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Abstract. Deriving local cost models for query optimization
in a dynamic multidatabase system (MDBS) is a challeng-
ing issue. In this paper, we study how to evolve a query cost
model to capture a slowly-changing dynamic MDBS environ-
ment so that the cost model is kept up-to-date all the time.
Two novel evolutionary techniques, i.e., the shifting method
and the block-moving method, are proposed. The former up-
dates a cost model by taking up-to-date information from a new
sample query into consideration at each step, while the latter
considers a block (batch) of new sample queries at each step.
The relevant issues, including derivation of recurrence updat-
ing formulas, development of efficient algorithms, analysis
and comparison of complexities, and design of an integrated
scheme to apply the two methods adaptively, are studied. Our
theoretical and experimental results demonstrate that the pro-
posed techniques are quite promising in maintaining accurate
cost models efficiently for a slowly changing dynamic MDBS
environment. Besides the application to MDBSs, the proposed
techniques can also be applied to the automatic maintenance
of cost models in self-managing database systems.

Keywords: Multidatabase — Query optimization — Cost
model — Evolutionary technique — Self-managing database

1 Introduction

A multidatabase system (MDBS) integrates data from multi-
ple component (local) databases. A major challenge, among
others [6,8,10,11,16], for performing global query optimiza-
tion in an MDBS is that some local information required by
global query optimization, such as local cost models, may not
be available at the global level. However, the global query
optimizer needs such local cost information to decide how
to decompose a global query into local queries and where to
execute the local queries.

Research supported by the US National Science Foundation under
Grant # 1IS-9811980 and The University of Michigan under OVPR
and UMD grants.

Several techniques to derive cost models for an auto-
nomous local database system (DBS) at the global level in
an MDBS have been proposed in the literature recently. Du
et al. proposed a calibration method that makes use of the
observed costs of some special queries run against a special
synthetic calibrating database to deduce necessary local cost
parameters [5]. Gardarin et al. extended Du et al.’s method
so as to calibrate cost models for object-oriented local DBSs
in an MDBS [7]. Zhu and Larson proposed a query sampling
method that develops regression cost models for local query
classes based on observed costs of sample queries run against
actual user databases [21,24,25]. Zhu and Larson also intro-
duced a fuzzy method to derive fuzzy cost models in an MDBS
based on fuzzy set theory [23]. Naacke et al. suggested an ap-
proach to combining a generic cost model with specific cost
information exported by wrappers for local DBSs [12]. Adali
et al. suggested maintaining a cost vector database to record
cost information for every query issued to a local DBS [1].
Roth et al. introduced a framework for costing in their Garlic
federated system [15].

All the above techniques considered only a static system
environment. However, in reality, an MDBS environment may
change dramatically over time. There are many dynamic fac-
tors in an MDBS environment. They can be classified into
three types based on their changing frequencies: (I) frequently
changing factors, such as CPU load, number of I/Os per sec-
ond, and size of memory space being used, etc., which can
change significantly within a short period of time (e.g., every
few seconds or minutes); (II) slowly changing factors, such
as local database management system (DBMS) configuration
parameters, physical data distribution/organization on a disk,
local database conceptual/physical schemas, etc., which usu-
ally change little by little, and a significant change may be
accumulated after a certain period of time (e.g., a couple of
days, weeks, or months); and (III) steady factors, such as local
DBMS type, local database location, local CPU speed, etc.,
which may stay unchanged for a long time (e.g., many months
or even years). Note that, since we concern ourselves with lo-
cal cost models in an MDBS, only dynamic factors at local
sites are considered here. In general, there are also dynamic
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Fig. 1. Query cost affected by buffer size in Oracle 8.0

environmental factors for the network in an MDBS that were
considered in [18].

Clearly, the steady factors (Type III) usually do not cause
any problem for a query cost model since they rarely change.
To take the frequently changing factors (Type I) into consid-
eration for estimating query costs, Zhu et al. suggested three
techniques in [19,20], i.e., the qualitative approach, the frac-
tional analysis approach, and the probabilistic approach. The
qualitative approach is suitable for estimating the cost of a
small query using a cost model with a qualitative variable
indicating system contention states. The fractional analysis
approach is suitable for estimating the cost of a large query by
analyzing cost fractions in a dynamic environment following a
prior known load curve. The probabilistic approach is suitable
for estimating the cost of a large query based on Markov chain
theory in a randomly changing dynamic environment.

However, no research has been done on estimating local
cost parameters in a slowly changing dynamic environment
(caused by factors of Type II). Although such an environ-
ment may not change dramatically during the execution of
one query, the costs of the same query executed at different
times in the environment can be significantly different. Fig-
ure 1 shows that the cost of a query in Oracle 8.0 can change
dramatically as the buffer size (a configuration parameter) is
adjusted by a database administrator over time. Note that the
performance change could be even more dramatic if the query
were performed against a larger database on a faster machine
with larger memory. Compared to the factors of Type I, the
factors of Type II change gradually rather than rapidly. But a
significant change may be observed after a certain period of
time. An obsolete cost model may cause a query optimizer to
choose an inefficient execution plan for a query, which would
lead to a serious performance problem. The question now is
how to obtain accurate query cost estimates at all times in such
a slowly changing environment.

In this paper, we tackle this challenge by evolving a cost
model to capture the slowly changing environment so that the
cost model is kept up-to-date all the time. One direct method
of keeping a cost model updated is to periodically rebuild the
cost model by the query sampling method [21]. However, the

overhead of such a rebuilding approach is high. To reduce the
overhead, we propose two new evolutionary techniques, i.e., a
shifting method and a block-moving method. The key idea is
to develop recurrence updating formulas to adjust a cost model
at each updating step rather than rebuild the cost model from
scratch every time so that some common work done previously
can be reused. The shifting method evolves a cost model more
smoothly but takes more overhead as compared with the block-
moving method. Evolving a cost model to capture a dynamic
database environment is our novel approach; it has not been
found in literature.

The rest of the paper is organized as follows. Section 2
discusses the idea of cost model evolution and the direct re-
building approach. Section 3 introduces the shifting method.
Section 4 presents the block-moving method. Section 5 con-
siders some implementation issues. Section 6 shows some ex-
perimental results. Section 7 summarizes the conclusions.

2 The rebuilding approach

In the query sampling method [21,25], queries that can be per-
formed on a local DBS are first grouped into homogeneous
query classes, and a cost model is then developed for each
query class based on the observed costs of sample queries
drawn from the class via multiple regression analysis in statis-
tics. Such a cost model captures the performance behavior of
queries from the relevant class for a specific environment in
which the sample queries were executed. If the environment
has changed dramatically since the cost model was developed,
the cost model may become out of date. The question is how
to keep the cost model up-to-date so that it always reflects the
current environment.

Suppose we want to keep the cost model M for a query
class G up-to-date in a dynamic multidatabase environ-
ment. Let the set of significant explanatory variables deter-
mined by the query sampling method for the cost model be
{z1,22,...,2,}, e.g., the operand table size, the result table
size,' the operand table tuple length, etc. Cost model M is
then of the following form [24]:

y=PBo+ prx1+ Boza + ...+ Bpzp (D

where 3;’s (0 < ¢ < n) are the regression coefficients de-
termined by sample queries. Using the relevant value of each
explanatory variable z; (1 < j < n) for query ) in G, we can
estimate cost y of ) from Eq. 1. Note that the aim of this paper
is not to develop a new cost modeling technique. Instead, it
assumes that a cost model and its parameters are determined
by the techniques presented in [24]. This paper focuses on de-
veloping new techniques to efficiently adjust the coefficients
in the cost model so that the environmental changes can be
effectively captured.

In the rest of this paper, we adopt the following notation.
A column vector is denoted by 2’ using a lowercase letter. A
row vector is denoted by the transposition of its corresponding
column vector Z”. A matrix is denoted by a bold-faced capital
letter (e.g., A), and the inverse of A is denoted by AL A

! The result table size is usually estimated by using an estimated
selectivity of the query.
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scalar value or variable is denoted by a normal lowercase letter
(e.g., b).

Let@; (¢ =0,1,2,...)beasample query from G executed
at time ¢;. Let y; be the observed cost (elapsed time) of (); and
2;; be the observed value of j-th variable z; (1 < j < n)
for @Q;. Let row vector 7 = (1,1, X2, .. ., i ). Note that
the first component “1” in vector &, , which corresponds to
the constant term in Eq. 1, is used to simplify the cost for-
mula derivation later on. We call pair (y;, Z]) as the sam-
ple data point (for sample query ();) observed at time t;.
Hence we have a sequence of sample data points (yo, Z7 ),
(y1,27), . .. (corresponding to the sequence of sample queries
Qo,Q1,...)att0,t1,

Assume the sample size for multiple regression analysis
in the query sampling method is k.2 At time ¢;_;, we have
k sample data points (yo, 23). (y1,27). - .. (Y1 T1_,).
Applying the multiple regression analysis on these sample data
points, we can obtain a cost model M (*) that reflects the system
performance behavior for query class G during the time period
to ~ tp_1.

As mentioned before, the system environment may change
significantly over time, although for our problem we assume
that it changes slowly. If we keep using M () to estimate the
costs of queries executed at time ¢y, tx41, trx+2, - .., the es-
timates may become progressively worse. To get better esti-
mates, we need to update the cost model according to sample
data points observed at ¢y, tx11, tpt2, . . . . More specifically,
at time t5, when sample data point (yy, Z},) is obtained, we
should derive a new cost model M) based on the most re-
cent k sample data points (y1,27), (y2,23), ..., (Yx, Zf). In
other words, we should incorporate the performance informa-
tion contained in the newest sample data point (ys, 2, ) into the
cost model since it reflects the current system environment. On
the other hand, we also need to remove the oldest sample data
point (yo, £}) from consideration for the cost model since (i)
it contains the least information about the performance behav-
ior of the current system environment and (ii) keeping all old
sample data points would make the sample set size grow big-

2 A commonly used rule for sampling is to sample at least ten
observations for every parameter to be estimated [13], i.e., at least
10 % (n + 2) sample queries in our case, where n is the number of
explanatory variables in the cost model (note that the variance of
error terms is also one parameter to be estimated here).

Fig. 2. Rebuilding up-to-date cost models

ger and bigger, which increases the complexity of cost model
derivation.

In general, at time t51 ;1 (s = 1,2,...), when sample
data point (ys4x—1, 74, _,) is obtained, we need to derive a
new cost model M (*) based on k sample data points (ys, Z7),
(Ys+1,Z541)s > (Ysth—1, Tgy ) (Fig. 2).

Note that although the difference between two consecu-
tive cost models M () and MC+1) (=0, 1, ...) may be small,
assuming the environment changes slowly, the difference be-
tween two far-away cost models M () and M (+9) where ¢ is
large, can be very significant. Using the up-to-date cost models
MO, M® M) to estimate query costs in the current
system environment, we can get better cost estimates as com-
pared with using the static cost model M (%) all the time.

The question is how to derive the up-to-date cost models
MO, M@ M@ . One simple way is to rebuild cost
model M () from scratch at each time tork—1 (s =1,2,..))
via multiple regression analysis. In other words, we solve the
following normal equations:

s+k—1 s+k—1
(> @aE)f - Y Fiyi =0 ©)

for the vector [3(*)]7 = (ﬂés), gs)’ .. .,6,23)) of ﬂi(s)’s co-
efficients in cost model M) of the form of Eq. 1, which
minimizes the following sum of squared error terms: f =
SR (ET F9) — 4,)2. In fact, the solution of Eq. 2 can be

expressed as:

s+k—1

A =Pt N ay, 3)

where P(*) = 252571 #, ! is termed the covariance matrix
of normal equations (Eq. 2).

From [17], solving Eq. 2 requires
(k+1D(n+1)2+(k+2)(n+1)+ (n+1)° )

number of scalar multiplications and divisions. The number of
scalar additions and/or subtractions involved is not considered
here since they require less overhead. Hence the complexity
of applying multiple regression p times is p times of Eq. 4.
When p is large, the overhead to keep the cost model updated
is very significant.
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The question now is if we can update the cost model more
efficiently. We will present two efficient techniques for solving
the problem in the next two sections.

3 The shifting method

Assume that we have obtained the initial cost model M (?) (at
time t;_1) via multiple regression based on initial £ sample
data points (yo, @), (y1,Z7), -+ (Yk—1, Tf_1). At time tg,
when new sample data point (y, Z},) is observed, we need to
get cost model M (1) based on k sample data points (i1, Z7),
(y2,43), .., (yr, ©%). Can we avoid rebuilding M) from
scratch? Yes we can.

We notice that there are £ — 1 common sample data points,
ie., (y1,%7), ..., (Yx—1,Z};_,), on which both cost models
M® and M(© are based. This fact implies that A1) and
M(©) have a certain coherent relationship. Based on this ob-
servation, in this section we develop a shifting method to ob-
tain new cost model M (") by adjusting old cost model M (?).
The basic idea is to add the effect of the newest sample data
point (yx, ZF) to M©) and in the meantime remove the effect
of the oldest sample data point (o, 3 ) from M (), resulting
in new cost model M (V). That is, M (1) is obtained by shifting
M one sample data point toward the new time.

Note that during the initial regression analysis for /()
we can get both the coefficients vector 5(0) and the inverse
covariance matrix [P(?)]~! (see Eq. 3). In the following dis-
cussion, we assume that a cost model includes both thg coeffi-
cients vector and the inverse covariance matrix. Using (%) and
[P(®)]~1 for initial cost model M (%) (together with (yo, Z3)
and (yx, 2} )), we can derive recurrence formulas to calcu-
late 3 and [PM]~L for new cost model M. F1) and
[P(M]~1 can then be used to calculate 5 and [P®]~? for
even newer cost model M (® In general, a new cost model
M®) (s =1,2,...)can be obtained by adjusting the previous
cost model M (5~ 1) (Fig. 3). Hence the cost model can evolve
smoothly over time with the dynamic environment in this way.

A recurrence formula to update the cost model coefficients
is given in the following theorem.

Theorem 1 The coefficients 5 (s) of new cost model M) can

be recursively calculated by adjusting the coefficients 3 (s—1)
of previous cost model M~V (s = 1,2, ...) as follows:

) = 6D L ai(e/(1+a)) +
w'{e' — &7 yw(e/(14a))}/(14a) Q)

where

€ =Yst+k-1— ‘ig—i-k—lﬁ(s_l)a W= [P(S_l)]_lfs-i-k—l

_ new cost model
inverse covariance matrix

the newest sample data point

| _ newcostmodel ____
coefficients

,,,,,,,,,,, i Fig. 3. The shifting method to evolve a cost model

a =Tk W, € =ys 1 — GHINICE
—[P(S_l)}_lfsq +

W' =
(@71 [PV o1 /(1 + )
a =77

Proof. See Appendix. O

Theorem 1 states that the coefficients E () of new
model M(*) can be obtained by adjusting the coeffi-
cients 5~ of previous model M=) The adjustments
for the previous coefficients depend on the newest sam-
ple data point ((Ys4r—1,Z5,,_;)), the oldest sample data
point ((ys—1, %% _1)), the previous inverse covariance matrix
([P(Sfl)}*l), and the errors (¢’ and e) of using the previous
model to estimate query costs at the newest and oldest sample
data points, which in turn depend on the previous coefficients
(5(3’1)). Hence, the new coefficients can be obtained by us-
ing (Ys+x—1, f§+k—1>’ (Ys—1,77_1), [P(S_l)}_l’ and ﬁ(s_l)'
Note that ﬁ(s) obtained from Eq. 5 is the same as the one
obtained from the rebuilding approach in terms of accuracy.

To use Eq. 5 to update the cost model iteratively for each
new sample data point, we need not only the previous coef-
ficients but also the previous inverse covariance matrix. Thus
we also need to keep the inverse covariance matrix updated at
each step. The following theorem gives the recurrence formula
for updating the inverse covariance matrix.

Theorem 2 The inverse covariance matrix [P*)]~1 of new
cost model M®) can be recursively calculated based on the
inverse covariance matrix [P~1]=1 of previous cost model
MGV (s =1,2,...)as follows:
[P(S)]—l — [P(s—l)]—l_

(@, [PC] 1) /(1 + a) — /77, {[Pe D)

~(@T, PETYITH /(L4 a)}/(1+ ) (©)
where

@ =[PV g, a =T @

U_f/ — _[P(s_l)]_lfs—l +

(@74 POV E 1 /(1 + a)

Proof. See Appendix. O

Theorem 2 indicates that the new inverse covariance ma-
trix [P()]~1 can be obtained by using (ysix—1,77, ) 1),

(ys—1,%7_,), and [P~ D)L,
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Equations 5 and 6 share many common factors. They can
be evaluated efficiently by one algorithm. To further improve
efficiency, the following formula

G = B0 e/ (1 + @) + @ gos — Ty (B
e/ (1+ a))]/(1+ ) 0

which is equivalent to Eq. 5, is adopted. The following al-
gorithm updates the coefficients and the inverse covariance
matrix of a cost model using the shifting method:

Algorithm 1 Cost model evolution based on the shifting
method. .

Input: (1) Coefficients 5~ of previous model M (—1);
(2) inverse covariance matrix [P(*~1]~! of previous model
M©=1); (3) newest sample data point (v, p_1, T 1)@
oldest sample data point (ys—1,Z7_).

Output: (1) Coefficients 5 (s) of new model M (5); (2) inverse
covariance matrix [P(*)]~! of new model M (%),

Method:

1. Compute 0 := [PC~D] = F, g

2. Compute @ := :E’er_li]’;

3. Compute @7 := Z7, _,[P~D]~!

4. Compute B := wa™

5. Compute A :=B/(1 + a)

6. Compute C := [P~D]=1 — A

[*first two terms in Eq. 6%/

7. Compute @' := C(—Zs_1)

8. Compute o’ := &2 _ '

9. Compute 7" := z._;C

10. Compute D := w'0”

11. Compute E := D/(1 + a’) /*third term in Eq. 6%/

12. Compute [P*)]"! := C - E

/*new inverse covariance matrix*/

13. Compute s x_1 1= f§+k716(5*1)

14. Compute € := Ys1k—1 — Ystk—1

15. Compute h :=¢e/(1 + a)

16. Compute 7 := hwd

17. Compute ¢ := A=) 4 7 Ffirst two terms in Eq. 7%/
18. Compute §.,_; := Z%_ 1§

19. Compute b := ys_1 — 9.4

20. Compute d :=b/(1 + o)

21. Compute /1 := dii’ /* third term in Eq. 7 */

22. Compute E(s) =q+ h [* new coefficients*/

23. Return () and [P ()]

Starting with the initial cost model M (?), Algorithm 1 can
be repeatedly applied for each new sample data point to evolve
the cost model for capturing the dynamic environment. The
complexity of Algorithm 1 is given in the following corollary.

Corollary 1 Algorithm I requires 8(n + 1)? +7(n +1) + 2
number of scalar multiplications and divisions to calculate
5(5) and [P®)]~" for new cost model M) based on 5(571)
and [PC~D]~1 of previous cost model M *~Y), where n is the
number of explanatory variables in the cost model.

Proof. Correctness can be easily checked by counting the num-
ber of scalar multiplications and divisions required by each
step in Algorithm 1. a

From Corollary 1, we can see that the asymptotic perfor-
mance behavior of the shifting method for one step is 6(n?)
rather than 6(n?) as required by the rebuilding approach via
multiple regression for one step (Eq.4).

Another very attractive advantage of the shifting method is
that its complexity is independent of sample size k. To achieve
a better cost model, the rebuilding approach has to employ a
larger sample size, which implies a larger overhead, while
the shifting method can obtain the same cost model without
increasing any overhead. The reason for this phenomenon is
that, no matter how large the sample set is, the difference
between a new cost model and its previous cost model is only
two sample data points, and the shifting method fully exploits
the shared work for building two cost models based on the
common sample data points rather than building the new cost
model from scratch.

Furthermore, based on the fact that & > 10(n + 2) (see
footnote 2), we can show that the shifting method for one
step is always more efficient than the rebuilding approach for
one step for any n > 0. Clearly, the more steps the shifting
method and the rebuilding approach are applied for, the more
performance gain the shifting method will achieve. Therefore,
we have the following important conclusion:

Corollary 2 The shifting method is more efficient than the
direct rebuilding approach for evolving a cost model in a dy-
namic environment.

4 The block-moving method

The shifting method adjusts the cost model every time a new
sample data point is observed. The cost model is kept up-to-
date in this way. However, if the environment changes very
slowly, people may want to accumulate several sample data
points and use them to update the cost model all at once to re-
duce the updating overhead. On the other hand, people some-
times may want to run several sample queries in the current
environment and use their observed data to update the cost
model to capture the environment. In either case, we need to
update the cost model based on a batch/block of sample data
points rather than one individual sample data point.

Clearly, the block size should never be larger than the
given sample size. If the block size equals the sample size,
we can simply employ the rebuilding approach to update the
cost model. If the block size is less than the sample size, as
with the shifting method, we can derive recurrence formulas
to calculate a new cost model based on its previous cost model
for each block of sample data points observed.

Assume that we have cost model M©~1 (includ-
ing its coefficients ﬁ (s=1) and inverse covariance matrix
[PG—D]=1) at time t,44 o (s = 1,2,...) based on k
sample data points (yo—1,#7_1)s (Ysr@0)s +-vs (Yorh—2:
f§+k_2). At time tgip4m—2, We want to obtain new cost

model M+™=1) based on k sample data points (Yim_1.

»T =T =T

ms+mfl)’ (ys+m7 xs+m)" L) (ys+k+m727 ms+k+m—2)‘ Un-
less block size m = k, there are some common sample data
points (strmflafsTijfl)’ coos (Ystr—2, j’z+k_2) 1<m<

k) shared by cost models M~ and MG+ To save
some work done previously for A/(*~1) we may want to use
recurrence formulas to calculate coefficients 5(57™~1) and
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inverse covariance matrix [P(**™~=1]~! for new cost model
M(s+m=1) based on (1) the previous coefficients F~1); (2)
the previous inverse covariance matrix [P(*~1]=1; (3) the
newest block of sample data points (ys4x—1, i"§+k_1), e,
(Ysthtm—2,Toyjrm—_o)s and (4) the oldest block of sample
data oINS (ys—1, 21 1). -+ (Ysm—2: 751 m ).

Figure 3 can still illustrate the idea of this method, except
that (1) the newest sample data point should be replaced by the
newest block of sample data points and (2) the oldest sample
data point should be replaced by the oldest block of sample
data points. Since this method updates the cost model for each
new block of sample data points instead of each individual
new sample data point, we call this method the block-moving
method.

The following theorem specifies the recurrence formula
for updating the coefficients of the cost model.

Theorem 3 The coefficients 5 (s+m=1) of new cost model
MG+m=1) can be recursively calculated by adjusting the co-

efficients 3(5_1) of previous cost model M~V (s =1,2,...)
as follows:

B’(s-{-'m—l) —

(I -H Prem)il(I + [P(Sil)]ilPadd)ilg(Sil) +
(I -H Prem)_lH (gadd - grem) (8)
where

s+k+m—2 s+m—2
Padd: Z f Z; , Tem: Z 5(;7,

i=s+k—1 i=s—1

s+k+m—2 s+m—2
badd = Z ZiYis brem = Z Tiyi

i=s+k—1 i=s—1
H= (I + [P(sfl)]flpadd)fl[P(sfl)]fl

and 1 is the (n 4+ 1) x (n + 1) identity matrix.

Proof. See Appendix. a

As with the shifting method, to apply the block-moving
method we also need to keep the inverse covariance matrix
updated for each block. The following theorem specifies the
recurrence formula for updating the inverse covariance matrix
of the cost model.

Theorem 4 The inverse covariance matrix [P+ =1D]=1 of
new cost model M+t™=1) can be recursively calculated

based on the inverse covariance matrix [P=1]=1 of pre-
vious cost model M©—1 (s =1,2,...) as follows:
[P(s+m—1)]—1
{T— ((@+ PC D] Poga) HPC V] P}
(I+ [P(s_l)]_lpadd)_l[P(s_l)]_l (9)
where
s+k+m—2 s+m—2
Padd: Z f’z; rem — Z JJ
i=s+k—1 i=s—1

and Y is the (n + 1) x (n + 1) identity matrix.

Proof. See Appendix. O

Since Eqgs. 8 and 9 share some common terms, the fol-
lowing algorithm efficiently updates both the coefficients and
the inverse covariance matrix of a cost model using the block-
moving method:

Algorithm 2 Cost model evolution based on the block-
moving method.
Input: (1) Coefficients 5~V of previous model M(—1);
(2) inverse covariance matrix [P(*~1]~! of previous model
M(Sfl); (3) newest block of sample data points (ysix—1,
TLip1)s o (Ysthtm—2.T s+k+m 5); 4) oldest block of
sample data pomts (ys— LT 1) (Ystm—2, T8 o)
Output: (1) Coefficients FT™=1) of new model M (s+m=1);
(2) inverse covariance matrix [P+~ 1]=1 of new model
M(s+mfl).
Method:
1. Compute Pyqq = Z:ij:,:"__f it
. Compute F = [PC—D]"1P 44
.Compute G =1+ F
. Compute G 1
. Compute H = G~ ![P(s-1]~1
. Compute P, = Z:i;"__f 77T
. Compute J = HP,..,,
.Compute K=1—-1J
. Compute K1
10. Compute [PCtm=D]-1 = K-1H
/*new covariance from Eq. 9%/
11. Compute & = G~13(=1)
12. Compute 713 = K~14; /*first term in Eq. 8%/
13. Compute bygq = ZerfL:nf Zili
14. Compute by, = thm 12 Tiys
15. Compute al(me = badd b,.em
16. Compute 77 = [P(s+7— 1)]71&71,6
/*second term in Eq. 8%/
17. Compute FC+m=1) = 17 + i7; /*from Eq. 8%/
18. Return F(s+m—1) and [P(s+m—1)]~1

O 001N Li & WIN

Starting with the initial cost model M (?), Algorithm 2
can be repeatedly applied for each new block of sample data
points to evolve the cost model for capturing the dynamic
environment. The complexity of Algorithm 2 is given in the
following corollary.

Corollary 3 Algorithm 2 requires 6(n +1)3 + (2m +3)(n +
1)2+2m(n+1) number of scalar multiplications and divisions
to calculate @Hm*l) and [P(stm=1)]-1 for new cost model
ME+m=1) based on =Y and [PE—D]~L of previous cost

model M=) where n is the number of explanatory variables
in the cost model and m is the block size.

Proof. Correctness can be easily checked by counting the num-
ber of scalar multiplications and divisions required by each
step in Algorithm 2. O

Note that the complexity of Algorithm 2 depends not only
on the number n of explanatory variables but also the block
size m (< k). If block size m is very close to the sample size
k, the block-moving method may not outperform the direct
rebuilding approach. The former is superior only if block size
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m is relatively small compared with sample size k. The fol-
lowing corollary specifies a condition for the block-moving
method to be superior.

Corollary 4 The block-moving method is more efficient than
the rebuilding approach if and only if block size m <
1/2[-5(n + 1) + (K + 3) — 1/(n + 2)]. For the mini-
mal sample size k = 10 * (n + 2), the condition becomes
m<1/25(n+1)+13—-1/(n+2)].

Proof. The claims follow from Eq. 4 and Corollary 3. Lengthy
algebraic derivations are omitted. a

Note that the block size determines how many steps we
want to combine in the procedure for evolving the cost model.
The larger the block size, the more evolutionary overhead is
reduced. To obtain a quality cost model, one usually uses a
sample with a large size (much larger than the minimal one).
This allows a large block size to be used for the block-moving
method. However, a large block size may cause the evolution
of the cost model to be not smooth. Thus a fixed number (e.g.,
10) that is much smaller than the sample size is usually chosen
as the block size for the block-moving method. As with the
shifting method, the performance of the block-moving method
is independent of the sample size, but it guarantees the same
quality of the cost model produced by the rebuilding approach
with a large sample.

Comparing the block-moving method with the shifting
method, it is not difficult to see from Corollaries 1 and 3 that
applying the shifting method once is more efficient than apply-
ing the block-moving method once for block size m > 1. This
is because the latter needs to take more new sample data points
into consideration for updating the cost model. However, to
obtain the same model M (57"=1) from old model M (5—1),
the shifting method has to be applied m times, while the block-
moving method only needs to be applied once. Hence the com-
plexity for obtaining M ¢+=1) from M ~1 via the shifting
method is:

8m(n +1)? 4+ Tm(n +1) + 2m (10)

Comparing Eq. 10 with Corollary 3, we notice that the block-
moving method is more efficient when m is sufficiently large,
while the (repeated) shifting method is more efficient when
m is very small. The following corollary gives a condition for
each method to be superior.

Corollary 5 When m > (n + 1), the block-moving method
is more efficient than the shifting method. When m < 3(n +
1)2/(5n + 7), the shifting method is more efficient than the
block-moving method.

Proof. The claims follow from Eq. 10 and Corollary 3. Lengthy
algebraic derivations are omitted.

Note that Corollary 4 gives a sufficient and necessary con-
dition, while Corollary 5 gives two sufficient conditions only.

From Corollaries 4 and 5, we know that block size m
cannot be too small (e.g., m > (n+ 1)) in order for the block-
moving method to outperform the shifting method, and block
size m cannot be too large (i.e., m < 1/2[5(n+ 1) + 13 —
1/(n + 2)]) in order for the block-moving method to outper-
form the rebuilding approach. Clearly we have the following
conclusion:

Application 1

Application 2 | = = = = Application m
MDBS Global Server

MDBS Agent MDBS Agent MDBS Agent
Local Local Local
DBMS DBMS - DBMS

Local Local Local
S —
Local DBS 1 Local DBS 2 Local DBS n

Fig. 4. A multidatabase system architecture

Corollary 6 For an appropriately chosen block size, the
block-moving method can be superior to both the rebuilding
approach and the shifting method in terms of time efficiency.

Be aware that some intermediate cost models are skipped
if the block-moving method is applied compared with the
shifting method. Therefore, the latter is still a better choice
if smooth evolution and accuracy are desired.

5 Implementation considerations

The cost model evolution techniques discussed in the previ-
ous sections were developed for a multidatabase environment
running the multidatabase prototype CORDS-MDBS [2].
Figure 4 shows the system architecture for CORDS-
MDBS. In CORDS-MDBS, the global data model is assumed
to be relational and each local DBS is associated with an
MDBS agent that provides a relational interface if the local
DBMS is nonrelational. Thus the global query optimizer in
the MDBS may view participating local DBMSs as relational
ones. Note that the cost model evolution techniques suggested
in this paper do not rely on the relational data model. As long
as a query class and the explanatory variables of its cost model
are identified, the techniques can be applied directly to evolve
the cost model even if the data model is nonrelational.
Initially, the query sampling method in [21,25] can be
employed to classify local queries and develop a cost model for
each query class atalocal site. An evolutionary technique such
as the shifting or block-moving method can then be used to
evolve the cost model for each query class to capture the slowly
changing dynamic environment. The cost models are kept in
the MDBS catalog and used during global query optimization.
A question is how to obtain sample queries to update the
cost model. One way is to generate artificial sample queries
and run them from time to time. A disadvantage of this way is
that these sample queries compete for system resources with
user queries. To fully utilize the work done in the system, a
better way is to make use of user queries as sample queries.
More specifically, when a local DBS is requested to run a
local user query by either the global query optimizer (due to
the decomposition of a global query) or a local user, a query
classifier in the MDBS agent will identify the class to which
the query belongs. This query is then used as a sample query for
the corresponding query class, and its observed data are used
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to evolve the relevant cost model via the chosen evolutionary
technique.

One potential problem that needs to be considered here
is the starvation problem. It is possible that user queries for
a particular query class are not executed as frequently as re-
quired to capture the dynamic environment. If user queries
for a query class are in fact never used in an application en-
vironment, the solution is simple — we can simply ignore the
update of the corresponding cost model since we only need to
maintain those cost models that are useful for practical user
queries. However, if the query class is indeed needed in appli-
cations but its queries are not run as often as the environment
changes, one solution in this case is to generate and run some
additional artificial sample queries when necessary to supple-
ment the user sample queries. The system makes full use of
user queries and also keeps the cost model up-to-date, although
some extra overhead cannot be avoided in this case.

The opposite of the starvation problem is the overflow
problem. In other words, user queries are executed too fre-
quently for a particular query class. In this case, the employed
evolutionary technique should not take every user query as a
sample query to update the cost model because there might be
very little change in the underlying environment since the last
update. One solution to this problem is to periodically pick
up a user query as a sample query to evolve the cost model.
Another solution is to activate the cost model updating pro-
cedure whenever an observable change in the environment is
detected (e.g., the number of queries with a large error of cost
estimation is beyond a threshold) and to deactivate the cost
model updating procedure when the cost model is up-to-date.
In a practical system, the evolution procedure can also be con-
trolled manually via some system configuration parameters or
system commands.

As pointed out previously, the evolutionary techniques de-
veloped in this paper are suitable for capturing the effect of
the slowly changing factors on a cost model in a dynamic en-
vironment. These factors usually change little by little (i.e., do
not cause an abrupt dramatic change to the underlying system
environment at any time). However, a significant environmen-
tal change may be accumulated after a certain period of time
(e.g., a couple of days, weeks, or months). We need to keep
the cost model updated as the environment changes. If the
environmental change exceeds a certain level when the next
sample data point is obtained, the shifting method should be
employed to update the cost model using the new sample data
point. Otherwise, the newly observed sample data point is kept
in a block (set) to be used by the block-moving method for
updating the cost model at a later time. Note that if the environ-
mental change is too small (negligible) when the next sample
data point is obtained, this sample data point can be skipped
since it has little effect on the cost model (notice that if the
environment changes very slowly, we do not need to update
the cost model often). Hence we assume that the next sample
data point is obtained when the underlying environment ex-
periences an observable (nonnegligible) change since the last
sample data point.

In fact, the shifting method and the block-moving method
can be applied together in the following integrated scheme to
evolve a cost model for a slowly changing environment. Let M/
be the current cost model and @Q);, Q;11, - . . be the incoming
sequence of sample queries. Let £(Q;) be the relative error of

the estimated cost given by current cost model M for sample
query Q;(j = 4,4+ 1,...). A large estimation error usually
indicates that the cost model needs to be updated to reflect
the environmental change. Hence if €(Q;) is greater than or
equal to a threshold d; (e.g., 70%, which can be calibrated
through experiments), we apply the shifting method to update
cost model M using the sample data point for Q;. If £(Q;) is
less than threshold d;, the sample data point for ); is kept as
one of the sample data points in the block to be used by the
block-moving method for the next update of the cost model.
The subsequent errors £(Q; 1), €(Qiy2), - .. €(Qit(m—1)) are
examined until either (1) £(Q; 1 (m—1)) is larger than threshold
d; or (2) the number m of kept sample data points reaches a
block size chosen based on Corollaries 4 and 5. The block-
moving method is then applied to update current cost model
M using the block of m sample data points for sample queries
Qi> Qit1s - - Qig(m—1)- Note that if the number m of kept
sample data points is too small in case (1), to improve the
performance (see Corollary 5), the shifting method (rather than
the block-moving method) could be repeatedly applied to each
sample data point in the block to achieve the same final updated
cost model. This integrated scheme aims to achieve both good
efficiency and smoothness of a cost model evolution, taking
advantage of both the shifting and block-moving methods.

Note that the rebuilding approach can always be applied
to update a cost model. However, its efficiency is usually not
as good as the evolutionary techniques. To reduce overhead,
we cannot apply the rebuilding approach frequently. As a re-
sult, the cost model may not change smoothly. Every time a
cost model changes significantly, many compiled (optimized)
queries may need to be reoptimized for the new environment,
which causes the system to be jammed with reoptimization
jobs. A smooth change of the cost model helps the job sched-
uler to properly schedule reoptimization jobs so that a system
jam is avoided. Hence the evolutionary techniques are the ef-
ficient and seamless approaches to evolving cost models in a
slowly changing environment.

However, there are cases for which the evolutionary tech-
niques are not Suitable, for example, if the environment stays
unchanged for a long time (e.g., many months/years) and then
suddenly experiences a dramatic change (e.g., caused by hard-
ware or software upgrade). The evolutionary techniques are
no longer applicable since all previous sample data points be-
come useless and a new set of sample data points are needed
to establish the new cost model. The monolithic rebuilding
approach can be applied in such a case. On the other hand,
if the environment changes very rapidly (e.g., within a few
seconds, minutes, or hours), the evolutionary techniques are
not applicable either since an evolutionary cost model may not
be stable. Special techniques such as the qualitative approach
[19], the fractional analysis approach [20], and the probabilis-
tic approach [20] are needed to solve query cost estimation
issues in such an environment. Besides, the conventional dy-
namic query optimization techniques could also be adopted in
such a case.

It is worth pointing out that, as another application, our
evolutionary techniques can be adopted in self-managing
DBSs, which have attracted many researchers recently [3,4,
9,22,26]. A self-managing DBS can automatically update its
configuration parameters and optimization statistics to reflect
a changing environment while the system is in use. Since all
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updates are done on the fly, the overhead of such a technique
is required to be as small as possible. So far no technique has
been proposed to automatically adjust the parameters of a cost
model in such a system. Our techniques in this paper can be
utilized to solve this issue in such systems.

6 Experimental results

To examine the effectiveness and efficiency of the evolution-
ary techniques discussed in the previous sections, we con-
ducted extensive experiments in our multidatabase environ-
ment, where Oracle 8.0 and DB2 5.0 were used as local
DBMSs running under SunOS 5.1 on SUN UltraSparc 2 work-
stations.

Note that conducting extensive experiments in a real
slowly changing environment is infeasible since it would take
too long to complete the experiments. To effectively simulate
a slowly changing dynamic environment, we artificially gen-
erated different numbers of concurrent processes with various
work/sleep ratios to change the system contention level in a
given environment. The cost of a small probing query is used
to gauge the system contention level. The higher the probing
query cost, the higher the system contention level. Forty-nine
system contention levels (with the probing query cost ranging
from 3 seconds to 98 seconds) were considered in both the Or-
acle and DB2 environments. A slowly changing environment
was achieved by assuming that the system contention level
gradually changes from the lowest level 1 to the highest level
49. Note that we basically adjusted the frequently changing
factors (i.e., CPU load, memory usage, etc.), which are easy to
manipulate, to change the environment and kept each change
stable for some time to simulate a slowly changing environ-
ment. The essentials of our evolutionary techniques are their
capability to evolve a cost model to capture the environmen-
tal change (reflected in the updated coefficients), no matter
what causes the environment to change. The main purpose
of our experiments is to verify the evolution capabilities of
the techniques. Hence the above simulated environments are
reasonable for the experiments.

The experimental databases used in the experiments were
the same as those in [19-21]. More specifically, each lo-
cal database consists of 12 tables R;(a1,a2,...,a;) (i =
1,2,...,12;5 € {3,5,7,9,11,13}) with data randomly gen-
erated and cardinalities ranging from 3,000 ~ 250,000. Each
table has a number of indexed columns and various selectivi-
ties for different columns.

Note that our evolutionary techniques do not rely on any
particular query class. The experimental results for all query
classes are similar. In this section, we report typical experi-
mental results for a representative query class GG15 (defined in
[21]) consisting of unary queries that have no usable indexes
in their qualification conditions. To demonstrate that the tech-
niques have a similar behavior for other query classes, we also
report some experimental results for another query class G14
consisting of unary queries that have usable (nonclustered)
indexes in their qualification conditions.

The sample queries used to evolve cost models were ran-
domly chosen from the relevant query class. One hundred sam-
ple queries were executed at each system contention level on
both Oracle 8.0 and DB2 5.0. Hence a total of 4900 sample

queries were executed in a sequence for each environment.
The first 100 sample queries (i.e., sample size k = 100) were
used to derive the initial cost model (with n = 6 variables,
i.e., the cardinality of the operand table, the cardinality of the
result table, the tuple length of the operand table, the tuple
length of the result table, the physical size of the intermediate
table, and the physical size of the operand table [21]) via the
query sampling method. The effect of environmental factors,
such as physical data distribution and system buffer setup, on
query performance is reflected in the coefficients of the vari-
ables in the cost model. The evolutionary techniques were then
used to evolve the cost model (i.e., updating the coefficients)
to capture the dynamic environment. The shifting method was
used to adjust the cost model every time a new sample query
point was observed from the execution sequence, while the
block-moving method was used to adjust the cost model ev-
ery time a block of sample query points was observed from
the execution sequence.

To examine the accuracy of the evolutionary cost mod-
els obtained from the evolutionary techniques, we also ran
some test queries randomly chosen from the query class in
both the Oracle and DB2 environments. The cost of each test
query was estimated by using the corresponding updated cost
model in the environment, and the observed and estimated
costs were compared. To see accuracy gains from the evolu-
tion techniques, the cost estimates using the initial (static) cost
model were also compared.

Note that, unlike scientific computation in engineering,
the accuracy of cost estimation in query optimization is not
required to be very high. In analysis on the experiments, the
cost estimates with relative errors within 30% are considered
tobe very good, and the cost estimates that are within the range
of one-time larger or smaller than the corresponding observed
costs (e.g., 2min vs. 4min) are considered to be good. Only
those cost estimates that are not of the same order of magnitude
with the observed costs (e.g., 2min vs. 3 h) are not acceptable.

Table 1 shows the percentages of good and very good
cost estimates for test queries in G5 at four representative
contention levels (each level has 100 test queries) on Oracle
8.0 and DB2 5.0. In the table, cost estimates from the initial
(static) cost model, the evolutionary cost model by the shifting
method, and the evolutionary cost model by the block-moving
method (m = 10) were listed. To show that the experimental
results are similar for different query classes, Table 2 lists two
representative sets of experimental results for another query
class G14.

From the experiments, we have the following observations
on the effectiveness of the evolutionary techniques:

e The shifting method can derive a good evolutionary cost
model to capture a slowly changing dynamic environment.
From Table 1 we can see that the evolutionary cost model
obtained from the shifting method can give good cost esti-
mates for most test queries (87.5% on average, including
76% very good ones). If we do not evolve the cost model
and keep using the initial (static) cost model, we can only
obtain on average 1.25% good cost estimates for the test
queries in a dynamic environment. The estimation accu-
racy gains are dramatic. Figures 5 and 6 show a typical
comparison for cost estimates from the two cost models in
Oracle 8.0 and DB2 5.0, respectively. Note that the actual
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Table 1. Percentages of good cost estimates for test queries in G15 from experiments on Oracle 8.0 and DB2 5.0

Local Contention  Static: Static: Shifting: Shifting:  Block-moving:  Block-moving:
DBMS level very good%  good%  very good%  good% very good% good%
12 1% 5% 83% 88% 78% 87%
Oracle 25 0% 0% 70% 82% 68% 79%
37 1% 3% 63% 74% 59% 74%
49 0% 1% 70% 87% 68% 78%
12 0% 1% 85% 93% 85% 90%
DB2 25 0% 0% 82% 91% 78% 87%
37 0% 0% 65% 88% 53% 73%
49 0% 0% 90% 97% 93% 97%
Average 0.25% 1.25%  76% 87.50% 72.75% 83.13%

Table 2. Similar experimental results obtained for test queries in G'14 on Oracle 8.0

Local Contention  Static: Static: ~ Shifting: Shifting:  Block-moving:  Block-moving:
DBMS  level very good%  good%  very good%  good% very good% good%
Oracle 12 0% 1% 82% 93% 81% 91%
25 1% 1% 86% 92% 78% 88%
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Fig. 5. Cost estimates for test queries in (G15 from static and shifting
models at contention level 25 on Oracle 8.0

time measuring unit for the relevant commercial systems
is not revealed here to avoid a potential license violation.
e The block-moving method can also derive a good evolu-
tionary cost model to capture a slowly changing dynamic
environment. From Table 1 we can see that the evolution-
ary cost model obtained from the block-moving method
can give good cost estimates for most test queries (83.13%
on average, including 72.75% very good ones), which is
much better than the initial static cost model. Figures 7
and 8 show a typical comparison for cost estimates from
the two cost models in Oracle 8.0 and DB2 5.0, respec-
tively. Comparing the shifting and block-moving meth-
ods, a cost model obtained from the former is more accu-
rate than the one obtained from the latter, as pointed out
in Sect. 4. In general, the more rapidly the environment

Query Number

Fig. 6. Cost estimates for test queries in GG15 from static and shifting
models at contention level 25 on DB2 5.0

changes and the larger the block size, the better accuracy
can be obtained by the shifting method over the block-
moving method.

e The initial (static) cost model cannot be used in a dynamic
environment. The cost models in most existing DBSs cur-
rently do not cope with a dynamic environment. Our ex-
periments demonstrate that using a static cost model can
hardly give good cost estimates for queries run in a dy-
namic environment (see Tables 1 and 2). The situation be-
comes progressively worse when the environment moves
farther and farther away from the original environment.
Figure 9 shows a comparison of relative errors of cost es-
timation for a query run from contention level 1 to 49 in
our dynamic environment by the initial (static) cost model
and the evolutionary cost model obtained from the shift-
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Fig. 7. Cost estimates for test queries in G15 from static and block-
moving models at contention level 49 on Oracle 8.0
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Fig. 8. Cost estimates for test queries in G15 from static and block-
moving models at contention level 49 on DB2 5.0

ing method. From the figure we can see that the relative
errors become larger and larger for the static cost model as
the environment moves farther and farther away from the
initial one, while the relative errors are kept within 30%
by the evolutionary cost model no matter how much the
environment changes.

To examine the efficiency of the evolutionary techniques,
we compared the execution costs of the shifting method, the
block-moving method, and the rebuilding approach for var-
ious cases. Table 3 shows the execution time units for one
invocation (step) of each technique. Table 4 shows the execu-
tion time units for repeated invocations (multiple steps) of the
shifting method and the rebuilding approach, where p is the
number of times the relevant method is invoked to update the
cost model for p consecutive new sample data points. Note that
the block-moving method is invoked only once for each block
of sample data points rather than for each individual point.

1
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Fig. 9. Errors for cost estimates of a query executed at various con-
tention levels from static and evolutionary (shifting) cost models on
Oracle 8.0

Hence it is not compared in Table 4. From the experiments,
we have the following observations on the efficiency of the
evolutionary techniques:

e The shifting method is more efficient than the rebuilding
approach, as predicated by Corollary 2 from theoretical
analysis. Table 4 indicates that the former can improve
efficiency by about 89% for any p, i.e., the cost of the re-
building approach is about eight times larger than that of
the shifting method. The more times (steps) the shifting
method is invoked, the more (absolute) overhead can be
saved (Fig. 10). Note that the sample size (i.e., 100) used
in the experiments was close to the minimum (i.e., 80) for
the given query class. The above performance improve-
ment is mainly caused by the complexity reduction from
6(n?) to (n?). On the other hand, to improve the qual-
ity of a regression cost model, one ought to use a sample
with a larger size k. Given that the query class for which
the cost model was developed contains a large number of
queries [21], a sample of 1000 or more queries could be
used. However, as pointed out earlier, the cost of the shift-
ing method is independent of sample size k, while the cost
of the rebuilding approach is proportional to k£ (Fig. 11).
In fact, for a sample of size 1000, the cost of the latter is
about 77 times larger than that of the former (to obtain the
same result). Furthermore, the query class considered in
the experiments was relatively simple. For a more com-
plex query class (e.g., a join query class [21]), both the
number n of explanatory variables and the sample size &k
(increasing with n, as indicated in footnote 2) can be much
larger. The overhead saving by the shifting method can be
even more significant.

e The efficiency of the block-moving method depends on the
block size. The larger the block size, the higher the execu-
tion cost.

— When the block size is relatively small (e.g., m =
3,5, 10), invoking the block-moving method once is
more efficient than invoking the rebuilding approach
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Table 3. Execution time units for one-step rebuilding, shifting, and block-moving methods
Method RB S BM (3) BM (5) BM (10) BM (20) BM (30) BM (40)
One-step
execution cost  0.904e—3 0.110e—3 0.631e—3 0.680e—3 0.775¢—3 0.973e—3 0.117e—2 0.151e—-2
RB - rebuilding method; S — shifting method; BM (m) — block-moving method with block size m
Table 4. Execution time units for repeated invocations of rebuilding (RB) and shifting (S) methods
Repeat#tp p=1 p=23 p=2>5 p=10 p=20 p =230 p =40 p =700
RB 0.904e—3 0.268e—2 0.445¢e—2 0.889e—2 0.178e—1 0.269e—1 0.359e—1 0.628e+-0
S 0.110e—3 0.305e—3 0.498e—3 0.98le—3 0.195¢—2 0.282¢e—2 0.397e—2 0.682e—1
0.09 T T T T T T T T T X107
dotted line (+) —- re-building (repeated for every point) T T T T T T T T T T
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Fig. 10. Efficiency comparison for shifting, block-moving (m = 10),
and rebuilding methods

once (Table 3). The former can improve efficiency as
much as 52% in such a case. If the rebuilding approach
is invoked multiple times to keep the cost model up-
to-date for each new sample data point, the perfor-
mance gain from the block-moving method can be
even dramatically larger. The block-moving method
becomes inefficient, compared to the (one-step) re-
building approach, if the block size is relatively large
(e.g., m = 30 in Table 3). In such a case, the latter can
be used efficiently to keep the cost model up-to-date
for each block of sample data points rather than the
former. However, the cost of the rebuilding approach
increases with sample size k, while the cost of the
block-moving method is independent of k (Fig. 11).
Increasing the sample size (either to improve the cost
model quality or to handle a more complex query class)
would make the rebuilding approach less efficient than
the block-moving method with a larger block size.

— When block size m is not too small (e.g., m = 10),
invoking the block-moving method once is more ef-
ficient than the (repeated) shifting method, which has
to be invoked multiple times to keep the cost model
up-to-date for every sample data point (including the
sample data point at the end of each block). The per-

Fig. 11. Performance effect of sample size on (one-step) rebuilding,
shifting, and block-moving techniques

formance gain can be as much as 62%. Otherwise, the
latter may be more efficient (e.g., m = 3, 5).

— There are cases (e.g., m = 10) in which invoking the
block-moving method once is more efficient than using
either the (repeated) shifting method or the rebuilding
approach (once). If all the methods are invoked re-
peatedly to keep the cost model up-to-date in such a
case, the block-moving method can save a significant
amount of overhead over time (Fig. 10).

The observations on the block-moving method are consis-

tent with Corollaries 4 to 6 from our theoretical analysis.

7 Conclusions

A major challenge for performing global query optimization
in an MDBS is that the cost models for local DBSs may not be
available at the global level. Dynamic environmental factors
add more difficulties to this problem. In this paper, we have
suggested evolving a cost model to capture a slowly changing
dynamic multidatabase environment so that the cost model is
kept as accurate as possible all the time.

A direct approach to keeping a cost model up-to-date in a
dynamic environment is to periodically rebuild the cost model
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via the query sampling method [21]. However, this rebuilding
approach incurs a high overhead. To improve the efficiency,
we propose two new evolutionary techniques, i.e., the shifting
method and the block-moving method, in this paper.

The shifting method employs recurrence updating formu-
las to adjust a cost model by adding the effect of a new sample
data point and in the meantime removing the effect of the old-
est sample data point from the model every time a new sample
data point is observed. This method is more efficient than the
rebuilding approach since it simply adjusts the previous cost
model rather than rebuilding the cost model from scratch using
the entire set of sample data points, most of which have ac-
tually already been taken into account in the previous model.
Especially when the rebuilding approach has to be repeatedly
applied to keep the cost model updated for every new sample
data point, the shifting method can save costs dramatically.
Furthermore, the overhead of the rebuilding approach is pro-
portional to the sample size used to develop the cost model,
while the overhead of the shifting method is independent of
the sample size.

Instead of adjusting a cost model for every individual new
sample data point, the block-moving method uses recurrence
updating formulas to adjust a cost model by adding the effect
of a block (batch) of new sample data points and in the mean-
time removing the effect of the block of the oldest sample
data points from the model every time a block of new sam-
ple data points are observed. Our analysis shows that when
the block size is not too small, the block-moving method is
more efficient than applying the shifting method for every in-
dividual new sample data point in the block to get the same
updated cost model in the end. On the other hand, the block
size chosen for the block-moving method cannot be too large.
Otherwise, one can simply apply the rebuilding approach since
the new block of sample data points is almost the entire set
of sample data points on which the updated cost model is
based. The block-moving method with an appropriate block
size can be more efficient than both the shifting method and
the rebuilding approach. However, the accuracy/smoothness
of an evolutionary cost model obtained from the block-moving
method is worse than that obtained from the shifting method.
A trade-off between accuracy and efficiency is required when
making a choice between the shifting method and the block-
moving method. An integrated scheme to automatically select
one of the two methods based on the underlying environment
is suggested.

To reduce the overhead of executing sample queries, we
suggest using user queries as sample queries so that their ob-
served information can be used to evolve a cost model. The
relevant starvation problem can be solved by generating some
supplemental artificial sample queries, while the relevant over-
flow problem can be solved by updating a cost model periodi-
cally or only when a significant change to the model has been
detected.

Our experimental results are consistent with our theoreti-
cal ones, which demonstrate that both the shifting method and
the block-moving method are quite promising in maintaining
good evolutionary cost models for a slowly changing dynamic
multidatabase environment in terms of both effectiveness and
efficiency.

Besides the application in MDBSs, the proposed evolu-
tionary techniques can also be used to automatically maintain

cost models in self-managing DBSs, which have attracted re-
searchers and practitioners in the database area recently.
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Appendix

In this appendix, we sketch the proofs of the main theorems in
this paper. The following matrix inversion lemma from [17]
is applied in the proof for Theorem 1.

Lemma 1 Given four matrices W, X, Y and Z, the following
equation holds:
(W+XYZ)~

Wl - W IX(ZW X + Y )" lzw!

Proof of Theorem 1I:

Letb(®) = Z(k D+ 3.0, where | = s—1, s. From Eq. 3,
we have
O =PO) 0 1 =s—1,s (11)
Clearly,
b =5 4 7 1Yk — T 1Ys 1 (12)

PO =PEY p g aT T i (13)
Let
Cl=p6D 4 fs_;,_k_lfz_,'_k_l

By Lemma 1, we get

C = [P(s—l)]—l o [P(S_l)}_lfﬁk—l
(FL ([P T + 1)L, POV
= POV — (@7 [PUTVTY /(L) (14

where @ = [P~ 1] ~1
a is a scalar.
From Eq. 13 and Lemma 1 we have

Tsyr—1 and a = T, . Note that

PO = (C™! — & ad_y)~
= C — C(~Z1)(F]_1C(~Fs—1) + 1) 17, C
=C— (0'#;_,C)/(1 +d) (15)

where @/ = C(—Z,_1) and a’ = Z7_,'. Note that a’ is a

scalar.
Let

§=CH" ™Y + & p1Ysrn1)
By Egs. 14 and 11, we get

§=([PC V™ — (@7, [PCV]71) /(1 + a) (B
+fs+kz—1ys+k—1)
= B — (@, SO /(1 +a)
+[P(S 1)] Toth—1Ysth—1
— (WL [P 1 Ysgn—1) /(1 + a)
= [t~ (0T gy, B /(1 + @) + Bysyr—t
—Wysir-1(a/(1+a))
= 3¢ +aii(e/(1 + a)) (16)
where € = Yy 1 — f§+k_1g(s_1), which is the error term
for sample data point (ysix—1,7;,;_;) using cost model
MG,
Lett/ = b0~V 4+, 4 19ssk—1. FromEgs. 11, 12and 15,
we have

O = P = PO — Foagen)
C— (W7l ,C)/(1+a)( — Fs-1ys—1)
— (@7 _1q)/(1+a') + C(=Ts-1)ys—1
—(W'T_1C) /(1 + a')(=Ts-1)ys—1
— (@'F_1q)/(1+a') +@'ys
(@ ays-1) /(1 + )
=q— (J'F_,19)/(1+a) +

Il
—~

I
"Ql

I
2y

(0'ys—1)/(1+ a')
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From Eq. 16, we get

B = g— w7 {5 + (e/(1+ a))i}/(1+ )
(ﬂ’ys_l)/(l +a’)
G- T fOV /(1 +d) - {0 FL,
(e/(1+a)d}/(1+a) + (W'ys—1)/(1+a’)
q— {0 _1(e/(1+ a))d}/(1 +a)
HW (ysr — 77, 57N}/ (A + a)
=q—wT_(e/(1+a)d/(1+ad)
+a'e’/(1+a')
= 5(5*” +di(e/(1+ a)) — {a&'F;_1d(e/(1 + a))
/(1+ad")} +a'e/(1+a")
= 3% 4 @(e/(1+ a)) + @' {e
—&y_w(e/(1+a))}/(1+a)

+

where ¢/ = y,_1 — #_; =1, which is the error term for
sample data point (ys—1,#7_;) using cost model M *=1). 00

Proof of Theorem 2:
Equation 6 can be obtained by substituting Eq. 14in Eq. 15.
O
Proof of Theorem 3:
Let b0 = S D%z where l = s — 1,5 +m — 1.
From Eq. 3, we have
O =P I =s—1,s+m—1 (17)
Clearly,
g(s-l—m—l) l_)'(s—l) + g add — grem (18)
Pt — PEU L Py — Prem (19)
where
s+k+m—2 s+m—2
badd = Z fiyw rem — Z wzyz
i=s+k—1 i=s—1
s+k+m—2 st+m—2
Padd = Z :Z" rem Z x’L _YT
i1=s+k—1 t=s—1
Let
H' =PV + Py (20)

Multiplying Eq. 20 by H from the right, we get

I=PC"VH 4+ P,H, 1)

where I is the (n 4+ 1) x (n + 1) identity matrix. Multiplying
Eq. 21 by [P(*~D]~! on the left, we get

[P(S_l)}_l - H + [P(s—l)]—lpaddH

= I+ [P Y 'P)H (22)

Multiplying (22) by (I +
we get

[PE=D]=1Pqq)~" from the left,

H= I+ [PC V1P [PE Y] (23)

According to Eq. 19 and 20, we have
petm-1) —g-1_p, (24)
Multiplying Eq. 24 by [P(+™~1]~1 from the right, we get
I=H[PEtm-U~t _p_ [pltm-1]-1 (25)
Multiplying Eq. 25 by H from the left, we get

H = [PC+m-V]-1 _HgP,,, [PE+m-D]-!

= (I—HP,.,,) [P V]! (26)
Multiplying Eq. 26 by (I — HP,...,,) ~* from the left, we get
[perm-11-1 — (1 - HP,,,,) 'H (27)
From Egs. 23 and 27, we have

(I—-HP,ep)™

[P(s+mf1)r1 _
1(1 + [P(sfl)]flpadd)fl[P(s—l)]71 (28)
Hence,
[P(5+m71)}715(571) _
(I —HP, ) {1+ [PE Y] IP, ) HPED] 150D
= (I—HP,.,)) (14 PO Poaa) 507 (29)
From Egs. 17, 18, 27, and 29, we have
B’(S+m71) _
[P(s+m71)]715(571) + [P(s+m71)],
= (I - HPrem)
+ (I - HPTem)

1(gadd - g’rem)
—l(I + [P(S_l)}_lpadd)_lﬁ(s_l)
_1H(gadd - grem) O

Proof of Theorem 4:
The theorem holds based on Eqgs. 28 and 23. O



