
Noname manuscript No.
(will be inserted by the editor)

Conviviality-Driven Access Control Policy

Donia El Kateb · Nicola Zannone · Assaad

Moawad · Patrice Caire · Grégory Nain ·
Tejeddine Mouelhi · Yves Le Traon

Received: date / Accepted: date

Abstract Nowadays many organizations experience security incidents due to unau-

thorized access to information. To reduce the risk of such incidents, security policies

are often employed to regulate access to information. Such policies, however, are often

too restrictive, and users do not have the rights necessary to perform assigned duties.

As a consequence, access control mechanisms are perceived by users as a barrier and

thus bypassed, making the system insecure. In this paper we draw a bridge between

the social concept of conviviality and access control. Conviviality has been introduced

as a social science concept for ambient intelligence and multi-agent systems to high-

light soft qualitative requirements like user-friendliness of systems. To bridge the gap

between conviviality and security, we propose a methodological framework for updat-

ing and adapting access control policies based on conviviality recommendations. Our

methodology integrates and extends existing techniques to assist system designers in

the derivation of access control policies from socio-technical requirements of the system,

while taking into account the conviviality of the system. We illustrate our framework

using the Ambient Assisted Living (AAL) use case from the HotCity of Luxembourg.

D. El Kateb
Laboratory of Advanced Software SYstems (LASSY)
University of Luxembourg
Interdisciplinary Centre for Security, Reliability and Trust
University of Luxembourg
E-mail: donia.elkateb@uni.lu

N. Zannone
Eindhoven University of Technology
E-mail: n.zannone@tue.nl

A. Moawad · P. Caire · G. Nain · T. Mouelhi · Y. Le Traon
Interdisciplinary Centre for Security, Reliability and Trust
University of Luxembourg
E-mail: assaad.moawad@uni.lu
E-mail: patrice.caire@uni.lu
E-mail: gregory.nain@uni.lu
E-mail: tejeddine.mouelhi@uni.lu
E-mail: yves.letraon@uni.lu

2

1 Introduction

Building a secure socio-technical system requires the deployment of appropriate secu-

rity mechanisms [49]. To avoid security incidents due to an unauthorized access, data

and IT resources are usually protected by means of access control policies. Access con-

trol policies are often defined on the basis of the least privilege principle. According to

this principle, users should only be able to access the minimum amount of information

necessary to accomplish their duties [60]. However, to minimize the risk of unautho-

rized access, policy designers tend to define policies which are even more restrictive

than what is recommended by the least privilege principle. Thereby, access control is

often perceived by users as a barrier, an unacceptable limitation. Worse, this barrier

is considered as an obstacle that should be bypassed.

There are several real-life examples that show how users try to bypass security

mechanisms (including the access control mechanism) that interfere and cause incon-

veniences [64]. For instance, the employees of a company can give their credentials

to consultants in order to allow them access to specific applications. This behavior

is clearly against the access control policy and even increases the risks of security

breaches, since the sharing of credentials does not make it possible to trace the access

to the users who actually accessed a certain application. Moreover, this behavior can

lead to several other security problems, such as role usurpation. Thus, the aspiration

to make the system more secure actually makes the system more insecure. As stated

by Sinclair and Smith [69], security tends to ignore such “real-world subtleties”.

Real-world subtleties encompass social dimensions of socio-technical systems, such

as the usability [5] and conviviality [40] of the system. These human factors should

be taken into account from the early phases of the development of socio-technical sys-

tems. Several lines of research (e.g., [2,11,32,33,38,61]) have explored the problem of

designing socio-technical systems aiming to achieve trade-offs between usability and

security. However, there are other social dimensions of socio-technical systems which

may conflict with security. In this paper, we study the trade-off between security and

conviviality. Conviviality is a concept from the social sciences defined by Illich as “in-

dividual freedom realized in personal interdependence” [40]. Clearly, a tension exists

between conviviality and security: too much security threatens conviviality, while being

convivial is a potential threat to confidentiality and privacy. Such trade-off/potential

conflicts should be identified and managed as soon as possible, at requirement level

and early design stages. Producing a security policy model that is non-conflictual with

conviviality expectations is desirable, since it encourages actors to respect the security

policy being used.

These initial considerations raise the main research question addressed in this pa-

per: How to manage the two different orthogonal concerns of security and conviviality

in the elaboration of system operational requirements and design models?

The main contribution of the paper is in (1) bridging the gap between two concepts

that are rarely brought together, i.e., security and conviviality, which are often consid-

ered opposite domains of Social Sciences and Informatics, by defining a socio-technical

mapping that bridges the gap between conviviality and access control; (2) handling

access control policy update on the basis of conviviality recommendations.

The paper studies how to enable a symbiotic elaboration of a security policy to-

gether with a conviviality model, so that the potential conflicts between these two

viewpoints can be detected and solved. Starting from initial operational requirements,

the approach makes the trade-off explicit, and results in a representation of convivial-

3

ity consistent with the security policy (that can be updated during the process). The

approach does not intend to weave or compose these viewpoints [58,56]; rather, it pro-

duces two consistent models, one for security and one for conviviality. On the one hand,

the security model, in the hand of security officers, describes the security policy to be

enforced; on the other hand, the conviviality model, in the hand of business experts,

is a formal tool for reasoning and improving this social dimension of a system.

To recombine these two viewpoints, we propose the DN-AC alignment methodology

which allows the specification of access control policies compatible with a conviviality-

driven specification of a system. Increasing conviviality while keeping a system secure

raises the question of how to adapt an access control policy while increasing the convivi-

ality of the system. Thus, our main research question breaks down into the following

subquestions:

1. How to model access control policies to make explicit its adaptable parts?

2. How to model conviviality from an initial use case scenario?

3. How to update and adapt access control according to conviviality improvements?

The DN-AC methodology uses the SI* modeling language [36,50] to capture the

socio-technical requirements of a system, in particular security and conviviality re-

quirements, and to generate the access control policy from requirements models [51].

To address question (1), we differentiate non-negotiable authorizations from negotiable

authorizations: negotiable authorizations correspond to the adaptable parts of the pol-

icy, whereas non-negotiable authorizations correspond to socio-technical requirements

that must be implemented in the system. To address question (2), abstracting from

method-specific concepts such as plans and actions, we create a dependence network

from the SI* model. Dependence networks [23,67] offer an efficient model for represent-

ing interdependencies among agents. Dependence networks are labeled directed graphs

where the nodes are agents, and each labeled edge represents that the former agent

depends on the latter one to achieve some goal. The focus on dependence networks

and more specifically on their cycles, is a reasonable way of formalizing conviviality as

something related to the freedom of choice of individuals together with the subsidiary

relations – interdependence for task achievement – among fellow members of a social

system. Intuitively, more opportunity to work with other people increases the convivi-

ality in the system. The analysis of the dependence network could lead to an increase

in the number of potential coalitions in the dependence network, and hence increase

the conviviality of the system. This process allows us to address question (3).

Our motivation is to address the challenge of finding trade-offs between access

control policy and conviviality, particularly as they pertain to the Ambient Assistant

Living (AAL) domain emphasized by our partner, Luxembourg HotCity. We thus aim

to provide guidelines to assist system designers to improve many aspects of daily life of

Luxembourg citizens which are illustrated through our different case studies. Nonethe-

less, our approach is general and can be applied to other application domains in which

conviviality is an important requirement.

The structure of this paper is as follows. First, we introduce our methodology in

Section 2 and our use cases in Section 3. We then present the building blocks of the

methodology: requirements modeling with SI* in Section 4, access control policy in

Section 5, and dependence networks in Section 6. In Section 7, we propose a mapping

between access control policies and dependence networks along with the policy updat-

ing/adapting process. In Section 8, we validate our approach through the scenarios of

the Ambient Assisted Living (AAL) from the HotCity of Luxembourg. Finally, we dis-

4

Fig. 1 DN-AC Alignment Methodology

cuss related work in Section 9, and conclude the paper providing directions for future

work in Section 10.

2 DN-AC Alignment Methodology

This section presents a methodological framework for generating conviviality-driven

access control policies from socio-technical requirements. The aim of the methodology

is to find a trade-off between security, more specifically access control constraints, and

conviviality. This trade-off makes it possible to consider new dependencies between

agents, while the system remains secure. Figure 1 illustrates the overall process.

First, the security and functional requirements of the system are elicited and repre-

sented in a requirements model using a goal-oriented framework [36,50]. The require-

ment model captures stakeholders and system actors together with their goals, the

tasks to achieve those goals, required resources, and the security and functional depen-

dencies among them. The requirements model is formally analyzed against a number

of security properties to verify whether requirements have been specified correctly. If

the model satisfies these properties, it is used to determine the authorization rules

which are necessary to protect the system (left side of Figure 1) and to analyze the

conviviality of the system (right side of Figure 1).

An access control policy is a set of authorization rules that specify the conditions

under which users are authorized/denied to access the protected data or resources.

Positive authorization rules refer to permissions to access resources, while negative au-

thorization rules refer to prohibitions to access resources. In this paper, we distinguish

between negotiable and non-negotiable authorization rules. Non-negotiable authoriza-

tion rules correspond to hard requirements, i.e. requirements that must be fulfilled

to guarantee the security of the system and, therefore, they cannot be modified; on

the other hand, negotiable authorization rules correspond to the adaptable part of the

access control policy and can be modified, for instance, to increase the conviviality of

the system. For the specification of the access control policy, we use a model-driven

approach based on [51]. In particular, the access control policy is derived by analyzing

the duties and responsibilities assigned to stakeholders and system actors.

5

In parallel and independently from the specification of access control policy, de-

pendence networks are created from the requirements model and used to reason about

the potential ameliorations to increase the global conviviality of the system. Differ-

ent techniques for improving conviviality have been proposed in the literature [9,15],

for example by changing the agents within the system, by changing the dependencies

among them, by introducing or changing normative dependencies, and by changing

the composition of the coalitions. In this paper, we increase the number of coalitions

between agents by adding/removing dependencies between agents.

The analysis of the dependence network may suggest some potential dependen-

cies between agents to increase the conviviality of the system. Furthermore, feedback

gathered from users, for example through comments or direct input, may be used as

additional information to represent users dependencies among each other in the depen-

dence networks. Such dependencies may also impact resource sharing between agents,

and thus the authorization rules should be updated accordingly.

The final step of the process aims to reconcile the security and conviviality view-

points in order to generate “secure and convivial” system. This step involves a socio-

technical mapping between the access control policy and the dependence network (re-

ferred to as DN-AC mapping in Figure 1). The mapping relates each goal of the de-

pendence network to the corresponding authorization rules. If the authorization rules

are negotiable, they may be changed in order to increase the system conviviality; oth-

erwise, if the authorization rules are non-negotiable, the corresponding ameliorations

are discarded. Indeed, the revised policy should not violate the security requirements

of the system.

3 Use Case Scenario

We have considered 12 use case scenarios that have been elaborated and validated

together with the HotCity Ambient Assistant Living (AAL) of Luxembourg. The sce-

narios illustrate how a Home Care System (HCS) could improve its users’ quality of

life in a variety of cases and cover different areas and problems related to AAL like

health problems (Heart-attack, Fever, Medication, Alzheimer), psychological or social

problems (Loneliness, Isolation, Depression, Alcoholism) and economical problems (Fi-

nances). A complete description and analysis of these scenarios can be found in [71]

where the scenarios are represented graphically using dependence networks (DN). The

access control policies that could be applied to these scenarios to guarantee the security

of the system are also given in [71]. These scenarios are summarized in Table 4.

In this paper, we have selected the scenario entitled ‘Heart-attack 1’ from the use

cases (Table 4) as our running example:

Ms. Annette Becker is eighty-five years old. She is prone to heart failures; hence

the hospital has installed a smart Home Care System (HCS) at her house. Suddenly, as

she walks out of the kitchen, she stumbles, falls down and cannot get up. In real time,

her health bracelet sends information, such that heart beat and skin temperature, to

the HCS. The system analyzes the images captured on the video monitoring system

and gets an updated medical profile of the patient from the hospital. By combining all

the different pieces of information, the system infers that it is a medium emergency

situation. In such a case, the emergency calls list specifies Annette’s neighbors as

primary contact. The HCS (via a phone communication system) sends the neighbors an

6

ID Scenario Title Scenario Description
1 Heart-attack 1 HCS monitors a patient prone to heart failures and provide her

with social support
2 Loneliness HCS arranges a birthday party for a lonely senior citizen
3 Isolation Sending reminders to family members to call their elderly relatives

during occasions
4 Finances Financial support from the family and legal support from an ex-

pert, arranged by HCS
5 Fever A patient with fever does not feel helpless, after talking to his

doctor and receiving the right medication
6 Medication HCS monitors patient to take her medication, and take action if

she does not
7 Weight Significant weight gain, recognized and solved by HCS
8 Depression 1 Depression, expressed through inactivity, is surpassed with the

help of WAS
9 Alzheimer Alzheimer patient finds his way home thanks to his GPS/video

capture/HCS
10 Depression 2 HCS records lower activity level and contacts a neighbor to visit

senior citizen
11 Alcoholism Alcoholism prevented by the HCS with the help of the community
12 Heart-attack 2 HCS captures patient’s heart attack danger and infers to contact

family for help

Table 1 Use Case Scenarios

SMS inquiring whether they are available to come and help; if no neighbor is available,

a friend or family member is contacted.

For Annette, being helped by people she feels connected to is important. To this

end, she is also given access to social support, such as social assistance and support

groups, that she can use to get health-related information and to which she may con-

tribute. However, the system should guarantee that no private information such as

video captures or medical data falls in mischievous hands. Therefore, the system should

be convivial but stay private.

4 Requirements Modeling

To capture stakeholders’ requirements, we adopt the SI* modeling language [36,50] as

it supports the analysis of security and dependability requirements of socio-technical

systems. SI* extends the i* framework [73] and is founded upon the concepts of actor,

goal, resource, and social relations. An actor is an active entity that has strategic goals.

A goal is a state of affairs whose realization is desired by some actor (objective), can

be realized by some (possibly different) actor (capability), or should be authorized by

some (possibly different) actor (entitlement). Entitlements, capabilities and objectives

of actors are modeled through relations own (O), provide (P) and request (R), respec-

tively. Resources are artifacts produced/consumed by goals. Goals can be refined using

AND/OR decomposition; means-end relations identify resources produced or consumed

by a goal.

Social relations are captured by the notions of trust and delegation. Trust is a

relation between two actors representing the expectation of one actor (trustor) about

the behavior of the other actor (trustee). In particular, trust of execution (Te) models

the trustor’s expectations about the ability and dependability of the trustee in achieving

a goal; and trust of permission (Tp) models the trustor’s expectations that the trustee

7

does not misuse the given permission. Delegation is used to represent a formal passage

of responsibility (delegation of execution (De)) or authority (delegation of permission)

between two actors (delegator and delegatee).

As in [3], we distinguish three types of permission: access, modify, and manage. Each

type of permission determines the set of actions that an actor can perform. For instance,

if an actor has access permission on a resource, he can only use the resource. Modify

permission allows an actor to change the content of a resource. Manage permission

allows an actor delegate the permission to other actors and modify permissions of

other actors. The three types of permission, access, modify and manage, operate in a

hierarchical manner. In particular, manage permission implies modify permission, and

modify permission implies access permission. Delegation of access/modify/manage is

graphically represented by an edge with label Dpa, Dpmd and Dpma, respectively.

In socio-technical systems, an actor who has the right to achieve a goal, may dele-

gate such rights to the wrong actor. Since many actors may have the right to achieve the

goal, it is not always possible to control that an actor cannot achieve a goal. To address

this issue, we model explicit negative authorizations as in [37]. A negative authorization

expresses a denial for an actor to achieve a goal or access a resource. As for positive

authorizations, we distinguish three types of denial. Their meaning is dual to the one

of positive authorizations (the hierarchy of types of permission is also reversed). Denial

of access/modify/manage is graphically represented by an edge with label Dla, Dlmd

and Dlma, respectively. In our approach, negative authorizations take precedence over

positive ones, i.e. whenever a user has both a positive and a negative authorization on

the same goal/resource, the user is prevented to access it. Moreover, an actor can deny

permission to another actor only if he has manage permission.

Figure 2 presents the SI* model corresponding to the AAL scenario presented

in Section 3. The scenario involves five actors: Patient, Hospital, HCS, Neighbor, and

Social Support. The Patient has the intention (objective) to fulfill goal stay healthy and

is the legitimate owner of her data, while the Hospital has the capability to achieve

goal update patient record. Goals can produce or consume resources. For instance, goal

maintain patient record requires resource patient profile. The Patient relies on the HCS

to fulfill goal stay healthy. In turn, this goal is decomposed into update patient profile,

determine emergency level, and provide medical support. In order to achieve these goals,

the Patient grants access to her data to the HCS (through the Hospital). For privacy

reasons, the Patient denies access to her data to the Neighbor.

5 Access Control Policy

Access control is a security mechanism which is typically adopted for the protection

of sensitive information. An access control policy consists of rules that specify which

actions a user can or cannot perform on system resources. Hereafter, we assume that

there is a centralized access control system that enforces access control policies.

Definition 1 Let S be the set of subjects, R the set of system resources, A the set

of actions, and Π = {permit, deny} the set of rulings. An authorization rule is a 4-

tuple 〈s, a, r, τ〉 where s ∈ S, a ∈ A, r ∈ R, τ ∈ Π. A positive authorization rule

〈s, a, r, permit〉 specifies that a subject s is allowed to perform action a on resource r,

whereas a negative authorization rule 〈s, a, r, deny〉 states that a subject s is prohibited

to perform action a on resource r. An access control policy is a set of (positive and

negative) authorization rules.

8

Fig. 2 SI* Model of the HotCity Ambient Assistant Living (AAL) scenario

We argue that one desideratum for the specification of access control policies is

that such policies are derived (possibly automatically) from the requirements of the

system in which they will be eventually enforced. This ensures the alignment of the

policy specification with the requirements and reduces the efforts of policy writers

making their tasks less error-prone. To this end, we adopt an approach similar to the

one proposed in [51]. First, the requirements model is analyzed using the tool in [48] to

determine whether the designed system satisfies a number of authorization, availability

and privacy properties. Such properties aim, for instance, to verify whether actors have

the necessary permissions to perform their assigned duties, and whether the elicited

permissions comply with the need-to-know principle. This guarantees that on the one

hand, the elicited authorizations are sufficient for a complete business execution, and

thus that the obtained access control policy is not too restrictive; on the other hand,

it also guarantees that actors does not have permissions they do not need. Once the

requirements model satisfies these security properties, the security elements of the

model (i.e., ownership and delegation of permission) are used to define access control

policies.

In SI*, own denotes the entitlements of actors: an actor (the owner) has full au-

thority concerning his resources. Accordingly, we assume that the owner of a resource

9

Positive Authorizations
1 〈Patient,manage, patient data, permit〉
2 〈Hospital,manage, patient profile, permit〉
3 〈Hospital,manage, patient data, permit〉
4 〈HCS,manage, phone communication system, permit〉
5 〈HCS, access, patient data, permit〉
6 〈HCS, access, patient profile, permit〉
7 〈Social Support,manage, social support resources, permit〉
Negative Authorizations
8 〈Hospital, access, phone communication system, deny〉
9 〈HCS, access, social support resources, deny〉
10 〈Social Support, access, patient data, deny〉
11 〈Social Support, access, patient profile, deny〉
12 〈Social Support, access, phone communication system, deny〉
13 〈Neighbor, access, patient data, deny〉
14 〈Neighbor, access, patient profile, deny〉
15 〈Neighbor,modify, social support resources, deny〉

Table 2 Non Negotiable Authorizations for the AAL scenario

has the highest permission on the resource (i.e., manage permission). Remark that

high permissions imply lower permissions. Entitlements of actors are then propagated

through delegation of permission. In particular, an actor can delegate any type of rights

on a resource to another actor if he has manage rights. This propagation is enabled

through axioms that permit to derive authorizations from the facts obtained through

the transformation of graphical models (see [51] for details). Intuitively, authorizations

of a given actor are derived by determining the existence of a chain of delegations of

permission from the owner to that actor (possibly through goal refinement). Negative

authorizations are derived similarly by determining if the actor denying another ac-

tor to use a given resource has legitimately received manage rights from the resource

owner.

Table 2 presents the access control policy derived from the SI* model in Figure 2.

One can observe in the table that several authorizations (either positive or negative) are

not specified (e.g., no authorization on the phone communication system are defined for

the patient). Indeed, unlikely elicited requirements cover all possible cases. We assume

that the authorization decision for cases where an authorization rule is not defined, is

deny. Although this solution guarantees that the deployed access control mechanism

complies with the least privilege principle, it has the side effect that such a mechanism

may be too restrictive.

To address this issue, we distinguish between negotiable and non-negotiable autho-

rization rules. Non-negotiable authorization rules represent rigid authorizations that

cannot be modified to guarantee the security of the system. Essentially, they are strict

constraints imposed by the requirements and, therefore, they cannot be relaxed. Ac-

cordingly, the authorizations in Table 2 which are translated from requirements are

non-negotiable. Negotiable authorization rules, on the other hand, regulate situations

for which a constraint is not explicitly defined by the requirements. These rules are

derived from conviviality recommendations (Section 7). Intuitively, the distinction be-

tween non-negotiable and negotiable authorization rules resembles the distinction be-

tween hard requirements (i.e., compulsory requirements) and soft requirements (i.e.,

optional requirements) [41].

10

By introducing negotiable authorization rules, we aim to increase the flexibility of

the system by highlighting the adaptable part of the authorization policy, rather than

introducing other decisions types. In other words, unlike XACML [1] which extends

binary decisions Permit and Deny with Not Applicable decision to indicate that no

policies are applicable to a given access request, we assume that the default access

decision is deny and provide the flexibility necessary to deal with requirements evolution

through negotiable authorizations.

6 Conviviality Model

Conviviality has recently been introduced into multi-agent and ambient intelligence

systems [18,21] to highlight soft qualitative requirements like the user friendliness of

systems. The concept of conviviality, originated from social science, was popularized by

a book of Illich in 1973 called “tools for conviviality”, in which he defines conviviality

as:

“individual freedom realized in personal interdependence” [40]

Interdependence and dependencies play a prominent role in many formal systems

such as, for example, Bayesian networks. In this paper, the notion of dependence is

used as it is in multi-agent systems where dependency relations relate agents who seek

to reach their goals, to other agents who have the abilities required to fulfill these goals.

Following conventions in game theory as well as multi-agent systems, we say that the

ability of an agent to fulfill goals of other agents is an indication of its social power.

A dependence network is a social network where the relations among the agents

are labeled with a goal, expressing that an agent depends on another agent for the

fulfillment of this goal. Based on the notion of social dependency introduced in [23],

dependence networks were put forward in [66], and further developed in [67]. Boella

et al. [8] show how dependence networks can be used to determine which reciprocity-

based coalitions can be formed. In [21], these coalitions represent potential interactions

among the agents, and are thus an indication of conviviality.

Conviviality can be measured by the number of reciprocity-based coalitions that can

be formed, as developed in [16]. Some coalitions, however, provide more opportunities

for their participants to cooperate with each other than other coalitions, being thereby

more convivial. For example, if a patient needs assistance from her neighbors, it is

better if she can rely on several neighbors and is able to choose among them the one(s)

with whom she already has interactions. The relation is reciprocal as they both give

to the coalition and receive from the coalition; it is more convivial.

6.1 Conviviality in Access Control

In the SI* modeling language [36,50], actors are endowed with intentionality from the

early phases of the system development process. This allows for a profound under-

standing of the environment and of the interactions between stakeholders.

SI* uses the concepts of entitlement, objective, and capability to distinguish be-

tween actors who want access to a resource or the fulfillment of a goal, from actors who

have the capabilities to provide a resource or fulfill a goal, and actors who are entitled

11

to do any of the above. Entitlements and their delegation are the basis for the speci-

fication of the access control policies of the system. In particular, the entitlements of

actors are mapped into positive and negative authorization rules which specify whether

an actor is allowed or denied to access data and IT resources, and thus to fulfill its

goal.

Stakeholders may not have the capabilities to fulfill their objectives. The social

relation of delegation is used in SI* to represent a formal passage of responsibility

between two actors, namely the delegator and the delegatee. More specifically, SI*

uses delegation of execution to represent that an agent delegates to another agent

the fulfillment of an objective, thereby creating a dependency between the two agents

in relation to the objective. For example, in the SI* model of the HotCity Ambient

Assistant Living scenario illustrated in Figure 2, the patient delegates to the HCS the

execution of its goal stay healthy, which, in effect, makes the patient dependent on the

HCS for that very same goal. We therefore use the concept of delegation of execution

to build a bridge between conviviality and access control.

6.2 Dependence Networks

We now introduce our definition of dependence networks. Note that in our model, the

dependencies are among the agents, so if an agent a depends on a distinct agent b for

an action, a resource or a plan to achieve its goal g, the dependency of agent a towards

agent b will be on g. Goals are considered the reasons for which the dependencies

arise. Abstracting away from the actions, resources and plans of the agents, we define

a dependence network as follows:

Definition 2 A dependence network is a tuple 〈A,G, dep,≥〉 where: A is a set of

agents, G is a set of goals, dep : A × A → 2G is a function that relates with each

pair of agents, the sets of goals on which the first agent depends on the second, and

≥: A → 2G × 2G is for each agent a total pre-order on sets of goals occurring in his

dependencies: G1 ≥ (a)G2.

In our model, the dependencies in the dependence network correspond to the del-

egations of execution in the SI* model, which account for goal refinement as some

delegated goals are subgoals of other delegated goals.

Returning to our scenario, consider the dependence network DN = 〈A,G, dep,≥〉
corresponding to the SI* model introduced in Section 4:

– Agents A = {P,H,HCS,N, S}, respectively: patient, hospital, HCS, neighbor, and

social support; Goals G = {g1, g2, g3, g4, g5, g6, g7}.
– dep(P,HCS) = {g1}: agent P depends on agent HCS to achieve goals {g1}, stay

healthy ;

dep(HCS,H) = {g2}: agent HCS depends on agent H to achieve goals {g2}, update

patient profile;

dep(H,HCS) = {g3}: agent H depends on agent HCS to achieve goals {g3}, get

real-time data;

dep(HCS,N) = {g4}: agent HCS depends on agent N to achieve goals {g4},
provide first aid ;

dep(P, S) = {g5}: agent P depends on agent S to achieve its goals {g5}, provide

social support ;

12

dep(S, P) = {g6}: agent S depends on agent P to achieve its goals {g6}, get patient

participation.

– Agent P prefers to stay healthy than to get social support: {g5} >(P) {g6}

The graphical representation of the dependence network is illustrated in Figure 3.

The figure should be read as follows: the five agents are represented by the nodes in the

graph, and the dependencies among them are indicated by labeled arrows. The label

indicates the goal on which the dependency is based. For example, the patient depends

on its Home Care System to stay healthy.

Fig. 3 Dependence Network DN

In socio-technical systems, agents are involved with each other and may support

each others’ goals if an agent is not able to achieve them by itself. Dependence net-

works and coalitional game theories can be used to define potential reciprocity-based

coalitions, which are sets of agents together with a subset of the dependencies for these

agents, such that each agent contributes something and receives something from the

coalition. Based on [9], we define a coalition as follows:

Definition 3 Let A be a set of agents and G be a set of goals. A coalition function is

a partial function C : A×2A×2G such that {a | C(a,B,G)} = {b | b ∈ B,C(a,B,G)},
the set of agents profiting from the coalition is the set of agents contributing to it.

Let 〈A,G, dep,≥〉 be a dependence network, a coalition function C is a coalition if

∃a ∈ A,B ⊆ A,G′ ⊆ G such that C(a,B,G′) implies G′ ∈ dep(a,B).

The priority relation can be taken into account to define preferred reciprocity based

coalitions. Like conviviality, coalitions emerge from the sharing of properties and/or

behaviors whereby each member’s perception is that their personal needs are taken

care of.

In order to evaluate the conviviality in the network, we first make the following

assumptions (or hypotheses):

13

H1 The cycles identified in a dependence network are considered as coalitions.1 These

coalitions are used to evaluate cooperation in the network. Cycles are the smallest

graph topology expressing interdependence, thereby cooperation, and are there-

fore considered atomic relations of interdependence. When referring to cycles, we

are implicitly signifying simple cycles, i.e., where all nodes are distinct [24]; we

also discard self-loops. Moreover, when referring to cooperation, we always refer to

potential interaction rather than to actual interaction.

H2 There is more conviviality in larger coalitions than in smaller ones. We express

this hypothesis through the following two cases. First case, a dependence network

DNi with a coalition of size n is better for conviviality than a DNj with coalition

of size m < n. For example, consider a coalition for peace in the world. The more

countries participate, the better it is. Second case, a dependence network DNi with

a coalition of size n is better for conviviality than a dependence network DNj with

two coalitions, one of size k and the other of size l, such as that k + l ≤ n, all else

being equal. This is motivated by the fact that having one large coalition eliminates

the risk of being exposed to potential competition from other coalitions, which may

be looking for the same resources.

H3 The more coalitions in the dependence network, the higher the conviviality measure

(ceteris paribus).

Our aim is to maximize cooperation in the system. Thus, our requirements are:

R1 maximize the size of the agent’s coalitions by increasing the number of agents

involved in the coalitions,

R2 maximize the number of these coalitions.

Intuitively, the goal is hence not only to have as many agents taking part in the largest

coalition(s), but also have as many coalitions among the participating agents.

Dependence cycles in the network indicate potential interactions and coalitions

among the agents. Thus, we analyze cycles and their configurations in the network.

The dependence network in Figure 3 contains two cycles which are indicative of two

potential coalitions, on the one hand among agents HCS and H, and on the other

hand among agents P and S. We indicate the two potential coalitions as follows:

C1 : {(H,HCS, g3), (HCS,H, g2)} and C2 : {(P, S, g5), (S, P, g6)}, where we write

(a, b, g1) for (a, b, {g1}).
Note that agent N does not depend on any other agent, whereas agent HCS

depends on agent N for goal g4. Hence, agent N has no incentive to satisfy agent

HCS’s goal, as it does not have any goal to reciprocate. This indicates that there may

be ways to increase the conviviality of the network, for example by including into a

coalition agents, such as agent N , which are not part of the coalition.

1 Note that the terms “cycle” and “coalition” represent two distinct realities. Keeping the
terms different is consistent to the domains they belong to: a coalition describes a set of
agents and comes from agents domains and game theory, while cycle is a graph-theoretical
term. The dependence relations among agents participating to a coalition can be analyzed
in terms of coalitions, not cycles – which would not mean anything. Furthermore, we count
the cycles in the graph; counting coalitions would be inexact, as such a term does not exist
in graph theory. Nonetheless, there exists a relation between two terms: cycles identified in a
dependence network are considered as coalitions.

14

6.3 Conviviality Increase

According to Boella et al. [9], coalitions in a dependence network may be changed in the

following ways: 1) by changing the agents, e.g., by entering or leaving the system, 2) by

changing the dependencies among the agents, i.e., by adding or deleting dependencies

among the agents, 3) by introducing or changing normative dependencies, such as

obligations and prohibitions, and 4) by changing the composition of the coalitions

while the agents and dependencies remain the same.

In this paper, we assume that the set of agents within the dependence network

is given and it does not change over time. Similarly, we do not consider changes in

the composition of the coalitions within the network due to internal processes. Finally,

we do not introduce normative dependencies as, typically, policies are considered as

rules and constraints that model intended behaviors. In fact, they contrast with norms

considered as agreed policies in the sense that they are agreed to by the members of

a community. Conviviality for example, is usually considered as a social norm. Norms

apply to groups and regulate the behavior of the individuals among themselves; they

differ from policies, such as access control policies, which may also apply to single

individuals. For example, privacy policies may apply to an individual patient, and mail

filtering policies to a single doctor. Thus, among the approaches mentioned in [9], we

adopt the second approach; accordingly, a change in the network is only due to the

change of a dependency between two agents.

We recall from the previous section, the two requirements for conviviality, i.e., to

maximize the number of agents involved in coalitions (R1) and the number of coalitions

(R2). Satisfying R1 and R2 will maximize conviviality.

Consider that a need for social interactions may be inferred for the neighbor, or

directly expressed by the neighbor through a feedback loop. Such an aspiration could

be fulfilled based on distinct dependencies, i.e, agent N (i.e., the neighbor) may depend

on agent P (i.e., the patient), or on agent S (i.e., Social Support) to achieve it. As the

access to the social support of the patient is managed by the Social Support agent

itself, it is thus the Social Support agent that would have to create the dependency.

We now present the mechanism that would allow such dynamics.

6.4 Dynamic Dependence Networks

The notion of agents’ power introduced in [23] allows an agent to add dependencies

inside a network, i.e., to increase reciprocity-based coalitions, and thus conviviality.

Dynamic dependence networks proposed in [21] allow the possibility to introduce new

dependencies. We define a dynamic dependence network DDN as in [21]:

Definition 4 A dynamic dependence network is a tuple 〈A,G, dyndep,≥〉 where:

– A is a set of agents and G is a set of goals.

– dyndep : A×A×A→ 2G is a function that relates with each triple of agents the set

of goals on which the first agent depends on the second, if the third agent creates

the dependency.

– ≥: A → 2G × 2G is for each agent a total pre-order on goals which occur in his

dependencies: G1 ≥(a) G2.

Building on the dependence network DN defined in Section 6.2, consider the fol-

lowing dynamic dependence network DDN = 〈A,G, dyndep,≥〉 where:

15

Fig. 4 Dynamic Dependence Network DDN with the added goal g7, in dashed line

1. A = {P,H,HCS,N, S}; G = {g1, g2, g3, g4, g5, g6, g7}, now including g7: get social

interaction.

2. Added dependency: dyndep(N,P, S) = {g7}: agent N depends on agent P to

achieve goal {g7} if it is created by agent S.2

3. Preferences on goals are as previously.

Figure 4 illustrates dynamic dependence networks DDN . The dashed arrow labeled

with goal g7 represents the new dependency in DDN . The added dependency creates

a new cycle in the network, indicating an additional potential coalitions, namely C3 :

{(N,P, g7), (P,HCS, g1), (HCS,N, g4)}. In this coalition, the three agents N,P and

HCS depend on each other to achieve their goals; agent N is no longer isolated. The

new coalition C3 ensures that the agent N satisfies goal g3 of agent HCS. The dynamic

dependence network DDN is more convivial than the dependence network DN as there

are more cycles in the graph, indicating more potential coalitions among the agents.

More dependencies may be considered to create more cycles in the network, thereby

increasing the potential interactions among the agents, and therefore the conviviality

of the system. For instance, coalition C4 : {(P,HCS, g1), (HCS, N, g4), (N,S, g7),

(S, P, g6)} could be created for instance by triggering dyndep(N, S, S) = g7. However,

no such a dependency has yet been elicited, and therefore this coalition cannot be

considered at this point.

6.5 Discussion

There is a large amount of work on how to use dependence networks, specially since

we are interested in the resolution of conflicts and regulation. Dependence networks,

firstly defined by Emerson [31], have been developed in the context of multi-agent sys-

tems by Conte and Sichman [67]. Sichman [66] presents coalition formation using a

dependence-based approach where a dependence situation allows an agent to evaluate

the susceptibility of other agents to adopt his goals. Sauro [70,62] shows how to use

dependence networks to discriminate among different potential coalitions during the

coalition formation process. He assumes that a coalition is effectively formed only when

2 Note that a dependency dep in DN can be seen as a particular case of dependency dyndep
in DDN.

16

all its members agree on it and they cannot deviate from what was established in the

agreement, once they decide to enter it. Bonzon et al. [10] use dependence networks

to compute pure-strategy Nash equilibrium in a simpler way, without enumerating all

combinations of strategies. The notion of dependence between players and variables is

used to split up a game into a set of interacting smaller games, which can be solved

more or less independently. In Sauro and Villata [63], abstract and refined dependence

networks for cooperative boolean games are introduced to improve the computation

of the core. Koller and Milch [43] introduce a representation language for multi-player

games called multi-agent influence diagrams. It extends the graphical models developed

for probability distributions to a multi-agent decision-making context. Like in depen-

dence networks, these diagrams explicitly encode a structure involving the dependency

relationships among variables.

Many examples of using dependence networks can be found in software engineer-

ing. For instance, the i* modeling language [73] and the Tropos software engineering

methodology [12] represent the network of dependency relationships among the actors

to analyze the organizational setting in which the system-to-be operates. In particular,

their notation allows the description of the structural aspects of the early requirements

model, in terms of relationships and dependencies among actors. These frameworks

have been extended to describe also how the network of dependencies evolves over

time and the circumstances under which a given dependency arises and can be spec-

ified, as well as the conditions that permit to consider the dependence to be fulfilled

[35,52].

One of the main advantages of dependence networks is that they can be rewritten

as power structures: a (social) dependency of agent d on agent p for reason e can be

conceptualized as the (social) power of agent p over agent d for the reason e. Moreover,

the distinction between reciprocal and mutual dependencies [68] involves the devel-

opment of a social reasoning mechanism that analyzes the possibilities to differently

profit from reciprocal than from mutual dependencies.

Efficiency and stability metrics are commonly used to evaluate coalitions. The

former giving an assurance on the economical gain reached by being in the coalition,

the later giving a certainty that the coalition is viable on the long term. Therefore, the

positive evaluation of a coalition against these two metrics is often considered to be a

prerequisite for the coalition formation. However, depending on the application domain,

other functional and non-functional requirements, e.g., security, user-friendliness or

conviviality, may play an important role in the choice of a coalition. Requirements

may be considered in a trade-off at the same level as efficiency and stability, or as a

further filtering criterion, to select among otherwise efficient and stable coalitions.

We do not introduce temporality in our cooperation measures as they aim to assess

the conviviality of the system at design time. In particular, cooperation measures quan-

tify interdependence in social relations, representing the degree to which the system

facilitates social interactions. Intuitively, more interdependence increases cooperation

among groups of agents or coalitions, whereas larger coalitions may decrease the effi-

ciency or stability of these involved coalitions. In contrast, run-time evaluation would

require the use of temporal dependence networks as the ones proposed in [17,20] which

analyze the evolution of cooperation over time.

17

Fig. 5 Dependence Network and Access Control Ontologies

7 Access Control Policy Update

The analysis of the dependence network may lead to consider some potential coalitions

and mutual dependencies between agents in order to increase the conviviality of the

system. Those potential dependencies may require granting additional authorizations to

agents. This, however, may compromise the security of the system. Therefore, we need

to analyze the impact of potential dependencies on the existing access control policy.

This section describes how potential dependencies captured through the analysis of

the dependence network are used to adapt the access control policy regulating the

overall system. First, we discuss the semantic gap between the ontology related to

access control and the ontology related to dependence networks. Then, we present our

approach to bridge such a gap. Finally, we present a strategy for policy update based

on the distinction between negotiable and non-negotiable authorization rules.

7.1 Semantic Gap between Access Control Paradigm and Conviviality Paradigm

We use ontologies to represent access control concepts as well as dependence network

concepts. An ontology defines a formal representation of the concepts and relationships

between those concepts in a particular domain [65]. Figure 5 illustrates the ontology

related to access control (left) and the one related to dependence networks (right), both

visualized using NeOn toolkit [54]. In the access control ontology, authorization rule is

modeled as a subclass of class access control policy; classes subject, action, resource, and

ruling are modeled as subclasses of class authorization rule. Rulings permit or deny are

modeled as individuals (i.e., instances). In the dependence network ontology, classes

goal and agent are subclasses of class dependence network; the depender and dependee

are modeled as individuals which are related by object property depends on.

18

As shown in Figure 5, access control is shaped by the notions of subject, resource,

action and ruling. Those concepts, however, do not appear in the dependence network

ontology. Therefore, adapting an access control policy on the basis of dependency rela-

tions between agents requires closing the semantic gap between these two ontologies. In

the remainder of the section, we discuss how to create a mapping between dependence

network concepts and access control concepts to narrow the semantic gap between the

two paradigms.

7.2 Mapping Between Access Control Policy and Dependence Networks

Potential dependencies are built upon the achievement of a specific goal between a

depender and a dependee. To be able to analyze the impact of such dependencies on

the existing access control policy, it is necessary to determine which authorization rules

an agent needs in order to carry out the assigned duties (i.e., to fulfill the delegated

goal). To bridge the gap between dependence networks and access control, we propose

to map each goal in the dependence network to the set of actions and resources that

are required to fulfill the goal. This mapping is illustrated by a socio-technical mapping

matrix defined as follows.

Definition 5 A socio-technical mapping matrix is a n×m matrix where rows denote

pairs (resource, action), and columns denote goals.

The socio-technical mapping matrix shows, for each goal in the dependence network,

which resources are needed for the achievement of the goal together with the actions

(i.e., access, modify and manage) that can be performed on such resources. The link

between resource and goals is derived from the SI* model through AND/OR refine-

ment and delegations of execution (Section 2) using the approach presented in [51].

Intuitively, if a resource is linked to the goal (via a means-end relation), then the re-

source is needed for the achievement of the goal. If a goal is decomposed into subgoals,

each subgoal is iteratively analyzed. In particular, resources linked to a subgoal are

needed for the achievement of the upper level goals.3 If a (sub)goal is delegated to

another actors, the corresponding goal model rooted in the rationale of the delegator

is analyzed as described above. Thus, the set of resources needed to achieve a goal in-

cludes all resources needed for the achievement of its subgoals possibly via delegation.

The actions to be performed on these resources (i.e., access, modify, manage) are de-

rived by the analysis of the goals for which the resource is directly linked. For instance,

goal maintain patient profile in Figure 2 (and thus goal update patient profile) requires

‘modify’ rights on the patient profile. Goal elicited through the dependence network

to increase the conviviality of the system (e.g., get social interaction in our scenario)

are analyzed in similar way. For instance, the analysis of goal get social interaction

shows that its achievement requires ‘access’ rights for social support resources. In this

work, we rely on the tool presented in [48], which implements the approach in [51], to

automatically infer the list of resources needed to achieve a goal.

Table 3 presents the socio-technical mapping matrix for our scenario. In the ta-

ble, “+” is used to represent that executing a certain action on a certain resource is

3 Note that OR decomposition may lead to alternative sets of resources that may be needed
to achieve a goal. For the sake of simplicity, we do not address this issue here and refer to [51]
for detail.

19

(Resources,Actions)/
Goals

Stay
Healthy

Update
Patient
Profile

Get Real-
Time Data

Provide
first aid

Provide
Social
Support

Get Patient
Participation

Get Social
Interaction

Patient data Access + + + + NA NA NA
Modify NA NA NA NA NA NA NA
Manage NA NA NA NA NA NA NA

Patient Access + + NA NA NA NA NA
profile Modify + + NA NA NA NA NA

Manage NA NA NA NA NA NA NA
Phone Access + NA NA NA NA NA NA
communication Modify NA NA NA NA NA NA NA
system Manage NA NA NA NA NA NA NA
Social Access NA NA NA NA + + +
support Modify NA NA NA NA + + NA
resources Manage NA NA NA NA NA NA NA

Table 3 Socio-technical mapping matrix

necessary to achieve the goal, and NA (i.e., not applicable) to represent that a certain

resource (or an action) is not needed for the achievement of the goal.

The analysis of the dependence network may lead to consider potential dependen-

cies between agents to improve the conviviality of the system. However, the impact

of such dependencies on the system security should be analyzed. Indeed, dependencies

cannot be deployed in the system if they lead to security breaches. To assess the impact

of a potential dependency on the access control policy, we identify which authorization

rules are needed to achieve the delegated goal using the socio-technical mapping matrix.

We refer to those authorizations as candidate authorization rules, denoted by ca. Given

a potential dependency dep(a, b, s) where a is the depender, b the dependee, and s is

the agent creating the dependency, the corresponding set of candidate authorization

rules ca(dep(a, b, s)) is identified as follows:

– For each g such that {g ∈ G|G = dep(a, b, s)}, the pairs (resource, action) needed

for achievement of g are determined through the socio-technical mapping matrix.

– Each identified pair (resource, action) is augmented with the dependee b. The

resulting set forms the set of candidate authorization rules.

Thus, we resort to the socio-technical mapping matrix to identify the candidate

authorization rules needed to carry out the duties assigned through a given potential

dependency. For example, in the dependence network of Figure 4, goal get social in-

teraction involves a depender Neighbor and a dependee Patient. Through the mapping

matrix, the goal is mapped to resource social support resources and action access. Ac-

cordingly, deploying the dependency within the system, while ensuring that the goal

can be achieved, requires updating the access control policy with the following autho-

rization rule:

〈Patient, access, social support resources, permit〉

Once the candidate authorization rules are identified, the security expert should

evaluate them against the current access control policy. In particular, the access con-

trol policy is updated only if candidate authorization rules do not conflict with non-

negotiable authorization rules (see Section 5). In the next section, we present a strategy

for policy update based on the distinction between negotiable and non-negotiable au-

thorization rules.

20

7.3 Policy Update

To evaluate whether a policy update is eligible, candidate authorization rules should

be evaluated against negotiable and non-negotiable authorization rules. To not violate

the security constraints, the following strategy is followed to update the policy:

Case 1 (No Conflict): If all candidate authorization rules related to a potential depen-

dency correspond to negotiable authorization rules, then the potential dependency

is deployed in the system and the policy is updated by including the candidate

authorization rules.

Case 2 (Conflict): If there exists a candidate authorization rule related to a poten-

tial dependency which is in conflict with a non-negotiable authorization rule (i.e.,

the two rules have a different ruling), then the potential dependency is rejected.

Conviviality is not increased; however, the system remains secure.

Case 3 (Neutral): If a potential dependency does not require updating the access con-

trol policy, then the potential dependency is deployed in the system. Conviviality

is increased, and the access control policy remains unchanged. The system remains

secure since the deployed dependency has no impact on the security policy.

In the next section, we present the application of policy update to our AAL sce-

narios.

8 Validation

In this paper, we propose a methodological framework for updating and adapting ac-

cess control policies based on conviviality recommendations. To validate our approach,

we have applied it to the Ambient Assistant Living (AAL) domain and in particular

to a number of scenarios which have been emphasized by our partner Luxembourg

HotCity. The aim of the validation is to verify whether our methodology improves the

conviviality of the system (thus the user experience), while maintaining an appropriate

level of security. This section first describes two validation scenarios and the prototype

implementation of the running example. These descriptions are followed by a presen-

tation of the results in Section 8.3 and by a discussion on the threats to validity in

Section 8.4.

8.1 Validation Scenarios

The methodology presented in this paper has been applied to a selection of twelve

scenarios. The reader may refer to a technical report [71] for more details concerning

the different scenarios besides the authorization rules and the dependence networks

related to each scenario. This selection was done by the HotCity experts based on the

following two criteria: 1) likelihood, i.e., the probability that the scenario occurs and

2) impact, i.e., the consequence on human life of the failure of the scenario. Here, we

just detail two of them, and present the results of the others in Section 8.3.

The two selected scenarios illustrate how the system is adapted given a new depen-

dency. Each scenario has been modeled with a dependence network. Later, we consider

the models to infer the potential goals and dependencies that may be added to increase

the number of cycles in the network, i.e., conviviality. For each potential dependency,

21

Fig. 6 Dependence Network of Scenario 2: Depression 1

we used socio-technical mapping matrices to infer the changes to the authorization

policies governing the scenarios.

8.1.1 Scenario 1: Heart Attack 1

This scenario, which is the running example, has been presented in the dependence net-

work of Figure 3. In this scenario, the neighbor is isolated and does not depend on any

another agent in the system. The neighbor may have a potential dependency with the

patient, Annette Becker, to get a social interaction like presented in Figure 3. Such a de-

pendency is mapped to authorization rule 〈Patient, access, social support resources, permit〉
through the socio-technical mapping matrix in Table 3. Indeed, the fulfillment of goal

get social interaction requires access to social support resources. Since there are no

hard requirements conflicting with this authorization rule, the rule is added to the

authorization policy as negotiable rule (see Case 1 in the previous section). Thus, the

conviviality of the system is increased, while the system still complies with the elicited

security requirements.

8.1.2 Scenario 2: Depression 1

In this scenario, Donald is a 32 years old salesman who lives alone and has no social

activity besides his job. The scenario is illustrated by the dependence network of Fig-

ure 6. Donald depends on the Welfare Assistance System (WAS) of the local hospital for

goal prevent depression. In turn, the WAS depends on Donald to have his preferences

concerning social activities he enjoys and his availability. In addition, other patients,

namely Norman, Stan and Bob, depend on the WAS for organizing social activities.

The WAS uses a scheduling system to organize social activities for patients.

The policy that regulates the scenario includes a number of non-negotiable autho-

rization rules regulating the access to the scheduling system and patients’ preferences:

R1: 〈WAS,manage, scheduling system, permit〉

22

R2: 〈Donald, access, scheduling system, deny〉
R3: 〈Norman, access, scheduling system, deny〉
R4: 〈Stan, access, scheduling system, deny〉
R5: 〈Bob, access, scheduling system, deny〉
R6: 〈Donald,manage,Donald-preferences, permit〉
R7: 〈WAS, access,Donald-preferences, permit〉
R8: 〈Norman, access,Donald-preferences, deny〉
R9: 〈Stan, access,Donald-preferences, deny〉
R10: 〈Bob, access,Donald-preferences, deny〉

To tackle Donald’s issues, the WAS aims to synchronize Donald with other patients

that have common interests. As Donald expressed interest in playing basketball, a

new dependency between him and other patients who also enjoy playing basketball is

suggested. These candidate dependencies are denoted with a dashed line in Figure 6.

The deployment of these dependencies have no impact on the access control policy.

Indeed, activities are directly organized by the WAS; thus, patients are not required to

have access to the scheduling system or to the preferences of other patients. Therefore,

the identified candidate dependencies can be deployed in the system, increasing the

conviviality of the system while the system remains secure (Case 3).

8.2 Implementation

In this section, we present the prototype implementation of our running example sce-

nario. In order to clearly separate the different levels of details, the set of equipment

deployed in the house is referred to as Home Care System (HCS). Such an equipment

includes actuators, sensors and a controller, Sensors collect information about patient

health status. For instance, patients are provided with a watch measuring temperature

and pulse rate. The central component of the HCS is the Home Controller (HC). This

component is the operation center of the HCS. It is connected to sensors and actu-

ators and makes computations on collected data. Its prototype implementation uses

Kevoree as an environment for both design and runtime. Kevoree4, developed by the

Triskell team at University of Rennes 1, makes use of a component-based approach and

Models@Runtime to provide a highly dynamic environment.

The HC is composed of several components in charge of the gathering of patient

information from sensors, actuators and services surrounding them and their process-

ing. Amongst these components, the BodySensors component collects information from

the watch; the VideoRecorder grabs pictures of the scene in case of need; the TextMes-

sageModem sends text messages through a GSM modem. The Patient Health Record

(PHR) component makes the link with the Electronic Emergency Responder [39] of

the local hospital and gets updates of the patient record. The Emergency Call List

(ECL) stores the name and phone number of the persons to be contacted in case of

emergency as defined by DR44 of [39]. The Workflow Manager (WM) is responsible of

orchestrating the emergency process. In particular, this component takes care of the

execution of the sequence of tasks to be executed when an event occurs.

Figure 7 presents the sequence diagram describing the steps executed by the WM.

The process is initialized by the BodySensors component when it receives an alert of

4 http://www.kevoree.org

23

Fig. 7 Scenario Sequence Diagram

a fall along with the data collected by the watch such as temperature and pulse rate.

The fall is considered an emergency case; how serious this case is must be evaluated

by the HC. To this end, the alert automatically triggers the execution of the WM

component. The first step is to confirm the fall using another source of information. The

VideoRecorder component collects and processes images captured by video cameras in

the house. Once such information has been gathered, the HC can confirm the fall, and

resumes the execution of the workflow. The HC needs to collect health information

about the patient in order to decide whether the situation is a low, a medium or a high

level emergency.

Patients’ health information is requested by the PHR to the Electronic Emergency

Responder of the local hospital. The data collected are the clinical summary (DR02)

and decision support data (DR17) as described in [39]. By compiling all the information

collected, the HC makes the decision about the level of emergency.

In case of a medium emergency, the HC has to find someone who can provide

assistance to the patient. To this end, the workflow activates the ECL component. The

ECL provides the HC with the list of names and phone numbers of people trusted

by the patient (family, friends, etc.). The HC contacts each number by sending a text

message inquiring their availability in the defined order until someone accepts to assist

the patient. The first contact that answers positively receives another text message

containing the door access code to enter the flat.

The security of the process is managed by the Access Control Manager (ACM).

This component is able to reason about the current state of the HC thanks to the

Models@Runtime capabilities of Kevoree. Consequently, it works at a higher level of

abstraction than the other components and is not visible to them. The ACM ensures

that access control policies are properly enforced; it also implements the policy update

presented in Section 7. If changes in the HC are detected (e.g., a person is added/re-

moved to the ECL of a patient), the ACM assists operators in the analysis of the

conviviality of the updated system. Based on the changes, potential ameliorations can

be proposed. Such ameliorations are verified against the access control policy and in

particular against non-negotiable authorization rules. If no hard constraints have been

violated, the policy is updated and the ACM requests Kevoree to actually adapt the

24

Convi- Convi
ID Scenario title L I P = L× I viality viality

before after
1 Heart-attack 1 2.5 3 7.5 2 3
2 Loneliness 3 2 6 4 5
3 Isolation 2 3 6 2 5
4 Finances 2 3 6 3 6
5 Fever 3 2 6 3 5
6 Medication 3 1 3 1 3
7 Weight 3 1 3 1 3
8 Depression 1 3 1 3 4 4
9 Alzheimer 2 1 2 2 5
10 Depression 2 1 2 2 3 5
11 Alcoholism 1 2 2 3 4
12 Heart-attack 2 1 1 1 5 7

Table 4 Prioritization of the scenarios, based on Likelihood and Impact

running system to fit the newly created policy. Accordingly, Kevoree may connect (or

disconnect) components to the HC to conform with the updated access control policy.

8.3 Results

This section summarizes the results of our methodology with respect to the 12 scenarios

selected by HotCity (Table 4). As in risk based testing approaches [34], likelihood and

impact have been used to prioritize scenarios, from low (value 1) to high (value 3). The

priority P of each scenario is calculated as the product of likelihood L and impact I,

i.e. P = L × I. The results describe the relevancy of our scenarios. Table 4 presents

the results of this ranking in a descending order in terms of Priority. ID identifies the

scenarios that are considered in the validation. Conviviality is measured by the number

of cycles in the dependence network. The result shows that, in the worst case, we have

not been able to improve the conviviality adding at least one cycle to the network,

thereby one potential coalition among the participating agents. However, we managed

to increase the conviviality with our approach in 91.6% of the selected scenarios, with

sometimes major improvements (of factor 3). Consequently, it appears that by just

combining the social dimension, i.e., conviviality, and access control policy may bring

improvements regarding how users perceive the system. This means that conviviality

may be effortlessly improved without degrading the security of the system. Indeed, we

have only considered changes that do not affect non-negotiable authorization rules. The

added-value of our approach is to make explicit decisions that were previously taken

in an ad-hoc manner by considering social and security aspects while reconsidering the

system design.

8.4 Threats to validity

During this work, we have have identified potential threats to the validity of the pro-

posed approach and its validation. This section lists some of those threats. As a threat

to internal validity, we can assume that the methodology we propose requires an expert

to manually check for conviviality improvement. We need to go beyond a methodology

25

definition and find a systematic approach to allow automated self improvement of the

system’s conviviality while keeping in mind the security policy.

The threats to external validity are related to the level to which our scenarios are

representative of real life case studies. The scenarios that we have considered to validate

the approach were quite simple in terms of number of actors or goals. In the future, we

intend to improve the validation process using more elaborated scenarios with more

goals, and more actors, to show the effectiveness of our approach to achieve scalability.

9 Related Work

This work spans four main research areas, namely assistance in policy specification, pol-

icy adaptation, requirements negotiation and conviviality. In the domain of assistance

in policy specification, some contributions have been proposed to fill the gap between

requirements analysis and polices specification. Basin et al. [4] present a UML-based

modeling language, called SecureUML, for modeling access control policies and inte-

grating these (policies) into a model-driven software development process. Dardenne

et al. [28] propose a process for refining requirements and derive security policies from

them. In particular, the refinement process allows the derivation of access control poli-

cies and obligations expressed in Ponder [27]. Another work in the same direction

has been presented by Crook et al. [25] who propose a framework for defining access

control policies which considers the assignment of users to the roles within an organi-

zation. These proposals, however, focus on the system-to-be, and do not analyze the

organizational environment in which the system will eventually operate. In particular,

they do not consider the social relations between stakeholders which are the basis for

specifying conviviality-driven access control policies. Massacci et al. [46,47] present a

quantitative approach to determine the access control policy for an inter-organizational

business process, which is minimal with respect to the sensitivity of data and the level

of trust between actors. This approach allows users to express their preferences in the

form of privacy penalties associated to personal data and to the partner of the business

process. Then, it determines the alternative with the smallest privacy penalty and thus

guarantees maximal privacy protection. In contrast, our work mainly focuses on the

trade-off between conviviality and security, where the number and size of coalitions is

the main criterion to evaluate the conviviality of the system and access control policies

comply with the need-to-know principle by construction.

Several research efforts have addressed policy adaptation in dynamic environments.

Rinderle-Ma and Reichert [57] propose a formal framework for modeling changes in the

organizational models and in the corresponding access control policy. Bertino et al. [6]

present a model in which users can dynamically change their access requests to obtain

authorizations. Requests include service parameters and subject partial identities to es-

tablish trust using trust negotiation. Ray [55] proposes concurrency control algorithms

to allow real-time and concurrent policy updates in a database system. Ryutov et al.

[59] propose a framework to support policy adaptation based on suspicion level and

system threat level. Lymberopoulus et al. [45] present a framework for policy specifi-

cation and management in network services. In their framework, policies adaptation is

monitored by event triggers that allow the change of a policy on the basis of the changes

in the managed environment. Morin et al. [53] introduce a model-based approaches to

update the architecture model according to security policy. Here, a domain specific

modeling language is used to establish a mapping between the access control policy

26

and the architecture model. Research efforts on policy adaptation can be categorized

based on the nature of adaptation and changes; to the best of our knowledge, our work

is the first work that considers dependence relations between agents to update access

control policies.

In the domain of requirements negotiation and trade-offs, Boehm and Egyed [7]

present a process that permits to capture, analyze and negotiate requirements in or-

der to satisfy the higher number of stakeholders. Kazman et al. [42] propose a spiral

model of design to help identify and understand the trade-offs inherent in the architec-

tures of systems that contain competing quality attributes. Their methodology helps

identify dependencies among different attributes (trade-off points) and permits rea-

soning about them. Several research initiatives [2,11,26,32,33,38,61,72] have tackled

trade-offs issues between security and social dimensions of socio-technical systems and

in particular the trade-off between security and usability. For instance, Yee [72] has

proposed to align security and usability by considering users’ workflow and deriving

authorizations from users’ tasks. Braz et al. [11] explore trade-offs between security

and usability through usability inspection methods based on automata machines the-

ory. The method provides criteria for studying usability factors which are refined into

usability metrics for a secure system. Flechais et al. [32,33] propose a methodology

supported by well defined semantics that considers security, risk analysis and the con-

text of use at design phase of a software development to achieve a trade-off between

security and usability. The approach is based on an asset model that is extended with

contextual information about the system usability. Our work is orthogonal to those

proposals in the fact that we study the trade-off between security and another social

dimension of socio-technical systems, namely conviviality.

Similarly to our work, the work by Liu et al. [44] and subsequent work by Elahi et

al. [29,30] extend i* to capture security and privacy requirements and enable trade-off

analysis between security and other non-functional requirements. Intuitively, security

is treated as a non-functional requirement: softgoals, as “Security” or “Privacy”, are

used to model the corresponding notions. In addition, an attacker model is constructed

within the requirements model, and dependency analysis is used to determine the level

of security guaranteed by the system by analyzing the satisfaction of the correspond-

ing softgoals. Although this approach makes it possible to assess the risk of security

incidents and evaluate the impact of countermeasures on the systems, it is not suitable

to derive an access control policy from the requirements model. Bryl et al. [13] propose

a requirements analysis approach for socio-technical systems which employs planning

techniques for exploring the space of requirements alternatives and a number of social

criteria for their evaluation. This approach has also been applied to SI* to select the

optimal security design among a set of alternatives [14]. The plan obtained using the

approach in [13,14] are optimal with respect to the length of the plan, where optimality

is defined in terms of length minimization. This approach, however, is not applicable to

conviviality since the plan with minimal length is usually not the one that maximizes

conviviality. Bryl et al. [13] also propose metrics to study the criticality of an actor in a

plan. Our approach would benefit from the application of such metrics to dependence

networks as they provide insights on the resilience of dependence networks.

Conviviality has been introduced as a social concept in multi-agent systems that

reflects relations between individuals to emphasize some human aspects like equality

and community life [22]. In previous studies (e.g., [16]) conviviality is measured in

terms of interdependencies between agents. The basis idea is that more opportunities

to work with other people increases the conviviality, whereas larger coalitions may de-

27

crease the efficiency and stability of these coalitions. Our work considers conviviality

from a different perspective: conviviality can be increased as long as it does not impact

the system security. Conviviality has been captured through three models using de-

pendence networks [19]: the first model captures temporal properties to reason about

conviviality evolution over time; the second model captures stakeholders viewpoints;

and the third model captures transformations of social dependencies by hiding power

relations and social structures to facilitate social interactions. In our work, we do not

consider the temporal dimension that may regulate agents’ dependencies; this aspect

will be investigated in future work.

10 Conclusions and Future Work

Changes in socio-technical requirements, design, and environment may require to adapt

and update the access control policy regulating the system. This paper presents the

DN-AC alignment methodology for analyzing access control policies with respect to

the concept of conviviality. We have used a goal-oriented methodology to capture and

analyze the social interactions between stakeholders. Then, security interactions are

used to define the access control policy, whereas dependencies are used to analyze,

through dependence networks, the conviviality of the system. To reconcile the security

and conviviality visions, we proposed a socio-technical mapping matrix that connects

concepts of access control and concepts related to dependence networks to analyze the

impact of conviviality on existing authorization rules. We also defined how to adapt

authorization rules based on the impact of conviviality on the system security. To

validate the proposed methodology, we have built a proof-of-concept prototype from

the AAL use case of Luxembourg HotCity. The main lesson learned from the scenario

is that the outcome of our methodology leads to create more coalitions between agents

and thus to increase the conviviality while maintaining the security level of the system.

Further works involve refining the process of automatic derivation of dependence

networks and AC policy from requirements. This will enable to systematically analyze

complex scenarios involving a large number of agents and dependencies. Moreover, in

this paper we consider static models, whereas investigating the evolution of models

would provide finer-grained analysis over the conviviality improvement and AC policy

updating process. Finally, we need to implement a prototype of the mapping approach

to automate the process of policy update while considering the potential dependencies

in the system with the objective to improve conviviality. This automation is needed to

provide security experts with an automatic reasoning tool for policy update.

References

1. eXtensible Access Control Markup Language (XACML) Version 3.0. OASIS
Standard, OASIS (2012). URL http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-core-spec-os-en.pdf

2. Ackerman, M.: Usability and security. In: Proceedings of the Network and Distributed
System Security Symposium. The Internet Society (1999)

3. Asnar, Y., Li, T., Massacci, F., Paci, F.: Computer Aided Threat Identification. In:
Proceedings of 13th IEEE Conference on Commerce and Enterprise Computing, pp. 145–
152. IEEE (2011)

4. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: From uml models to access
control infrastructures. ACM Trans. Softw. Eng. Methodol. 15(1), 39–91 (2006)

28

5. Baxter, G., Sommerville, I.: Socio-technical systems: From design methods to systems
engineering. Interacting with Computers 23(1), 4–17 (2011)

6. Bertino, E., Squicciarini, A.C., Martino, L., Paci, F.: An adaptive access control model for
web services. Int. J. Web Service Res. 3(3), 27–60 (2006)

7. Boehm, B., Egyed, A.: Software requirements negotiation: some lessons learned. In: Pro-
ceedings of the 20th International Conference on Software Engineering, pp. 503–506. IEEE
(1998)

8. Boella, G., Sauro, L., van der Torre, L.W.N.: Social viewpoints on multiagent systems. In:
AAMAS, pp. 1358–1359. IEEE Computer Society (2004)

9. Boella, G., van der Torre, L., Villata, S.: Four ways to change coalitions: Agents, depen-
dencies, norms and internal dynamics. In: Proceedings of the 2nd Multi-Agent Logics,
Languages, and Organisations Federated Workshops, CEUR Workshop Proceedings, vol.
494. CEUR-WS.org (2009)

10. Bonzon, E., Lagasquie-Schiex, M.C., Lang, J.: Dependencies between players in boolean
games. Int. J. Approx. Reasoning 50(6), 899–914 (2009)

11. Braz, C., Seffah, A., M’Raihi, D.: Designing a trade-off between usability and security: A
metrics based-model. In: Human-Computer Interaction–INTERACT 2007, LNCS 4663,
pp. 114–126. Springer (2007)

12. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

13. Bryl, V., Giorgini, P., Mylopoulos, J.: Designing socio-technical systems: from stakeholder
goals to social networks. Requir. Eng. 14(1), 47–70 (2009)

14. Bryl, V., Massacci, F., Mylopoulos, J., Zannone, N.: Designing security requirements mod-
els through planning. In: Proceedings of 18th International Conference on Advanced In-
formation Systems Engineering, LNCS 4001, pp. 33–47. Springer (2006)

15. Caire, P.: New tools for conviviality: Masks, norms, ontology, requirements and measures.
Ph.D. thesis, Luxembourg University, Luxembourg (2010)

16. Caire, P., Alcade, B., van der Torre, L., Sombattheera, C.: Conviviality measures. In: Pro-
ceedings of the 10th International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 895–902. International Foundation for Autonomous Agents and Multiagent
Systems (2011)

17. Caire, P., Bikakis, A., Efthymiou, V.: Conviviality by Design. In: Proceedings of Sympo-
sium on Social Computing - Social Cognition - Social Networks and Multiagent Systems
(2012)

18. Caire, P., van der Torre, L.: Convivial ambient technologies: Requirements, ontology and
design. The Computer Journal 53(8), 1229–1256 (2009)

19. Caire, P., van der Torre, L.: A conviviality measure for early requirement phase of multi-
agent system design. In: Normative Multiagent Systems, no. 09121 in Dagstuhl Seminar
Proceedings. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)

20. Caire, P., van der Torre, L.: Temporal dependence networks for the design of convivial
multiagent systems. In: Proceedings of the 8th International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pp. 1317–1318. International Foundation for
Autonomous Agents and Multiagent Systems (2009)

21. Caire, P., Villata, S., Boella, G., van der Torre, L.: Conviviality masks in multiagent
systems. In: Proceedings of the 7th International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 1265–1268. International Foundation for Autonomous Agents
and Multiagent Systems (2008)

22. Caire, P., Villata, S., Boella, G., van der Torre, L.: Conviviality masks in multiagent
systems. In: Proceedings of the 7th International Joint Conference on Autonomous Agents
And Multiagent Systems, pp. 1265–1268. International Foundation for Autonomous Agents
and Multiagent Systems (2008)

23. Castelfranchi, C.: The micro-macro constitution of power. Protosociology 18, 208–269
(2003)

24. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd
edn. The MIT Press (2001)

25. Crook, R., Ince, D., Nuseibeh, B.: Modelling access policies using roles in requirements
engineering. Information and Software Technology 45(14), 979–991 (2003)

26. Damen, S., Zannone, N.: Privacy Implications of Privacy Settings and Tagging in Face-
book. In: Proceedings of the 10th VLDB Workshop on Secure Data Management. Springer
(2013)

29

27. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification Lan-
guage. In: Proceedings of the International Workshop on Policies for Distributed Systems
and Networks, LNCS 1995, pp. 18–38. Springer (2001)

28. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. In:
Proceedings of the 6th International Workshop on Software Specification and Design, pp.
3–50. Elsevier Science Publishers B. V., Amsterdam, The Netherlands (1993)

29. Elahi, G., Yu, E.S.K.: Modeling and analysis of security trade-offs - a goal oriented ap-
proach. Data Knowl. Eng. 68(7), 579–598 (2009)

30. Elahi, G., Yu, E.S.K., Zannone, N.: A vulnerability-centric requirements engineering frame-
work: analyzing security attacks, countermeasures, and requirements based on vulnerabil-
ities. Requir. Eng. 15(1), 41–62 (2010)

31. Emerson, R.: Power-dependence relations. American Sociological Review 27, 31–41 (1962)
32. Flechais, I., Mascolo, C., Sasse, M.A.: Integrating security and usability into the require-

ments and design process. Int. J. Electron. Secur. Digit. Forensic 1(1), 12–26 (2007)
33. Flechais, I., Sasse, M.A., Hailes, S.M.V.: Bringing security home: a process for develop-

ing secure and usable systems. In: Proceedings of the 2003 Workshop on New Security
Paradigms, pp. 49–57. ACM (2003)

34. Frankl, P.G., Weyuker, E.J.: Testing software to detect and reduce risk. Journal of Systems
and Software 53(3), 275–286 (2000)

35. Fuxman, A., Liu, L., Mylopoulos, J., Roveri, M., Traverso, P.: Specifying and analyzing
early requirements in Tropos. Requir. Eng. 9(2), 132–150 (2004)

36. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling Security Requirements
Through Ownership, Permission and Delegation. In: Proceedings of the 13th IEEE Inter-
national Conference on Requirements Engineering, pp. 167–176. IEEE Computer Society
(2005)

37. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Requirements engineering for trust
management: model, methodology, and reasoning. Int. J. Inf. Sec. 5(4), 257–274 (2006)

38. Gutmann, P., Grigg, I.: Security usability. Security & Privacy, IEEE 3(4), 56–58 (2005)
39. Healthcare Information Technology Standards Panel (HITSP): Emergency Responder

Electronic Health Record Interoperability Specification (IS04), Version 2.0 (2008)
40. Illich, I.: Tools for Conviviality. Marion Boyars Publishers, London (1974)
41. Jureta, I.J., Mylopoulos, J., Faulkner, S., Schobbens, P.Y.: Core ontology for requirements

engineering. Tech. rep., Information Management Research Unit, University of Namur
(2007)

42. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The architec-
ture tradeoff analysis method. In: Proceedings of the 4th IEEE International Conference
on Engineering of Complex Computer Systems, pp. 68–78. IEEE Computer Society (1998)

43. Koller, D., Milch, B.: Multi-agent influence diagrams for representing and solving games.
Games and Economic Behavior 45(1), 181–221 (2003)

44. Liu, L., Yu, E.S.K., Mylopoulos, J.: Security and Privacy Requirements Analysis within
a Social Setting. In: Proceedings of 11th IEEE International Requirements Engineering
Conference, pp. 151–161. IEEE Computer Society (2003)

45. Lymberopoulos, L., Lupu, E., Sloman, M.: An adaptive policy-based framework for net-
work services management. J. Netw. Syst. Manage. 11, 277–303 (2003)

46. Massacci, F., Mylopoulos, J., Zannone, N.: Minimal Disclosure in Hierarchical Hippocratic
Databases with Delegation. In: Proceedings of 10th European Symposium on Research in
Computer Security, LNCS 3679, pp. 438–454. Springer (2005)

47. Massacci, F., Mylopoulos, J., Zannone, N.: Hierarchical hippocratic databases with mini-
mal disclosure for virtual organizations. VLDB J. 15(4), 370–387 (2006)

48. Massacci, F., Mylopoulos, J., Zannone, N.: Computer-aided Support for Secure Tropos.
Autom. Softw. Eng. 14(3), 341–364 (2007)

49. Massacci, F., Mylopoulos, J., Zannone, N.: An ontology for secure socio-technical systems.
In: Handbook of Ontologies for Business Interaction, pp. 188–207. IDEA Group (2007)

50. Massacci, F., Mylopoulos, J., Zannone, N.: Security requirements engineering: The si*
modeling language and the secure tropos methodology. In: Z.W. Ras, L.S. Tsay (eds.) Ad-
vances in Intelligent Information Systems, Studies in Computational Intelligence, vol. 265,
pp. 147–174. Springer (2010). URL http://dblp.uni-trier.de/db/series/sci/sci265.
html#MassacciMZ10

51. Massacci, F., Zannone, N.: A model-driven approach for the specification and analysis of
access control policies. In: Proceedings of OTM Confederated International Conferences,
LNCS 5332, pp. 1087–1103. Springer (2008)

30

52. Montali, M., Torroni, P., Zannone, N., Mello, P., Bryl, V.: Engineering and verifying agent-
oriented requirements augmented by business constraints with B-Tropos. Autonomous
Agents and Multi-Agent Systems 23(2), 193–223 (2011)

53. Morin, B., Mouelhi, T., Fleurey, F., Le Traon, Y., Barais, O., Jézéquel, J.M.: Security-
driven model-based dynamic adaptation. In: Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, pp. 205–214. ACM (2010)

54. NeOn: NeOn Toolkit. http://neon-toolkit.org/
55. Ray, I.: Applying semantic knowledge to real-time update of access control policies. IEEE

Trans. on Knowl. and Data Eng. 17(6), 844–858 (2005)
56. Ray, I., France, R., Li, N., Georg, G.: An aspect-based approach to modeling access control

concerns. Information and Software Technology 46, 575–587 (2004)
57. Rinderle-Ma, S., Reichert, M.: A formal framework for adaptive access control models.

Journal on Data Semantics IX pp. 82–112 (2007)
58. Ruscio, D.D., Muccini, H., Pierantonio, A., Pelliccione, P.: Towards weaving software archi-

tecture models. In: Proceedings of International Workshop on Model-Based Development
of Computer-Based Systems and Model-Based Methodologies for Pervasive and Embedded
Software, pp. 103–112. IEEE Computer Society (2006)

59. Ryutov, T., Zhou, L., Neuman, C., et al.: Adaptive trust negotiation and access control.
In: Proceedings of the 10th ACM Symposium on Access Control Models And Technologies,
pp. 139–146. ACM (2005)

60. Saltzer, J., Schroeder, M.: The protection of information in computer systems. Proceedings
of the IEEE 63(9), 1278–1308 (1975)

61. Sasse, M.A., Flechais, I.: Usable security: Why do we need it? how do we get it? In:
Security and Usability: Designing secure systems that people can use, pp. 13–30. O’Reilly
(2005)

62. Sauro, L.: Qualitative criteria of admissibility for enforced agreements. CMOT 12(2-3),
147–168 (2006)

63. Sauro, L., Villata, S.: Dependency in cooperative boolean games. J Logic Comp. 23,
425–444 (2013)

64. Schneier, B.: Secrets and Lies: Digital Security in a Networked World. John Wiley & Sons
(2004)

65. Sharman, R., Kishore, R., Ramesh, R.: Ontologies: A Handbook of Principles, Concepts
and Applications in Information Systems (Integrated Series in Information Systems).
Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006)

66. Sichman, J.S.: Depint: Dependence-based coalition formation in an open multi-agent sce-
nario. Journal of Artificial Societies and Social Simulation 1(2), 1998 (1998)

67. Sichman, J.S., Conte, R.: Multi-agent dependence by dependence graphs. In: Proceedings
of the 1st International Joint Conference on Autonomous Agents & Multiagent Systems,
pp. 483–490. ACM (2002)

68. Sichman, J.S., Demazeau, Y.: On social reasoning in multi-agent systems. Revista
Iberoamericana de Inteligencia Artificial 13, 68–84 (2001)

69. Sinclair, S., Smith, S.W.: What’s wrong with access control in the real world? IEEE
Security and Privacy 8, 74–77 (2010)

70. Torasso, D.P., Inf, A.: Formalizing admissibility criteria in coalition formation among goal
directed agents. Ph.D. thesis (2006). URL http://citeseerx.ist.psu.edu/viewdoc/
download?rep=rep1&type=pdf&doi=10.1.1.100.4550

71. Vasileios Efthymiou, P.C.: Diagram Analysis Report: Use Cases for Conviviality and Pri-
vacy in Ambient Intelligent Systems. University of Luxembourg, SnT, Luxembourg (2012)

72. Yee, K.P.: Aligning security and usability. Security & Privacy, IEEE 2(5), 48–55 (2004)
73. Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. thesis, University

of Toronto, Canada (1995)

