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Abstract

Natural language (NL) is arguably the most prevalent

medium for expressing systems and software require-

ments. Detecting incompleteness in NL requirements is

a major challenge. One approach to identify incomplete-

ness is to compare requirements with external sources.

Given the rise of large language models (LLMs), an

interesting question arises: Are LLMs useful external

sources of knowledge for detecting potential incomplete-

ness in NL requirements? This article explores this ques-

tion by utilizing BERT. Specifically, we employ BERT’s

masked language model (MLM) to generate contextu-

alized predictions for filling masked slots in require-

ments. To simulate incompleteness, we withhold con-

tent from the requirements and assess BERT’s ability

to predict terminology that is present in the withheld

content but absent in the disclosed content. BERT can

produce multiple predictions per mask. Our first con-

tribution is determining the optimal number of predic-

tions per mask, striking a balance between effectively

identifying omissions in requirements and mitigating

noise present in the predictions. Our second contribu-

tion involves designing a machine learning-based filter

to post-process BERT’s predictions and further reduce

noise. We conduct an empirical evaluation using 40 re-

quirements specifications from the PURE dataset. Our

findings indicate that: (1) BERT’s predictions effec-

tively highlight terminology that is missing from re-
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quirements, (2) BERT outperforms simpler baselines in

identifying relevant yet missing terminology, and (3) our

filter reduces noise in the predictions, enhancing BERT’s

effectiveness for completeness checking of requirements.
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guage Processing (NLP), Machine Learning (ML), Large
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1 Introduction

Natural language (NL) is widely used in industry to
express systems and software requirements. Despite its

prevalence, NL requirements are prone to incomplete-

ness. Improving the completeness of NL requirements is

an important yet challenging problem in requirements

engineering (RE) [54,53]. The RE literature identifies

two different notions of completeness [53]: (1) Internal

completeness pertains to requirements being closed in

terms of the functions and qualities that can be deduced

solely from the requirements. (2) External completeness

focuses on ensuring that requirements encompass all the

information suggested by external sources of knowledge.

These sources can include individuals (such as stake-

holders) or artifacts like higher-level requirements and

existing system descriptions [4]. External completeness

is a relative measure since the external sources may

themselves be incomplete, or not all relevant external

sources may be known [53]. While external complete-

ness cannot be defined in absolute terms, relevant exter-

nal sources, when available, can be useful for detecting

missing requirements-related information.
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R1.	The	system	shall	reach	a	steady	state	within	5s	after	reconfiguration	to	maximize	[MASK].

R5.	The	system	shall	comply	with	the	applicable	privacy	and	security	standards.

Masked	word:	availability
BERT	predictions:	performance,	efficiency,	stability,	accuracy,	reliability

R6.	If	stability	issues	are	detected,	the	system	shall	perform	an	emergency	restart.

R2.	The	system	shall	maintain	operations	logs	for	quality	assurance	and	[MASK]	purposes.

R3.	The	system	shall	provide	a	warning	if	a	[MASK]	issue	causes	three	or	more	users	to
				simultaneously	lose	service.

R4.	The	system	shall	be	able	to	monitor	network	traffic	for	individual	applications.

Masked	word:	audit
BERT	predictions:	management,	compliance,	maintenance,	safety,	security

Masked	word:	connectivity
BERT	predictions:	network,	service,	traffic,	technical,	system	
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Fig. 1: Illustrative requirements specification split into a disclosed and a withheld part. The withheld part simulates

requirements omissions. Masking words in the disclosed part and having BERT make predictions for the masks

reveals some terms that appear only in the withheld part.

1.1 Motivation

Natural Language Processing (NLP) is a powerful tool

for computer-assisted verification of external complete-

ness when requirements and external sources of knowl-

edge are presented in text format. For example, Fer-

rari et al. [24] utilize NLP to assess the completeness

of requirements by analyzing interview transcripts. In

a similar vein, Dalpiaz et al. [15] integrate NLP with

visualization techniques to identify disparities in stake-

holders’ perspectives. These disparities are in turn ex-

amined as potential indicators of incompleteness.

Large language models (LLMs) provide a fresh op-

portunity to employ NLP for improving the external

completeness of requirements. Through self-supervised

learning, LLMs have been pre-trained on vast collec-

tions of textual data, e.g., millions of Wikipedia arti-

cles. This opens up the possibility of using LLMs as

external knowledge sources for completeness checking.

More precisely, we see two primary use cases, denoted

as U1 and U2 below, for LLMs in relation to external

completeness:

U1 LLMs can be used for autonomously gathering, sum-

marizing, and integrating new information from ex-

ternal sources, including their own pre-training data.

U2 LLMs can be tasked with suggesting alternative ver-

sions of existing material. While the results often do

not convey the exact same meaning as the original

material, they largely preserve context. An exami-

nation of the resulting variant material can reveal

pertinent information that has been overlooked.

In this article, we propose an instantiation of U2

(above) employing BERT (Bidirectional Encoder Rep-

resentations from Transformers) [16] as our chosen LLM.

BERT has been trained to predict masked tokens by

finding words or phrases that most closely match the

surrounding context. To illustrate how BERT can help

realize U2, consider the example in Fig. 1. In this ex-
ample, we have masked one word, denoted as [MASK],

in each of requirements R1, R2 and R3. We have then

had BERT make five predictions for filling each masked

slot. For instance, in R1, the masked word is availability.

The predictions made by BERT are: performance, effi-

ciency, stability, accuracy, and reliability. As seen from

the figure, one of these predictions, namely stability, is

a word that appears in R6. Similarly, the predictions

that BERT makes for the masked words in R2 and R3
(audit and connectivity) reveal new terminology that

is present in R4 and R5 (network, traffic, comply and

security). In this example, if requirements R4–R6 were

to be missing, BERT’s predictions over R1–R3 would

provide useful cues about some of the missing concepts.

1.2 Contributions

The core utility of an LLM lies in its ability to predict

and generate text that is both coherent and contextu-
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ally relevant. This characteristic makes LLMs poten-

tially useful tools for making recommendations on how

to make requirements more complete. To systematically

assess the usefulness of an LLM for this purpose, we

need a strategy to evaluate the predictive accuracy of

the LLM in identifying relevant content that is absent

from requirements. To this end, we simulate missing

requirements information by randomly withholding a

portion of a given requirements specification. We dis-

close the remainder of the specification to the LLM of

choice, in our case BERT, to obtain predictions. Re-

quirements in the disclosed portion are revealed one at

a time to BERT for obtaining predictions of masked to-

kens. In our example of Fig. 1, the disclosed part would

be requirements R1–R3, and the withheld part would

be requirements R4–R6.

When BERT is employed as a recommender in the

manner described above, an important consideration

is striking a trade-off between valuable and superflu-

ous recommendations. Our first contribution is config-

uring BERT’s number of predictions per mask to find

a reasonable balance between the identification of sim-

ulated omissions vis-à-vis the generation of unhelpful

predictions or noise. We observe that achieving good

coverage of requirements omissions through BERT pre-

dictions results in a significant amount of noise. Some

of the noise can be easily filtered. For instance, in the

example of Fig. 1, one can dismiss the predictions of

service and system (made over R3); these words al-

ready appear in the disclosed portion, thereby provid-

ing no cues about missing terminology. Furthermore,

one can dismiss words that carry little meaning, e.g.,

“any”, “other” and “each”, should such words appear

among the predictions. After applying these obvious fil-

ters, the predictions still remain considerably noisy. Our

second contribution is a machine learning-based filter

that post-processes predictions made by BERT, aiming

to reduce the occurrence of noise in the predictions.

We based our solution development and evaluation

on a set of 40 requirements specifications from the PURE

dataset [26]. These specifications collectively comprise

over 23,000 sentences. To support replication and en-

able future research, we have made our implementation

and evaluation artifacts publicly available [36].

Our evaluation results suggest that BERT’s masked

language model has the potential to assist in improv-

ing the completeness of requirements. Nevertheless, our

current work does not attempt to build a user-facing

tool for using BERT in requirements completeness check-

ing, nor does it conduct user studies to measure prac-

tical benefits. While our findings are encouraging, they

do not constitute conclusive evidence of usefulness but

rather represent a necessary first step towards further

investigations in the future.

This article extends a previous conference paper [37]

published at the 29th Working Conference on Require-

ments Engineering: Foundation for Software Quality

(REFSQ’23). Compared to the conference version, the

present article offers enhancements to the background

and related work, provides substantial new evaluation

that includes a comparison with baselines, and features

improvements to the implementation of our approach.

1.3 Organization

Section 2 provides background information. Section 3

examines the related work, focusing on completeness

checking of NL requirements and NLP techniques in

RE. Section 4 presents our approach. Section 5 reports

on our experimental design, analysis and results. Sec-

tion 6 employs human feedback to validate a design

choice in our evaluation regarding the matching of pre-

dictions with simulated omissions. Section 7 discusses

the limitations of our approach and the validity of our

findings. Section 8 summarizes the article and suggests

directions for future research.

2 Background

Below, we review the background for our work, cov-

ering the NLP pipeline, large language models, word

embeddings, machine learning and corpus extraction.

2.1 NLP Pipeline

NLP is a branch of artificial intelligence (AI) that is

concerned with automated analysis and representation

of natural language, both text and speech [51]. NLP

is usually performed using a pipeline of modules [31].

The exact pipeline varies depending on the specific NLP

task, and the tools and models used to perform it. The

NLP pipeline we need in this article is presented in

Fig. 2. We use the annotations produced by this pipeline

for several purposes, including the identification and

lemmatization of terms in requirements documents as

well as processing predictions made by BERT in their

surrounding context.

The modules in our NLP pipeline are as follows:

Tokenizer. The tokenizer breaks the text into indi-

vidual words or tokens. Tokenization can be performed

using various techniques such as whitespace-based, rule-

based, or statistical methods [32]. For example, using
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Fig. 2: NLP Pipeline.

whitespace, the sentence “The model shall be imple-

mented in Python.” would be tokenized as: ‘the’, ‘model’,

‘shall’, ‘be’, ‘implemented’, ‘in’, ‘Python’ and ‘.’.

Sentence Splitter. The sentence splitter breaks the

text into individual sentences. Sentence splitting typi-

cally uses punctuation marks, capitalization, and other

cues to identify sentence boundaries [32]. It is impor-

tant to note that the structure of what constitutes a

sentence is predefined and may not necessarily corre-

spond to grammatically correct sentences.

Part-of-speech (POS) Tagger. The POS tagger as-

signs to each word in each sentence a POS label, such

as noun, verb, adjective or adverb. Continuing with our

previous example, “The model shall be implemented in

Python.”, the POS tags assigned would be: ‘The’: DT

(determiner), ‘model’: NN (singular noun), ‘shall’: MD

(modal auxiliary verb), ‘be’: VB (base form verb), ‘im-

plemented’: VBN (past participle verb), ‘in’: IN (prepo-

sition), ‘Python’: NNP (singular proper noun), and

‘.’: PUNCT (punctuation).

Lemmatizer. The lemmatizer reduces words to their

base form, known as the lemma. This process helps

normalize words with different inflections, allowing the

pipeline to treat them as the same entity. Lemmati-

zation improves text analysis by reducing vocabulary

size and ensuring words with the same root meaning

are treated equally. For example, the lemma for both

‘running’ and ‘ran’ is ‘run’.

2.2 Large Language Models (LLMs)

A large language model (LLM) is a type of artificial-

intelligence model designed specifically to understand

and generate human language. LLMs are typically built

using deep-learning techniques, particularly variants of

neural networks such as transformers [16]. In this arti-

cle, our LLM of choice is the Bidirectional Encoder Rep-

resentations from Transformers (BERT) [16]. BERT is

pre-trained using two self-supervised tasks: Masked Lan-

guage Modelling (MLM) and Next Sentence Prediction

(NSP). We use the MLM to identify closely related al-

ternative words that may be relevant but are currently

missing from an input RS.

MLM, or the Cloze task, is a procedure of randomly

masking a percentage of tokens from a natural-language

input and then attempting to predict the masked to-

ken [16]. When feeding an input text to BERT, there are

three special tokens to take into consideration. ‘[CLS]’

is a classification token appended to the start of every

input to demarcate the beginning of the text. ‘[SEP]’ is

a separator token to mark the end of one sentence from

the beginning of another. And, ‘[MASK]’ is a masking

token for the MLM task; ‘[MASK]’ replaces an actual

word in a sentence, prompting the prediction of con-

textualized tokens likely to match the masked word.

Continuing with the example from Section 2.1, the sen-

tence “The model shall be implemented in Python.”

would be modified into “[CLS] The model shall be im-

plemented in Python. [SEP]” before tokenization. If we

were to mask the word ‘Python’, the sentence would

be updated to “[CLS] The model shall be implemented

in [MASK]. [SEP]”. Examples of predictions made by
BERT are provided over requirements R1-R3 in Fig. 1.

BERT uses a bidirectional encoder for generating

context-aware word representations. The encoder con-

sists of a stack of Transformer blocks that use self-

attention mechanisms [48] to encode the input sequence

in both directions. BERT Base and BERT Large are

two types of the BERT model. BERT Large, while gen-

erally more accurate, requires more computational re-

sources. BERT Base has 12 encoder layers with a hid-

den size of 768, 12 self-attention heads, and ≈110 mil-

lion trainable parameters. Further variations of BERT

include cased and uncased models. For BERT uncased,

the text has been lower-cased before tokenization,

whereas in BERT cased, the tokenized text is the same

as the input text. Previous RE research suggests that

the cased model is preferred over uncased for analyz-

ing requirements [30,19]. To both mitigate computa-

tion costs and follow best practices in RE, we employ

the BERT-base-cased model for our experimentation.
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2.3 Word Embeddings

In our work, predictions generated by MLM may have

similar meanings in the context of a match against the

ground truth, even if the terms themselves are not lex-

ically identical. We thus need a semantic notion of sim-

ilarity for matching predictions from the MLM against

what is desired based on the ground truth. For instance,

we aim to establish matches between terms such as

(i) ‘key’ and ‘unlock’, and (ii) ‘encryption’ and ‘secu-

rity’, despite them not being lexically equivalent. For

this, we use cosine similarity over word embeddings. Co-

sine similarity quantifies the similarity of two words by

calculating the distance between their vector represen-

tations [38]. To obtain a vector representation, we must

first transform each word into its own word embedding.

Word embeddings are mathematical representations of

words as dense numerical vectors capturing syntactic

and semantic regularities [39].

To construct word embeddings, we use GloVe (Global

Vectors for Word Representation), an unsupervised ma-

chine learning model that creates word embeddings us-

ing a co-occurrence matrix [42]. Different versions of

GloVe have different dimensionality for embeddings.

We use GloVe with a dimensionality of 50. Our deci-

sion to employ GloVe’s pre-trained model for obtaining

non-contextualized word embeddings [42] is motivated

by striking a trade-off between accuracy and efficiency.

BERT generates contextualized word embeddings; how-

ever, these embeddings are expensive to compute be-

cause they take context into consideration. BERT em-

beddings thus do not scale well when a large number of

pairwise term comparisons is required, which happens

to be the case in our evaluation.

2.4 Machine Learning (ML)

Machine learning (ML) can be divided into three main

types: unsupervised learning, supervised learning, and

reinforcement learning. Unsupervised learning uses un-

labelled data, which lacks predefined categories, to find

patterns or relationships in the data without prior knowl-

edge of the output labels. In supervised learning, a

labelled dataset is used to learn the relationships be-

tween the input features and the output labels. Fi-

nally, reinforcement learning focuses on agents interact-

ing with an environment and learning optimal actions

through trial and error by receiving feedback in the

form of rewards or penalties based on the consequences

of their actions. In this article, we use supervised learn-

ing for distinguishing relevant from non-relevant pre-

dictions made by BERT. Our empirical evaluation (Sec-

tion 5) examines several widely used supervised ML al-

gorithms, namely Neural Network (NN), Decision Tree

(DT), Logistic Regression (LR), Random Forest (RF),

and Support Vector Machine (SVM), in order to deter-

mine which one(s) are most accurate for our purpose.

Classification techniques rely on the extraction of

relevant features from the input data. The features can

be nominal, numeric, or ordinal. Numeric features are

continuous or discrete numerical values. Nominal fea-

tures are discrete values that describe some categorical

aspect of the data. Ordinal features have an inherent

order through ranking to indicate a higher or lower

value in relation to one another. Feature selection is

the process of selecting a subset of relevant features

from the original set of features to improve the accu-

racy and efficiency of a machine learning model [34,12].

The goal is to eliminate irrelevant or redundant features

that do not contribute significantly to the model’s per-

formance, while retaining the most important features.

We employ feature selection to rank the importance of

features and ensure that only the most valuable ones

are computed and retained. Our features for learning

and our process for creating labelled data are discussed

in Sections 4 and 5, respectively.

Classification models have a tendency to predict the

more prevalent class(es) [49]. Furthermore, classifica-

tion algorithms typically give equal treatment to dif-

ferent misclassification types when minimizing misclas-

sification. In many problems, however, the costs asso-

ciated with different misclassification are not symmet-

ric. In our context, non-relevant terms outnumber rele-

vant ones. This increases the likelihood of terms being

classified as non-relevant, thus increasing the risk of

false negatives (i.e., useful terms being filtered out). We

under-sample the majority class (i.e., non-relevant) to

counter imbalance in the training set and thus reduce

the risk of filtering useful information [9]. We assign

a higher penalty to relevant terms being filtered than

non-relevant terms being classified as relevant. In other

words, we prioritize Recall over Precision which is often

necessary in RE tasks. A second strategy we employ

in order to prioritize Recall is cost sensitive learning

(CSL). CSL can improve accuracy by assigning differ-

ent misclassification costs to different classes or types

of errors, with the aim of minimizing the prevalence

of certain types of misclassified data [23]. In our ap-

proach, filtering a false negative (i.e., “relevant” predic-

tion) is more detrimental than filtering a false positive

(i.e., “non-relevant” prediction). We thus use CSL to

adjust the model’s parameters and bias it towards re-

ducing the prevalence of false negatives, even if it leads

to a higher number of false positives, to ensure that

useful predictions do not get filtered.
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2.5 Domain-corpus Extraction

Domain-specific corpora are useful resources for im-

proving the accuracy of automation in RE [20]. The do-

main can be any specific subject or field, such as health-

care, telecommunications, or law. Domain-specific cor-

pus extraction is the process of creating a corpus from

existing texts or documents that are relevant to a par-

ticular domain. In this article, we use domain-specific

corpora to enhance the accuracy of classifiers in filtering

out non-relevant terms from BERT predictions.

The first step in domain-corpus extraction is to de-

fine the domain’s scope and determine relevant sources

to the domain. If a domain-specific corpus already ex-

ists, there may be no need to generate a new one. How-

ever, if a suitable corpus is not available, then one can

be extracted manually or automatically. Corpus cre-

ation can be based on domain documents from sources

such as books, magazines, and online resources.

Due to its extensive coverage and diverse range of

articles, Wikipedia is among the most common sources

used for corpus extraction [20,14,25,21]. Manual corpus

extraction involves searching for and selecting relevant

texts or documents by hand. This process can be time-

consuming and requires domain expertise to ensure that

the selected texts are representative of the domain. Au-

tomated corpus extraction navigates a collection of tex-

tual documents according to pre-specified criteria to

build a corpus. The criteria for extraction may be based

on keywords, topic modelling, or named-entity recogni-

tion [20]. To avoid burdening users with manual tasks

and minimize the cost of using our approach, we opt

for automated corpus extraction. To do so, we use an
existing tool, named WikiDoMiner [21]. This tool has

been specifically designed to generate domain-specific

corpora by crawling Wikipedia.

WikiDoMiner allows control over corpus expansion

through a depth parameter. A depth of zero creates

a corpus of articles directly matching the key phrases

in the input document, while increasing the depth re-

sults in larger corpora that encompass sub-categories of

Wikipedia articles. To better understand how

WikiDoMiner queries Wikipedia, consider the scenario

borrowed from Ezzini et al. [21] and illustrated in Fig. 3.

In Wikipedia, articles are categorized and can belong to

multiple hierarchical categories. For instance, a search

for the keyword “rail transport” in the Railway domain

may yield an article titled “Rail Transport.” By an-

alyzing the category structure of this article, we find

that it falls under a category with the same name,

referred to as Category A in Fig. 3. Further explo-

ration of a sub-category such as “Rail Infrastructure”

reveals additional pages and sub-categories. As we ex-

rail transport Keyword
2

Keyword
K...

...

Categories ...

Articles ...

Sub- Categories

Articles ...

RS

depth 0

depth 1

depth 2

Articles

Extract
Keywords A

22

31

860

Fig. 3: Traversing Wikipedia Categories [21].

plain in Section 4, we use domain-specific corpora ex-

tracted by WikiDoMiner to calculate frequency-based

statistics for filtering.

3 Related Work

In this section, we discuss and compare with pertinent

areas of related work in the RE literature, focusing

on (1) completeness checking of NL requirements, and

(2) NLP for requirements engineering.

3.1 Completeness Checking of NL Requirements

There are various methods for determining the com-

pleteness of NL requirements. España et al. [18] mea-

sure completeness by comparing use cases against infor-

mation systems through communication analysis. The

authors evaluate the level of completeness achieved by

reviewed models against a reference model. Gigante et

al. [27] use ontological engineering to determine com-

pleteness of requirements. They model requirements in

the form of (subject, predicate, object) triplets. These

triplets are then compared against an external source

to verify completeness.

Eckhardt et al. [17] propose a framework consisting

of a unified model for performance requirements and a

content model to capture relevant content for address-

ing incompleteness. This process utilizes sentence pat-

terns derived from the content model to evaluate com-

pleteness of requirements. Alrajeh et al. [2] create syn-

thetic obstacles to verify completeness of requirements.

6



The approach uses model checking and iteratively gen-

erates domain-specific obstacles, with the process end-

ing after achieving a domain-complete set of obstacles.

The above works cross validate requirements against an

external model to measure completeness. Our approach

seeks to address the same challenge by using a gener-

ative language model, BERT, and its vast pre-training

data as a knowledge source for making contextualized

predictions. Arora et al. [4] conduct a case study to de-

tect external incompleteness of requirements using do-

main models. The authors simulate requirements omis-

sions and demonstrate that UML class diagrams can

display a near-linear sensitivity to detecting missing

and under-specified requirements. Dalpiaz et al. [15]

develop a technique based on NLP and visualization to

explore commonalities and differences between multiple

viewpoints and thereby help stakeholders pinpoint oc-

currences of ambiguity and incompleteness. Differences

may occur when terms appear in a single viewpoint, i.e.,

the situation where a viewpoint refers to concepts that

do not appear in other viewpoints. In the above works,

the sources of knowledge used for completeness check-

ing are existing development artifacts. Our approach

does not require any user-provided artifacts. We lever-

age BERT’s capacity to predict relevant terminology,

independently of supplementary artifacts, to ensure do-

main independence.

Bhatia et al. [11] address incompleteness in privacy

policies by representing data actions as semantic frames.

A semantic frame is constructed by identifying rele-

vant questions for the data action, as semantic roles.

Semantic roles represent the relationship of different

clauses in statements to the main action. They iden-

tify the expected semantic roles for a given frame, and

consequently determine incompleteness by identifying

missing role values. Cejas et al. [3] use NLP and ML

for completeness checking of privacy policies. Their ap-

proach identifies instances of pre-defined concepts such

as “controller” and “legal basis” in a given policy. They

create a conceptual model as a hierarchical represen-

tation of metadata types referring to different GDPR

concepts based on hypothesis coding. It then verifies

through rules whether all applicable concepts are cov-

ered. The above works deal with privacy policies only

and have a predefined conceptual model for textual con-

tent. Our BERT-based approach is not restricted to a

particular application domain and does not have a fixed

conceptualization of the textual content under analysis.

Instead, we utilize BERT’s pre-training and attention

mechanism to make contextualized recommendations

for improving completeness.

3.2 NLP for Requirements Engineering

Natural Language Processing for Requirements Engi-

neering (NLP4RE) is a field that employs techniques

from NLP to address challenges faced in the RE do-

main. Applications of NLP4RE include terminology ex-

traction [28], requirements similiarity and retrieval [1],

user story analysis [35], and legal requirements analy-

sis [46].

The state of the art in NLP4RE has been exten-

sively covered in a recent literature review by Zhao et

al. [52]. Two of the papers identified in this literature re-

view utilize BERT-based language modelling, although

neither work focuses on evaluating completeness of re-

quirements. The first paper by Hey et al. [30] presents

a new method for unsupervised representation learn-

ing, called NoRBERT (Non-functional and functional

Requirements classification using BERT). NoRBERT

can be used for a wide range of NLP tasks, particularly

when labeled data is limited or unavailable. The second

paper by Sainani et al. [43] uses BERT for automating

the extraction and classification of requirements from

software engineering contracts. Although both papers

employ BERT, neither work applies BERT’s MLM task

in their approach.

In more recent literature, Shen and Breaux [45] pro-

pose an NLP-based approach for extracting domain

knowledge from word embeddings and user-authored

scenarios. Their approach involves gathering a corpus

of scenarios authored by users in four distinct directory-

service domains - apartments, hiking trails, restaurants,

and health clinics. Then, the authors extract basic do-

main models from these scenarios by utilizing typed

dependencies. The authors use seed question templates
that include a domain-specific noun, seed verb and mask,

and utilize MLM to predict substitute tokens for the

mask. While this approach is not concerned with check-

ing the completeness of requirements, it uses BERT’s

MLM for generating alternative entities by masking

words in requirements statements. Our approach uses

BERT’s MLM in a similar manner. In contrast to the

above work, we take steps to address the challenge aris-

ing from such use of BERT over requirements, namely

the large number of non-relevant alternatives (false pos-

itives) generated. We propose a ML-based filter that

uses a combination of NLP and statistics extracted from

a domain-specific corpus to reduce the incidence of false

positives.

4 Approach

Figure 4 provides an overview of our approach. The

input to the approach is a (textual) requirement speci-
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Fig. 4: Approach Overview.

fication (RS). The approach has six steps. The first step

is to parse the RS. The second step is to generate pre-

dictions for masked words using BERT. The third step

is to remove the predictions that provide little or no ad-

ditional information. The fourth step is to construct a

domain-specific corpus for the given RS. Using this cor-

pus and the results from Step 1, the fifth step is to build

a feature matrix for ML-based filtering of non-relevant

terms from predictions by BERT. The sixth and last

step is to feed the computed feature matrix to a (pre-

trained) classifier in an attempt to remove noise (non-

relevant words) from the predictions. The output of the

approach is a list of recommended terms that are likely

relevant to the RS but are currently absent from it.

4.1 Parsing RS using NLP

To recommend relevant terms that may be missing from

a given RS, we first apply to the RS the NLP pipeline

presented in Section 2. Annotations resulting from this

step include tokens, sentences, POS tags, and lemmas.

Subsequent steps utilize the POS tags for masking and

predicting terms.

4.2 Obtaining Predictions from BERT

The core meaning-bearing elements of requirements are

nouns and verbs [33,4]. We iterate through each sen-

tence in the annotated RS derived from Step 1. Based

on the POS tags from Step 1, we mask one noun or

one verb at a time, creating a sentence with a sin-

gle concealed word. Consider the sentence: “The sys-

tem shall generate reports on inventory levels, product

movement, and sales history.” The POS tags for the

tokens in this sentence are: ‘The’ (DT); ‘system’ (NN);

‘shall’ (MD); ‘generate’ (VB); ‘reports’ (NNS); ‘on’ (IN);

‘inventory’ (NN); ‘levels’ (NNS); ‘,’ (COMMA); ‘prod-

uct’ (NN); ‘movement’ (NN); ‘,’ (COMMA); ‘and’ (CC);

‘sales’ (NNS); ‘history’ (NN); ‘.’ (PERIOD). For this

sentence, examples of sentences with one concealed word

are: “The system shall [MASK] reports on inventory

levels, product movement, and sales history”, and “The

system shall generate [MASK] on inventory levels, prod-

uct movement, and sales history”. Each modified sen-

tence is inputted to BERT, which generates a config-

urable number of predictions for the masked word. For

example, in our illustration shown in Fig.1, we use BERT

to generate five predictions per masked word. Based on

our empirical evaluation in Section 5, we recommend

using 15 predictions per masked word. BERT gener-

ates a probability score for each prediction, indicating

its level of confidence. We retain the probability scores

for use in Step 5 of our approach.

4.3 Removing Obviously Unuseful Predictions

We attempt to improve the accuracy of our approach

by removing predictions that are clearly not useful. The

first category of predictions we discard are those that

are already present in the RS. Consider the following

sentence: “The system shall provide a programmable

interface to support system integration.” If the word

‘integration’ is masked and BERT happens to predict

exactly the same term back, then we do not include the

prediction in the prediction list, because it does not of-

fer any new insights. We identify two further categories

of predictions that are unlikely to contribute meaning-

fully to the final output: (1) predictions that fall within

the top 250 most commonly used words in the English

language, since these words are too generic, and (2) pre-

dictions that fall within vague words and stop words

for requirements, as per the lists compiled by Berry et

al. [10] and Arora et al. [5] [6]. The end result of this

step is a more focused list of predictions that is cleared

of obviously unhelpful terms.
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4.4 Generating Domain-specific Corpus for RS

In Step 4 of our approach, we use WikiDoMiner (intro-

duced in Section 2.5) to automatically extract a domain-

specific corpus for an input RS [21].

For example, if an aerospace engineering RS is fed

into WikiDoMiner, the resulting corpus may contain

articles on aircrafts, aviation, and fluid dynamics. Re-

call that as the depth parameter of WikiDoMiner in-

creases, the corpus grows larger, encompassing more

sub-categories of Wikipedia articles at each level. In our

work, we limit our search to direct article matches only

(i.e., depth = 0 ). This decision was motivated by the

following considerations: First, by limiting the depth

to zero, we significantly reduce the volume of text be-

ing processed, enabling faster corpus generation. Sec-

ond, focusing on direct article matches helps scope the

expansion of terminology to the content that is imme-

diately relevant to the domain of the input RS. Dur-

ing our exploratory investigation, we discovered that

increasing the depth value results in diluting domain-

specificity. Our decision to use a depth value of zero

strikes a balance between corpus size and domain cov-

erage, yielding better-suited corpora for our purposes.

Step 5 uses the domain-specific corpus to compute fea-

tures, which are subsequently employed for filtering non-

relevant predictions.

4.5 Building Feature Matrix for Filtering

For each prediction from Step 3, we compute a feature

vector as input for a ML-based classifier that decides

whether the prediction is “relevant” or “non-relevant”

to the input RS. Our features are listed and explained

in Table 1.

The main principle behind our feature design has

been to keep the features generic and in a normalized

form. Being generic is important because we do not

want the features to rely on any particular domain or

terminology. Having the features in a normalized form

is important for allowing labelled data from multiple

documents to be combined for training, and for the

resulting ML models to be applicable to unseen docu-

ments. The output of this step is a feature matrix where

each row represents a prediction (from Step 3) and each

column represents a feature as defined in Table 1.

Most of the features listed in Table 1 can be eas-

ily understood based on the accompanying definitions.

Below, we provide additional explanation for F10–F13

which are more involved. F10 and F11 are based on

quantile bucketing. To categorize the frequency of pre-

dictions into discrete intervals or “buckets”, we can di-

vide the terms into equal-sized groups based on per-

centiles. Suppose that we have a bag of 1000 predic-

tions generated by BERT, and that we wish to cre-

ate 10 quantile buckets based on the frequency of these

predictions. To do so, we first count the number of oc-

currences of each predicted word and sort them in de-

scending order of frequencies. We then divide the words

into 10 equally-sized groups based on their rank to cre-

ate the quantile buckets. We assign the most frequently

predicted words to bucket 0, and the least frequently

predicted words to bucket 9. F12 and F13 are based

on Term Frequency-Inverse Document Frequency (TF-

IDF) [44] – a common technique for measuring the im-

portance of terms (words) in a particular domain.

4.6 Filtering Noise from Predictions

The predictions from Step 3 are noisy (i.e., have many

false positives). To reduce the noise, we subject the pre-

dictions to a pre-trained ML-based filter. The most ac-

curate ML algorithm for this purpose is selected empir-

ically (see RQ3 in Section 5). The selected algorithm is

trained on the development and training portion of our

dataset (P1 in Table 2, as we discuss in Section 5). Due

to our features in Table 1 being generic and normalized,

the resulting ML model can be used as-is over unseen

documents without re-training (see RQ4 in Section 5

for evaluation of effectiveness). The output of this step

is the list of BERT predictions that are classified as

“relevant” by our filter; duplicates are excluded from

the final results.

5 Evaluation

In this section, we empirically evaluate our approach.

During the process, we also build the pre-trained ML

model required by Step 6 of the approach (Fig 4).

5.1 Research Questions (RQs)

Our evaluation answers the following RQs using part of

the PURE dataset [26]. In lieu of expert input about

incompleteness for the documents in this dataset, we

apply the withholding strategy discussed in Section 1.2

to simulate incompleteness.

RQ1. How accurately can BERT predict relevant
but missing terminology for an input RS? The

number of predictions generated by BERT per mask

is a configurable parameter. RQ1 identifies the opti-

mal value offering the best balance for producing use-

ful recommendations. This investigation will focus on

the optimal number of predictions per mask between
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Table 1: Features for Learning Relevance and Non-relevance of Predictions Made by BERT.

ID Type (T), Definition (D) and Intuition (I)

F1 (T) Nominal (D) POS tag of the masked word (noun or verb). (I) This feature is helpful if nouns and
verbs happen to influence relevance in different ways.

F2 (T) Nominal (D) POS tag of the prediction; this is obtained by replacing the masked word with the
predicted word and running the NLP pipeline on the resulting sentence. (I) The intuition is similar to
F1, except that predictions are not necessarily nouns or verbs and can, e.g., be adjectives or adverbs.

F3 (T) Nominal (Boolean) (D) True if F1 and F2 match; otherwise, False. (I) A mismatch between F1 and
F2 could be an indication that the prediction is non-relevant.

F4 (T) Numeric (D) Length (in characters) of the masked word. (I) Words that are too short may give
little information. As such, predictions resulting from masking short words could be non-relevant.

F5 (T) Numeric (D) Length (in characters) of the prediction. (I) Predictions that are too short could be
non-relevant.

F6 (T) Numeric (D) min (F4, F5)/max (F4, F5). (I) A small ratio (i.e., a large difference in length between
the prediction and the masked word) could indicate non-relevance.

F7 (T) Numeric (D) The confidence score that BERT provides alongside the prediction. (I) A prediction
with a high confidence score could have an increased likelihood of being relevant.

F8 (T) Numeric (D) Levenshtein distance between the prediction and the masked word. (I) A small Lev-
enshtein distance between the prediction and the masked word could indicate relevance.

F9 (T) Numeric (D) Semantic similarity computed as cosine similarity over word embeddings. (I) A pre-
diction that is close in meaning to the masked word could have a higher likelihood of being relevant.

F10∗ (T) Ordinal (D) A value between zero and nine, indicating how frequently the prediction (in lemmatized
form) appears across all BERT-generated predictions over a given RS. (I) A smaller value could indicate
a higher likelihood of relevance.

F11∗ †(T) Ordinal (D) A value between zero and nine, indicating how frequently the prediction (in lemmatized
form) appears in the domain-specific corpus. (I) A smaller value could indicate a higher likelihood of
relevance.

F12† ‡(T) Numeric (D) Average TF-IDF rank of the prediction across all articles in the domain-specific corpus.
(I) A higher rank could indicate a higher likelihood of relevance.

F13† ‡(T) Numeric (D) Maximum TF-IDF rank of the prediction across all articles in the domain-specific
corpus. (I) Same intuition as that for F12.

∗Zero is most frequent (top ten percentile) and nine is least frequent (bottom ten percentile). †Feature uses
domain-specific corpus. ‡TF-IDF values are normalized by Euclidean norm.

the range of 5 and 20. Choosing an optimal number of

predictions is essential for ensuring that our approach

maintains the potential to provide benefits. If the num-

ber of predictions is too low, the approach may miss out

on relevant recommendations. Conversely, if the num-

ber of predictions is too high, the approach may gener-

ate too much noise, thus making it difficult for users to

identify the most relevant recommendations.

RQ2. How does our approach compare to base-
lines? RQ2 examines whether the contextualized rec-

ommendations made by BERT are advantageous over

recommendations that one can obtain through simpler

means. To this end, we conduct a comparative analysis

of the quality of predictions generated by our approach

against three baseline methods.

RQ3. Which ML classification algorithm most
accurately filters unuseful predictions made by
BERT? Useful recommendations from BERT come

alongside a considerable amount of noise. RQ3 inves-

tigates different ML algorithms for filtering this noise.

The RQ further explores the impact of data balancing

and cost-sensitive learning to mitigate over-filtering.

RQ4. How accurate are the recommendations
generated by our approach over unseen docu-
ments? In RQ4, we combine the best BERT configu-

ration from RQ1 with the top-performing filter models

from RQ3, and measure the accuracy of this combina-

tion over unseen data.

5.2 Implementation and Availability

Figure 5 presents an overview of the implementation of

our approach. The implementation is mostly in Python.

Our NLP pipeline is implemented using SpaCy version

3.2.2. To extract word embeddings, we use GloVe [42].
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For obtaining masked language model predictions from

BERT, we use the Transformers library version 4.16.2

by Hugging Face (https://huggingface.co/), oper-

ated in PyTorch version 1.10.2+cu113. Our ML-based

filters are implemented using WEKA 3-8-5 [50] – a

lightweight tool for data mining and knowledge discov-

ery. We use standard implementations of Levenshtein

distance and cosine similarity (over word embeddings)

to implement features F8 and F9 of Table 1, respec-

tively. The TF-IDF-based features in Table 1, namely

F12 and F13, are calculated using the TfidfVectorizer

from scikit-learn version 1.0.2. The corpus required for

the TF-IDF-based features is automatically constructed

using the WikiDoMiner tool [21]. In addition, Word-

Net [22] is used for discovering synonyms in one of our

baselines (Baseline 3 as we discuss under EXPII in Sec-

tion 5.4). All our implementation and evaluation arti-

facts are publicly available [36].

5.3 Dataset

Our evaluation is based on the PURE (Public Require-

ments) dataset [26]. PURE is a collection of 79 publicly

available requirements documents, containing approxi-

mately 34,000 sentences. In our evaluation, we use 40

out of the 79 documents in PURE. Many of the docu-

ments in PURE require manual cleanup (e.g., removal

of table of contents, headers, section markers, etc.).

Table 2: Our Dataset (Subset of PURE [26]). P1 is for

development and training and P2 for testing.

Training (P1) Testing (P2)

Security  - sprat,
cctns, dii

Finance gamma,
jse

e-procurement

Administration

tachonet,
nasa x38,
nenios,
libra

inventory

Astronomy evla back,
gemini

esa,
telescope

Energy pnnl themas,
elsfork

Communications philips,
ctc network

agentmom,
tcs

Hardware 
Design

beyond evla corr

Medicine  - micro care
Databases  - npac

Games  space fractions,
multi-mahjong

qheadache

Art  - colorcast

Weather clarus low,
grid bgc

clarus high

Legal  - ijis
Transport  - rlcs

Number of 
sentences

11712 12694

Number of tokens 185552 193926

Domain

UX/Visualization watcom gui,
sce api,

grid 3D

Statistics

We found 40 to be a good compromise between the

effort needed to spend on cleanup and having a dataset

that is large enough for statistical significance testing,

mitigating the effects of random variation, and train-

ing ML-based filters. The selected documents, listed

in Table 2, cover 15 domains. We partition the doc-

uments into two (disjoint) subsets P1 and P2. P1 is

used for answering RQ1, RQ2, and RQ3; and, P2 is

used for answering RQ4. Our procedure for assigning

documents to P1 or P2 was as follows: We first ran-

domly selected one document per domain and put it

into P2; this is to maximize domain representation in

RQ4. From the rest, we randomly selected 20 docu-

ments for inclusion in P1, while attempting to have P1

represent half of the data in terms of token count. Any

remaining document after this process was assigned to

P2, thus giving us 20 documents in P2 as well. Table 2

provides domain information and summary statistics

for documents in P1 and P2 after cleanup.
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5.4 Analysis Procedure

EXPI. This experiment answers RQ1. For every doc-

ument p ∈ P1, we randomly partition the set of sen-

tences in p into two subsets of (almost) equal sizes. In

line with our arguments in Section 1, we disclose one

of these subsets to BERT and withhold the other. We

apply Steps 1, 2 and 3 of our approach (Fig. 4) to the

disclosed portion, as if this portion were the entire in-

put document. We run Step 2 of our approach with four

different numbers of predictions per mask: 5, 10, 15,

and 20. For every document p ∈ P1, we compute two

metrics, Accuracy and Coverage, defined in Section 5.5.

As the number of predictions per mask increases from 5

to 20, the predictions made by BERT reveal more terms

that are relevant to the withheld portion. Nevertheless,

as we will see in Section 5.6, the benefits diminish be-

yond 15 predictions per mask.

To ensure that the trends we see as we increase the

number of predictions per mask are not due to random

variation, we pick different shuffles of each document

p across different numbers of predictions per mask. For

example, the disclosed and withheld portions for a given

document p when experimenting with 5 predictions per

mask are different random subsets than when experi-

menting with 10 predictions per mask.

EXPII. This experiment answers RQ2. To ensure that

our approach is worthwhile, we need to compare it to

baselines. Since our approach uses an LLM as its exter-

nal source of knowledge, we cannot compare it to ex-

isting external completeness checking approaches which

require additional artifacts such as domain models or

interview transcripts; such artifacts are not available

for our requirements dataset. To demonstrate that our

approach is worthwhile, we define three common-sense

baselines that are not based on LLMs and, at the same

time, do not require any purpose-built artifacts. The

first baseline, Baseline 1, is the list of 250-to-2000 most

common words in the English language. This baseline

enables us to assess whether BERT leads to contex-

tualized predictions that have greater specificity than

generic recommendations. The second baseline, Base-

line 2, uses TF-IDF obtained over the domain-specific

corpus generated in Step 4 of our approach. Specifically,

the baseline recommends all terms with a TF-IDF score

exceeding a predetermined threshold, which we have

set at 0.01. This baseline captures the most relevant

terminology in a domain. By comparing against Base-

line 2, we examine whether BERT’s context-specific

predictions have an advantage over the domain-specific

but non-contextualized terms derived from a corpus.

The third baseline, Baseline 3, collects WordNet syn-

onyms of the words found in the disclosed portion of

a given RS. Comparing with Baseline 3 allows us to

assess whether the predictions generated by BERT ex-

tend beyond synonyms that can be obtained through

simpler methods than an LLM. Appendix A outlines

our three baselines in pseudo-code form. To facilitate

a direct comparison with EXPI results, we apply the

three baselines to P1 and evaluate their performance

using the Accuracy and Coverage metrics (defined in

Section 5.5).

EXPIII. This experiment answers RQ3 and further

constructs the training set for the ML classifier in Step 6

of our approach (Fig. 4). We recall the disclosed and

withheld portions as defined in EXPI. For every doc-

ument p ∈ P1, we label predictions as “relevant” or

“non-relevant” using the following procedure: Any pre-

diction matching some term in the withheld portion is

labelled “relevant”. The criterion for deciding whether

two terms match is a cosine similarity of ≥ 85% over

GloVe word embeddings (introduced in Section 2). All

other predictions are labelled “non-relevant”. The thresh-

old of 85% allows only terms with the same lemma or

with very high semantic similarity to be matched. In

Section 6, we empirically justify the chosen threshold,

ensuring its conservative nature to minimize superflu-

ous matches.

For each prediction, a set of features is calculated as

detailed in Step 5 of our approach. It is paramount to

note that Step 4, which is a prerequisite to Step 5, ex-

clusively uses the content of the disclosed portion with-

out any knowledge of the withheld portion. The above

process produces labelled data for each p ∈ P1. We ag-

gregate all the labelled data into a single training set.

This is possible because our features (listed in Table 1)

are generic and normalized. This process ensures that

the ML-based filter is trained on a diverse range of data,

allowing it to effectively filter out non-relevant predic-

tions and yield more accurate results.

Equipped with a training set, we compare five ML

algorithms: Feed Forward Neural Network (NN), Deci-

sion Tree (DT), Logistic Regression (LR), Random For-

est (RF) and Support Vector Machine (SVM). All al-

gorithms are tuned with optimal hyperparameters that

maximize classification accuracy over the training set.

For tuning, we apply multisearch hyperparameter opti-

mization using random search [8]. The basis for tuning

and comparing algorithms is ten-fold cross validation.

We experiment with under-sampling the “non-relevant”

class with and without cost-sensitive learning (CSL);

the motivation is reducing false negatives (i.e., relevant

terms incorrectly classified as “non-relevant”). For CSL,

we assign double the cost (penalty) to false negatives

compared to false positives (i.e., noise). We further as-

sess the importance of our features using information
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gain (IG) [49]. In our context, IG measures how effi-

cient a given feature is in discriminating “non-relevant”

from “relevant” predictions. A higher IG value implies

a higher discriminative power.

EXPIV. This experiment answers RQ4 by applying

our end-to-end approach to unseen requirements doc-

uments, i.e., P2. To conduct EXPIV, we need a pre-

trained classifier for Step 6 of our approach (Fig. 4).

This classifier needs to be independent of P2. We build

this classifier using the training set derived from P1, as

discussed in EXPIII. EXPIV follows the same strategy

as in EXPI, which is to randomly withhold a portion of

each document p (now in P2 rather than in P1) and at-

tempting to predict the novel terms of the withheld por-

tion. In contrast to EXPI, in EXPIV, predictions made

by BERT are post-processed by a filter to reduce noise.

Furthermore, whereas EXPI split each document into

two roughly equal portions, i.e., a 50-50 split, EXPIV

considers two different split ratios: a 50-50 split simi-

lar to EXPI, as well as a 90-10 split, where 90% of the

document is disclosed and only 10% is withheld. The

50-50 split enables us to examine the usefulness of our

approach where there is major incompleteness (i.e., half

of the content is missing). The 90-10 split represents the

situation where there is minor incompleteness.

We repeat EXPIV five times for each p ∈ P2. This

mitigates random variation resulting from the random

selection of the disclosed and withheld portions, thus

yielding more realistic ranges for performance. In EX-

PIV, we study three levels of filtering for the two split

ratios considered. Noting that there are 20 documents

in P2, the results reported for EXPIV are based on

20 (documents) ∗ 5 (repetitions) ∗ 3 (filtering levels) ∗
2 (split ratios) = 600 runs of our approach.

5.5 Metrics

We define separate metrics for measuring (1) the qual-

ity of term predictions and (2) the performance of fil-

tering. The first set of metrics is used in RQ1, RQ2

and RQ4; and, the second set is used in RQ3. To de-

fine our metrics, we need to introduce some notation.

Let Lem : bag → bag be a function that takes a bag of

words and returns another bag of words by lemmatiz-

ing every element in the input bag. Let U : bag → set
be a function that removes duplicates from a bag and

returns a set. Let C denote the set of common words

and stopwords as explained under Step 3 in Section 4.

Given a document p treated as a bag of words, the

terminological content of p’s disclosed portion, denoted

h1, is given by set X = U(Lem(h1)). In a similar vein,

the terminological content of p’s withheld portion, de-

noted h2, is given by set Y = U(Lem(h2)). What we

would like to achieve through BERT is to predict as

much of the novel terminology in the withheld por-

tion as possible. This novel terminology can be defined

as set N = (Y −X)− C. Let bag V be the output of

Step 3 (Fig. 4) when the approach is applied exclu-

sively to the disclosed portion of a given document

(i.e., h1). Note that V is already free of any terminol-

ogy that appears in the disclosed portion, as well as of

all common words and stopwords.

Quality of term predictions. Let set D denote the

(duplicate-free) lemmatized predictions that have the

potential to hint at novel terminology in the withheld

portion of a given document. Formally, let

D = U(Lem(V )). We define two metrics, Accuracy and

Coverage to measure the quality of D. Accuracy is the

ratio of terms in D matching some term in N , to the

total number of terms in D. That is, Accuracy = |{t ∈
D s.t. t matches some t′ ∈ N}|/|D|. A term t matches

another term t′ if the word embeddings have a cosine

similarity of ≥ 85% (already discussed under EXPIII

in Section 5.4). The second metric, Coverage, is de-

fined as the ratio of terms in N matching some term

in D, to the total number of terms in N . That is,

Coverage = |{t ∈ N s.t. t matches some t′ ∈ D}|/|N |.
The intuition for Accuracy and Coverage is the same

as that for the standard Precision and Recall metrics,

respectively. Nevertheless, since our matching is inex-

act and based on a similarity threshold, it is possible for

more than one term inD to match an individual term in

N . Coverage, as we define it, excludes multiple matches,

providing a measure of how much of the novel termi-

nology in the withheld portion is hinted at by BERT.

Quality of filtering. As explained earlier, our filter

is a binary classifier to distinguish relevance and non-

relevance for the outputs from BERT. To measure filter-

ing performance, we use the standard metrics of Clas-

sification Accuracy, Precision and Recall. True positive

(TP), false positive (FP), true negative (TN) and false

negative (FN) are defined as follows: A TP is a clas-

sification of “relevant” for a term that has a match in

set N (defined earlier). A FP is a classification of “rel-

evant” for a term that does not have a match in N .

A TN is a classification of “non-relevant” for a term

that does not have a match in N . A FN is a classi-

fication of “non-relevant” for a term that does have

a match in N . Classification Accuracy is calculated as

(TP +TN)/(TP +TN+FP +FN). Precision is calcu-

lated as TP/(TP +FP ) and Recall as TP/(TP +FN).

We note that the Classification Accuracy metric defined

for filtering is distinct from the Accuracy metric defined

for term predictions by BERT, and it is consistently re-

ferred to as such to prevent ambiguity.
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Fig. 6: (a) Accuracy and (b) Coverage for Different

Numbers of Predictions per Mask

5.6 Results

RQ1. Figures 6a and 6b provide boxplots for Accuracy

and Coverage with the number of predictions by BERT

ranging from 5 to 20 in increments of 5. Each boxplot is

based on 20 datapoints; each datapoint represents one

document in P1.

We perform statistical significance tests on the ob-

tained metrics using Wilcoxon’s rank sum test [13] and

Vargha-Delaney’s Â12 [47]. Wilcoxon’s rank-sum test is

a non-parametric statistical test used to assess whether

there is a significant difference between the distribu-

tions of two independent samples by comparing the

ranks of the observations. Vargha-Delaney’s Â12 is a

non-parametric effect size measure that quantifies the

magnitude of the difference between two groups. This

metric measures the likelihood that an observation from

one group is greater than an observation from another

group. In our case, each group represents performance

readings from a given approach for producing term rec-

ommendations. The Â12 value ranges from 0 to 1, where

0.5 indicates no difference between the two groups. Val-

ues less than 0.5 suggest the second group tends to

Table 3: Statistical Tests for the Results of Fig. 6.

Accuracy Coverage
p-value << 0.01 << 0.01
Â12 0.76 (L) 0.21 (L)

p-value << 0.001 << 0.001
Â12 0.89 (L) 0.15 (L)

p-value << 0.01 << 0.01
Â12 0.96 (L) 0.13 (L)

p-value < 0.01 0.22
Â12 0.73 (M) 0.39 (S)

p-value << 0.01 0.21
Â12 0.83 (L) 0.38 (S)

p-value 0.24 0.88
Â12  0.61 (S) 0.49 (N)

Effect size: Large (L), Medium (M), Small (S), Negligible (N)

15 vs. 20

5 vs. 10

5 vs. 15

5 vs. 20

10 vs. 15

10 vs. 20

have higher values, while values greater than 0.5 sug-

gest the first group tends to have higher values. For

instance, if Â12 equals 0.8 when comparing the perfor-

mance of two approaches, A and B, it implies that there

is an 80% probability that a randomly chosen perfor-

mance result from A will have a higher value than a

randomly chosen performance result from B, suggest-

ing a notable advantage of A over B. The Â12 is typi-

cally categorized as negligible, small, medium, or large

based on the computed numeric value. Negligible signi-

fies a very small difference, small implies a modest dif-

ference, medium indicates a moderate difference, and

large denotes a substantial difference. We apply widely

used thresholds, as suggested by Hess and Kromrey [29],

to derive these categories.

Table 3 shows the results of the statistical tests.

Each row in the table compares Accuracy and Cover-

age across two levels of predictions per mask. For ex-

ample, the 5 vs. 10 row compares the metrics for when

BERT generates 5 predictions per mask versus when it

generates 10.

For Accuracy, Fig. 6a shows a downward trend as

the number of predictions per mask increases. Based on

Table 3, the decline in Accuracy is statistically signif-

icant with each increase in the number of predictions,

the exception being the increase from 15 to 20, where

the decline is not statistically significant. For Cover-

age, Fig. 6b shows an upward but saturating trend.

Five predictions per mask is too few: all other levels

are significantly better. Twenty is too many, notably

because of the lack of a significant difference for Cov-

erage in the 10 vs. 20 row of Table 3. The choice is

thus between 10 and 15. We select 15 as this yields an

average increase of 3.2% in Coverage compared to 10

predictions per mask. This increase is not statistically

significant. Nevertheless, the price to pay is an average

decrease of (14.12−11.97 =) 2.15% in Accuracy. Given
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Fig. 7: (a) Accuracy and (b) Coverage of Baselines

Compared to BERT

Table 4: Statistical Tests for the Results of Fig. 7.

Accuracy Coverage

p-value << 0.01 << 0.01

Â12 0.05 (L) 0.10 (L)

p-value 0.05 << 0.01

Â12 0.32 (M) 0.00 (L)

p-value << 0.01 << 0.01

Â12 0.01 (L) 0.00 (L)

Unfiltered vs. 

Baseline 1

Unfiltered vs. 

Baseline 2

Unfiltered vs. 

Baseline 3

Effect size: Large (L), Medium (M), Small (S), Negligible (N)

the importance of Coverage, we deem 15 to be a better

compromise than 10.

The answer to RQ1 is: When requirements omissions

are simulated by withholding, having BERT make 15

predictions per mask is the best trade-off for detecting

missing terminology. BERT predicts terms that, on

average, hint at ≈4 out of 10 omissions (Coverage

≈38%). On average, ≈1 in 8 predictions is relevant

(Accuracy ≈12%).

RQ2. Figures 7a and 7b respectively compare the Ac-

curacy and Coverage of the three baselines described

in Section 5.4 (EXPII) against the best BERT con-

figuration identified in RQ1 (i.e., with 15 predictions

made per mask). Statistical significance testing results

are provided in Table 4. BERT outperforms all three

baselines in terms of both Accuracy and Coverage. Two

remarks need to be made regarding the baseline results:

First, the Coverage of Baselines 1 and 2 can be in-

creased by respectively increasing the number of most

common words and adjusting the TF-IDF cutoff thresh-

old (see EXPII in Section 5.4). However, doing so en-

tails a trade-off, as it leads to a decline in Accuracy

for these baselines. Second, while the inclusion of Base-

lines 1 and 2 is important for benchmarking BERT’s

performance, a fundamental distinction exists between

these two baselines and both our BERT-based solution

and Baseline 3. BERT and Baseline 3 can trace their

recommendations to the elements in the input require-

ments document. In contrast, Baseline 1 produces the

same results regardless of the input requirements doc-

ument. And, as for Baseline 2, there is no direct and

easily interpretable connection between the recommen-

dations and the requirements from which they origi-

nated. Although this difference is not reflected in the

Accuracy and Coverage results, it is still significant for

developing a practical solution. In real-world scenarios,

engineers are unlikely to be interested in reviewing a list

of recommendations without an explanation regarding

the basis for these recommendations.

The answer to RQ2 is: None of the three baselines

discussed in Section 5.4 present a better alternative

to BERT due to a significant Coverage deficit coupled

with lower Accuracy.

RQ3. Table 5 shows the results for ML-algorithm selec-

tion using the full (P1) training set (61,996 datapoints),

the under-sampled training set (36,842 datapoints), and

the under-sampled training set alongside CSL. Classi-

fication Accuracy, Precision and Recall are calculated

using ten-fold cross validation. In the table, we highlight

the best result for each metric in bold. When one uses

the full training set (option 1 ) or the under-sampled

training set without CSL (option 2 ), Random Forest

(RF) turns out to be the best alternative. When the

under-sampled training set is combined with CSL (op-

tion 3 ), RF still has the best Accuracy and Precision.

However, Support Vector Machine (SVM) presents a

moderate advantage in terms of Recall. Since option 3

is meant at further improving the filter’s Recall, we pick

SVM as the best alternative for this particular option.

Figure 8 lists the features of Table 1 in descending order
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Table 5: ML Algorithm Selection (RQ3). All algorithms have tuned hyperparameters.

R (%)P (%)A(%)R(%)P(%) R (%)A(%) P (%) P(%)A (%) A (%)R (%) R (%)P (%)A (%)

81.7 79.2 79.9 78.3 78.9 77.9 78.9 80.3Under-sampled 79.0 83.0 78.8 79.1 77.6 81.2 78.7 
Full Training Set (    )     57.474.181.467.076.484.158.173.581.361.574.682.365.169.581.1 

Logistic RegressionDecision Tree Random ForestNeural Network Support Vector 
Machine

A(%) = Classification Accuracy, P(%) = Precision of the “relevant” class, R(%) = Recall of the “relevant” class; all values are percentages.
92.476.890.371.777.6 7077.3 79.177.1 88.674.571.772 90.4 91.7Under-sampled + CSL
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of information gain (IG), averaged across options 1, 2

and 3. We observe that our corpus-based features (F11–

F13) are among the most influential features, thus jus-

tifying the use of a domain-specific corpus extractor in

our approach.
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Fig. 8: Feature Importance (Avg).

Compared to option 1, options 2 and 3 get progres-

sively more lax by filtering less. We answer RQ4 using

RF for options 1 and 2 and SVM for option 3. For bet-

ter intuition, we refer to option 1 as strict, option 2 as

moderate and option 3 as lenient.

The answer to RQ3 is: RF and SVM yield the most

accurate filter for unuseful predictions. RF is a bet-

ter alternative for more aggressive filtering, whereas

SVM is a better alternative for more lax filtering (thus

better preserving Recall).

RQ4. In RQ1-RQ3, we applied a 50-50 split strategy

to tune our approach over the training portion of our

data. In RQ4, we examine how effective our approach

is over our test set, i.e., P2 in Table 2. For RQ4, as

noted in EXPIV (Section 5.4), we consider both a 50-

50 split strategy as well as a 90-10 strategy, respectively

capturing major and minor incompleteness.

Table 6 shows boxplot results for different levels of

filtering (unfiltered, lenient, moderate and strict) or-

ganized by 50-50 and 90-10 split strategies. We recall

from EXPIV that five different random shuffles are per-

formed for each p ∈ P2. Each plot in Table 6 is therefore

based on 5 ∗ 20 = 100 datapoints.

Without filters and over our test set, we observe an

average Coverage of 40.04% for the 50-50 split strategy

and average Coverage of 39.25% for the 90-10 strategy.

The different split strategies represent remarkably dif-

ferent situations. Comparatively, the 90-10 strategy has

90/50=1.8 times more textual data to generate predic-

tions on but the incompleteness is merely 10/50, i.e.,

one fifth, of the situation in the 50-50 split. That is,

our approach has been capable of predicting approxi-

mately 40% of the missing terminology, irrespectively

of the level of incompleteness. There is nonetheless a

notable difference in Accuracy between the 50-50 and

90-10 splits, with Accuracy for the former split strat-

egy standing at 12.11% and for the latter – at 2.25%.

The lower Accuracy with a 90-10 split is explained by

a combination of a higher number of predictions and a

limited number of targets, stemming from the limited

extent of incompleteness.

Ultimately, which filtering option the user selects

depends on how the user wishes to balance the overhead

of reviewing non-relevant recommendations against po-

tentially finding a larger number of relevant terms miss-

ing from requirements.

For the 50-50 split strategy, the lenient filter in-

creases Accuracy by an average of ≈13% while decreas-

ing Coverage by ≈5%. The moderate filter increases

Accuracy by an average of ≈21% while decreasing Cov-

erage by ≈12%. And, the strict filter increases Accu-

racy by an average of ≈36% while decreasing Cover-

age by ≈20%. As shown in Table 7, in the case of the

50-50 split, the strict and moderate filters increase Ac-

curacy and decrease Coverage in a statistically signifi-

cantly way and with large effect sizes. The lenient filter,

on the other hand, increases Accuracy significantly and
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Table 6: Accuracy and Coverage over Test Set (RQ4).
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with a large effect size, while not negatively impacting

Coverage in a statistically significant manner.

As for the 90-10 split, the lenient, moderate, and

strict filters increase Accuracy by an average of≈1.76%,

≈3.34%, and ≈6.07%, respectively. While increments in

accuracy may appear small, it is important to note that

false positives are significantly more prevalent than true

positives when the anticipated amount of incomplete-

ness is small. As such, the accuracy ratio for different

filtering levels is a better indication of how useful fil-

tering is. For example, consider the Accuracy ratio be-

tween the lenient filter and the unfiltered data, which is

calculated as 4.41/2.25 = 1.96. This ratio signifies that,

despite a relatively modest improvement in Accuracy
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Table 7: Statistical Tests for the Results of Table 6.

(a) 50-50 Split. (b) 90-10 Split.

(i.e., 4.41− 2.25 = 1.76%), the lenient filter effectively

reduces the volume of terms requiring manual inspec-

tion by about half, thus making filtering worthwhile.

In the 90-10 split strategy, the increase in Accuracy

and the decrease in Coverage are statistically significant

when filters are applied. As shown in Table 7, all effect

sizes are large with one exception: the decline in Cover-

age brought about by the lenient filter vs. the unfiltered

has a medium effect size. This suggests that the lenient

filter has a less severe impact on Accuracy compared to

both moderate and strict filtering.

If one takes the preservation of Coverage as the

main deciding factor, the lenient filter would be the best

trade-off. When the anticipated amount of incomplete-

ness is large (represented by the 50-50 split strategy),

the lenient filter considerably improves Accuracy with-

out a major impact on Coverage. And, when the antic-

ipated amount of incompleteness is small (represented

by the 90-10 split strategy), the lenient filter removes

a substantial number of false negatives (around half)

while decreasing Coverage with a moderate effect size.

We answer RQ4 in two distinct scenarios: (S1) when

a significant degree of incompleteness is expected, rep-

resented by withholding 50% of the content in a re-

quirements document, and (S2) when a minor level

of incompleteness is anticipated, represented by with-

holding 90% of the content.

For S1, when applying a strict filter, ≈48% of rec-

ommendations from our approach are relevant, com-

pared to ≈25% with a lenient filter. Under lenient fil-

tering, our recommendations provide cues for ≈35%

of the (simulated) missing terminology. This number

decreases to 20% with a strict filter. As for S2 – a

more challenging scenario than S1 due to a larger

number of recommendations and substantially fewer

target terms for incompleteness – unfiltered recom-

mendations still offer clues for ≈39% of the miss-

ing terminology. Filtering remains crucial for S2 as it

eliminates a significant number of non-relevant terms;

however, the prevalence of non-relevant terms remains

high despite filtering. Further, due to the much smaller

number of target terms compared to S1, the negative

impact of filtering on relevant recommendations is

more pronounced. This results in uncovering ≈33%,

≈27%, and ≈18% of missing terminology for lenient,

moderate, and strict filtering, respectively.

6 Discussion

As explained in Section 5.4 (EXPIII) and our metric

discussion in Section 5.5, we employ an 85% cosine sim-

ilarity threshold on word embeddings to assess whether

predictions by BERT are good matches for the novel

terms in the withheld half of a requirements document.

This method presents an advantage over exact lexical

matches by considering the semantic similarity between

predictions and novel terms, thereby resulting in more

thorough and nuanced matches. At the same time, it

is important to exercise caution when determining the

threshold, as setting it too low can result in erroneously

considering dissimilar terms as valid matches, thus po-

tentially negatively impacting the reliability of our eval-

uation. We selected the 85% threshold based on an ex-

ploratory analysis in our earlier conference paper [37],

where we surmised that the chosen threshold would be

conservative enough to rule out the majority of dissim-

ilar matches. In this article, we seek to offer empirical
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Fig. 9: Proportions of Exact vs. Non-exact Matches over

Test Set.

evidence for our chosen threshold and quantify its in-

fluence on the interpretation of our findings.

We structure our discussion in two stages. First, we

determine what proportion of the matches admitted by

this threshold are exact lexical matches. Exact matches

do not require human validation to assess their quality.

In the second stage, we collect human feedback on the

quality of a selected subset of non-exact matches. The

goal here is to systematically estimate the percentage of

these matches that provide useful insights to humans.

Figure 9 shows the proportions of exact versus non-

exact matches. Each data point represents a single run

of our approach over each document in the test set (P2),

without any filters applied. The results indicate that the

majority of matches are exact, with less than a quarter

of them being non-exact. To assess the quality of non-

exact matches, we engaged two non-authors to obtain

unbiased human feedback. Both individuals are PhD
students in Computer Science with excellent proficiency

in English, over four years of industry experience, and

prior exposure to requirements and requirements engi-

neering. We selected 40 non-exact-match examples at

random from our experimentation with the test set.

These examples can be found in our supplementary ma-

terial [36]. The two individuals were interviewed sepa-

rately, allowing us to assess interrater agreement. The

question that an individual had to answer for each ex-

ample was as follows: For this given sentence, is term X

(predicted by BERT) a useful match for term Y (which

appears in the sentence)?

The notion of “useful” is subjective. To determine

which predictions were considered useful, we relied on

individual discretion while encouraging discussion to

support the decisions made. Before each interview, we

reviewed the criteria for usefulness. In particular, we

clarified that a useful match could come in two ways:

(1) a synonym that conveyed the same meaning as the

original word, or (2) a term that would prompt reflec-

tion and deeper thought, such as a more specific term

like “car” being provided for a more general original

term like “vehicle” or vice versa.

The first individual found 75% (30/40) of the non-

exact predictions to be useful, while the second individ-

ual found 87.5% (35/40) of the predictions to be useful.

Out of the 40 examples shown to the individuals, there

were only four cases (i.e., 10%) where both individu-

als considered the non-exact prediction to be unuseful.

Cohen’s Kappa (κ) was used to measure the agreement

level among the individuals. The result was κ = 0.44,

indicating moderate agreement. This implies that de-

termining usefulness involves a non-negligible degree of

subjectivity, which aligns with previous research in RE

highlighting the subjective nature of concepts like rele-

vance and usefulness [7]. At the same time, we observe

that depending on how one aggregates the human feed-

back, between 75% and 90% of the non-exact matches

are useful. Noting that, on average, approximately 76%

of the matches are exact (Fig. 9), the unuseful cases are

a proportion of the remaining average 24%. We thus

estimate the error arising from non-exact matching to

range from 2.4% (24%× 10%) to 6% (24%× 25%). De-

spite this margin of error, we consider the trade-off of

employing non-exact matching worthwhile, given that,

based on our results, useful matches outnumber unuse-

ful ones by a ratio of at least three to one.

7 Limitations and Validity Considerations

In this section, we discuss limitations and threats to

validity.

7.1 Limitations

The experimentation we conducted in this article has

a number of limitations that warrant further investiga-

tion. The first limitation results from a lack of access to

domain experts who could effectively identify genuine

cases of incompleteness in the requirements. As a re-

sult, we had to resort to simulating incompleteness by

withholding content from existing requirements. While

this allows for some measure of evaluation for our pro-

posed approach’s effectiveness, it may not accurately

represent the actual incomplete requirements encoun-

tered in real-world scenarios. To develop a more precise

understanding of our approach’s utility, it is essential

to conduct future user studies involving domain experts

who can provide insights into the nature and extent of

incompleteness in requirements.

Another potential limitation is the size and diversity

of our dataset. Although our dataset covers 15 distinct
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domains, it may not be representative of all possible

scenarios for different industries and contexts. To pro-

vide a more comprehensive evaluation of the approach,

future experimentation should consider utilizing the en-

tirety of PURE [26] and potentially other datasets.

We used the original BERT model in our experi-

ments due to limited computational resources and were

unable to systematically explore the impact of using

BERT variants. Although our preliminary experiments

did not suggest significant improvements from using

BERT variants, further rigorous empirical investigation

is needed to confirm this.

Lastly, we note that our research coincided with the

release of ChatGPT [40], which has had a remarkable

impact on AI-enabled software engineering research in

the past months. While our main proposition, namely

using large language models as an external source of

knowledge for enhancing requirements completeness, can

also be instantiated with ChatGPT and the GPT family

of language models [41], we have not yet explored this

avenue of research. It is plausible, and in fact likely, that

ChatGPT would be a superior alternative to BERT as

an external knowledge source for requirements comple-

tion and incompleteness mitigation.

7.2 Internal Validity

We intentionally seed incompleteness into requirements

to evaluate the effectiveness of our approach in de-

tecting the omissions. We nevertheless recognize that

random variation could potentially influence our find-

ings. We employed several strategies to mitigate the im-

pact of random variation. First, we utilize a substantial

dataset consisting of 40 requirements documents, as de-

picted in Table 2. This large dataset helps minimize the

effects of random variation, thereby increasing the ro-

bustness of our findings. Furthermore, we enhance the

reliability of our experiment by repeating each test for a

given document five times. This is achieved by shuffling

the withheld and disclosed portions of the document, as

outlined in Section 5.4.

Our cleaning of the PURE dataset is limited to the

simple changes outlined in Section 5.3. We have chosen

not to remove non-requirements from these documents.

This decision was driven by the lack of clear differ-

entiation between requirements and non-requirements

in many PURE documents. Given that the demarca-

tion of requirements can be subjective without domain

expertise, we exercised caution and refrained from at-

tempting it. Nevertheless, we examined the documents

in PURE where an explicit distinction between require-

ments and non-requirements existed and where the re-

quirements content dominated non-requirements con-

tent in terms of token count. We did not observe sub-

par results for documents with higher proportions of

requirements. In fact, the results for these documents

are slightly better than the averages reported. Conse-

quently, we do not believe that the absence of a clear

separation between requirements and non-requirements

significantly impacted our results. At the same time,

when there is an opportunity for an objective separation

between requirements and non-requirements, it may be

more sensible to scope completeness checking to the re-

quirements statements only.

7.3 Construct Validity

We took the following steps to ensure that our metrics

are an accurate reflection of the phenomena under in-

vestigation. First, we excluded any terminology already

present in the disclosed portion of the requirements

documents. This process eliminates the possibility of

including non-novel terms. Second, we removed dupli-

cates, common words, and stopwords from our analysis.

These measures help ensure that we provide an objec-

tive assessment of novel terms predicted by BERT.

We further note that we use non-exact matching for

assessing the quality of predictions. To address poten-

tial construct-validity risks associated with non-exact

matching, we analyzed the prevalence of non-exact

matches and also gathered third-party human feedback

to obtain unbiased opinions about such matches. As

we argued in Section 6, our estimated error margin for

non-exact matching is small and therefore unlikely to

significantly impact construct validity.

7.4 External Validity

Our evaluation is based on 40 requirements documents

from PURE [26]. These documents span 15 different do-

mains and originate from a variety of sources. The size

and diversity of our dataset help provide confidence in

the generalizability of our findings. Nevertheless, to fur-

ther enhance external validity, it would be beneficial to

conduct experiments with a broader range of require-

ments documents.

8 Conclusion

In this article, we explored the usefulness of large lan-

guage models (LLMs) for detecting incompleteness in

natural-language requirements. Specifically, our focus

was on evaluating the effectiveness of BERT’s masked-

word predictions in identifying relevant but absent ter-

minology within requirements.
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In lieu of access to human experts and documented

instances of incompleteness, we simulated incomplete-

ness by withholding content from existing documents.

Our investigation consisted of three steps. In the first

step, we found the optimal number of predictions per

masked word, achieving a balance between noise and

relevant predictions generated by BERT. In the second

step, we evaluated different machine learning classifiers

to remove noise from the predictions. Finally, we com-

pared the filtered predictions with terms in withheld

section of requirements documents using new, unseen

data. Our findings suggest that BERT’s masked-word

predictions can hint at a sizeable number of instances of

incompleteness. Furthermore, the filtering process en-

hances the accuracy of the predictions by reducing the

prevalence of non-relevant terms.

Throughout the research, several areas for improve-

ment came to light. One such area is expanding the

dataset used. We limited our analysis to half of the

PURE dataset, considering the trade-off between data

cleaning effort and computation costs while maintain-

ing a reasonable dataset size. Using the entire PURE

dataset, instead of just half, would yield a larger and

more diverse sample, and consequently more robust and

reliable findings. Another important area for improve-

ment is our evaluation. Currently, our evaluation in-

volves simulating omissions by withholding data, which

provides useful insights but falls short of capturing the

practical implications of our approach. An actual eval-

uation of BERT, used for detecting incompleteness in

requirements, will need to develop a practical use case

for presenting BERT’s predictions to users within the

context in which the predictions were derived. Such an

evaluation necessarily has to involve domain experts, re-

quirements engineers, and other stakeholders who can

vet BERT’s predictions, determining whether they rep-

resent genuine instances of incompleteness or are super-

fluous. Our current results merely gauge the potential

of BERT for assisting with requirements completeness

checking. To determine whether this potential can be

transformed into practical benefits, user studies are a

must — something that our current work does not per-

form and is left for future research.

Finally, noting the fast-evolving landscape of LLMs

towards generative models like GPT, it is important to

re-evaluate our approach using such models. We antici-

pate major improvements, particularly with the poten-

tial for interactive and conversational exchanges that

can incrementally improve requirements completeness.
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Appendix

A Psuedo-code for Baselines

Baseline 1:

INITIALIZE novel_common_words to empty list

INITIALIZE all_common_words to list of 250-1000 common English words

FOR word in all_common_words

IF word is NOT in disclosed_portion

IF word is NOT in stop_word

APPEND word to novel_common_words

END IF

END IF

END IF

END FOR

RETURN novel_common_words

Fig. 10: Baseline 1 Pseudocode

Let T be a data frame of terms and their corresponding TF-IDF score

INITIALIZE novel_tfidf_terms to empty list

INITIALIZE tfidf as terms with top k TF-IDF score in T

FOR term in tfidf

IF term is NOT in disclosed_portion

IF term is NOT in stop_word

APPEND term to novel_tfidf_terms

END IF

END IF

END IF

END FOR

RETURN novel_tfidf_terms

Fig. 11: Baseline 2 Pseudocode

INITIALIZE novel_synonyms to empty list

FOR term in disclosed_portion

INITIALIZE lst_synonyms to synonyms of term

FOR synonym in lst_synonyms:

IF synonym is NOT in disclosed_portion

IF synonym is NOT in stop_word

APPEND synonym to novel_synonyms

END IF

END IF

END IF

END FOR

END FOR

RETURN novel_synonyms

Fig. 12: Baseline 3 Pseudocode
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