
Vol.:(0123456789)

Requirements Engineering (2024) 29:97–117
https://doi.org/10.1007/s00766-024-00415-4

ORIGINAL ARTICLE

An empirical investigation of challenges of specifying training data
and runtime monitors for critical software with machine learning
and their relation to architectural decisions

Hans‑Martin Heyn1 · Eric Knauss1 · Iswarya Malleswaran1 · Shruthi Dinakaran1

Received: 3 July 2023 / Accepted: 12 February 2024 / Published online: 21 March 2024
© The Author(s) 2024

Abstract
The development and operation of critical software that contains machine learning (ML) models requires diligence and
established processes. Especially the training data used during the development of ML models have major influences on the
later behaviour of the system. Runtime monitors are used to provide guarantees for that behaviour. Runtime monitors for
example check that the data at runtime is compatible with the data used to train the model. In a first step towards identifying
challenges when specifying requirements for training data and runtime monitors, we conducted and thematically analysed
ten interviews with practitioners who develop ML models for critical applications in the automotive industry. We identified
17 themes describing the challenges and classified them in six challenge groups. In a second step, we found interconnection
between the challenge themes through an additional semantic analysis of the interviews. We explored how the identified
challenge themes and their interconnections can be mapped to different architecture views. This step involved identifying
relevant architecture views such as data, context, hardware, AI model, and functional safety views that can address the identi-
fied challenges. The article presents a list of the identified underlying challenges, identified relations between the challenges
and a mapping to architecture views. The intention of this work is to highlight once more that requirement specifications
and system architecture are interlinked, even for AI-specific specification challenges such as specifying requirements for
training data and runtime monitoring.

Keywords Architecture framework · Artificial intelligence · Data requirements · Requirement engineering · Requirements
specification · Runtime monitoring

1 Introduction

With constant regularity, unexpected and undesirable
behaviour of machine learning (ML) models are reported
in academia [12, 35, 38, 86, 87], the press, and by NGOs.1
These problems become especially apparent, and reported
upon, when ML models violate ethical principles through
failures or biases in the ML component. Racial, religious,
or gender biases are introduced through a lack of insight

into the (sometimes immensely large set of) training data
and missing runtime checks for example in large language
models such as GPT-3 [1], or facial recognition software
based on deep learning [57]. This lack of insight might be
related to a lack of precise requirements. For industrial
practitioners these problems become especially appar-
ent in critical systems, such as for example in automatic
driving systems, for which the company must provide due
diligence, i.e., it can be made responsible for malfunc-
tions. Improving the performance of ML models, however,
often requires an exponential growth in training data [5].
Data requirements can help in preventing unnecessarily
large and biased datasets because they provide guidance
to the necessary sets of data for a ML project [83]. Data
requirements can entail details regarding the quality of the
information content represented by the data, e.g., about

 * Hans-Martin Heyn
 hans-martin.heyn@gu.se

 * Eric Knauss
 eric.knauss@cse.gu.se

1 Computer Science and Engineering,
University of Gothenburg and Chalmers,
40530 Göteborg, Västra Götaland, Sweden

1 Non-governmental organisations, e.g., https:// algor ithmw atch. org/
en/ stori es/.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-024-00415-4&domain=pdf
http://orcid.org/0000-0002-2427-6875
https://algorithmwatch.org/en/stories/
https://algorithmwatch.org/en/stories/

98 Requirements Engineering (2024) 29:97–117

the entailed features in the data, accuracy, completeness,
consistency, or diversity of the information. Standards
such as IEC 25012 can provide guidance towards defin-
ing requirements on data [39]. Data requirements can also
cover physical aspects of data, e.g., the necessary time
resolution, image resolution, or frequency spectrum cov-
erage. Due to changes in the environment, ML models
can become “stale”, i.e., the context changes over time so
significantly that the performance of the model decreases
below acceptable levels [7]. Changes in the environment
can cause a distribution shift in the data available to the
model at runtime compared to the data that was used when
training the model, and as a consequence, the training data
no longer represents the data at runtime. Some examples
of such distribution shifts due to changes in the environ-
ment can be found for example in [66, page 7]. Runtime
monitors collect performance data and indicate the need
for re-training of the model with updated training data, see
[3] for an example framework for monitoring distribution
shifts in safety-critical ML applications. However, these
monitors need to be specified at design time.

Data requirements can support the specification of runt-
ime monitors [9]. For example, a data requirement can be
a minimum brightness of the images in order to be able to
identify the object. A runtime monitor can be constructed
which continuously checks the average brightness of the
images and raises an alarm if the brightness drops under a
critical threshold defined in the original data requirement.
The lack of data requirements is particularly evident in ML
models that are part of critical software. We define critical
software as software that is safety, privacy, ethically, and/
or mission critical, i.e., a failure in the software can cause
significant injury or the loss of life, invasion of personal
privacy, violation of human rights, and/or significant eco-
nomic or environmental consequences [51]. Without clear
specifications, it will not be possible to establish traceability
from system requirements (e.g., functional safety require-
ments) to requirements set on the training data and the runt-
ime monitoring [56].

Early on in software engineering, the close relation
between software requirements specification and software
architecture have been highlighted [16]. Requirements and
architecture typically evolve together, and the choice of
requirements can influence the architecture and vice versa,
making simultaneous consideration necessary [64]. This is
commonly known as the “twin peaks" of requirements and
architecture [19]. Especially in nowadays common Agile
Development Environments, the guidance of architecture
views on different perspectives of the system is necessary
to discover and align the necessary requirements iteratively
[63, 65]. Therefore, we also explore in this study how archi-
tecture principles, i.e., an architecture framework as pro-
posed for example in [32], could potentially mitigate the

challenges of finding requirements and consequently speci-
fications for software with ML components.

1.1 Scope and research questions

This article is an extension of an earlier conference article
[31]. The purpose of the original study was to identify cur-
rent challenges faced by practitioners in specifying require-
ments for training data and runtime monitoring for ML in
safety-critical software. The study also explores possible
relationships between these challenges. This study extends
these findings by mapping the identified challenges to design
decisions in relation to the architecture of the overall system.

The original article reported on the qualitative data col-
lected in the interview study, specifically on the challenges
reported by practitioners. It contributed a practitioner’s point
of view on the challenges reported in the academic literature
on data specification and runtime monitoring specification
for critical software with ML models. This paper extends
the analysis and discussion of the reported challenges by
identifying relationships between the challenges and relat-
ing them to architecture decisions in the design of critical
ML-enabled systems. The aim is to provide starting points
for a future engineering research into the use of runtime
monitors for critical ML systems and their relationship to
the architecture of critical ML-enabled software systems.
Specifically, the original paper was extended by

• a new research question (RQ3) on the relation between
challenges when specifying requirements for training
data and runtime monitors and architecture decision of
ML-enabled software systems,

• as an answer to RQ3 a list of identified relationships
between the challenges identified in the previous study
and architecture decisions in the design of critical ML-
enabled software systems,

• a deeper exploration of the rationale behind the relation-
ships between the identified challenges of specifying
requirements for training data and runtime monitors for
ML-enabled software systems,

• the result of a survey to validate the recommendations
and implications for RE derived from the qualitative
results of both studies.

The following research questions guided the previous study
(RQ1, RQ2) and the extension reported in this article (RQ3):

RQ1: What are challenges encountered by practitioners
when specifying requirements for training data of ML
models in safety critical software?

RQ2: What are challenges encountered by practition-
ers when specifying requirements for runtime monitors
especially in relation to fulfilling safety requirements?

99Requirements Engineering (2024) 29:97–117

RQ3: How can an architecture framework provide guid-
ance to practitioners with respect to the challenges iden-
tified in RQ1 and RQ2?

Figure 1 shows the main themes we found in answering
the research questions. Concerning RQ1, the interviewees
reported on several problems: the data selection process is
nontransparent and guidelines especially towards defining
suitable measures for data variety are missing. There are no
clear context definitions that help in defining data needs, and
current safety standards provide little guidance. Concerning
RQ2, we found that the problem of defining suitable metrics
and the lack of guidance from safety standards also inhibits
the ability to specify runtime monitors. Practitioners also
reported on challenges regarding explainability of ML deci-
sions. Additionally, they reported that the processing and
memory of runtime monitors in safety critical embedded
systems can pose an additional challenge when specifying
requirements for these monitors. Regarding RQ3, we found
parallels between the identified challenges in this study and
challenges in architecting ML-enabled systems identified
in a previous study. This paper discusses how the relation-
ships between the challenges translate into correspondences
between architectural views that can provide guidance for
overcoming the challenges.

The remaining sections of this paper are structured as
follows: Sect. 2 outlines and argues for the research methods
of this study; Sect. 3 presents the results and answers to the
research questions; Sect. 4 discusses the findings, provides
recommendations to practitioners and for further research,
identifies related literature, elaborates on threats to validity,
and provides a conclusion.

2 Research method

We used a qualitative interview-based survey with open-
ended semi-structured interviews to collect data, which we
then extended with constructive work on finding relation-
ships between the challenges and mapping architecture
concerns to the challenges. Following the suggestions of

Creswell and Creswell [21] the qualitative study was con-
ducted in four steps: Preparation of interviews, data collec-
tion through interviews, data analysis, and result validation.

2.1 Preparations of interviews

Based on the a-priori formulated research questions, two
of the researchers of this study created an interview guide2
which was validated and improved by the remaining two
researchers. The interview guide contains four sections of
questions: The first section includes questions about the
interviewees’ current role, background and previous expe-
riences. The second section focuses on questions that try to
understand challenges when specifying and selecting train-
ing data for ML models and how training data affect the
performance of these models. The third section investigates
challenges when ML models are incorporated in critical sys-
tems and how they affect the ability to specify training data.
The fourth section concentrates on the run time monitoring
aspect of the ML model and contains questions on chal-
lenges when specifying runtime monitors.

Sampling strategy We chose the participants for this
study purposefully using a maximum variation strategy [22].
We were able to recruit interviewees from five different com-
panies, ranging from a local start-up to a multinational world
leading communication company. An overview is given in
Table 1.

Fig. 1 Cause-effect diagram
providing an overview of identi-
fied challenge groups

Table 1 Companies participating in the study

Company Area of operations Employees Countries

1 Telecommunication networks > 10.000 World
2 Automotive OEM > 10.000 World
3 Automatic Driving > 1.000 Europe
4 Industrial camera systems > 1000 USA
5 Deep Learning optimisation for

IoT
> 100 Sweden

2 The interview guide is available in the replication package for this
paper. The link is provided at the end of the paper.

100 Requirements Engineering (2024) 29:97–117

A selection criteria for the company was that they must
work with safety-critical systems and ML. Within the com-
panies we tried to find interview candidates with different
roles and work experiences to obtain a view beyond the
developers’ perspective. Besides function developers, who
are mostly responsible for the code development of con-
ventional software functions, and ML model developers,
we were interested in interviewing requirement engineers
and product / function owners, who take a mediator role
between the customer and the function developers, because
they represent key roles in deriving system or function speci-
fications. We provided the companies with a list of roles
that we identified beforehand as interesting for interviewing.
The list included functional safety experts, requirement engi-
neers, product owners or function owners, function or model
developers, and data engineers. Additionally, we interviewed
two researchers from academia who participate in a joint
industry EU Horizon 2020 project called VEDLIoT.3 The
aim of VEDLIoT is to develop a toolchain to enable efficient
deep learning in distributed systems [47]. Both researchers
worked also with ML models in industry before. Therefore,
they could provide insights into both the academic and the
industry perspective. A list of the ten interviewees for this
study is provided in Table 2.

2.2 Data collection through interviews

All interviews were conducted remotely using either the
conference software Zoom or Microsoft Teams and took
between 60 - 90 min. The a-priori defined interview guide
was only available to the interviewers and was not distrib-
uted to the participants beforehand. Each participant was
interviewed by two interviewers who alternated in asking
questions and observing. At the start of each interview, the

interviewers provided some background information about
the study’s purpose. Then, the interview guide was followed.
However, as we encouraged discussions with the interview-
ees, we allowed deviations from the interview guide by
asking additional questions, or changing the order of the
questions when it was appropriate [50]. All interviews were
recorded and semi-automatically transcribed. The interview-
ers manually checked and anonymised the results.

2.3 Data analysis of interviews

The data analysis followed suggestions by Saldana [71]
and consisted of two cycles of coding and validation of the
themes through focus groups and member checking.

First coding cycle Attribute coding was used to extract
information about the participants’ role and previous experi-
ences. Attribute coding is also known as descriptive coding
in which meaningful and reoccurring attributes through the
interviews are identified [69]. Attributes can for example be
“role of interviewee in company", “experience", etc. After-
wards, the two interviewers independently applied structural
coding to collect phrases in the interviews that represent
topics relevant to answering the research questions. Struc-
tural coding can be used to label and index data relevant to
a particular analysis (in our case research question) [60].
The researchers compared the individually assigned codes
and applied descriptive coding with the aim of identifying
phrases that describe common themes across the interviews.

Theme validation In a focus group, the identified themes
were presented and discussed. Thirteen researchers from
both industry and academia in the VEDLIoT project par-
ticipated. Three of the participants from the workshop were
also interviewed for this study. We asked the participants
in two initial questions about their professional background
and years of relevant experience in their role. Five partici-
pants answered they have an industrial background, six an
academic background and two mentioned they have both
an academic and industry background. The average years

Table 2 Participants of the
study

ADAS: Advanced Driver Assistance Systems

Interview Role Experience

A Researcher (Academic) Functional Safety for ADAS (5 years)
B Function developer Sensor and perception systems (20 years)
C Principal engineer ML model integration (10 years)
D ML model developer Distributed and edge systems (3 years)
E Function owner ADAS perception functions (8 years)
F Function developer and test engineer Automatic driving systems (25 years)
G Data Scientist Distributed systems (12 years)
H Requirement Engineer Perception systems (8 years)
I Researcher (Academic) Neural Network development (8 years)
J Functional Safety Manager Sensor systems (20 years)

3 Very Efficient Deep Learning in the Internet-of-Things https://
www. vedli ot. eu.

https://www.vedliot.eu
https://www.vedliot.eu

101Requirements Engineering (2024) 29:97–117

of experience were 12.5 years, with a standard deviation of
10.4 years. Three participants work in the area of research
and development (R &D) for ML systems in a company,
six in academic research, two described their role as safety
engineers, one as software developer, and one as engineering
manager. The aim of the focus group was to reduce bias in
the selection of themes and to identify any additional themes
that the researchers might have missed. Each theme was pre-
sented to the group and openly discussed. The participants
used their work experience in their respective companies to
relate to the themes. Then, the participants were asked to
openly discuss if any further themes should be added to the
data analysis.

Second coding cycle After the themes were identified and
validated, the second coding cycle was used to map the state-
ments of the interviewees to the themes, and consequently
identify the answers to the research questions. The second
cycle was conducted by the two researchers who did not
conduct the first cycle coding in order to reduce confirma-
tion bias. The mapping was then confirmed and agreed upon
by all involved researchers.

Validation of challenge themes Member checking, as
described in [22] was used to validate the identified themes
that answer RQ1 and RQ2. While performing the second
coding cycle, we returned to some of the interviewees
and shared the preliminary mapping of quotes to themes.
This served two purposes: It created a feedback loop in the
research process allowing us to involve practitioners with
their perspective and experience in the mapping of the state-
ments to the themes. Member checking also allowed us to
validate that the we interpreted the interviewees’ statements
correctly by obtaining additional opinions. Finally, we also
presented the results of the interview study in a 60 min focus
group to an industry partner of VEDLIoT and allowed for
feedback and comments on the conclusions we drew from
the data through an open discussion.

Validation of RE implications and recommendations
to practitioners We validated identified implications for
Requirement Engineering (RE) and recommendation for
practitioners based on the identified themes through a
survey of six RE experts. The participants were selected
randomly by visiting a project meeting of another research
project on RE for automotive perception systems called
“Facilitating Multi-Party Engineering of Requirements"
(FAMER) [82]. We chose FAMER because the research
project is strongly related to RE challenges encountered
by industrial practitioners in the design of ML-enabled
safety-critical perception systems for the automotive indus-
try. Therefore, we assumed that FAMER participants are
well qualified to judge both the implications for RE and
the recommendations derived from the results of this study.
Table 3 provides an overview of the participants’ roles and
experience. One of six participants answered to work in

academia. Two participants stated they both work in aca-
demia and industry, and three participants work in industry.
We visited a project meeting of FAMER on 24th November
2023 and asked all participants of that meeting to fill out the
survey in Microsoft Forms. Besides asking for the partici-
pant’s role and experience, the survey listed all implications
for RE and recommendations. The participants were asked
to express, based on their experience, their agreement on
a Likart-scale from 1 (Strongly Disagree), to 5 (Strongly
Agree). The survey itself and its results are included in the
replication package.

2.4 Data collection for constructive research

The data collection for the constructive elements of this
study, i.e., the mapping of architecture views to the identi-
fied challenges entailed two components. First, we revisited
data collected for a previous study conducted on applying
architecture frameworks to distributed AI systems [32]. The
data include recordings from two workshops on challenges
of developing distributed AI-enabled systems in an indus-
trial case study which was also part of VEDLIoT. The two
workshops aimed at identifying and validating through lit-
erature and standards relevant challenges in relation to defin-
ing architectures for ML systems that are part of the IoT. In
each of the workshops, eleven experts from VEDLIoT par-
ticipated, whereof four identified themselves as ML expert
working in industry, one as IoT expert in industry, and six as
researchers from academia [32, Appendix A]. The outcome
of both workshops is a list of ten themes describing the iden-
tified 28 challenges of developing distributed ML systems
within VEDLIoT. For this study, we reused the themes “#1
Additional views needed for describing the AI model", “#2
Data requirements", “#3 Context and design domain", and
“#8 Run Time Monitoring" as they correspond to the chal-
lenges identified in this study. Second, we collected data
on architecture views suitable for designing AI systems
from the architecture framework for VEDLIoT described in
[32]. The architecture framework for VEDLIoT consists of
52 architecture views which relate to existing architecture
standards and literature. We chose to extract architecture
views from the VEDLIoT framework because it constitutes

Table 3 Participants of validation survey

ID Role Experience

I Systems engineer >10 years
II Researcher (Academic) >10 years
III Researcher ML 0–1 year
IV Safety researcher 5–10 years
V Requirement engineer >10 years
VI Requirement engineer >10 years

102 Requirements Engineering (2024) 29:97–117

a comprehensive and peer-reviewed collection of architec-
ture views for AI system development. The framework was
built upon relevant architecture standards and literature
including, among others, the IEEE 2413 standard for archi-
tectural frameworks for the IoT [36], the IEEE 42010 stand-
ard on architecture descriptions [40], the collected work on
documenting software architecture by Clements et al. [20],
and the exploratory work by Muccini and Vaidhyanathan
on software architecture for ML-based systems [59]. We
included the data from the previous study on architecture
frameworks for ML-based distributed systems because some
of the identified challenges in the previous study correspond
to the challenges identified from a different set of practition-
ers in this study. However, the scope of the study in [32]
was to offer a system-holistic view on ML-enabled systems,
including for example hardware and communication aspects.
Instead, this study looked more closely at the challenges of
specifying requirements for training data and runtime moni-
toring. The intention here is to investigate, if an architecture
framework can also help to overcome the extended set of
challenges for the two areas of training data and runtime
monitors identified in this study.

2.5 Data analysis for constructive work

The aim of this constructive work is to propose the use of
architecture thinking as part of a design thinking approach
to provide guidance in how to solve the identified chal-
lenges with specifying requirements for the training data
and runtime monitoring for critical ML enabled systems.
Design thinking has been proposed as solution for RE and
software development challenges for example in [79] and
[46]. The relation between design thinking and architecture
frameworks for software development has been investigated
in [25] which describes that architecture framework support
design thinking by constraining the complexity of the design
tasks and by providing design links between different aspects
of the system.

Design Thinking typically involves five phases: Empa-
thise, in which one seek understanding of a problem from a
stakeholder’s perspective, Define, in which the problem is
more clearly defined by synthesising information gathered
in the Empathise phase, Ideate, in which a range of ideas
are developed to address the defined problems, Prototype,
in which first ideas are implemented, and Test, in which the
prototypes are given to the original stakeholders to gather
feedback.

By interviewing practitioners and identifying challenge
themes and groups, the original study fulfilled the Empathise
and Define phases. In the extension of the original study, we
aim to address the Ideate phase by exploring the idea that
architecture frameworks can potentially be used to mitigate
the problem of specifying AI-specific requirements such as

training data and runtime monitors. The Prototype and Test
phase is outside the scope of this study.

Mapping of challenges to previously identified challenges
First in the Ideate phase, we reviewed the data that led to the
creation of what is referred to as “clusters of concern" based
on data collected from [32], with a focus on clusters of con-
cerns that relate to the challenges identified in this study as
described earlier. In line with the IEEE 2413-2019 standard
[36], a concern refers to an interest, problem, or require-
ment that is relevant to one or more stakeholders of the sys-
tem. We used the IEEE 2413-2019 standard for architecture
frameworks in the IoT as starting point because similar to
the development of ML-based systems, systems for the IoT
depend strongly on data availability and data quality aspects.
Other similarities are data privacy concerns, security, safety
and other qualitative system concerns, as well as the problem
of interoperability and integration because ML components,
similar to elements of an IoT system, need to be integrated
with existing software and hardware systems [76]. A cluster
of concern extends this definition by grouping concerns into
clusters that represent a specific concern of the system at
different levels of details. For example, the cluster of con-
cern data strategy includes concerns about data ingestion,
data selection, and data preparation and preprocessing [32,
Appendix F]. By applying ideas from category theory, the
architecture framework proposed in [32] consists of a grid of
architecture views sorted vertically by their level of abstrac-
tion. Views on the same level of abstraction should have an
equivalent level of detail about the system-of-interest. If the
product over all architectural views on a level of abstraction
is valid, then the architectural views consistently describe
the system-of-interest. Valid means that no matter which
architectural view one starts at, it is always possible to transit
via the correspondence rules to another architectural view
and still see the same system from a different perspective.
Horizontally, the architecture views address the aforemen-
tioned clusters-of-concerns. This horizontal and vertical
arrangement of architecture views is referred to as compo-
sitional architecture framework. For the constructive work,
we mapped the identified challenges to architecture views
within the compositional architecture framework. An exam-
ple of such an cluster-of-concerns over level of abstraction
arrangement of architecture views is provided in Fig. 2. The
figure will be discussed in more detail in the result section
of this article.

We compared the challenges identified in RQ1 and RQ2
of this study with the challenges outlined in the architecture
framework described in [32]. We looked for similar con-
cerns in the statements of the interviewees of both studies
and mapped them accordingly to each other. Similar here
means that the concerns address the same problem in rela-
tion to specifying data and runtime monitors. For example,
if an interviewee mentioned that explainability of decisions

103Requirements Engineering (2024) 29:97–117

at runtime is a challenge, it is similar to the challenge of
including new quality aspects such as explainability and
fairness as architecture views for ML systems. Then, any
concerns not mentioned in [32] were mapped to appropri-
ate architecture views or clusters-of-concerns based on the
researchers’ expert knowledge. The researchers provided
justification based on logical reasoning and the researchers’
experience for why the chosen mappings were appropriate.

Identifying relations between challenges and architecture
views In a second step of the constructive work, we manu-
ally performed a semantic analyses of the interview data we
collected for this study. The aim was to find connections, or
more specifically correspondences between the challenges.
For example, the challenge of ensuring explainability of ML
models might be an effect of the challenge of IP protection,
which causes opacity in the development process and there-
fore an inability to create explainable ML models. After we
identified these relations between the challenges, we cre-
ated correspondences between the architecture concerns
extracted from the compositional architecture framework.
The hypothesis behind these correspondences is that if the
challenges addressed by the architecture views are related,
then these architecture views should also be related by cor-
respondence rules.

3 Results

During the first coding cycle, structural coding resulted in
117 statements for RQ1 and 77 statements for RQ2. Through
descriptive coding 14 preliminary themes were found. In
descriptive coding, the researcher summarises in a short
phrase the theme of a statement from the interviewee [71,
page 88]. The statements found through structural coding

and preliminary themes identified through descriptive cod-
ing were then discussed during a focus group. As a result
of the focus group discussion, three additional themes were
created (IDs 3.3, 4.3, and 6.3). Based on the feedback from
practitioners, the 117 statements for RQ1 were categorised
first into eight final challenge themes (IDs 3.1−3.4, 5.1−
5.2, 6.1−6.2) and those themes were further categorised into
three challenge groups (IDs 3, 5, 6) relating to the challenge
of specifying requirements for training data. Similarly, the
77 original statements for RQ2 were grouped into twelve
final challenge themes (IDs 1.1−1.3, 2.1−2.2, 3.4, 4.1−4.3,
6.1−6.3) and further into five challenge groups (IDs 1, 2, 3,
4, 6) relating to the challenge of specifying runtime moni-
toring. One challenge group relates exclusively to RQ1 (ID
5), three groups relate to RQ2 (IDs 1, 2, 4), and two groups
relate to both RQs (IDs 3, 6). The categories and final chal-
lenge themes are listed in Table 4. Additionally, for each
challenge theme, we indicate the implication of the findings
for RE.

3.1 Answer to RQ1: Challenges practitioners
experience when specifying requirements
for training data

The interviewees were asked to share their experiences in
selecting training data, the influence of the selection of train-
ing data on the system’s performance and safety, and any
experiences and thoughts on defining specifications for train-
ing data for ML. Based on the interview data, we identified
three challenge groups related to specifying requirements for
training data: missing guidelines for data selection, unclear
design domain, and unsuitable safety standards, which are
elaborated below.

Fig. 2 Architecture co-evolution of logical architecture, AI model architecture, data strategiy, and safety concerns of the system

104 Requirements Engineering (2024) 29:97–117

ID3: Missing guidelines for data selection Four inter-
viewees reported on a lack of guidelines and processes
related to the selection of training data. A reason can be
that data selection bases on “grown habits" that are not
properly documented. Unlike conventional software devel-
opment, the training of ML is an iterative process of dis-
covering the necessary training data based on experience
and experimentation. Requirements set on the data are
described as disconnected and unclear for the data selec-
tion process. For example, one interviewee stated that if
a requirements is set that images shall contain a road, it
remains unclear what specific properties this road should
have. Six interviewees described missing requirements on
the data variety and missing completeness criteria as a
reason for the disconnection of requirements from data
selection.

For example, we said that we shall collect data under
varying weather conditions. What does that mean?
- Interview B, Q1

How much of it (the data) should be in darkness?
How much in rainy conditions, and how much should
be in snowy situations? - Interview F, Q2

Another interviewee stated that it is not clear how to
measure variety, which could be a reason why it is difficult
to define requirements on data variety.

What [is] include[d] in variety of data? Is there a good
measure of variety? - Interview A, Q3

RE Implication 1: RE research should uncover new
ways to specify variety and completeness criteria for
data collection. Four validation survey participants strongly
agreed, and two agreed with RE Implication 1.

ID5: Unclear design domain Three interviewees describe
uncertainty in the design domain as a reason for why it is
difficult to specify training data. If the design domain is
unclear, it will be challenging to specify the necessary train-
ing data.

We need to understand for what context the training
data can be used. - Interview J, Q4

ODD [(Operational Design Domain)]? Yes, of course
it translates into data requirements. - Interview F, Q5

RE Implication 2: RE research must provide better
ways to specify the context, since data selection and

Table 4 Challenge groups
(bold) and themes found in
the interview data. Data.:
Challenges related to specifying
training data (RQ1). Monitor.:
Challenges related to specifying
runtime monitoring (RQ2).
The groups and themes are
alphabetically ordered

ID Challenge theme Relates to Data
Monitor.

Related Literature

1 Lack of explainability about ML decisions ✓

1.1 No access to inner states of ML models ✓ [27]
1.2 No failure models for ML models ✓ [86]
1.3 Protection of IP ✓

2 Missing conditions for runtime checks ✓

2.1 Unclear metrics and/or boundary conditions ✓ [15, 30, 73]
2.2 Unclear measure of confidence ✓ [26, 55]
3 Missing guidelines for data selection ✓ ✓

3.1 Disconnection from requirements ✓ [24, 72]
3.2 Grown data selection habits ✓ [5, 29]
3.3 Unclear completeness criteria ✓ [84]
3.4 Unclear measure of variety ✓ ✓ [77, 85]
4 Overhead for monitoring solution ✓

4.1 Limited resources in embedded systems ✓ [67]
4.2 Meeting timing requirements ✓

4.3 Reduction of true positive rate ✓

5 Unclear design domain ✓

5.1 Design domain depends on available data ✓ [9]
5.2 Uncertainty in context ✓ [33]
6 Unsuitable safety standards ✓ ✓

6.1 Focus on processes instead of technical solution ✓ ✓ [13]
6.2 No guidelines for probabilistic effects in software ✓ ✓ [48, 73]
6.3 Safety case only through monitoring solution ✓ [51, 78]

105Requirements Engineering (2024) 29:97–117

completeness criteria depend on it. Five validation sur-
vey participants strongly agreed, and one agreed with RE
Implication 2.

ID6: Unsuitable safety standards Because we were spe-
cifically investigating ML in safety critical applications, we
asked the participants if they find guidance in safety stand-
ards towards specifying requirements for training data. Five
interviewees stated that current safety standards used in
their companies do not provide suitable guidance for the
development of ML models. While for example ISO 26262
provides guidance on how to handle probabilistic effects in
hardware, no such guidance is provided for software related
probabilistic faults.

The ISO 26262 gives guidance on the hardware
design; [...] how many faults per hour [are accept-
able] and how you achieve that. For the software side,
it doesn’t give any failure rates or anything like that.
It takes a completely process oriented approach [...].
- Interview C, Q6

One interviewee mentioned that safety standards should
emphasise more the data selection to prevent faults in the
ML model due to insufficient training.

To understand that you have the right data and that
the data is representative, ISO 26262 is not covering
that right now which is a challenge. - Interview H, Q7

RE Implication 3: RE methods and practices are
needed to operationalise safety standards for the selec-
tion of training data. Three validation survey participants
strongly agreed, and three agreed with RE Implication 3.

Besides Implication 3 towards RE, an implication towards
standardisation committees responsible for the formula-
tion of safety standards could be to revise these standards
or create new standards that are more compatible with the
developing processes of ML-enabled systems. Example of
emerging safety standards for AI are ISO/IEC 5469: Func-
tional Safety and AI Systems [44], and ISO/PAS 8800: Road
Vehicles Safety and Artificial Intelligence [42]. An overview
of emerging safety standards for AI-enabled systems is given
in [4].

3.2 Answer to RQ2: Challenges practitioners
experience when specifying runtime monitors

We asked the interviewees on the role of runtime moni-
toring for the systems they develop, their experience with
specifying runtime monitoring, and the relation of runtime
monitoring to fulfilling safety requirements on the system.
We identified five challenge groups related to runtime moni-
toring: lack of explainability about ML decisions, missing
conditions for runtime checks, missing guidelines for data

selection, overhead for monitoring solution, and unsuitable
safety standards, as explained below.

ID1: Lack of explainability about ML A reason why it
is difficult to specify runtime monitors for ML models is
the inability to produce failure models for ML. In normal
software development, causal cascades describe how a fault
in a software components propagates trough the systems
and eventually leads to a failure. This requires the ability
to break down the ML model into smaller components and
analyse their potential failure behaviour. Four interviewees
however reported that they can only see the ML model as
a “black-box" with no access to the inner states of the ML
model. As a consequence, there is no insight into the failure
behaviour of the ML model.

[Our insight is] limited because it’s a black box. We
can only see what goes in and then what comes out
to the other side. And so if there is some error in the
behavior, then we don’t know if it’s because [of a]
classification error, planning error, execution error?
- Interview F, Q8

The reason for opacity of ML models is not necessarily
due to technology limitations, but also due to constraints
from protection of intellectual property (IP).

Why is it a black box? That’s not our choice. That’s
because we have a supplier and they don’t want to tell
us [all details]. - Interview F, Q9

RE Implication 4: RE can play a crucial role in navigat-
ing the trade-off between protecting IP of suppliers and
sharing enough information to allow for safety argumen-
tation. Two validation survey participants strongly agreed,
two agreed, one answered neutrally, and one disagreed with
RE Implication 4.

ID2: Missing conditions for runtime checks A problem
of specifying runtime monitors is the need for finding suit-
able monitoring conditions. This requires the definition of
metrics, goals and boundary conditions. Five interviewees
report that they face challenges when defining these metrics
for ML models.

What is like a confidence score, accuracy score, some-
thing like that? Which score do you need to ensure
[that you] classified [correctly]? - Interview F, Q10

Especially the relation between correct behaviour of the
ML model and measure of confidence is unclear, and there-
fore impede runtime monitoring specification.

We say confidence, that’s really important. But what
can actually go wrong here? - Interview J, Q11

RE Implication 5: RE is called to provide methods
for identifying conditions for runtime checks. Four

106 Requirements Engineering (2024) 29:97–117

validation survey participants strongly agreed, and two
agreed with RE Implication 5.

ID3: Missing guidelines for data selection The inability
to specify the meaning of data variety also relates to miss-
ing conditions for runtime checks. For example, runtime
monitors can be used to collect additional training data,
but without a measure of data variety it is difficult to find
the required data points.

You mean [finding sufficient data] by using a meas-
ure of variety? Yeah, that is extremely difficult. I
don’t really have an answer. - Interview A, Q12

ID4: Overhead for monitoring solution An often over-
looked problem seems to be the induced (processing)
overhead from a monitoring solution. Especially in the
automotive sector, many software components run on
embedded computer devices with limited resources.

You don’t have that much compute power in the
car, so the monitoring needs to be very light in its
memory and compute footprint on the device, maybe
even a separate device that sits next to the device. -
Interview F, Q13

And due to the limited resources in embedded systems,
monitoring solutions can compromise timing requirements
of the system. Additionally, one interviewee reported
concerns regarding the reduction of the ML model’s
performance.

[...] the true positive rate is actually decreasing
when you have to pass it through this second opinion
goal. It’s good from a coverage and safety point of
view, but it reduces the overall system performance.
- Interview F, Q14

RE Implication 6: RE methods are needed to help
finding suitable runtime checks that do not negatively
impact the performance of the system. Three validation
survey participants strongly agreed, one agreed, and two
answered neutrally with RE Implication 6.

ID6: Unsuitable safety standards Safety standards are
mostly not suitable for being applied to ML model devel-
opment. Therefore, safety is often ensured through non-
ML monitoring solutions. Interviewees reported that it is
not a good solution to rely only on the monitors for safety
criticality:

[...] so the safety is now moved from the model to
the monitor instead, and it shouldn’t be. It should
be the combination of the two that makes up safety.
- Interview B, Q15

One reason is that freedom of inference between a non-
safety critical component (the ML model), and a safety

critical component (the monitor) must be ensured which
can complicate the system design.

And then especially if you have mixed critical systems
[it] means you have ASIL [(Automotive Safety Integrity
Level)] and QM [(Quality Management)] components
in your design [and] you want to achieve freedom from
interference in your system. You have to think about
safe communication and memory protection. - Inter-
view J, Q16

RE Implication 7: RE is called to provide traceability
and requirements information models that allow a com-
plete description of the system, its monitors, and their rela-
tionship to high-level requirements (such as safety). Four
validation survey participants strongly agreed, one agreed,
and one disagreed with RE Implication 7.

3.3 Answer to RQ3: How can an architecture
framework provide guidance to practitioners
with respect to the challenges identified in RQ1
and RQ2?

This section identifies architecture principle that can poten-
tially alleviate challenges identified in RQ1 and RQ2. In
order to reflect the relationships identified between the
challenges of specifying requirements for training data and
runtime monitoring, we outline the specific correspond-
ences that should exist within the architecture. For exam-
ple, relation R6, outlined in Table 6, describes how missing
guidelines for data selection are related to the inability of
defining runtime checks for the ML model. If guidelines for
data selection are represented in the system architecture, for
example through a data pipeline view, and runtime checks
for example through an architecture view describing the soft-
ware components for these runtime monitors, then those two
views must be related through correspondence rules.

Mapping of challenges to architecture clusters of con-
cerns and views As answers on RQ1, which asked about
challenges encountered when specifying requirements
for training data, and RQ2, which asked about challenges
encountered when specifying runtime monitors in relation to
especially safety requirements, we identified 17 challenges in
six challenge groups regarding the specification of training
data and runtime monitors for safety critical software that
contains ML components. In a series of workshops in 2020
and 2021 challenges that hinder developers in the develop-
ment of systems with ML-components were identified and

107Requirements Engineering (2024) 29:97–117

an architecture framework was proposed that could mitigate
these challenges for such software [32]. As a first step in
answering RQ3, we reviewed the data collected from these
workshops4 and compared challenges identified with those
identified in this study. For all matches we found, we identi-
fied the proposed mechanism in the architecture framework
that was suggested as mitigation strategy. Table 5 shows
the result of the mapping of the identified challenge groups
to cluster of concern, and subsequently architecture views.

Two challenge groups identified in RQ1 and RQ2, 4:
Overhead for monitoring solution, and 6: Unsuitable safety
standards, have no matching cluster of concern in [32]. This
meant, that we could not directly identify correspondences
between related architecture views for these challenges.
However, the problem of handling the (resource) overhead
needed for monitoring solution can possibly be solved by
establishing clear correspondence between monitoring needs
and the remaining software architecture. If monitoring is
not added “on-top" of the system, but instead considered
throughout the design phase, or even becomes an explicit
part of the system architecting effort (see for example [14]),
the problem of surprising overhead resource requirements
should not occur.

In addressing the issue of an inadequate safety standard,
an architectural approach alone does not offer a direct solu-
tion. However, it is possible to explicitly recognising safety

as a crucial aspect of the system by considering it as own
cluster-of-concern in an architecture framework. This can be
accomplished through the inclusion of dedicated architecture
views within the proposed framework. These views facilitate
for example safety decomposition and fault tree analyses.
Block diagrams allocating functional safety requirements
to elements of the systems are an example of architecture
views describing the functional safety concept of the sys-
tem [62]. Compliance with various safety standards, such as
ISO 26262 [41] or ISO/CD TS 5083 [43], often requires the
establishment of traceability between safety goals and design
decisions [75]. To meet this requirement, correspondence
rules can be established between the safety-related views of
the architecture and other relevant architecture views that
might be development by other teams.

Interrelation between challenges The results relating to
RQ1 and RQ2 reveal connections between the challenges.
For example, the themes in the challenge groups unsuitable
safety standards and missing guidelines for data selection
relate to both challenges of specifying requirements for
training data and runtime monitoring. Furthermore, we iden-
tified relations between different themes and across different
group of themes. For example R1a: IP protection relates
to the inability of accessing the inner states and R1b: for
creating failure models for ML model. We based this assess-
ment on a manual semantic analyses of the words used in
the statements relating to these themes. For example, Inter-
viewee F stated that:

Table 5 Mapping of challenges identified in this study to challenges and mitigation strategies identified in [32]

Identified challenge group Related challenge in [32] Related architecture principle [32]

1: Lack of explainability about ML decisions #7: New quality aspects (e.g., explainability,
fairness)

Explicitly integrate explainability in the
architecture framework as cluster of concern.
Thereby, explainability is treated like any
other architecture design decision and allows
for an“explainable-by-design" approach

2: Missing conditions for runtime checks #8: Runtime monitoring Runtime concerns such as monitoring can be
made explicit with an own level of abstrac-
tion containing runtime specific architecture
views

3: Missing guidelines for data selection #2: Data requirements for ensuring the desired
AI’s behaviour must be considered

Data concerns that have direct impact on the
system’s behaviour, such as training data
for the AI model, can be considered an own
cluster-of-concern with correspondences to
views describing the operational context, the
AI model, and the functional behaviour of
the system

5: Unclear design domain #3: Description of context and design domain The context and operational design domain
should be considered own clusters-of-
concern as they form many correspondences
e.g., to views describing the AI model, the
data need, and non-functional aspects such
as safety

4 A replication package containing data from these workshops is
available. The link is provided at the end of the paper.

108 Requirements Engineering (2024) 29:97–117

That neural network is something [of a] black box in
itself. You don’t know why it do[es] things. Well, you
cannot say anything about its inner behavior - Inter-
view F

Later in the interview, the same participants states:

Why is it a black box? That’s not our choice. That’s
because we have a supplier and they don’t want to tell
us [all details]. - Interview F

Fig. 3 illustrates the identified cause-effect relations,
relations between the themes, and how the different themes
relate to the challenges.

Further relations are: R2a: Unclear metrics and/or
boundary conditions is related to unclear measures of con-
fidence and R2b: unclear measures of variety. R3a: Grown
data selection habits relates to a disconnection from require-
ments and R3b: unclear completeness criteria. And, R4:
limited resources in embedded systems relates to the chal-
lenge of meeting timing requirements when using runtime

monitors. We also found several statements that indicate
relations between themes of different challenge groups. The
R5: lack of explainability about ML decisions relates to the
inability to understand and trust the measure of confidence.
R6: Missing guidelines for data selection relate to the ability
to define runtime checks. R7: Unclear design domain, and
the dependency of data requirements on the design domain
relate to missing guidelines for data selection. R8: The focus
on processes instead of technical solutions relate to miss-
ing guidelines for data selection. R9: Achieving a safety
case only through monitoring solution relate to reduction
of true positive rate. Table 6 lists all links found between
the challenges, their IDs, and it provides rationale for the
relationships.

Relations between architecture views based on relations
between requirement specification challenges Six of the
relations listed in Table 6 involve challenges from differ-
ent challenge groups. For example, R2b: Unclear metrics
and/or boundary conditions are related to unclear meas-
ures of variety relates to challenge 2.2: Unclear measure

Fig. 3 Relations between the
identified challenge themes and
groups. Enclosed themes have
been identified as causes for the
surrounding themes. Further-
more, dotted lines indicate
relations between different chal-
lenge themes and groups

5 Unclear design
domain

3 Missing guidelines for
data selection

2 Missing conditions for
runtime checks

2.2 Unclear mea-
sure of confidence

6 Unsuitable safety
standards

Challenges of
specifying

requirements for
runtime monitoring

Challenges of
specifying

requirements for
training data

3.1 Disconnection
from requirements

3.3 Unclear comple-
teness criteria

5.1 Data require-
ments depend on
design domain

5.2 Uncertainty in
context

1 Lack of explainability
about ML decisions

1.1 No access to
inner states

6.1 Focus on
processes instead of
technical solutions

6.2 No guidelines for
probabilistic effects
in software

6.3 Safety case only
through monitoring
solution

2.1 Unclear
metrics / bound-
ary conditions

4 Overhead for
monitoring solution

4.2 Meeting timing
requirements

4.1 Limited
resources in
embedded
systems

3.2 Grown data
selection habits

1.2 No failure
models

1.3 IP protection

4.3 Reduction of
true positive rate

3.4 Unclear
measure of variety

R1a

R1b

R2aR3a

R3b

R4:
rela-
tes to

R5:
relates

to

R6: relates to

R
7:

 re
la

te
 to

R2b: relates to

R
8:

 re
la

te
s

to

R9:
relates

to

R1a, R1b: relates to
R2a: relates toR

3a
, R

3b
: r

el
at

e
to

109Requirements Engineering (2024) 29:97–117

Table 6 Identified relations between challenges and rationales for these relations

ID Relation between challenges

R1a IP protection is related to the inability of accessing the inner states.
(1.1,1.3)

Rationale: Deep neural networks require extensive development and often also financial investments. Supplier companies can therefore con-
sider their ML models as valuable intellectual property. Access to the inner workings of the models can be restricted by companies to protect
their competitive advantage. This is typically done through non-disclosure agreements or limited sharing with external parties. Related quote:
Q9

R1b IP protection is related to the inability of creating failure models for
ML model. (1.2, 1.3)

Rationale: IP protection can restrict access to proprietary data that was used to train the models. The inability to access and inspect the training
data can limit the ability to understand and analyse failure cases. Furthermore, IP protection may prevent access to the model architecture,
the training procedures, and hyper-parameter settings. Without this knowledge, it can be difficult to impossible to identify and understand the
causes of failures. Related quotes: Q8, Q9

R2a Unclear metrics / boundary conditions are related to unclear meas-
ures of confidence. (2.1, 2.2)

Rationale: Confidence estimates provide information about the level of certainty of a ML model’s predictions. The absence of well-defined
metrics can lead to ambiguity in assessing the correctness and confidence of the model’s output. Possible metrics are for example precision,
F1-score, recall, and intersection over unit (IoU). In image classification and object detection tasks, accuracy is used as a typical metric to
measure the model’s performance. It is challenging to relate confidence estimates to the actual performance of the model without clearly
defined metrics. Related quote: Q10

R2b Unclear metrics / boundary conditions are related to unclear meas-
ures of variety. (2.2, 3.4)

Rationale: Similarly to R2a, Assessing the diversity or representativeness of a dataset used for training of ML models will be challenging or
even impossible without clearly defined metrics that determine whether the dataset adequately covers the target distribution and captures the
necessary variations in the target. Related quotes: Q3, Q11, Q12

R3a Grown data selection habits are related to a disconnection from
requirements. (3.1, 3.2)

Rationale: Data collection is influenced by factors such as data availability, convenience, and historical practices. If data selection habits are
driven mostly by convenience or historical practices, there is a risk of disconnection from the actual requirements of the task. To mitigate the
disconnection from the system’s requirements, it is important to adopt data selection strategies to ensure that the data cover the desired varia-
tions and address specific challenges based on higher level stakeholders’ requirements. Related quotes: Q1, Q2

R3b Grown data selection habits are related to unclear completeness
criteria. (3.2, 3.3)

Rationale: If there is no clear understanding of the required variations, diversity, or representativeness of the data due to the rationale provided
in R3a, defining completeness criteria for a dataset can be challenging too. Unclear completeness criteria can lead to biases in the dataset or
omission of critical scenarios which can impact the performance of the trained ML model. Related quote: Q2

R4 Limited resources in embedded systems are related to challenges of
meeting timing requirements when using runtime monitors. (4.1,
4.2)

Rationale: Runtime monitoring requires additional processing and memory resources, that are then not available for model inference. This can
reduce the speed of inference due to less available computing resources for the ML model’s inference task especially in embedded automo-
tive systems with limited computational resources. Related quotes: Q13, Q14

R5 Lack of explainability about ML decisions is related to the inability
to understand and trust the measure of confidence. (1, 2.2)

Rationale: If the model’s decision-making process is not transparent or explainable, it becomes challenging to trust the associated measures of
confidence. Therefore, when developers and/or users can understand how and why the model arrived at certain decisions, they can evaluate
the reasoning and assess the reliability of the model’s outputs, including the measures of confidence. A lack in explainability can compro-
mise trust in the model’s confidence estimates. Related quotes: Q8, Q11

R6 Missing guidelines for data selection is related to the inability to
define runtime checks. (2, 3)

Rationale: Data selection guidelines should provide guidance in fulfilling data requirements. However, without data requirements, criteria or
recommendations for data selection are difficult to define. This makes it difficult to determine the specific checks or validations that should be
applied to the input data during the runtime of the ML model, because already for the training data, there were no clearly defined criteria or
checks. Related quotes: Q3, Q10

R7 Unclear design domain, and the dependency of data requirements
on the design domain, are related to missing guidelines for data
selection. (3, 5.1)

110 Requirements Engineering (2024) 29:97–117

of confidence and 3.4: Unclear measure of variety. We
mapped challenges to architecture concerns based on the ear-
lier identified mapping of the identified challenges of both
studies shown in Table 5 and based on the mapping of the
challenges to architecture views presented in [32]. Table 7
presents the results of this mapping. Challenge theme 2.2
is mapped to architecture views concerning the AI model.
Challenge theme 3.4 is mapped to architecture views con-
cerning the data strategy. In summary relation R2b suggests
that there should be correspondences between architecture
views describing the AI model (such as the AI model con-
cept / layer structure) and architecture views describing the
data strategy (such as views describing the data pipeline).
The cross-group relation R5: Lack of explainability about
ML decisions is related to the inability to understand and
trust the measure of confidence suggests architecture view
correspondences between views in the cluster-of-concern
"quality aspect", specifically views concerning the explaina-
bility of the system, and the AI model architecture. The rela-
tion R6: Missing guidelines for data selection is related
to the inability to define runtime checks suggests corre-
spondence rules between views concerning the data strategy
(data pipeline) and views on software components for the
runtime monitoring. Furthermore, the relation R7: Unclear
design domain, and the dependency of data requirements
on the design domain, are related to missing guidelines
for data selection requires correspondences between archi-
tecture views describing the operational context (such as
an ODD description for automotive systems), and views
describing the data strategy. The relation R8: The focus on
processes instead of technical solutions in the context to
functional safety is related to missing guidelines for data

selections suggests correspondences between architecture
views describing the quality aspects of safety (e.g., in the
form of hazard analyses tables and fault tree diagrams) and
views describing the data strategy. And, R9: Achieving a
safety case only through monitoring solution is related
to a reduction of true positive rate relates to architecture
views describing the safety quality aspect of the system and
architecture views describing the AI model, i.e., correspond-
ences should exist not only between the safety views and the
monitoring solutions, but also towards the AI model itself
in order to diversify the safety risk. We did not map chal-
lenge 3.2: Grown data selection habits to an architecture
view because we assume that overcoming existing habits in
a company requires rather a properly defined process then
an architecture view on the system.

3.4 An example of relations between data concerns,
runtime monitoring, and architecture decisions

Figure 2 earlier provided an example of how an architec-
ture framework can be used to link multiple architectural
concerns in ML systems development. The figure shows an
extract from the architecture framework proposed in [32]
for five clusters of concerns: Logical architecture, oper-
ational context, AI model, data strategy, and functional
safety. For each cluster of concern, four architecture views
are defined at different levels of abstraction. At the most
abstract level, the analytical level, system development
still takes place mostly in a problem space. The develop-
ers gather knowledge and analyse the problem that the
system is supposed to solve. Already here, the problem
to be solved can be viewed from different “perspectives",

Table 6 (continued)

ID Relation between challenges

Rationale: The design domain can refer to the specific context, problem, or application in which the ML model is being developed. Data
requirements include considerations such as data quality, physical properties of the data such as image resolution, diversity, representative-
ness, or domain-specific constraints. If the design domain is unclear it will be challenging to determine context-specific data requirements.
Lack of clarity about the problem statement, application scope, or intended functionality hinders the ability to identify the relevant data
sources, data quality standards, or other considerations necessary for effective data selection. Related quotes: Q1, Q2, Q4, Q5

R8 The focus on processes instead of technical solutions in the context
of functional safety is related to missing guidelines for data selec-
tions. (3, 6.1)

Rationale: If there is a too strong focus on processes, such as defining workflows, documenting methodologies, or establishing quality assur-
ance procedures, it can divert attention away from addressing the technical aspects of data selection. Technical solutions can refer to the
discovery of specific algorithms, architectures, or techniques used to implement and train the ML model. When the focus primarily revolves
around processes rather than technical solutions, the development of explicit data selection strategies may be neglected because companies
can assume the technical solutions for data selection are covered within the broader processes. Related quotes: Q2, Q7

R9 Achieving a safety case only through monitoring solution is related
to a reduction of true positive rate. (4.3, 6.3)

Rationale: The safety case for systems with ML components relies often on runtime monitors as primary means of identifying safety issues.
Runtime monitors however can limit the operational boundary of the system which can lead to a reduction of the true positive rate of the ML
component. Achieving a comprehensive safety case for systems with ML components requires not only a reliance on monitoring solutions,
but must also take the ML component and its development process, including the data selection, into account. Related quotes: Q14, Q15

111Requirements Engineering (2024) 29:97–117

Ta
bl

e
7

 M
ap

pi
ng

 o
f t

he
 id

en
tifi

ed
 c

ha
lle

ng
es

 to
 c

lu
ste

rs
 o

f c
on

ce
rn

 a
nd

 a
rc

hi
te

ct
ur

e
vi

ew
s g

iv
en

 in
 [3

2]
 b

as
ed

 o
n

th
e

m
ap

pi
ng

 o
f c

ha
lle

ng
es

 b
et

w
ee

n
th

e
stu

di
es

 d
ep

ic
te

d
in

 T
ab

le
 5

1
Fo

r
ex

am
pl

e,
 th

e
el

ec
tri

c
ci

rc
ui

try
 th

at
 tr

ig
ge

rs
 a

 b
ra

ke
 r

eq
ue

st
fo

r
an

 a
ut

om
at

ic
 e

m
er

ge
nc

y
br

ea
ki

ng
 s

ys
te

m
 is

 in
 s

co
pe

 o
f

th
e

ha
rd

w
ar

e
cl

us
te

r
of

 c
on

ce
rn

 fo
r

su
ch

 a
 s

ys
te

m
. H

ow
ev

er
, t

he

m
ec

ha
ni

ca
l c

om
po

ne
nt

s o
f t

he
 b

ra
ke

 sy
ste

m
 a

re
 o

ut
 o

f s
co

pe
2
 A

 d
es

cr
ip

tio
n

of
 th

e
m

ap
pi

ng
 to

 th
e

ch
al

le
ng

es
 th

em
es

 is
 p

ro
vi

de
d

in
 S

ec
t.

3.
3

C
on

te
xt

 a
nd

 O
D

D
D

at
a

str
at

eg
y

A
I m

od
el

H
ar

dw
ar

e
Q

ua
lit

y
as

pe
ct

s

O
ve

rv
ie

w
Pr

ov
id

es
 a

ss
um

pt
io

ns
 a

nd

de
ta

ile
d

de
sc

rip
tio

n
ab

ou
t t

he

op
er

at
io

na
l c

on
te

xt
 in

 w
hi

ch

th
e

de
si

re
d

be
ha

vi
ou

r w
ill

 b
e

ex
ec

ut
ed

Pr
ov

id
es

 g
ui

da
nc

e
on

 c
ap

tu
rin

g
an

d
sto

rin
g,

 a
s w

el
l a

s s
el

ec
t-

in
g

da
ta

 fo
r t

ra
in

in
g.

 T
hi

s
in

cl
ud

es
 th

e
de

fin
iti

on
 o

f d
at

a
qu

al
ity

Pr
ov

id
es

 d
es

cr
ip

tio
ns

 o
f t

he
 A

I/
M

L
m

od
el

 th
at

 u
se

s t
he

 d
at

a
ca

pt
ur

ed
 a

nd
 st

or
ed

 a
cc

or
d-

in
g

to
 th

e
da

ta
 st

ra
te

gy
 to

m

ak
e

pr
ed

ic
tio

ns
. I

t i
nc

lu
de

s
de

ta
ile

d
in

fo
rm

at
io

n
ab

ou
t

th
e

m
od

el
’s

 a
rc

hi
te

ct
ur

e
an

d
co

nfi
gu

ra
tio

n

En
ta

ils
 a

rc
hi

te
ct

ur
e

in
fo

rm
a-

tio
n

on
 th

e
re

qu
ire

d
ha

rd
w

ar
e

co
m

po
ne

nt
s a

t d
iff

er
en

t l
ev

el
s

of
 a

bs
tra

ct
io

n.
 T

hi
s i

nc
lu

de
s

ha
rd

w
ar

e
fo

r s
en

so
rs

, p
ro

-
ce

ss
in

g
un

its
, a

nd
 a

ct
ua

to
rs

 a
s

lo
ng

 a
s t

he
y

ar
e

in
 re

la
tio

n
to

th

e
sy

ste
m

’s
 sc

op
e1

C
on

ta
in

s a
rc

hi
te

ct
ur

e
vi

ew
s g

ov
-

er
ni

ng
 q

ua
lit

y
as

pe
ct

s o
f t

he

sy
ste

m
, s

uc
h

as
 sa

fe
ty

 w
hi

ch

ca
n

ste
m

 fr
om

 st
an

da
rd

s s
uc

h
as

 IS
O

 2
62

62
 [4

1]
 o

r e
xp

la
in

-
ab

ili
ty

 /
fa

irn
es

s

Ro
le

s a
nd

 S
ta

ke
ho

ld
er

s
B

us
in

es
s/

us
e

ca
se

 o
w

ne
rs

, u
se

r,
de

ve
lo

pe
rs

, d
at

a
sc

ie
nt

ist
s,

te
ste

rs
, r

eg
ul

at
or

s

D
at

a
sc

ie
nt

ist
s,

te
ste

rs
,

re
gu

la
to

rs
, (

te
st)

 d
riv

er
s,

la
b

pe
rs

on
ne

l

D
ev

el
op

er
s,

te
ste

rs
, r

eg
ul

at
or

s
B

us
in

es
s o

w
ne

rs
, d

ev
el

op
er

s,
te

ste
rs

, l
ab

 p
er

so
nn

el
D

ev
el

op
er

s,
te

ste
rs

, r
eg

ul
at

or
s,

us
er

s

M
od

el
 k

in
ds

O
D

D
 te

m
pl

at
es

, c
on

te
xt

di

ag
ra

m
, c

la
ss

 d
ia

gr
am

, t
ax

-
on

om
ie

s,
ca

us
al

 d
ia

gr
am

s

Q
ua

lit
y

m
od

el
s,

Pl
an

gu
ag

e,

ca
us

al
 d

ia
gr

am
s

Fl
ow

ch
ar

ts
 a

nd
 b

lo
ck

-d
ia

gr
am

s,
gr

ap
h

m
od

el
s,

m
at

he
m

at
i-

ca
l e

qu
at

io
ns

, p
se

ud
o-

co
de

,
U

M
L

di
ag

ra
m

s,
C

on
fig

ur
a-

tio
n

sp
ec

ifi
ca

tio
ns

B
lo

ck
di

ag
ra

m
s,

ci
rc

ui
t d

ia
-

gr
am

s,
sp

ec
ifi

ca
tio

n
sh

ee
ts

,
bo

ar
d-

le
ve

l s
ch

em
at

ic
s

R
is

k
as

se
ss

m
en

t m
od

el
s,

fa
irn

es
s

ev
al

ua
tio

ns
, f

ai
lu

re
 m

od
e

an
d

eff
ec

t m
od

el
s,

fa
ul

t-t
re

e
di

a-
gr

am
, f

or
m

al
 v

er
ifi

ca
tio

n

O
pe

ra
tio

ns
 o

n
vi

ew
s

Id
en

tif
y

an
d

m
an

ag
e

co
nt

ex
t

un
ce

rta
in

ty
, p

ro
vi

de
 fo

un
da

-
tio

n
to

 d
efi

ne
 d

at
a

re
qu

ire
-

m
en

ts

En
su

re
 th

at
 a

pp
ro

pr
ia

te
 d

at
a

is
 c

ov
er

ed
 in

 tr
ai

ni
ng

, d
at

a
op

tim
is

at
io

n,
 d

at
a

re
du

ct
io

n,

op
er

at
io

na
lis

at
io

n
of

 q
ua

lit
y

at
tri

bu
te

s,
st

at
ist

ic
al

 m
od

el
-

lin
g

En
su

re
s t

ha
t t

he
 A

I/M
L

m
od

el

is
 su

ita
bl

e
to

 th
e

pl
an

ne
d

op
er

at
io

n
an

d
us

e
ca

se
, a

lig
ns

in

pu
t a

nd
 o

ut
pu

t l
ay

er
s w

ith

ex
pe

ct
ed

 d
at

a,
 e

ns
ur

es
 c

om
-

pa
tib

ili
ty

 w
ith

 h
ar

dw
ar

e

A
lig

ns
 h

ar
dw

ar
e

ne
ed

s w
ith

us

e
ca

se
 e

xp
ec

ta
tio

ns
, e

ns
ur

es

su
ffi

ci
en

t p
er

fo
rm

an
ce

 fo
r A

I
m

od
el

 in
fe

re
nc

e

Id
en

tifi
es

 w
ea

k
po

in
ts

 o
f s

ys
-

te
m

s,
en

su
re

s q
ua

lit
y

as
pe

ct
s

su
ch

 a
s r

ed
un

da
nc

y
fo

r r
el

ia
bi

l-
ity

 o
f s

ys
te

m
 o

r f
ai

rn
es

s a
nd

ex

pl
ai

na
bi

lit
y

C
or

re
s-

po
nd

en
ce

 ru
le

s
D

at
a

in
ge

sti
on

 a
nd

 d
at

a
se

le
c-

tio
n

C
on

te
xt

 a
nd

 O
D

D
, A

I m
od

el
,

ha
rd

w
ar

e,
 q

ua
lit

y
vi

ew
s

(s
af

et
y,

 e
xp

la
in

ab
ili

ty
)

C
on

te
xt

 a
nd

 O
D

D
, D

at
a

in
ge

s-
tio

n
an

d
se

le
ct

io
n,

 S
ys

te
m

an

d
co

m
po

ne
nt

 h
ar

dw
ar

e
ar

ch
ite

ct
ur

e

A
I m

od
el

, o
pe

ra
tio

na
l c

on
te

xt

an
d

O
D

D
, d

at
a

in
ge

sti
on

, s
ys

-
te

m
 h

ar
dw

ar
e

an
d

co
m

po
ne

nt

ar
ch

ite
ct

ur
e

Sy
ste

m
 h

ar
dw

ar
e

ar
ch

ite
ct

ur
e,

co

m
po

ne
nt

 a
rc

hi
te

ct
ur

e,
 A

I
m

od
el

 c
on

ce
pt

, d
at

a
se

le
ct

io
n,

le

ar
ni

ng
 se

tu
p,

 c
on

te
xt

 a
nd

O

D
D

M
ap

pe
d

C
ha

lle
ng

es
2

2.
1,

 5
.1

, 5
.2

3.
1,

 3
.3

, 3
.4

1.
1,

 1
.3

, 2
.1

, 2
.2

, 6
.2

4.
1,

 4
.2

1.
2,

 4
.3

, 6
.1

, 6
.2

, 6
.3

112 Requirements Engineering (2024) 29:97–117

i.e., in this example from a logical architecture, an opera-
tional context, an AI model, a data and a security point of
view. Defining own architecture views for the AI model
and creating correspondences to other system views can
answer challenge theme 1.1: No access to inner states of
ML models. Table 4 lists all challenges themes. Early on,
already in the problem space, correspondences can be
created between different points of view, that is between
different architecture views. For example, a hazard analy-
sis is only valid under certain context assumptions. Fur-
thermore, a hazard analysis might highlight certain criti-
cal operational scenarios that need to be considered in
the data ingestion for the AI model’s training data, thus
creating more reasonable completeness criteria for data
collection as mentioned in challenge theme 3.3: Unclear
completeness criteria. At the next level of abstraction,
conceptual level, system development moves closer to
the solution space. Here, for example, we can establish
correspondences between the context definition or oper-
ational design domain (ODD) and the data selection,
which can address the challenges in challenge group 5:
Unclear design domain. Measures of variety for the data,
and measures of confidence for the AI model can, on this
level, clearly be linked to the defined operational context.
This can solve challenges in Challenge group 3: Miss-
ing guidelines for data selection. Other correspondences
can be made between the functional safety concept, which
would define necessary redundancies in the system, the
logical components and the AI model concept, e.g. defin-
ing a maximum inference time for the AI model, which
relates to challenge themes 4.2: meeting timing require-
ments. At the design level, the final design decisions of
the system are made in the solution space. For example,
based on the chosen hardware architecture, computational
resources can be allocated to the AI model, creating a cor-
respondence between the computational resource alloca-
tion and AI model configuration views, since the AI model
must be configured to run most efficiently on the chosen
computational resources. The least abstract level, i.e. the
most concrete level of abstraction, is the runtime level.
This defines the runtime behaviour of the system for each
cluster of interest, including the design of the necessary
runtime monitors and the adaptive behaviour of the sys-
tem. For example, safety monitors can now be defined for
safety-critical aspects that could not be adequately covered
by the technical safety concept. Links can be made to the
adaptive behaviour control, which can, for example, deac-
tivate the AI model in the event of malfunction or unex-
pected results. The safety case would mostly rely on the
previous design decisions, i.e. the technical safety concept
that ensures appropriate training data, AI model setup and
computing resources. The safety case would therefore not

rely solely on safety monitors to answer challenge theme
6.3: Safety case only through monitoring solution.

4 Discussion

This interview study investigated challenges experienced
by practitioners when specifying data needed for training
and validating of critical ML-enabled system, as well as
specifying necessary runtime monitoring solutions for such
systems. Some of the underlying problems and potential
solutions have also been investigated in other publications.

4.1 Related literature

The problem of finding the “right" data For acquiring data,
data scientists have to rely on data mining with little to no
quality checking and potential biases [6]. Biased datasets
are a common cause for erroneous or unexpected behaviour
of ML models in critical environments, such as in medical
diagnostic [10], in the juridical system [28, 58], or in safety-
critical applications [23, 78].

There are attempts to create “unbiased" datasets. One
approach is to curate manually the dataset, such as in the
FairFace dataset [49], the CASIA-SURF CeFaA dataset
[53], or Fairbatch [70]. An alternative road is to use data
augmentation techniques to “rebalance" the dataset [45, 77].
However, it was discovered that it is not sufficient for avoid-
ing bias to use an assumed balanced datasets during train-
ing [29, 84, 85] because it is often unclear which features
in the data need to be balanced. Approaches for curating or
manipulating the dataset require information on the target
domain, i.e., one needs to set requirements on the dataset
depending on the desired operational context [8, 24, 33].
But deriving a data specification for ML is not common
practise [37, 54, 72].

The problem of finding the “right" runtime monitor
Through clever test strategies, some uncertainty can be
eliminated in regards to the behaviour of the model [15].
However, ML components are often part of systems of sys-
tems and their behaviour is hard to predict and analyse at
design time [81]. DevOps principles from software engi-
neering give promising ideas on how to tackle remaining
uncertainty at runtime [55, 80]. An overview of MLOps can
be for example found in [52]. As part of the operation of the
model, runtime models that “augment information available
at design-time with information monitored at runtime" help
in detecting deviations from the expected behaviour [26].
These runtime models for ML can take the form of model
assertions, i.e., checking of explicitly defined attributes
of the model at runtime [48]. However, the authors state
that “bias in training sets are out of scope for model asser-
tion". Another model based approach can be the creation

113Requirements Engineering (2024) 29:97–117

of neuron activation patterns for runtime monitoring [18].
Other approaches treat the ML model as “black-box", and
only check for anomalies and drifts in the input data [68]
the output [73], or both [27]. However, similar to the afore-
mentioned challenges when specifying data for ML, runt-
ime monitoring needs an understanding on how to “define,
refine, and measure quality of ML solutions" [34], i.e., in
relation to non-functional requirements one needs to under-
stand which quality aspects are relevant, and how to measure
them [30]. Most commonly applied safety standards empha-
sise processes and traceability to mitigate systematic mis-
takes during the development of critical systems. Therefore,
if the training data and runtime monitoring cannot be speci-
fied, a traceability between safety goals and the deployed
system cannot be established [13].

For many researchers and practitioners, runtime verifica-
tion and monitoring is a promising road to assuring safety
and robustness for ML in critical software [2, 15]. However,
runtime monitoring also creates a processing and memory
overhead that needs to be considered especially in resource-
limited environments such as embedded devices [67]. The
related work has been mapped to the challenges identified
in the interview study in Table 4.

4.2 Recommendation for practitioners

The identified relations of the challenges described by the
participants, as well as the solutions suggested in related
work, allow us to formulate recommendations and implica-
tions towards RE practises. The implications towards RE
practises are stated after each challenge theme in Sect. 3.
Because these recommendations try to solve causes
described by the participants of the interview study, we
think they are a useful first step towards solving the chal-
lenges related to specifying requirements for training data
and runtime monitoring.

Recommendation 1: Avoid restrictive IP protection. IP
protection is a cause of the inability to access the inner states
and workings of the ML models (black-box model). This
can lead to nontransparent measures of confidence, and
an inability to formulate failure models. To the best of our
knowledge, no studies have yet been performed on the con-
sequences of IP protection of ML models on the ability to
monitor and reason (e.g., in a safety case) for the correctness
of ML model decisions. Three validation survey participants
strongly agreed, one agreed, one answered neutrally, and
one disagreed with Recommendation 1.

Recommendation 2: Relate measures of confidence to
actual performance metrics. For runtime monitoring, the
measure of confidence is often used to evaluate the reli-
ability of the ML model results. However, without first
understanding and relating this measure to clearly defined
performance metrics of the ML model, the measure of

confidence provides little insight for runtime monitoring. In
general, the definition of appropriate metrics and boundary
conditions should become an integral part of RE for ML as
it affects both the ability to define data requirements and
the requirements for runtime monitoring. Three validation
survey participants strongly agreed and three agreed with
Recommendation 2.

Recommendation 3: Overcome grown data selection
habits. Grown data selection habits were cited as a reason
for the lack of clear completeness criteria and a disconnect
from requirements. Based on our findings, we argue that
more systematic data selection processes need to be estab-
lished in organisations and companies. This would allow
the data selection process to be better linked to RE, and
it would create traceability between system requirements,
completeness criteria and data requirements. In addition, it
could also reduce the amount of data required for training
and thus reduce development costs. Three validation survey
participants strongly agreed, two agreed, and one answered
neutrally with Recommendation 3.

Recommendation 4: Balance hardware limitation in
embedded systems. Runtime monitors impose processing and
memory overhead that can compromise timing requirements
and reduce the performance of the ML model. Today, the
safety of systems with ML is mostly provided by some forms
of runtime monitoring. By instead decomposing the safety
requirements on both the monitoring and the ML model,
the monitors could become more resource efficient, faster,
and less constraining on the decisions of the ML model.
This however means also that safety requirements on the ML
models can trigger requirements on the training data. Two
validation survey participants strongly agreed, one agreed,
and three answered neutrally with Recommendation 4.

Recommendation 5: Relate the challenges of specify-
ing requirements for training data and runtime monitor-
ing to architecture decisions of the AI-enabled systems. As
emphasised in Recommendation 4, solving one challenge
(overhead of runtime monitoring) requires design changes
in other architecture areas of the system (ML model design,
selection of training data / data pipeline). We found rela-
tionships between the challenges identified in this study and
the challenges of designing AI-based systems identified in a
previous study, which led to the definition of an architecture
framework for AI systems described in [32]. Since the sys-
tem architecture and the requirements / system specifications
evolve together in what is known as the twin-peak-model
[19], we propose to overcome the specification challenges by
decomposing the design task early on into different architec-
ture views that describe the relevant concerns of the system
and by establishing correspondences between the architec-
ture views. Several recent studies support the recommenda-
tion to relate challenges in the development of ML-enabled
systems to architecture decisions: In a combined literature

114 Requirements Engineering (2024) 29:97–117

survey and interview study, Nazir et al. provide an overview
on the role of architectural design decisions for ML-enabled
systems [61]. There, data is been highlighted as one major
design challenge. For example, pre-processing and prepara-
tion of data requires architecture design decision regarding
the data pipeline and data management for ML-enabled sys-
tem development [17]. The authors also state that one inter-
viewee (I5) highlighted that “Data accuracy and completion
of data are crucial when training the models of ML systems"
[61], which corresponds to the findings in this study. Bhat
et al. highlight the necessity of relating RE challenges to
architecture design decisions for large software engineering
project such as ML system development [11]. Three valida-
tion survey participants strongly agreed, two agreed, and
one answered neutrally with Recommendation 5.

4.3 Threats to validity

Threats related to internal validity A lack of rigour (i.e.,
degree of control) in the study design can cause confound-
ing which can manifest bias in the results [74]. The follow-
ing mechanisms in this study tried to reduce confounding:
The interview guide was peer-reviewed by an independent
researcher, and a test session of the interview was conducted.
To reduce personal bias, at least two authors were present
during all interviews, and the authors took turn in leading
the interviews. To confirm the initial findings from the inter-
view study and reduce the risk of researchers’ bias, a work-
shop was organised which was also visited by participants
who were not part of the interview study. This workshop,
plus additional meetings with practitioners were used to
conduct member checking of the preliminary results. For
answering RQ3, the researchers used their expert knowl-
edge to map the identified challenges to architecture views.
However, the researchers referred to an already published
mapping of similar challenges to architecture views and used
that mapping as guidance for all but two challenge groups.
For the remaining two challenge groups, the authors provide
arguments to why (ID 4: overhead for monitoring solution)
or why not (ID 6: unsuitable safety standards) such a map-
ping to architecture views is possible.

Threats related to construct validity Another potential
bias can arise from the sampling of participants. Although
we applied purposeful sampling, we still had to rely on the
contact persons of the companies to provide us with suit-
able interview candidates. We could not directly see a list
of employees and therefore not choose the candidates our-
selves. We tried to support our contact persons with a list
of roles that should be part of the interviews and discussed
the final selection of participants with our industry partners
before inviting them to the interviews.

Threats related to external validity Regarding general-
isability of the findings, the limited number of companies

involved in the study can pose a threat to external validity.
However, two of the companies are world-leading compa-
nies in their fields, which, in our opinion, gives them a deep
understanding and experience of the discussed problems.
Furthermore, we included companies from a variety of dif-
ferent fields to establish better generalisability. Furthermore,
our data includes only results valid for the development of
safety-critical ML models. We assume that the findings are
applicable also to other forms of criticality, such as privacy-
critical, but we cannot conclude on that generalisability
based on the available data.

4.4 Conclusion

This article reports on an interview-based study that identi-
fied challenges associated with specifying requirements for
training data and runtime monitoring for safety-critical ML
models. Through interviews conducted at five companies we
identified 17 challenge themes in six groups. We also per-
formed a manual semantic analysis to identify the underlying
relationships between the challenges. We found that sev-
eral underlying challenges affect both the ability to specify
training data and runtime monitoring. For example, we con-
cluded that restrictive IP protection can lead to an inability
to access and understand the inner states of an ML model.
Without insight into the states of the ML model, the meas-
ure of confidence cannot be related to actual performance
metrics. Without clear performance metrics, it is difficult to
define the necessary degree of variety in the training data. In
addition, grown data selection habits prevent proper RE for
training data. Finally, safety requirements should be distrib-
uted across both the ML model, which can impose require-
ments on the training data, and on runtime monitors, which
can reduce the overhead of the monitoring solution. Based
on the identified challenge groups, we formulated a set of
seven implications towards RE. The study also compared the
challenges found with those identified in a previous study
on the design of distributed ML-based systems and the crea-
tion of an architecture frameworks for such systems. We
found several parallel challenges in both studies, suggesting
that an architecture framework and early decomposition of
the design task into architecture concerns could potentially
mitigate the challenges of specifying data and monitoring
requirements for critical ML-based systems. Finally, we pro-
posed five recommendations to practitioners based on the
identified relations between the challenges described by the
participants of the study and the mapping of previously iden-
tified challenges in specifying requirements for training data
and monitoring to architectural views. Both the implications
for RE, as well as the recommendations for practitioners
were validated by an additional survey of practitioners. Both
the implications as well as the recommendations will serve
as starting point for further engineering research.

115Requirements Engineering (2024) 29:97–117

Acknowledgements This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation program under
grant agreement No 957197 and from the Sweden’s innovation agency
Vinnova under grant agreement No 2023-00771.

Funding Open access funding provided by University of Gothenburg.

Data availability A replication package containing data from the work-
shops and interviews related to RQ1 and RQ2 is available at https://
doi. org/ 10. 7910/ DVN/ WJ8TKY. A replication package containing data
from the workshops related to RQ3 is available at https:// doi. org/ 10.
7910/ DVN/ VXFFFU.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Abid A, Farooqi M, Zou J (2021) Persistent anti-muslim bias in
large language models. In: Proceedings of the 2021 AAAI/ACM
Conference on AI, Ethics, and Society. pp 298–306

 2. Ashmore R, Calinescu R, Paterson C (2021) Assuring the machine
learning lifecycle: desiderata, methods, and challenges. ACM
Comput Surv 54(5):1–39

 3. Aslansefat K, Sorokos I, Whiting D, Tavakoli Kolagari R, Papa-
dopoulos Y (2020) Safeml: safety monitoring of machine learning
classifiers through statistical difference measures. In: International
symposium on model-based safety and assessment. pp 197–211.
Springer

 4. Ballingall S, Sarvi M, Sweatman P (2023) Standards relevant to
automated driving system safety: a systematic assessment. Trans
Eng 13:100202

 5. Banko M, Brill E (2001) Scaling to very very large corpora for
natural language disambiguation. In: Proceedings of the 39th
annual meeting of the association for computational linguistics.
pp 26–33

 6. Barocas S, Selbst AD (2016) Big data’s disparate impact. Calif.
L. Rev. 104:671

 7. Bayram F, Ahmed BS, Kassler A (2022) From concept drift to
model degradation: an overview on performance-aware drift
detectors. Knowl Based Syst 245:108632

 8. Bencomo N, Guo JL, Harrison R, Heyn HM, Menzies T (2021)
The secret to better AI and better software (is requirements engi-
neering). IEEE Softw 39(1):105–110

 9. Bencomo N, Whittle J, Sawyer P, Finkelstein A, Letier E (2010)
Requirements reflection: requirements as runtime entities. In:
Proceedings of the 32nd ACM/IEEE international conference on
software engineering vol. 2, pp 199–202

 10. Bernhardt M, Jones C, Glocker B (2022) Potential sources of data-
set bias complicate investigation of underdiagnosis by machine
learning algorithms. Nat Med 28(6):1157–1158

 11. Bhat M, Shumaiev K, Koch K, Hohenstein U, Biesdorf A, Matthes
F (2018) An expert recommendation system for design decision

making: who should be involved in making a design decision?
In: 2018 IEEE international conference on software architecture
(ICSA). pp 85–8509. IEEE

 12. Blodgett SL, Barocas S, Daum’e H, Wallach HM (2020) Language
(technology) is power: A critical survey of “bias” in nlp. In: ACL

 13. Borg M, Englund C, Wnuk K, Duran B, Levandowski C, Gao S,
Tan Y, Kaijser H, Lönn H, Törnqvist J (2018) Safely entering the
deep: a review of verification and validation for machine learning
and a challenge elicitation in the automotive industry. J Automot
Softw Eng 1(1):1–19

 14. Brand T, Giese H (2018) Towards software architecture runtime
models for continuous adaptive monitoring. In: MoDELS (Work-
shops). pp 72–77

 15. Breck E, Cai S, Nielsen E, Salib M, Sculley D (2017) The ml test
score: a rubric for ml production readiness and technical debt
reduction. In: 2017 IEEE international conference on big data.
pp 1123–1132. IEEE

 16. Brown DW, Carson CD, Montgomery WA, Zislis PM (1988) Soft-
ware specification and prototyping technologies. AT &T Tech J
67(4):33–45

 17. Castellanos C, Pérez B, Correal D, Varela CA (2020) A model-
driven architectural design method for big data analytics applica-
tions. In: 2020 IEEE international conference on software archi-
tecture companion (ICSA-C). pp 89–94. IEEE

 18. Cheng CH, Nührenberg G, Yasuoka H (2019) Runtime monitoring
neuron activation patterns. In: 2019 Design, automation & test in
Europe conference & exhibition. pp 300–303. IEEE

 19. Cleland-Huang J, Hanmer RS, Supakkul S, Mirakhorli M (2013)
The twin peaks of requirements and architecture. IEEE Softw
30(2):24–29

 20. Clements P, Bachmann F, Bass L, Garlan D, Ivers J, Little R, Nord
R, Stafford J (2011) Documenting software architectures: views
and beyond. SEI Series in Software Engineering, second edn

 21. Creswell JW, Creswell JD (2017) Research design: qualitative,
quantitative, and mixed methods approaches. Sage publications,
Thousand Oaks

 22. Creswell John W, Poth CN (2017) Qualitative inquiry and research
design: choosing among five approaches, 4th edn. Sage Publish-
ing, Thousand Oaks

 23. Fabbrizzi S, Papadopoulos S, Ntoutsi E, Kompatsiaris I (2021) A
survey on bias in visual datasets. arXiv preprint arXiv: 2107. 07919

 24. Fauri D, Dos Santos DR, Costante E, den Hartog J, Etalle S,
Tonetta S (2017) From system specification to anomaly detec-
tion (and back). In: Proceedings of the 2017 workshop on cyber-
physical systems security and privacy. pp 13–24

 25. Gamble MT (2016) Can metamodels link development to design
intent? In: Proceedings of the 1st international workshop on bring-
ing architectural design thinking into developers’ daily activities.
pp 14–17

 26. Giese H, Bencomo N, Pasquale L, Ramirez AJ, Inverardi P, Wät-
zoldt S, Clarke S (2014) Living with uncertainty in the age of
runtime models. In: Models@ run. time, pp 47–100. Springer

 27. Ginart T, Zhang MJ, Zou J (2022) Mldemon: Deployment moni-
toring for machine learning systems. In: International conference
on artificial intelligence and statistics. pp 3962–3997. PMLR

 28. Goodman B, Flaxman S (2017) European union regulations on
algorithmic decision-making and a “right to explanation’’. AI
magazine 38(3):50–57

 29. Gwilliam M, Hegde S, Tinubu L, Hanson A (2021) Rethinking
common assumptions to mitigate racial bias in face recognition
datasets. In: Proceedings of the IEEE CVF. pp 4123–4132

 30. Habibullah KM, Horkoff J (2021) Non-functional requirements
for machine learning: understanding current use and challenges
in industry. In: 2021 IEEE 29th RE Conference. pp 13–23. IEEE

https://doi.org/10.7910/DVN/WJ8TKY
https://doi.org/10.7910/DVN/WJ8TKY
https://doi.org/10.7910/DVN/VXFFFU
https://doi.org/10.7910/DVN/VXFFFU
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2107.07919

116 Requirements Engineering (2024) 29:97–117

 31. Heyn HM, Knauss E, Malleswaran I, Dinakaran S (2023) An
investigation of challenges encountered when specifying training
data and runtime monitors for safety critical ml applications. In:
International working conference on requirements engineering:
foundation for software quality. pp 206–222. Springer

 32. Heyn HM, Knauss E, Pelliccione P (2023) A compositional
approach to creating architecture frameworks with an application
to distributed AI systems. J Syst Softw 198:111604

 33. Heyn HM, Subbiah P, Linder J, Knauss E, Eriksson O (2022)
Setting AI in context: a case study on defining the context and
operational design domain for automated driving. In: International
working conference on requirements engineering: foundation for
software quality. pp 199–215. Springer

 34. Horkoff J (2019) Non-functional requirements for machine learn-
ing: challenges and new directions. In: 2019 IEEE 27th RE confer-
ence. pp 386–391. IEEE

 35. Humbatova N, Jahangirova G, Bavota G, Riccio V, Stocco A,
Tonella P (2020) Taxonomy of real faults in deep learning sys-
tems. In: 2020 IEEE/ACM 42nd international conference on soft-
ware engineering. pp 1110–1121

 36. IEEE SA Board of Governors/Corporate Advisory Group (BoG/
CAG) (2019) IEEE Std 2413: Architectural Framework for the
Internet of Things (IOT). IEEE Computer Society

 37. Ishikawa F, Yoshioka N (2019) How do engineers perceive diffi-
culties in engineering of machine-learning systems?-questionnaire
survey. In: 2019 IEEE/ACM Joint 7th international workshop on
conducting empirical studies in industry. pp 2–9. IEEE

 38. Islam MJ, Nguyen G, Pan R, Rajan H (2019) A comprehensive
study on deep learning bug characteristics. In: 2019 ACM 27th
European software engineering conference. pp 510–520

 39. ISO (2008) ISO/IEC 25012:2008: Software engineering–Software
product quality requirements and evaluaton (SQuaRE). Interna-
tional organization for standardization, Geneva, www. iso. org

 40. ISO (2012) ISO/IEC/IEEE 42010:2012: Systems and software
engineering–Architecture description. Swedish Standards Insti-
tute, Stockholm, www. sis. se

 41. ISO (2018) ISO 26262:2018: Road vehicles–Functional safety.
International Organization for Standardization, Geneva, www. iso.
org

 42. ISO (2023) ISO/CD PAS 8800: road vehicles safety and artificial
intelligence, under development. International Organization for
Standardization, Geneva, www. iso. org

 43. ISO (2023) ISO/CD TS 5083: safety for automated driving sys-
tems–Design, verification and validation, under development.
International organization for standardization, Geneva, www. iso.
org

 44. ISO (2023) ISO/IEC DTR 5469: functional safety and AI systems,
under development. International organization for standardization,
Geneva, www. iso. org

 45. Jaipuria N, Zhang X, Bhasin R, Arafa M, Chakravarty P, Shriv-
astava S, Manglani S, Murali VN (2020) Deflating dataset bias
using synthetic data augmentation. In: Proceedings of the IEEE
CVF. pp 772–773

 46. Kahan E, Genero M, Oliveros A (2019) Challenges in requirement
engineering: could design thinking help? In: Quality of informa-
tion and communications technology: 12th international confer-
ence, QUATIC 2019, Ciudad Real, Spain, September 11–13,
2019, Proceedings 12. pp 79–86. Springer

 47. Kaiser M, Griessl R, Kucza N, Haumann C, Tigges L, Mika K,
Hagemeyer J, Porrmann F, Rückert U, vor dem Berge M, et al
(2022) Vedliot: very efficient deep learning in IOT. In: 2022
Design, Automation & Test in Europe conference & exhibition
(DATE). pp 963–968. IEEE

 48. Kang D, Raghavan D, Bailis P, Zaharia M (2020) Model asser-
tions for monitoring and improving ml models. Proc Mach Learn
Syst 2:481–496

 49. Karkkainen K, Joo J (2021) Fairface: face attribute dataset for bal-
anced race, gender, and age for bias measurement and mitigation.
In: Proceedings of the IEEE CVF. pp 1548–1558

 50. King N, Horrocks C, Brooks J (2018) Interviews in qualitative
research. Sage publications, Thousand Oaks

 51. Knight JC (2002) Safety critical systems: challenges and direc-
tions. In: 24th international conference on software engineering.
pp 547–550

 52. Kreuzberger D, Kühl N, Hirschl S (2022) Machine learning opera-
tions (mlops): overview, definition, and architecture. arXiv pre-
print arXiv: 2205. 02302

 53. Liu A, Tan Z, Wan J, Escalera S, Guo G, Li SZ (2021) Casia-
surf cefa: a benchmark for multi-modal cross-ethnicity face anti-
spoofing. In: Proceedings of the IEEE CVF. pp 1179–1187

 54. Liu H, Eksmo S, Risberg J, Hebig R (2020) Emerging and
changing tasks in the development process for machine learn-
ing systems. In: Proceedings of the international conference on
software and system processes. pp 125–134

 55. Lwakatare LE, Crnkovic I, Bosch J (2020) Devops for AI–chal-
lenges in development of AI-enabled applications. In: 2020
International conference on software, telecommunications and
computer networks. pp 1–6. IEEE

 56. Marques J, Yelisetty S (2019) An analysis of software require-
ments specification characteristics in regulated environments.
J Softw Eng Appl (IJSEA) 10(6):1–15

 57. Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A
(2021) A survey on bias and fairness in machine learning. ACM
Comput Surv 54(6):1–35

 58. Miron M, Tolan S, Gómez E, Castillo C (2021) Evaluating
causes of algorithmic bias in juvenile criminal recidivism. Artif
Intell Law 29(2):111–147

 59. Muccini H, Vaidhyanathan K (2021) Software architecture for
ml-based systems: what exists and what lies ahead. In: Proceed-
ings of the 43rd international conference on software engineer-
ing, http:// arxiv. org/ abs/ 2103. 07950

 60. Namey E, Guest G, Thairu L, Johnson L (2008) Data reduc-
tion techniques for large qualitative data sets. Handbook Team-
Based Qualit Res 2(1):137–161

 61. Nazir R, Bucaioni A, Pelliccione P (2023) Architecting ml-
enabled systems: challenges, best practices, and design deci-
sions. J Syst Softw 207:111860

 62. Nilsson J, Bergenhem C, Jacobson J, Johansson R, Vinter J
(2013) Functional safety for cooperative systems. Tech. rep,
SAE Technical Paper

 63. Nord RL, Ozkaya I, Kruchten P (2014) Agile in distress: archi-
tecture to the rescue. In: Agile methods. Large-scale devel-
opment, refactoring, testing, and estimation: XP 2014 inter-
national workshops, Rome, Italy, May 26-30, 2014, Revised
Selected Papers 15. pp 43–57. Springer

 64. Nuseibeh B (2001) Weaving together requirements and archi-
tectures. Computer 34(3):115–119

 65. Pelliccione P, Knauss E, Heldal R, Ågren SM, Mallozzi P, Alm-
inger A, Borgentun D (2017) Automotive architecture frame-
work: the experience of volvo cars. J Syst Architect 77:83–100

 66. Quinonero-Candela J, Sugiyama M, Schwaighofer A, Law-
rence ND (2008) Dataset shift in machine learning. Mit Press,
Cambridge

 67. Rabiser R, Schmid K, Eichelberger H, Vierhauser M, Guinea
S, Grünbacher P (2019) A domain analysis of resource and
requirements monitoring: towards a comprehensive model of
the software monitoring domain. Inf Softw Technol 111:86–109

 68. Rahman QM, Sunderhauf N, Dayoub F (2021) Per-frame map
prediction for continuous performance monitoring of object
detection during deployment. In: Proceedings of the IEEE CVF.
pp. 152–160

http://www.iso.org
http://www.sis.se
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://arxiv.org/abs/2205.02302
http://arxiv.org/abs/2103.07950

117Requirements Engineering (2024) 29:97–117

 69. Richards L (2014) Handling qualitative data: a practical guide.
Handling qualitative data pp 1–264

 70. Roh Y, Lee K, Whang S, Suh C (2021) Sample selection for fair
and robust training. Adv Neural Inf Process Syst 34:815–827

 71. Saldaña J (2013) The coding manual for qualitative researchers.
Sage Publishing, Thousand Oaks

 72. Sambasivan N, Kapania S, Highfill H, Akrong D, Paritosh P,
Aroyo LM (2021) Everyone wants to do the model work, not the
data work: Data cascades in high-stakes AI. In: 2021 conference
on human factors in computing systems. pp 1–15

 73. Shao Z, Yang J, Ren S (2020) Increasing trustworthiness of deep
neural networks via accuracy monitoring. arXiv preprint arXiv:
2007. 01472

 74. Slack MK, Draugalis JR Jr (2001) Establishing the internal and
external validity of experimental studies. Am J Health Syst
Pharm 58(22):2173–2181

 75. Steghöfer JP, Knauss E, Horkoff J, Wohlrab R (2019) Challenges
of scaled agile for safety-critical systems. In: Product-focused
software process improvement: 20th international conference,
PROFES 2019, Barcelona, Spain, November 27–29, 2019, Pro-
ceedings 20. pp 350–366. Springer

 76. Tripathi S, De S (2019) Data-driven optimizations in IOT: a new
frontier of challenges and opportunities. CSI Trans ICT 7:35–43

 77. Uchôa V, Aires K, Veras R, Paiva A, Britto L (2020) Data aug-
mentation for face recognition with cnn transfer learning. In: 2020
international conference on systems, signals and image process-
ing. pp 143–148. IEEE

 78. Uricár M, Hurych D, Krizek P, Yogamani S (2019) Challenges in
designing datasets and validation for autonomous driving. arXiv
preprint arXiv: 1901. 09270

 79. Vetterli C, Brenner W, Uebernickel F, Petrie C (2013) From pal-
aces to yurts: why requirements engineering needs design think-
ing. IEEE Internet Comput 17(2):91–94

 80. Vierhauser M, Rabiser R, Grünbacher P (2016) Requirements
monitoring frameworks: a systematic review. Inf Softw Technol
80:89–109

 81. Vierhauser M, Rabiser R, Grünbacher P, Danner C, Wallner S,
Zeisel H (2014) A flexible framework for runtime monitoring of
system-of-systems architectures. In: 2014 IEEE conference on
software architecture. pp 57–66. IEEE

 82. Vinnova (2023) Famer–Facilitating multi-party engineering of
requirements, https:// www. vinno va. se/ en/ p/- party- engin eering-
of- requi remen ts/, Accessed: 2023-11-28

 83. Vogelsang A, Borg M (2019) Requirements engineering for
machine learning: perspectives from data scientists. In: 2019
IEEE 27th international requirements engineering conference
workshops. pp 245–251. IEEE

 84. Wang A, Liu A, Zhang R, Kleiman A, Kim L, Zhao D, Shirai I,
Narayanan A, Russakovsky O (2022) Revise: a tool for meas-
uring and mitigating bias in visual datasets. Int J Comput Vis
130(7):1790–1810

 85. Wang T, Zhao J, Yatskar M, Chang KW, Ordonez V (2019) Bal-
anced datasets are not enough: estimating and mitigating gender
bias in deep image representations. In: Proceedings of the IEEE/
CVF international conference on computer vision october

 86. Wardat M, Le W, Rajan H (2021) Deeplocalize: fault localization
for deep neural networks. In: 2021 IEEE/ACM 43rd international
conference on software engineering. pp 251–262. IEEE

 87. Zhang X, Xie X, Ma L, Du X, Hu Q, Liu Y, Zhao J, Sun M
(2020) Towards characterizing adversarial defects of deep learn-
ing software from the lens of uncertainty. 2020 IEEE/ACM 42nd
international conference on software engineering pp 739–751

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2007.01472
http://arxiv.org/abs/2007.01472
http://arxiv.org/abs/1901.09270
https://www.vinnova.se/en/p/-party-engineering-of-requirements/
https://www.vinnova.se/en/p/-party-engineering-of-requirements/

	An empirical investigation of challenges of specifying training data and runtime monitors for critical software with machine learning and their relation to architectural decisions
	Abstract
	1 Introduction
	1.1 Scope and research questions

	2 Research method
	2.1 Preparations of interviews
	2.2 Data collection through interviews
	2.3 Data analysis of interviews
	2.4 Data collection for constructive research
	2.5 Data analysis for constructive work

	3 Results
	3.1 Answer to RQ1: Challenges practitioners experience when specifying requirements for training data
	3.2 Answer to RQ2: Challenges practitioners experience when specifying runtime monitors
	3.3 Answer to RQ3: How can an architecture framework provide guidance to practitioners with respect to the challenges identified in RQ1 and RQ2?
	3.4 An example of relations between data concerns, runtime monitoring, and architecture decisions

	4 Discussion
	4.1 Related literature
	4.2 Recommendation for practitioners
	4.3 Threats to validity
	4.4 Conclusion

	Acknowledgements
	References

