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Abstract
The development and operation of critical software that contains machine learning (ML) models requires diligence and 
established processes. Especially the training data used during the development of ML models have major influences on the 
later behaviour of the system. Runtime monitors are used to provide guarantees for that behaviour. Runtime monitors for 
example check that the data at runtime is compatible with the data used to train the model. In a first step towards identifying 
challenges when specifying requirements for training data and runtime monitors, we conducted and thematically analysed 
ten interviews with practitioners who develop ML models for critical applications in the automotive industry. We identified 
17 themes describing the challenges and classified them in six challenge groups. In a second step, we found interconnection 
between the challenge themes through an additional semantic analysis of the interviews. We explored how the identified 
challenge themes and their interconnections can be mapped to different architecture views. This step involved identifying 
relevant architecture views such as data, context, hardware, AI model, and functional safety views that can address the identi-
fied challenges. The article presents a list of the identified underlying challenges, identified relations between the challenges 
and a mapping to architecture views. The intention of this work is to highlight once more that requirement specifications 
and system architecture are interlinked, even for AI-specific specification challenges such as specifying requirements for 
training data and runtime monitoring.

Keywords Architecture framework · Artificial intelligence · Data requirements · Requirement engineering · Requirements 
specification · Runtime monitoring

1 Introduction

With constant regularity, unexpected and undesirable 
behaviour of machine learning (ML) models are reported 
in academia [12, 35, 38, 86, 87], the press, and by NGOs.1 
These problems become especially apparent, and reported 
upon, when ML models violate ethical principles through 
failures or biases in the ML component. Racial, religious, 
or gender biases are introduced through a lack of insight 

into the (sometimes immensely large set of) training data 
and missing runtime checks for example in large language 
models such as GPT-3 [1], or facial recognition software 
based on deep learning [57]. This lack of insight might be 
related to a lack of precise requirements. For industrial 
practitioners these problems become especially appar-
ent in critical systems, such as for example in automatic 
driving systems, for which the company must provide due 
diligence, i.e., it can be made responsible for malfunc-
tions. Improving the performance of ML models, however, 
often requires an exponential growth in training data [5]. 
Data requirements can help in preventing unnecessarily 
large and biased datasets because they provide guidance 
to the necessary sets of data for a ML project [83]. Data 
requirements can entail details regarding the quality of the 
information content represented by the data, e.g., about 
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the entailed features in the data, accuracy, completeness, 
consistency, or diversity of the information. Standards 
such as IEC 25012 can provide guidance towards defin-
ing requirements on data [39]. Data requirements can also 
cover physical aspects of data, e.g., the necessary time 
resolution, image resolution, or frequency spectrum cov-
erage. Due to changes in the environment, ML models 
can become “stale”, i.e., the context changes over time so 
significantly that the performance of the model decreases 
below acceptable levels [7]. Changes in the environment 
can cause a distribution shift in the data available to the 
model at runtime compared to the data that was used when 
training the model, and as a consequence, the training data 
no longer represents the data at runtime. Some examples 
of such distribution shifts due to changes in the environ-
ment can be found for example in [66, page 7]. Runtime 
monitors collect performance data and indicate the need 
for re-training of the model with updated training data, see 
[3] for an example framework for monitoring distribution 
shifts in safety-critical ML applications. However, these 
monitors need to be specified at design time.

Data requirements can support the specification of runt-
ime monitors [9]. For example, a data requirement can be 
a minimum brightness of the images in order to be able to 
identify the object. A runtime monitor can be constructed 
which continuously checks the average brightness of the 
images and raises an alarm if the brightness drops under a 
critical threshold defined in the original data requirement. 
The lack of data requirements is particularly evident in ML 
models that are part of critical software. We define critical 
software as software that is safety, privacy, ethically, and/
or mission critical, i.e., a failure in the software can cause 
significant injury or the loss of life, invasion of personal 
privacy, violation of human rights, and/or significant eco-
nomic or environmental consequences [51]. Without clear 
specifications, it will not be possible to establish traceability 
from system requirements (e.g., functional safety require-
ments) to requirements set on the training data and the runt-
ime monitoring [56].

Early on in software engineering, the close relation 
between software requirements specification and software 
architecture have been highlighted [16]. Requirements and 
architecture typically evolve together, and the choice of 
requirements can influence the architecture and vice versa, 
making simultaneous consideration necessary [64]. This is 
commonly known as the “twin peaks" of requirements and 
architecture [19]. Especially in nowadays common Agile 
Development Environments, the guidance of architecture 
views on different perspectives of the system is necessary 
to discover and align the necessary requirements iteratively 
[63, 65]. Therefore, we also explore in this study how archi-
tecture principles, i.e., an architecture framework as pro-
posed for example in [32], could potentially mitigate the 

challenges of finding requirements and consequently speci-
fications for software with ML components.

1.1  Scope and research questions

This article is an extension of an earlier conference article 
[31]. The purpose of the original study was to identify cur-
rent challenges faced by practitioners in specifying require-
ments for training data and runtime monitoring for ML in 
safety-critical software. The study also explores possible 
relationships between these challenges. This study extends 
these findings by mapping the identified challenges to design 
decisions in relation to the architecture of the overall system.

The original article reported on the qualitative data col-
lected in the interview study, specifically on the challenges 
reported by practitioners. It contributed a practitioner’s point 
of view on the challenges reported in the academic literature 
on data specification and runtime monitoring specification 
for critical software with ML models. This paper extends 
the analysis and discussion of the reported challenges by 
identifying relationships between the challenges and relat-
ing them to architecture decisions in the design of critical 
ML-enabled systems. The aim is to provide starting points 
for a future engineering research into the use of runtime 
monitors for critical ML systems and their relationship to 
the architecture of critical ML-enabled software systems. 
Specifically, the original paper was extended by

• a new research question (RQ3) on the relation between 
challenges when specifying requirements for training 
data and runtime monitors and architecture decision of 
ML-enabled software systems,

• as an answer to RQ3 a list of identified relationships 
between the challenges identified in the previous study 
and architecture decisions in the design of critical ML-
enabled software systems,

• a deeper exploration of the rationale behind the relation-
ships between the identified challenges of specifying 
requirements for training data and runtime monitors for 
ML-enabled software systems,

• the result of a survey to validate the recommendations 
and implications for RE derived from the qualitative 
results of both studies.

The following research questions guided the previous study 
(RQ1, RQ2) and the extension reported in this article (RQ3): 

RQ1: What are challenges encountered by practitioners 
when specifying requirements for training data of ML 
models in safety critical software?

RQ2: What are challenges encountered by practition-
ers when specifying requirements for runtime monitors 
especially in relation to fulfilling safety requirements?
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RQ3: How can an architecture framework provide guid-
ance to practitioners with respect to the challenges iden-
tified in RQ1 and RQ2?

Figure 1 shows the main themes we found in answering 
the research questions. Concerning RQ1, the interviewees 
reported on several problems: the data selection process is 
nontransparent and guidelines especially towards defining 
suitable measures for data variety are missing. There are no 
clear context definitions that help in defining data needs, and 
current safety standards provide little guidance. Concerning 
RQ2, we found that the problem of defining suitable metrics 
and the lack of guidance from safety standards also inhibits 
the ability to specify runtime monitors. Practitioners also 
reported on challenges regarding explainability of ML deci-
sions. Additionally, they reported that the processing and 
memory of runtime monitors in safety critical embedded 
systems can pose an additional challenge when specifying 
requirements for these monitors. Regarding RQ3, we found 
parallels between the identified challenges in this study and 
challenges in architecting ML-enabled systems identified 
in a previous study. This paper discusses how the relation-
ships between the challenges translate into correspondences 
between architectural views that can provide guidance for 
overcoming the challenges.

The remaining sections of this paper are structured as 
follows: Sect. 2 outlines and argues for the research methods 
of this study; Sect. 3 presents the results and answers to the 
research questions; Sect. 4 discusses the findings, provides 
recommendations to practitioners and for further research, 
identifies related literature, elaborates on threats to validity, 
and provides a conclusion.

2  Research method

We used a qualitative interview-based survey with open-
ended semi-structured interviews to collect data, which we 
then extended with constructive work on finding relation-
ships between the challenges and mapping architecture 
concerns to the challenges. Following the suggestions of 

Creswell and Creswell [21] the qualitative study was con-
ducted in four steps: Preparation of interviews, data collec-
tion through interviews, data analysis, and result validation.

2.1  Preparations of interviews

Based on the a-priori formulated research questions, two 
of the researchers of this study created an interview guide2 
which was validated and improved by the remaining two 
researchers. The interview guide contains four sections of 
questions: The first section includes questions about the 
interviewees’ current role, background and previous expe-
riences. The second section focuses on questions that try to 
understand challenges when specifying and selecting train-
ing data for ML models and how training data affect the 
performance of these models. The third section investigates 
challenges when ML models are incorporated in critical sys-
tems and how they affect the ability to specify training data. 
The fourth section concentrates on the run time monitoring 
aspect of the ML model and contains questions on chal-
lenges when specifying runtime monitors.

Sampling strategy We chose the participants for this 
study purposefully using a maximum variation strategy [22]. 
We were able to recruit interviewees from five different com-
panies, ranging from a local start-up to a multinational world 
leading communication company. An overview is given in 
Table 1.

Fig. 1  Cause-effect diagram 
providing an overview of identi-
fied challenge groups

Table 1  Companies participating in the study

Company Area of operations Employees Countries

1 Telecommunication networks > 10.000 World
2 Automotive OEM > 10.000 World
3 Automatic Driving > 1.000 Europe
4 Industrial camera systems > 1000 USA
5 Deep Learning optimisation for 

IoT
> 100 Sweden

2 The interview guide is available in the replication package for this 
paper. The link is provided at the end of the paper.
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A selection criteria for the company was that they must 
work with safety-critical systems and ML. Within the com-
panies we tried to find interview candidates with different 
roles and work experiences to obtain a view beyond the 
developers’ perspective. Besides function developers, who 
are mostly responsible for the code development of con-
ventional software functions, and ML model developers, 
we were interested in interviewing requirement engineers 
and product / function owners, who take a mediator role 
between the customer and the function developers, because 
they represent key roles in deriving system or function speci-
fications. We provided the companies with a list of roles 
that we identified beforehand as interesting for interviewing. 
The list included functional safety experts, requirement engi-
neers, product owners or function owners, function or model 
developers, and data engineers. Additionally, we interviewed 
two researchers from academia who participate in a joint 
industry EU Horizon 2020 project called VEDLIoT.3 The 
aim of VEDLIoT is to develop a toolchain to enable efficient 
deep learning in distributed systems [47]. Both researchers 
worked also with ML models in industry before. Therefore, 
they could provide insights into both the academic and the 
industry perspective. A list of the ten interviewees for this 
study is provided in Table 2.

2.2  Data collection through interviews

All interviews were conducted remotely using either the 
conference software Zoom or Microsoft Teams and took 
between 60 - 90 min. The a-priori defined interview guide 
was only available to the interviewers and was not distrib-
uted to the participants beforehand. Each participant was 
interviewed by two interviewers who alternated in asking 
questions and observing. At the start of each interview, the 

interviewers provided some background information about 
the study’s purpose. Then, the interview guide was followed. 
However, as we encouraged discussions with the interview-
ees, we allowed deviations from the interview guide by 
asking additional questions, or changing the order of the 
questions when it was appropriate [50]. All interviews were 
recorded and semi-automatically transcribed. The interview-
ers manually checked and anonymised the results.

2.3  Data analysis of interviews

The data analysis followed suggestions by Saldana [71] 
and consisted of two cycles of coding and validation of the 
themes through focus groups and member checking.

First coding cycle Attribute coding was used to extract 
information about the participants’ role and previous experi-
ences. Attribute coding is also known as descriptive coding 
in which meaningful and reoccurring attributes through the 
interviews are identified [69]. Attributes can for example be 
“role of interviewee in company", “experience", etc. After-
wards, the two interviewers independently applied structural 
coding to collect phrases in the interviews that represent 
topics relevant to answering the research questions. Struc-
tural coding can be used to label and index data relevant to 
a particular analysis (in our case research question) [60]. 
The researchers compared the individually assigned codes 
and applied descriptive coding with the aim of identifying 
phrases that describe common themes across the interviews.

Theme validation In a focus group, the identified themes 
were presented and discussed. Thirteen researchers from 
both industry and academia in the VEDLIoT project par-
ticipated. Three of the participants from the workshop were 
also interviewed for this study. We asked the participants 
in two initial questions about their professional background 
and years of relevant experience in their role. Five partici-
pants answered they have an industrial background, six an 
academic background and two mentioned they have both 
an academic and industry background. The average years 

Table 2  Participants of the 
study

ADAS: Advanced Driver Assistance Systems

Interview Role Experience

A Researcher (Academic) Functional Safety for ADAS (5 years)
B Function developer Sensor and perception systems (20 years)
C Principal engineer ML model integration (10 years)
D ML model developer Distributed and edge systems (3 years)
E Function owner ADAS perception functions (8 years)
F Function developer and test engineer Automatic driving systems (25 years)
G Data Scientist Distributed systems (12 years)
H Requirement Engineer Perception systems (8 years)
I Researcher (Academic) Neural Network development (8 years)
J Functional Safety Manager Sensor systems (20 years)

3 Very Efficient Deep Learning in the Internet-of-Things https:// 
www. vedli ot. eu.

https://www.vedliot.eu
https://www.vedliot.eu
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of experience were 12.5 years, with a standard deviation of 
10.4 years. Three participants work in the area of research 
and development (R &D) for ML systems in a company, 
six in academic research, two described their role as safety 
engineers, one as software developer, and one as engineering 
manager. The aim of the focus group was to reduce bias in 
the selection of themes and to identify any additional themes 
that the researchers might have missed. Each theme was pre-
sented to the group and openly discussed. The participants 
used their work experience in their respective companies to 
relate to the themes. Then, the participants were asked to 
openly discuss if any further themes should be added to the 
data analysis.

Second coding cycle After the themes were identified and 
validated, the second coding cycle was used to map the state-
ments of the interviewees to the themes, and consequently 
identify the answers to the research questions. The second 
cycle was conducted by the two researchers who did not 
conduct the first cycle coding in order to reduce confirma-
tion bias. The mapping was then confirmed and agreed upon 
by all involved researchers.

Validation of challenge themes Member checking, as 
described in [22] was used to validate the identified themes 
that answer RQ1 and RQ2. While performing the second 
coding cycle, we returned to some of the interviewees 
and shared the preliminary mapping of quotes to themes. 
This served two purposes: It created a feedback loop in the 
research process allowing us to involve practitioners with 
their perspective and experience in the mapping of the state-
ments to the themes. Member checking also allowed us to 
validate that the we interpreted the interviewees’ statements 
correctly by obtaining additional opinions. Finally, we also 
presented the results of the interview study in a 60 min focus 
group to an industry partner of VEDLIoT and allowed for 
feedback and comments on the conclusions we drew from 
the data through an open discussion.

Validation of RE implications and recommendations 
to practitioners We validated identified implications for 
Requirement Engineering (RE) and recommendation for 
practitioners based on the identified themes through a 
survey of six RE experts. The participants were selected 
randomly by visiting a project meeting of another research 
project on RE for automotive perception systems called 
“Facilitating Multi-Party Engineering of Requirements" 
(FAMER) [82]. We chose FAMER because the research 
project is strongly related to RE challenges encountered 
by industrial practitioners in the design of ML-enabled 
safety-critical perception systems for the automotive indus-
try. Therefore, we assumed that FAMER participants are 
well qualified to judge both the implications for RE and 
the recommendations derived from the results of this study. 
Table 3 provides an overview of the participants’ roles and 
experience. One of six participants answered to work in 

academia. Two participants stated they both work in aca-
demia and industry, and three participants work in industry. 
We visited a project meeting of FAMER on 24th November 
2023 and asked all participants of that meeting to fill out the 
survey in Microsoft Forms. Besides asking for the partici-
pant’s role and experience, the survey listed all implications 
for RE and recommendations. The participants were asked 
to express, based on their experience, their agreement on 
a Likart-scale from 1 (Strongly Disagree), to 5 (Strongly 
Agree). The survey itself and its results are included in the 
replication package.

2.4  Data collection for constructive research

The data collection for the constructive elements of this 
study, i.e., the mapping of architecture views to the identi-
fied challenges entailed two components. First, we revisited 
data collected for a previous study conducted on applying 
architecture frameworks to distributed AI systems [32]. The 
data include recordings from two workshops on challenges 
of developing distributed AI-enabled systems in an indus-
trial case study which was also part of VEDLIoT. The two 
workshops aimed at identifying and validating through lit-
erature and standards relevant challenges in relation to defin-
ing architectures for ML systems that are part of the IoT. In 
each of the workshops, eleven experts from VEDLIoT par-
ticipated, whereof four identified themselves as ML expert 
working in industry, one as IoT expert in industry, and six as 
researchers from academia [32, Appendix A]. The outcome 
of both workshops is a list of ten themes describing the iden-
tified 28 challenges of developing distributed ML systems 
within VEDLIoT. For this study, we reused the themes “#1 
Additional views needed for describing the AI model", “#2 
Data requirements", “#3 Context and design domain", and 
“#8 Run Time Monitoring" as they correspond to the chal-
lenges identified in this study. Second, we collected data 
on architecture views suitable for designing AI systems 
from the architecture framework for VEDLIoT described in 
[32]. The architecture framework for VEDLIoT consists of 
52 architecture views which relate to existing architecture 
standards and literature. We chose to extract architecture 
views from the VEDLIoT framework because it constitutes 

Table 3  Participants of validation survey

ID Role Experience

I Systems engineer >10 years
II Researcher (Academic) >10 years
III Researcher ML 0–1 year
IV Safety researcher 5–10 years
V Requirement engineer >10 years
VI Requirement engineer >10 years
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a comprehensive and peer-reviewed collection of architec-
ture views for AI system development. The framework was 
built upon relevant architecture standards and literature 
including, among others, the IEEE 2413 standard for archi-
tectural frameworks for the IoT [36], the IEEE 42010 stand-
ard on architecture descriptions [40], the collected work on 
documenting software architecture by Clements et al. [20], 
and the exploratory work by Muccini and Vaidhyanathan 
on software architecture for ML-based systems [59]. We 
included the data from the previous study on architecture 
frameworks for ML-based distributed systems because some 
of the identified challenges in the previous study correspond 
to the challenges identified from a different set of practition-
ers in this study. However, the scope of the study in [32] 
was to offer a system-holistic view on ML-enabled systems, 
including for example hardware and communication aspects. 
Instead, this study looked more closely at the challenges of 
specifying requirements for training data and runtime moni-
toring. The intention here is to investigate, if an architecture 
framework can also help to overcome the extended set of 
challenges for the two areas of training data and runtime 
monitors identified in this study.

2.5  Data analysis for constructive work

The aim of this constructive work is to propose the use of 
architecture thinking as part of a design thinking approach 
to provide guidance in how to solve the identified chal-
lenges with specifying requirements for the training data 
and runtime monitoring for critical ML enabled systems. 
Design thinking has been proposed as solution for RE and 
software development challenges for example in [79] and 
[46]. The relation between design thinking and architecture 
frameworks for software development has been investigated 
in [25] which describes that architecture framework support 
design thinking by constraining the complexity of the design 
tasks and by providing design links between different aspects 
of the system.

Design Thinking typically involves five phases: Empa-
thise, in which one seek understanding of a problem from a 
stakeholder’s perspective, Define, in which the problem is 
more clearly defined by synthesising information gathered 
in the Empathise phase, Ideate, in which a range of ideas 
are developed to address the defined problems, Prototype, 
in which first ideas are implemented, and Test, in which the 
prototypes are given to the original stakeholders to gather 
feedback.

By interviewing practitioners and identifying challenge 
themes and groups, the original study fulfilled the Empathise 
and Define phases. In the extension of the original study, we 
aim to address the Ideate phase by exploring the idea that 
architecture frameworks can potentially be used to mitigate 
the problem of specifying AI-specific requirements such as 

training data and runtime monitors. The Prototype and Test 
phase is outside the scope of this study.

Mapping of challenges to previously identified challenges 
First in the Ideate phase, we reviewed the data that led to the 
creation of what is referred to as “clusters of concern" based 
on data collected from [32], with a focus on clusters of con-
cerns that relate to the challenges identified in this study as 
described earlier. In line with the IEEE 2413-2019 standard 
[36], a concern refers to an interest, problem, or require-
ment that is relevant to one or more stakeholders of the sys-
tem. We used the IEEE 2413-2019 standard for architecture 
frameworks in the IoT as starting point because similar to 
the development of ML-based systems, systems for the IoT 
depend strongly on data availability and data quality aspects. 
Other similarities are data privacy concerns, security, safety 
and other qualitative system concerns, as well as the problem 
of interoperability and integration because ML components, 
similar to elements of an IoT system, need to be integrated 
with existing software and hardware systems [76]. A cluster 
of concern extends this definition by grouping concerns into 
clusters that represent a specific concern of the system at 
different levels of details. For example, the cluster of con-
cern data strategy includes concerns about data ingestion, 
data selection, and data preparation and preprocessing [32, 
Appendix F]. By applying ideas from category theory, the 
architecture framework proposed in [32] consists of a grid of 
architecture views sorted vertically by their level of abstrac-
tion. Views on the same level of abstraction should have an 
equivalent level of detail about the system-of-interest. If the 
product over all architectural views on a level of abstraction 
is valid, then the architectural views consistently describe 
the system-of-interest. Valid means that no matter which 
architectural view one starts at, it is always possible to transit 
via the correspondence rules to another architectural view 
and still see the same system from a different perspective. 
Horizontally, the architecture views address the aforemen-
tioned clusters-of-concerns. This horizontal and vertical 
arrangement of architecture views is referred to as compo-
sitional architecture framework. For the constructive work, 
we mapped the identified challenges to architecture views 
within the compositional architecture framework. An exam-
ple of such an cluster-of-concerns over level of abstraction 
arrangement of architecture views is provided in Fig. 2. The 
figure will be discussed in more detail in the result section 
of this article.

We compared the challenges identified in RQ1 and RQ2 
of this study with the challenges outlined in the architecture 
framework described in [32]. We looked for similar con-
cerns in the statements of the interviewees of both studies 
and mapped them accordingly to each other. Similar here 
means that the concerns address the same problem in rela-
tion to specifying data and runtime monitors. For example, 
if an interviewee mentioned that explainability of decisions 
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at runtime is a challenge, it is similar to the challenge of 
including new quality aspects such as explainability and 
fairness as architecture views for ML systems. Then, any 
concerns not mentioned in [32] were mapped to appropri-
ate architecture views or clusters-of-concerns based on the 
researchers’ expert knowledge. The researchers provided 
justification based on logical reasoning and the researchers’ 
experience for why the chosen mappings were appropriate.

Identifying relations between challenges and architecture 
views In a second step of the constructive work, we manu-
ally performed a semantic analyses of the interview data we 
collected for this study. The aim was to find connections, or 
more specifically correspondences between the challenges. 
For example, the challenge of ensuring explainability of ML 
models might be an effect of the challenge of IP protection, 
which causes opacity in the development process and there-
fore an inability to create explainable ML models. After we 
identified these relations between the challenges, we cre-
ated correspondences between the architecture concerns 
extracted from the compositional architecture framework. 
The hypothesis behind these correspondences is that if the 
challenges addressed by the architecture views are related, 
then these architecture views should also be related by cor-
respondence rules.

3  Results

During the first coding cycle, structural coding resulted in 
117 statements for RQ1 and 77 statements for RQ2. Through 
descriptive coding 14 preliminary themes were found. In 
descriptive coding, the researcher summarises in a short 
phrase the theme of a statement from the interviewee [71, 
page 88]. The statements found through structural coding 

and preliminary themes identified through descriptive cod-
ing were then discussed during a focus group. As a result 
of the focus group discussion, three additional themes were 
created (IDs 3.3, 4.3, and 6.3). Based on the feedback from 
practitioners, the 117 statements for RQ1 were categorised 
first into eight final challenge themes (IDs 3.1−3.4, 5.1−
5.2, 6.1−6.2) and those themes were further categorised into 
three challenge groups (IDs 3, 5, 6) relating to the challenge 
of specifying requirements for training data. Similarly, the 
77 original statements for RQ2 were grouped into twelve 
final challenge themes (IDs 1.1−1.3, 2.1−2.2, 3.4, 4.1−4.3, 
6.1−6.3) and further into five challenge groups (IDs 1, 2, 3, 
4, 6) relating to the challenge of specifying runtime moni-
toring. One challenge group relates exclusively to RQ1 (ID 
5), three groups relate to RQ2 (IDs 1, 2, 4), and two groups 
relate to both RQs (IDs 3, 6). The categories and final chal-
lenge themes are listed in Table 4. Additionally, for each 
challenge theme, we indicate the implication of the findings 
for RE.

3.1  Answer to RQ1: Challenges practitioners 
experience when specifying requirements 
for training data

The interviewees were asked to share their experiences in 
selecting training data, the influence of the selection of train-
ing data on the system’s performance and safety, and any 
experiences and thoughts on defining specifications for train-
ing data for ML. Based on the interview data, we identified 
three challenge groups related to specifying requirements for 
training data: missing guidelines for data selection, unclear 
design domain, and unsuitable safety standards, which are 
elaborated below.

Fig. 2  Architecture co-evolution of logical architecture, AI model architecture, data strategiy, and safety concerns of the system
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ID3: Missing guidelines for data selection Four inter-
viewees reported on a lack of guidelines and processes 
related to the selection of training data. A reason can be 
that data selection bases on “grown habits" that are not 
properly documented. Unlike conventional software devel-
opment, the training of ML is an iterative process of dis-
covering the necessary training data based on experience 
and experimentation. Requirements set on the data are 
described as disconnected and unclear for the data selec-
tion process. For example, one interviewee stated that if 
a requirements is set that images shall contain a road, it 
remains unclear what specific properties this road should 
have. Six interviewees described missing requirements on 
the data variety and missing completeness criteria as a 
reason for the disconnection of requirements from data 
selection.

For example, we said that we shall collect data under 
varying weather conditions. What does that mean? 
- Interview B, Q1

How much of it (the data) should be in darkness? 
How much in rainy conditions, and how much should 
be in snowy situations? - Interview F, Q2

Another interviewee stated that it is not clear how to 
measure variety, which could be a reason why it is difficult 
to define requirements on data variety.

What [is] include[d] in variety of data? Is there a good 
measure of variety? - Interview A, Q3

RE Implication 1: RE research should uncover new 
ways to specify variety and completeness criteria for 
data collection. Four validation survey participants strongly 
agreed, and two agreed with RE Implication 1.

ID5: Unclear design domain Three interviewees describe 
uncertainty in the design domain as a reason for why it is 
difficult to specify training data. If the design domain is 
unclear, it will be challenging to specify the necessary train-
ing data.

We need to understand for what context the training 
data can be used. - Interview J, Q4

ODD [(Operational Design Domain)]? Yes, of course 
it translates into data requirements. - Interview F, Q5

RE Implication 2: RE research must provide better 
ways to specify the context, since data selection and 

Table 4  Challenge groups 
(bold) and themes found in 
the interview data. Data.: 
Challenges related to specifying 
training data (RQ1). Monitor.: 
Challenges related to specifying 
runtime monitoring (RQ2). 
The groups and themes are 
alphabetically ordered

ID Challenge theme Relates to Data 
Monitor.

Related Literature

1 Lack of explainability about ML decisions ✓

1.1 No access to inner states of ML models ✓ [27]
1.2 No failure models for ML models ✓ [86]
1.3 Protection of IP ✓

2 Missing conditions for runtime checks ✓

2.1 Unclear metrics and/or boundary conditions ✓ [15, 30, 73]
2.2 Unclear measure of confidence ✓ [26, 55]
3 Missing guidelines for data selection ✓ ✓

3.1 Disconnection from requirements ✓ [24, 72]
3.2 Grown data selection habits ✓ [5, 29]
3.3 Unclear completeness criteria ✓ [84]
3.4 Unclear measure of variety ✓ ✓ [77, 85]
4 Overhead for monitoring solution ✓

4.1 Limited resources in embedded systems ✓ [67]
4.2 Meeting timing requirements ✓

4.3 Reduction of true positive rate ✓

5 Unclear design domain ✓

5.1 Design domain depends on available data ✓ [9]
5.2 Uncertainty in context ✓ [33]
6 Unsuitable safety standards ✓ ✓

6.1 Focus on processes instead of technical solution ✓ ✓ [13]
6.2 No guidelines for probabilistic effects in software ✓ ✓ [48, 73]
6.3 Safety case only through monitoring solution ✓ [51, 78]
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completeness criteria depend on it. Five validation sur-
vey participants strongly agreed, and one agreed with RE 
Implication 2.

ID6: Unsuitable safety standards Because we were spe-
cifically investigating ML in safety critical applications, we 
asked the participants if they find guidance in safety stand-
ards towards specifying requirements for training data. Five 
interviewees stated that current safety standards used in 
their companies do not provide suitable guidance for the 
development of ML models. While for example ISO 26262 
provides guidance on how to handle probabilistic effects in 
hardware, no such guidance is provided for software related 
probabilistic faults.

The ISO  26262 gives guidance on the hardware 
design; [...] how many faults per hour [are accept-
able] and how you achieve that. For the software side, 
it doesn’t give any failure rates or anything like that. 
It takes a completely process oriented approach [...]. 
- Interview C, Q6

One interviewee mentioned that safety standards should 
emphasise more the data selection to prevent faults in the 
ML model due to insufficient training.

To understand that you have the right data and that 
the data is representative, ISO 26262 is not covering 
that right now which is a challenge. - Interview H, Q7

RE Implication 3: RE methods and practices are 
needed to operationalise safety standards for the selec-
tion of training data. Three validation survey participants 
strongly agreed, and three agreed with RE Implication 3.

Besides Implication 3 towards RE, an implication towards 
standardisation committees responsible for the formula-
tion of safety standards could be to revise these standards 
or create new standards that are more compatible with the 
developing processes of ML-enabled systems. Example of 
emerging safety standards for AI are ISO/IEC 5469: Func-
tional Safety and AI Systems [44], and ISO/PAS 8800: Road 
Vehicles Safety and Artificial Intelligence [42]. An overview 
of emerging safety standards for AI-enabled systems is given 
in [4].

3.2  Answer to RQ2: Challenges practitioners 
experience when specifying runtime monitors

We asked the interviewees on the role of runtime moni-
toring for the systems they develop, their experience with 
specifying runtime monitoring, and the relation of runtime 
monitoring to fulfilling safety requirements on the system. 
We identified five challenge groups related to runtime moni-
toring: lack of explainability about ML decisions, missing 
conditions for runtime checks, missing guidelines for data 

selection, overhead for monitoring solution, and unsuitable 
safety standards, as explained below.

ID1: Lack of explainability about ML A reason why it 
is difficult to specify runtime monitors for ML models is 
the inability to produce failure models for ML. In normal 
software development, causal cascades describe how a fault 
in a software components propagates trough the systems 
and eventually leads to a failure. This requires the ability 
to break down the ML model into smaller components and 
analyse their potential failure behaviour. Four interviewees 
however reported that they can only see the ML model as 
a “black-box" with no access to the inner states of the ML 
model. As a consequence, there is no insight into the failure 
behaviour of the ML model.

[Our insight is] limited because it’s a black box. We 
can only see what goes in and then what comes out 
to the other side. And so if there is some error in the 
behavior, then we don’t know if it’s because [of a] 
classification error, planning error, execution error? 
- Interview F, Q8

The reason for opacity of ML models is not necessarily 
due to technology limitations, but also due to constraints 
from protection of intellectual property (IP).

Why is it a black box? That’s not our choice. That’s 
because we have a supplier and they don’t want to tell 
us [all details]. - Interview F, Q9

RE Implication 4: RE can play a crucial role in navigat-
ing the trade-off between protecting IP of suppliers and 
sharing enough information to allow for safety argumen-
tation. Two validation survey participants strongly agreed, 
two agreed, one answered neutrally, and one disagreed with 
RE Implication 4.

ID2: Missing conditions for runtime checks A problem 
of specifying runtime monitors is the need for finding suit-
able monitoring conditions. This requires the definition of 
metrics, goals and boundary conditions. Five interviewees 
report that they face challenges when defining these metrics 
for ML models.

What is like a confidence score, accuracy score, some-
thing like that? Which score do you need to ensure 
[that you] classified [correctly]? - Interview F, Q10

Especially the relation between correct behaviour of the 
ML model and measure of confidence is unclear, and there-
fore impede runtime monitoring specification.

We say confidence, that’s really important. But what 
can actually go wrong here? - Interview J, Q11

RE Implication 5: RE is called to provide methods 
for identifying conditions for runtime checks. Four 
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validation survey participants strongly agreed, and two 
agreed with RE Implication 5.

ID3: Missing guidelines for data selection The inability 
to specify the meaning of data variety also relates to miss-
ing conditions for runtime checks. For example, runtime 
monitors can be used to collect additional training data, 
but without a measure of data variety it is difficult to find 
the required data points.

You mean [finding sufficient data] by using a meas-
ure of variety? Yeah, that is extremely difficult. I 
don’t really have an answer. - Interview A, Q12

ID4: Overhead for monitoring solution An often over-
looked problem seems to be the induced (processing) 
overhead from a monitoring solution. Especially in the 
automotive sector, many software components run on 
embedded computer devices with limited resources.

You don’t have that much compute power in the 
car, so the monitoring needs to be very light in its 
memory and compute footprint on the device, maybe 
even a separate device that sits next to the device. - 
Interview F, Q13

And due to the limited resources in embedded systems, 
monitoring solutions can compromise timing requirements 
of the system. Additionally, one interviewee reported 
concerns regarding the reduction of the ML model’s 
performance.

[...] the true positive rate is actually decreasing 
when you have to pass it through this second opinion 
goal. It’s good from a coverage and safety point of 
view, but it reduces the overall system performance. 
- Interview F, Q14

RE Implication 6: RE methods are needed to help 
finding suitable runtime checks that do not negatively 
impact the performance of the system. Three validation 
survey participants strongly agreed, one agreed, and two 
answered neutrally with RE Implication 6.

ID6: Unsuitable safety standards Safety standards are 
mostly not suitable for being applied to ML model devel-
opment. Therefore, safety is often ensured through non-
ML monitoring solutions. Interviewees reported that it is 
not a good solution to rely only on the monitors for safety 
criticality:

[...] so the safety is now moved from the model to 
the monitor instead, and it shouldn’t be. It should 
be the combination of the two that makes up safety. 
- Interview B, Q15

One reason is that freedom of inference between a non-
safety critical component (the ML model), and a safety 

critical component (the monitor) must be ensured which 
can complicate the system design.

And then especially if you have mixed critical systems 
[it] means you have ASIL [(Automotive Safety Integrity 
Level)] and QM [(Quality Management)] components 
in your design [and] you want to achieve freedom from 
interference in your system. You have to think about 
safe communication and memory protection. - Inter-
view J, Q16

RE Implication 7: RE is called to provide traceability 
and requirements information models that allow a com-
plete description of the system, its monitors, and their rela-
tionship to high-level requirements (such as safety). Four 
validation survey participants strongly agreed, one agreed, 
and one disagreed with RE Implication 7.

3.3  Answer to RQ3: How can an architecture 
framework provide guidance to practitioners 
with respect to the challenges identified in RQ1 
and RQ2?

This section identifies architecture principle that can poten-
tially alleviate challenges identified in RQ1 and RQ2. In 
order to reflect the relationships identified between the 
challenges of specifying requirements for training data and 
runtime monitoring, we outline the specific correspond-
ences that should exist within the architecture. For exam-
ple, relation R6, outlined in Table 6, describes how missing 
guidelines for data selection are related to the inability of 
defining runtime checks for the ML model. If guidelines for 
data selection are represented in the system architecture, for 
example through a data pipeline view, and runtime checks 
for example through an architecture view describing the soft-
ware components for these runtime monitors, then those two 
views must be related through correspondence rules.

Mapping of challenges to architecture clusters of con-
cerns and views As answers on RQ1, which asked about 
challenges encountered when specifying requirements 
for training data, and RQ2, which asked about challenges 
encountered when specifying runtime monitors in relation to 
especially safety requirements, we identified 17 challenges in 
six challenge groups regarding the specification of training 
data and runtime monitors for safety critical software that 
contains ML components. In a series of workshops in 2020 
and 2021 challenges that hinder developers in the develop-
ment of systems with ML-components were identified and 
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an architecture framework was proposed that could mitigate 
these challenges for such software [32]. As a first step in 
answering RQ3, we reviewed the data collected from these 
workshops4 and compared challenges identified with those 
identified in this study. For all matches we found, we identi-
fied the proposed mechanism in the architecture framework 
that was suggested as mitigation strategy. Table 5 shows 
the result of the mapping of the identified challenge groups 
to cluster of concern, and subsequently architecture views.

Two challenge groups identified in RQ1 and RQ2, 4: 
Overhead for monitoring solution, and 6: Unsuitable safety 
standards, have no matching cluster of concern in [32]. This 
meant, that we could not directly identify correspondences 
between related architecture views for these challenges. 
However, the problem of handling the (resource) overhead 
needed for monitoring solution can possibly be solved by 
establishing clear correspondence between monitoring needs 
and the remaining software architecture. If monitoring is 
not added “on-top" of the system, but instead considered 
throughout the design phase, or even becomes an explicit 
part of the system architecting effort (see for example [14]), 
the problem of surprising overhead resource requirements 
should not occur.

In addressing the issue of an inadequate safety standard, 
an architectural approach alone does not offer a direct solu-
tion. However, it is possible to explicitly recognising safety 

as a crucial aspect of the system by considering it as own 
cluster-of-concern in an architecture framework. This can be 
accomplished through the inclusion of dedicated architecture 
views within the proposed framework. These views facilitate 
for example safety decomposition and fault tree analyses. 
Block diagrams allocating functional safety requirements 
to elements of the systems are an example of architecture 
views describing the functional safety concept of the sys-
tem [62]. Compliance with various safety standards, such as 
ISO 26262 [41] or ISO/CD TS 5083 [43], often requires the 
establishment of traceability between safety goals and design 
decisions [75]. To meet this requirement, correspondence 
rules can be established between the safety-related views of 
the architecture and other relevant architecture views that 
might be development by other teams.

Interrelation between challenges The results relating to 
RQ1 and RQ2 reveal connections between the challenges. 
For example, the themes in the challenge groups unsuitable 
safety standards and missing guidelines for data selection 
relate to both challenges of specifying requirements for 
training data and runtime monitoring. Furthermore, we iden-
tified relations between different themes and across different 
group of themes. For example R1a: IP protection relates 
to the inability of accessing the inner states and R1b: for 
creating failure models for ML model. We based this assess-
ment on a manual semantic analyses of the words used in 
the statements relating to these themes. For example, Inter-
viewee F stated that:

Table 5  Mapping of challenges identified in this study to challenges and mitigation strategies identified in [32]

Identified challenge group Related challenge in [32] Related architecture principle [32]

1: Lack of explainability about ML decisions #7: New quality aspects (e.g., explainability, 
fairness)

Explicitly integrate explainability in the 
architecture framework as cluster of concern. 
Thereby, explainability is treated like any 
other architecture design decision and allows 
for an“explainable-by-design" approach

2: Missing conditions for runtime checks #8: Runtime monitoring Runtime concerns such as monitoring can be 
made explicit with an own level of abstrac-
tion containing runtime specific architecture 
views

3: Missing guidelines for data selection #2: Data requirements for ensuring the desired 
AI’s behaviour must be considered

Data concerns that have direct impact on the 
system’s behaviour, such as training data 
for the AI model, can be considered an own 
cluster-of-concern with correspondences to 
views describing the operational context, the 
AI model, and the functional behaviour of 
the system

5: Unclear design domain #3: Description of context and design domain The context and operational design domain 
should be considered own clusters-of-
concern as they form many correspondences 
e.g., to views describing the AI model, the 
data need, and non-functional aspects such 
as safety

4 A replication package containing data from these workshops is 
available. The link is provided at the end of the paper.
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That neural network is something [of a] black box in 
itself. You don’t know why it do[es] things. Well, you 
cannot say anything about its inner behavior - Inter-
view F

Later in the interview, the same participants states:

Why is it a black box? That’s not our choice. That’s 
because we have a supplier and they don’t want to tell 
us [all details]. - Interview F

Fig. 3 illustrates the identified cause-effect relations, 
relations between the themes, and how the different themes 
relate to the challenges.

Further relations are: R2a: Unclear metrics and/or 
boundary conditions is related to unclear measures of con-
fidence and R2b: unclear measures of variety. R3a: Grown 
data selection habits relates to a disconnection from require-
ments and R3b: unclear completeness criteria. And, R4: 
limited resources in embedded systems relates to the chal-
lenge of meeting timing requirements when using runtime 

monitors. We also found several statements that indicate 
relations between themes of different challenge groups. The 
R5: lack of explainability about ML decisions relates to the 
inability to understand and trust the measure of confidence. 
R6: Missing guidelines for data selection relate to the ability 
to define runtime checks. R7: Unclear design domain, and 
the dependency of data requirements on the design domain 
relate to missing guidelines for data selection. R8: The focus 
on processes instead of technical solutions relate to miss-
ing guidelines for data selection. R9: Achieving a safety 
case only through monitoring solution relate to reduction 
of true positive rate. Table 6 lists all links found between 
the challenges, their IDs, and it provides rationale for the 
relationships.

Relations between architecture views based on relations 
between requirement specification challenges Six of the 
relations listed in Table 6 involve challenges from differ-
ent challenge groups. For example, R2b: Unclear metrics 
and/or boundary conditions are related to unclear meas-
ures of variety relates to challenge 2.2: Unclear measure 

Fig. 3  Relations between the 
identified challenge themes and 
groups. Enclosed themes have 
been identified as causes for the 
surrounding themes. Further-
more, dotted lines indicate 
relations between different chal-
lenge themes and groups
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Table 6  Identified relations between challenges and rationales for these relations

ID Relation between challenges

R1a IP protection is related to the inability of accessing the inner states. 
(1.1,1.3)

Rationale: Deep neural networks require extensive development and often also financial investments. Supplier companies can therefore con-
sider their ML models as valuable intellectual property. Access to the inner workings of the models can be restricted by companies to protect 
their competitive advantage. This is typically done through non-disclosure agreements or limited sharing with external parties. Related quote: 
Q9

R1b IP protection is related to the inability of creating failure models for 
ML model. (1.2, 1.3)

Rationale: IP protection can restrict access to proprietary data that was used to train the models. The inability to access and inspect the training 
data can limit the ability to understand and analyse failure cases. Furthermore, IP protection may prevent access to the model architecture, 
the training procedures, and hyper-parameter settings. Without this knowledge, it can be difficult to impossible to identify and understand the 
causes of failures. Related quotes: Q8, Q9

R2a Unclear metrics / boundary conditions are related to unclear meas-
ures of confidence. (2.1, 2.2)

Rationale: Confidence estimates provide information about the level of certainty of a ML model’s predictions. The absence of well-defined 
metrics can lead to ambiguity in assessing the correctness and confidence of the model’s output. Possible metrics are for example precision, 
F1-score, recall, and intersection over unit (IoU). In image classification and object detection tasks, accuracy is used as a typical metric to 
measure the model’s performance. It is challenging to relate confidence estimates to the actual performance of the model without clearly 
defined metrics. Related quote: Q10

R2b Unclear metrics / boundary conditions are related to unclear meas-
ures of variety. (2.2, 3.4)

Rationale: Similarly to R2a, Assessing the diversity or representativeness of a dataset used for training of ML models will be challenging or 
even impossible without clearly defined metrics that determine whether the dataset adequately covers the target distribution and captures the 
necessary variations in the target. Related quotes: Q3, Q11, Q12

R3a Grown data selection habits are related to a disconnection from 
requirements. (3.1, 3.2)

Rationale: Data collection is influenced by factors such as data availability, convenience, and historical practices. If data selection habits are 
driven mostly by convenience or historical practices, there is a risk of disconnection from the actual requirements of the task. To mitigate the 
disconnection from the system’s requirements, it is important to adopt data selection strategies to ensure that the data cover the desired varia-
tions and address specific challenges based on higher level stakeholders’ requirements. Related quotes: Q1, Q2

R3b Grown data selection habits are related to unclear completeness 
criteria. (3.2, 3.3)

Rationale: If there is no clear understanding of the required variations, diversity, or representativeness of the data due to the rationale provided 
in R3a, defining completeness criteria for a dataset can be challenging too. Unclear completeness criteria can lead to biases in the dataset or 
omission of critical scenarios which can impact the performance of the trained ML model. Related quote: Q2

R4 Limited resources in embedded systems are related to challenges of 
meeting timing requirements when using runtime monitors. (4.1, 
4.2)

Rationale: Runtime monitoring requires additional processing and memory resources, that are then not available for model inference. This can 
reduce the speed of inference due to less available computing resources for the ML model’s inference task especially in embedded automo-
tive systems with limited computational resources. Related quotes: Q13, Q14

R5 Lack of explainability about ML decisions is related to the inability 
to understand and trust the measure of confidence. (1, 2.2)

Rationale: If the model’s decision-making process is not transparent or explainable, it becomes challenging to trust the associated measures of 
confidence. Therefore, when developers and/or users can understand how and why the model arrived at certain decisions, they can evaluate 
the reasoning and assess the reliability of the model’s outputs, including the measures of confidence. A lack in explainability can compro-
mise trust in the model’s confidence estimates. Related quotes: Q8, Q11

R6 Missing guidelines for data selection is related to the inability to 
define runtime checks. (2, 3)

Rationale: Data selection guidelines should provide guidance in fulfilling data requirements. However, without data requirements, criteria or 
recommendations for data selection are difficult to define. This makes it difficult to determine the specific checks or validations that should be 
applied to the input data during the runtime of the ML model, because already for the training data, there were no clearly defined criteria or 
checks. Related quotes: Q3, Q10

R7 Unclear design domain, and the dependency of data requirements 
on the design domain, are related to missing guidelines for data 
selection. (3, 5.1)
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of confidence and 3.4: Unclear measure of variety. We 
mapped challenges to architecture concerns based on the ear-
lier identified mapping of the identified challenges of both 
studies shown in Table 5 and based on the mapping of the 
challenges to architecture views presented in [32]. Table 7 
presents the results of this mapping. Challenge theme 2.2 
is mapped to architecture views concerning the AI model. 
Challenge theme 3.4 is mapped to architecture views con-
cerning the data strategy. In summary relation R2b suggests 
that there should be correspondences between architecture 
views describing the AI model (such as the AI model con-
cept / layer structure) and architecture views describing the 
data strategy (such as views describing the data pipeline). 
The cross-group relation R5: Lack of explainability about 
ML decisions is related to the inability to understand and 
trust the measure of confidence suggests architecture view 
correspondences between views in the cluster-of-concern 
"quality aspect", specifically views concerning the explaina-
bility of the system, and the AI model architecture. The rela-
tion R6: Missing guidelines for data selection is related 
to the inability to define runtime checks suggests corre-
spondence rules between views concerning the data strategy 
(data pipeline) and views on software components for the 
runtime monitoring. Furthermore, the relation R7: Unclear 
design domain, and the dependency of data requirements 
on the design domain, are related to missing guidelines 
for data selection requires correspondences between archi-
tecture views describing the operational context (such as 
an ODD description for automotive systems), and views 
describing the data strategy. The relation R8: The focus on 
processes instead of technical solutions in the context to 
functional safety is related to missing guidelines for data 

selections suggests correspondences between architecture 
views describing the quality aspects of safety (e.g., in the 
form of hazard analyses tables and fault tree diagrams) and 
views describing the data strategy. And, R9: Achieving a 
safety case only through monitoring solution is related 
to a reduction of true positive rate relates to architecture 
views describing the safety quality aspect of the system and 
architecture views describing the AI model, i.e., correspond-
ences should exist not only between the safety views and the 
monitoring solutions, but also towards the AI model itself 
in order to diversify the safety risk. We did not map chal-
lenge 3.2: Grown data selection habits to an architecture 
view because we assume that overcoming existing habits in 
a company requires rather a properly defined process then 
an architecture view on the system.

3.4  An example of relations between data concerns, 
runtime monitoring, and architecture decisions

Figure 2 earlier provided an example of how an architec-
ture framework can be used to link multiple architectural 
concerns in ML systems development. The figure shows an 
extract from the architecture framework proposed in [32] 
for five clusters of concerns: Logical architecture, oper-
ational context, AI model, data strategy, and functional 
safety. For each cluster of concern, four architecture views 
are defined at different levels of abstraction. At the most 
abstract level, the analytical level, system development 
still takes place mostly in a problem space. The develop-
ers gather knowledge and analyse the problem that the 
system is supposed to solve. Already here, the problem 
to be solved can be viewed from different “perspectives", 

Table 6  (continued)

ID Relation between challenges

Rationale: The design domain can refer to the specific context, problem, or application in which the ML model is being developed. Data 
requirements include considerations such as data quality, physical properties of the data such as image resolution, diversity, representative-
ness, or domain-specific constraints. If the design domain is unclear it will be challenging to determine context-specific data requirements. 
Lack of clarity about the problem statement, application scope, or intended functionality hinders the ability to identify the relevant data 
sources, data quality standards, or other considerations necessary for effective data selection. Related quotes: Q1, Q2, Q4, Q5

R8 The focus on processes instead of technical solutions in the context 
of functional safety is related to missing guidelines for data selec-
tions. (3, 6.1)

Rationale: If there is a too strong focus on processes, such as defining workflows, documenting methodologies, or establishing quality assur-
ance procedures, it can divert attention away from addressing the technical aspects of data selection. Technical solutions can refer to the 
discovery of specific algorithms, architectures, or techniques used to implement and train the ML model. When the focus primarily revolves 
around processes rather than technical solutions, the development of explicit data selection strategies may be neglected because companies 
can assume the technical solutions for data selection are covered within the broader processes. Related quotes: Q2, Q7

R9 Achieving a safety case only through monitoring solution is related 
to a reduction of true positive rate. (4.3, 6.3)

Rationale: The safety case for systems with ML components relies often on runtime monitors as primary means of identifying safety issues. 
Runtime monitors however can limit the operational boundary of the system which can lead to a reduction of the true positive rate of the ML 
component. Achieving a comprehensive safety case for systems with ML components requires not only a reliance on monitoring solutions, 
but must also take the ML component and its development process, including the data selection, into account. Related quotes: Q14, Q15
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i.e., in this example from a logical architecture, an opera-
tional context, an AI model, a data and a security point of 
view. Defining own architecture views for the AI model 
and creating correspondences to other system views can 
answer challenge theme 1.1: No access to inner states of 
ML models. Table 4 lists all challenges themes. Early on, 
already in the problem space, correspondences can be 
created between different points of view, that is between 
different architecture views. For example, a hazard analy-
sis is only valid under certain context assumptions. Fur-
thermore, a hazard analysis might highlight certain criti-
cal operational scenarios that need to be considered in 
the data ingestion for the AI model’s training data, thus 
creating more reasonable completeness criteria for data 
collection as mentioned in challenge theme 3.3: Unclear 
completeness criteria. At the next level of abstraction, 
conceptual level, system development moves closer to 
the solution space. Here, for example, we can establish 
correspondences between the context definition or oper-
ational design domain (ODD) and the data selection, 
which can address the challenges in challenge group 5: 
Unclear design domain. Measures of variety for the data, 
and measures of confidence for the AI model can, on this 
level, clearly be linked to the defined operational context. 
This can solve challenges in Challenge group 3: Miss-
ing guidelines for data selection. Other correspondences 
can be made between the functional safety concept, which 
would define necessary redundancies in the system, the 
logical components and the AI model concept, e.g. defin-
ing a maximum inference time for the AI model, which 
relates to challenge themes 4.2: meeting timing require-
ments. At the design level, the final design decisions of 
the system are made in the solution space. For example, 
based on the chosen hardware architecture, computational 
resources can be allocated to the AI model, creating a cor-
respondence between the computational resource alloca-
tion and AI model configuration views, since the AI model 
must be configured to run most efficiently on the chosen 
computational resources. The least abstract level, i.e. the 
most concrete level of abstraction, is the runtime level. 
This defines the runtime behaviour of the system for each 
cluster of interest, including the design of the necessary 
runtime monitors and the adaptive behaviour of the sys-
tem. For example, safety monitors can now be defined for 
safety-critical aspects that could not be adequately covered 
by the technical safety concept. Links can be made to the 
adaptive behaviour control, which can, for example, deac-
tivate the AI model in the event of malfunction or unex-
pected results. The safety case would mostly rely on the 
previous design decisions, i.e. the technical safety concept 
that ensures appropriate training data, AI model setup and 
computing resources. The safety case would therefore not 

rely solely on safety monitors to answer challenge theme 
6.3: Safety case only through monitoring solution.

4  Discussion

This interview study investigated challenges experienced 
by practitioners when specifying data needed for training 
and validating of critical ML-enabled system, as well as 
specifying necessary runtime monitoring solutions for such 
systems. Some of the underlying problems and potential 
solutions have also been investigated in other publications.

4.1  Related literature

The problem of finding the “right" data For acquiring data, 
data scientists have to rely on data mining with little to no 
quality checking and potential biases [6]. Biased datasets 
are a common cause for erroneous or unexpected behaviour 
of ML models in critical environments, such as in medical 
diagnostic [10], in the juridical system [28, 58], or in safety-
critical applications [23, 78].

There are attempts to create “unbiased" datasets. One 
approach is to curate manually the dataset, such as in the 
FairFace dataset [49], the CASIA-SURF CeFaA dataset 
[53], or Fairbatch [70]. An alternative road is to use data 
augmentation techniques to “rebalance" the dataset [45, 77]. 
However, it was discovered that it is not sufficient for avoid-
ing bias to use an assumed balanced datasets during train-
ing [29, 84, 85] because it is often unclear which features 
in the data need to be balanced. Approaches for curating or 
manipulating the dataset require information on the target 
domain, i.e., one needs to set requirements on the dataset 
depending on the desired operational context [8, 24, 33]. 
But deriving a data specification for ML is not common 
practise [37, 54, 72].

The problem of finding the “right" runtime monitor 
Through clever test strategies, some uncertainty can be 
eliminated in regards to the behaviour of the model [15]. 
However, ML components are often part of systems of sys-
tems and their behaviour is hard to predict and analyse at 
design time [81]. DevOps principles from software engi-
neering give promising ideas on how to tackle remaining 
uncertainty at runtime [55, 80]. An overview of MLOps can 
be for example found in [52]. As part of the operation of the 
model, runtime models that “augment information available 
at design-time with information monitored at runtime" help 
in detecting deviations from the expected behaviour [26]. 
These runtime models for ML can take the form of model 
assertions, i.e., checking of explicitly defined attributes 
of the model at runtime [48]. However, the authors state 
that “bias in training sets are out of scope for model asser-
tion". Another model based approach can be the creation 
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of neuron activation patterns for runtime monitoring [18]. 
Other approaches treat the ML model as “black-box", and 
only check for anomalies and drifts in the input data [68] 
the output [73], or both [27]. However, similar to the afore-
mentioned challenges when specifying data for ML, runt-
ime monitoring needs an understanding on how to “define, 
refine, and measure quality of ML solutions" [34], i.e., in 
relation to non-functional requirements one needs to under-
stand which quality aspects are relevant, and how to measure 
them [30]. Most commonly applied safety standards empha-
sise processes and traceability to mitigate systematic mis-
takes during the development of critical systems. Therefore, 
if the training data and runtime monitoring cannot be speci-
fied, a traceability between safety goals and the deployed 
system cannot be established [13].

For many researchers and practitioners, runtime verifica-
tion and monitoring is a promising road to assuring safety 
and robustness for ML in critical software [2, 15]. However, 
runtime monitoring also creates a processing and memory 
overhead that needs to be considered especially in resource-
limited environments such as embedded devices [67]. The 
related work has been mapped to the challenges identified 
in the interview study in Table 4.

4.2  Recommendation for practitioners

The identified relations of the challenges described by the 
participants, as well as the solutions suggested in related 
work, allow us to formulate recommendations and implica-
tions towards RE practises. The implications towards RE 
practises are stated after each challenge theme in Sect. 3. 
Because these recommendations try to solve causes 
described by the participants of the interview study, we 
think they are a useful first step towards solving the chal-
lenges related to specifying requirements for training data 
and runtime monitoring.

Recommendation 1: Avoid restrictive IP protection. IP 
protection is a cause of the inability to access the inner states 
and workings of the ML models (black-box model). This 
can lead to nontransparent measures of confidence, and 
an inability to formulate failure models. To the best of our 
knowledge, no studies have yet been performed on the con-
sequences of IP protection of ML models on the ability to 
monitor and reason (e.g., in a safety case) for the correctness 
of ML model decisions. Three validation survey participants 
strongly agreed, one agreed, one answered neutrally, and 
one disagreed with Recommendation 1.

Recommendation 2: Relate measures of confidence to 
actual performance metrics. For runtime monitoring, the 
measure of confidence is often used to evaluate the reli-
ability of the ML model results. However, without first 
understanding and relating this measure to clearly defined 
performance metrics of the ML model, the measure of 

confidence provides little insight for runtime monitoring. In 
general, the definition of appropriate metrics and boundary 
conditions should become an integral part of RE for ML as 
it affects both the ability to define data requirements and 
the requirements for runtime monitoring. Three validation 
survey participants strongly agreed and three agreed with 
Recommendation 2.

Recommendation 3: Overcome grown data selection 
habits. Grown data selection habits were cited as a reason 
for the lack of clear completeness criteria and a disconnect 
from requirements. Based on our findings, we argue that 
more systematic data selection processes need to be estab-
lished in organisations and companies. This would allow 
the data selection process to be better linked to RE, and 
it would create traceability between system requirements, 
completeness criteria and data requirements. In addition, it 
could also reduce the amount of data required for training 
and thus reduce development costs. Three validation survey 
participants strongly agreed, two agreed, and one answered 
neutrally with Recommendation 3.

Recommendation 4: Balance hardware limitation in 
embedded systems. Runtime monitors impose processing and 
memory overhead that can compromise timing requirements 
and reduce the performance of the ML model. Today, the 
safety of systems with ML is mostly provided by some forms 
of runtime monitoring. By instead decomposing the safety 
requirements on both the monitoring and the ML model, 
the monitors could become more resource efficient, faster, 
and less constraining on the decisions of the ML model. 
This however means also that safety requirements on the ML 
models can trigger requirements on the training data. Two 
validation survey participants strongly agreed, one agreed, 
and three answered neutrally with Recommendation 4.

Recommendation 5: Relate the challenges of specify-
ing requirements for training data and runtime monitor-
ing to architecture decisions of the AI-enabled systems. As 
emphasised in Recommendation 4, solving one challenge 
(overhead of runtime monitoring) requires design changes 
in other architecture areas of the system (ML model design, 
selection of training data / data pipeline). We found rela-
tionships between the challenges identified in this study and 
the challenges of designing AI-based systems identified in a 
previous study, which led to the definition of an architecture 
framework for AI systems described in [32]. Since the sys-
tem architecture and the requirements / system specifications 
evolve together in what is known as the twin-peak-model 
[19], we propose to overcome the specification challenges by 
decomposing the design task early on into different architec-
ture views that describe the relevant concerns of the system 
and by establishing correspondences between the architec-
ture views. Several recent studies support the recommenda-
tion to relate challenges in the development of ML-enabled 
systems to architecture decisions: In a combined literature 
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survey and interview study, Nazir et al. provide an overview 
on the role of architectural design decisions for ML-enabled 
systems [61]. There, data is been highlighted as one major 
design challenge. For example, pre-processing and prepara-
tion of data requires architecture design decision regarding 
the data pipeline and data management for ML-enabled sys-
tem development [17]. The authors also state that one inter-
viewee (I5) highlighted that “Data accuracy and completion 
of data are crucial when training the models of ML systems" 
[61], which corresponds to the findings in this study. Bhat 
et al. highlight the necessity of relating RE challenges to 
architecture design decisions for large software engineering 
project such as ML system development [11]. Three valida-
tion survey participants strongly agreed, two agreed, and 
one answered neutrally with Recommendation 5.

4.3  Threats to validity

Threats related to internal validity A lack of rigour (i.e., 
degree of control) in the study design can cause confound-
ing which can manifest bias in the results [74]. The follow-
ing mechanisms in this study tried to reduce confounding: 
The interview guide was peer-reviewed by an independent 
researcher, and a test session of the interview was conducted. 
To reduce personal bias, at least two authors were present 
during all interviews, and the authors took turn in leading 
the interviews. To confirm the initial findings from the inter-
view study and reduce the risk of researchers’ bias, a work-
shop was organised which was also visited by participants 
who were not part of the interview study. This workshop, 
plus additional meetings with practitioners were used to 
conduct member checking of the preliminary results. For 
answering RQ3, the researchers used their expert knowl-
edge to map the identified challenges to architecture views. 
However, the researchers referred to an already published 
mapping of similar challenges to architecture views and used 
that mapping as guidance for all but two challenge groups. 
For the remaining two challenge groups, the authors provide 
arguments to why (ID 4: overhead for monitoring solution) 
or why not (ID 6: unsuitable safety standards) such a map-
ping to architecture views is possible.

Threats related to construct validity Another potential 
bias can arise from the sampling of participants. Although 
we applied purposeful sampling, we still had to rely on the 
contact persons of the companies to provide us with suit-
able interview candidates. We could not directly see a list 
of employees and therefore not choose the candidates our-
selves. We tried to support our contact persons with a list 
of roles that should be part of the interviews and discussed 
the final selection of participants with our industry partners 
before inviting them to the interviews.

Threats related to external validity Regarding general-
isability of the findings, the limited number of companies 

involved in the study can pose a threat to external validity. 
However, two of the companies are world-leading compa-
nies in their fields, which, in our opinion, gives them a deep 
understanding and experience of the discussed problems. 
Furthermore, we included companies from a variety of dif-
ferent fields to establish better generalisability. Furthermore, 
our data includes only results valid for the development of 
safety-critical ML models. We assume that the findings are 
applicable also to other forms of criticality, such as privacy-
critical, but we cannot conclude on that generalisability 
based on the available data.

4.4  Conclusion

This article reports on an interview-based study that identi-
fied challenges associated with specifying requirements for 
training data and runtime monitoring for safety-critical ML 
models. Through interviews conducted at five companies we 
identified 17 challenge themes in six groups. We also per-
formed a manual semantic analysis to identify the underlying 
relationships between the challenges. We found that sev-
eral underlying challenges affect both the ability to specify 
training data and runtime monitoring. For example, we con-
cluded that restrictive IP protection can lead to an inability 
to access and understand the inner states of an ML model. 
Without insight into the states of the ML model, the meas-
ure of confidence cannot be related to actual performance 
metrics. Without clear performance metrics, it is difficult to 
define the necessary degree of variety in the training data. In 
addition, grown data selection habits prevent proper RE for 
training data. Finally, safety requirements should be distrib-
uted across both the ML model, which can impose require-
ments on the training data, and on runtime monitors, which 
can reduce the overhead of the monitoring solution. Based 
on the identified challenge groups, we formulated a set of 
seven implications towards RE. The study also compared the 
challenges found with those identified in a previous study 
on the design of distributed ML-based systems and the crea-
tion of an architecture frameworks for such systems. We 
found several parallel challenges in both studies, suggesting 
that an architecture framework and early decomposition of 
the design task into architecture concerns could potentially 
mitigate the challenges of specifying data and monitoring 
requirements for critical ML-based systems. Finally, we pro-
posed five recommendations to practitioners based on the 
identified relations between the challenges described by the 
participants of the study and the mapping of previously iden-
tified challenges in specifying requirements for training data 
and monitoring to architectural views. Both the implications 
for RE, as well as the recommendations for practitioners 
were validated by an additional survey of practitioners. Both 
the implications as well as the recommendations will serve 
as starting point for further engineering research.
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