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Abstract

Nonconforming finite element discretisations require special care in the construction of the prolongation
and restriction in the multigrid process. In this paper,a general scheme is proposed,which guarantees the
approximation property. As an example, the technique is applied to the discretisation by non-matching
grids (mortar elements).
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1. Introduction

Recently, domain decomposition methods have been applied to situations where
subdomain meshes may be separately constructed and are non-matching along
the interfaces. The method was called mortar element method in [3]. When this
scheme is employed with finite elements, it may be considered as a nonconforming
method or as a mixed method.

In this paper, we will treat the mortar elements in the framework of nonconforming
methods, and we assume that the Lagrange multipliers have been eliminated as in
the setting of the second author [9]. When multigrid methods are designed, there
is now the problem that the finite element spaces are not nested.

Therefore, we have to construct appropriate prolongation operators. In the multi-
grid scheme for other elements, as, e.g., for the Crouzeix–Raviart elements in [5,
8] the L2-projectors could be chosen for the prolongations. We will abandon this
restriction and describe a more general framework which admits a lot of freedom
in the construction. In particular, a prolongation that is natural for the mortar el-
ements fits into our framework. The approximation property for the convergence
proof will be derived from an auxiliary problem. In essence, we will only assume
that an L2 error estimate is known for the finite elements under consideration.
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In Section 2 we recall some notation for nonconforming finite elements. Section
3 is concerned with an extension of the prolongation operators which admits in
Section 4 to derive the central approximation property from an L2 error estimate.
In Section 5 the associated smoothing property and the convergence is discussed.
Section 6 provides the application to mortar elements in the geometric conforming
case. We conclude with a generalisation to geometric nonconforming meshes.

After completing the paper, we learnt about the paper [11] investigating the mortar
finite element method by other theoretical means.

2. Multigrid Transfer

2.1. Variational Problem

We consider a variational problem of the following form. LetH1 be a Hilbert space.
Given a bilinear form a(·, ·) on H1 ×H1 and a functional f ∈ H−1 := (H1)′, we
look for a solution u ∈ H1 of

a(u,w) = f (w) for all w ∈ H1. (2.1)

Let
H−1 ⊂ H0 ⊂ H1

be the Gelfand triple, e.g., H1 := H 1
0 (�), H0 := L2(�), and H−1 := H−1(�).

In addition, we need a space H2 ⊂ H1 (e.g., H2 = H 2(�) ∩H 1
0 (�)). The norms

of Hk are denoted by ‖·‖k. The scalar product in H0 is written as (·, ·)0.

We assume:
(i) Solvability: For all f ∈ H−1, (2.1) has a unique solution u ∈ H1 with ‖u‖1 ≤

C ‖f ‖−1.
(ii) Regularity: If f ∈ H0, (2.1) has a solution u ∈ H2 with ‖u‖2 ≤ C ‖f ‖0.

2.2. Nonconforming Discretisation

Let V` ⊂ H0 for ` = 0, 1, . . . be a sequence of (nonconforming) finite element
spaces, i.e., we do not assume that the spaces are nested. Instead of the bilinear
form a(·, ·) a mesh-dependent bilinear form a`(·, ·) on V`×V` is used. For f ∈ H0,
(2.1) is discretised by

u` ∈ V` with a`(u`,w`) = f (w`) for all w` ∈ V`. (2.2)

We assume that also (2.2) is solvable and that the error estimate

‖u− u`‖0 ≤ Ceh
2m
` ‖u‖2 (2.3)



A Multigrid Method for Nonconforming FE-Discretisations and Non-Matching Grids 3

holds, cf. Braess [4, p. 102], Hackbusch [13, (8.4.15b)]. Here, 2m is the order of
the differential operator, i.e., H1 is a subspace of Hm(�). As usual, h` is the size
of the finite element mesh of V`.

Together with the regularity assumption ‖u‖2 ≤ C ‖f ‖0 from above, we obtain

‖u− u`‖0 ≤ C0h
2m
` ‖f ‖0 . (2.4)

2.3. Matrix Representation

Let
{
b`,i : i ∈ I`

}
be a basis of V`, where I` is the corresponding index set (e.g.,

the set of nodal points). The coefficient vector space RI` is denoted by U`. The
vectors in U` are u` = (u`,i)i∈I`

, and U` will be equipped with the usual Euclidean
norm ‖ · ‖U`

(scaled by a suitable factor to ensure (2.6) below), so that the adjoint
mappings are given by the transposed matrices (maybe up to a fixed factor).

The isomorphism between U` and V` is denoted by φ`:

φ` : U`→ V` with u` = φ` u` :=
∑

i∈I`
u`,ib`,i . (2.5)

The finite element matrix A` corresponding to a`(·, ·) has the coefficients a`,ij =
a`(b`,j , b`,i ). The variational problem (2.2) is equivalent to

A` u` = f
`

with
f

`
= φ∗` f, i.e., f`,i = f (b`,i) = (f, b`,i)0.

As mentioned above, after a suitable scaling we require the equivalence of the
Euclidean norm ‖ · ‖U`

and the H0-norm:

1

Cφ−1
‖v`‖U`

≤ ‖v`‖0 ≤ Cφ‖v`‖U`
for all v` = φ` v`. (2.6)

2.4. General Concept for the Multigrid Prolongation

Main ingredients of the multigrid algorithm are the prolongation

p : U`−1→ U`

and the restriction r = p∗ : U`→ U`−1.
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In the case of a conforming finite element discretisation with a finite element
hierarchyV0 ⊂ . . . ⊂ V`−1 ⊂ V`,one obtains the following commutative diagram:

V`−1
inclusion

↪→
ι

V`

φ`−1
x xφ`

U`−1 −→
p

U`

.

In this case, the canonical prolongation is given by p = φ−1
` ◦ φ`−1.

In the following we will admit V`−1 6⊂ V`, and the inclusion is to be replaced by
a suitable mapping

ι : V`−1→ V`. (2.7)

Once ι has been given, we are able to define the prolongation and restriction by

p = φ−1
` ◦ ι ◦ φ`−1 and r = p∗ = φ∗`−1 ◦ ι∗ ◦ (φ∗` )−1. (2.8)

In the next section, we will propose a general construction of ι leading to the
approximation property

‖A−1
` − p A−1

`−1 r‖U`←U`
≤ CAh2m

` , (2.9)

which is an essential sufficient condition for the multigrid convergence (cf. Hack-
busch [12, §6.1.3]).

3. Construction of the Prolongation

3.1. Spaces 6 and S

Although the algorithm needs only the mapping ι : V`−1 → V` (cf. (2.7)),
the theoretical consideration will lead to a variational problem (4.7) on the sum
V`−1 + V` and require ι to be defined and bounded on V`−1 + V` (or on a larger
space). Since ι : V` → V` has to be the identity, we must construct a bounded
mapping ι : V`−1→ V` such that its restriction to V`−1 ∩ V` is the identity.

In order to make the metric structure of the sum more transparent we will refer to
a (possibly larger) space 6 with

V`−1 + V` ⊂ 6 ⊂ H0.
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The space 6 and the space S defined below belong to the index pair (`−1, `), and
6`−1,` and S`−1,` would be a more precise notation. For the sake of simplicity,
we omit these indices.

Here we also note that the sum V`−1 + V` plays an important role when Steven-
son [14] considers an axiomatic framework for the Cascadic multigrid algorithms
suitable for nonconforming elements.

Next, we need an auxiliary space S, which is connected with 6 and V` via the
mappings σ and π , as shown in the following commutative diagram:

6
σ−→ S

inclusion
x ↖ yπ

V`−1 −→
ι

V`

φ`−1
x x φ`

U`−1 −→
p

U`

.

The desired mapping ι (more precisely, its extension to 6) is the product

ι = π ◦ σ : 6→ V`. (3.1)

Before we will discuss the characteristic requirements concerning π, σ , and ι in
the next subsection, for elucidating the formalism, we specify the spaces and map-
pings for the Crouzeix-Raviart element, i.e., for the simplest nonconforming finite
elements (cf. Braess-Verfürth [5]).

Example 1. Let T`−1 be the coarse triangulation of the domain �, while T` is
obtained by regular halving of all triangle sides. V` is the space of all piecewise
linear functions which are continuous at the midpoints of edges in T`. Define the
nodal point set N` by all midpoints of edges in T` (except boundary points in the
case of Dirichlet conditions). For all α ∈ N`, basis functions b`,α ∈ V` are defined
by b`,α(β) = δαβ (α, β ∈ N`) with the Kronecker symbol δ. Then, U` := `2(N`) is
the coefficient space which is mapped by φ` : (c`,α)α∈N`

7→ u` =
∑

α∈N`
c`,αb`,α

onto V`. Similarly, V`−1, U`−1, and the isomorphism φ`−1 are defined.

An appropriate space 6 is the space of piecewise linear elements with respect to the
fine triangulation T` that may be discontinuous at the edges of this triangulation.
Obviously, V`−1 + V` ⊂ 6.

We set S := U`, π := φ`, and define σ as follows: Every nodal point α ∈ N` is the
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midpoint of the common side of adjacent triangles T and T ′ from T`. For α ∈ N`

we set

(σv)α := 1

2
[v|T (α)+ v|T ′(α)] .

Here, the linear function v|T is understood to be extended to T̄ .

3.2. Conditions on π and σ

The space 6 will be equipped with the norm and the scalar product of H0, and S

is assumed to become a Hilbert space by a norm ‖·‖S and a scalar product (·, ·)S
whose specification may depend on the specific finite element space. The mapping
σ : 6→ S is assumed to be bounded:

‖σ‖S←H0 ≤ Cσ . (3.2)

Furthermore, π : S → V` is required to be injective and bounded:

π is injective and ‖π‖V`←S ≤ Cπ. (3.3)

The product ι = π ◦ σ from (3.1) is assumed to be a projection onto V`, i.e.,

ι|V`
= π ◦ σ |V`

= id : V`→ V`. (3.4)

Remark 3.2. If the conditions (3.2)–(3.4) hold, then ι : 6→ V` ⊂ 6 is a bounded
projection onto V`:

‖ι‖H0←H0 ≤ Cι := CπCσ . (3.5)

Moreover π : S → V` is an isomorphism.

Proof: The boundedness (3.5) is a direct consequence of (3.2)–(3.3).

Since the range of π is V`, π is injective and surjective. Hence, π−1 = σ |V`
, and

π is an isomorphism. �

The introduction of the intermediate space S gives us more freedom in the con-
struction of the mappings. Of course, in many cases the set S will coincide with
V` or U`. We emphasise that only boundedness in H0 is required for ι, while the
concept of Brenner [8, 15] also refers to conditions with respect to the energy norm.
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4. Coarse-Grid Correction and Approximation Property

4.1. Coarse-Grid Correction

Let an approximation ũ` be given. Its defect d` ∈ (V`)
′ = V` is defined by

(d`,w`)0 = a`(ũ`, w`)− f (w`) for all w` ∈ V`.

Using (2.2) and the error
e` := ũ` − u`, (4.1)

one obtains a characterisation of d` by

(d`,w`)0 = a`(e`,w`) for all w` ∈ V`. (4.2)

The residue of the linear system is d` = A` e` with e` = φ` e`. Because of
(A` e`,w`)U`

= a`(e`,w`) with w` = φ` w` and (d`,w`)0 = (d`, φ` w`)0 =
(φ∗` d`,w`)U`

, we conclude

Remark 4.1. The residue
d` = A` e` ∈ U` (4.3)

has the representation d` = φ∗` d` with d` being defined in (4.2).

The coarse-grid correction e`−1 ∈ V`−1 approximates the finite element function
e` ∈ V`. It is determined as the solution of the coarse-grid equation

a`−1(e`−1, w`−1) = a`(e`, ιw`−1) for all w`−1 ∈ V`−1. (4.4)

Here ι is the mapping specified in the previous section. Note that it is required
for converting the function w`−1 from V`−1 into an element of V`. The correction
yields the new approximation unew

` := ũ` − ιe`−1, cf. [5, 8]. The error after the
coarse-grid correction is obviously

enew
` = unew

` − u` = e` − ιe`−1. (4.5)

4.2. An Auxiliary Problem

We will estimate ‖enew
` ‖0 by constructing an auxiliary problem for which e`−1 and

e` are the finite element solutions at the levels ` − 1 and `, respectively. To this
end we introduce two Riesz representations of the residue.

Given e`, define r̄` ∈ S by

(r̄`, w̄)S = a`(e`, πw̄) for all w̄ ∈ S. (4.6)
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Similarly, let g ∈ 6 be the solution of

(g, s)0 = (r̄`, σ s)S for all s ∈ 6. (4.7)

Lemma 4.2. g has the representation g = σ ∗r̄` = ι∗(φ∗` )−1d` and satisfies

‖g‖0 ≤ Cσ ‖r̄`‖S ≤ CσCφ−1Cπ‖d`‖U`
. (4.8)

Proof: First, we have r̄` = π∗(φ∗` )−1d` since (π∗(φ∗` )−1d`, w̄)S = (π∗d`, w̄)S =
(d`, πw̄)0 = a`(e`, πw̄) for all w̄ ∈ S. Combining this with g = σ ∗r̄` and
ι∗ = σ ∗π∗ we obtain the required representation of g.

Moreover, the inequality

‖r̄`‖2S = (r̄`, r̄`)S =
(4.6)

a`(e`, πr̄`) =
(4.2)

= (d`, πr̄`)0 =
Remark 4.1

((φ∗` )−1d`, πr̄`)0 = (d`, φ
−1
` πr̄`)U`

≤ ‖d`‖U`
‖φ−1

` π r̄`‖U`
≤ ‖d`‖U`

Cφ−1Cπ ‖r̄`‖S

yields ‖r̄`‖S ≤ Cφ−1Cπ‖d`‖U`
. Next we estimate ‖g‖20 = (g, g)0 = (r̄`, σg)S ≤

‖r̄`‖S ‖σg‖S ≤ ‖r̄`‖S Cσ ‖g‖0. After dividing by ‖g‖0 and inserting the estimate
of r̄` above, we obtain the required inequality. �

Although the mapping ι need only be defined on V`−1 for the computations, we
have extended it to V`−1 + V`. The aim of that process is an interesting property
of g which is the subject of

Proposition 4.3. The variational problem in H1,

a(z,w) = (g,w)0 for all w ∈ H1,

has the finite element solutions e`−1 and e` from (4.4) and (4.1) at the levels `− 1
and `, respectively.

Proof: a) On level `, we conclude from (3.4), (4.6), and (4.7) that

a`(e`,w`) = a`(e`, πσw`) = (r̄`, σw`)S = (g,w`)0 for all w` ∈ V`.

b) On level `− 1, it follows from (4.4) and (3.1) that we have for all w`−1 ∈ V`−1

a`−1(e`−1, w`−1) = a`(e`, ιw`−1) = a`(e`, πσw`−1) = (g,w`−1)0.

The last equality was obtained as in part a) by (4.6) and (4.7). �
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4.3. Approximation Property

Let z ∈ H1 be the solution of the variational problem in Proposition 4.3. Because
of g ∈ H0 and the regularity condition in Section 2.1, z belongs to H2. The error
estimate (2.4) yields the statement that z and its finite element approximations e`−1
and e` satisfy

‖z− ej‖0 ≤ C0h
2m
j ‖g‖0 for j = `− 1, `. (4.9)

The error enew
` = φ` enew

` from (4.5) after the coarse-grid correction will be esti-
mated in the following proposition. Here, we make use of the standard assumption
(on the mesh size ratio)

h`−1 ≤ Chh`,

which usually holds with Ch = 2.

Proposition 4.4. Under the previous assumptions, the estimate

‖enew
` ‖U`

≤ CAh2m
` ‖d`‖U`

(4.10)

holds for all d` ∈ U` with CA := C2
φ−1CιC0(1+ C2m

h )Cσ Cπ .

Proof: ‖enew
` ‖U`

≤ Cφ−1‖enew
` ‖0 holds because of (2.6). From (3.4) and (3.5) it

follows that

‖enew
` ‖0 = ‖e` − ιe`−1‖0 = ‖ι(e` − e`−1)‖0 ≤ Cι ‖e` − e`−1‖0 . (4.11)

Now (4.9) implies

‖e` − e`−1‖0 ≤ ‖e` − z‖0 + ‖z− e`−1‖0 ≤ C0(h
2m
` + h2m

`−1) ‖g‖0 .

Moreover, h2m
` + h2m

`−1 ≤ (1+ C2m
h )h2m

` .

Finally, we insert (4.8) to obtain

‖e` − e`−1‖0 ≤ Ceeh
2m
` ‖d`‖U`

(4.12)

with Cee := C0CσCφ−1Cπ(1+C2m
h ). After inserting this estimate into (4.11) the

proof is complete. �

In order to derive the desired approximation property (2.9) from the error estimate,
we return to the vector representation of the coarse-grid correction

e`−1 = A−1
`−1φ

∗
`−1g = A−1

`−1φ
∗
`−1σ

∗π∗(φ∗` )−1d` = A−1
`−1φ

∗
`−1ι

∗(φ∗` )−1 d`
(4.13)
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(cf. Lemma 4.2). Therefore, the representation of enew
` is

enew
` = φ−1

` enew
` = φ−1

` (e` − ιe`−1) = e` − φ−1
` ιφ`−1e`−1

= A−1
` d` − φ−1

` ι φ`−1A
−1
`−1φ

∗
`−1ι

∗(φ∗` )−1d`

= (A−1
` − pA−1

`−1r) d`

with p and r from (2.8). The inequality (4.10) is equivalent to (2.9). This proves

Proposition 4.5. Under the required assumptions, the approximation property
(2.9) holds with the constant CA := C2

φ−1CιC0(1+ C2m
h )CσCπ .

Finally we note that the approximation property for the framework in [4, p. 222]
is obtained from Proposition 4.4 and (4.1),

‖e` − ιe`−1‖0 ≤ CAh2m
` ‖A`e`‖U`

.

5. Smoothing Property and Multigrid Convergence

5.1. Smoothing Property

It is well known that the convergence of multigrid algorithms can only be proved
if there is an inverse property which fits to the error estimates in Section 2.2.
Specifically, we assume that the matrix A` is bounded by

‖A`‖U`←U`
≤ CBh−2m

` . (5.1)

If, in addition, A` is positive definite, the simplest possible iteration (the Richardson
iteration) is already a smoothing iteration:

u` 7→ S`(u`, f`) := u` − C−1
B h2m

` (A`u` − f`),

S` := I − C−1
B h2m

` A`,

since it satisfies the smoothing property

‖A`Sν
` ‖U`←U`

≤ η(ν)h−2m
` for all ν ≥ 0 (5.2)

with η(ν) := CBη0(ν) and η0(ν) := νν/(ν + 1)(ν+1) (cf. [12, §6.2]). The cases
of A` not being positive definite or of other smoothing iterations are described in
[12], too.

In addition, we assume that Sν
` remains bounded:

‖Sν
` ‖U`←U`

≤ CS for all ν ≥ 0, ` ≥ 1. (5.3)
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Under the previous assumptions, the Richardson iteration satisfies (5.3) with CS =
1.

5.2. Multigrid Convergence

The iteration matrix of the two-grid iteration (with pre-smoothing, only) equals

MTGM
` (ν) = (A−1

` − p A−1
`−1 r)(A` Sν

` ),

where ν is the number of smoothing iterations described by the iteration matrix
S`. The approximation property (2.9) and the smoothing property (5.2) yield

‖MTGM
` (ν)‖U`←U`

≤ CA η(ν) for all ν ≥ 0.

Let ζ < 1 be given. Since limν→∞ η(ν) = 0, the right-hand side is bounded by
CA η(ν) ≤ ζ < 1 for all ν ≥ ν(ζ ), where ν(ζ ) is independent of the mesh size
h`. In the following, the number ν is fixed.

Replacing the exact solution of the coarse-grid problem by two iterations of the
multigrid method, we obtain the W-cycle. Its iteration matrix MMGM

` = MMGM
` (ν)

is given by the recursion

MMGM
1 = MTGM

1 ,

MMGM
` = MTGM

` + p(MMGM
`−1 )2A−1

`−1rA`Sν
` for ` ≥ 2. (5.4)

Let ζ` := ‖MMGM
` ‖U`←U`

. From the two-grid analysis we know ζ1 ≤ ζ < 1.

Equation (5.4) together with the estimates ‖p‖U`←U`−1 ≤ CφCιCφ−1 =: Cp (cf.
(2.8)) yields the recursive inequality

ζ` ≤ ζ + Cpζ 2
`−1‖A−1

`−1 r A` Sν
` ‖U`−1←U`

. (5.5)

The essential step is to prove

‖A−1
`−1 r A` Sν

` ‖U`−1←U`
≤ C, (5.6)

since then (5.5) implies ζ` ≤ ζ + C∗ζ 2
`−1. Note that we have ζ < 1/4C∗ if the

number of smoothing steps ν is sufficiently large. Now the recursion relation im-
plies ζ` ≤ 2ζ/(1+√1− 4ζC∗) (cf. [12, (7.1.7e)]). This proves mesh independent
convergence rates for sufficiently many smoothing steps ν.

In [12, Lemma 7.1.5], the estimate (5.6) is established under the condition
‖u`−1‖U`−1 ≤ Cp‖pu`−1‖U`

. Usually, this inequality is valid, but here it is not pos-
sible to prove this estimate via assumptions on σ, since, typically, σ is not injective
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on 6. Therefore, we provide a different proof. Using ‖A−1
`−1 r A` Sν

` ‖U`−1←U`
≤

CS‖A−1
`−1 r A`‖U`−1←U`

(cf. (5.3)), it remains to estimate A−1
`−1 rA`.

Equation (4.13) can be rewritten as e`−1 = A−1
`−1r d` = A−1

`−1 rA` e`. Combining
(4.12) with d` = A` e` and (5.1), we infer ‖e` − e`−1‖0 ≤ CeeCB‖e`‖U`

. This
shows

‖e`−1‖0 ≤ ‖e`−1 − e`‖0 + ‖e`‖0 ≤ (CeeCB + Cφ)‖e`‖U`

and ‖e`−1‖U`−1 ≤ Cφ−1(CeeCB + Cφ)‖e`‖U`
. Since this inequality holds for all

e` ∈ U`, the representation e`−1 = A−1
`−1r A` e` yields the next lemma.

Lemma 5.1. Under the previous conditions, ‖A−1
`−1rA`‖U`−1←U`

≤ C holds with
C := Cφ−1(CeeCB + Cφ).

Since Lemma 5.1 implies (5.6), the multigrid convergence is proved.

6. Application to Non-Matching Grids

In this section, we describe and analyse a multigrid method for solving systems of
algebraic equations arising from a finite element method based on non-matching
triangulations. The discretisation is done by the mortar technique, see [2, 3]. A
multigrid method is presented and analysed which makes use of the general scheme
presented in the previous sections.

6.1. Discrete Problem

For simplicity of presentation we restrict ourselves to the Poisson equation and
assume that (2.1) is of the form: Find u ∈ H 1

0 (�) such that

a(u, v) ≡
∫

�

∇u∇vdx = f (v) ≡
∫

�

f vdx. (6.1)

Moreover, let � ⊂ R2 be a polygonal domain and

�̄ =
∑
j∈I

�̄j ,

where �j are polygons. We also assume that �j form a ‘triangulation’, i.e., �̄i∩�̄j

for i 6= j are empty or have a common edge or vertex. In the mortar method
nomenclature, this case is called geometrically conforming. A more general case,
which is called geometrically nonconforming, will be discussed in Section 7.

Let 0ij be the open part of �̄i ∩ �̄j = 0̄ij . The union of the internal boundaries
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yields the skeleton

0 =
⋃
j∈I

∂�j\∂�. (6.2)

Let T0,j be a coarsest triangulation in �j with the mesh size1 h0. The `-times
refined triangulation is T`,j with mesh parameter h` = h02−`. The level number
` is assumed to range from 0 to j̀ . Although, in general, j̀ may be different in
different �j , we assume for simplicity that the number of levels in each �j is the
same, i.e., j̀ = `max for all j ∈ I . The standard finite element space of continuous
and piecewise linear functions over the triangulation T`,j is denoted by S`,j (�j ).

Let

X` := X`(�) :=
∏
j∈I

S`,j (�j )

for ` = 0, . . . , `max. Note that X` 6⊂ H 1(�) and functions from X` do not satisfy
any continuity condition across the internal boundaries 0ij .

The nodal points of X` form the set

N̄` :=
⋃
j∈I
N̄`,j ,

where N̄`,j is the set of nodal points of T`,j on �̄j .

Remark 6.1. The precise notation of a nodal point p ∈ N̄` is to be made by the
pair2 (xp,�j(p)). An evaluation of a function u at p means values of u|�j(p)

at
xp , i.e., the continuation of the function u defined on �j(p) to xp ∈ �̄j (p). In
particular, at a cross point there are several nodal points (xp,�j(p)) with identical
position xp but different �j(p).

6.1.1. Mortar Spaces

To define suitable spaces for discretisation of (6.1) we need to impose some con-
straints on the jumps of functions from X`(�) on 0ij which are called mortar

1 Although the mortar method works with different mesh sizes h`,j in the different subdomains �j , we
assume comparable sizes h` for all j. The reason is that the fast multigrid convergence requires similar
mesh parameters.
2 In total, we will have three index mappings. Here, p ∈ N` 7→ j (p) ∈ I maps the vertex into the
index of the related subdomain. In Section 6.1, we shall introduce m ∈ M 7→ im ∈ I , where m is
the master index and im the related subdomain index. Similarly, m ∈ M 7→ jm ∈ I maps into the
subdomain index of the slave edge.
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conditions. For this purpose, decompose the skeleton (6.2) into

0̄ =
⋃

m∈M
γ̄m, γm 6= γn if m 6= n, n,m ∈M.

With each master index m ∈M, we associate a pair (i, j) = (im, jm) ∈ I×I such
that γm = 0ij is an open edge of �i common to �j . It is called master (mortar)
and values on γm will be continued from the values in �i . 0ji = 0ij as an open
edge of �j is denoted by δm. It is called slave (nonmortar), and values on δm will
be continued from the values in �j .

To be more specific, let m ∈ M, i = im, j = jm ∈ I be as before. The (two-
dimensional) triangulation T`,i , ` ∈ {0, . . . , `max} , induces a (one-dimensional)
mesh T`,i ∩ γ̄m on γm. Similarly, one considers the mesh T`,j ∩ δ̄m on δm. Usually,
both meshes are different. The trace spaces

S`,m,jm(δm) := S`,jm(�jm)|δm (6.3)

are associated to these meshes on the interfaces. We note that the nodal points
p ∈ N̄`,i and q ∈ N̄`,j are considered as different even if xp ∈ T`,i ∩ γ̄m and
xq ∈ T`,j ∩ δ̄m coincide since they are associated to different domains (see Remark
6.1 above).

By definition, γm and δm are open sets. The boundary ∂γm (∂δm) consists of the
two endpoints of the edge γm (δm).

Next, we introduce the space M`,m(δm) as a subspace of S`,m,jm(δm) consisting
of piecewise linear continuous functions on T`,jm ∩ δ̄m, which are constant on the
elements intersecting ∂δm (i.e., on the two end intervals of the mesh T`,jm ∩ δ̄m).
We say that v` ∈ X`(�) satisfies the mortar condition for m ∈M if∫

0im,jm

(v`,im |γm − v`,jm |δm) ψ ds = 0 for all ψ ∈ M`,m(δm). (6.4)

The first factor in the integral is the jump of v` across 0im,jm and often denoted as
[v`]|0im,jm

. Therefore the elements in M`,m(δm) can be understood as Lagrange
multipliers for the matching conditions.

We are now able to define the mortar space for discretising (6.1). Let

V`(�) := {v` ∈ X`(�) : v` satisfies the mortar condition (6.4) for each m ∈M}.

The discrete problem is of the form: Find u` ∈ V`(�) such that

a`(u`, v`) = f (v`) for all v` ∈ V`(�) (6.5)
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(cf. (2.2)), where

a`(u`, v`) :=
∑
j∈I

∫
�j

∇u`,j∇v`,j dx,

f (v`) :=
∑
j∈I

∫
�j

f v`,j dx.

This problem has a unique solution and is stable. Moreover the error bound

‖u− u`‖L2(�) ≤ Ch2
`‖u‖H 2(�) (6.6)

holds, where C is independent of h` and u. For the proof see [7, Theorem 4.1]. The
error estimate is stated there for mortar elements that are continuous at the cross
points. Fortunately, the bound of the consistency error in Theorem 4.1 and the
estimate in Lemma 3.4 are independent of assumptions on cross points. Inequality
(6.6) is required in (2.3). A proof of the error estimate in H 1(�) can be found in
[2] and [3] and the L2 estimate is also given in [1] without a proof.

Our goal is to design and analyse a multigrid method for solving the linear system
(6.9) from below corresponding to (6.5). The next three subsections will be a
preparation for that.

6.1.2. Matrix Form

We rewrite the problem (6.5) in a matrix form using basis functions of V`(�),
i.e., basis functions satisfying the mortar condition. We emphasise that we do not
require continuity at the cross points for the functions in V`(�).

Assume that v` ∈ X` satisfies the mortar condition (6.4). Note that v`,jm |δm can
be computed at interior nodal points of T`,jm ∩ δm from the values of v`,im |γm

on γ̄m and the two values of v`,jm at the endpoints of δm. The restriction of a
function v on δm to the endpoints of δm is denoted by Trm v. We have v`,jm |δm :=
5`,m(v`,im, Trm v`,jm), where 5`,m is a mapping from L2(0im,jm)×Trm(δm) onto
S`,m,jm(δm) (see (6.3)) and given by the solution w ∈ S`,m,jm(δm) of∫

0im,jm

(w − v`,im) ψ ds = 0 for all ψ ∈M`,m(δm), (6.7)

Trm w = Trm v`,jm. (6.8)

To find 5`,m(v`,im, Trm v`,jm), we only need to solve a system with a tridiagonal
mass matrix.

Let N`,j and N` be the set of nodal points of N̄`,j and N̄`, respectively, except
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those which belong to interiors of the slave edges, i.e.,

N`,j := N̄`,j\
⋃

m∈M
δm, N` :=

⋃
j∈I
N`,j .

In the following, we describe the Lagrange basis
{
b`,p : p ∈ N`

}
of V`(�). It is

uniquely defined by b`,p ∈ V`(�) and b`,p(xq) = δpq (Kronecker symbol δ). We
discuss the structure of these basis functions in detail.

Recalling Remark 6.1, we associate with each p = (xp,�j(p)) ∈ N` a basis
function b`,p ∈ V`(�) and distinguish three cases. For the standard nodal basis
function in X` corresponding to the vertex p ∈ N̄`,j (p), the subdomain �j(p), and
the triangulation T`,j (p), we use the notation ϕ`,p. Concerning the notations j (p),

im and jm we refer to Footnote 2.

Case I (interior nodal point) For xp ∈ �j(p), b`,p|�j(p)
= ϕ`,p is the standard

nodal basis function on �̄j (p) and b`,p = 0 on � \ �̄j (p). In this case, b`,p is
continuous on the whole domain �.

Case II (nodal point on interior of an interior boundary) Let m ∈ M and
xp ∈ γm. Hence, im = j (p). Obviously, p ∈ N`,im , i.e., the nodal point lies in the
interior of a master edge γm of �im. Then

b`,p =


ϕ`,p on �̄im,

5`,m(ϕ`,p, 0) on δ̄m ⊂ ∂�jm,

0 at all other nodal points in �̄\ (�̄im ∪ δ̄m

)
.

The support of b`,p consists of all triangles from T`,jm which touch the (open) slave
edge δm and the triangles from T`,im which touch xp . Note that b`,p is discontinuous
at 0im,jm.

Case III (cross point as nodal point) A cross point may belong to several �̄i and
to various ∂γm or ∂δm. Let p = (xp,�j(p)). The subdomain �j(p) has two edges
joining at xp. Each of these edges may be mortar edges γm (then im =j (p)) or
nonmortar edges δm (then jm =j (p)). We define b`,p by b`,p(p) = 1 and

b`,p =


ϕ`,p on γm ⊂ ∂�im if xp ∈ ∂γm , im =j (p),

5`,m(0, Trm ϕ`,p) on δm ⊂ ∂�im if xp ∈ ∂δm , im =j (p),

5`,m(ϕ`,p, 0) on δm ⊂ ∂�jm if xp ∈ ∂δm , jm =j (p),

0 at all other nodal points in �̄.

The first two rows correspond to mortar/nonmortar edges associated to the subdo-
main �j(p), while in the third row δm is a nonmortar belonging to a neighbouring
subdomain.
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Using the basis functions above, we have V`(�) = span{b`,p : p ∈ N`}. Problem
(6.5) takes the matrix form

A` u` = f
`
. (6.9)

The matrix A` is symmetric and positive definite. Moreover it follows from the
usual inverse estimates for X` and V` ⊂ X` that the eigenvalues λi(A`) of A`

satisfy the inequalities
C0 ≤ λi(A`) ≤ C1h

−2
` (6.10)

where C0 and C1 are independent of h`.

6.1.3. Nonconformity

In Section 6.1.2, we have constructed a family of finite element spaces V`(�)
(` = 0, 1, . . . , `max) which satisfy the mortar condition (6.4) of the respective
level. We have started with nested spaces

X0(�) ⊂ X1(�) ⊂ . . . ⊂ X`(�) ⊂
∏

L2(�j ).

However, the subspaces V`(�) are not nested. The reason is that a function
u`−1|�im

= u`|�im
belonging to S`−1,im(�im) ⊂ S`,im(�im) yields different values

u`−1|�jm
6= u`|�jm

on the slave side since the mortar condition for level `−1 does
not imply the mortar condition for level `, in general. Hence,

V0(�) 6⊂ V1(�) 6⊂ . . . 6⊂ V`(�).

6.2. Estimates

The analysis of the multigrid method reduces to the analysis of the two-grid one
(cf. Subsection 5.2). Therefore the facts needed for that analysis are formulated
for the levels ` and `− 1.

6.2.1. L2-Stability of the Mortar Projection

It is known that the mortar projection 5`,m (cf. (6.7) and (6.8)) is L2-stable.

Lemma 6.2. Assume that v` ∈ X` satisfies the mortar condition on δm = γm =
0im,jm . If Trm v`,jm = 0, then

‖v`,jm‖L2(δm) ≤ C‖v`,im‖L2(γm) (6.11)

where the constant C is independent of h`.
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The proof of this lemma is given in [2, Lemma 2.1] for the 3-D case with uniform
triangulation and in [6] for general ones. Its simplification for the 2-D case can be
found, e.g., in [7, Lemma 3.1] and [10, the proof of Lemma 1].

Remark 6.3. We note that we will apply a slight generalisation of the lemma above
which is also covered by the literature. Specifically, inequality (6.11) remains true
if v`,im is an arbitrary L2-function on γm.

6.2.2. `2 Inequalities

In the following, we denote by `2(N ) the space of tuples over an index set N .
Here, N takes the values N̄`,j , N̄`, and N`,j , N`. The appropriate scaling of the
`2-norms regarding the equivalence (2.6) is

‖v`‖`2(N ) :=
√∑

p∈N
h2

` |v`(p)|2 for N = N`,j , N̄`,j ,N`, and N̄`.

Here, v`(p) = v`(xp) is the notation for the p-component of the vector v` accord-
ing to Remark 6.1.

The well-known equivalence between `2 and L2 norms is first stated for the space
X`. Note that we have assumed quasi-uniformity of the triangulations in each �j ,
j ∈ I.

Lemma 6.4. (a) Let φ̄`,j be the isomorphism from `2(N̄`,j ) onto S`,j (�j ) (cf.
(2.5)). Then there is a constant C independent of j and the mesh size h` such that

1

C
‖v`,j‖`2(N̄`,j ) ≤ ‖φ̄`,j (vl,j )‖L2(�j ) ≤ C‖v`,j‖`2(N̄`,j ) for v`,j ∈ `2(N̄`,j ).

(b) Similarly, for φ̄` being the isomorphism between `2(N̄`) and X`(�), we have

1

C
‖v`‖`2(N̄`)

≤ ‖φ̄`(v`)‖L2(�) ≤ C‖v`‖`2(N̄`)
for v` ∈ `2(N̄`). (6.12)

Since N`,j ⊆ N̄`,j , the following estimate is trivial:

‖v`‖`2(N`) ≤ ‖v`‖`2(N̄`)
. (6.13)

The opposite inequality is obviously not valid for coefficient vectors v` ∈ `2(N̄`)
belonging v` ∈ X`(�). However, it is true if v` ∈ V`(�), as stated in

Lemma 6.5. Let φ` : v` ∈ `2(N`) 7→ v` =
∑

p∈N`
v`(p) b`,p ∈ V`(�) with

basis functions from Section 6.1.2 be the isomorphism from `2(N`) onto V`(�).
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Let x` := φ̄−1
` v` ∈ `2(N̄`) be the coefficient vector for v` ∈ X`(�) ⊃ V`(�).

Then we have x`(p) = v`(p) for all vertices p ∈ N` and

‖x`‖`2(N̄`)
≤ C‖v`‖`2(N`). (6.14)

Proof: Given a slave edge δ := δm ⊂ �̄jm and the corresponding master edge
γ := γm ⊂ �̄im , let A := Am and B := Bm be the endpoints of δ. The proof of
(6.14) reduces to show that for each δ = δm ⊂ 0, m ∈M,

‖x`‖`2(N̄`∩δ) ≤ C‖v`‖`2(N`∩(γ̄∪A∪B)). (6.15)

Here N̄` ∩ δ is the set of interior nodal points of δ which by the definition of 5`,m

depend on N` ∩ (γ̄ ∪A ∪B)). Now define w` ∈ L2(0im,jm) by w` ∈ S`,m,jm and

w` =
{

v` at the nodal points A and B,

0 at the nodal points of δ.

Roughly speaking w` is obtained from v`|δ̄ by the restriction to the values on ∂δ.
Note that v`,im −w` and v`,jm −w` also satisfy the mortar condition (6.4). With
this we have (v`,jm − w`)|δ = 5m,`(v`,im − w`, 0). It follows from Lemma 6.2
that

‖v`‖L2(δ) ≤ ‖w`‖L2(δ) + C(‖v`‖L2(γ ) + ‖w`‖L2(γ )).

After rewriting this in terms of the coefficients, the proof of (6.15) is complete. �

Proposition 6.6. The isomorphism φ` from `2(N`) onto V`(�) satisfies

1

C
‖v`‖`2(N`) ≤ ‖φ`(v`)‖L2(�) ≤ C‖v`‖`2(N`) for all v` ∈ `2(N`).

Proof: Set v` := φ`(v`) and extend the vector v` by the components of x` :=
φ̄−1

` v` at p ∈ N̄`\N`. Combination of (6.13) and (6.12) yields

‖v`‖`2(N`) ≤ C ‖v`‖L2(�) .

From (6.12d (6.14) we obtain the final part

‖v`‖L2(�) ≤ C‖v`‖`2(N̄`)
≤ C2‖v`‖`2(N`).

�
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6.3. Choice of 6, S, σ, and π

In the diagram below, V`−1 and V` are the mortar spaces introduced in Section
6.1.1. The coefficient spaces Uj = `2(Nj ), (j = ` − 1, `), together with their
isomorphisms φj have already been specified.

6 = X`
σ−→ S = U` = `2(N`)

inclusion
x ↖ y π = φ`

V`−1 −→
ι

V`

φ`−1
x x φ`

U`−1 −→
p
U`

We choose 6 := X` equipped with the norm of L2(�). By construction V` =
V`(�) ⊂ X` holds. Since X`−1 ⊂ X`, also V`−1 ⊂ X`. Hence, the sum V` +
V`−1 is contained in X`.

The space S is chosen as S := U` = `2(N`). The obvious choice for π is π := φ`.

Injectivity and boundedness of π is given by Proposition 6.6.

The essential part is the choice of the mapping σ : X`→ `2(N`). Given a patch-
wise continuous function v from X` and indices p = (xp,�i(p)) ∈ N`, we set

(σv) (p) := v(xp)

according to Remark 6.1. Then σv = ((σv) (p))p∈N`
is the coefficient vector in

`2(N`).

Remark 6.7. σ : X`→ `2(N`) is bounded uniformly in `:

‖σv`‖`2(N`) ≤ C‖v`‖L2(�).

Proof: Set w` := σv`. The combination of (6.13) and (6.12) yields

‖w`‖`2(N`) = ‖v`‖`2(N`) ≤ C‖v`‖L2(�).

�

We note that the opposite inequality ‖v`‖L2(�) ≤ C‖v`‖`2(N`) is not valid for all
v` ∈ V` + V`−1 ⊂ 6 = X`. There are nontrivial functions u` in V` + V`−1 with
σ(u`) = 0. For its construction take a function v`−1 with support in �i and set
v` := v`−1. Extend v`−1 and v` to the slave side according to the different mortar
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conditions of level ` and ` − 1, respectively. Then the function u` := v` − v`−1
vanishes on �i , but it is nonzero on the slave side. After a slight modification at
nodal points neighboured to the slave nodes, one obtains zero coefficients for all
p ∈ N`, but u` 6= 0. Thus, σ is not injective.

Remark 6.8. ι = φ` ◦ σ is a projection onto V`.

Proof: Given v` ∈ V`, v` := σv` are the values at the nodal points ofN`. Because
of the Lagrange basis property, φ`v` recovers the function v` ∈ V`. �

So far, we have ensured the conditions (3.2)–(3.4) required in Section 3.2.

Finally, we observe that inequality (5.1) follows from

|a`(u`, v`)| ≤ C ‖u`‖H 1
broken
‖v`‖H 1

broken

with ‖v`‖2
H 1

broken

:=∑j∈I ‖v`|�j
‖2
H 1(�j )

and the standard inverse inequality

‖v`|�j
‖H 1(�j ) ≤ Ch−1

` ‖v`|�j
‖L2(�j ) for v` ∈ S`,j (�j ).

Hence, if the underlying second order boundary value problem satisfies the solv-
ability and regularity conditions, all necessary requirements for the two- and multi-
grid convergence are satisfied.

7. Geometrically Nonconforming Case

In this section, we discuss a discretisation of the problem (6.1) on non-matching
triangulations in the case when the subdomains �j of the decomposition �̄ =⋃

j∈I �̄j do not form a ‘triangulation’ of �. In our case the �j ’s are assumed to
be polygons, and this means that a vertex of �j is not necessarily a vertex of its
neighbours �i . This case is called the geometrically nonconforming case in the
mortar method, and a typical situation is depicted in Fig 1.

W
1

W
2

W
3

W
4

W
5

mortar mortar

slave slave slave

Figure 1. Detail of a geometrically nonconforming mesh
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We first formulate a discrete problem for (6.1) and then extend our treatment of
the geometrically conforming case to this one.

7.1. Discrete Problem

To formulate the discrete problem, we will adapt some of our previous notations
and introduce some new ones. Let here 0j,k , k = 1, . . . ,Kj , denote the edges of
�j and Kj be its number. Let 0 =⋃j∈I ∂�j\∂� be as in (6.2). We select a family
of edges, say {γk, k ∈ K}, from the set of all edges {0j,k : j ∈ I, 0 ≤ k ≤ Kj }
satisfying the condition⋃

k∈K
γ̄k = 0̄, γk ∩ γk′ = ∅ if k 6= k′. (7.1)

These edges are called masters (mortars). The edges 0j,k which are not masters are
called slaves (nonmortars) and denoted by δm, m ∈M. Note that the nonmortars
{δm} satisfy a condition similar to (7.1):⋃

m∈M
δ̄m = 0̄, δm ∩ δm′ = ∅ if m 6= m′.

We adapt the notation δm (γk) as an edge of �jm (�ik ). A mortar space M`,m(δm)

is defined on each δm in the same way as in Section 6.

We say that a function v` ∈ X`(�) satisfies the mortar condition on an edge δm if∫
δm

[v`] ψ ds = 0 for all ψ ∈M`,m(δm), (7.2)

where [v`] is the jump of v`. The discretisation space V`(�) for (6.1) is defined as
the subspace of X`(�) of functions satisfying the mortar conditions (7.2) for all
m ∈M.

We are now able to formulate the discrete problem. Find u` ∈ V`(�) such that

a`(u`, v`) = f (v`) for all v` ∈ V`. (7.3)

The problem has a unique solution, and the error is bounded by

‖u` − u‖L2(�) ≤ Ch2
`

∑
j∈I
‖u‖H 2(�),

where u` and u are the solutions of (7.3) and (6.1), respectively. The proof of
the error estimates proceeds as in the geometrically conforming case. Specifically
the extension of the stability results is based on Remark 6.3. The estimates of the
consistency errors are local in nature and carry over without changes.
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Our goal is to design and analyse the multigrid method for solving (7.3) using the
previous scheme.

7.2. Matrix Form

We rewrite (7.3) in the matrix form using that

V` = span{b`,p : p ∈ N`}.

The basis functions b`,p are defined again by the Lagrange basis property similar
to those in Section 6. For p ∈ N` with xp lying in the interior of �jp , b`,p is the
same as in Section 6. For xp ∈ γm, where γm is a master edge in �̄j (p), b`,p is
defined by

b`,p =
{

ϕ`,p in �̄j (p)

5`,n(ϕ`,p, 0) on δn
,

where δn, the slave edge of �jn , is such that ∅ 6= δn ∩ γm ⊂ supp(ϕ`,p); on the
remaining vertices in �̄jn and the remaining substructures b`,p(x) is extended by
zero. For xp which are vertices of �ip , b`,p are defined in the same way as in
Section 6. Here, the extension by the mortar projection is understood as in (7.2).

Using b`,p, we obtain

A` u` = f
`
. (7.4)

The matrix A` is symmetric and positive definite and its eigenvalues satisfy also
the inequalities (6.10).

7.3. Two-Grid and Multigrid Method

We comment here on the two-grid method for (7.3) (or (7.4)). This is sufficient to
analyse the multigrid method.

Since ` is a variable level number, the space V`−1 and the mortar projection 5`−1,m

are defined as well. We first formulate the counterpart of Lemma 6.2 for the
geometrically nonconforming case. Let δm be a slave edge of �jm and let v`,jm ∈
S`,jm(�jm) be the components of v` = {v`,j } ∈ V`(�). By the definition

v`,jm|δm = 5`,m(ṽ`, Trmv`,jm) (7.5)

where ṽ`|δm =
∑

k v`,ik |δm∩γk
and the sum is taken over vik defined on �̄ik involving

γk with δm ∩ γk 6= ∅.
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Lemma 7.1. For v` = {v`,j }j∈I ∈ V` on δm ⊂ �̄jm with Trmvjm = 0 holds

‖v`,jm‖2L2(δm) ≤ C
∑

k

‖v`,ik‖2L2(γk∩δm),

where v`,jm is defined by (7.5) and C is a constant independent of h`,ik .

For a proof of this lemma, see [2, Lemma 2.1].

Using this lemma, we check that Lemmata 6.2, 6.4 and 6.5 from Section 6 are also
valid for the discussed case. Defining σ , π and ι = σ ◦π as in the previous section,
we check that π is injective and bounded, σ is bounded and ι is a projection. Thus
the two-grid method for (7.3) (and (7.4)) is uniformly convergent with respect to
h`.
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