing. Eurasip J
Wirel Commun Netw. https://doi.org/10.1186/s13638-021-01895-6

24. ZhaoH, Zheng L, LiW, ZhouD, LiW (2021) Research on handover strategy based on greedy algorithm
in vehicle edge computing. Smart Innov Syst Technol 190(September):59–65

25. Xue J, An Y (2021) Joint task offloading and resource allocation for multi-task multi-server NOMA-
MEC networks. IEEE Access 9:16152–16163

26. Lv B, Yang C, Chen X, Yao Z, Yang J (2021) Task offloading and serving handover of vehicular edge
computing networks based on trajectory prediction. IEEE Access 9:1–1

123

https://doi.org/10.1186/s13638-021-01895-6

A distributed task orchestration scheme in collaborative... 1175

27. Carneiro G (2010) Ns-3: network simulator 3. In: UTM lab meeting April, vol 20, pp 4–5
28. Lopez PA, Behrisch M, Bieker-Walz L, Erdmann J, Flötteröd Y-P, Hilbrich R, Lücken L, Rummel J,

Wagner P, Wießner E (2018) Microscopic traffic simulation using sumo. In: 2018 21st International
conference on intelligent transportation systems (ITSC). IEEE, pp 2575–2582

29. Haklay M, Weber P (2008) Openstreetmap: user-generated street maps. IEEE Pervasive Comput
7(4):12–18

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A distributed task orchestration scheme in collaborative vehicular cloud edge networks
	Abstract
	1 Introduction
	1.1 Research contributions
	1.2 Organization

	2 Literature review
	3 Proposed framework
	3.1 Network architecture
	3.2 System model
	3.2.1 Vehicle route initialization phase
	3.2.2 Edge alignment phase
	3.2.3 Task orchestration

	4 Implementation and simulation results
	5 Conclusion
	References

