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Abstract

Nonconforming finite el ement discretisationsreguire specia careinthe construction of theprolongation
andrestrictioninthemultigrid process. Inthispaper, ageneral schemeisproposed, which guaranteesthe
approximation property. Asan example, thetechniqueis applied to the discretisation by non-matching
grids (mortar elements).
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1. Introduction

Recently, domain decomposition methods have been applied to situations where
subdomain meshes may be separately constructed and are non-matching aong
the interfaces. The method was called mortar element method in [3]. When this
schemeis employed with finite elements, it may be considered as anonconforming
method or as a mixed method.

Inthis paper, wewill treat the mortar e ementsin the framework of nonconforming
methods, and we assume that the Lagrange multipliers have been eliminated asin
the setting of the second author [9]. When multigrid methods are designed, there
is now the problem that the finite element spaces are not nested.

Therefore, we have to construct appropriate prolongation operators. In the multi-
grid scheme for other elements, as, e.g., for the Crouzeix—Raviart elementsin [5,
8] the Lo-projectors could be chosen for the prolongations. We will abandon this
restriction and describe a more general framework which admits alot of freedom
in the construction. In particular, a prolongation that is natural for the mortar -
ements fits into our framework. The approximation property for the convergence
proof will be derived from an auxiliary problem. In essence, we will only assume
that an L error estimate is known for the finite elements under consideration.
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In Section 2 we recall some notation for nonconforming finite elements. Section
3 is concerned with an extension of the prolongation operators which admits in
Section 4 to derive the central approximation property from an Lo error estimate.
In Section 5 the associated smoothing property and the convergence is discussed.
Section 6 provides the application to mortar e ementsin the geometric conforming
case. We conclude with a generalisation to geometric nonconforming meshes.

After completing the paper, welearnt about the paper [11] investigating the mortar
finite element method by other theoretical means.

2. Multigrid Transfer
2.1. Variational Problem
We consider avariational problem of thefollowingform. Let #1 beaHilbert space.

Given abilinear form a(-, -) on H1 x #! and afunctional f € H~1 := (HY)', we
look for asolution u € H? of

a(u,w)= f(w) foralweH? (2.1)
Let
H 1 cHO cH?
be the Gelfand triple, eg., H! := H}(Q), H® = Lo(Q), and ™Y := H7L(Q).

In addition, we need aspace 12 C H! (e.g., H? = H2(2) N H}(2)). Thenorms
of +* are denoted by ||-|,. The scalar product in H° iswritten as (-, -)o.

We assume:

(i) Solvability: Forall f € H~1, (2.1) hasaunique solution u € H* with [jul|; <
Clfil-y

(ii) Regularity: If f € H°, (2.1) hasasolution u € H? with [[u[, < C || fllo.
2.2. Nonconforming Discretisation

Let vV, c HOfor¢ =0, 1,... beasequence of (nonconforming) finite element
spaces, i.e., we do not assume that the spaces are nested. Instead of the bilinear
forma(-, -) amesh-dependent bilinear forma (-, -) on Vy x Vg isused. For f € H°,
(2.1) isdiscretised by

ug € Vo with  ag(ug, we) = f(we) fordl wy € V. (2.2
We assume that also (2.2) is solvable and that the error estimate

lu — uello < Ceh?™ [lull; (23
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holds, cf. Braess[4, p. 102], Hackbusch [13, (8.4.15b)]. Here, 2m isthe order of
the differential operator, i.e., #! isa subspace of H” ($2). Asusual, i, isthe size
of the finite element mesh of V.

Together with the regularity assumption |ju||, < C || f |l from above, we obtain

llu — uello < Coh2™ I o - (2.4)

2.3. Matrix Representation

Let {be; :i € I} beabasisof V;, where I, is the corresponding index set (e.g.,
the set of nodal points). The coefficient vector space R’ is denoted by 24,. The
vectorsinif, areu, = (ug,;)ie1,, and Uy will be equipped with the usual Euclidean
norm || - ||, (scaled by asuitable factor to ensure (2.6) below), so that the adjoint
mappings are given by the transposed matrices (maybe up to afixed factor).

The isomorphism between 4, and V; isdenoted by ¢,:

¢e Uy — Vi with Uy = ¢g£€ = Z ug’l'bg,i. (2.5)

iely

The finite element matrix A, corresponding to a,(-, -) has the coefficients a, ;; =
ag(be,j, be;). Thevariationa problem (2.2) is equivalent to

with
Lo=00f e, fui= fbei) = (f, beio.

As mentioned above, after a suitable scaling we require the equivalence of the
Euclidean norm || - ||, and the #°-norm:

L lvellee < llvello < Cyllvglly, fordl ve = ¢p v,. (2.6)
o

2.4. General Concept for the Multigrid Prolongation
Main ingredients of the multigrid algorithm are the prolongation
piUi—1—> Ue

and therestriction r = p* : Uy — Up—1.
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In the case of a conforming finite element discretisation with a finite element
hierarchy Vo C ... C Vy_1 C V;, oneobtainsthefollowing commutativediagram:

inclusion
Ve_1 — Ve
t

po—1T T

U1 — Uy

In this case, the canonical prolongation isgivenby p = ¢;1 o 1.

In the following we will admit V;_1 ¢ V;, and the inclusion is to be replaced by
a suitable mapping

t: Vi1 — V. (2.7)

Once « has been given, we are able to define the prolongation and restriction by

p=¢;totopr and r=p*=¢; 10 0@ (2.8)

In the next section, we will propose a genera construction of ¢ leading to the
approximation property

IA7Y — p A7 Fllug v, < Cah?™, (2.9)

which isan essential sufficient condition for the multigrid convergence (cf. Hack-
busch [12, §6.1.3]).

3. Construction of the Prolongation
3.1. Spaces X and S

Although the algorithm needs only the mapping ¢ : Vo1 — V, (cf. (2.7)),
the theoretical consideration will lead to a variational problem (4.7) on the sum
Ve—1 + V; and require ¢ to be defined and bounded on V,_1 + V; (or on alarger
space). Since: : V; — V; has to be the identity, we must construct a bounded
mapping ¢ : Vy—1 — V; such that itsrestrictionto V,_1 N V; istheidentity.

In order to make the metric structure of the sum more transparent we will refer to
a(possibly larger) space  with

Veiei+ Ve c © c HO
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The space X and the space S defined below belong to theindex pair (£ — 1, £), and
¥¢—1.¢ and S¢_1 ¢ would be a more precise notation. For the sake of simplicity,
we omit these indices.

Here we aso note that the sum V;_1 + V; plays an important role when Steven-
son [14] considers an axiomatic framework for the Cascadic multigrid algorithms
suitable for nonconforming elements.

Next, we need an auxiliary space S, which is connected with X and V, via the
mappings o and r, as shown in the following commutative diagram:

o

% — S
inclusionT N ln

Veeir — Vo
L

po-1T T ¢

U1 —> U
P

The desired mapping ¢ (more precisdly, its extension to X) is the product

t=moo: X — V. (3.1

Before we will discuss the characteristic requirements concerning 7z, o, and ¢ in
the next subsection, for elucidating the formalism, we specify the spaces and map-
pings for the Crouzeix-Raviart e ement, i.e., for the simplest nonconforming finite
edements (cf. Braess-Verfurth [5]).

Example 1. Let 7;_1 be the coarse triangulation of the domain 2, while 7; is
obtained by regular halving of all triangle sides. V; is the space of all piecewise
linear functions which are continuous at the midpoints of edgesin 7;. Define the
nodal point set Ny by al midpoints of edgesin 7; (except boundary pointsin the
case of Dirichlet conditions). For al o € Ny, basisfunctionsb, , € V, aredefined
by by (B) = bup (o, B € Np) withtheKronecker symbol §. Then, Uy := £2(Ny) is
the coefficient space whichismapped by ¢¢ : (cr.o)aen;, > U = Zaem ct.abi o
onto V;. Similarly, Vy_1, U;_1, and the isomorphism ¢,_1 are defined.

An appropriate space ¥ isthe space of piecewiselinear el ementswith respect tothe
fine triangulation 7; that may be discontinuous at the edges of this triangulation.
Obvioudly, V;_1 + V, C X.

Weset S .= U, m .= ¢¢, and define o asfollows: Every nodal point @ € Ay isthe
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midpoint of the common side of adjacent triangles T and T’ from 7;. For « € N
we set

1
(OV)o =3 [vir (@) + vir ()]

Here, the linear function v|7 is understood to be extended to 7.

3.2. Conditionson 7 and o
The space X will be equipped with the norm and the scalar product of +°, and §
is assumed to become a Hilbert space by anorm |-|| s and a scaar product (-, -)s

whose specification may depend on the specific finite element space. The mapping
o . ¥ — Sisassumed to be bounded:

lollsyo < Co. (32
Furthermore, = : S — V; isrequired to be injective and bounded:
mis injectiveand [|7|ly, s < Cx. (3.3
The product : = 7 o o from (3.1) isassumed to be a projection onto V,, i.e.,
tlly, =mooly, =id: V¢ = V. (3.4
Remark 3.2. If theconditions(3.2)—«(3.4) hold, then: : ¥ — V; C T isabounded

projection onto V;:
||L||H0<_H0 <C =CrCy. (3.5)

Moreover  : § — V; isanisomorphism.
Proof: The boundedness (3.5) is adirect consequence of (3.2)—3.3).

Since the range of 7 is Vy, 7 isinjective and surjective. Hence, 1= oly,, and
7 isanisomorphism. O

The introduction of the intermediate space S gives us more freedom in the con-
struction of the mappings. Of course, in many cases the set S will coincide with
V; or Uy. We emphasise that only boundedness in +° is required for ¢, while the
concept of Brenner [8, 15] also refersto conditionswith respect to the energy norm.
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4. Coarse-Grid Correction and Approximation Property
4.1. Coarse-Grid Correction

Let an approximation iy be given. Itsdefect dy € (V) = V, isdefined by
(de, we)o = ag(itg, we) — f(we) for al we € V;.

Using (2.2) and the error
e =1y — Uy, (4.1)

one obtains a characterisation of d; by
(de, we)o = ag(eg, we) for al wy € Vy. (4.2

The residue of the linear system isd, = Age, with e = ¢ e,. Because of
(Ac g wu, = ae(ee, we) With we = ¢ w, and (de, we)o = (de, prwylo =
(¢yde, wyu,, we conclude

Remark 4.1. Theresidue
d,=Ace, €Uy 4.3

has the representation d, = ¢;d, with dy being defined in (4.2).

The coarse-grid correction e,—1 € V;_1 approximates the finite element function
e¢ € Vp. Itisdetermined as the solution of the coarse-grid equation

ag—1(ee—1, we—1) = ag(eg,twe—1)  foral we_1 € Vp_1. (4.4)
Here ¢ is the mapping specified in the previous section. Note that it is required
for converting the function w,_1 from V;,_1 into an element of V;,. The correction

yields the new approximation u};“” ‘= ity — te¢—1, cf. [5, 8]. The error after the
coarse-grid correction is obviously

e = uy —up =eq —teg_1. (4.5)

4.2. An Auxiliary Problem
Wewill estimate ||}/ ||o by constructing an auxiliary problem for which e, 3 and
ey are the finite element solutions at the levels ¢ — 1 and ¢, respectively. To this
end we introduce two Riesz representations of the residue.
Given ey, definer, € S by

(re, w)s = ag(eg, Tw) fordl w e S. (4.6)
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Similarly, let ¢ € X be the solution of

(g,5)0 = (rg, 08)s forals e x. 4.7)

Lemma4.2. g hastherepresentation g = o*rp = L*(¢z<)_1i£ and satisfies

lgllo = Collrells = CoCy-1Crlldyllus, - (4.8)

Proof: First,wehaver, = 7*(¢})~1d, since (w*(¢})"1d,, w)s = (7*dp, w)s =
(d¢, mw)o = ag(e¢, mw) for al w € §. Combining this with ¢ = o*r, and
(* = o** we obtain the required representation of g.

Moreover, the inequality

-2 - - -
Fells = (7o, T = apleg, mry) =
I17ells = (Fe, Fe)s o ¢(eg, wrg) 2

— d , = — * _1d , = — d , -1_ -
(de, wre)o Rem 41 ((dp) "dy,re)o = (dy, ¢, "7y,

< Wdllue gt el < Il Cp-1Cr lITells
yields [|7ells < Cy-1Cxrlld Il Next we estimate [|glI§ = (g, £)o = (Fe, 0g)s <
I7ells lloglls < lirells Co llgllo- After dividing by |[gllo and inserting the estimate
of 7, above, we obtain the required inequality. O
Although the mapping ¢ need only be defined on V,_1 for the computations, we
have extended it to V,_1 + V;. The aim of that process is an interesting property
of g which isthe subject of
Proposition 4.3. The variational problemin #1,

a(z,w) = (g, w)o  foralw e H

has the finite element solutions e,_1 and e; from (4.4) and (4.1) at thelevels¢ — 1
and ¢, respectively.

Proof: @) On level ¢, we conclude from (3.4), (4.6), and (4.7) that
ag(eg, we) = ageg, Towy) = (Fg, owe)s = (g, we)o  forall we € Vi.
b) Onlevel ¢ — 1, it followsfrom (4.4) and (3.1) that we have for al wy—1 € V,—1
ar—1(e¢—1, we—1) = ag(eg, twe—1) = aeleg, Towe—1) = (g, We—1)o.

The last equality was obtained asin part a) by (4.6) and (4.7). O
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4.3. Approximation Property
Let z € H* be the solution of the variational problem in Proposition 4.3. Because
of g € H? and the regularity condition in Section 2.1, z belongs to 2. The error

estimate (2.4) yieldsthe statement that z and itsfinite element approximations e, 1
and e satisfy

lz —ejllo < COhjzmHgHo forj=¢-1¢. (4.9)
The error ¥ = ¢, ¢** from (4.5) after the coarse-grid correction will be esti-

mated in the following proposition. Here, we make use of the standard assumption
(on the mesh size ratio)

h¢-1 < Cphy,
which usually holds with C, = 2.

Proposition 4.4. Under the previous assumptions, the estimate
€5 e < Cah™lldyllzg (4.10)

holds for all d, € Uy with C4 = cj),lc[co(1+ C2M)Cy Csr.

Proof: [lef"llu, < Cg-1llef*” llo holds because of (2.6). From (3.4) and (3.5) it
follows that

e} lo = llec — tee—1llg = llt(ec — ec—1)llg < Ci llee — ee—1llg.  (4.12)
Now (4.9) implies
lee — ee—1llo < llee — zllo + Iz — ee—1llp < Co(hZ™ + h7™) ligllo-
Moreover, h2" + h2" | < (1+ CZ")h2™".
Finally, weinsert (4.8) to obtain
lee — ee—1llg < Ceeh2™lld s, (4.12)

With C,, 1= CoCoCy-1Cx (1+ CP™). After inserting this estimate into (4.11) the
proof iscomplete. O

In order to derive the desired approximation property (2.9) from the error estimate,
we return to the vector representation of the coarse-grid correction

e 1= A LGr 19 = A b; 1ot (), = Az_llﬁ_lt*(ﬁ)‘l% )
4.1
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(cf. Lemma4.2). Therefore, the representation of ;" is

-1 -1 -1
e =@, e =g, (er —teg_1) = ey — @, Lbe—184_4

=AY, — ¢ i pe1A 0F (9 N,
= (A = pA N d,

with p and r from (2.8). The inequality (4.10) is equivalent to (2.9). This proves

Proposition 4.5. Under the required assumptions, the approximation property
(2.9) holds with the constant C 4 := cg_lcl Co(1+ C2")CyCr.

Finally we note that the approximation property for the framework in [4, p. 222]
is obtained from Proposition 4.4 and (4.1),

2m
llee —tee—1llo < Cahy" | Aceyllus, -

5. Smoothing Property and Multigrid Convergence
5.1. Smoothing Property
It iswell known that the convergence of multigrid algorithms can only be proved

if there is an inverse property which fits to the error estimates in Section 2.2.
Specifically, we assume that the matrix A, is bounded by

I Aellyy s < Crhy?™ (5.1)

If,inaddition, A, ispositivedefinite, thesimplest possibleiteration (the Richardson
iteration) is already a smoothing iteration:

g > Selug, fo) = ug — Cgrh2™ (Agug — fo),
Spi=1—Cgiham Ay,
since it satisfies the smoothing property
1ACS g rie < n()h7?" forallv >0 (5.2)
with n(v) := Cgno(v) and no(v) = v/ (v + VD (cf. [12, 8§6.2]). The cases
of A, not being positive definite or of other smoothing iterations are described in
[12], too.

In addition, we assume that S;’ remains bounded!:

15) legp <4 < Cs forallv=>0, ¢£>1 (5.3
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Under the previous assumptions, the Richardson iteration satisfies (5.3) with Cs =
1.
5.2. Multigrid Convergence
The iteration matrix of the two-grid iteration (with pre-smoothing, only) equals
MM v) = (A7t = p ALY P)(ACS)),

where v is the number of smoothing iterations described by the iteration matrix
S¢. The approximation property (2.9) and the smoothing property (5.2) yield

IMIM (W)l s, < Can(v)  fordlv=>0.

Let ¢ < 1begiven. Sincelim,_ o n(v) = 0, the right-hand side is bounded by
Can(w) <¢ < 1fordl v > v(¢), where v(¢) isindependent of the mesh size
he. Inthe following, the number v is fixed.

Replacing the exact solution of the coarse-grid problem by two iterations of the
multigrid method, weobtainthe W-cycle. Itsiterationmatrix MMM = MMM ()
is given by the recursion

MGM TGM
Ml - Ml N

MYPM = mIM 4 p(MMGMY2A L rAS) for e > 2. (5.4)
Let & = MMM |y, —y,. From the two-grid analysis we know ¢; < ¢ < 1.
Equation (5.4) together with the estimates || pllu, <, ; < C4Ci.Cy1 =1 C) (cf.
(2.8)) yields the recursive inequality
Ce <+ Cptl gl A 7 AcS] iy 1< (55)
The essentia step isto prove
1Ay r A S] 1w < C, (56)

since then (5.5) implies ¢, < ¢ + C*¢2 ;. Note that we have ¢ < 1/4C* if the
number of smoothing steps v is sufficiently large. Now the recursion relation im-
plies¢y < 2¢/(14++/1— 47 C*) (cf. [12, (7.1.7€)]). Thisprovesmeshindependent
convergence rates for sufficiently many smoothing steps v.

In[12, Lemma 7.1.5], the estimate (5.6) is established under the condition
lug_lle—y = Cpllpug_qllus- Usually, thisinequality isvalid, but hereitisnot pos-
sibleto prove this estimate viaassumptionson o, since, typically, o isnot injective
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on X. Therefore, we provide a different proof. Using ||A€__11 rAeS)lup_y v, <
Csl AL r Adllyy_ <, (cf. (5.3)), it remainsto estimate A, %, r A,.

Equation (4.13) can berewrittenase, = A, Yrd, = A; %, rAge,. Combining
(4.12) withd, = Age, and (5.1), weinfer |leq — ep—1llg < CeeCalle,lles,- This
shows

lee—1llo < llee—1 — ecllo + llecllo = (CeeCr + Co)lle, Il
and [leg_1lluy,_; < Cp-1(CeeCh + Cy)lle,lluy,- Since thisinequality holds for all
e, € Uy, therepresentatione, | = Ae‘_llr Ag e, yieldsthe next lemma

Lemma 5.1. Under the previous conditions, ||A;_11rAg||W_l<_W < C holdswith
C = C4-1(CecCp + Cy).

Since Lemma 5.1 implies (5.6), the multigrid convergence is proved.

6. Application to Non-Matching Grids

In this section, we describe and analyse amultigrid method for solving systems of
algebraic equations arising from a finite e ement method based on non-matching
triangulations. The discretisation is done by the mortar technique, see [2, 3]. A
multigrid method is presented and analysed which makes use of thegeneral scheme
presented in the previous sections.

6.1. Discrete Problem

For simplicity of presentation we restrict ourselves to the Poisson equation and
assume that (2.1) isof theform: Findu € Hol(Q) such that

a(u,v) E/ VuVvdx = f(v) E/ fudx. (6.2)
Q Q

Moreover, let @ c R? be apolygonal domain and
Q=>"Q,
jel

whereQ; arepolygons. Wealso assumethat 2; forma'triangulation’, i.e,, ; N<;
fori # j are empty or have a common edge or vertex. In the mortar method
nomenclature, this case is called geometrically conforming. A more general case,
which is called geometrically nonconforming, will be discussed in Section 7.

Let I';; be the open part of ; N ©; = T;;. The union of the internal boundaries
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yields the skeleton

r=|Joe\oe. (6.2)
jel

Let 7o ; be a coarsest triangulation in ; with the mesh size! ho. The ¢-times
refined triangulation is 7;, ; with mesh parameter i, = ho2~¢. The level number
£ is assumed to range from O to ¢;. Although, in general, ¢; may be different in
different ©2;, we assume for simplicity that the number of levelsin each ; isthe
same, i.e., ¢; = €max foral j € I. Thestandard finite element space of continuous
and piecewise linear functions over the triangulation 7, ; is denoted by Sy ;(€2;).
Let

Xe = Xe(Q) =[] Se.j(2)
Jjel

fort =0,..., ¢m. Notethat X, ¢ H(2) and functionsfrom X, do not satisfy
any continuity condition across the internal boundaries I';;.

The nodal points of X, form the set

Ne = UJ\_Q,]',

jel
where \; ; isthe set of nodal points of 7; ; on ;.

Remark 6.1. The precise notation of anoda point p € N, isto be made by the
pair? (Xp, Qj(p)). An evaluation of afunction u a p means values of u|g;, a
xp, i.€., the continuation of the function u defined on Q) to x, € (). In
particular, at across point there are several nodal points (x,, 2;(,)) withidentical

position x,, but different Q; ).

6.1.1. Mortar Spaces

To define suitable spaces for discretisation of (6.1) we need to impose some con-
straints on the jumps of functions from X,(£2) on I';; which are called mortar

1 Although the mortar method workswith different mesh sizes ¢, j inthedifferent subdomains2;, we
assume comparablesizesh, for al j. Thereasonisthat the fast multigrid convergencerequiressimilar
mesh parameters.

2 |n total, we will have three index mappings. Here, p € Ay — j(p) € I mapsthe vertex into the
index of the related subdomain. In Section 6.1, we shall introducem € M + iy, € I, wherem is
the master index and i), the related subdomain index. Similarly, m € M + j,, € I mapsinto the
subdomain index of the slave edge.
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conditions. For this purpose, decompose the skeleton (6.2) into

I = U Vs VYm E VYo ifm#n, n,me M.
mem

With each master indexm € M, weassociateapair (i, j) = (i, jm) € I x I such
that v, = T';; isan open edge of ©; common to ;. It is caled master (mortar)
and values on y,, will be continued from the valuesin ;. T';; = I';; asan open
edge of ©; isdenoted by §,,. It iscalled slave (nonmortar), and values on §,,, will
be continued from the valuesin ;.

To be more specific, lete m € M, i = iy, j = ju € I be as before. The (two-
dimensional) triangulation 7; ;, £ € {0, ... , £max} , induces a (one-dimensional)
mesh 7¢,; N ¥, ON ¥y, Similarly, one considers the mesh 7, ; N 8m ON &, Usually,
both meshes are different. The trace spaces

S&mvjm ((Sm) = S&J.m (Qjm)|3m (63)

are associated to these meshes on the interfaces. We note that the nodal points
p € Nij and g € Ny, are considered as different even if x, € 7;; N y,, and
x4 € Tp,;j N8y, coincide sincethey are associated to different domains (see Remark
6.1 above).

By definition, y,, and §,, are open sets. The boundary 9y, (36,,) consists of the
two endpoints of the edge y;,, (6;n)-

Next, we introduce the space My, (8,,) as a subspace of S, ;,, (6,) consisting
of piecewise linear continuous functions on 7 ;,, N 8, Which are constant on the

elements intersecting 3,, (i.€., on the two end intervals of the mesh 7; ;. N &)
We say that v, € X¢(Q2) satisfiesthe mortar condition for m € M if

/ (W,im I}/m —V,jn |5m) Iﬂ ds =0 for al W € Mg,m((sm). (6.4)

Lipa, jm
The first factor in theintegral isthe jump of v, across T, ;, and often denoted as
[vellr;, ;- Therefore the elements in M, (6,,) can be understood as Lagrange
multipliers for the matching conditions.
We are now able to define the mortar space for discretising (6.1). Let
Ve(Q) := {ve € X¢(Q) : v, satisfies the mortar condition (6.4) for each m € M}.
The discrete problemis of the form: Find u, € V,(2) such that

ag(ue, ve) = f(ve) fordl vy € Vy(Q) (6.5)
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(cf. (2.2)), where

ag(ug, ve) = Z/ Vg, jVue, j dx,
&)

jel

fve) = Z/Q fuejdx.

jel
This problem has a unique solution and is stable. Moreover the error bound

lu — uellp) < ChZllull o (6.6)

holds, where C isindependent of #, and u. For the proof see[7, Theorem 4.1]. The
error estimate is stated there for mortar elements that are continuous at the cross
points. Fortunately, the bound of the consistency error in Theorem 4.1 and the
estimate in Lemma 3.4 are independent of assumptions on cross points. |nequality
(6.6) isrequired in (2.3). A proof of the error estimatein H1($2) can be found in
[2] and [3] and the L, estimate is aso given in [1] without a proof.

Our goal isto design and analyse amultigrid method for solving the linear system
(6.9) from below corresponding to (6.5). The next three subsections will be a
preparation for that.

6.1.2. Matrix Form

We rewrite the problem (6.5) in a matrix form using basis functions of V,(2),
i.e., basis functions satisfying the mortar condition. We emphasise that we do not
require continuity at the cross points for the functionsin V().

Assumethat v, € X, satisfies the mortar condition (6.4). Note that vy j, |5, can
be computed at interior nodal points of 7; ;, N &, from the values of vy ;, |y,
on y,, and the two values of v, ;, at the endpoints of §,,. The restriction of a
function v on §,, to the endpoints of §,, is denoted by Tr,, v. We have vg ;,, 15, ‘=
e m (Ve i, T ve,j,,), Where Iy, isamapping from Lo(T,, j,.) X T (8,,) onto
Se.m, j» (8m) (Se€(6.3)) and given by the solution w € Sy . j,, (8,) Of

/ (w—vg,;,)¥ds = 0 foral ¢ € My 1 (8pm), (6.7)
Ly jim

T w =T, Ve, jm - (6.8)

To find IT¢,n (ve,iy, Trm v, j,,), We ONly need to solve a system with a tridiagonal
mass matrix.

Let Vg, ; and Ay be the set of nodal points of Ay ; and Ny, respectively, except
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those which belong to interiors of the Slave edges, i.e.,

A/Z,j ::A_/Z,j\ U 8m» j\/é = UJ\/E,j-

mem jel

In the following, we describe the Lagrange basis {by,, : p € N} of Ve(Q). Itis
uniquely defined by by, € V,(2) and by, ,(x4) = 8,4 (Kronecker symbol §). We
discuss the structure of these basis functions in detail.

Recalling Remark 6.1, we associate with each p = (x,, ;) € N, abasis
function by, € V¢(Q2) and distinguish three cases. For the standard nodal basis
functionin X, corresponding to the vertex p € A ), the subdomain ;,,, and
thetriangulation 7, ; ), we usethe notation ¢, ,. Concerning the notations j (p),
im and j, we refer to Footnote 2.

Case | (interior nodal point) For x, € Qj(,), be,ple;, = ¢ p isthe standard

nodal basis function on €,y and by, = 0on \ Q. Inthiscase by, is
continuous on the whole domain .

Case Il (nodal point on interior of an interior boundary) Let m € M and
Xp € ym. Hence, i, = j(p). Obvioudly, p € Ny, 1.€., thenodal point liesin the
interior of a master edge y,, of ;. Then

we,p on Q; ,
bé,p = né,m((ﬂé,p» 0 oné, C 3Qjm,
0 at all other nodal pointsin Q\ (£2i,, U 8y) .

The support of b, ,, consistsof all trianglesfrom 7 ;,, which touch the (open) slave
edges,, andthetrianglesfrom7; ;,, whichtouchx,. Notethat b, isdiscontinuous
a-. Fim,jm .

Caselll (cross point asnodal point) A cross point may belong to several ; and
to various dy,, or 38,,. Let p = (x,, (). Thesubdomain ;) hastwo edges
joining at x,. Each of these edges may be mortar edges y,, (theni,, =j(p)) or
nonmortar edges §,, (then j,, =j(p)). We define by , by by ,(p) = 1and

®ep oNy, C 0%, ifx, € 0y, im =j(p),

, gm0, Trm e p) ONGSy C 0K, ifx, €08y, in =j(p),

“P 7 ) Mem(er.p. 0) ON 8, C 3K, if xp € 38 jm =j(p),
0 at all other nodal pointsin Q.

The first two rows correspond to mortar/nonmortar edges associated to the subdo-
main ;,), whilein thethird row §,, isanonmortar belonging to a neighbouring
subdomain.
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Using the basisfunctions above, wehave V,(R2) = spani{by , : p € Ny}. Problem
(6.5) takes the matrix form

Acug=f, (6.9

The matrix A, is symmetric and positive definite. Moreover it follows from the

usua inverse estimates for X, and V; C X, that the eigenvalues 1;(Ay) of A,
satisfy the inequalities

Co < Ai(Ag) < C1h;? (6.10)

where Cg and C; are independent of 7.

6.1.3. Nonconformity
In Section 6.1.2, we have constructed a family of finite element spaces V;(2)

(¢ =0,1,..., ¢max) Which satisfy the mortar condition (6.4) of the respective
level. We have started with nested spaces

Xo(Q) C X1(Q) C ... C Xe(Q) C [ [ L))
However, the subspaces V,(2) are not nested. The reason is that a function
ue-1lg;, = uelg;, beongingto S¢—1, () C Se.i, ($2;,,) yieldsdifferent values
ue-1lg;, # uelg,;, ontheslavesidesincethemortar condition for level ¢ —1 does
not imply the mortar condition for level £, in general. Hence,

Vo(€) € Vi(€2) & ... & V().

6.2. Estimates
The analysis of the multigrid method reduces to the analysis of the two-grid one
(cf. Subsection 5.2). Therefore the facts needed for that analysis are formulated
for thelevels ¢ and ¢ — 1.
6.2.1. Lo-Stability of the Mortar Projection

It isknown that the mortar projection I, ,, (cf. (6.7) and (6.8)) is Lo-stable.

Lemma 6.2. Assume that v, € X, satisfies the mortar condition on 8,, = y,, =
Fim:j}n' If Tr,, Ve, jp = 0, then

Ve, jm 122 = ClHVEin I La(m) (6.11)

where the constant C isindependent of /.
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The proof of thislemmaisgivenin[2, Lemma2.1] for the 3-D case with uniform
triangulation and in [6] for genera ones. Itssimplification for the 2-D case can be
found, e.g., in[7, Lemma 3.1] and [10, the proof of Lemma 1].

Remark 6.3. Wenotethat wewill apply aslight generalisation of thelemmaabove
which isaso covered by theliterature. Specifically, inequality (6.11) remainstrue
if ve;, isanarbitrary Lp-function on y;,.

6.2.2. £2 Inequalities

In the following, we denote by £2(\) the space of tuples over an index set V.
Here, NV takes the values Ny, j, N, and NV j, Ne. The appropriate scaling of the
£2-norms regarding the equivalence (2.6) is

lvelleponny = /Z h2 v, (p)|2 for N = Np, j, No,j, No, and AV
PEN

Here, v,(p) = v¢(x,) isthe notation for the p-component of the vector v, accord-
ing to Remark 6.1.

The well-known equivalence between £ and Lo normsisfirst stated for the space
X¢. Note that we have assumed quasi-uniformity of the triangulationsin each €,
jel.

Lemma 6.4. (a) Let q_sg,j be the isomorphism from EZ(J\_/M) onto Sy, ;(2j) (cf.
(2.5)). Then thereisa constant C independent of j and the mesh size &, such that

1 - _
E”EHH@ZW@J) < le,j @ DLy = C||Ee,j||gz(/\7[,_,~) for Vy,j € C2(Ne,j).

(b) Smilarly, for ¢, being the isomor phism between £2(NV;) and X, (2), we have

1 - _
¢ leelleaeiy = 10e@llLa@ = Clluelley i) forv, e L2Wp).  (6.12)

Since Ny, j € Ny, j, thefollowing estimateistrivial:
luelleoove) = Nuelleyi)- (6.13)

The opposite inequality is obviously not valid for coefficient vectors v, € £2(Ny)
bdonging v, € X,(2). However, itistrueif vy € V (), asstated in

Lemma 6.5. Let ¢ Vp € Ez(./\/g) = vy = Zpe./\f( yz(p)bg’p € Ve(Q2) with
basis functions from Section 6.1.2 be the isomorphism from £2(Ny) onto V,(£2).
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Let x, := ¢, “ve € L2(Ny) be the coefficient vector for vy € X¢(2) D Vi(S).
Then we have x,(p) = v,(p) for all vertices p € N, and

X¢lley00) < Cllvglleave)- (6.14)

Proof: Given a slave edge § := §,, C ;, and the corresponding master edge
Y i=Ym C Q,,let A:= A, and B := B, be the endpoints of §. The proof of
(6.14) reduces to show that foreach § = 3§,, C T, m € M,

1X¢lleo7,n8) < Cllzelleavenpuausy)- (6.15)

Here Ny N § isthe set of interior nodal points of § which by the definition of IT,
depend on Vy; N (y U AU B)). Now define w, € Lo(T;,, j,.) by we € S¢ m,j,, and

e at the nodal points A and B,
Y¢=10 athenoda points of §.
Roughly speaking wy is obtained from v, |5 by the restriction to the values on 94.
Note that v ;,, — we and vg ;, — we also satisfy the mortar condition (6.4). With

this we have (ve, j,, — we)ls = I ¢ (ve,i,, — we, 0). It follows from Lemma 6.2
that

lvellzo) < llwellzyesy + CUlvell Loy + lwellLog))-
After rewriting thisin terms of the coefficients, the proof of (6.15) iscomplete. O

Proposition 6.6. The isomorphism ¢, from £2(N;) onto V,(2) satisfies

1

E”Ee”ﬁzo\/g) < llge@p) Ly < Cllvglleainyy for all v, € €2(Ne).
Proof: Set v, := ¢¢(v,) and extend the vector v, by the components of x, :=
¢, tug & p € Ny\N;. Combination of (6.13) and (6.12) yields

lvelleave) < Cllvell ) -

From (6.12d (6.14) we obtain the final part

2
lvellLo) < Clluglleor) = Colluelleavg)-
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6.3. Choiceof £, S o, and
In the diagram below, V;_1 and V, are the mortar spaces introduced in Section

6.1.1. The coefficient spaces U; = £2(N}), (j = £ — 1, £), together with their
isomorphisms ¢; have aready been specified.

EZX@L)S:Z/{EZEZ(M)
incIusionT N ln = ¢y

Vica— Vg
L

do-1] T ¢

Up—1 — Uy
)4

We choose X := X, equipped with the norm of L2(£2). By construction V; =
Ve(2) C X, holds. Since X,_1 C Xy, dso V,;_1 C X,. Hence, the sum V; +
Ve—1 iscontained in X,.

The space Sischosenas S := Uy = £2(Ny). Theobvious choicefor r ism := ¢y.
Injectivity and boundedness of  is given by Proposition 6.6.

The essentia part is the choice of the mapping o : X; — £2(Ny). Given a patch-
wise continuous function v from X, and indices p = (x,, Qj(p)) € Ny, we set

(ov) (p) ‘= v(xp)

according to Remark 6.1. Thenov = ((ov) (p))pen, isthe coefficient vector in
L2(No).

Remark 6.7. o : Xy — £2(Ny) isbounded uniformly in £:

lovelle,invg) < CllvellLy)-

Proof: Set w, := ov,. The combination of (6.13) and (6.12) yields

lwelleoivg) = lvelleavy) < CllvellLy)-

O

We note that the opposite inequality [lvellz,@) < Cllv,lle,nv;) isnot valid for all
v € Vi + Vi_1 C X = Xy. There are nontrivial functions u, in V; + Vy,_1 with
o (ug) = 0. For its construction take a function ve—1 with support in ; and set
ve := ve—1. Extend vy_1 and v, to the slave side according to the different mortar
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conditions of level ¢ and ¢ — 1, respectively. Then the function u, := v, — ve_1
vanishes on €2;, but it is nonzero on the slave side. After a slight modification at
nodal points neighboured to the slave nodes, one obtains zero coefficients for al
p € Ng, but uy # 0. Thus, o isnot injective.

Remark 6.8. « = ¢¢ o o isaprojection onto V.

Proof: Givenv, € V;, v, := ov arethevaluesat thenoda pointsof AV,. Because
of the Lagrange basis property, ¢,v, recovers the function v, € V,. O

So far, we have ensured the conditions (3.2)—3.4) required in Section 3.2.

Finally, we observe that inequality (5.1) follows from

lag(ue, vo)| < Cllugll gz llvell g2
brok bro

en ken

with||vg||i{1 = je,||vg|gj||§11mj)andthestandardinverseinequality

broken
-1
lvele | niq;) < Chy ~llvele; iy  forve € Sej(€2)).

Hence, if the underlying second order boundary value problem satisfies the solv-
ability and regularity conditions, all necessary requirementsfor thetwo- and multi-
grid convergence are satisfied.

7. Geometrically Nonconforming Case

In this section, we discuss a discretisation of the problem (6.1) on non-matching
triangulations in the case when the subdomains €2; of the decomposition Q@ =
Ujer ; do not form a‘triangulation’ of Q. In our case the ©;'s are assumed to
be polygons, and this means that a vertex of ; is not necessarily a vertex of its
neighbours ;. This caseis called the geometrically nonconforming case in the
mortar method, and atypical situation isdepicted in Fig 1.

Q

mortar mortar

slave slave slave

Q Q, Q,

Figure 1. Detail of ageometrically nonconforming mesh
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We first formulate a discrete problem for (6.1) and then extend our treatment of
the geometrically conforming case to thisone.

7.1. Discrete Problem

To formulate the discrete problem, we will adapt some of our previous notations
and introduce some new ones. LethereI'; x, k = 1,... , K}, denote the edges of
$2j and Kj beitsnumber. LetT = [ J;, 9€2;\0S2 beasin (6.2). Weselect afamily
of edges, say {yx, k € K}, fromtheset of al edges{I';x : j €1, 0 <k < K}}
satisfying the condition

Un=F nnw=0itk#k. (7.2)
keK

These edges are called masters (mortars). TheedgesT'; x which are not mastersare
called slaves (nonmortars) and denoted by §,,, m € M. Note that the nonmortars
{6m ) satisfy a condition similar to (7.1):

U dnw=T. 8unéw=0ifms#m.
memM

We adapt the notation §,, (yx) asan edge of ;,, (2;,). A mortar space My ,,, (5n)
is defined on each §,, in the same way asin Section 6.

We say that afunction v, € X,(2) satisfies the mortar condition on an edge &, if
[vlwds =0  fordly € My ,u(8p), (7.2)
Sm

where[v,] isthejump of v,. The discretisation space V,(£2) for (6.1) isdefined as
the subspace of X,(2) of functions satisfying the mortar conditions (7.2) for all
m e M.

We are now able to formulate the discrete problem. Find u, € V;(2) such that
ag(ue, ve) = f(vg) for all ve € V. (7.3)

The problem has a unique solution, and the error is bounded by

e — ull ) < Ch%z lull g2,
jel

where uy and u are the solutions of (7.3) and (6.1), respectively. The proof of
the error estimates proceeds asin the geometrically conforming case. Specifically
the extension of the stability resultsis based on Remark 6.3. The estimates of the
consistency errorsare local in nature and carry over without changes.
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Our goal isto design and analyse the multigrid method for solving (7.3) using the
previous scheme.

7.2. Matrix Form
We rewrite (7.3) in the matrix form using that
Vi = span{b; , . p € N¢}.

The basis functions b, are defined again by the Lagrange basis property similar
to those in Section 6. For p € Ny with x,, lying in the interior of 2; , by, isthe
same as in Section 6. For x,, € y,,, where y,, is a master edge in S_Zj(p), be,pis
defined by

’

by :{%p in ()
b Hﬁ,n((pﬁ,ps O) on (Sn

where §,,, the slave edge of @;,,issuchthat ¥ # 8, Ny, C supp(ge,p); on the
remaining vertices in €2;, and the remaining substructures by, (x) is extended by
zero. For x, which are vertices of Qi,, b, p ae defined in the same way asin

Section 6. Here, the extension by the mortar projection is understood asin (7.2).

Using by, ,, we obtain
Acug=f, (7.4)

The matrix A, is symmetric and positive definite and its eigenvalues satisfy aso
the inequalities (6.10).
7.3. Two-Grid and Multigrid Method

We comment here on the two-grid method for (7.3) (or (7.4)). Thisis sufficient to
analyse the multigrid method.

Since? isavariablelevel number, the space V;,_1 and themortar projection ITy_1 ,,
are defined as well. We first formulate the counterpart of Lemma 6.2 for the
geometrically nonconforming case. Let §,, beaslave edge of ©2;, and let v j, €
Se, ;. (82}, bethe components of vy = {v¢,j} € V,(2). By the definition

VL jmlsm = Hf,m(ﬁb Try, Uf,jm) (7-5)

where bej,, = 3" Ve,igls,ny, andthesumistaken over v;, defined on ©;, involving
Vi With 8,y N yx # 9.
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Lemma7.1. For v, = {ve,j}jer € Ve ONSy C j, With Tr v, = 0 holds
2 2
”Uﬁ,jm ||L2(5m) <C Z ”Uﬁ,ik ||L2()’kﬂ5m)’
k

where vg_;, isdefined by (7.5) and C is a constant independent of 7, ;, .
For aproof of thislemma, see[2, Lemma2.1].

Using thislemma, we check that Lemmata 6.2, 6.4 and 6.5 from Section 6 are also
valid for thediscussed case. Defining o, 7 andt = o or asinthe previous section,
we check that 7z isinjective and bounded, o isbounded and ¢ isa projection. Thus
the two-grid method for (7.3) (and (7.4)) is uniformly convergent with respect to
he.
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