
1 23

Requirements Engineering

ISSN 0947-3602

Requirements Eng
DOI 10.1007/s00766-011-0142-z

Uncovering quality-attribute concerns
in use case specifications via early aspect
mining

Alejandro Rago, Claudia Marcos &
J. Andrés Diaz-Pace

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer-Verlag

London Limited. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your work, please use the accepted

author’s version for posting to your own

website or your institution’s repository. You

may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.

ORIGINAL ARTICLE

Uncovering quality-attribute concerns in use case specifications
via early aspect mining

Alejandro Rago • Claudia Marcos •

J. Andrés Diaz-Pace

Received: 10 August 2011 / Accepted: 19 November 2011

� Springer-Verlag London Limited 2011

Abstract Quality-attribute requirements describe con-

straints on the development and behavior of a software

system, and their satisfaction is key for the success of a

software project. Detecting and analyzing quality attributes

in early development stages provides insights for system

design, reduces risks, and ultimately improves the devel-

opers’ understanding of the system. A common problem,

however, is that quality-attribute information tends to be

understated in requirements specifications and scattered

across several documents. Thus, making the quality attri-

butes first-class citizens becomes usually a time-consuming

task for analysts. Recent developments have made it pos-

sible to mine concerns semi-automatically from textual

documents. Leveraging on these ideas, we present a semi-

automated approach to identify latent quality attributes that

works in two stages. First, a mining tool extracts early

aspects from use cases, and then these aspects are pro-

cessed to derive candidate quality attributes. This deriva-

tion is based on an ontology of quality-attribute scenarios.

We have built a prototype tool called QAMiner to imple-

ment our approach. The evaluation of this tool in two case

studies from the literature has shown interesting results. As

main contribution, we argue that our approach can help

analysts to skim requirements documents and quickly

produce a list of potential quality attributes for the system.

Keywords Quality attribute � Early aspect � Use case

specification � Text mining � Tool support

1 Introduction

Requirements engineering (RE) is an important discipline

in any software development, as it helps to ensure that the

system specification fulfills the stakeholders’ needs and,

ultimately, that the right software product will be built.

Core activities in RE include elicitation, modeling, analy-

sis, communication, and negotiation of requirements,

among others [31]. Mistakes or not enough attention to RE

activities cause problems and re-work in later development

activities such as architectural design, detailed design, and

implementation. In particular, identifying quality attributes

(e.g., modifiability, performance, availability, etc.) relevant

to the stakeholders and eliciting quality-attribute require-

ments (e.g., in the form of quality-attribute scenarios) both

play a key role in determining the software architecture of

the system [5]. Typical sources of quality-attribute

requirements are business goals, domain-specific concerns,

and environmental constraints.

Unfortunately, quality-attribute requirements tend to be

understated in requirements specifications, because usually

the focus is primarily on functionality [10]. At best, qual-

ity-attribute concerns are informally captured and often

appear scattered through several specifications. For exam-

ple, a use case can qualify a given piece of functionality

with words such as ‘‘fast’’ or ‘‘with little delay’’ to indicate

A. Rago (&) � C. Marcos � J. A. Diaz-Pace

ISISTAN Research Institute, UNICEN University,

Paraje Arroyo Seco, Tandil, Argentina

e-mail: arago@exa.unicen.edu.ar

C. Marcos

e-mail: cmarcos@exa.unicen.edu.ar

J. A. Diaz-Pace

e-mail: adiaz@exa.unicen.edu.ar

A. Rago � J. A. Diaz-Pace

CONICET, Buenos Aires, Argentina

C. Marcos

CIC, Buenos Aires, Argentina

123

Requirements Eng

DOI 10.1007/s00766-011-0142-z

Author's personal copy

a performance concern. Related performance comments

might be hinted in another use case; but the fragmentation

precludes a consistent analysis of the performance concern.

Because of these problems, quality-attribute requirements

are often discovered late in the development process, and

the changes to accommodate those requirements can be

costly to make. For example, a key security concern being

inadvertently skipped in a use case can lead to a wrong

implementation; and adding the necessary security mech-

anisms to a solution as an afterthought can be difficult. It is

often up to the analyst to glean the main quality attributes

from different documents and workshops with stakehold-

ers. In this context, a very helpful technique is to have the

analyst skim a number of relevant documents and come up

with a list of candidate quality attributes, which she can

later discuss and refine with the stakeholders. However,

requirements tools have not addressed yet this need.

On the other hand, it has been argued [6] that the

identification of the so-called early aspects (also known as

early crosscutting concerns) can significantly help to ana-

lyze and plan for design tradeoffs early in the lifecycle.

Early aspects are typically detected in requirements spec-

ifications. An aspect at the requirements level can be seen a

broadly scoped property that affects (i.e., crosscuts) mul-

tiple other requirements [1, 36]. Examples of early aspects

commonly found in requirements are security, mobility,

real-time constraints, etc. Over the last years, several semi-

automated techniques for mining early aspects from textual

specifications have been developed [23, 37, 39]. Interest-

ingly, some early aspects actually derive into quality-

attribute concerns [3, 6] (but not all early aspects will have

quality-attribute connotations). For example, the analysis

of an early aspect about real-time constraints can reveal a

performance concern. Along this line, we argue that the

identification of quality attributes in requirements specifi-

cations can be informed by the early aspects detected in

those specifications. That is, a hidden quality-attribute

concern can surface first as an early aspect (e.g., via a

mining tool), and then an analyst can check its relevance

from a quality-attribute perspective.

In previous work, we developed an aspect mining tool

called semantic aspect extractor tool (SAET) [34, 35] that

detects potential crosscutting concerns semi-automatically

from use case specifications. This tool relies on several

techniques such as natural language processing (NLP),

word sense disambiguation (WSD), and semantic cluster-

ing, among others. In this article, we present a tool

approach called QAMiner (Quality-Attribute Miner) that

helps analysts to extract potential quality attributes from

use cases, based on the early aspects resulting from SAET.

Basically, QAMiner works in two stages: the first stage

takes a set of use cases and asks SAET to generate a list of

early aspects with crosscutting relations to the use cases;

and the second stage processes the outputs of SAET using a

predefined quality-attribute ontology in order to derive a

list of candidate quality attributes. QAMiner goes through

the early aspects and looks for words that match the con-

cepts of a given quality attribute within the ontology.

Those quality attributes that receive more matchings are

outputted as candidate quality attributes for the system.

The contributions of this work are two-fold. First, we

propose a novel use of early aspects as ‘‘hints’’ for latent

quality attributes in use cases. Second, we provide semi-

automated support for the approach and present an evalu-

ation of QAMiner with two case studies from the literature.

The rest of the article is organized into 5 sections.

Section 2 provides background information about quality

attributes and early aspects. Section 3 describes the steps of

the QAMiner approach, based on a motivating example.

Section 4 presents the results of a preliminary evaluation of

QAMiner. Section 5 discusses related work. Finally, Sect. 6

gives the conclusions and future work.

2 Background

The development of a software system begins with a

specification of the high-level functional requirements as

well as any operational constraints that the system should

satisfy [31]. These artifacts usually serve to derive a soft-

ware architecture for the system. In addition to function-

ality, it has been long recognized that quality attributes

must be clearly specified as part of requirements specifi-

cations [5]. Quality-attribute examples include perfor-

mance, security, availability, modifiability, testability, etc.

Since the definition of a quality attribute is often non-

operational, it is customary to characterize a quality-attri-

bute by means of quality-attribute scenarios. In some

domains, it is also possible to leverage on domain-specific

knowledge to define quality-attribute concepts [9, 12].

From an analyst’s perspective, the elicitation of quality

attributes (and corresponding scenarios) as early as possi-

ble is very important, because they will inform subsequent

design decisions and help to manage quality-attribute

tradeoffs.

Having a good separation of concerns in requirements

specifications is also important for an analyst. For instance,

if the same concept appears again and again in several use

cases, that concept should be factored out and dealt with

separately. A recurring concept in requirements is called

early aspect (or requirement-level aspect), and it is said to

crosscut specific requirements. For example, let’s assume

that the system functionality is partitioned into a set of use

cases, as illustrated in Fig. 1. The system in this diagram is

an excerpt from the health watcher system (HWS) [18]. A

Persistence aspect crosscuts several use cases dealing with

Requirements Eng

123

Author's personal copy

data storage/retrieval, so that this functionality should be

segregated to a single artifact [24].

More formally, an early aspect is a broadly scoped

property represented by a single requirement or a coherent

set of requirements, which affects multiple other require-

ments in the system [1]. The crosscutting can take two

forms as follows: (1) it constrains the specified behavior of

the affected requirements; or (2) it influences the affected

requirements altering their specified behavior. Coming

back to our example, the Persistence aspect is actually a

requirement that constraints the use cases to a consistent

way of handling data. The aspect might also influence the

behavior of these use cases by imposing data encryption

mechanisms.

When analyzing functional requirements, we believe

that quality attributes and early aspects are related to one

another, as shown in Fig. 2. On one side, crosscutting

concerns are scattered or tangled as functional require-

ments, making it difficult to understand and design for

those requirements. To alleviate this problem, crosscutting

concerns can be encapsulated into early aspects. On the

other side, functional requirements are often affected by

quality-attribute properties. Quality-attribute properties are

not always clearly elaborated when being part of functional

requirements. For example, saying just that a system ‘‘must

be secure’’ does not contribute to the design of a secure

architecture. The problem is that ‘‘security’’ is too general

and its meaning as a quality attribute cannot be discerned.

Bass et al. [5] have proposed predefined quality-attribute

scenarios to properly characterize quality attributes. Inter-

estingly, some researchers have discussed how early

aspects contribute to the identification of quality attributes

[6, 20, 30]. In general, the relationship between early

aspects and quality attributes is one-to-many, but this

relationship is not mandatory. In the example of Fig. 1, the

Persistence aspect is mainly associated with a modifiability

quality attribute. Alternatively, the same aspect could point

to other quality attributes such as security or performance.

Note that the derivation of quality attributes is not

straightforward for the analyst, as it depends on the context

in which the early aspect is used within the use cases.

2.1 Mining early aspects from textual specifications

Although good requirements specifications are desirable

[21],1 analysts have to deal with the fact that most

Fig. 1 Example use case

diagram

Fig. 2 Relationship among requirements, quality attributes, and early

aspects

1 Requirements are an important factor in project success or failure,

but there are also other factors that come into play (e.g., lack of

stakeholder involvement, incorrect environmental assumptions, com-

munications failures within development teams, inadequate conflict

management, etc.).

Requirements Eng

123

Author's personal copy

requirements documents are written in textual form, with

little or no structure. Some notations such as use cases

provide structured templates, but filling out the templates

with the right text is still the analyst’s responsibility. A

survey by Luisa et al. [28] about RE processes in software

companies found that approximately 80% of software

requirements are written in natural language. In the

remaining 20%, nearly 16% were organized in templates

but again specified in a non-formal manner. This means

that roughly 96% of the requirements are documented in

natural language. A clear advantage of using natural lan-

guage (over sophisticated notations) for capturing

requirements is that the communication with stakeholders

is improved. On the downside, processing documents

written in natural language can be a time-consuming and

error-prone activity for the analyst, particularly in the case

of large documents. In this context, tools able to extract (or

summarize) relevant topics from text are of great help for

the analyst’s work. Recent advances in NLP and text

mining techniques have enabled semi-automated assistance

for requirements elicitation and modeling [26]. It is pos-

sible to mine various kinds of information, such as domain

entities, particular behaviors, potential crosscutting con-

cerns, among others.

2.2 Semantic aspect extractor tool

In previous work [35], we developed a tool called SAET

that mines early aspects from use cases. SAET plays an

important role in our approach, because the early aspects

emitted by this tool provide clues for identifying latent

quality-attribute concerns, as we will explain in the next

section. At the core of SAET, there are text processing

techniques, such as NLP [29] and WSD [33], which look at

the textual sections of the use case template and apply a

semantic analysis in order to find concerns that crosscut two

or more use cases. These concerns constitute candidate

early aspects for the use cases. Each early aspect is char-

acterized by a set of descriptors, which are pairs of verbs

and direct objects. A descriptor essentially represents a

particular system behavior, so that a set (of descriptors)

contains semantically related behaviors. For instance, the

Persistence aspect in Fig. 1 was actually suggested by

SAET after processing the accompanying use cases. This

aspect has descriptors such as: \retrieves, list[, \saves,

data[, \search, repository[, \store, information[, \rol-

led-back, changes[, \updated, complaint[, among others.

Internally, SAET performs several text analysis steps.

The first step is a NLP of the textual use cases, for

detecting sentences and word boundaries, as well as for

recognizing lexical, syntactical, and semantic properties of

these words, such as part-of-speech tags. To recognize

lexical and syntactical units, the tool uses the OpenNLP2

toolkit. In addition, the tool uses WordNet3 as a sense

inventory for detecting the semantic meaning of each word.

Specifically, we take advantage of semantic similarity

measures (e.g., Lesk Overlaps [27, 32] and Extended Lesk

Overlaps [32]) and of a WSD algorithm (maximum relat-

edness disambiguation [33]). Afterward, the second step

detects the main verbs and their direct objects in each

sentence. These descriptors are arranged in a data structure

known as action-oriented identification graph (AOIG) [38],

which we have extended to support clustering. Figure 3

schematically depicts the relationships among the use

cases, the AOIG, the clusters, and the resulting early

aspects. The clustering process is based on the similarity

measures and the WSD algorithm above. The resulting

clusters are actually the early aspects. At last, the third step

transverses the AOIG and ranks the early aspects according

to different criteria (e.g., crosscutting rate, cluster statistical

weight, among others). Some clusters might be filtered out,

if they are considered not relevant. A final ranking is

presented to the analyst as a list of candidate early aspects.

To facilitate the understanding of its suggestions, the tool

also generates traceability links from the aspects to the

original use cases. The results of applying SAET to case

studies have shown the potential of the semantic analysis

techniques.

3 The QAMiner approach

The idea behind our approach, called QAMiner, is to

provide support to identify quality attributes from

requirements specifications in a semi-automated fashion.

QAMiner is intended to assist analysts in dealing with

quality-attribute requirements and reasoning about their

impact on the product, at early stages of software devel-

opment. As inputs, the approach takes functional require-

ments specified by use cases and early aspects previously

identified with the SAET tool. Both the use cases and the

early aspects come in textual form. Each early aspect is

linked to one or more use cases, i.e., an early aspect

crosscuts use cases. The core of QAMiner is the analysis of

the descriptors representing each early aspect and the

words from its related use cases, in order to infer quality

attributes that might be involved in the crosscutting

concerns.

The QAMiner tool approach works in two stages, as

shown in Fig. 4. First, the token generation stage processes

the textual input and generates tokens with relevant infor-

mation for further analysis. Second, the token analysis

stage receives the tokens and, for each crosscutting

2 http://sourceforge.net/projects/opennlp/.
3 see http://wordnet.princeton.edu/.

Requirements Eng

123

Author's personal copy

http://sourceforge.net/projects/opennlp/
http://wordnet.princeton.edu/

concern, it computes a score with respect to predefined

quality attributes. The information about these quality

attributes is configured in the tool (in advance) using an

ontology [19]. The scores from all the crosscutting con-

cerns are combined, and those quality attributes with the

highest scores are returned to the analyst as the candidate

quality attributes of the system. In the following sub-sec-

tions, we describe each of the stages in detail.

3.1 Token generation

This stage involves a lexical and syntactic analysis of the

input text (i.e., the use case specifications and early

aspects). As mentioned previously, SAET is employed for

early aspect identification. There are two sequential activ-

ities for token generation. First, input data are preprocessed

and transformed into a list of tokens. We define a token as a

basic unit of text with several attributes of the form

\attribute, value[, for example:\kind, use-case[,\weight,

1[, \occurrences, 4[, etc. Table 1 describes the attri-

butes associated with a token. Thus, the list of tokens

contains words selected from each early aspect and use

case. Second, a series of filters are applied on the list of

tokens in order to remove irrelevant information. Each

filter can be seen as a processing component that reads

tokens, produces modifications on them, and outputs the

Fig. 3 Determination of

candidate early aspects in SAET

Fig. 4 QAMiner approach

Requirements Eng

123

Author's personal copy

modified tokens, so that other filters can work on the

tokens. This way, independent transformations can be

applied using a pipe-and-filter style [5]. QAMiner imple-

ments five filters, each performing one of the following

transformations:

– Lower case: The filter puts the words in lower case

(e.g., Persistence ? persistence).

– Stop words: The filter deletes non-relevant words, such

as prepositions, pronouns, articles, and so on (e.g., the,

of, and are are discarded).

– Stemming: The filter reduces the words to its root (e.g.,

query ? queri, changes ? chang).

– Weight: The filter weights each word according to its

place in the use case specification (sections are name,

description, main flow, precondition, etc).

– Frequency: The filter counts the occurrences of each

word within the same section of the token.

To clarify the processing of the filters, let’s consider the

use cases of Fig. 1, as detailed in Table 2. Additionally, we

know that the system has modifiability and availability

requirements, as described in Table 3.

Table 1 Token attributes
Attribute Description Value

Id Unique token identifier Identifier number

Kind Originating artifact (use case or early

aspect)

Use case or early aspect

Section Location of the token in the artifact For use cases, the values are brief-description,

normal-flow, etc. or for early aspects, the values

are pairs containing verbs and direct objects

Occurrences Number of token occurrences Occurrence number

Weight Weight according to relevance of

token

Weight score

Table 2 Example of use case

specification
Use case Textual specification (extract)

Query information …
The system retrieves the list of health units stored

…
The unique identifier is used by the system to search the repository for the selected

health unit

…
Complaint

specification

…
The system saves the complaint

…
The common complaint information is parsed and stored with the OPENED state

…
Login …

The system retrieves the employee details using the login as a unique identifier

…
Register tables …

The system saves the data

…
Update complaint …

The complaint information is updated to store the new information

…
The complaint changes are rolled-back

…
Register new

employee

…
The system saves the new employee’s data

…
… …

Requirements Eng

123

Author's personal copy

Table 4 lists the tokens for the ‘‘Query information’’

use case and the Persistence early aspect, as produced

by the token generation stage. The leftmost column

shows the input tokens, while the rightmost column

shows the tokens after being processed by three of the

filters. For example, token ‘‘retrieves’’ belongs to the

basic flow of a use case. As another example, token

‘‘search’’ comes from an early aspect (actually, the

token was extracted from the verb-object pairs for the

Persistence aspect).

The application of the last two filters annotates the

tokens with attributes about frequency and relevance

(weight). These attributes will be used when computing the

quality-attribute scores, as explained in Sect. 3.2. By

default, we use the weights below for each section of a use

case specification or early aspect.

Table 3 Example of quality-

attribute requirements
Availability The system should be available 24 h a day, 7 days a week. Since the systems is not

mission-critical, it might stay off until any fault is fixed

Storage

medium

The system must be flexible in terms of the storage format, allowing the use of files or

different databases (e..g, MySQL, Oracle, etc.)

Table 4 Token processing (first 3 filters)

Requirements Eng

123

Author's personal copy

– use case sections: name, description, priority, and actor

? weight = 1;

– use case section: basic flow ? weight = 2;

– use case sections: alternative flow, trigger, special

requirement, pre-/post-conditions ? weight = 3;

– early aspect: pairs ? weight = 3;

If a token appears several times, the individual weights for

each occurrence are added. In this schema, a recurrent or

highly weighted token will probably be more relevant than

other tokens. In Table 5, we show how the two filters

process the tokens. The leftmost column are the tokens

resulting from the previous filters (see Table 4), while the

rightmost column are the final tokens (with all their

attributes). For example, token ‘‘inform’’ has 3 occur-

rences, meaning that it is a frequent token in the

documentation (both uses cases and early aspects). The

same token has a total weight of 6, because it was found in

several places, namely: a use case name, a use case basic

flow, and an early aspect pair, with weights of 1, 2, and 3,

respectively.

3.2 Token analysis

This stage involves the inference of quality attributes from

the tokens. To do so, we rely on knowledge from an

ontology that represents the main concepts of quality

attributes [5]. As output, a set of quality attributes is

assigned to every early aspect along with a score value per

quality attribute. A high score indicates that the quality

attribute is likely present in that early aspect. Basically, the

predominant quality attribute(s) are identified by looking at

subset(s) of tokens, considering that each subset corre-

sponds to an early aspect. The information computed on

the tokens (either coming from early aspects or use cases)

is stored in data structures referred to as maps. More spe-

cifically, a membership function f: (Token) ? Map

Table 5 Token counting and weighting (last 2 filters)

Token Attributes \name, value[Filters

Frequency Weights

queri \id, 1001[, \kind, use case[, \section, name[\occurrences, 1[\weight,1[
inform \id, 1002[, \kind, use case[, \section,

name[\id, 1203[, \kind, use case[, \section, basic
flow[\id, 2015[, \kind, early aspect[, \section, pair[

\occurrences, 3[\weight, 6[

system \id, 1202[, \kind, use case[, \section, basic flow[\occurrences, 1[\weight, 2[
retriev \id, 1203[, \kind, use case[, \section, basic flow[\id,

2002[, \kind, early aspect[, \section, pair[\id,

2010[, \kind, early aspect[, \section, pair[

\occurrences, 3[\weight, 8[

list \id, 1203[, \kind, use case[, \section, basic flow[\id,

2002[, \kind, early aspect[, \section, pair[\id,

2011[, \kind, early aspect[, \section, pair[

\occurrences, 2[\weight, 5[

health \id, 1207[, \kind, use case[, \section, basic flow[\occurrences, 1[\weight, 2[
unit \id, 1208[, \kind, use case[, \section, basic flow[\occurrences, 1[\weight, 2[
store \id, 1209[, \kind, use case[, \section, basic flow[\id,

2008[, \kind, early aspect[, \section, pair[
\occurrences, 2[\weight, 5[

persist \id, 2001[, \kind, early aspect[, \section, name[\occurrences, 1[\weight, 1[
search \id, 2004[, \kind, early aspect[, \section, pair[\occurrences, 1[\weight, 3[
repositori \id, 2004[, \kind, early aspect[, \section, pair[\occurrences, 1[\weight, 3[
save \id, 2006[, \kind, early aspect[, \section, pair[\id,

2012[, \kind, early aspect[, \section, pair[\id,

2017[, \kind, early aspect[, \section, pair[

\occurrences, 3[\weight, 9[

complaint \id, 2007[, \kind, early aspect[, \section, pair[\occurrences, 1[\weight, 3[
state \id, 2009[, \kind, early aspect[, \section, pair[\occurrences, 1[\weight, 3[
detail \id, 2011[, \kind, early aspect[, \section, pair[\occurrences, 1[\weight, 3[
data \id, 2013[, \kind, early aspect[, \section, pair[\id,

2019[, \kind, early aspect[, \section, pair[
\occurrences, 2[\weight, 6[

updat \id, 2014[, \kind, early aspect[, \section, pair[\occurrences, 1[\weight, 3[
chang \id, 2016[, \kind, early aspect[, \section, pair[\occurrences, 1[\weight, 3[
rolledback \id, 2017[, \kind, early aspect[, \section, pair[\occurrences, 1[\weight, 3[

Requirements Eng

123

Author's personal copy

associates a token with a map, based on a quality-attribute

ontology created for this work. Each entry in the map

corresponds to a (different) quality attribute matched from

the ontology, and the scores come from a weighted sum

over the maps, as explained below.

Figure 5 depicts the organization of our ontology.

Classes (or concepts) are shown in ovals, filled lines rep-

resent object properties, and dashed lines indicate an

inheritance relationship between concepts. The ontology

models the domain of quality attributes in terms of quality-

attribute scenarios, based mainly on information from Bass

et al. [5]. A scenario template has 6 parts, namely: STIMU-

LUS, SOURCE, ENVIRONMENT, ARTIFACT, RESPONSE, and RESPONSE

MEASURES. The QAMiner ontology was populated with

scenario instances (based on the template) by domain

experts. The ontology currently covers six quality attributes

(modifiability, security, usability, availability, perfor-

mance, and testability) and contains approximately 50

scenario instances, derived from multiple sources in the

literature [4, 5, 41]. Figure 6 shows instances of quality-

attribute scenarios for Availability and Modifiability,

Fig. 6a and b respectively. Several properties are attached

to these instances. For example, the scenario parts of the

two instances have properties such as: ‘‘developer’’ as

CONCRETE SOURCE, ‘‘response’’ or ‘‘add-delete-modify func-

tionality’’ as CONCRETE STIMULUS, ‘‘build time’’ as CONCRETE

ENVIRONMENT, ‘‘persistent storage-database-repository’’ as

CONCRETE ARTIFACT, ‘‘be unavailable for a pre-specified

interval’’ as CONCRETE RESPONSE, and ‘‘time in days’’ as

CONCRETE RESPONSE MEASURE.

Given a token, the membership function traverses all the

types (instances) of quality-attribute scenarios in the

ontology, and for each scenario, the function tries to match

the token to a specific part of the scenario. Essentially, we

attempt here to answer the question: is the token related to

a particular CONCRETE SOURCE, STIMULUS, ENVIRONMENT,

ARTIFACT, RESPONSE, or RESPONSE MEASURE? If the token

matched successfully the ‘‘root concept’’ for the scenario

(i.e., the name of its quality attribute), it is recorded in the

map. This process is repeated for all possible matchings of

the token. Since there can be more than one instance for a

given token, the map can include different quality attri-

butes for the same token. The map will register the number

of token matches (i.e., the frequency) for each quality

attribute (see Fig. 7).

Let’s exemplify how QAMiner determines the associa-

tion of a list of tokens with quality-attribute scenario

instances from the ontology. Let’s go back to the prepro-

cessed tokens in Tables 4 and 5 and assume that we would

like to match the ‘‘repository’’ token (in Table 5) against

the availability instance of Fig. 6a. When applied to the

token, the membership function finds that class CONCRETE

ARTIFACT has a property value ‘‘persistent storage/database/

repository’’ that (partially) matches the ‘‘repository’’ token.

As a result, Availability is bound to that token (in the

corresponding map). Let’s assume now that we would like

to match the ‘‘repository’’ token against the modifiability

instance of Fig. 6b. If so, the membership function finds

another matching of the token with a property value for

class CONCRETE ARTIFACT, which ends up adding modifi-

ability to the map. The remaining tokens are processed

following the same reasoning, being eventually matched to

several parts of the scenario instances and then contributing

(new) quality attributes to the map.

Once the maps for all the tokens are ready, the scores for

the quality attributes are computed across maps (see

schema in Fig. 7). To do so, the tool uses the weights

associated with the tokens during the first stage. That is,

having an early aspect (or use case) represented by a list of

weighted tokens, the score for a quality attribute is the

result of a weighted sum of the token frequencies for those

tokens that matched the quality attribute. This way, the

scores for all quality attributes in the maps are determined.

The scores are organized according to the early aspects and

presented to the analyst in a graphical manner. For

instance, the snapshot of Fig. 8 shows the quality-attribute

scores for the Persistence early aspect, and the pie chart

indicates strong support for the quality attributes of mod-

ifiability and availability (in addition to security, which is a

false positive).

We should note that the relationships between quality

attributes and early aspects provided by the tool should be

interpreted by the analyst as hints rather than as definite

relationships. The role of QAMiner is to provide a quick

overview of latent quality-attribute information in the use

cases (related to the early aspects provided by SAET). TheFig. 5 Organization of the quality-attribute ontology

Requirements Eng

123

Author's personal copy

quality attributes outputted by QAMiner are, therefore,

‘‘informed guesses’’, which help the analyst’s decisions.

The analyst should also analyze other sources of quality

attributes (e.g., business mission, stakeholders’ workshops)

in order to have a complete picture of the relevant quality

attributes.

4 Evaluation

To evaluate the advice of the QAMiner approach regarding

quality attributes, we applied the tool in two case studies.

The first case-study is called the HWS [18, 24], and the

second one is a public IBM case-study called course reg-

istration system (CRS) [7]. In the experiments, we were

interested in the predictive output of the tool, that is, its

ability to recover relevant (candidate) quality attributes

from a use case specifications, given a set of early aspects

and quality attributes identified beforehand. We used the

precision and recall metrics from the information retrieval

(IR) [17] field in order to assess the results of the experi-

ments. Remember that an early aspect can lead to more

than one relevant quality attribute. To deal with this situ-

ation, if QAMiner suggests several quality attributes for a

particular early aspect, all the quality attributes are

accounted for the purpose of our evaluation.

For each case-study, the procedure to perform the

experiments involved a pre-processing of the use cases

with SAET and two phases. Initially, we fed the use cases

of the case-study into SAET to get a list of early aspects. In

Fig. 6 Examples of ontology instances. a Availability instance. b Modifiability instance

Fig. 7 Map calculation

Requirements Eng

123

Author's personal copy

the first phase, we processed the (same) use cases with

QAMiner and obtained a ranking of quality attributes,

based on the knowledge stored in the ontology. Also, we

studied the influences of the early aspects on this ranking.

The question to answer here was whether the early aspects

improve the precision of the resulting quality attributes,

when compared to the plain analysis of use cases (i.e.,

using QAMiner without SAET). In the second phase, we

validated the consistency of the ranking of quality attri-

butes produced with QAMiner against the actual quality

attributes of the system. The question to answer here was

whether the candidate quality attributes have correspon-

dences with the quality attributes considered in solutions to

the case studies. In practice, several authors have proposed

architectures for the HWS problem [24, 42], so we directly

took the quality attributes stated and addressed by those

architectures. For the CRS case-study, unfortunately, there

is no published architectures, and we had to infer the rel-

evant quality attributes from the problem context.

4.1 Summary of the case studies and pre-processing

The HWS is a typical Web information system and a real-

life application. Briefly, the HWS application provides on-

line access for users to register complaints, read health

notices, and make queries regarding health issues. There

are two relevant actors in this system: employees and cit-

izens (remember Fig. 1). An employee can record, update,

delete, print, search, and change the records that are stored

in the system repository. All these operations require the

employee to be authenticated by the system. A citizen can

enter complaints, which are registered also in the reposi-

tory. In response to each complaint, the system generates a

complaint code. The reason for choosing HWS as a case-

study is twofold. First, a rich set of development artifacts

are available (e.g., requirements specifications, software

architecture documents, source code, among others) [18].

Specific to our work, the HWS provides a requirements

specification with 9 use cases (around 19 textual pages).

Second, other researchers have used HWS as a model

problem and analyzed its quality-attribute properties [40,

42]. After running SAET [34, 35] on the use cases of HWS,

we detected the early aspects listed in Table 6.

The CRS is a distributed system to be used within a

university intranet. It was developed by IBM to demon-

strate their CASE tools. The development artifacts publicly

available include the requirements specifications, some

analysis classes, and a few design documents. Particularly,

the CRS specification consists of 8 use cases (around 20

textual pages). The CRS arises as a replacement of an old

Fig. 8 QAMiner snapshot

Table 6 Early aspects at HWS

Data formatting Deals with the presentation and formatting of several outputs of the HWS

Persistence Handles all operations within the HWS that need to be stored and accessed through a data store

Consistency Is in charge of verifying that inputs of the HWS system are consistent

Distribution Manages all the interaction between distributed clients and the main server of the system

Access control Addresses the task of ensuring that only authenticated users (employees) can execute restricted functionality

Error handling Manages the behavior of the HWS system when an error occurs

Requirements Eng

123

Author's personal copy

educational institution system, and it has two main actors:

students and professors. A student can apply to academic

courses and, after taking a course, she can obtain the grade

reports. A professor can add new courses and report stu-

dents’ grades. After running SAET on the use cases of

CRS, we detected the early aspects listed at Table 7. Using

the use case specifications of both case studies and the

corresponding early aspects, we proceeded to address the

two aforementioned questions, as discussed in the follow-

ing sub-sections.

4.2 Question 1: can early aspects improve the detection

of quality attributes?

We conducted a number of runs with different inputs to

QAMiner. The input variations involved (1) using only

early aspects (EA), and (2) using only use cases (UCs).

Tables 8 and 9 summarize the results of the tool for the

two case studies, respectively. Each table is organized as

follows. The top row corresponds to the names of the

early aspects previously detected with SAET (e.g., Data

Formatting, Persistence, etc.). The uses cases are cross-

cuted by these early aspects. The leftmost column (and

their rows) represents the quality attributes modeled in the

ontology (e.g., security, availability, testability, etc.),

which actually drove the quality-attribute identification

performed by QAMiner. The internal columns, tagged as

EA or UC, correspond to the type of input used for the

runs. The numbers in the matrix are the scores computed

by QAMiner with respect to the quality attributes (from

the ontology), depending on the input type. Numbers in

bold denote those quality attributes suggested as relevant

to the analyst. For instance, security received a score of

0.19 when using the Data Formatting early aspect, and

the same score was 0.28 when using just the use cases for

that early aspect. In the first case, the tool considered

security as not relevant (as it was outperformed by

Usability), while in the second case, the tool considered

both Security and Usability as relevant. The score dif-

ferences are due to the kind of information provided by

the inputs, when their tokens are analyzed in the context

of the ontology.

In the experiments with HWS, the quality-attribute

scores were affected by the input types. On one hand, we

found that using information from the use case specifica-

tions (i.e., the full text from the affected use cases) gen-

erally added ‘‘noise’’ to the detection of quality attributes.

This noise had several effects in the outputs of the tool. A

noticeable effect was that the quality attributes marked as

relevant received relatively even, low scores. For example,

in HWS (see Table 8), we knew in advance that the Data

Formatting concern has to do with data presentation and

Table 7 Early aspects at CRS

Persistence Encapsulates the access to a data repository used to store information of the CRS

Entitlement Ensures that users are logged and authenticated before accessing any system functionality, and additionally verifying users

have enough permissions to execute certain tasks

Communication Handles all communications performed with other systems, such as the existing legacy system and the billing system

Access control Is in charge of ensuring that non-registered users cannot access the CRS

Ease-of-use It is in charge of providing several facilities to improve the user experience of CRS (such as cancellation, message

confirmations, among others)

Data validation Manages the validation of certain kind of input data (formatting, invalid characters, etc.)

Data processing Deals with batch processing of information within the CRS

Table 8 QAMiner outputs on HWS

EAs (from SAET) Data formatting Persistence Consistency Distribution Access control Error handling

QAMiner input type EA UCs EA UCs EA UCs EA UCs EA UCs EA UCs

Ontology QAs

Security 0.19 0.28 0.39 0.28 0.59 0.27 0.05 0.28 1.00 0.38 0.70 0.29

Availability 0.00 0.07 0.29 0.07 0.02 0.06 0.87 0.06 0.00 0.09 0.00 0.06

Testability 0.08 0.11 0.02 0.11 0.00 0.14 0.00 0.12 0.00 0.03 0.00 0.11

Modifiability 0.00 0.09 0.26 0.09 0.04 0.13 0.00 0.11 0.00 0.01 0.00 0.12

Usability 0.69 0.31 0.01 0.31 0.05 0.26 0.00 0.28 0.00 0.35 0.20 0.26

Performance 0.04 0.14 0.04 0.14 0.30 0.14 0.08 0.15 0.00 0.15 0.10 0.15

Requirements Eng

123

Author's personal copy

formatting (that is to say, a usability connotation). How-

ever, the tool computed scores of 0.31 for Usability and

0.28 for Security (both as potential quality attributes),

when using use cases. Another effect was that, sometimes,

the tool suggested disparate quality attributes as relevant

ones. In the example, Data Formatting has little to do with

Security, so the analyst should discard it, even when rec-

ommended by QAMiner. We attribute the bias to the

wording employed in the use cases, which causes tokens to

be likely matched with instances of Security and Usability

within the ontology (see the amount of bold scores for

these two attributes in Table 8). In some other cases, this

effect of use cases was mild, and the resulting quality

attributes did have relationships with the early aspects. This

happened, for example, with the Access Control concern,

which can be certainly related to both usability and secu-

rity. On the other hand, the compact representation of early

aspects (based on verb-object pairs as descriptors) helped

reducing this noise. In the runs using only early aspects as

input, the tool achieved better results in terms of discrim-

inating potential quality attributes. In the example of Data

Formatting above, the tool appropriately associated the

concern just to Usability with a score of 0.69. Nonetheless,

note that using early aspects can still point to more than

one quality attribute for the same concern. For example, the

Persistence concern revealed three potential quality attri-

butes, all being apparently relevant in HWS.

The experiments with CRS (see Table 10) reported

similar trends as the HWS experiments. For instance,

QAMiner related the Data Processing early aspect to

Performance with a score of 0.5, when taking only early

aspects as input, while the score dropped to 0.25 when

using use cases. In the latter run, the tool detected again

additional quality attributes such as Usability and Avail-

ability. With inputs based on early aspects, the tool mainly

pointed to single quality attributes, with exceptions for the

Communication and Access Control aspects.

Overall, from the results of the two case studies, we

argue that the information contained in the early aspects is

a good mechanism to discriminate relevant quality attri-

butes. In other words, the early aspects work as a ‘‘term-

based summary’’ of the use cases for the purpose of the

quality-attribute analysis performed by QAMiner. The

evidence from the experiments, although preliminary,

validates the inclusion of SAET for pre-processing the

QAMiner inputs. In addition, the early aspects contribute to

reduce the search for matchings in the quality-attribute

ontology, thus reducing the QAMiner processing time.

Table 9 QAMiner outputs on CRS

EAs (from SAET) Persistence Entitlement Communication Access control

QAMiner input EA UCS EA UCS EA UCS EA UCS

Ontology QAs

Security 0.08 0.11 0.13 0.11 0.00 0.07 0.40 0.11

Availability 0.18 0.15 0.87 0.15 0.50 0.24 0.00 0.15

Testability 0.04 0.05 0.00 0.05 0.00 0.02 0.00 0.05

Modifiability 0.69 0.25 0.00 0.25 0.00 0.18 0.10 0.28

Usability 0.00 0.30 0.00 0.30 0.40 0.30 0.20 0.28

Performance 0.01 0.14 0.00 0.14 0.10 0.19 0.30 0.12

EAs (from SAET) Ease-of-use Data validation Data processing

QAMiner input EA UCS EA UCS EA UCS

Ontology QAs

Security 0.24 0.10 0.95 0.11 0.00 0.12

Availability 0.03 0.15 0.00 0.15 0.00 0.22

Testability 0.00 0.05 0.00 0.05 0.25 0.05

Modifiability 0.24 0.27 0.00 0.25 0.00 0.06

Usability 0.48 0.30 0.00 0.30 0.25 0.31

Performance 0.01 0.14 0.05 0.14 0.50 0.25

Table 10 QAMiner metrics

Precision Recall Accuracy

HWS 0.625 0.666 0.865

CRS 0.555 1.000 0.905

PðHWSÞ ¼ 5
5þ3

RðHWSÞ ¼ 4
4þ2

AðHWSÞ ¼ 4þ28
4þ2þ3þ28

PðCRSÞ ¼ 5
5þ4

RðCRSÞ ¼ 5
5þ0

AðCRSÞ ¼ 5þ33
5þ0þ4þ33

Requirements Eng

123

Author's personal copy

4.3 Question 2: are the detected QAs correct?

In the previous section, we analyzed the quality attributes

identified as relevant by the tool. An important issue here is

whether those quality attributes were actually the right ones

for the system. To answer this question, we cross-checked

the QAMiner outputs against documentation already pro-

vided by the case studies. In HWS, the analysis of the

‘‘actual’’ quality attributes was based on existing archi-

tectural sources [40, 42], while in CRS, the actual quality

attributes were gleaned from the documented business

goals for the system [7]. Since QAMiner performs better

when using only early aspects as input, we used the results

of that configuration to perform the cross-checking analy-

sis. The rationale of our analyses is sketched in Figs. 9 and

10, for HWS and CRS, respectively.

The leftmost column lists the input early aspects, at the

beginning of the process. In the middle column, we have

the quality attributes identified by QAMiner, as well as

arrows showing the originating early aspects with the

corresponding scores (this information is taken from

Tables 8 and 9). A filled arrow denotes a correct suggestion

of QAMiner, while a dashed arrow denotes an incorrect

one. This judgment was performed based on the descriptors

(i.e., verb-object pairs) and intent of each early aspect. At

last, the rightmost column contains the system quality

attributes, that is, the actual quality attributes as interpreted

from the case-study documentation [18, 24, 42]. The lines

between identified and actual quality attributes highlight

the correspondences between them. The fact that the same

quality attribute is sometimes identified twice by the tool

(e.g., Availability in Fig. 9) is because the early aspects

expose different ‘‘parts’’ of the reference quality attribute.

To assess the quality attributes suggested by QAMiner,

we adapted IR [2] metrics to a quality-attribute terminol-

ogy as follows. The set of actual quality attributes (AQAs)

for the system is known in advance. A quality true positive

(QTP) is a quality attribute identified correctly by QAM-

iner, which also belongs to AQAs. A quality false positive

(QFP) is a quality attribute outputted by QAMiner that is

not part of AQAs. A quality false negative (QFN) is a

quality attribute that is not identified by QAMiner, but it

belongs to AQAs. A quality true negative (QTN)4 is a

quality attribute that is neither detected by QAMiner nor

included in AQAs. Note that AQAs is the union of the sets

QTPs and QTNs. Along this line, the formula for precision,

recall, and accuracy are the following:

P ¼ QTP

QTPþ QFP

R ¼ QTP

QTPþ QFN

A ¼ QTPþ QTN

QTPþ QFPþ QFNþ QTN

Given these criteria, we have the following values for

HWS (see Fig. 9):

– 6 AQAs (actual quality attributes) ? Usability, avail-

ability, performance, scalability, modifiability, and

security

– 5 QTPs (quality true positive) ? Usability (from Data

Formatting early aspect), availability and modifiability

(from Persistence early aspect), availability (from

Distribution early aspect), and security (from Access

Control early aspect)

– 3 QFPs (quality false positive) ? Security (from

Persistence, Consistency, and Error Handling early

aspects)

– 2 QFNs (quality false negative) ? Performance and

scalability

– 28 QTNs (quality true negative)

Analogously, we have the following values for CRS (see

Fig. 10):

Fig. 9 QAMiner output analysis for HWS

Fig. 10 QAMiner output analysis for CRS

4 To calculate QFN, we count those quality attributes not related to

an early aspect which were not suggested by QAMiner. That is, for

each quality attribute the maximum value of QFN is 6, when no

quality attribute is associated with that early aspect.

Requirements Eng

123

Author's personal copy

– 5 AQAs (actual quality attributes) ? Modifiability,

availability, security, usability and performance

– 5 QTPs (quality true positive) ? Modifiability (from

Persistence early aspect), availability (from Communi-

cation early aspect), security (from Access Control

early aspect), usability (from Ease-of-use early aspect),

and performance (from Data Processing early aspect)

– 4 QFPs (quality false positive) ? Availability (from

Entitlement early aspect), usability (from Communica-

tion early aspect), performance (from Access Control

early aspect) and security (from Data Validation early

aspect)

– no QFNs (quality false negative)

– 33 QTNs (quality true negative)

Table 10 summarizes the metrics for both case studies.

Notice that the calculation of recall for HWS uses 4 QTPs

instead of 5. Such a change is explained by the redundancy

of Availability, which was hinted correctly by two early

aspects. In general, our approach obtained high accuracy

and recall when predicting quality attributes. The only

quality attribute that was mistakenly classified in a few

cases was security. This issue seems related to the way of

alluding to (or spelling) security concerns in the textual

specification, which causes many tokens to be matched

with incorrect scenario instances in the ontology. Note that

a similar bias was observed in Sect. 4.2. Further analysis

work is needed to determine a mitigation strategy for this

kind of problems.

In contrast, the precision was not as good as expected in

both case studies, due to incorrect quality-attribute pre-

dictions from certain early aspects. A number of factors

contributed to a relatively low precision of QAMiner. First,

some early aspects were not sufficiently accurate, in the

sense that the information provided by their descriptors

was not always representative of the aspect semantics. For

example, a Consistency early aspect (HWS) was composed

of verbs like ‘‘ensure’’, which does not have a direct rela-

tionship with neither an availability nor a security quality

attribute. This factor impacted negatively on the ontology

matching process. Second, even when some aspects were

properly characterized by their descriptors, the tokens

failed to match because the ontology lacked quality-attri-

bute instances for the things addressed by the aspects. That

was the case of the Entitlement early aspect (CRS), in

which words like ‘‘logged’’ were good hints but the

matching with security scenarios from the ontology failed.

Another limitation had to do with quality attributes that

were included in the ontology but were never suggested by

QAMiner, such as the testability quality attribute. This is so

because it is rather unusual to have textual references to

testing-related concerns in use cases. During the experi-

ments, we actually searched through the requirements

documents and could not find clues for testability in any of

the case studies. Regarding the performance of QAMiner

(without considering SAET), the results were computed in

few seconds for the textual specifications of the two case

studies. We speculate that both the token generation and

token analysis stages can handle large specifications with a

good performance.

4.4 Threats to validity

QAMiner detected, in a semi-automatic fashion, a number

of quality attributes from a set of use case specifications

and early aspects. However, there were issues that might

compromise the results of the experiments, regarding the

two questions we intended to answer. Three threats to

internal validity were identified. First, the quality-attribute

identification is dependent on the early aspects provided as

input to the tool, in our case produced by SAET. Although

we validated these inputs with field experts, the workings

of SAET are based on heuristics whose effects can ripple to

QAMiner. Second, the domain knowledge codified in our

quality-attribute ontology is incomplete, despite the various

instances of quality-attribute scenarios loaded in the

ontology. Furthermore, these scenarios might favor certain

types of quality-attribute matchings over others. Since it is

easy to add new concepts, relationships and scenarios to the

ontology, we plan to address this limitation in future work.

And third, determining the ‘‘actual’’ quality attributes for a

system involves subjective interpretations either from the

people that created the case-study documents or from the

authors. The analysis of the outputs of QAMiner in Sect.

4.3 is affected by this assessment. The authors’ prior

knowledge of both case studies could have also influenced

the results. A way to alleviate these issues is to perform a

controlled experiment with different people, collecting

their responses and then computing consensus and reli-

ability indexes for the study [8]. This kind of study is

beyond the scope of the QAMiner work.

When it comes to external validity, QAMiner was tested

only with medium-size case studies, but we have reasons to

believe that the approach is applicable to other systems.

The performance of the tool was very reasonable. In

addition, the usage of an ontology contributed to keep this

performance low. On the downside, the mining of early

aspects (with SAET) is not as fast as QAMiner. Another

threat to external validity refers to the quality-attribute

support currently provided by the ontology, which might

not suffice if other systems are considered, because quality-

attribute definitions are non-operational and depend on the

system context. As the ontology gets populated with more

knowledge about quality attributes, we expect to minimize

this problem.

Requirements Eng

123

Author's personal copy

5 Related work

In general, the problem of identifying and classifying qual-

ity-attribute requirements can be solved in two ways [14].

First, quality-attribute concerns can be elicited via inter-

views and negotiation with the stakeholders. Second, the

concerns can be extracted semi-automatically from func-

tional specification documents. Existing approaches to mine

quality-attribute information often rely on techniques such as

IR or NLP [11]. In addition, there are hybrid approaches that

combine eliciting techniques with mining tools.

Dörr et al. [15] present an approach whose goal is to

achieve a minimal, complete, and focused set of non-

functional requirements. Minimal means that only neces-

sary non-functional requirements are stated. Complete

means that all non-functional requirements of the stake-

holders are identified. Focused means that the impact of the

non-functional requirements on the solution is clear. More

interestingly, the set of requirements is expected to be

measurable and traceable. Measurable refers to the provi-

sion of metrics to verify that the system satisfies the non-

functional requirements, while traceable refers to the

rationale explaining why the non-functional requirements

are necessary. The authors define a meta-model in order to

support the concepts of the approach, allowing instantia-

tions of different quality models.

A model to identify and specify quality attributes that

crosscut requirements is presented in [30]. It includes a

systematic integration of those quality attributes with the

functional specification. The model comes with a process

that consists of three activities: identification, specification,

and integration of requirements. During the first activity,

the functional requirements are specified using use cases.

In the second one, quality attributes are described by means

of a special template. Finally, the third activity proposes a

set of models to capture the integration of crosscutting

quality attributes and functional requirements.

Both approaches above [15, 30] emphasize the need for

models to identify, specify, and compose quality-attribute

requirements during early development stages. By doing

so, several issues derived from incomplete, ambiguous, or

non-traceable quality concerns can be avoided. Nonethe-

less, we argue that Dörr’s approach is still complex to be

applied in practical development projects. Also, it does not

handle all crosscutting requirements properly, and some of

them can remain scattered through multiple documents.

Moreira’s model, in turn, deals successfully with cross-

cutting quality concerns in requirement stages, but it does

not discriminate between quality attributes and early

aspects. We think that being able to trace early aspects to

quality attributes, as QAMiner does, is beneficial because it

facilitates the understanding of requirements specifications

and their further usage in software design.

In [14], non-functional requirements are detected and

classified using a supervised classification approach. IR

techniques are used to process quality attributes scattered

across both structured and unstructured documents. It is

assumed that a quality-attribute type (e.g., security, per-

formance, etc.) is characterized by keywords called ‘‘indi-

cator terms’’. When a quality attribute has enough indicator

terms, it is possible to identify requirements, sentences, or

phrases related to that quality attribute. The same technique

is also employed to detect and classify early aspects [13].

Another requirements classification technique is pre-

sented in [25], which can automatically produce keyword

lists and classify requirements, as part of an analysis sys-

tem for Internet-based requirements. The approach classi-

fies the collected requirements into several categories, or

topics. These categories can be cost, priority, development

time, quality attributes, and so on. The implementation is

based on NLP techniques.

A semi-supervised approach for detection and classifi-

cation of quality attributes from text is presented in [11]. A

classifier automatically recognizes the different types of a

predefined category or class within a set of documents and

then presents the results to the analyst for inspection. The

classifier is built from a set of categorized and non-cate-

gorized documents, using a semi-supervised learning

algorithm. Once a given classifier is trained, it can be used

to categorize unlabeled requirements.

In contrast to the three approaches above [11, 13, 25],

which use machine learning techniques (e.g., classification)

to uncover quality attributes, QAMiner uses domain

knowledge about quality attributes and early aspects for

achieving the same purpose. Machine learning schemes,

based on keywords extracted from the text, present some

disadvantages regarding knowledge updates. In a tool using

classification algorithms, customizing or increasing the

knowledge of the tool for a particular domain can be dif-

ficult. The main reason is that the underlying classifications

model often needs to be re-trained (and possible re-evalu-

ated) in order to adapt to changes. In the concrete case of

quality attributes, the training would involve either finding

already-labeled datasets or having a human to manually

label requirements. On the other hand, ontologies (like the

one used by QAMiner) are more flexible regarding the

incorporation of domain knowledge. Another disadvantage

of the existing approaches is that they work on the full

extent of textual requirements, without distinguishing

between relevant and non-relevant ones (i.e., quality-rela-

ted requirements versus unrelated requirements). Process-

ing unnecessary information might add noise to the

detection, degrading its effectiveness or performance.

QAMiner benefits from early aspect descriptors to alleviate

this issue, because early aspects are frequently related to

quality-attribute requirements.

Requirements Eng

123

Author's personal copy

Related to the representation of information with

ontologies, Kayed et al. [22] describe an ontology for

quality measurements in web or desktop applications. They

have studied and analyzed various documents, reports, and

proposals concerned with software measures, attributes,

and quality, in order to extract concepts, definitions, and

terminologies from them. The goal of the ontology is to

achieve a common understanding of quality attributes for

web applications.

Overall, the ultimate goal of these approaches (including

QAMiner) is to aid analysts in the identification and

specification of quality attributes, which are present (but

often not explicitly stated) in functional requirements

documents. We believe there is still room for improve-

ments regarding precision and performance of these tools.

6 Conclusion

In this article, we present a novel approach, called QAM-

iner, to detect quality-attribute concerns in use case spec-

ifications. We take advantage of early aspects previously

identified in the use cases in order to improve that detec-

tion. The QAMiner tool relies on a schema of filters to

process input data and on a quality-attribute ontology to

suggest candidate quality attributes to the analyst. Based on

a standard format of quality-attribute scenarios, we have

constructed an ontology that contains domain concepts and

relationships for predefined quality attributes. The main

contributions of QAMiner are the role of early aspects as

drivers for identifying quality attributes and the usage of an

extensible ontology for representing quality information.

Furthermore, although not directly supported by the current

tool, we believe that QAMiner helps analysts to clarify

traceability relationships between requirements and further

design activities.

Our evaluation of QAMiner with two publicly available

systems has shown promising results, particularly in terms

of accuracy and recall of the quality attributes suggested by

the tool. On the downside, the approach has some limita-

tions related to the current knowledge stored in the ontol-

ogy, which causes relatively low precision results. As

future work, there are several lines of research. First, we

plan to evaluate QAMiner with other case studies and

within controlled environments involving multiple quality-

attribute experts and developers. As part of these experi-

ments, we will also analyze the scalability of the approach

to handle large use case specifications. We will enhance the

current ontology, both by adding new instances of (exist-

ing) quality-attribute scenarios and by incorporating new

quality attributes. These additions are expected to improve

the detection of quality-attribute requirements. Finally, we

would like to investigate extensions of QAMiner, based on

latent semantic analysis [16], so that the tool can recom-

mend traceability links between requirements and design

artifacts.

Acknowledgments We want to thank Sebastian Villanueva and

Francisco Bertoni, who implemented the QAMiner prototype and

helped us to evaluate the tool with the case studies. We are also

grateful to the anonymous reviewers for their feedback to improve the

quality of the manuscript.

References

1. Araujo J, Baniassad E, Clements P, Moreira A, Rashid A, Tek-

inerdogan B (2005) Early aspects: the current landscape. Tech-

nical Notes, CMU/SEI and Lancaster University

2. Baeza-Yates R, Ribeiro-Neto B et al (1999) Modern information

retrieval, vol 463. ACM press, New York

3. Barbacci M, Klein M, Longstaff T, Weinstock C (1995) Quality

attributes. Technical Report

4. Bass L, Klein M, Moreno G (2001) Applicability of general

scenarios to the architecture tradeoff analysis method. Technical

Report CMU/SEI-2001-TR-014, Software Engineering Institute

(SEI), Carnegie Mellon University (CMU)

5. Bass L, Clements P, Kazman R (2003) Software architecture in

practice. SEI series in software engineering. Addison-Wesley

Professional, Boston, Massachusetts

6. Bass L, Klein M, Northrop L (2004) Identifying aspects using

architectural reasoning. In: Tekinerdogan B, Moreira A, Araújo J,

Clements P (eds) Early aspects: aspect-oriented requirements

engineering and architecture design. Lancaster University, Lan-

caster, p 51

7. Bell R (2011) Course registration system. http://sce.uhcl.edu/

helm/RUP_course_example/courseregistrationproject/indexcourse.

htm

8. Ben-David A (2008) Comparison of classification accuracy using

cohen’s weighted kappa. Expert Syst Appl 34(2):825–832

9. Brito I, Moreira A (2004) Integrating the nfr framework in a re

model. In: Tekinerdogan B, Moreira A, Araújo J, Clements P

(eds) Early aspects: aspect-oriented requirements engineering and

architecture design. Lancaster University, Lancaster, p 28

10. Burge JE, Brown DC (2002) Nfr’s: fact or fiction? Technical

Report

11. Casamayor A, Godoy D, Campo M (2010) Identification of non-

functional requirements in textual specifications: a semi-super-

vised learning approach. Inf Softw Technol 52(4):436–445

12. Chung L, Prado Leite J (2009) On non-functional requirements in

software engineering. In: Borgida AT, Chaudhri VK, Giorgini P

(eds) Conceptual modeling: foundations and applications.

Springer, Berlin, pp 363–379

13. Cleland-Huang J, Settimi R, Zou X, Solc P (2006) The detection

and classification of non-functional requirements with application

to early aspects. In: Requirements engineering, 14th IEEE

international conference. IEEE Computer Society, pp 39–48

14. Cleland-Huang J, Settimi R, Zou X, Solc P (2007) Automated

classification of non-functional requirements. Requirements

Engineering 12:103–120. doi:10.1007/s00766-007-0045-1, http://

portal.acm.org/citation.cfm?id=1269901.1269904

15. Dörr J, Kerkow D, Von Knethen A, Paech B (2003) Eliciting

efficiency requirements with use cases. In: International work-

shop on requirements engineering: foundation for software

quality (REFSQ03), p 23

16. Dumais S (2004) Latent semantic analysis. Annu Rev Inf Sci

Technol 38(1):188–230

Requirements Eng

123

Author's personal copy

http://sce.uhcl.edu/helm/RUP_course_example/courseregistrationproject/indexcourse.htm
http://sce.uhcl.edu/helm/RUP_course_example/courseregistrationproject/indexcourse.htm
http://sce.uhcl.edu/helm/RUP_course_example/courseregistrationproject/indexcourse.htm
http://dx.doi.org/10.1007/s00766-007-0045-1
http://portal.acm.org/citation.cfm?id=1269901.1269904
http://portal.acm.org/citation.cfm?id=1269901.1269904

17. Frakes W, Baeza-Yates R (1992) Information retrieval: data

structures and algorithms. Prentice Hall, Englewood Cliffs, New

Jersey

18. Greenwood P (2011) Tao: A testbed for aspect oriented software

development. http://www.comp.lancs.ac.uk/*greenwop/tao/

19. Gruber T (1993) A translation approach to portable ontology

specifications. Knowl Acquis 5(2):199–220

20. Grundy J (1999) Aspect-oriented requirements engineering for

component-based software systems. In: Requirements engineer-

ing, p 84

21. Kamata M, Tamai T (2007) How does requirements quality relate

to project success or failure? In: Requirements engineering con-

ference, 2007. RE’07. 15th IEEE International. IEEE Computer

Society, pp 69–78

22. Kayed A, Hirzalla N, Samhan A, Alfayoumi M (2009) Towards

an ontology for software product quality attributes. In: 2009

Fourth international conference on internet and web applications

and services, IEEE, pp 200–204

23. Khan S, Rehman M (2005) A survey on early separation of

concerns. In: Proceedings of the 12th Asia-Pacific software

engineering conference. IEEE Computer Society, pp 776–782

24. Khan S, Greenwood P, Garcia A, Rashid A (2008) On the

interplay of requirements dependencies and architecture evolu-

tion: an exploratory study. In: Proceedings of the 20th interna-

tional conference on advanced information systems engineering.

CAiSE, pp 16–20

25. Ko Y, Park S, Seo J, Choi S (2007) Using classification tech-

niques for informal requirements in the requirements analysis-

supporting system. Inf Softw Technol 49(11–12):1128–1140. doi:

10.1016/j.infsof.2006.11.007,

http://www.sciencedirect.com/science/article/B6V0B-4MRFC79-

3/2/00f337d38f2840fe330b5caf12a09c65

26. Kof L (2005) Natural language processing: mature enough for

requirements documents analysis? In: Montoyo A, Munoz R,

Métais E (eds) Natural Language Processing and Information

Systems. Lecture notes in computer science, vol 3513. Springer,

Berlin/Heidelberg, pp 3–29. doi:10.1007/11428817_9

27. Lesk M (1986) Automatic sense disambiguation using machine

readable dictionaries: how to tell a pine cone from an ice cream

cone. In: Proceedings of the 5th annual international conference

on systems documentation. ACM, pp 24–26

28. Luisa M, Mariangela F, Pierluigi N (2004) Market research for

requirements analysis using linguistic tools. Requir Eng

9(1):40–56

29. Manning C, Schutze H, MITCogNet (1999) Foundations of sta-

tistical natural language processing, vol 59. MIT Press, Cam-

bridge, Massachusetts

30. Moreira A, Araújo J, Brito I (2002) Crosscutting quality attributes

for requirements engineering. In: Proceedings of the 14th inter-

national conference on software engineering and knowledge

engineering. ACM, New York, NY, USA, SEKE ’02,

pp 167–174. doi:10.1145/568760.568790

31. Nuseibeh B, Easterbrook S (2000) Requirements engineering: a

roadmap. In: Proceedings of the conference on the future of

software engineering. ACM, New York, NY, USA, ICSE ’00,

pp 35–46. doi:10.1145/336512.336523

32. Patwardhan S, Banerjee S, Pedersen T (2003) Using measures of

semantic relatedness for word sense disambiguation. In: Gelbukh

A (ed) Computational Linguistics and Intelligent Text Process-

ing. Lecture Notes in Computer Science, vol 2588.Springer,

Berlin/Heidelberg

33. Pedersen T, Banerjee S, Patwardhan S (2005) Maximizing

semantic relatedness to perform word sense disambiguation.

Research Report UMSI 25:2005–2025

34. Rago A, Marcos C (2009) Técnicas de nlp y wsd asistiendo al

desarrollo de software orientado a aspectos (in spanish). In:

Argentinian symposium on artificial intelligence

35. Rago A, Abait E, Marcos C, Diaz-Pace A (2009) Early aspect

identification from use cases using nlp and wsd techniques. In:

Proceedings of the 15th workshop on early aspects. ACM,

pp 19–24

36. Rashid A, Chitchyan R (2008) Aspect-oriented requirements

engineering: a roadmap. In: Proceedings of the 13th international

workshop on early aspects. ACM, pp 35–41

37. Sampaio A, Greenwood P, Garcia A, Rashid A (2007) A com-

parative study of aspect-oriented requirements engineering

approaches. In: Empirical software engineering and measure-

ment, 2007. ESEM 2007. First international symposium on, IEEE

Computer Society, pp 166–175

38. Shepherd D, Pollock L, Vijay-Shanker K (2006) Towards sup-

porting on-demand virtual remodularization using program

graphs. In: Proceedings of the 5th international conference on

aspect-oriented software development, March, Citeseer, pp 20–24

39. Siy H, Aryal P, Winter V, Zand M (2007) Aspectual support for

specifying requirements in software product lines. In: Proceed-

ings of the early aspects at ICSE: workshops in aspect-oriented

requirements engineering and architecture design. IEEE Com-

puter Society, p 2

40. Tabares M, Anaya de Páez R, Arango Isaza F (2008) Un esquema

de modelado para soportar la separación y transformación de

intereses durante la ingenierı́a de requisitos orientada por

aspectos (in spanish). Avances en Sistemas e Informática

5(1):189–198

41. Tempero E (2009) Experiences in teaching quality attribute
scenarios. In: Proceedings of the eleventh Australasian confer-

ence on computing education, vol 95. Australian Computer

Society, Inc., pp 181–188

42. Zhang H, Ben K (2010) Architectural design of the health watch

system with an integrated aspect-oriented modeling approach. In:

Computer design and applications (ICCDA), 2010 international

conference on, vol 1, pp V1-624–V1-628. doi:10.1109/

ICCDA.2010.5540893

Requirements Eng

123

Author's personal copy

http://www.comp.lancs.ac.uk/~greenwop/tao/
http://dx.doi.org/10.1016/j.infsof.2006.11.007
http://www.sciencedirect.com/science/article/B6V0B-4MRFC79-3/2/00f337d38f2840fe330b5caf12a09c65
http://www.sciencedirect.com/science/article/B6V0B-4MRFC79-3/2/00f337d38f2840fe330b5caf12a09c65
http://dx.doi.org/10.1007/11428817_9
http://dx.doi.org/10.1145/568760.568790
http://dx.doi.org/10.1145/336512.336523
http://dx.doi.org/10.1109/ICCDA.2010.5540893
http://dx.doi.org/10.1109/ICCDA.2010.5540893

	Uncovering quality-attribute concerns in use case specifications via early aspect mining
	Abstract
	Introduction
	Background
	Mining early aspects from textual specifications
	Semantic aspect extractor tool

	The QAMiner approach
	Token generation
	Token analysis

	Evaluation
	Summary of the case studies and pre-processing
	Question 1: can early aspects improve the detection of quality attributes?
	Question 2: are the detected QAs correct?
	Threats to validity

	Related work
	Conclusion
	Acknowledgments
	References

