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Abstract Some real-time systems are designed to deliver
services to objects that are controlled by external sour-
ces. Their services must be delivered on a timely basis,
and the system fails when some services are delivered too
late. In general, the timing requirements of the system
may change when the states of the objects monitored by
the system change. Such a system may fail if the timing
requirements which it is designed to meet are erroneous.
It may underutilize resources and consequently be costly
or unreliable if the requirements are too stringent.
Hence, one must identify how changes in object states
call for changes in system requirements and how these
changes should be incorporated into the design and
implementation of the system. This paper first describes
a methodology to determine timing requirements and to
take into account requirement changes at runtime. The
method is based on several timing requirement deter-
mination schemes. Simulation data show that these
schemes are effective for applications such as mobile IP
hand-offs. The paper then discusses how to incorporate
this methodology in the system architecture and in the
development process.

Keywords Real-time requirements - Requirement
capture and update - Real-time software architecture

1 Introduction

A real-time system has time-critical jobs. The timing
requirements of the system are often specified in terms of
the deadlines of these jobs. The deadline of a job is the
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time instant by which the job is required to complete.
The system fails if some job completes after its deadline.

Typically, the timing requirements of a system are
derived from its high-level functional requirements. For
example, a feedback controller must keep the motion of
the plant it controls smooth and stable. This functional
requirement in terms imposes timing requirements on
the jobs that transmit sensor data, compute control laws,
and send commands to actuators: They must complete
within each sample period for the plant to operate
smoothly. Several consecutive failures of in-time com-
pletion may result in runaway behavior of the plant.

A common practice is to impose on the system a set
of fixed and known timing requirements (or a set for
each operation mode of the system). Indeed, traditional
real-time systems (e.g. [1, 2, 3, 4, 5, 6]) assume that the
timing requirements are given and do not vary with time.
This assumption is valid for systems such as a feedback
controller. (Time parameters of such a controller are
typically chosen by design. Hence, its timing require-
ments are known.) The assumption is sometimes not
valid for real-time systems designed to deliver services
to objects that are controlled by external sources. The
timing requirements of the delivery services may depend
on the state of the objects, and the states of the objects
change with time. As a consequence, the timing
requirements of the jobs in the system may change with
time. By assuming that the deadline of every job is
known and constant, a real-time system may underuti-
lize its resources. More seriously, the system may fail to
meet its high-level functional requirements because the
constant deadlines do not correctly capture its high-level
functional requirements.

An example is information delivery to on-board de-
vices in an intelligent transport system. In such a system,
users may subscribe to message delivery services to
receive alert messages and traffic information. (Alert
messages notify individual subscribers about unexpected
traffic conditions, e.g. a traffic accident on the planned
route of a subscriber.) The high-level functional
requirement of the system is to deliver alert message(s)
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to each individual subscriber so that the subscriber can
avoid the delay caused by unexpected obstacles and
congestions.

Traffic information messages are transient and loca-
tion dependent. As an example, a message on a traffic
accident is relevant and important as long as the hazard
and congestion caused by the accident persist. Once the
accident scene is cleaned up and congestion cleared, the
message no longer needs to be delivered. The message is
location dependent in the sense that it is only relevant to
subscribers who plan to travel to or through the accident
site. The information carried by such a message is
helpful only if the message is received by the subscriber
before he reaches the last detour point between him and
the accident site. The time that the subscriber will take to
reach the last detour point depends on the state of the
subscriber’s vehicles, i.e. the speed and acceleration
of the vehicle, its distance to the last detour point, etc.
Consequently, the deadline for delivering the message is
not a constant value but a function of the state of the
vehicle. Without considering the state of every vehicle,
the system may not deliver some messages in time. A late
accident alert may cause the subscriber to be trapped in
traffic.

Mobile IP hand-off is another example. As a device
moves in a mobile IP network, its network connection
must migrate from cell to cell. For this purpose, a hand-
off request for a device is triggered whenever it moves
across cell boundaries. Upon acknowledging the request,
the new base station (BS) becomes the new agent of the
mobile device. Packets for the device are then forwarded
to the new BS. The high-level functional requirement of
the system is to keep the mobile devices connected.

Each hand-off request should be completed by a
deadline. In a network that supports hard hand-off, the
deadline of a request is the time at which the device
leaves the previous cell. When the network supports soft
hand-off, the previous BS buffers packets for the device
after the device moves out of its coverage area until the
hand-off request to the new BS is acknowledged. In this
case, the deadline is the time at which the previous BS
must discard packets sent to the device to prevent net-
work congestion. In both cases, the deadline for pro-
cessing a hand-off request for a device depends on the
motion of the device. As the speed and trajectory of a
mobile device change, the deadline of its request changes
accordingly. Traditionally, such changes are ignored in
the process of determining low-level timing requirements
of the system. As a result, the system does not meet some
high-level functional requirements, despite that all jobs
in it complete according to their chosen deadlines. For
this particular application, the failure to process some
hand-off requests in time leads to performance degra-
dation, causing packet and connection losses.

We describe here a methodology for designing real-
time systems which are able to track their state-depen-
dent timing requirements. To characterize changes in
timing requirements, we developed a new real-time task
model, called the state-dependent deadline model [7].

Based on the new task model, we develop a set of
deadline determination algorithms. These algorithms
allow low-level timing requirements of real-time systems
to be derived accurately from their high-level functional
requirements. We propose a software architecture for
real-time systems that incorporates requirement capture
so that the system can track and meet its state-dependent
timing requirements.

Following this introduction, Sect. 2 presents the
related works. Section 3 describes the new state-depen-
dent deadline model and defines the terms used here.
Section 4 presents two approaches to acquiring the
information required to determine the state-dependent
requirements. The section also describes several deadline
determination algorithms and their performance.
Section 5 discusses how to incorporate requirement
determination in the software architecture and design
process. Section 6 summarizes this work.

2 Related works

In this paper, we address the problem of how to deter-
mine timing requirements for the scheduler to meet with
the required response times of jobs. The variations arise
from external causes that lead to changes in low-level
requirements of the system. At a quick glance, one may
relate this problem to control problems. This relation-
ship is weak. In our problem, the scheduler (and the real-
time system) has no control over the state changes of
external objects and, hence, has no control over changes
in timing requirements of jobs. It must either anticipate
and estimate the changes and set scheduling goals
accordingly, or observe and adapt to the changes and
attempt to meet some continuously changing goals. In
this sense, our problem resembles problems on overload
handling: The scheduler has no control over which job
may overrun its allocated time.

Past works on real-time scheduling assume that the
relative deadlines or temporal distance constraints re-
quired of the system are time invariant. According to
some scheduling algorithms, a scheduler may dynami-
cally change relative deadlines of jobs as a way to tune
system performance [1, 8, 9, 10]. For example, schedul-
ing algorithms based on the elastic task model proposed
by Buttazzo et al. [1] adjust the deadlines of real-time
tasks based on the system workload. When the system is
underloaded, the system decreases the periods of tasks to
provide better quality of service (QoS). When the system
is heavily loaded, the system increases periods of tasks to
downgrade the QoS to the acceptable level and main-
tains the system load below the achievable utilization
factor. Caccamo et al. [9] proposed the elastic feedback
model and the associated task scheduling algorithms.
Their goal is to optimize the performance of control
applications in which jobs have widely varied execution
times. According to their approach, the amount of re-
source reserved for each task is based on the average
execution time, rather than the worst-case execution



time. Whenever a job overruns, the system extends its
deadline such that the utilization factor is no greater
than the reserved utilization factor. Hence, each job can
complete its work without jeopardizng other tasks in the
system. Invariably, however, these studies assume that
the scheduler has control over when and by much the
deadlines are changed. Because of this fundamental
difference, our work is only loosely related to these past
works.

Our model and objective resemble the probabilistic
models and deadline guarantees studied by the real-time
community. An example is the model by Abeni and
Buttazzo [11]. In their work, the arrival period and the
execution times are given as some probability distribu-
tions, rather than the worst-case values. Hence, the
deadline of every job in a task may be different but is
constant over time.

This work is also related to the works dealing with
requirement evolution [12, 13, 14]. Agile software
development [12] develops a set of system design prin-
ciples. The principles allow the developers to efficiently
adapt requirement changes in the software development.
Earlier works dealing with requirement evolution such
as [13] and [14] are concerned with the change of
requirements during the development phase of systems.
However, in our work, we are concerned with the change
of requirements in the operation phase of systems. Lutz
and Mikulski [13] show that the requirements evolve in
the design and operation phase of systems. In our
problem, we focus on the methodology of designing a
system to tolerate changes of timing requirements so
there is no need to modify the system when the timing
requirements change.

3 Background
3.1 Real-time jobs and tasks

Real-time systems are designed to complete jobs on a
timely basis and, thus, to meet their high-level functional
requirements. A job is an instance of computation, or the
transmission of a data packet, or the retrieval of a file,
and so on. In short, a job refers to a unit of work when it
is not necessary for us to be specific about the work. We
call jobs J;, J,, and so on. A real-time job must be
completed by its deadline. The job may produce an
incorrect result if it does not complete by its deadline;
the system fails some high-level functional require-
ment(s) when this happens. A task is a sequence of jobs
that have identical or similar characteristics and timing
requirements.

Each job is characterized by its temporal parameters,
including its release time, execution time and deadline.
The release time of a job is the instant of time at which
the job becomes available for execution: The job can be
scheduled and executed at any time at or after its release
time. We say that a job arrives when it becomes known
to the scheduler. In general, the release time of a job is
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equal to or later than its arrival time. A job is said to be
eligible in the time interval from its arrival time to the
instant of time when the job completes. The execution
time is the amount of time required to complete the
execution of the job when it executes alone and has all
the resources it requires. The absolute deadline of a job is
the instant of time by which its execution is required to
be completed. In many cases, it is more natural to state
the timing requirement of a job in terms of its response
time. We call the maximum allowable response time of a
job its relative deadline. Except for where it is stated
otherwise, by deadline we mean relative deadline and
denote it by d. The deadline of a job is the primary
timing requirement of the job, and we focus on this
requirement hereafter.

3.2 State-dependent timing requirements

As stated earlier, the state-dependent deadline model
intends to capture the time-varying nature of timing
requirements of jobs in systems exemplified by the ones
described in Sect. 1. In such a system, the deadlines of
jobs depend on states of objects (e.g. vehicles) external
to the real-time system. We call the states of external
objects object states for short. As the states of some
external objects change with time, the deadlines of jobs
also change with time. We call a job whose deadline
changes as object states change a state-dependent dead-
line job. Hereafter, we omit “‘state-dependent deadline”
as long as there is no ambiguity.

The simplest case is when the external object states
change in a predictable way for all times. Consequently,
the relative deadline of every job is a known time
function. We call this function the deadline function of
the job. We use d; (f) to denote the relative deadline of
job J; at time ¢ where ¢ is the elapsed time since the
release time of the job.

The assumption that all jobs have known deadline
functions is often not valid. In general, we characterize
the relative deadline of each job J; at time ¢ since the
release of the job by a random process d; (). The
probability density function (PDF) of sample deadline
d of 8; ()" at time ¢ is denoted by g; (1, d).

Figure 1 illustrates a possibility. The time origin is
the release time of the job. A point (x, y) in this figure
denotes that the relative deadline of the job at time x is
v, where x is the elapsed time since the release time of the
job. The shaded area shows the range of values of the
job deadline at different time instants. The 45° line y = ¢
in the figure illustrates the passage of time. Suppose that
when a subscriber requests for accident alert messages,
there is an accident on his planned route and his travel
time to the last detour point before the accident site is

! For each job J;, §; (¢) is an indexed set of random variables, where
the indexed set is the set of positive real numbers. Hence, by defi-
nition, J; (¢) is a random process. We do not assume any property
of the random process.
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Fig. 1 Deadline random process

10 min. If he were to travel at a constant speed, the
deadline function of his message delivery job is d;
(1)=10, which is the horizontal line at 10 in the figure.
Because he may speed up or, more likely, slow down, the
actual deadline may be the sample deadline function
depicted as the heavy dashed line in Fig. 1. (He first
speeds up, causing the deadline to be shorter. The
sample function d; (¢) intersects y = ¢ at the instant when
he reaches the last detour point. If he continues on the
same route after he passes the last detour point, he slows
down as he comes closer to the accident site and, even-
tually, he stops. Thus, the deadline sample function
becomes parallel to y = ¢; the deadline is always smaller
than the elapse time; and the alert message is late and of
no help to him.) The scheduler does not know the value
of this sample function. However, based on the initial
location and speed of the subscriber, the system can
retrieve, from its stored statistical data on travel time, a
set of time-dependent histograms and use the set as an
estimate of the probability density function g; (¢, d) of
the random process J; (¢) at different values of ¢. To
illustrate, Fig. 1 shows the PDF at three different values
of time. In this case, the subscriber has a high proba-
bility of slowing down and a very small probability of
speeding up as time progresses. Moreover, the uncer-
tainty in his speed and time to the last detour point
before the accident site grows with time.

3.3 Timing constraint

According to the traditional definition, a job meets its
timing constraint (or the job is timely) if it completes by
its deadline. This definition of timeliness needs to be
generalized when the deadline changes with time. To
illustrate, let us consider a job whose deadline function
d (¢) is known and is as shown in Fig. 2. If the job
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completes at an instant in the time interval (0, #] or [#,,
t3], its response time is less than its relative deadline.
Hence, the job completes in time. In contrast, if the job
completes in the interval (¢, #,), it misses its deadline
because its response time is larger than its relative
deadline. We say that there is a deadline miss at time x if
d (x) is less than the elapsed time x. A time interval
during which the relative deadline is never less than the
elapsed time is called a feasible interval. Therefore,
intervals (0, #1] and [#,, #3] are feasible intervals, while (7,
1) is not.

An important special case is where the deadline
function of every job has only one feasible interval and
the interval begins at the release time of the job. This is
true for the systems exemplified by the ones described in
Sect. 1. We focus on this special case here. For some
applications, multiple feasible intervals do exist as
exemplified by the deadline function in Fig. 2. The case
of multiple feasible intervals will be considered in our
future work.

The following definition states the timing constraint of
a job in the special case considered here, that is, every job
has a known feasible interval of length 7 for some 7" > 0.

Definition 3.1. In-time completion A job J meets its
timing constraint, or simply it completes in time, if and
only if there is no deadline miss before it completes. In
other words, d (x)= x for 0< x < t when the response
time of the job is t.

Clearly, the response time 7 of a job that completes in
time is within its feasible interval. When the relative
deadlines of jobs are random processes, the system cannot
provide deterministic guarantee of in-time completion.
We use P 1,1ime (7) to denote the probability that a job
completes in time when its response time is . The most
natural generalization of Definition 3.1 is the one below.

Definition 3.2. Probability of in-time completion in the
strict sense  The probability of a job (with deadline given
by a random process 6(y)) completing in time is the
probability that there is no deadline miss before the job
completes. In other words, P 1,7ime (t) = Pr[ 6 (x)2x,V
0<x <t



For most systems, a weaker constraint according to
the following definition suffices; this is a natural gener-
alization of the traditional definition of probability of
in-time completion.

Definition 3.3. Probability of in-time completion  The
probability of in-time completion of a job is the proba-
bility that its response time is no greater than its deadline
at the time when the job completes. In other words, P
InTime (£) = Pr[ 0 ()= 1], where t is the response time of
the job.

This paper focusses on how to design a system so that
the jobs in the system have a high probability of in-time
completion according to Definition 3.3. We also want to
achieve a high system utilization. System utilization is
the fraction of time that the system is busy executing
jobs in the system.

We assume that the execution time of every job is
known when the job arrives. Without loss of generality,
we assume that every job is released upon arrival (i.e. its
release time equals its arrival time.) Upon the arrival of
each job, the system conducts a schedulability analysis
to check if the job can meet its timing constraint without
adversely affecting eligible jobs in the system. A job is
admitted to the system if its probability of in-time
completion is no less than a given threshold. Otherwise,
the system rejects the job.

4 Determining state-dependent deadlines

4.1 Deadline probability density function
(PDF) estimation

For most applications, the deadline function is unknown
when a job arrives. There are two approaches to
acquiring the probability density function of the dead-
line random process: Using historical sample data and
using simulated data.

4.1.1 Using historical sample data

Probability density functions of deadline functions can
be estimated based on sample data when sufficient data
are available. Some systems collect a massive amount
of statistical data on the values of job deadlines as a
function of the elapsed time under various circum-
stances. These data allow the system to estimate prob-
ability density function g; (¢, d) of the deadline random
process 0; () for each job J;. Such an estimate is obtained
from sample values taken from a large ensemble of
statistically identical jobs. In particular, the estimate of
g (t, d) is not obtained from sample values of job
deadlines of an individual job.

As an example, we return to the intelligent transport
system described in Sec. 1. Because the deadline of each
message delivery job is the instant of time when the
vehicle arrives the last detour point, we use the travel
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time of each vehicle to the last detour point as the
deadline of the corresponding message delivery job.
The travel time of a vehicle is determined by the speed
of the vehicle, distance from the current location to the
last detour point, traffic density, and so on. These
variables collectively describe the state of the vehicle.
An intelligent transport system typically collects a
massive amount of statistical data on travel times of
vehicles as a function of distance to accident sites under
various traffic densities. Based on such data, the system
can construct an estimate of the probability density
function g; (¢, d) of the deadline random process 0; (7)
for the message deliver job J; of each subscriber when
the subscriber first requests for service. Specifically, the
estimate of g; (¢, d) at elapsed time ¢ may be a histo-
gram on travel times of a large ensemble of statistically
identical subscribers caught in similar situations, i.e.
same remaining distance to the last detour point, same
time of the day, same highway, similar traffic density,
and so on.

4.1.2 Constructing PDFs by simulations

Another means of estimating the PDF is to simulate
conditions that cause changes in deadline values, collect
the observed deadline values in the simulation, and use
them to estimate the PDF. A simulation model for this
purpose should characterize changes in the states of
external objects. By simulating changes in object states
under various circumstances, the system can generate
and collect statistical data on deadlines of statistically
identical jobs. Thus, the system can obtain a histogram
of the deadline values as a function of the elapsed time
for each job.

As an example, the Random Walk Model com-
monly used in mobile network literature (e.g. in [15]
and [16]) can be used to simulate movements of mobile
devices in an unobstructed area. According to this
model, the motion of each device is determined by
three parameters: speed s, direction 6, and duration t.
For each movement, the device moves at speed s in
direction 0 for 7 units of time. These three parameters
are randomly generated with given means and standard
deviations.

Figure 3 shows one example. The goal is to obtain
histograms of deadlines of hand-off requests when the
mobile device moves at a low speed. In this example,
the speed of the mobile device is normally distributed
with mean 14.4 km/hour and variance 0.9.> The
direction of a movement is normally distributed using
the current direction of a device as the mean and 30° as
the variance. The duration of each movement is trun-
cated-normally distributed with mean 5 s and variance
1 s. A hand-off request is triggered as soon as a mobile
device enters the overlapped area of two adjacent
mobile cells. Figure 3a and 3b shows the histogram of

2 A negative speed means the device moves in the opposite direction.
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Fig. 3 Histograms of deadline values of hand-off requests

the deadline values when the elapsed time is 10 s and
30 s, respectively. When the elapsed time is 10 s, the
job deadlines are within the range [38, 60]. As the
elapsed time increases, the range of deadline values
increases. In this example, the deadlines are in the
range [20, 80] when the elapsed time is 30 s.

4.2 Deadline determination

For most applications, the exact shape of each PDF is
not likely to be known or estimated accurately. The
amount of statistical data needed to get a high degree
of confidence in an estimated distribution function is
typically formidably large. (It is even unlikely for an
intelligent transport system to acquire the needed
amount of data for this purpose.) However, statistical
averages such as mean value and variance functions
can be estimated reasonably accurately based on sta-
tistics taken from an ensemble of relatively small size.
For this reason, the deadline determination algorithms
discussed below make use only of ensemble averages
and variances.

4.2.1 Deadline determination algorithms

There are two classes of deadline determination algo-
rithms [7]: fixed deadline determination and dynamic
deadline determination. A fixed deadline determination
algorithm chooses a constant relative deadline for each
job based on an estimated deadline function of the job.
The scheduler uses the chosen deadline as the target,
aiming at completing the job within the chosen relative
deadline. Algorithms in this class include the worst-case
deadline (WCD) algorithm, the mean reference deadline
(MRD) algorithm, the mean reference deadline- o
(MRD- ) algorithm, and the initial state mean reference
deadline (ISMRD) algorithm. The WCD algorithm
selects the minimal of all possible deadline values as the
deadline of the job; this is traditionally how the job
deadline is determined. The MRD, MRD- o, and ISM-
RD algorithms are similar in their way of selecting the
job deadline. They compute the intersection of an esti-
mated deadline function of the job and the reference
timeline y = ¢, and use the deadline at the intersection as
the deadline of the job. They differ in the way they
compute the estimated deadline function. The MRD
algorithm uses the mean function of the deadline ran-
dom process as the estimated deadline function. The
MRD- ¢ algorithm shifts the mean deadline function by
o times of the standard deviation function and uses the
resulting function as the estimated deadline function.
The ISMRD algorithm takes into account the object
states when a job arrives. Instead of using the mean
deadline function, the ISMRD algorithm uses as the
estimated deadline function the mean deadline function
conditioned on the given deadline value at the instant of
time when the job arrives.

Dynamic determination algorithms, on the other
hand, try to improve the choice of the relative deadline
of each eligible job based on the job’s past and current
deadline values. The scheduler may adapt the scheduling
strategy as the chosen relative deadlines of jobs change.
Dynamic deadline determination algorithms assume that
the past and current job deadlines are known. In other
words, at elapsed time x, the values of deadline function
d (?) for 0 £ ¢t < x are known. Algorithms in this class
include the conditional mean reference deadline
(CMRD) algorithm and the conditional mean reference
deadline- « (CMRD- ) algorithm. The CMRD algo-
rithm computes the mean deadline function of the
deadline random process conditional on the values of
d (t) for 0< ¢t £ x, and uses the conditional mean
function as the estimated deadline function. It then
chooses the intersection of the estimated deadline func-
tion and the reference timeline as the job deadline.
To improve the probability of in-time completion, the
CMRD- « algorithm shifts the conditional mean dead-
line function by o times of the standard deviation
function.

The approach to deadline update should be chosen
based on the accuracy of the probability density func-
tion and the overhead of updates. When the confidence



interval of the mean deadline function is relatively small
or the overhead is not negligible, the system may use
fixed deadline determination algorithms. Otherwise, the
dynamic deadline determination algorithms can provide
better performance.

4.2.2 Relative merits

The algorithms described above were evaluated in a
simulation experiment [7]. They were found effective in
determining state-dependent job deadlines. As expected,
the deadline miss rate can be reduced at the expense of
processor utilization by determining job deadlines in a
more conservative manner. These algorithms offer a
systematic way to trade off the probability of in-time
completion and system utilization.

In general, fixed deadline assignment works well
when the deadline functions are known or can be pre-
dicted reasonably accurately. An obvious advantage is
lower scheduling overhead. The usage of constant
deadlines makes it possible for the scheduler to queue
each job only once, upon its arrival, for example. For
some types of jobs (e.g. message transmissions in some
networks), reordering eligible jobs in the ready queue
can be prohibitively expensive. Fixed deadline assign-
ment may be the only option. Dynamic deadline
assignment is recommended when changes of object
states and requirements can be observed and updated
with minimal overhead and the additional scheduling
overhead can be tolerated.

Among the fixed deadline determination algorithms,
the ISMRD algorithm outperforms the others in most
simulated cases. The ISMRD algorithm estimates the
job deadline with the minimal estimation error and
achieves a higher system utilization in comparison with
the traditional deadline determination algorithm, i.e. the
WCD algorithm.

The dynamic deadline determination algorithms
outperform the fixed deadline determination algorithms
when the overhead of reordering jobs in the dispatch
queue is negligible. The simulation results show that
these algorithms can improve the system schedulability
from 15% to 30% under different circumstances.

In summary, the deadline determination algorithms
take into account the change of object states. The more
accurate low-level timing requirements produced by
them allow the system to meet its high-level functional
requirements without underutilizing system resources.

5 Software design

To complete state-dependent deadline jobs in time, the
developer must take into account the time-varying
deadlines while designing such a system. In this section,
we first present the process of accepting and executing
state-dependent deadline jobs. Then, we present a gen-
eral software architecture of such a system. Last, we
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discuss the implementation of an independent module,
called requirement engine, which is designed to assign
deadlines to jobs in the real-time system. (The require-
ment engine is independent in the sense that it does not
use resources in the real-time system.)

Specifically, the real-time system contains jobs with
known timing requirements as well as state-dependent
deadline jobs. For the sake of clarity, we continue to
treat the deadline of each state-dependent job as its only
unknown timing requirement. In other words, all the
timing requirements of the real-time system are known,
except the deadlines of state-dependent deadline jobs.
The function of the requirement engine is to determine
these deadlines.

5.1 Admission control and scheduling

Figure 4 shows the admission control and deadline up-
date procedure. In this figure, the solid lines and boxes
denote the actions and operations in the real-time sys-
tem; the dashed lines and boxes denote the actions and
operations for the requirement engine. For the sake of
concreteness, we assume that the real-time system and
the requirement engine communicate via messages.

When a job arrives, the system checks whether the job
has a valid known deadline. (We will return shortly to
explain when the deadline of a job may be known but
invalid.) If the job has a valid (known) deadline, it is
subjected to acceptance test. As a part of an acceptance
test, the system conducts a schedulability analysis to
determine whether the newly arrived job can be sched-
uled to complete in time (with an acceptable probability)
without adversely affecting the in-time completion of
eligible jobs in the system. If the new and eligible jobs
are not schedulable, the real-time system rejects the job.
The system accepts the new job if it and eligible jobs are
schedulable, i.e. they can all complete in time. The job is
then inserted in the dispatch queue according to the
scheduling algorithm used by the system. (The flow chart
in Fig. 4 states that the new job is inserted in the dis-
patch queue according to its valid deadline. This state-
ment may give the impression that eligible jobs are
scheduled in the earliest-deadline-first (EDF) basis.> We
do not mean to strict the choice of scheduling algo-
rithms; the real-time system may use any good real-time
scheduling algorithm, together with a suitable schedu-
lability analysis scheme, that aims at meeting the timing
requirements of all eligible jobs.)

When the new job is a state-dependent deadline job
and does not have a valid deadline, the system sends a
deadline determination request to the requirement en-
gine. Upon receiving a request, the requirement engine
computes and returns a valid deadline for the new job.
Associated with each request is a timeout interval. If the
timeout expires before the requirement engine returns a
valid deadline for the new job, the system rejects the new

3 This algorithm is optimal for scheduling jobs on one processor.
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Fig. 4 Flow chart of accepting
state-dependent deadline jobs
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job. If the requirement engine returns a valid deadline in
time, the system proceeds with an acceptance test on the
new job according to the valid deadline of the job, and
accepts or rejects the job in the way described above.
When a state-dependent deadline job is accepted, the
system registers the job with the requirement engine if
the engine uses a dynamic deadline determination
algorithm. (This part is not shown in Fig. 4.)

When the requirement engine uses a dynamic deadline
determination algorithm, the deadline of a state-depen-
dent deadline job may change before it completes. When
such a change occurs, the requirement engine initiates a
deadline update job (which is a system job with a con-
stant and short relative deadline.) In general, arbitrary
deadline changes may overload the system and cause
some jobs to miss their deadlines. Hence, the system al-
lows changes only if a schedulability analysis of all eli-
gible jobs with updated deadlines succeeds. Otherwise,
the changes are ignored. Whenever the valid deadline of a
job is changed, the job is removed from the dispatch
queue and reinserted according to the new valid deadline.

When a job completes and dynamic deadline deter-
mination algorithms are used, the system sends a mes-
sage to the requirement engine to unregister the job. The
message stops the requirement engine from continuously
updating object states and timing requirements of the
completed job.

5.2 System architecture

As stated earlier, the requirement engine is independent
from the real-time system in the sense that the engine

does not compete for resources with jobs in the real-time
system and its operations are not under the control of
the real-time system scheduler. The interaction between
the system and the requirement engine are accomplished
by message passing. In fact, a requirement engine may
serve more than one real-time system. In addition to the
deadlines of state-dependent deadline jobs, it can be
generalized to provide other time-varying requirements.
The architecture described here allows these generaliza-
tions naturally.

Figure 5 shows the overall architecture. The upper
portion of this figure shows the components of the real-
time system; the lower portion shows the requirement
engine. The thin and thick directed lines represent the
interactions within the real-time system and to/from the
system, respectively. In particular, the thick dashed lines
represent the interactions between the real-time system
and requirement engine.

We have already described the function of the
admission controller and the queuing of admitted jobs in
the dispatch queue. The real-time system also maintains
a pending queue. Each state-dependent deadline job is
placed in the pending queue by the admission controller
when it waits for a valid deadline. The job is removed
from the pending queue when the requirement engine
assigns a valid deadline or when the timeout associated
with the deadline determination request for the job ex-
pires, whichever occurs first. Figure 5 shows that the
real-time system treats a job removed from the pending
queue when its deadline is assigned as a new arrival with
a valid deadline. On the other hand, when timeout ex-
pires, a job removed from the pending queue is rejected.



Real-Time System

129

Timeout expires {rejected jobs)

External Objects

Jobs with assigned deadlines

Pending Queue |
Rejected Joby Pending Jobs

D

] AEJE?‘E)&]S ( L. Admitted Jobs
- L Admission Controller > eeen Seheduler Processoc(y

H 1
I
1
i '
: I
Deadline Determination » Deadline Update Activation 1 | Deadline Update Messages
at release time ! gmemsm s aaaans '
______________ ot
r : 1 I
Yy v

Requirement Engine

Fig. 5 System architecture

This figure also shows notifications from the require-
ment engine whenever the deadline of a registered job
changes. When a job completes, the requirement engine
is notified to unregister the completed job. These inter-
actions were described earlier.

5.3 Requirement engine

The requirement engine consists of four modules: the job
registration module, the statistical database, the object
state update module, and the deadline determination
module. These modules and their interactions are shown
in Fig. 6. Each box and directed line represent a logic
component and data flow between components, respec-
tively. With these four modules in a requirement engine,
the real-time system will be aware of the changes of
time-varying deadlines during the runtime. Thus, the
system can adapt to changes in deadlines of state-
dependent deadline jobs to meet their high-level func-
tional requirements.

The job registration module maintains records for
registered jobs. In this architecture, the requirement
engine supports both periodic time-triggered and spo-
radic event-triggered requirement updates. The job reg-
istration module is responsible for triggering deadline
updates when the timing requirements are time-triggered
periodically. The module also keeps track of the latest
valid deadlines of all registered jobs.

The statistical database stores the statistical data on
the deadline random processes. Such data include esti-
mates of PDFs and statistical average and standard
deviation functions of the random processes. The
information is used by the engine in computations of
valid deadlines.

The object state update module acquires the object
states on behalf of the deadline determination module.

Acquisitions can be either active or passive: The object
state update module sometimes actively probes the states
of the external objects and notifies the requirement
determination module when non-negligible changes in
object states occur. Indeed, the module actively probes
the job states whenever it receives a request from the
determination module. For instance, the object state
update module in an intelligent transport system may
actively probe the state of a vehicle periodically by
sending a message to the global positioning system
(GPS) device on-board the vehicle. Probing is said to be
passive when the module receives updates of object
states from external objects. For instance, in a mobile IP
network, a mobile device may periodically send the
“I-am-live”” message to the base station. The signal-to-
noise ratio of the message can be used to estimate the
state of the mobile device.

The deadline determination module is an interface
between the requirement engine and the real-time sys-
tem. It accepts deadline determination requests from the
real-time system and returns valid deadlines to the sys-
tem. When a deadline determination request message for
a state-dependent deadline job arrives, the job is first
registered by the job registration module. (A state-
dependent deadline job is unregistered when the job is
rejected or completes in time.) Then, the module initiates
a deadline determination task: Each instance of the
task computes a valid deadline for the state-dependent
deadline job. The deadline determination task first
queries the object state update module for the object
states of the job and selects an estimate of the PDF (or
statistical average and standard deviation functions) of
the deadline random process of the job. A valid deadline
is then computed using one of the algorithms described
in Sect. 4. The computed valid deadline is returned to
the real-time system for use in schedulability analysis.

The timing parameters of the deadline determination
task depend on the deadline determination algorithms
used in the requirement engine. When a fixed deadline
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determination algorithm is used, the deadline determi-
nation module initiates an aperiodic task, which has
only one instance. On the other hand, when a dynamic
deadline determination algorithm is used, the module
initiates a periodic or sporadic task. The task repeatedly
recomputes and updates the valid deadline of each state-
dependent deadline job until the job is unregistered from
the system. When the system requests for periodic
monitoring and update of the deadlines of some jobs, a
periodic task is created for each job so that valid dead-
line of the job is updated once every constant time
interval. Periodic update of valid deadlines allows the
system to estimate accurately the amount of resources
required to process the updates. (Hence, the admission
controller will not falsely admit too many real-time jobs
and overload the system.)

When the system chooses to have valid deadlines
updated only when the deadlines may have changed
more than some thresholds, the deadline determination
module creates sporadic tasks to do this work. Sporadic
update of valid deadlines allows the system to allocate
the resources more effectively. Each instance of such
a sporadic deadline determination task is initiated by a
message from the object state update module when a
valid deadline update becomes necessary (e.g., whenever
object states have changed by a specific threshold.) A
minimal inter-arrival time is set for every sporadic task
so that the change of object states within such a time
interval will never be large enough to trigger a valid
deadline update. Overload caused by sporadic deadline
updates can be avoided by using a sporadic server

approach [4, 17] to allocate resources for the sporadic
updates.

After a deadline determination task is created, the
admission controller conducts a schedulability analysis
to make sure that the new deadline determination task
and other tasks in the engine will complete in time. The
new task is accepted only if the schedulability analysis
succeeds. Otherwise, the task is rejected and a failure
of the deadline determination request is reported. Ac-
cepted deadline determination tasks are scheduled by
some real-time scheduling algorithm such as the Rate-
Monotonic or EDF algorithm to complete by their
deadlines.

6 Summary

We presented here a method for designing real-time
systems so that they can better meet their high-level
functional requirements. In particular, the low-level
timing requirements of a real-time system may change
over time. A new task model is developed to characterize
real-time jobs whose timing requirements may change
over time. We described two approaches to acquiring
statistical data on the deadline random process before
the system starts. Given the statistical data, many
determination algorithms can be used to determine the
timing requirements of each job when the job arrives and
before the job completes. We also propose an architec-
tural framework for real-time systems that consider
changes in timing requirements. A requirement engine is
added to acquire object states and to determine timing
requirements. The requirement engine allows the real-



time system to track changes in its timing requirements
and adapt the scheduling strategies it uses to meet the
requirements.
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