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Abstract
Driving automation systems, including autonomous driving and advanced driver assistance, are an important safety-critical 
domain. Such systems often incorporate perception systems that use machine learning to analyze the vehicle environment. 
We explore new or differing topics and challenges experienced by practitioners in this domain, which relate to requirements 
engineering (RE), quality, and systems and software engineering. We have conducted a semi-structured interview study 
with 19 participants across five companies and performed thematic analysis of the transcriptions. Practitioners have dif-
ficulty specifying upfront requirements and often rely on scenarios and operational design domains (ODDs) as RE artifacts. 
RE challenges relate to ODD detection and ODD exit detection, realistic scenarios, edge case specification, breaking down 
requirements, traceability, creating specifications for data and annotations, and quantifying quality requirements. Practitioners 
consider performance, reliability, robustness, user comfort, and—most importantly—safety as important quality attributes. 
Quality is assessed using statistical analysis of key metrics, and quality assurance is complicated by the addition of ML, 
simulation realism, and evolving standards. Systems are developed using a mix of methods, but these methods may not 
be sufficient for the needs of ML. Data quality methods must be a part of development methods. ML also requires a data-
intensive verification and validation process, introducing data, analysis, and simulation challenges. Our findings contribute 
to understanding RE, safety engineering, and development methodologies for perception systems. This understanding and 
the collected challenges can drive future research for driving automation and other ML systems.
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1  Introduction

Driving automation systems, including both autonomous 
driving (AD) and advanced driver assistance systems 
(ADAS), are software systems designed to augment or 
automate aspects of vehicle control [1]. Driving automa-
tion systems have long been a domain of interest. However, 
the increased capabilities and usability of machine learning 
(ML) have subsequently improved the capabilities of—and 
interest in—such systems. Research advances have improved 
comfort and safety, and reduced fuel and energy consump-
tion, emissions, and travel time [1].

Driving automation system functionality depends on 
the correctness and the integrity of perception systems that 
blend ML-based models and traditional signal processing1. 
The usage of ML for perception relies on a large quantity 
and high quality of data. Data quality, context, and attrib-
utes—as well as annotation quality—have a significant 
impact on the resulting system quality. However, it is dif-
ficult to make direct connections between data, annotation, 
ML model quality, and the resulting functional quality of a 
perception system (e.g., between the boxes in Fig. 1). The 
inherent uncertainty of ML—coupled with high require-
ments on data quality and coverage—creates substantial 
requirements, systems, and software engineering challenges 
in perception system development [2].

Requirements engineering (RE) is an important founda-
tional element of quality assurance and safety engineering. 
RE plays a critical role in perception system development by 
enabling explicit capture of safety and quality requirements, 
supporting communication, recording functional expecta-
tions, and ensuring that standards are followed. Addition-
ally, systems and software engineering play a critical role in 
the successful development and deployment of perception 
systems by enhancing real-time decision-making [3], sup-
porting adaptability and continuous learning, facilitating 

complex system integration [4], maximizing performance, 
ensuring dependability and safety [5], encouraging cross-
disciplinary collaboration [6], and advancing ethical and 
responsible development methods [7].

Recent research has explored RE challenges for ML sys-
tems, e.g., [8, 9], as well as systems and software engineer-
ing challenges [10–12]. However, such challenges have not 
been thoroughly explored in the context of perception sys-
tems for driving automation systems. Addressing this gap is 
necessary to advance practices in both this domain and in 
the broader context of RE for ML systems.

To explore important engineering topics and challenges 
for perception systems, we have conducted an interview 
study with 19 domain experts from five companies working 
in various driving automation systems roles. We analyzed 
interview data using thematic coding to produce eight major 
themes: perception, requirements engineering, systems and 
software engineering, AI and ML models, annotation, data, 
ecosystem and business, and quality.

This paper is an extension of previous work [13]. The 
initial article focused specifically on the RE themes from the 
thematic analysis, encapsulating RE topics and challenges 
discussed by the participants. In this paper, we extend the 
analysis and discussion of the RE theme to include findings 
from two additional themes—systems and software engi-
neering and quality. For both themes, we also explore top-
ics and challenges for driving automation systems develop-
ment that were raised in the interviews.2 These two themes, 
in particular, add relevant insights for practitioners and, 
additionally, enrich our understanding of RE practices and 
challenges in this domain (e.g., requirements and quality 
are tightly interconnected). In addition, we include a more 
extensive related work and discussion section, including an 
outline of future directions in research and practice for driv-
ing automation systems and other ML systems.

Fig. 1   Conceptual model of 
quality transitions from data 
collection to the quality of the 
automotive function

1  In this paper, we focus specifically on ML-based perception sys-
tems for driving automation systems, but often use the term percep-
tion systems as shorthand.

2  Another recent article has also used the same interview data, but 
focused on the annotation, data, and ecosystems and business themes 
[14].
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Related to RE, our findings indicate that practition-
ers have difficulty breaking down specifications for the 
ML components. In practice, individuals report that they 
use scenarios, operational design domains (ODDs), and 
simulations as part of RE. Practitioners experience RE 
challenges related to uncertainty, ODD detection, realistic 
scenarios, edge case specification, traceability, creating 
specifications for data and annotations, and quantifying 
quality requirements.

In terms of quality, practitioners consider perfor-
mance, reliability, robustness, safety, and user comfort 
as important quality attributes. In the context of driving 
automation systems, safety is particularly critical. Prac-
titioners establish safety goals, often in negotiation with 
component suppliers. To ensure safety, practitioners must 
comply with evolving safety and AI standards—which are 
challenging and costly to meet. They must also manage 
trade-offs between safety and other qualities. Safety cases 
are a critical element of ensuring that the safety goals are 
met. Quality assurance is performed by tracking critical 
key performance indicators (KPIs) during the execution 
of catalogs of scenarios. Quality assurance is complicated 
by the non-determinism and data requirements of ML and 
the realism of simulation.

From a systems and software engineering perspec-
tive—though practitioners work with traditional and agile 
methods—ML complicates the overall development pro-
cess. Current agile methods are insufficient for the needs 
of large-scale ML because practitioners lack appropriate 
data quality methods as part of their overall development 
methodology [15]. Furthermore, the addition of ML leads 
to a data-intensive verification and validation (V &V) 
process with challenges related to data quality, statistical 
analysis, and simulation.

By exploring the views and challenges of practition-
ers on RE, quality, and software and systems engineering 
for ML-enabled perception systems, we provide valuable 
insights for practitioners working in this safety-critical 
domain. Additionally, our findings contribute to improv-
ing RE, and systems and software engineering knowledge 
more broadly, in other domains reliant on ML.

2 � Related work

In this section, we review related work in requirements 
engineering for machine learning systems and for automo-
tive and driving automation systems. We give an overview 
of work on quality for machine learning and software 
development methods for machine learning, as these are 
key themes of focus in our interview study.

2.1 � Requirements engineering for machine 
learning

Recent research has focused on how RE could or must 
change in the face of rising use of ML. Systematic map-
ping studies on RE for ML identified new contributions 
in this area, including approaches, checklists, guidelines, 
quality models, classifications and evaluations of quality 
models, taxonomies, and quality requirements [16–18]. Pei 
et al. reviewed literature on RE for ML, went through a col-
laborative requirements analysis process, and provided an 
overview of RE processes for ML applications in terms of 
cross-domain collaboration [19]. They provided an example 
case of an industrial data-driven intelligence application, 
discussed in relation to the provided requirements analy-
sis process. Ahmad et al. performed a systematic mapping 
study to find articles on current RE for AI approaches and 
identified available frameworks, methodologies, tools, and 
techniques used to model requirements and found existing 
challenges and limitations [20]. They identified 43 primary 
studies and found several challenges and limitations of exist-
ing RE for AI practices, for example, that current RE pro-
cesses are not adequately adaptable for building AI systems. 
The authors emphasized that new techniques and tools are 
needed to support RE for AI.

Further papers have identified RE-related challenges for 
ML and AI. A high number of AI solutions fail or do not 
make it to production due to missing or bad RE processes. 
Therefore, Maalej et al. discussed six aspects that need 
careful consideration and tailoring to the AI context that 
include acceptable levels of quality requirements, data- and 
user-centered prototyping, expanding RE to focus on data, 
embedding responsible AI terminology into the engineer-
ing workflows, trade-off analysis for responsible AI, and 
requirements as foundation for quality and testing of AI 
[21]. Gjorgjevikj et al. discussed the challenges in applying 
conventional RE practices to ML systems and proposed best 
practices and adjustments to RE concepts [22].

Ahmad et al. investigated current approaches for writ-
ing requirements for AI/ML systems, identified tools and 
techniques to model requirements for AI/ML, and pointed 
out existing challenges and limitations in this area [23]. 
Belani et al. identified and discussed RE challenges for ML- 
and AI-based systems and reported that identifying NFRs 
throughout the software lifecycle is one of the main chal-
lenges [8]. Heyn et al. used three use cases of distributed 
deep learning to describe AI system engineering challenges 
related to RE [24], including context, defining data quality 
attributes, human factors, testing, monitoring, and reporting. 
In further study, Heyn et al. identified several challenges 
related to training data specification (e.g., unclear design 
domain, missing guidelines for data selection, and unsuitable 
safety standards) and run-time monitoring for ML models, 
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with challenges relating to RE (e.g., lack of explainability 
for ML decisions, missing conditions for run-time checks, 
and overhead for monitoring solution) [25].

Other studies move toward proposed solutions. Farrell 
et al. identified key characteristics of ML-based software 
requirements such as confidence, accuracy, average value, 
robustness, data-driven learning, and quality aspects, provid-
ing a foundation for developing a taxonomy of requirements 
for such software [26]. Villamizar et al. propose a catalogue 
of 45 concerns that should be considered in specifying ML 
systems, covering five different relevant perspectives for 
such systems, such as objectives, user experience, infrastruc-
ture, model, and data [27]. Islam et al. presented a require-
ments process (RESAM) that integrates knowledge from dif-
ferent sources, such as discussion forums, domain experts, 
and formal product documentation, to discover and specify 
requirements and design definitions that contribute to the 
construction of effective deep learning anomaly detectors. 
They evaluated their process in a case study and demonstrate 
that it guides the construction of effective anomaly detection 
models that support explainability [28].

2.2 � Requirements engineering for automotive 
and driving automation systems

Significant research has been performed on RE for vehicles. 
Liebel et al. identified challenges in automotive RE with 
respect to communication and organization structure [29]. 
Pernstal et al. stated that RE is one of the areas most in need 
of improvement at automotive original equipment manufac-
turers (OEMs) and also identified the ability to communi-
cate via requirements as important [30]. Allmann et al. also 
noted requirements communication as a major challenge for 
OEMs and their suppliers [31]. Mahally et al. identified that 
requirements are the main enablers and barriers of moving 
toward Agile for automotive OEMs [32].

Research has also looked specifically at RE for AD, e.g., 
providing an overview of AD RE techniques [33]. Riberio 
et al. identified AD RE challenges addressed by the literature 
and identified the languages and description styles used to 
describe AD requirements, with special attention given to 
NFRs [34]. Heyn et al. investigated challenges with context 
and ODD definition in ML-enabled perception systems [35], 
including a lack of standardization for context definitions, 
ambiguities in deriving ODDs, missing documentation, and 
lack of involvement of function developers while defining 
the context. Ågren et al. identified six aspects of RE that 
impact automotive development speed, moving toward AD 
[36].

In further driving automation systems work relating to 
RE, Zhang et al. conducted a systematic mapping study in 
the context of driving automation systems and introduced 
a taxonomy for critical scenario identification methods 

including encompassing the problem definition of the solu-
tion and the assessment of the established scenarios [37]. 
They also discussed challenges considering the perspec-
tives of coverage, practicability, and scenario space explo-
sion. Luo et al. proposed a hierarchical safety assessment 
approach to quantitatively analyze the quality trade-offs, 
violation severity of safety requirements, and distinguish 
safer autonomous driving systems configurations based on 
the requirements violations comparison in a hierarchical 
way, following requirements importance [38]. Zhang et al. 
presented a data-driven engineering process that includes 
hierarchical requirements engineering to link the operational 
design domain with the requirements and semi-automated 
generation of datasets for leveraging future application of 
ML in automated driving in industry [39].

2.3 � Quality assurance for machine learning

Although quality for ML can be interpreted in a narrow 
sense, i.e., basic model performance, work exists which has 
focused on ML quality in a broader sense. Felderer et al. 
discussed terminology for quality assurance for AI systems, 
defining concepts and characterizing AI systems into artifact 
type, process, and quality characteristics [40]. They also dis-
cussed challenges in quality assurance such as lack of speci-
fications and defined requirements; the need for validation 
data and test input generation; difficulty defining expected 
outcomes as test oracles; and baselines for AI-based sys-
tems. Furthermore, different challenges and opportunities 
related to quality requirements for machine learning systems 
are reported and discussed in [8, 41–43].

From the perspective of traditional quality assurance, the 
Japanese industry has collectively proposed a set of recom-
mendations for the quality assurance of AI systems (e.g., in 
the Consortium of Quality Assurance for AI-based Products 
and Services) and the second iteration of these standards, 
which includes a list of quality evaluation criteria, a list 
of cutting-edge methods, and explanations of each of the 
five representative domains that are proposed in [44]. The 
research project PEGASUS (Project for the Establishment 
of Generally Accepted quality criteria tools and methods 
as well as Scenarios and Situations) focused on the release 
of highly automated driving functions. In this project, 17 
partners from research and industry worked together with 
the aim to develop a complete toolchain to include criteria 
and measures for the evaluation of functions and for driving 
automation systems quality levels, with test catalogues, cen-
tral methods for driving automation systems development, 
and processes for establishing safety, and to release highly 
automated driving functions [45].

From the perspective of technical standards, the automo-
tive industry is aware of adjustments in machine learning-
based technology demands in terms of technical expertise, 
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development paradigms, and cultural approaches. However, 
there is still a significant gap between the availability of 
technical standards and certification capacity. Currently, 
the automotive industry is governed by several standards. 
However, existing work has argued that these standards are 
not suitable for machine learning-based driving automation 
systems [46, 47]. Although further certifications of autono-
mous systems (e.g., SOTIF) are developed and are advanc-
ing, these efforts only cover some of the existing challenges 
[48].

Other work has focused specifically on data quality in 
relation to machine learning. Jain et al. discussed the impor-
tance of data quality and stated that the effort required to 
iteratively debug a machine learning pipeline in order to 
enhance model performance can be reduced by evaluating 
the quality of the data using intelligently defined metrics 
transformation operations [49]. The authors also survey 
the important data quality related approaches discussed in 
literature—highlighting their strengths and similarities and 
discussing their applicability to real-world challenges.

Further work has looked at AI in terms of risks. Poth 
et al. presented a systematic methodical approach (the evAIa 
method evaluates AI approaches) that evaluates risks of the 
machine learning model using a questionnaire specifically 
for AI products and services [50].

2.4 � Software and systems methods for machine 
learning

Current systems and software development methods often 
do not account well for machine learning-enabled systems. 
Giray points out a lack of techniques to support machine 
learning system development as part of a systematic litera-
ture review, reporting that the non-deterministic nature of 
machine learning systems complicates SE aspects of engi-
neering machine learning systems that include a lack of 
mature tools and techniques to support machine learning 
systems development and verification [51].

Given the rise of machine learning-enabled software, 
researchers have explored or introduced a number of meth-
ods and challenges for machine learning and AI system 
development. Hesenius et al. provided a structured engi-
neering process framework named EDDA (engineering 
data driven applications) that bridges existing gaps, sup-
ports data-driven application development, and ensures the 
required quality levels for critical components of machine 

learning systems [52]. Amershi et al. conducted a case study 
where the authors described how various Microsoft soft-
ware teams developed software applications with customer-
focused AI features—integrating existing Agile software 
engineering process with AI-specific workflows [12].

Further research looked into the challenges of engineering 
driving automation systems. Key collaboration challenges 
were identified in developing and deploying machine learn-
ing systems through interviews with 45 participants from 
28 organizations [53]. The authors reported on common 
collaboration points and challenges from the perspective of 
requirements, data, integration, and team patterns and found 
the majority of the challenges center around communication, 
documentation, engineering, and process. In addition, safety 
criticality extends the decision-making, development, and 
related environmental perception [54]. This complexity does 
not harmonize with conventional safety engineering; hence, 
the application of concepts for intelligence is required to 
resolve the complexity.

3 � Methodology

Our study is guided by the following research questions:

•	 RQ1: What requirements engineering topics of interest 
and challenges are encountered by the developers of per-
ception systems for driving automation systems?

•	 RQ2: What quality topics and challenges are encoun-
tered by the developers of perception systems for driving 
automation systems?

•	 RQ3: What software and systems engineering topics and 
challenges are encountered by the developers of percep-
tion systems for driving automation systems?

We refer to a topic of interest as something that practition-
ers currently practice or are curious about or would like to 
learn more about. A challenge on the other hand refers to an 
obstacle or difficulty that practitioners encounter and must 
overcome in order to successfully develop perception sys-
tems for driving automation systems.

To address these questions, we conducted seven group 
interviews with 19 expert participants from five companies 
that are currently working with ML-based perception sys-
tems for driving automation systems. Figure 2 gives an over-
view of the interview study.

Fig. 2   Overview of the inter-
view study
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3.1 � Data collection

We used semi-structured group interviews with a set of pre-
determined open-ended questions. The use of semi-struc-
tured interviews ensured that all participants addressed the 
same questions, while still allowing the freedom to follow-
up with additional questions on particular topics.3

The interviews were conducted between December 
2021 and April 2022 via Microsoft Teams, and each lasted 
between 1.5 and 2 h. We recorded all interview sessions 
with the permission of all participants, then transcribed, 
and anonymized the recordings for analysis. At least three 
researchers were present in each interview, with two par-
ticular researchers in all interviews to maintain consistency.

A summary of the interviews and the participants who 
took part is shown in Table 1. We chose participants who 
posses experience with ML, perception systems for driv-
ing automation systems, software and systems engineering, 
RE, or data science, or who were working in the driving 
automation systems industry. The sampling method was a 
mix of purposive, convenience, and snowball sampling. We 
sent open calls to the Swedish automotive industry and our 
known contacts; then, we asked the interviewees for further 
contacts. Our participants work with different aspects of 
driving automation systems.

We started by asking for demographic information about 
the participants. We then showed them Fig. 1, asking for 
their feedback and using the figure to ground further discus-
sions about how functional requirements relate to require-
ments on data and data annotation. We asked further ques-
tions about their requirements documentation, safety issues, 
and quality. Although we carefully chose interview partici-
pants, the opinions of the individual interviewees do not nec-
essarily reflect the overall opinion of their companies. Due 
to the sensitive nature of information provided by interview 
participants and their respective companies, we are unable 

to disclose the raw interview data or specific details about 
ways of working. Finally, in a 2.5-h workshop with roughly 
20 participants, many of whom were interviewees, we pre-
sented and discussed our findings with illustrative quotes.

3.2 � Data analysis

We applied thematic analysis, following the guidelines by 
Saladana [55]. We used a mixed form of coding, where we 
started with a number of high-level deductive codes based 
on the interview questions, and then we started inductive 
coding, adding new codes while going through the tran-
scripts. At least three of the researchers worked together to 
code each of the transcribed interviews.

We observed saturation after five interviews, as not many 
new inductive codes emerged. In a second round of cod-
ing, a new group of at least two researchers per interview 
reviewed the interview transcripts and verified the codes. 
Finally, we used pattern coding to identify emerging themes 
and sub-categories. The final codes of each interview and 
the assignment of the statements of the interviewees to the 
sub-categories were reviewed by an additional independent 
researcher.

To illustrate our points, we use a number of interview 
quotes. For increased anonymity, participants are assigned 
a random identifier, such that P1 does not necessarily match 
to interview A.

As noted in Sect. 1, the results of the theme Requirements 
Engineering have been previously published [13]. This study 
enriches the findings on the RE theme, by reporting on the 
quality and systems and software engineering themes. The 
ecosystem and business, data, and annotation themes have 
been reported as well by Heyn et al. [14]. Although the arti-
cle focuses on different themes, the qualitative topics cov-
ered in that article and our study here have some overlap, 
particularly in topics related to data and annotation. How-
ever, here, the topics of data and annotation are approached 
from an RE perspective, while the other article takes an eco-
systems and process view on topics and challenges related to 
perception systems in driving automation systems.

Table 1   Overview of the conducted interviews, with the focus of the work conducted by the participants and the roles of the participants (same 
interviews reported by Heyn et al. [14])

Interview Field of work Participants

A Object detection Product owner
B Autonomous Driving Product owner, test engineer, ML engineer, software developer
C Vision systems System architect, product owner, requirement engineer, deep learning engineer
D AD and ADAS System engineer, manager AD
E Testing and validation AD System architect, two product owners, compliance officer, data scientist
F Data annotations AI engineer, data scientist
G Autonomous Driving System safety engineer

3  The interview guide can be found at: https://​doi.​org/​10.​7910/​DVN/​
HCMVL1.

https://doi.org/10.7910/DVN/HCMVL1
https://doi.org/10.7910/DVN/HCMVL1
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4 � Results: requirements engineering (RQ1)

Based on the thematic analysis, we divide the RE theme 
into sub-themes—“Operational Design Domain (ODD), 
“Scenarios and Edge Cases,” “Requirements Breakdown,” 
“Traceability,” and “Requirements Specification”—and 
important topics within each sub-theme. The sub-themes 
and topics are summarized in Fig. 3. We also note how many 
interviewees discussed each sub-theme. Our findings reflect 
both RE topics and challenges, addressing RQ1.

4.1 � Operational design domain (ODD)

An ODD is a description of a domain that a driving auto-
mation system will operate in—e.g., the road or weather 

conditions. As part of RE, one needs to define not only 
requirements, but assumptions about the domain, context, 
and scope of operation. Operational context and scope 
for perception systems are particularly important as the 
intensity of hazards depends upon the current ODD. ODD-
related topics came up in all interviews and were discussed 
by 12 of the 19 participants.

ODD definition: ODDs should be captured as part of 
the requirements specification. Several interviewees men-
tioned ODD detection—where the system detects that a 
certain ODD is currently applicable for a driving auto-
mation system function—and ODD exit detection—when 
the ODD is no longer applicable. ODD detection requires 
information on what to detect and detection accuracy. For 

Fig. 3   Mind map illustrating 
identified RE topics and chal-
lenges (RQ1) for driving auto-
mation systems with perception
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example, on highways, a driving automation system needs 
to detect different dynamic objects than in urban areas.

ODD and standards: Interviewees state that ODDs are 
critical, and therefore, it is desirable to follow a standard or 
process for specifying and defining ODDs. This need has 
been recognized and new initiatives for the definition of 
ODD exist, e.g., the interviewees mention the PAS-1883 
standard, and we are aware of other standards (e.g., ISO 
21448/SOTIF) that include ODDs.

ODD and data distribution: One interviewee stated 
that data distribution requirements are highly influenced by 
ODDs. For example, camera data can be classified accord-
ing to descriptions in the ODD, and this mapping can reveal 
missing data, driving further data collection. As it is not 
feasible to collect data in all possible contexts, it is neces-
sary to have an efficient sampling process covering the most 
common ODDs.

“If the performance of the model is not good enough in 
some part of the ODD, for instance, during the night 
or snow weather and so on, then we can select more 
samples from those areas.”P16

Another interviewee pointed out that although ODDs drive 
data collection, collecting certain types of data required by 
the ODD can still be very difficult.

“... mining for specific use cases. For instance, it is not 
easy to collect data that contains animals in it. You 
need some way to mine and find those specific frames 
which will be sent for annotations and then be used 
during training.”P16

4.2 � Scenarios and edge cases

Several interviewees described how scenarios are crucial as 
part of the requirements specification process. In this con-
text, scenarios describe specific operational paths and con-
ditions for a vehicle, and one ODD may include a number 
of scenarios. As such, although there are links to scenario-
based requirements methods [56], there are also clear differ-
ences. Scenarios and edge cases came up in six of the seven 
interviews and were discussed by 11 of the 19 participants.

Scenario completeness: It is important that perception 
systems perform correctly and that the vehicle handles fail-
ures in as many scenarios as possible. As such, scenarios can 
help in requirements derivation.

“If we refer to the classic system engineering process, 
I think nowadays it’s quite hard ... we are trying to use 
the scenario to derive the requirements. If we ... see the 
features or the distribution of the scenarios based on 
the data from the real world. Then we can derive the 
high-level requirements based on that data, the sce-
nario database.” P4

However, when using scenarios to capture require-
ments, one interviewee stressed the difficulty of defining 
and assessing coverage. For example, when defining the 
scenarios for pedestrian children, how should the bounding 
box be defined, and how can coverage of a wide enough 
variety of children be ensured?

Scenarios and annotation: Even if all important sce-
narios are reflected in training data, annotation errors may 
result in unsafe behavior—e.g., a perception system may 
recognize a human as a tree during a snowy or rainy day.

“We’ll pick out some scenarios that we feel (are) 
likely not correct, for instance, if it’s a rainy night, 
then maybe the annotator is not annotating (people) 
as accurately as in the day.” P8

Scenarios as part of requirement refinement: Our 
results show that testing through scenarios, as part of a 
test-driven development process, enables iterative require-
ments refinement. Engineers iteratively refine their expec-
tations of correct behavior by examining scenarios and 
capturing observations from simulation or in the field.

“... we have to learn through testing, so probably it 
will start with some rough set of requirements, some 
obvious set of requirements. Then we will, through 
real-world testing, discover and learn exactly how 
we want to behave.” P2

Edge cases: Interviewees stated that, in addition to nor-
mal scenarios, it is crucial and challenging to deal with 
edge cases. The interviewees used subtly different terms, 
such as edge cases, rare cases, and cases that occurred very 
infrequently. We use the term “edge cases” for simplicity. 
These cases may be missed by studying data distributions, 
but are very critical to ensure safety.

“The cars ... will end up in situations that no one 
could predict, that we’ve never seen before, and 
somehow we need, even in this situation, one individ-
ual car needs to perform better than a human driver, 
and human drivers are real good at handling edge 
cases. The neural networks will not do that.” P13

Edge cases and annotation: Edge cases cause issues 
by creating confusion among annotators. Data from edge 
cases are often annotated inconsistently. The topic of 
annotation is explored in more detail by Heyn et al. [14].

“We label whether a vehicle is in our lane or not. But 
how should you? You can think of so many corner 
cases when you are out driving. When you are doing 
a lane change. Which lane are you in then, and how 
would you then place all the other vehicles or lane 
lines? Maybe there are double lane lines and which 
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is valid and which is not? This leads to a lot of confu-
sion among annotators.” P17

Scenarios, edge cases, and data distribution: One inter-
viewee pointed out that scenarios, and especially rarer edge 
cases, are important for driving data collection efforts as 
part of having an effective data distribution. How well edge 
cases are covered can be an important development metric.

Edge cases and simulation: Interviewees stated that 
collecting data points for particular scenarios from the real 
world is necessary, but is particularly difficult for edge cases. 
This makes simulation challenging, as for safety-critical 
edge cases, practitioners have difficulty safely gathering 
enough data to run realistic simulations. This makes the pro-
cess of iterative requirements refinement, as described previ-
ously, difficult for requirements associated with edge cases.

4.3 � Requirements breakdown

Requirements breakdown can involve both refining and 
decomposing requirements. Requirements breakdown was 
brought up as a topic in all interviews and was discussed by 
17 of the 19 participants participants.

The need for requirements breakdown: We see evi-
dence that a traditional requirements breakdown is followed 
for perception systems. At least one participant spoke of 
splitting the problem to reduce complexity, as in standard 
development.

Another participant described an architectural-oriented 
breakdown. Based on a safety goal as a top requirement, a 
high-level architecture should realize that requirement, and 
then, an iterative refinement process is started to break down 
the high-level architecture into a logical architecture with 
smaller and smaller pieces.

Others describe the importance of separation of high-
level requirements from technical requirements to have an 
upper layer that is resilient to change.

“To me, at least the function level will be the same in 
100 years because there’s no need that you change 
it. If your function doesn’t change, because today you 
satisfy that function by combustion engine, in the next 
50 years by electric, and in the next, I don’t know, 100 
years by something more intelligent ... By changing 
your technical system level specifications, you still can 
satisfy your function.” P19

Challenges with requirements breakdown: Partici-
pants commented on the challenges of connecting high-level 
requirements to low-level requirements and general chal-
lenges with requirements breakdown in this context.

“...we do believe that it’s necessary to connect the top-
level requirements or the quality of the function, and to 

map that to quantitative or performance requirements 
on, for example, perception, precision, and control.” 
P13

Another interviewee describe the breakdown of require-
ments over components to requirements over other com-
ponents, but commented that—although this breakdown is 
hierarchical—there is a need to work from both directions, 
not just top-down, but also bottom-up.

Several other interviewees report that traditional 
requirements breakdowns cannot be easily applied.

“For sure, we will not start with the classical soft-
ware approach, where you start with some require-
ments and then keep breaking those down and 
through the V-Model because it will be impossible 
to capture the behavior of autonomous vehicle with 
requirements.” P2

Breakdown to data and annotation requirements: 
Interviewees explained that although linking functional 
requirements to system accuracy is often possible, break-
ing functional requirements into data and annotation 
requirements is more difficult.

“Working with system level requirements, I can look 
at function requirements and figure out roughly what 
kind of accuracy we need ... That does not necessar-
ily mean that I can tell how precisely annotation has 
to be, because I need to know how the software works 
to figure that out. Another translation needs to hap-
pen where I gave my requirements to the developers 
and they have to figure out what kind of accuracy 
they need from the data to meet the system require-
ments and with so many translations on the way, it is 
easy for things to get lost somewhere.” P6

Capturing requirements over data and annotation, link-
ing to feature requirements, is particularly a challenge as 
the input space of the problem is large; thus, it is hard to 
capture a finite and complete set of these requirements.

Breakdown and collaboration: Challenges arise when 
teams collaborate to specify quality requirements. Often 
this involves collaboration with other teams and people. 
Frequent and direct interaction with the stakeholders can 
reduce this difficulty and help engineers to identify the 
requirements. In this case, stakeholders have internal roles 
in the perception system development.

“I think it is a lot of interaction with direct stakehold-
ers in the end ... because the direct consumers of 
whatever you are producing know exactly what they 
need to fulfill their own requirements from their own 
stakeholders. So the negotiation across these inter-
faces is where the most interaction happens.” P9
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Gap between high-level requirements and ML: When 
breaking down high-level requirements to very specific 
requirements on the ML-based perception system, results 
show that traditional RE practices are able to be applied 
up to a certain point—even though challenging. However, 
the breakdown for the ML based components is particularly 
challenging. As such, there are boundaries within the system 
where requirements methods change.

“If we talked about some other requirements or speci-
fications not for the AD stack. ... those things still can 
follow the traditional way for critical system. ... if we 
distinguish those two parts, ... for the black box or part 
or AD business part, it’s hard to follow, but for the rest 
we still can leverage the classic knowledge.” P4

We see that it is difficult to specify requirements for the 
whole perception system. However, there are often still 
requirements—in terms of various performance metrics—
at a high-level, for example, high-level metrics like safety, 
performance, functionality, or traffic comfort metrics (P4).

Redundancy in requirements satisfaction: One inter-
viewee described how requirements are allocated to ensure 
redundancy in the solution. This topic of redundancy came 
up in several interviews.

“We typically try to break down the problem to come 
up with redundant solutions. You would have one 
algorithm using one sensor, which has some capacity 
to detect the pedestrian, and then use another algo-
rithm and another algorithm in parallel. And you use 
another sensor and ... decompose the problem such 
that ... it’s very unlikely that all of them would miss 
this pedestrian. That’s a way to try and get reasonable 
requirements on every perception component.” P6

ML ‘volatility: One interview pointed out, due to 
dependencies between components and the volatile nature 
of ML, changes in the ML model can cause drastic changes 
in other parts of the system.

“Maybe one problem we have with ML is that, if there 
are things slightly off, it cannot just lead to a slight 
degradation, but to complete degradation of the entire 
system.” P17

4.4 � Requirements traceability

Seven interviewees, across four interviews, brought up 
points related to traceability in perception systems.

ML makes traceability more challenging: Known 
requirements traceability challenges are exacerbated by the 
use of ML and associated data. Interviewees described that 
when systems or modules fail to meet particular key per-
formance indicators (KPIs), tracing the source of the issue 

is difficult due to the combination of ML models and tradi-
tional code. Traceability was discussed in four out of our 
seven interviews and by seven out of 19 participants.

“I think what is important at the end is the KPIs on the 
rightmost features of the figure (Figure 1). Then if you 
want to track down why it is not working, it’s not very 
easy to find which module is not working as supposed 
to, or maybe it works, but in a combination of some-
thing else, it creates some kind of strange behavior.” 
P14

Traceability must account for more elements: Several 
interviewees mentioned that it is important that traceability 
be maintained not just between code and requirements, but 
also with ML elements—e.g., models and datasets—that 
determine the overall functionality. An interviewee (P8) 
pointed out that they need to keep track of exactly which 
datasets were used to train the model, potentially to show 
the general public.

Typically, trace links would link to typical elements like 
requirements and safety goals, in order to understand moti-
vations when something goes wrong, but as part of DAS 
development, elements like safety goals should also link to 
scenarios.

4.5 � Requirements specification

Aspects of documentation and requirements specification 
were discussed in all interviews and by 13 of 19 participants.

Unachievable requirements specifications: Two inter-
viewees mentioned that sometimes clients provide unachiev-
able requirements, even though requirements specifications 
are clear and precise.

“Sometimes clients come to us with a very well written 
set of requirements, like we want this annotator and 
want this precision or accuracy ... Then they send us 
data. But when we start looking at the data, it turns out 
that, given this data, these requirements are basically 
impossible to meet.” P18

Difficulties in specifying quantitative requirements: 
Due to confidentiality, interviewees were not able to elabo-
rate on specific target levels for quantitative requirements. 
However, they did reflect generally about the difficulty in 
determining quantitative quality targets. For example, an 
interviewee questioned whether recognizing 99% of bound-
ing boxes was enough and wondered how to make trade-offs 
between precision and recall.

Specification process: One interviewee emphasized that 
documentation of the rationale and goals of the project can 
serve as a form of requirement specification. They empha-
sized documenting underlying principles and the problem to 
be solved as part of requirements.
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Specification changes: The uncertain and highly iterative 
nature of perception systems and their development envi-
ronment means that specifications are particularly prone to 
change.

“Requirements at any level are not something that is 
static. They should reflect your current best interpre-
tation. These things can change because your under-
standing or your development process changes or the 
environment changes because there are suddenly new 
demands on how something is supposed to perform 
or you learn something new about the system or its 
environment.” P15

Difficulties in data and annotation specification: One 
interviewee said that specifying data requirements is difficult 
and different from functional specification, as it is hard to 
identify features and ensure data quality upfront.

“It’s very different how you write a data specification 
... it’s hard to know what the future expects and what 
type of classes we want and how we want to combine 
certain objects ... we future proof our datasets quite 
well by specifying. We do specify a lot of classes.” P5

Another interviewee reported that it is difficult to specify 
quality (non-functional) requirements on data and annotation 
and to understand how qualities affect model performance.

“I work a lot with image quality before any ML is 
involved. Even that is very difficult to quantify. We can 
have very much right objectively measurable require-
ments on image quality, sharpness. Then how those 
translate to the actual performance of an ML algo-
rithm is not at all linear.” P16

Another participant described challenges in specifying 
requirements for data annotation when dealing with external 

partners. It is difficult to have an upfront, detailed specifica-
tion of data classes and accuracy levels. Instead, data speci-
fication needs to be developed iteratively and experimentally 
with suppliers.

5 � Results: quality (RQ2)

Based on the thematic analysis, we divide the Quality 
theme into the following sub-themes—“System-level Qual-
ity,” “Safety,” and “KPI and Metrics”—and important top-
ics within each sub-theme. The sub-themes and topics are 
summarized in Fig. 4. We also note how many interviewees 
discussed the sub-theme. These topics and challenges are 
used to address RQ2.

5.1 � System‑level quality

This first sub-theme focuses on quality at the system level. 
This sub-theme came up in five interviews and was dis-
cussed by eight of the 19 participants.

System performance: As in other safety-critical 
domains, practitioners are required to satisfy performance 
and accuracy requirements for the entire system. They are 
often pressured to come up with precise accuracy numbers 
for ML models.

These requirements are typically quantitative in nature 
and often are prescribed as a bounded range of values rather 
than a single specific value to account for non-determinism. 
As an example, one interviewee discussed a parking situa-
tion where the exact performance depends on associated sen-
sors and other factors, but the resulting behavior is deemed 
correct as long as it falls within the specified range, e.g., “...
no farther than Xcm from the vehicle behind and no farther 
than Ycm from the wall (P11)”

Fig. 4   Mind map illustrating 
relevant quality topics and 
challenges (RQ2) for driv-
ing automation systems with 
perception
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However, the interviewees emphasized that performance 
measurement baselines are not always easy to define and that 
the current standards do not provide specific information on 
how to establish statistical expectations. Instead, the stand-
ards expect deterministic, specific behavior. Even without 
the use of ML, many factors result in non-determinism in 
embedded systems. The inclusion of ML leads to even fur-
ther potential for non-determinism.

“That way of thinking doesn’t work with that specific 
standard (ISO26262), because that standard doesn’t 
have these kind of numbers. You can’t even write and 
say that things should be correct or the product should 
be correct with this kind of statistical numbers, but 
rather should be correct always. And I think that’s a 
bad way of thinking, let’s say I design a classical piece 
of electronics, even that one doesn’t work binary: yes 
or no always.” P1

Our interviewees stated that redundancy (e.g., redundant 
algorithms) can help improve performance. However, effec-
tive redundancy should be carefully planned—ideally not 
just with different approaches, but with different methods 
(e.g., parallel algorithms) and ideally different datasets. If 
there are multiple ways to gather data (e.g., radar, cameras, 
infrared), the possibility exists for sensor fusion. Various 
sensors have different abilities, e.g., radars are good at 
detecting orientation and speed while cameras are good at 
detecting objects. Sensor fusion enhances redundancy and, 
subsequently, performance in various scenarios. Another 
interviewee pointed out, however, that redundancy comes 
with a high cost and may lower usability:

“One pretty high level trade off would be cost or usa-
bility to the user. You could pack dozens of compute 
units and redundant sensors, which would drain of 
course the money of the user, or the customer, and the 
battery as well. You might just be able to drive around 
for a few minutes. But, you would shift the trade off 
towards more safety or availability just by piling up 
more redundancy. Of course, at some point, that it just 
is not feasible to use in an actual product that you 
could provide to customers.” P9

User comfort: The topic of user comfort in a vehicle 
also came up in our interviews. For example, in addition 
to allowing for redundancy, multiple sensors may improve 
a user’s comfort, e.g., by detecting speed and allowing for 
quicker adaptation.

System robustness and reliability: Several interview-
ees brought up topics surrounding robustness and reliability. 
Evaluating robustness and reliability requires consideration 
of a complex system made up of many sub-components—
many of which come from suppliers. Driving automation 
systems consists of several components, and their robustness 

and reliability are taken into consideration for the allocated 
ASIL (Automotive Safety Integrity Level) levels on the 
system.

“We have a total goal of robustness, reliability that 
includes the perception point of view, the components 
from a hardware point of view. We are discussing with 
the system suppliers which levels we are on right now 
from an ASIL point of view, and also from a reliability 
point of view, and confidence point of view. ”P10

One interviewee pointed out the importance of data quality 
for robustness. If data quality is low, estimates of robustness 
may be inaccurate. In such situations, safety measures must 
be put in place to account for this uncertainty (P15).

5.2 � Safety

As might be expected, given the criticality of driving auto-
mation systems, safety was one of the most popular discus-
sion points in interviews. This sub-theme came up in six of 
the seven interviews, and was discussed by 12 of the 19 par-
ticipants. Interviewees brought up “Safety Goals,” “Safety 
Standards,” “Safety Cases,” “Safety Negotiation,” “Trust in 
System Components,” and “Safety Trade-offs” as important 
topics in this sub-theme.

Safety goals: Multiple interviewees mentioned the 
importance of establishing safety goals. Such goals are the 
starting point of safety-related requirements specification. 
They are established at a high level and then connected in a 
hierarchy to lower-level individual system functions, where 
measures are put in place to ensure that the safety goal is 
realized throughout the system. Note that existing work has 
pointed out that safety goals for AD are entirely different 
from those defined for an ADAS system [57].

“Safety goals will basically be the starting point of the 
safety requirement specification... Then this will be the 
first parent requirement in the safety hierarchy and, 
then, in the next level—by some analysis, like fault 
analysis—you will try to understand what in the func-
tion level can violate that safety goal and introduce 
safety mechanisms.” P19

Safety standards: Safety is one of the most important 
quality attributes of driving automation systems. To ensure 
safety one needs to make sure that the nominal function is 
safe as well as in presence of faults according to the faults 
assumptions. However, the guidance on applying AI is lim-
ited and best practices are not fully established for safety 
argumentation.

Safety aspects of driving automation systems are nor-
mally structured according to ISO26262. However, it is com-
monly discussed if ISO26262 can actually address driving 
automation systems in an efficient way when they include 
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machine learning, e.g., [58]. At least one interviewee com-
mented that the ISO26262 is not sufficient for systems using 
ML.

However, beyond ISO 26262 and SOTIF, there are 
emerging ISO standards (e.g., TS5083 4), and guides (e.g., 
AMLAS [59]) focusing on AD, as well as those focusing on 
AI/ML (e.g., ISO PAS8800 ,5 TR5469 6). One interviewee 
pointed out that the complexity of the topic leads to the 
emergence multiple standards....

Several interviewees mentioned SOTIF (Safety of the 
Intended Functionality 7) as a further standard for functional 
safety of driving automation systems—used in conjunction 
with ISO26262. However, neither standard is fully adequate 
for ensuring both system and function safety, especially 
given that ML blurs the boundaries between functional and 
system safety.

One interviewee also mentioned multiple emerging 
safety standards for AI, including the TR5469 standard for 
functional safety in AI ,8 PAS8800 for road vehicle safety 
for AI ,9 and TR24029 for assessment of the robustness of 
neural networks (AI) 10. Another interviewee referenced 
UL4600, which offers guidance on, among other topics, 
data safety [60].

Two interviewees also stated that they follow PAS-1883, 
an emerging standard for defining ODDs .11

“You need to define ODDs and specify them... so far, 
there has not been a standard for how you define and 
how you specify ODDs. But we are very well aware 
about ... BSI standard PAS-1883. PAS is becoming a 
standard or instruction to follow. It’s an initiative to 
spell out how you should define an ODD, and how you 
cascade down, and how to specify an ODD.” P10

For these new standards, some challenges can be expected. 
One interviewee noted the challenge of applying the 
standards.

“I think it is also a little bit difficult for many of the 
engineers who are not experts in functional safety 
according to the standard to really understand what 
it means to them in their daily life...” P6

Furthermore, one interviewee pointed out that although 
standards can help developers avoid costly software fail-
ures, conforming to safety standards can also be quite costly. 
Another interviewee added that the top-down approach of 
safety standards does not match the current working proce-
dures (e.g., agile way of working).

Safety cases: Safety cases are structured arguments used 
to show documented evidence that the system is sufficiently 
safe. Safety cases are an important aspect of driving auto-
mation systems development. However, it is important to 
ensure that the safety case matches the reality experiences 
by the developers. Furthermore, another interviewee brought 
up that data requirements are part of the evidence used in a 
safety case. Thus, it is important to have data management 
and data quality, for both training and validation data, as part 
of the safety case argumentation.

When asked about the impact of ML on safety cases, 
interviewees noted that safety cases can be defined in a 
modular manner over components of the system. ML-based 
components, naturally, must be part of such safety argumen-
tation. However, one participant pointed out that safety cases 
are not yet well defined for driving automation systems and 
that establishing a methodology for the creation of safety 
cases in this context is difficult, as the new standards are 
still upcoming.

Another interviewee describes safety case argumentation 
as a joint process conducted with OEMs and suppliers:

“... We will definitely be interested in how our supplier 
has solved that problem and what safety argumenta-
tion they give us because we need to integrate it in in 
our safety case for the vehicle. We always have joint 
reviews, and we go into the detail on that.” P11

Safety negotiation: Driving automation systems are 
often built, at least in part, from existing components offered 
by external suppliers. Therefore, just as safety case argu-
mentation is built jointly with suppliers, safety requirements 
must also be developed in conversation with suppliers.

Interviewees described a process where suppliers are 
assumed to have already assessed the basic safety of their 
already extant components outside of the context of a par-
ticular driving automation system before being contacted. 
This can be considered a safety element out of context, as 
discussed in [61]. Then, the driving automation system 
developers present safety requirements for a particular driv-
ing automation system as part of contract negotiation.

“When we meet them [suppliers] for the first time 
and we start talking we expect them to have done 
their homework over safety elements out of con-
text—that they can present their assumptions and 
the safety holes that they have for their systems 
based on those assumptions. That means that they 

4  https://​www.​iso.​org/​stand​ard/​81920.​html
5  https://​www.​iso.​org/​stand​ard/​83303.​html
6  https://​www.​iso.​org/​stand​ard/​81283.​html
7  https://​www.​iso.​org/​stand​ard/​77490.​html
8  https://​www.​iso.​org/​stand​ard/​81283.​html
9  https://​www.​iso.​org/​stand​ard/​83303.​html
10  https://​www.​iso.​org/​stand​ard/​77609.​html
11  https://​www.​en-​stand​ard.​eu/​pas-​1883-​2020-​opera​tional-​design-​
domain-​odd-​taxon​omy-​for-​an-​autom​ated-​drivi​ng-​system-​ads-​speci​
ficat​ion/
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https://www.iso.org/standard/83303.html
https://www.iso.org/standard/81283.html
https://www.iso.org/standard/77490.html
https://www.iso.org/standard/81283.html
https://www.iso.org/standard/83303.html
https://www.iso.org/standard/77609.html
https://www.en-standard.eu/pas-1883-2020-operational-design-domain-odd-taxonomy-for-an-automated-driving-system-ads-specification/
https://www.en-standard.eu/pas-1883-2020-operational-design-domain-odd-taxonomy-for-an-automated-driving-system-ads-specification/
https://www.en-standard.eu/pas-1883-2020-operational-design-domain-odd-taxonomy-for-an-automated-driving-system-ads-specification/
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know what they’re talking about, and they’re good 
as a supplier. ... and then what we do is take care of 
the responsibility for the complete vehicle. Once we 
know our functions, we do a HARA (Hazard Analy-
sis and Risk Assessment, from ISO26262), and from 
those we derive functional safety requirements that 
we give to them. You will need to fulfill this [require-
ment] to get this project.” P11

Trust in system components: Because a driving auto-
mation system is constructed using components devel-
oped externally, interviewees noted that trust is initially 
a potential issue. Developing driving automation systems 
requires trusting that externally developed components 
are safe and reliable. GPS, in particular, was brought up 
by multiple interviewees due to the potential safety haz-
ards of inaccurate GPS readings and map data. Obviously, 
they still will have a safety case at the end.

“I have always faced a challenge, which is how to 
trust the GPS, and even the map. Safety-wise, what 
we have always been told is, that a GPS should we 
treat it as a [ASIL level] QM (quality management, 
i.e., all assessed risks are tolerable), and the same 
with maps. But whenever you pinpoint to some spe-
cific target, or a supplier, or a sensor provider, the 
story is very different. They claim that they started 
talking about the accuracy and things like that, but 
functional safety-wise we will be fine. ... but you 
never can overcome that act of faith. I would say, 
show me some study that you have done to say that 
what you provide is up to an integrity level; that has 
never happened in my opinion. For me, it is still a 
challenge that we need to make a leap of faith when 
we select a specific supplier.” P11

Safety trade-offs: Attainment of certain quality attrib-
utes, such as safety or performance, tends to require 
trade-offs with other quality attributes. Safety was a high 
priority for interviewees, even if it came at the cost of 
other quality attributes or driving automation system 
functionality. For example, one participant discussed 
limiting function availability to improve safety, choosing 
to only consider automation under certain situations (i.e., 
limiting the ODD) rather than widely allowing the car to 
be driven autonomously. Another interviewee discussed 
limiting vehicle functionality to improve safety, in this 
case, compromising the speed of the vehicle for improved 
safety.

“Speed is an obvious trade-off, so we also trade 
high speeds for safety. We go at lower speeds. Speed 
is such a dimensioning parameter in all the safety 
work since all the risks are high when you increase 
speed.” P7

5.3 � KPIs and metrics

Assessments of driving automation systems quality are made 
by tracking certain performance metrics, often called “key 
performance indicators” (KPIs), and comparing the attained 
value to selected thresholds. This sub-theme was discussed 
in all seven interviews, by 15 of the 19 participants. Inter-
viewees brought up “KPIs in Simulation Environments” and 
“KPIs and Metrics for Driving Automation Systems Evalu-
ation” as topics in this sub-theme.

Metrics and KPIs for driving automation systems 
evaluation: For evaluation of the driving automation sys-
tem, interviewees explained that—rather than specifying 
deterministic properties—they track a set of high-level 
metrics related to safety, performance, functionality, com-
fort, and other factors. These metrics can be tracked over the 
execution of many different scenarios, either in simulation 
or in a real vehicle; then, statistical analysis of the collected 
observations can be used to make an assessment of the driv-
ing automation system.

“If we say the requirements were a specification for the 
entire driving automation system stack, I think defi-
nitely it’s quite hard to have very precise or detailed 
specification for all the functions, but actually we have 
some high level metrics like safety metrics or perfor-
mance metrics, functionality or traffic comfort metrics, 
those metrics are on a very high level, which means 
we can use those metrics combining with the scenario 
database and then we run millions of the scenarios 
and get the statistical analysis report. We can’t say we 
don’t have anything for testing or validation. We have 
something but they are very different from the tradi-
tional understanding of the specification.” P4

For evaluation of the low-level ML components—such as 
specific classification models—interviewees stated that 
they employ standard metrics used in other ML domains. 
They note, however, that they pay close attention to the spe-
cific data in the dataset (e.g., values for specific classes like 
pedestrians) to ensure that careful evaluation is performed.

When interacting with ML, assessments of safety—and 
the design of the functionality under assessment—must take 
into account uncertainty in the ML output. Uncertainty esti-
mation is employed at all levels, from algorithm design, to 
data selection, to evaluation. One interviewee described their 
use of uncertainty estimations to inform data selection and 
to reveal gaps in their training data.

The KPIs of systems dependent on ML will ultimately 
be determined by the data used for training and validation 
of the ML components. Therefore, to ensure that KPIs are 
informative and realistic, high-quality training and valida-
tion data must be used, but that gathering such high-qual-
ity data is expensive. It is important that validation metrics 
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have good results, as performance on the road is unlikely 
to surpass these lab results. However, another interviewee 
emphasized that KPIs or quality measures are difficult to 
identify without a lot of background knowledge, e.g., the 
average size of cars.

Often, data are reused, especially for rare scenarios. How-
ever, reusing data from one scenario to another may decrease 
realism and can raise issues in the accuracy of KPI values 
during validation.

One interviewee also stressed the importance of com-
municating KPIs and metrics for data quality and variance 
to users who use annotated data.

“You should produce such KPIs (on data variance) 
and communicate this to the users. In this case, the 
users say alright, or if we need to adjust anything from 
... the data collection perspective. And the same goes 
with the annotation as well, if they are of good qual-
ity or not, essentially it’s KPI numbers to the users as 
input.” P8

KPIs in simulation environments: Because simulations 
may not accurately reflect the real world, KPI observations 
gathered from simulations may also not match the observa-
tions that would be made in reality. One interviewee was 
skeptical of using values from simulations as evidence of 
safety.

“During the verification and validation, how you can 
verify that the KPIs that you get during the validation 
actually show the reality? Especially if you do some 
sort of synthetic simulation, ... then it’s not very clear 
to me how one can argue the safety aspect, that we can 
reach the same KPI in real world.” P16

Another interviewee noted that KPIs should be compared 
between simulations and real-world testing to help show 
that the simulation is realistic; otherwise, the value of such 
simulations is in doubt.

6 � Results: systems and software 
engineering (RQ3)

As with the previous results, we divide the Systems and 
Software Engineering theme into sub-themes—“SE Meth-
odology,” “Verification and Validation Methods,” and 
“Data Quality Methods”—and important topics within 
each sub-themes. The sub-themes and underlying topics 
are summarized in Fig. 5. We also note how many inter-
viewees discussed the sub-theme. These sub-themes and 
topics address RQ3.

6.1 � SE methodology

Software engineering methodologies refer to the frame-
works or approaches that guide the processes, activities, 
and tasks involved in software development [62]. Such 
methodologies provide a structured and systematic way 
to plan, design, develop, test, evaluate, and deliver soft-
ware products to customers. Different methodologies (e.g., 
waterfall, agile) offer a distinct set of principles, practices, 
and techniques to manage the software development life-
cycle. The interviewees described several aspects of their 
software development methodologies and how they have 
changed in the face of ML use. This sub-theme came up 
in six of the seven interviews and was discussed by 15 of 
the 19 participants. Interviewees brought up agility, feed-
back, and a mix of existing and new methods as topics in 
this sub-theme.

Agility: As context, many of our interviewees have 
transitioned or are transitioning to a more agile way of 
systems development for driving automation system devel-
opment. For example, participants are moving from a pro-
cess based on the traditional V-model to a specific agile 
framework, e.g., SAFe.

Fig. 5   Mind map illustrating 
relevant systems and software 
engineering topics and chal-
lenges (RQ3) for driving auto-
mation systems with perception
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“We are using SAFe as a formal agile framework in 
our software development process for autonomous 
vehicles.” P2

Such transitions and the use of agile methods at a large scale 
bring their own challenges unrelated to ML, e.g., [63]. These 
issues form a background to our exploration of ML use in 
driving automation systems.

Previous work focusing on methodological transitions 
has pointed out culture clashes between more agile and tra-
ditional ways of working [64, 65]. One interviewee points 
out similar clashes between control engineers—who develop 
and test software and hardware—and software developers, 
who are focused on data and simulations.

“I think the biggest clash is the way of working. Con-
trol engineers want to approach things in their way. 
They want to synthesize things and test things for real 
in the vehicle. Whereas the software companies have 
a more data-driven background and they start off with 
the data and they just work in different ways.” P2

A mix of existing and new methods: Many traditional 
methods and processes where, e.g., requirements are defined 
and broken down to different parts of the system will still 
apply. This includes large-scale agile methods, such as 
SAFe. However, several interviewees reported that it is dif-
ficult to implement existing software engineering methods 
when the system includes machine learning because of non-
deterministic behavior. In addition, since the use of machine 
learning is rather opportunistic or technology-driven, the 
existing processes can be infeasible because of non-deter-
ministic behavior of such systems. The participants focus 
on integrating and adapting methods while using machine 
learning.

“If we distinguish those two parts, we just say for the 
black box or part or autonomous driving business part, 
it’s hard to follow [existing methods], but for the rest, 
we still can leverage the classic (development) knowl-
edge.” P3

Some interviewees described this mix of methods by 
describing both a top-down and a bottom-up start. Tradi-
tionally, development would start with up-front requirements 
elicitation, with a break-down facilitating system develop-
ment (similar to Sec. 4). However, in the case of driving 
automation systems, the development process is less top-
down but rather composed of many different components 
that must fulfill the product definition on top level.

“It’s like bottom-to-top and then back to the bottom. 
We have just like a rough starting point, like we want 
to drive this route, and that’s basically the scenario or 
the high-level requirements, and then we build some 
algorithms and try it. We start in that sense in the bot-

tom and then, when we have something in place, we 
can start testing in a structured way with replay of logs 
and with the structured scenario database and all that 
and then we learn.” P2

Several participants describe using a highly iterative devel-
opment method for driving automation systems. Although 
most companies have already implemented some degree of 
agile development—which already prescribes working in an 
iterative manner—the level of agility in practice may vary. 
However, iterations appear to be key for machine learning 
development. Thus, this need for frequent iteration must 
be satisfied either through agile or other iterative ways of 
working.

6.2 � Data quality methods

Data quality in machine learning systems is critical and has 
an effect on development methods and ways of working. 
This sub-theme came up in two of the seven interviews and 
was discussed by three of the 19 participants. Interviewees 
emphasized the importance of placing a high priority on data 
quality, particularly with safety in mind.

“First, you focus on data itself. You can try to iden-
tify the purpose of using this data in your system and 
identify other possible issues. There are some guide-
lines like data safety guideline from the safety-Critical 
System Club, and then they have a very structured 
guideline about how to identify them. I think they are 
hundreds of identified possible issues about the data 
in safety critical system. So, first you can probably try 
to explore the data itself.” P4

To ensure the quality of the data, tools, and requirements, 
one interviewee indicated that traditional quality assurance 
methods, for example, fault analysis for preventing and solv-
ing discovered issues, are still valid, even with new technolo-
gies. Another participant mentioned the importance of feed-
back as part of the data annotation process, which involves 
creating documents to clarify annotation uncertainties which 
can be continually used by annotators.

6.3 � Verification and validation methods

Verification and validation methods refer to the systematic 
techniques and activities employed to confirm that the sys-
tem meets the specified requirements and intended purposes, 
and the system has been designed, developed, and imple-
mented correctly. This sub-theme came up in six of the seven 
interviews and was discussed by 14 of the 19 participants.

Interviewees brought up machine learning concerns in 
verification and validation, data-intensive verification and 
validation, and verification and validation in simulation 
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as topics in this sub-theme. Note that although there is a 
difference between validation and verification, interview-
ees are using both terms (verification and validation) as a 
high-level definition of general verification and validation 
activities.

Machine learning concerns in verification and vali-
dation: Practitioners must select appropriate verification 
methods for the specific machine learning algorithms being 
deployed. Verification of machine learning is a relatively 
new field of research, and practitioners may need to moni-
tor ongoing research regarding particular types of machine 
learning.

“There is some research about how to verify the neural 
network like abstract interpretation and then you can 
use the safety engineering method like to design some 
measures or set a scope for the neural network and 
try to have like redundant pipeline and to monitor this 
algorithm.” P3

A common challenge when performing verification is that 
the model acts like a black box—it is difficult to infer how a 
model makes its decisions. From the engineering perspec-
tive, to ensure that the whole system works well, it can be 
important to focus on the explainability of the model. Prac-
titioners start with something that they feel might work, 
then check the results, and then adjust accordingly. Once the 
system achieves basic functionality, if any limitations (e.g., 
poor performance) of the artificial intelligence algorithms or 
the neural network are observed, then the engineers attempt 
to understand the model to identify the reason.

“If we see the limitations of the artificial intelligence 
algorithms or the neural network, then probably we 
want to dig into this black box and try to figure out 
what’s the reason behind that.” P4

Although explainability affects the way in which systems 
are developed, our interviewees reported that it is typically 
not their first concern. They often focus on getting the sys-
tem working first and then consider the qualities such as 
explainability.

“I think we’re in the stage where we’re just trying to 
get the whole thing working first and then we would go 
into more understanding why it works the way it is.” P2

Data-intensive verification and validation: With the 
incorporation of machine learning and artificial intelligence, 
the verification and validation of the perception systems 
become more data intensive. For example, an interviewee 
pointed out that effective verification and validation require 
representative data selection, i.e., they need the right data 
for data-driven validation. Furthermore, the interviewee 
describes performing statistical analysis on the collected 
data as part of verification. The participant also emphasized 

the need for an efficient sampling method to cover the most 
common ODDs, as extensive data collection is not practical.

Driving automation system practitioners often meet the 
need for verification data with synthetic data, emulating data 
collected from sensors or cameras. Due to the complexity 
of collecting real data for scenarios that appear very rarely 
(e.g., edge cases), it would be beneficial to use such syn-
thetic data, but the effort of validating synthetic data could 
higher than actually collecting this kind of data.

“I don’t believe that synthetic camera data or LIDAR 
data has sufficient fidelity to be used for validation 
yet. It’s lacking in many aspects. And to prove that it is 
actually useful for validation would probably require 
more data than not even using it to begin. [Note: vali-
dating the usefulness of synthetic data would require 
so much data that synthetic data is no longer needed]” 
P7

Traditional systems are often verified by comparing obser-
vations to specific expected output. Given the quantity of 
data needed and the difficulty of specifying a deterministic 
outcome, driving automation systems with machine learning 
may need to be verified based on statistical analyses. In other 
words, they need to statistically verify that the created and 
used datasets capture the whole ODD.

Verification and validation in simulation: Interviewees 
reported a shift toward verification and validation in simu-
lated environments from using actual hardware because of 
the safety-critical nature of driving automation systems, 
which require different steps in the validation and verifica-
tion process to rule out as many issues as possible before 
going on the roads. Practitioners collect data and conduct 
simulations to test the driving automation system in a virtual 
environment. One interviewee stated that they are focus-
ing more on scenario-based approaches for verification and 
validation.

“From the simulation team, we are trying just to shift 
the direction from the classic embedded system world 
... that’s the reason why we have the scenario-based 
approach for validation. So if we see the data from 
some other companies like Waymo or Uber, they spend 
99.95% of the test cases in their virtual environment, 
just 0.05% on the real vehicle. Because some of the 
scenarios are really dangerous, we can’t just to ask a 
driver to drive on the road and do some to test some 
edge cases.” P4

On the other hand, it can be challenging to perform veri-
fication and validation of driving automation system in a 
simulation. An interviewee points out that there might be 
limitations when using synthetic simulations for safety 
argumentation; it may be difficult to achieve the same KPI 
results in the real world compared to simulated validation 
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and verification. Furthermore, when machine learning 
is incorporated into the system, it can be difficult or very 
expensive to create realistic data for the verification and 
validation process.

Interviewees consider the balance between the percentage 
of verification that should take place in the simulation and 
in the real environment. The challenge of realism indicates 
that some verification should take place on real hardware. 
However, it is more time-consuming to test in the real world 
than using simulations, and therefore, simulations are an 
efficient method to be used before doing the final tests on the 
roads. Regardless, interviewees stressed that it is important 
to ensure that the test cases are representative of the driving 
scenarios in both the real and simulated environments.

The degree of DAS automation for simulations12 also has 
an impact on how validation and verification is conducted. 
For lower levels of automation (i.e., very little driving auto-
mation), one interviewee points out that simulation can be 
outsourced to suppliers. However, for higher-levels of driv-
ing automation, they will need to develop in-house simu-
lation. V &V for DAS is also affected by standardization, 
including new and upcoming standards like TS5083.

7 � Summary and discussion

In this section, we summarize our results, answer our RQs, 
list future directions for research and practice, and discuss 
threats to validity.

7.1 � Requirements engineering topics 
and challenges (RQ1)

We have identified a number of RE topics and challenges in 
Sect. 4, as summarized in Fig. 3. These topics and challenges 
can be seen as a checklist when working with machine learn-
ing-based perception systems—a list of issues that should 
be considered.

Our interviewees emphasize that the definition and limits 
of ODDs are an integral part of perception systems, and 
these ODDs have important impacts on data requirements 
and collection, confirming findings in Heyn et al. [35]. Simi-
larly, perception systems development relies heavily on the 
use of scenarios and associated edge cases. Such scenarios 
play a key role in dictating annotation, data collection, and 
simulation.

In terms of challenges, our results indicate that ODD 
detection and ODD exit detection are challenging, as 
these require information not only about what to detect in 
the environment, but also how to detect and the accuracy 

of the detection confirming findings in [37]. In addition, 
data requirements are highly influenced by the content of 
an ODD; therefore, ODDs can be used to evaluate whether 
a data distribution is sufficient for good machine learning 
model performance. However, it is not always easy to collect 
the data specified by ODDs. Heyn et al. also emphasized 
the importance of ODDs in driving automation systems and 
noted the lack of a common definition for ODDs [24]. Our 
participants go further and mention the need for ODD stand-
ardization (and efforts in that regard).

One major challenge is that simulations should reflect 
realistic scenarios, echoed by Acuna et al. [66]. To ensure 
safe perception, the collected data and scenarios must be 
thorough, and the perception system must avoid failure in 
all scenarios. In addition to covering normal scenarios, it 
is important to specify edge cases among scenarios, which 
are then used to determine data distributions. However, edge 
cases introduce challenges as they create confusion among 
annotators and are challenging to test in reality due to 
safety concerns.

Breaking down requirements for data and annotations 
can be very difficult, and additional challenges are intro-
duced due to requirements dependencies and the need for 
multiple teams to collaborate. In general, we believe that the 
gap between standard RE methods and machine learning 
components is both a technical gap and a gap in training and 
backgrounds, as the machine learning components are often 
engineered by data scientists without a software engineering 
background confirming the results in [9, 20].

Difficulties in breakdown, machine learning opaqueness, 
as well as the introduction of more elements to trace (e.g., 
ODDs, scenarios, training data), make it difficult to establish 
traceability. These challenges add to the known challenges 
with motivating and using traceability in practice [67].

Creating specifications for data and annotations is 
challenging, as it is difficult to have an upfront specification 
for data classes, e.g., pedestrians and crosswalks. Further-
more, sometimes machine learning components are assigned 
unrealistic and unachievable requirements. Although 
requirements change is a frequently acknowledged RE prob-
lem [68], with perception systems, the level of uncertainty 
and change is particularly high due to uncertainty about the 
system, including machine learning, and the environmental 
targets. Quantifying quality requirements (e.g., accuracy) 
is also particularly challenging in perception systems, echo-
ing the results of Vogelsang and Borg [9].

7.2 � Quality topics and challenges (RQ2)

As part of the Quality theme, our interviewees have iden-
tified a number of topics and challenges. Practitioners 
consider performance, reliability, robustness, safety, 
and user comfort as important quality attributes. It is 12  https://​www.​sae.​org/​blog/​sae-​j3016-​update

https://www.sae.org/blog/sae-j3016-update
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interesting to note that the space of qualities that inter-
viewees focused on is generally small, compared to the 
space of NFR qualities explored in past academic work 
[18].

Interviewees found that for driving automation sys-
tems, performance was difficult to measure accurately. 
As a means of ensuring both performance and safety, 
redundancy of algorithms and sensors was important, but 
interviewees noted that redundancy must be carefully 
designed, particularly in terms of data and algorithms, 
and redundancy as a principle for system design has both 
limitations and trade-offs.

In the context of driving automation systems, safety is 
particularly critical, as also noted by [45]. Safety assur-
ance is already challenging for conventional driving 
automation systems software and becomes even more 
challenging with the inclusion of machine learning. 
Practitioners set safety goals, often in negotiations with 
component suppliers. Safety negotiation with suppliers 
has been a challenge, including issues of trust in compo-
nents and suppliers. In addition, ensuring driving auto-
mation systems safety requires collaboration and effort 
from different parties is challenging, confirming findings 
in [53]. Interviewees also acknowledged that safety does 
not operate in a vacuum, recognizing safety trade-offs 
with, for example, security, availability, and functional-
ity. Safety cases are a critical element of assuring that the 
safety goals are met, but are also more complex given the 
uncertainty of machine learning.

To ensure safety, practitioners must comply with evolv-
ing safety and AI standards, including established 
standards such as ISO26262 [69]—which are not suffi-
cient to account for the incorporation of machine learn-
ing. This confirms the findings of [46, 47] and underlines 
the need of newer machine learning-specific standards 
such as TS5083 [70]. In general, given the wide range of 
standards, there have been challenges in understanding, 
managing, and conforming with the relevant standards. 
Although there are significant costs associated with safety 
incidents, conforming to standards is also costly.

The large input space and non-determinism of machine 
learning complicate quality assurance. Instead of specify-
ing concrete expected behaviors in key scenarios, quality 
assurance is performed by tracking critical KPIs during 
the execution of catalogs of scenarios and performing 
statistical analysis on captured observations. KPIs can 
be defined on multiple levels, including driving auto-
mation systems-specific KPIs and standard KPIs for 
machine learning components (e.g., precision and 
recall). KPI assessment is affected by training and vali-
dation data, uncertainty, and simulation realism con-
firming the results of [45].

7.3 � Systems and software engineering topics 
and challenges (RQ3)

Our interviews also revealed topics and challenges related 
to systems and software engineering development method-
ologies for perception systems. Our findings show that the 
presence of machine learning adds further complexity to 
agile ways of working. Existing traditional and agile meth-
odologies are not sufficient to meet the needs of large-scale 
machine learning, echoing the findings of [51]. Our inter-
viewees apply a mix of methods using more traditional, 
top-down engineering in some areas and more iterative, 
bottom-up development in others. In this way, from a meth-
odological point of view, a continuous feedback cycle is 
key to successful delivery.

The focus on safety further complicates development 
methods, confirming the findings in [54], as many safety 
methodologies do not adequately address machine learn-
ing. The importance of data to perception systems requires 
changes in development practices. In particular, practitioners 
need data quality methods.

Our findings show that verification and validation is 
more challenging and data-intensive in the presence of 
machine learning. Data selection and consideration of data 
quality are required to ensure effective verification. The use 
and acquisition of synthetic data are an important topic, but 
raises data quality issues. Rather than comparing observed 
behavior with specific, expected outcomes, V &V is based 
on statistical analyses of quantitative metrics. To gather 
sufficient observations and limit the risk to vehicle operators, 
verification and validation use simulation. However, it is a 
challenge to have realistic simulation and to determine in 
which situations simulation can replace real verification.

7.4 � Future directions in research and practice

Some of the identified challenges in RQ1-3 are relatively 
new from an RE and SE perspective (e.g., ODD detection, 
missing edge case, the proliferation of machine learning-
related safety standards, machine learning verification and 
validation), while others have been long recognized (e.g., 
traceability [67], specification changes [68], and quality 
trade-offs [71]). Our findings point to a number of new 
research topics. We outline these areas, highlighting exam-
ples of existing state-of-the-art work on these topics.

Although the focus of our work has been on perception 
systems, we believe that many of the topics and challenges 
found apply more generally to other domains reliant on 
machine learning. For example, challenges breaking down 
specifications would hold due to the volatility and opaque-
ness of machine learning. Future work should contrast RE 
challenges and practices in other machine learning-enabled 
domains.
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ODD methods: Our findings illustrated the importance 
and challenges associated with ODD development as part 
of complex machine learning systems. Existing work has 
focused on various aspects of ODD development as part of 
autonomous driving, e.g., [72], including a consideration 
of safety [35, 73], but our industrial partners still find this 
topic a challenge. ODD can be linked to broader work on 
context in RE, e.g., [74, 75], but future work should explore 
what aspects of ODD context are domain-specific or general.

Data requirements: How to capture and define require-
ments over data is an issue that should be a focus of future 
work. Although previous work has looked at data-driven 
RE, e.g., [76], this focuses more on gathering standard 
requirements from sources such as social media, rather than 
requirements for the data needed for machine learning. Other 
work has looked at data quality, but from an era before the 
rise of machine learning, e.g., .13

Requirements traceability with machine learning: 
Tracing requirements to system elements is essential for 
safety argumentation and change management, but becomes 
challenging when traces must include machine learning 
components like models and data. Although traceability has 
been heavily investigated from a requirements perspective 
[77], traceability for machine learning is only just starting 
to be explored, e.g., [78]. Other works look specifically at 
traceability from the perspective of data provenance or data 
lineage as part of machine learning [79].

Scenarios as specifications: Given the challenges of 
defining up-front, complete requirements for driving auto-
mation systems, practitioners have turned to scenarios both 
for specifying data and verification, including simulation. 
Scenarios have been an active topic in RE, e.g., [80], but 
mainly for improving the quality of gathered requirements, 
including completeness, and not as a stand-in for traditional 
requirements. Using scenarios as specifications data-driven 
development requires further attention.

Quantifying machine learning requirements: Inter-
viewees expressed difficulties with placing specific targets 
on quality requirements for driving automation systems, e.g., 
performance requirements, echoing some of the challenges 
found in recent work [18]. Although quantifying quality 
requirements, or metrics, has been an active area of inves-
tigation for many years, e.g., [81], most work on metrics 
for machine learning is specific to particular qualities, e.g., 
uncertainty [82]. Setting targets for such metrics is particu-
larly difficult and context specific.

Redundancy: Redundancy as a means to improve perfor-
mance and safety arose as a prominent issue. Redundancy 
has been studied in general for systems engineering, e.g., 
[83], and has been studied from the perspective of multiple 

machine learning models, e.g., ensemble learning [84]. 
However, more consideration can be made at combining 
these perspectives, considering machine learning redun-
dancy at the system level.

Safety standards and machine learning: Safety stand-
ards and machine learning is an active topic, e.g., [58], 
but we see in our findings a proliferation of many possible 
standards or frameworks which can be applicable for driv-
ing automation systems, but the selection or integration of 
these multiple standards has not been extensively explored.

Large-scale agile with machine learning: Much work 
has been dedicated to reporting and making recommenda-
tions concerning transitions to agile methods for large-scale 
systems, e.g., [63]. However, most work does not consider 
the challenges introduced with machine learning. In terms 
of machine learning development, methods like CRISP-ML 
[85] and a more recent focus on MLOps [86] attempt to 
guide development. But the combination of these machine 
learning and data-driven methods with established, large-
scale agile methods like SAFe14 is still mainly unexplored.

Large-scale agile with machine learning and safety: 
Adding to the complexity of the previous direction, such 
large-scale, agile, machine learning-enabling methods 
should also be usable in safety-critical contexts. Safety chal-
lenges as part of large-scale agile have been investigated 
[87], but not in an explicit machine learning context.

Verification and validation for machine learning: Test-
ing and related activities for machine learning are already 
an active area of investigation [88]; however, we feel we 
should highlight this direction, in particular the areas of 
synthetic data curation and simulation, as it was raised by 
several interviewees. Others have begun to investigate the 
utility of synthetic data, e.g., [89], but further investigations 
in a driving automation systems or safety-critical contexts 
are needed.

7.5 � Threats to validity

Internal validity: We internally peer-reviewed the interview 
guide and conducted a pilot interview to improve the guide 
and process. We sent a preparation email to all the interview 
participants with the details and purpose of the interview 
study. To maintain consistency in the interview process, 
at least three authors conducted each interview, with two 
authors present in all interviews.

All interviews were conducted in English, and the auto-
generated transcripts were ‘fixed’ by authors by listening 
to audio recordings and correcting any transcription errors. 
Note that the working language of each company was Eng-
lish, so the language should not have created barriers.

14  https://​scale​dagil​efram​ework.​com/13  https://​iso25​000.​com/​index.​php/​en/​iso-​25000-​stand​ards/​iso-​25012

https://scaledagileframework.com/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25012
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Although qualitative coding always comes with some 
bias, we mitigated this threat by following established lit-
erature [55], coding in multiple rounds, using inductive and 
deductive codes, and having multiple authors participate 
in each round of coding, with in-depth discussion on code 
meanings and assignments. Many of our provided quotes in 
the results section reflect individual opinions; however, we 
were able to synthesize the results from different opinions 
into themes. Moreover, the interviews were group inter-
views; quite often, an individual opinion was reflective of 
the opinion of the group; otherwise, it would have produced 
contrary discussion. We note that participants in our group 
interviews had rather harmonized opinions.

External validity: We used a mixture of purposive and 
snowball sampling. As our study needed a certain set of 
expertise to answer our questions, we could not conduct 
random sampling, using our networks and their contacts. 
Still, due to the size of the study, with participants cover-
ing a wide variety of roles with varying experience levels, 
covering differing company roles and sizes in the perception 
system ecosystem, we believe we have a relatively repre-
sentative sample.

Furthermore, we argue that we reached a sufficient point 
of saturation with our interview data, as we noticed a sharp 
decline in emerging codes after analyzing the fifth group 
interview.

Note that one cannot link participants to interviews and 
companies this is done deliberately to protect the anonymity 
of our participants. Although this may affect transferabil-
ity of our results, we feel this level of anonymity does not 
greatly hurt our results. Though our study results are limited 
to perception systems in DAS, we argue that some findings 
can apply to other safety-critical or perceptions systems. 
This applicability should be explored in future studies.

8 � Conclusion

Our study investigated requirements engineering, quality, 
and systems and software engineering topics and challenges 
during the development of DAS. We interviewed 19 partici-
pants from five companies and identified a number of topics 
and challenges that have a major impact on the specification, 
development, and quality of DAS. The results of this study 
offer guidance to practitioners and suggest future research 
directions in the intersection of requirements engineering, 
software quality, development methodologies, and machine 
learning to help mitigate the challenges practitioners are 
facing.
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