
The VLDB Journal (2004) / Digital Object Identifier (DOI) 10.1007/s00778-004-0132-6

Operator scheduling in data stream systems

Brian Babcock�, Shivnath Babu��, Mayur Datar���, Rajeev Motwani†, Dilys Thomas‡

Stanford University, ♣ please insert full address (e-mail: {babcock, shivnath, datar, rajeev, dilys}@cs.stanford.edu)

Edited by ♣. Received: ♣/ Accepted: ♣
Published online: ♣♣ 2004 – c© Springer-Verlag 2004

Abstract. In many applications involving continuous data
streams, data arrival is bursty and data rate fluctuates over
time. Systems that seek to give rapid or real-time query re-
sponses in such an environment must be prepared to deal
gracefully with bursts in data arrival without compromising
system performance. We discuss one strategy for processing
bursty streams – adaptive, load-aware scheduling of query
operators to minimize resource consumption during times of
peak load. We show that the choice of an operator scheduling
strategy can have significant impact on the runtime system
memory usage as well as output latency. Our aim is to design
a scheduling strategy that minimizes the maximum runtime
system memory while maintaining the output latency within
prespecified bounds. We first present Chain scheduling, an
operator scheduling strategy for data stream systems that is
near-optimal in minimizing runtime memory usage for any
collection of single-stream queries involving selections, pro-
jections, and foreign-key joins with stored relations. Chain
scheduling also performs well for queries with sliding-window
joins over multiple streams and multiple queries of the above
types. However, during bursts in input streams, when there is
a buildup of unprocessed tuples, Chain scheduling may lead
to high output latency. We study the online problem of min-
imizing maximum runtime memory, subject to a constraint
on maximum latency. We present preliminary observations,
negative results, and heuristics for this problem. A thorough
experimental evaluation is provided where we demonstrate the
potential benefits of Chain scheduling and its different vari-
ants, compare it with competing scheduling strategies, and
validate our analytical conclusions.

� Supported in part by a Rambus Corporation Stanford Graduate
Fellowship and NSF Grant IIS-0118173.
�� Supported in part by NSF Grants IIS-0118173 and IIS-9817799.

��� Supported in part by Siebel Scholarship and NSF Grant IIS-
0118173.

† Supported in part by NSF Grant IIS-0118173, an Okawa Foun-
dation Research Grant, an SNRC grant, and grants from Microsoft
and Veritas.

‡ Supported by NSF Grant EIA-0137761 and NSF ITR Award
Number 0331640.

Keywords: Data treams – Scheduling – Memory manage-
ment – Latency

1 Introduction

In a growing number of information processing applications,
data takes the form of continuous data streams rather than
traditional stored databases. These applications share two dis-
tinguishing characteristics that limit the applicability of stan-
dard relational database technology: (i) the volume of data is
extremely high and (ii) on the basis of the data, decisions are
arrived at and acted upon in close to real time. The combi-
nation of these two factors makes traditional solutions, where
data are loaded into static databases for offline querying, im-
practical for many applications. Motivating applications in-
clude networking (traffic engineering, network monitoring, in-
trusion detection), telecommunications (fraud detection, data
mining), financial services (arbitrage, financial monitoring),
e-commerce (clickstream analysis, personalization), and sen-
sor networks.

These applications have spawned a considerable and grow-
ing body of research into data stream processing [6], ranging
from algorithms for data streams to full-fledged data stream
systems such as Aurora [10], Gigascope [24], Hancock [14],
Niagara [39], STREAM [45], Tangram [40,41], Tapestry [48],
Telegraph [19], Tribeca [46], and others. For the most part, re-
search in data stream systems has hitherto focused on devising
novel system architectures, defining query languages, design-
ing space-efficient algorithms, and so on. Important compo-
nents of systems research that have received less attention to
date are runtime resource allocation and optimization. In this
paper we focus on one aspect of runtime resource allocation,
namely, operator scheduling.

There are some features unique to data stream systems, as
opposed to traditional relational DBMSs, that make the run-
time resource allocation problem different and arguably more
critical. First, data stream systems are typically characterized
by the presence of multiple long-running continuous queries.
Second, most data streams are quite irregular in their rate of ar-
rival, exhibiting considerable burstiness and variation of data

2 B. Babcock et al.: Operator scheduling in data stream systems

arrival rates over time. This phenomenon has been extensively
studied in the networking context [17,32,54]. Data network
traffic is widely considered to be self-similar and to exhibit
long-range dependence. Similar findings have been reported
forWeb page access patterns and e-mail messages [29]. Conse-
quently, conditions in which data stream queries are executed
are frequently quite different from the conditions in which the
query plans were generated. Therefore, adaptivity becomes
critical to a data stream system as compared to a traditional
DBMS.

Various approaches to adaptive query processing are pos-
sible given that the data may exhibit different types of vari-
ability. For example, a system could modify the structure of
query plans, or dynamically reallocate memory among query
operators in response to changing conditions, as suggested
in [37], or take a holistic approach to adaptivity and do away
with fixed query plans altogether, as in the Eddies architecture
[3,34]. Like [1,49,51], in this paper we focus on adaptivity
toward changing arrival characteristics of the data. As men-
tioned earlier, most data streams exhibit considerable bursti-
ness and arrival-rate variation. It is crucial for any stream sys-
tem to adapt gracefully to such variations in data arrival, mak-
ing sure that we do not run out of critical resources such as
main memory during the bursts while ensuring that output
latency is bounded.

When processing high-volume, bursty data streams, the
natural way to cope with temporary bursts of unusually high
rates of data arrival is to buffer the backlog of unprocessed
tuples and work through them during periods of light load.
However, it is important for the stream system to minimize
the memory required for backlog buffering. Otherwise, to-
tal memory usage can exceed the available physical memory
during periods of heavy load, causing the system to page to
disk, which often causes a sudden decrease in overall system
throughput As we will show in Sect. 2, the operator schedul-
ing strategy used by the data stream system has a significant
impact on the total amount of memory required for backlog
buffering. The question we address in this paper is how to
most efficiently schedule the execution of query operators to
keep the total memory required for backlog buffering at a min-
imum, assuming query plans and operator memory allocation
are fixed. We initially focus entirely on memory requirements,
ignoring other metrics. However, because it is also impor-
tant that a stream system ensure reasonable output latency, we
formalize this latency requirement as a constraint that output
latency should not exceed a certain threshold and study the
constrained version of the memory minimization problem in
the second part of the paper.

1.1 Road map

The rest of this paper is organized as follows. We begin in
Sect. 2 by briefly describing our model for the processing of
stream queries and illustrating through an example that the
runtime memory requirement can be greatly affected by the
operator scheduling strategy, thereby motivating the need for
an intelligent scheduling strategy. In Sect. 3 we formalize the
problem of operator scheduling that we consider. Our ana-
lytical results on the runtime memory requirements of pro-
posed scheduling strategies are provided in Sect. 4. In par-

ticular, we present Chain scheduling, a near-optimal schedul-
ing strategy for the case when all queries involve a single
stream, possibly joining with stored relations via foreign-key
joins. When joins with stored relations are not foreign-key
joins, we present a weaker guarantee. In Sect. 4.2 we intro-
duce various other scheduling strategies and compare them
qualitatively. In Sect. 4.3 we extend the operator scheduling
strategies to queries involving windowed joins over multiple
streams. In Sect. 5 we study a constrained version of the oper-
ator scheduling problem that takes output latency into consid-
eration, presenting preliminary observations, negative results,
and heuristics. In Sect. 6 we describe our experimental com-
parison of the performance of different scheduling strategies.
We describe related work in Sect. 7 and conclude in Sect. 8.

2 Stream query processing: model and assumptions

Data stream systems are characterized by the presence of mul-
tiple continuous queries [10,12,34,37]. Query execution can
be conceptualized as a data flow diagram (as in [10]), which is
a directed acyclic graph (DAG) of nodes and edges, where the
nodes are pipelined operators (aka boxes) that process tuples
and edges (aka arrows) represent the composition of operators.
An edge from node A to node B indicates that the output of
node A is an input to node B. The edge (A, B) also represents
an input queue that buffers the output of operator A before it
is input to operator B. Input data streams are represented as
“leaf” nodes that have no input edges, and query outputs are
represented as “root” nodes that have no output edges.

The use of interoperator queues is somewhat nonstandard
in data processing systems. In the traditional iterator model,
the flow of control within a query plan is “pull driven”, with
lower-level operators recursively invoked by the top-level op-
erator. By contrast, the use of loosely coupled query operators
connected by queues allows for much greater flexibility in the
order in which operators are scheduled. The job of the operator
scheduler is to select the order in which the query operators
should be invoked; one option is to emulate the traditional
“pull-driven” ordering, but many other scheduling strategies
exist. In this paper, we show how this scheduling flexibility
can be exploited to achieve a specific performance objective:
minimizing memory usage.

The job of the operator scheduler is to select the order
in which query operators are executed. We assume a single-
processor system in which one operator is active at a time.
Additionally, to avoid excessive context switching overhead,
we assume that when an operator is scheduled, it should be al-
lowed to run for at least some minimum time quantum before
being preempted. Thus time can be seen as proceeding in dis-
crete time steps equal in length to this minimum time quantum,
and the role of the scheduler is to decide which query operator
runs during each time step.

If a single data stream is input to multiple queries, we
assume that multiple copies of the stream are created by the
system and fed to each of the queries separately. Consequently,
we assume that all streams participate in only one query and
therefore every incoming tuple is input to only a single query. If
instead of making multiple copies, the system chooses to share
the input buffer across multiple queries, the optimal strategy
may differ; we plan to consider this case in future work. In this

B. Babcock et al.: Operator scheduling in data stream systems 3

paper, we will concentrate on the case of a fixed query plan,
which does not change over time.

As mentioned earlier, we assume that all operators execute
in a streaming or pipelined manner. Operators like select and
project naturally fit in this category. A join operator can also
be made to work in this manner, using a symmetric hash join
implementation [55]. While operators like select and project
do not need to maintain any runtime state, a symmetric hash
join operator needs to maintain a state that is proportional
to the size of the input seen so far, which is unbounded for
streams. However, for applications on streams, a relevant no-
tion of join is that of a sliding-window join [10,12,26,34,37],
where a tuple from one stream is joined on arrival with only a
bounded window of tuples in the other stream, and vice versa.
Consequently, the state maintained by a sliding-window join
operator is bounded. An example of a sliding-window join is
a tuple-based sliding-window join where the window on each
stream is specified as a fixed number of tuples [26,37]. Clearly,
the run-time state stored by a tuple-based sliding-window join
operator is of fixed size.

In summary, the operators that we consider act like filters
that operate on a tuple and produce s tuples, where s is the
selectivity of the operator. The selectivity s is at most 1 for the
select and project operators, but it may be greater than 1 for a
join. For the rest of this paper, the reader should keep in mind
that when we refer to the selectivity s of an operator, we are
referring to the above notion of viewing the operator as a filter
that (on average) produces s tuples on processing 1 tuple. We
assume that the runtime state stored by each operator is fixed
in size and thus the variable portion of the memory require-
ment is derived from the sizes of the input queues to operators.
The memory for all input queues is obtained from a common
system memory pool. In terms of this model, the goal of oper-
ator scheduling is to minimize the total memory requirement
of all queues in the system subject to a user-specified latency
constraint.

2.1 Alternate techniques for handling bursts

An important strategy for handling rapid and bursty stream
arrival is load shedding, where input tuples are dropped based
on some quality-of-service criteria to bring the system load
down to manageable levels when the system is overloaded [7,
47]. Load shedding may become necessary when the input
rate consistently exceeds the maximum processing rate of the
system so that backlogs in the input queues will build up and
eventually we will run out of memory. Load shedding is not the
focus of this paper. The techniques for load shedding proposed
in [7,47] are orthogonal to the operator-scheduling techniques
we discuss in this paper and could be used in conjunction with
our techniques. Instead, we focus on the following issue: Even
when the average arrival rate is within computational limits,
there may be bursts of high load, leading to high memory us-
age to buffer the backlog of unprocessed tuples. We want to
schedule operators efficiently in order to keep the peak mem-
ory usage at a minimum. We assume that the average arrival
rate is within computational limits so that it is eventually pos-
sible to clear the backlog of unprocessed tuples, e.g., when the
bursts of high arrival rate have receded.

An alternative approach to handling fast data stream ar-
rival rates is by rate throttling, i.e., artificially restricting the
rate at which tuples can be delivered to the system, thus shift-
ing the burden of buffering unprocessed data from the data
stream processing system to the data stream sources. How-
ever, many types of data stream sources may have little or no
ability to regulate the rate at which they deliver streaming data.
High-volume data streams will frequently be transmitted us-
ing UDP packets for efficiency, so the flow control capabilities
of TCP may not be available. Furthermore, even data stream
sources that are capable of responding to backpressure often
have limited buffering capabilities (e.g., when the source is a
low-cost sensor or embedded system). For these reasons, the
rate throttling approach is not further considered in this paper.

2.2 Why operator scheduling matters

Every tuple that enters the system must pass through a unique
path of operators, referred to as an operator path. (Recall that
we do not share tuples among query plans.) If the arrival rate of
the tuples is uniform and lower than the system capacity, then
there is not much to be done in terms of scheduling. Each tuple
that arrives can be processed completely before the next tuple
arrives, so the following simple scheduling strategy will have
the minimum memory requirement: Whenever a tuple enters
the system, schedule it through all the operators in its operator
path. If any operator in the path is a join that produces multiple
tuples, then schedule each resulting tuple in turn through the
remaining portion of the operator path. Henceforth, this strat-
egy will be referred to as the FIFO (first in, first out) strategy.
But note that, as mentioned earlier, such uniformity in arrival
is seldom the case, and hence we need more sophisticated
scheduling strategies guaranteeing that the queue sizes do not
exceed the memory threshold. The following example illus-
trates how a scheduling strategy can fare better than FIFO and
make the difference between exceeding the memory threshold
or not.

Example 1 Consider a simple operator path that consists of
two operators: O1 followed by O2. Assume that O1 takes unit
time to process a tuple and produces 0.2 tuples,1 i.e., its selec-
tivity is 0.2. Further, assume that O2 takes unit time to operate
on 0.2 tuples (alternatively, 5 time units to operate on 1 tuple)
and produces 0 tuples, i.e., O2 outputs the tuple out of the sys-
tem and hence has selectivity 0. Thus it takes 2 units of time
for any tuple to pass through the operator path.

We assume that, over time, the average arrival rate of tuples
is no more than 1 tuple per 2 units of time. This assumption
guarantees that we will not have an unbounded buildup of tu-
ples over time. However, the arrival of tuples could be bursty.
Consider the following arrival pattern: A tuple arrives at ev-
ery time instant from t = 0 to t = 6, then no tuples arrive
from time t = 7 through t = 13. Consider the following two
scheduling strategies:

• FIFO scheduling: Tuples are processed in the order in
which they arrive.A tuple is passed through both operators

1 A tuple does not refer to an individual tuple, but rather to a fixed
unit of memory, such as a page, that contains multiple tuples and
for which we can assume that selectivity assumptions hold on the
average. More details are provided in Sect. 3.

4 B. Babcock et al.: Operator scheduling in data stream systems

in two consecutive units of time, during which time no
other tuple is processed.

• Greedy scheduling: At any time instant, if there is a tuple
that is buffered before O1, then it is operated on using 1
time unit; otherwise, if tuples are buffered before O2, then
0.2 tuples are processed using 1 time unit.

The following table shows the total size of input queues for
the two strategies:

Time Greedy scheduling FIFO scheduling
0 1 1
1 1.2 1.2
2 1.4 2.0
3 1.6 2.2
4 1.8 3.0
5 2.0 3.2
6 2.2 4.0

After time t = 6, input queue sizes for both strategies de-
cline until they reach 0 after time t = 13. Observe that
Greedy scheduling has smaller maximum memory require-
ment than FIFO scheduling. In fact, if the memory threshold
is set to 3, then FIFO scheduling becomes infeasible, while
Greedy scheduling does not. �

This example illustrates the need for an intelligent schedul-
ing strategy in order to execute queries using a limited amount
of memory. Since the FIFO strategy is the only one available
for systems that use the traditional, iterator-based model of
query operators, the example also illustrates why buffering
tuples in interoperator queues can be beneficial. The aim of
this paper is to design scheduling strategies that will form the
core of a resource manager in a data stream system. Here are
some desirable properties of any such scheduling strategy:

• The strategy should have provable guarantees on its per-
formance in terms of metrics such as resource utilization,
response times, and latency.

• Because it will be executed every few time steps, the strat-
egy should be efficient to execute.

• The strategy should not be too sensitive to inaccuracies
in estimates of parameters such as queue sizes, operator
selectivities, and operator execution times.

3 Operator scheduling and memory requirements

As mentioned earlier, query execution can be captured by a
data flow diagram, where every tuple passes through a unique
operator path. Every operator is a filter that operates on a tuple
and produces s tuples, where s is the operator selectivity. (For
operators other than the first one in an operator path, we are
interested in the conditional selectivity, that is, the operator’s
selectivity on those tuples that have already passed through all
the previous operators.) Obviously, the selectivity assumption
does not hold at the granularity of a single tuple but is merely
a convenient abstraction to capture the average behavior of the
operator. For example, we assume that a select operator with
selectivity 0.5 will select about 500 tuples of every 1000 tuples
that it processes. Henceforth a tuple should not be thought of

as an individual tuple but should be viewed as a convenient
abstraction of a memory unit, such as a page, that contains
multiple tuples. Over adequately large memory units we can
assume that if an operator with selectivity s operates on inputs
that require one unit of memory, its output will require s units
of memory.

The FIFO scheduling strategy (from example 1) maintains
the entire backlog of unprocessed tuples at the beginning of
each operator path. Thus the sizes of intermediate input queues
will be small in case of FIFO, albeit at the cost of large queues
at the beginning of each operator path. In fact, the Greedy
strategy performed better than FIFO in example 1 precisely
because it chose to maintain most of its backlog at the input
queue between the first operator and the second. Since the first
operator had a low selectivity, it was beneficial to buffer two
fractional tuples (each of size 0.2) at this intermediate queue
rather than buffer a single tuple of size 1 at the beginning of the
operator path. This suggests that it is important to consider the
different sizes of a tuple as it progresses through its operator
path. We capture this using the notion of a progress chart,
illustrated in Fig. 1.

The horizontal axis of the progress chart represents time
and the vertical axis represents tuple size. The m+1 operator
points (t0, s0), (t1, s1), . . . , (tm, sm), where 0 = t0 < t1 <
t2 < . . . < tm are positive integers, represent an operator
path consisting of m operators, where the ith (1 ≤ i ≤ m)
operator takes ti − ti−1 units of time to process a tuple of size
si−1, at the end of which it produces a tuple of size si. The
selectivity of operator i is si/si−1.

Adjacent operator points are connected by a solid line
called the progress line representing the progress of a tuple
along the operator path. We imagine tuples as moving along
this progress line.A tuple τ enters the system with size s0 = 1.
After being processed by the ith query operator, the tuple has
received ti total processor time and its size has been reduced
to si. At this point, we say that the tuple has made progress
p(τ) = ti. A good way to interpret the progress chart is the
following: the ith horizontal segment represents the execution
of the ith operator, and the following vertical segment repre-
sents the drop in tuple size due to operator i’s selectivity. For
every operator path, the last operator has selectivity sm = 0.
This is because it will eject the tuples it produces out of the
system, and they no longer need to be buffered. If all operator

Tuple Size

lower envelope

Time

(0,0)

(t1, s1)

(t2, s2)

(t8, s8) = (25,0)

(t5, s5)

(t0, s0) = (0,1)

Fig. 1. Progress chart

B. Babcock et al.: Operator scheduling in data stream systems 5

Tuple Size

lower envelope

Time

operator with s > 1

Fig. 2. Progress chart: one operator has selectivity s > 1

selectivities are less than or equal to 1, the progress chart is
nonincreasing, as shown in Fig. 1. However, for query plans
that include a join operator with selectivity greater than 1, the
progress chart looks like the one shown in Fig. 2.

We assume that the selectivities and per-tuple processing
times are known for each operator. We use these to construct
the progress chart as explained above. Selectivities and pro-
cessing times could be learned during query execution by gath-
ering statistics over a period of time. If we expect these values
to change over time, we could use the following strategy, as
in [3]: divide time into fixed windows and collect statistics
independently in each window; use the statistics from the ith
window to compute the progress chart for the (i+1)st window.

Consider an operator path with m operators represented
by the operator points (t0, s0), . . . , (tm, sm). For any point
(t, s) along the progress line, where ti−1 ≤ t < ti for some
1 ≤ i ≤ m, the derivative of the point with respect to the
jth operator point (tj , sj) is given by d(t, s, j) = −(sj−s)

tj−t ,
for m ≥ j ≥ i. The derivative is undefined for j < i. The
derivative is nothing but the negative slope of the line con-
necting point (t, s) to an operator point to its right. The steep-
est derivative at point (t, s) for ti−1 ≤ t < ti is denoted
by D(t, s) = maxm≥j≥i d(t, s, j), and the operator point
for which the maximum is achieved is defined as the steep-
est descent operator point, SDOP (t, s) = (tb, sb), where
b = min{j|m ≥ j ≥ i and d(t, s, j) = D(t, s)}.2

Consider the following subsequence of operator points.
Start with the point x0 = (t0, s0). Let x1 = SDOP (x0),
let x2 = SDOP (x1), and so on, until we finally reach the
point xk = (tm, sm). If we connect this sequence of points
x0, x1, . . . , xk by straight line segments, we obtain the lower
envelope for the progress chart. In Figs. 1 and 2, the lower en-
velope is represented by a dashed line. Observe that the lower
envelope is convex. We make the following simple observation
regarding the lower envelope.

Proposition 1 Let (t0, s0), (t1, s1), . . . , (tk, sk) denote the
sequence of points on the lower envelope for a progress
chart. The magnitude of the slopes for the segments joining
(ti−1, si−1), and (ti, si), for 1 ≤ i ≤ k, must be nonincreas-
ing with i.

2 To break ties, when there are multiple such points, we use the
one with the smallest index.

Proof. The proof is by contradiction. Suppose there exists
an index i such that the magnitude of slope for the segment
joining (ti, si) to (ti+1, si+1) is strictly greater than that of the
segment joining (ti−1, si−1) to (ti, si). Then, the slope of the
segment joining (ti−1, si−1) to (ti+1, si+1) is strictly greater
than that for the segment joining (ti−1, si−1) to (ti, si). In
that case, by definition, (ti, si) is not the SDOP for the point
(ti−1, si−1) and hence does not belong to the lower envelope.

��
We are now ready to present our operator-scheduling

strategies. In Sect. 4 we focus on scheduling operators so as
to minimize the total memory requirement of all queues in the
system. We consider the output latency metric in Sect. 5.

4 Scheduling strategies
for runtime memory minimization

We begin by defining a framework for specifying an operator-
scheduling strategy. Ideally, one can view a scheduling strat-
egy as being invoked at the end of every unit of time, where a
time unit is the smallest duration for which an operator should
be run before it is replaced by another operator. On each in-
vocation, a strategy must select an operator from among those
with nonempty input queues and schedule it for the next time
unit. In reality, we need not invoke the strategy after every
time unit. It turns out that in most cases it is only required
to do so periodically or when certain events occur, e.g., an
operator that is currently scheduled to run finishes processing
all tuples in its input queue, or a new block of tuples arrives
on an input stream. All scheduling strategies considered in
this section choose the next operator to schedule based on
statically assigned priorities, i.e., scheduling and operator ex-
ecution do not change operator priorities. Thus the scheduling
strategy itself causes little overhead since priorities need not
be recomputed whenever operators are scheduled or stopped.
Under this model we will describe strategies that assign pri-
orities to different operators across all queries and provide
guarantees where possible.

As we will see momentarily, the priority that our schedul-
ing strategy assigns to each operator is completely determined
by the progress chart that the operator belongs to. We need to
ensure that our estimates for selectivities and per-tuple pro-
cessing times, on the basis of which the progress charts are
computed, are not very outdated. Therefore, we periodically
recompute these progress charts based on the statistics that are
gathered over the most recent window of time during query
execution. The task of recomputing the progress charts from
these statistics is straightforward and incurs little overhead.

The queries that we consider can be categorized into the
following two types.

1. Single-stream queries: These queries typically involve
selections and projections over a single stream, may in-
volve joins with one or more static stored relations, and
possibly end with a grouping and aggregation. This is a
fairly common class of queries in data stream applications.
Single-stream queries are discussed in Sect. 4.1.

2. Multistream queries: A distinguishing feature of this
class of queries is that they involve at least one join be-
tween two streams. Such queries are typically used to

6 B. Babcock et al.: Operator scheduling in data stream systems

correlate data across two or more streams (e.g., a query
that joins network packet streams from two routers to find
packets that passed through both routers).As indicated ear-
lier, we assume that all joins over streams are tuple-based
sliding-window joins. Multistream queries are discussed
in Sect. 4.3.

4.1 Single-stream queries

We present an operator scheduling algorithm that we call
Chain scheduling. The name “chain scheduling” comes from
the fact that our algorithm groups query operators into oper-
ator chains corresponding to segments in the lower envelope
of the query progress chart.

Given an operator path and its progress chart P , let P ′
denote the lower envelope simulation of P , defined as the
progress chart whose progress line consists of the lower enve-
lope of P . Consider a tuple τ and a progress line segment li
joining (ti, si) to (ti+1, si+1) in P ′. We say that tuple τ lies on
li if ti ≤ p(τ) < ti+1. (Recall from Sect. 3 that p(τ) denotes
the progress made by τ along the operator path.) Moreover,
we say that τ is at the beginning of li if p(τ) = ti and that it
is in the middle of li if ti < p(τ) < ti+1.

Consider a data stream system with n distinct operator
paths represented by the progress charts P = {P1, . . . , Pn}
with lower envelope simulations P ′ = {P ′

1, . . . , P
′
n}. The

Chain scheduling strategy (henceforth simply Chain, for
brevity) for such a system proceeds as follow:

Chain: At any time instant, consider all tuples that
are currently in the system. Of these, schedule for a
single time unit the tuple that lies on the segment with
the steepest slope in its lower envelope simulation. If
there are multiple such tuples, select the tuple that has
the earliest arrival time.

The way we describe our strategy, it may appear that it
is “tuple-based”, i.e., we make decisions at the level of each
tuple. That is not the case – Chain statically assigns priorities to
operators (not tuples) equaling the slope of the lower-envelope
segment to which the operator belongs. At any time instant,
of all the operators with tuples in their input queues, the one
with the highest priority is chosen to be executed for the next
time unit.

Using the special structure of the lower envelope, we show
that Chain is an optimal strategy for the collection of progress
charts P ′. To this end, define a clairvoyant strategy as one that
has full knowledge of the progress charts and the tuple arrivals
in the future. Clearly, no strategy can actually have knowledge
of the future, but the notion of clairvoyance provides a useful
benchmark against which we can compare the performance
of any valid scheduling strategy. We will compare Chain to
clairvoyant strategies.

Theorem 4.1 Let C denote the Chain scheduling strategy and
A denote any clairvoyant scheduling strategy. Consider two
otherwise identical systems, one using C and the other using
A, processing identical sets of tuples with identical arrival
times over operator paths having progress charts P ′. At ev-
ery moment in time, the system using A will require at least
as much memory as the system using C, implying the Chain
strategy is optimal over any collection of lower envelopes.

Proof. Since tuple arrival times are the same for each system,
differences in memory requirements at time t will be due to the
number of tuples that each system has been able to process by
that time. Let C(t) and A(t) denote the number of tuples that
have been “consumed” through processing (the total reduction
in size over all tuples) by the two strategies at any time instant
t. We wish to show that for all t, C(t) ≥ A(t).

Let d1 > d2 > · · · > dl > 0 denote the distinct slopes
of the segments in the lower envelopes, arranged in decreas-
ing order. The slope of a segment is the fraction of a tuple
consumed (reduction in the size of the tuple) when a tuple
moves for a unit time along the segment. At any instant t, let
tCi (respectively, tAi) denote the number of time units moved
along all segments with slope di by the strategy C (respec-
tively, strategy A). Since strategy C prefers to move along the
segment with the steepest slope, and since by Proposition 1
the slopes are nonincreasing for any lower envelope, it follows
that tC1 + tC2 + · · · + tCi ≥ tA1 + tA2 + · · · + tAi for 1 ≤ i ≤ l.

The number of tuples that are consumed by strategy C is
given by C(t) =

∑
1≤i≤l t

C
i di, while the number consumed

by A is given by A(t) =
∑

1≤i≤l t
A
i di. Since d1 > d2 >

· · · > dl > 0 and tC1 + tC2 + · · · + tCi ≥ tA1 + tA2 + · · · + tAi
for 1 ≤ i ≤ l, it follows that C(t) ≥ A(t). ��

We now consider the performance of Chain on general
progress charts, beginning with the following observation:

Proposition 2 For all segments with a particular slope, Chain
guarantees that there is at most one tuple that lies in the middle
of one of these segments. The remaining such tuples must be
at the beginning of their respective segments. Consequently,
this strategy maintains the arrival order of the tuples.

To see that Proposition 2 is true, recall that among all the
tuples lying on the steepest-descent segment(s), Chain prefers
to keep moving the tuple with the earliest timestamp, so it will
keep moving this tuple until it has cleared the segment and
moved to the next segment.

When Chain is implemented over a general progress chart
P , it “pretends” that tuples move along the lower envelopes,
although in reality the tuples move along the actual progress
chart P . However, we show that this does not matter too much
– the memory requirements of Chain on P are not much more
than its memory requirements on the lower envelope simula-
tion P ′. Consider a segment joining (ti, si) to (ti+1, si+1) on
any of the lower envelopes of P . Let δi denote the maximum
(over this segment) of the difference between the tuple-size
coordinates (vertical axis) of P and its lower envelope P ′ for
the same value of the time coordinate (horizontal axis).

Lemma 4.2 Let C(t) denote the number of tuples that are
consumed by the Chain strategy moving along the lower en-
velopes. Let AC(t) denote the number of tuples that are ac-
tually consumed by Chain when tuples move along the actual
progress charts. At any time instant t, AC(t) ≥ C(t)−∑

i δi,
where the sum

∑
i δi is taken over all segments corresponding

to all lower envelopes.

Proof. Consider a tuple making the same moves along the
time axis for the two functions corresponding to the actual
progress chart and the lower envelope. The size of the tuple
is the same when it is at the beginning of any segment. The

B. Babcock et al.: Operator scheduling in data stream systems 7

size differs only if the tuple is in the middle of any segment.
Moreover, for any segment i, the maximum difference is equal
to δi, as per the definition of δi. Proposition 2 guarantees that
the Chain strategy will have at most one tuple in the middle of
any segment. Putting all this together, we obtain that AC(t) ≥
C(t) − ∑

i δi. ��
Another simple observation that we make about progress

charts follows from the fact that the lower envelope always
lies beneath the actual progress chart.

Proposition 3 For any progress made by a tuple along the
progress chart P , if we use the lower envelope simulation of
P to measure the memory requirement instead of the actual
progress chart P , then we will always underestimate the mem-
ory requirement.

It follows from Proposition 3 that the memory requirement
for any strategy on progress chart P will be greater than the
memory requirement of Chain on the lower envelope simula-
tion of P , since we proved earlier (Theorem 4.1) that the Chain
strategy is optimal over any collection of lower envelopes.

We can combine the preceding observations to prove a
statement about the near-optimality of Chain on a general
progress chart P . Since the performance of the Chain strat-
egy over the lower envelope is a lower bound on the optimum
memory usage (even for clairvoyant strategies), we obtain that
the Chain strategy applied to the actual progress chart is op-
timal to within an additive factor of

∑
i δi. For the important

case where all operator selectivities are at most 1, which corre-
sponds to queries where there are no non-foreign-key joins to
stored relations, we can give a tight bound on

∑
i δi to obtain

the following result:

Theorem 4.3 If the selectivities of all operators are at most 1
and the total number of queries is n, then AC(t) ≥ C(t)−n.

Proof. When the selectivities of all operators are at most 1,
the progress chart is a nonincreasing step function, as shown
in Fig. 1. Then, for a segment joining (ti, si) to (ti+1, si+1), it
must be the case that δi ≤ si −si+1. Consequently, the sum of
δj over all segments j that belong to the same lower envelope
(same query) equals 1. As a result, the sum

∑
i δi over all

segments in all lower envelopes is bounded from above by the
number of queries n. Combining this with Lemma 4.2 implies
that AC(t) ≥ C(t) − n. ��

Thus, when all selectivities are at most 1, Chain differs
from optimal by at most one unit of memory per operator path.
(Our analysis of Chain is tight in that there exist cases where
it will suffer from being worse than the optimal strategy by an
additive factor of n.) We emphasize that the guarantee is much
stronger than merely saying that the maximum (over time)
memory usage is not much more than the maximum memory
usage of an optimal strategy. In fact, we are guaranteed that
the Chain strategy will be off by at most one unit of memory
(per query) as compared to any clairvoyant strategy (with an
unfair knowledge of future tuple arrivals), at all instants of time
and not just when we compare the maximum memory usage.
This is a fairly strong worst-case bound on the performance of
Chain. It is quite surprising that, even without the knowledge

of future arrivals, Chain is able to maintain near optimality at
all time instants.

Even with clairvoyant knowledge of future tuple arrival
patterns, no algorithm can efficiently determine the optimal
schedule (assuming P �= NP), as demonstrated by the fol-
lowing theorem:

Theorem 4.4 The offline problem of scheduling operators to
minimize required memory is NP-complete.

Proof. The memory requirements of a schedule can be easily
verified in polynomial time, so the problem of finding the
schedule that minimizes the memory required is in the class
NP.

We will prove that the problem is NP-complete via a re-
duction from the knapsack problem. In the knapsack problem,
the inputs are a knapsack capacity C and a set of n items
X = {x1, x2, . . . , xn} with associated sizes s1, s2, . . . , sn

and benefits b1, b2, . . . , bn. The objective is to find the subset
of items S ⊂ I that have maximum total benefit

∑
xi∈S bi

subject to the constraint that the total size
∑

xi∈S si cannot
exceed the capacity C.

Construct n progress charts each with two operators. The
ith progress chart consists of an operator that takes time si

and has selectivity 1 − bi followed by an operator that takes
time C +1− si and has selectivity zero. Consider the follow-
ing sequence of tuple arrivals: at time 0 and at time C, one
tuple arrives on each of the n progress charts. No tuples arrive
between time 0 and time C and no tuples arrive after time C.

It is easy to see that the maximum memory usage occurs
at time C. If M denotes the amount of memory freed up due
to processing during the first C time units, then the amount
of memory used at time C is equal to 2n − M . Processing
both operators in a single progress chart to completion requires
C+1 time units, so no more than one operator in each progress
chart can be processed to completion within C time units.
Completing the first operator in the ith process chart frees bi

units of memory and requires si time units of processing, and
no memory is freed by partially processing an operator. To
convert a solution to the scheduling problem into a solution
for the knapsack problem, add the ith knapsack item to S if
and only if the scheduling solution chooses to schedule the ith
progress chart at least si time units out of the first C time units.
The benefit gained by the knapsack solution is the same as the
memory freed by the scheduling solution during the first C
time units, so an optimal schedule yields an optimal knapsack
solution. ��

Although the above proof uses a reduction from knapsack
to the scheduling problem with multiple progress charts, the
reduction can be adapted to produce a single progress chart,
meaning that the scheduling problem is NP-complete even for
the special case of a single query with n operators.

4.2 Comparison with other operator-scheduling strategies

Before proceeding to the case of queries joining multiple
streams, we present other natural scheduling strategies against
which we will compare Chain scheduling.

8 B. Babcock et al.: Operator scheduling in data stream systems

1. Round-Robin: The standard Round-Robin strategy cycles
over the list of active operators and schedules the first op-
erator that is ready to execute. On being scheduled, an
operator runs for a fixed time unit or until an input queue
to the operator becomes empty. In contrast to Chain (and
other priority-based scheduling strategies) Round-Robin
has the desirable property of avoiding starvation (i.e., no
operator with tuples in its input queue goes unscheduled
for an unbounded amount of time). With Chain, especially
during bursts, ready-to-execute operators in low-priority
chains may have to wait a while before they are sched-
uled. However, the simplicity and starvation avoidance of
Round-Robin come at the cost of lack of any adaptivity to
bursts.

2. FIFO: The FIFO strategy (example 1) processes input
tuples in the order of arrival, with each tuple being pro-
cessed to completion before the next tuple is considered.
In general, FIFO is a good strategy to minimize the overall
response time of tuples in the query result. Like Round-
Robin, FIFO ignores selectivity and processing time of
operators and shows no adaptivity to bursts.

3. Greedy: In the Greedy strategy, each operator is treated
separately (as opposed to considering chains of operators)
and has a static priority (1−s′)/t′, where s′ is the selectiv-
ity and t′ is the per-tuple processing time of that operator.
This ratio captures the fraction of tuples eliminated by the
operator in unit time. The problem with this strategy is that
it does not take into account the position of the operator
vis-a-vis other operators in the operator path. For instance,
suppose a fast, highly selective operator H follows a few
less selective operators.Although operator H will get high
priority, the ones preceding it will not. As a result, at most
time instants H will not be ready to be scheduled as its
input queues will be empty. This demonstrates the need to
prioritize earlier operators in an inductive manner, a notion
that is captured by the lower envelope in Chain.

We conclude this subsection with some discussion points.

Pushing down selections. Query optimizers try to order op-
erators so that more selective operators precede those that are
less selective, making it likely that query plans will have very
selective operators early on. It is precisely on this type of
query plan that Chain performs best compared to strategies
such as FIFO and Round-Robin. The FIFO strategy, which
does not exploit the low selectivity of operators at the begin-
ning of a query plan, will accumulate a large backlog of un-
processed tuples at the beginning of each operator path during
bursty periods, as illustrated in example 1. The Round-Robin
scheduling strategy will have a similar problem since it treats
all ready operators equally. Interestingly, Greedy will mirror
Chain if the operators in the plan are in decreasing order of
priority, when each operator will form a chain on its own. Still,
noncommutativity of operators will sometimes result in query
plans that favor Chain over Greedy. For example, tuple-based
sliding-window joins like the ones we consider in this paper do
not commute with most other operators including selections.
Pushing a selection down below a tuple-based sliding-window
join will change the result of the join by filtering out some tu-
ples before they reach the join, slowing the rate at which tuples
expire from the sliding window.

Starvation and response times. As mentioned earlier, the
Chain strategy may suffer from starvation and poor response
times, especially during bursts. We address this problem in
Sect. 5.

Scheduling overhead. Clearly, the scheduling overhead is
negligible for simple strategies like Round-Robin and FIFO.
In Chain, scheduling decisions need to be made only when
an operator finishes processing all tuples in its input queue or
when a new block of tuples arrives in an input stream. In ei-
ther case, the scheduling decision involves picking an operator
from the highest-priority chain that contains a ready operator.
Underlying progress charts and chain priorities need to be re-
computed only when operator selectivities or tuple-processing
times change; otherwise, the operator chains and their priority
order is fixed. Recomputing progress charts from statistics and
chains, and their priorities, from these progress charts takes
very little time. Thus, Chain also incurs negligible overhead;
Greedy behaves similarly.

Context switching overhead. The context switching overhead
incurred by a scheduling strategy depends on the underlying
query execution architecture. We assume that all operators and
the scheduler run in a single thread. To get an operator to pro-
cess its input queues, the scheduler calls a specific procedure
defined for that operator. This query execution model is simi-
lar to the framework implemented in some recent data stream
projects [37,43]. Context switching from one operator to an-
other is equivalent to making a new procedure call, which has
low cost in modern processor architectures. Context switching
costs can become significant if different operators are part of
separate threads, as in Aurora [10]. Even if context switching
costs are significant, we do not expect these costs to hamper
the effectiveness of Chain. Compared to other scheduling poli-
cies like Round-Robin and FIFO, Chain tends to minimize the
number of context switches. Chain will force a context switch
only when an operator finishes processing all tuples in its in-
put queue or when a new block of tuples arrives in an input
stream and unblocks a higher-priority operator than the one
currently scheduled.

Throughput. All techniques perform the same amount of com-
putation, considering that scheduling costs and context switch-
ing costs are negligible. We would expect throughput to be the
same over time, provided the main memory threshold is not
exceeded. During bursts, FIFO would momentarily produce
more result tuples compared to the other strategies.

The experimental results in Sect. 6 validate the intuitive
statements and analytical results presented in this section.

4.3 Multistream queries

We now extend Chain scheduling to queries with multiple
streams that contain at least one sliding-window join between
two streams. For presentation, in this particular section a “tu-
ple” refers to a single-stream tuple, as opposed to a larger unit

B. Babcock et al.: Operator scheduling in data stream systems 9

of memory such as a page, which was the case in the previous
sections.

Recall that we assume tuple-based sliding-window joins.
The semantics of these joins is defined based on the times-
tamps of tuples in the joining streams. (We refer the reader
to [2] for a comprehensive description of the semantics and
implementation issues of tuple-based sliding-window joins.)
We assume that every tuple has a globally unique timestamp
(across all streams) and that tuples within a single stream ar-
rive in increasing order of timestamp. For instance, the stream
system might be timestamping tuples when they arrive in the
system. A procedural description of the result of a tuple-based
sliding-window join is as follows: For a join between streams
R and S, when a r ∈ R with timestamp tr is processed, r will
be joined with the wS tuples with highest timestamps ≤ tr
in S (where wS is the size of the sliding window on stream
S). Symmetric processing occurs for S tuples. When tuples
with timestamps t1 and t2 are joined, the timestamp of the
result tuple is max(t1, t2). The result tuples have to be times-
tamped because the output of a join operator may be input to
another join operator in a tree of join operators implementing
a multiway join.

The synchronization inherent in the above semantics re-
stricts freedom in operator scheduling. To guarantee correct-
ness and ensure that join output is produced in sorted times-
tamp order for input to upstream operators in a tree of joins,
we need to synchronize the two inputs to a join by process-
ing them in strict timestamp order across both input streams
(similar to a merge sort on the timestamp attribute). In other
words, when joining streams R and S, no tuple from R with
timestamp t will be processed by the join operator until it has
processed all tuples in S with timestamp less than t. Since
we cannot predict the timestamps of future tuples for general
streams, a sliding-window join operator will be blocked if any
one of its input queues is empty, even if tuples are available in
the other input queue.

4.3.1 Extending Chain scheduling to joins

In order to extend Chain scheduling, we first need to extend
the progress chart model to multistream queries. A query with
multiple streams is a rooted tree with input streams at the
leaves of the tree. We break up the tree into parallel opera-
tor paths, one for each input stream, that connect individual
leaf nodes (representing input streams) to the root of the tree.
The operator paths thus obtained can share common segments.
Each operator path is individually broken up into chains for

π

σ

RStream

Stream S

Window for R Window for S

Fig. 3. Example sliding-window join query

scheduling purposes. An example query is shown in Fig. 3.
This query contains a sliding-window join (��) between two
streams R and S, followed by a selection condition (σ) on
the output of the join. Additionally, there is a project operator
(π) on the stream R before it joins S. The decomposition of
the tree corresponding to this query gives two operator paths
R → π → �� → σ and S → �� → σ. The �� → σ segment is
shared between the operator paths. Note that the join operator
is part of both operator paths and will therefore be part of two
operator chains when these paths are broken up into chains
for scheduling. However, as discussed earlier in this section,
the join operator always processes tuples in strict timestamp
order across its input queues irrespective of the chain as part
of which it gets scheduled. Furthermore, the sliding-window
join operator will be blocked if any one of its input queues is
empty.

The per-tuple processing times (t) and selectivities (s) for
all operators other than join are defined in a straightforward
manner, similar to the case of single-stream queries. We now
specify the quantities (t, s) for a join operator between two
streams.

A sliding-window join is abstracted using a model similar
to the one described in [26]. Let the average number of tuples
in a stream S per unit time (as per the timestamp on tuples)
be λS . Like average tuple selectivity, λS is a convenient ab-
straction to capture the average behavior of sliding-window
join operators. Consider a sliding-window join operator be-
tween streams R and S that processes tuples with timestamps
belonging to an interval of size t′. During this run, the join
operator will process (on average) t′(λR + λS) input tuples
and produce t′(λRαW (S) + λSαW (R)) result tuples, where
αW (S) is the (average) selectivity of the semijoin of stream
R with the sliding window for S, i.e., the average number of
tuples from the sliding window for S that a tuple from R joins
with. αW (R) is defined analogously. The system time taken
for this run is t′ × (λR × tR + λS × tS), where tX is the
average time taken to process a tuple from stream X . Here
tS includes the time taken to compare the head tuples in the
queues for R and S, the time to probe the sliding window for
R and produce result tuples, and the time to update the sliding
window for S. Given λR, λS , αw(R), αw(S), tR, tS , for input
streams R and S, the selectivity s for the sliding-window join
is given by

λRαW (S)+λSαW (R)

λR+λS
and per-tuple processing time

t (wall clock time) is given by λR×tR+λStS

λR+λS
. It is easy to in-

ductively derive λS′ for any stream S′ that is the result of an
intermediate operator in the query plan.

Having specified the (t, s) values for the windowed join
operator between two streams, we build the progress chart for
each operator path as described in Sect. 3. Our basic Chain
strategy remains unchanged. The only difference is the fol-
lowing: earlier an operator could be blocked (could not be
scheduled) only when an input queue was empty. However,
in the case of a join, the left input queue might have tuples
while the right input queue could be empty. In such a case, the
chain corresponding to the left queue might want to schedule
the join operator, but it cannot do so because the operator is
blocked for input on the right input queue. This chain will not
be considered for scheduling until the join operator becomes
unblocked.

10 B. Babcock et al.: Operator scheduling in data stream systems

As before, the scheduling strategy is executed whenever
an operator finishes processing all tuples in one of its input
queues, or when a new block of tuples arrives in some input
stream, and the highest-priority ready chain is scheduled as
always.

Unlike the single-stream case, we do not have any analyti-
cal results for our adaptation of Chain to the multistream case.
However, experimental results suggest that Chain performs
extremely well, for both single-stream and multiple-stream
queries, compared to the other scheduling strategies that were
considered.

5 Incorporating latency constraints

Our development of the Chain algorithm has focused solely
on minimizing the maximum runtime memory usage, ignor-
ing the important aspect of output latency. During bursts in
input streams, Chain suffers from tuple starvation, i.e., Chain
prefers to operate on new tuples that lie on steeper slope seg-
ments of the lower envelope, neglecting older tuples in the
system that lie on segments with gentler slopes, thereby in-
curring a high latency for these old tuples. While minimizing
runtime memory usage is important, many stream applica-
tions also require responses to stream inputs within specified
time intervals. Although Chain as described so far cannot be
used in such scenarios, we now turn to the task of modifying
Chain to handle the latency issue. Our approach is to design a
scheduling strategy that minimizes peak memory usage, sub-
ject to the constraint that output latency should not exceed
some user-specified threshold. As we show in this section,
simple extensions to Chain provide efficient solutions to this
problem.

Throughout this discussion we assume that there exists a
feasible scheduling strategy that adheres to the latency con-
straint. This imposes the restriction on the input pattern that it
cannot have very high-volume bursts. If this restriction is not
satisfied, then it is impossible to meet the latency constraint
for all tuples. In such cases, one must either relax the latency
constraint or drop some of the input tuples, i.e., perform load
shedding [7,47]. Load shedding is an orthogonal issue and is
not discussed in this paper.

Let L denote the maximum allowable latency, as specified
by the system administrator or as part of each user query. This
parameter imposes the following latency constraint: Every in-
put tuple with processing time T that arrives at time t should
be output no later than t + L. If we let T denote the total pro-
cessing time for a single block of tuples, i.e., the x-coordinate
of the last operator point on the progress chart, then the latency
bound can be expressed as a multiple f of the processing time,
i.e., f = L/T . Typical values for f might be in the thousands,
based on an L value on the order of a few seconds and a T
value of a few milliseconds.

It is well known that if there exists any schedule that can
process all tuples before their deadlines, then “earliest deadline
first” (EDF) scheduling will also process all tuples before their
deadlines [28]. Moreover, EDF is an online strategy that does
not need to know the input sequence a priori. When there is
a single progress chart (i.e., a single query), EDF degenerates
into the FIFO scheduling strategy.

Note that EDF is a “tuple-based” scheduling strategy, i.e.,
it makes scheduling decisions based on the runtime state of all
the tuples, which includes knowledge about their individual
deadlines and their progress so far. Such tuple-based strategies
have a higher overhead in scheduling as opposed to “operator-
based” scheduling strategies like Chain, which have a static
operator priority. Some of the scheduling strategies we con-
sider will be tuple based, despite the potentially higher im-
plementation overheads associated with them. Techniques for
improving the efficiency of certain tuple-based strategies are
covered in Sect. 5.2. We begin with a few preliminary obser-
vations, followed by some negative results that show the diffi-
culty of achieving near-optimal memory usage in the presence
of latency constraints. For ease of exposition, we will restrict
ourselves to the scenario in which the query plan consists of a
single operator path (i.e., progress chart), although the nega-
tive results clearly extend to the case when there are many of
them.

As mentioned earlier, if there exists a feasible scheduling
strategy, the input must adhere to certain restrictions. In partic-
ular, it is easy to see that, for all p, the number of tuples input
during a consecutive period of pT time units cannot exceed
	f +p
. Moreover, at any time all tuples present in the system
were input within the last fT time units. Putting together the
two observations, at any point in time there are at most 2f −1
tuples that are not completely processed.

We next present a definition of c-efficiency, which mea-
sures the additive amount by which an algorithm diverges from
optimal.

Definition 5.1 c-Efficient algorithm: An online algorithm A
is said to be c-efficient for the operator scheduling problem if
it requires no more than x+ c units of memory, where x is the
memory requirement of the best offline algorithm.

The following theorem shows that no online scheduling
algorithm is better than Ω(f)-efficient. In other words, no
c-efficient online algorithm exists with a c value that is sublin-
ear in f . For progress charts where all operator selectivities are
at most 1 (i.e., there are no non-foreign-key joins), this lower
bound is asymptotically tight since the memory requirement
of any feasible algorithm is bounded by 2f −1, the maximum
number of unprocessed tuples.

The additive memory deviation increases linearly with the
latency threshold f = L/T because we only consider those
input patterns for which there exists a feasible scheduling
strategy. A larger threshold allows input patterns that can be
more difficult for an online algorithm as compared to an of-
fline scheduler. However, for a given pattern of input arrivals,
memory usage tends to go down if the latency threshold is
increased.

Theorem 5.2 There exist progress charts and arrival patterns
for which no online algorithm can be (f

12 − δ)-efficient, for
any positive number δ.

Proof. The proof is by constructions: we specify a particular
progress chart and an adversarial sequence of tuple arrivals.
For ease of exposition, in this proof all times are normalized
by dividing by the total per-tuple processing time T . Consider
a progress chart whose lower envelope is (0, 1) − (t, 0.5 +
ε) − (3t, 2ε) − (1, 0), where t < 1

3f and ε < 6δ
f are small

B. Babcock et al.: Operator scheduling in data stream systems 11

positive numbers. Consider the following arrival pattern in
which tuples are inserted into the system: starting at time 0,
f tuples are inserted into the system at uniform time intervals
of width 3t each. Note that all f tuples have been inserted by
time 1 since t < 1

3f . The (f + 1)th tuple is inserted at time
1 + s, where s = ft is a slack value. Since each tuple must
complete its execution within f time units of its arrival, the
ith tuple must complete execution by time 3(i − 1)t + f for
0 < i ≤ f . The (f + 1)st tuple must be completely processed
by time (f + 1 + s). Since (f + 1) tuples take (f + 1) time
units to process, this leaves a slack of s time units, which could
go toward processing other tuples besides the f + 1 specified
earlier. (Note that there exists an algorithm whose maximum
memory requirement is 1+2fε for the input specified so far.)

At time f+1−3tf , the adversary begins injecting a second
batch of tuples starting at uniform intervals of 3t. The number
of tuples inserted in the second batch will be decided by an
adversary at runtime; there will be either f/3 tuples or f tuples
in the batch.

Note that the slack s = ft allows a combined processing
of ft time units on tuples from the second batch before the
first f +1 tuples need to be processed to completion. In order
to reduce memory usage, it would be helpful to process as
many of the newly arriving tuples as possible for at least 3t
time units each. If only f/3 tuples are going to be injected in
the second batch, we could afford to process each of them for
3t units of time. However, since the available slack is only ft
time units, if f tuples arrive in the second batch, it would be
preferable to process each tuple in the second batch for only
t units, so that the overall reduction in memory usage is as
large as possible, before it becomes necessary to process the
(f + 1)st tuple to completion in order to meet its deadline.
Since it does not know the future, any online algorithm cannot
at this juncture make the optimal choice of how many tuples
from the second batch to process for t time units, and how
many to process for 3t units.

Consider an intermediate point where α = f/3 tuples of
the second batch have arrived in the system. There are two
choices the scheduler could have taken for each tuple: either
(1) process this tuple for 3t units so that its memory require-
ment is brought down to nearly zero or (2) process this tuple
for only t units so that its memory requirement is reduced to
0.5, and then spend 2t time units processing one of the first
f +1 tuples that arrived during the first batch. (Without loss of
generality we can assume that the online algorithm will pro-
cess for at least t time units each of the tuples that have arrived
until now, since the first t time units is the steepest segment
of the progress chart). Choice (2) achieves a lesser reduction
in memory as compared to choice (1), but the advantage of
choice (2) is that less slack is consumed, so a greater number
of tuples that may arrive in the future can be processed for at
least t time units. Note that the first t time units of processing
per tuple are most important, as spending time on the first seg-
ment of the progress chart decreases the memory usage faster
than the second segment. At this point, after α tuples in the
second batch have arrived, let us assume that the online algo-
rithm processed k of the tuples for time 3t and (α − k) of the
tuples for time t.

The amount of memory consumed so far by the online
algorithm during the second batch of tuples is (0.5−ε)(α+k).

The slack remaining is now s − 3kt − (α − k)t, which is
(f − 2k − α)t, since s = ft. Consider the following two
scenarios:

1. In Scenario 1, (f −α) more tuples enter the system in this
batch at intervals of 3t than before. The online algorithm
only has (f−2k−α)t slack remaining, hence it will only be
able to consume at most (0.5−ε)(f−2k−α) memory now.
Thus the total memory consumed by the online algorithm
during the second batch of tuples is (0.5 − ε)(f − k). The
optimal offline algorithm for this scenario would have used
its ft slack by processing each of the f tuples in this batch
for time t when it arrives, consuming a total of (0.5 − ε)f
memory in the second batch. Hence in this scenario, the
online algorithm fails to be (0.5 − ε)k-efficient.

2. In Scenario 2, no more tuples enter the system after this
batch of α tuples. The optimal offline algorithm for this
case would have processed each of the α tuples from the
second batch for 3t time units when they arrived, achiev-
ing a memory reduction of 2(0.5 − ε)α, as opposed to
the online algorithm that only reduced memory usage by
(0.5 − ε)(α + k). Hence in this scenario, the online algo-
rithm fails to be (0.5 − ε)(α − k)-efficient.

The online algorithm could select k so as to minimize its loss
against the adversarial input pattern of tuples. The loss is given
by the maximum of the two scenarios, which is selected by the
adversary and is (0.5−ε) max(k, α−k). The online algorithm
can minimize this by choosing k = 0.5α = f/6. Since ε <
6δ
f , we obtain that no online algorithm can be (f/12 − δ)-

efficient. ��
We can improve the constant in the above argument with

a more complicated argument, but asymptotically it does not
change the result.

The above result holds for general progress charts. How-
ever, for specific types of charts, for example those progress
charts that have only two segments, it is possible to get a near-
optimal online algorithm, as illustrated in the next subsection.
(Note that for the lower bound in Theorem 5.2, we used a
progress chart with three segments.)

5.1 Chain-Flush algorithm

Chain-Flush is a simple modification of Chain for deal-
ing with latency constraints. The Chain-Flush algorithm pro-
ceeds exactly like Chain until deadline constraints become
tight, forcing a change in strategy. Suppose there are n un-
processed (or partially processed) tuples in the system. Let
r1 ≤ r2 ≤ ≤ rn be the times remaining until the dead-
lines for these n tuples, and let t1, t2,tn be the amounts of
further processing time required for each tuple. (Note that the
tuples are ordered by arrival order so that t1 is the oldest un-
finished tuple.) When Σi

j=0tj = ri, for some 0 < i ≤ n, and

Σi
′

j=0tj < ri′ , for all 0 < i
′
< i, then the ith tuple is on the

verge of missing its deadline. At this point, no more process-
ing on later-arriving tuples can be performed until the ith tuple
and all earlier tuples have been completely processed. At this
point, Chain-Flush is recursively applied, but now process-
ing is restricted to only tuples 1, 2, . . . , i until these i tuples
have been completely processed. At that point, Chain-Flush

12 B. Babcock et al.: Operator scheduling in data stream systems

resumes processing on all remaining unprocessed tuples, in-
cluding any new tuples that may have arrived in the interim.

Theorem 5.3 For a progress chart consisting of operators
with selectivity at most 1 and having a lower envelope com-
posed of at most two segments, Chain-Flush is 1-efficient.

Proof. The total processing time t spent on all tuples up un-
til the present moment can be divided into t1, the time spent
by Chain-Flush on the first, steeper segment of the progress
chart, and t2, the time spent on the second segment, so that
t = t1 + t2. If s1 and s2 are the slopes of the two segments,
with s1 ≥ s2, the total memory consumed is t1s1 + t2s2.
Suppose some other algorithm divides its time differently,
spending t1

′ on the first segment and t2
′ = t − t1

′ on the
second segment. Since Chain-Flush greedily prefers to ex-
ecute operators from the first segment whenever possible,
only scheduling the second segment the minimum number
of times necessary to meet the latency constraints, t1 ≥ t1

′
and t2 ≤ t2

′. We can show that, based on the lower envelope
of the progress chart, the memory consumed by the alternate
algorithm is less than the memory consumed by Chain-Flush:
t

′
1s1 + t

′
2s2 ≤ t

′
1s1 + (t1 − t

′
1)s1 − (t1 − t

′
1)s2 + t

′
2s2 =

t
′
1s1 + (t1 − t

′
1)s1 − (t

′
2 − t2)s2 + t

′
2s2 = t1s1 + t2s2. The

memory requirement at any instant is the difference in the
total memory of tuples entering the system less the memory
consumed up to that point. If memory consumption is mea-
sured according to progress along the lower envelope, then as
Chain-Flush has the maximum memory consumption at every
instant, it has the minimum memory requirement. However,
since the memory consumption indicated by the lower enve-
lope only approximates the actual progress chart, the actual
memory usage of Chain-Flush may be somewhat greater. The
same argument used in the proof of Theorem 4.3 can be ap-
plied here to demonstrate that the total amount of additional
memory used does not exceed 1. ��

5.2 Implementing Chain-Flush efficiently

Unlike the basic Chain algorithm, Chain-Flush is tuple based
and involves considerable scheduling overhead. For every tu-
ple t queued in the system, we need to keep track of the total
processing time remaining across all tuples that arrived be-
fore t that are still queued in the system. This overhead makes
a direct implementation of Chain-Flush unsuitable for data
stream systems where many continuous queries can run con-
currently. Of course, the overhead can be reduced by tracking
the remaining processing time for blocks of tuples as opposed
to individual tuples, at the potential cost of missing some dead-
lines. Nevertheless, the fact remains that the scheduling over-
head of Chain-Flush as described in Sect. 5.1 is proportional
to the total amount of data queued in the system. Fortunately,
many stream applications that we are aware of [44] have soft
latency constraints [27], so missing some deadlines by small
margins is an acceptable tradeoff in these applications to im-
prove overall throughput or resource utilization. In this section
we describe an efficient, but approximate, implementation of
Chain-Flush that leverages this property.

In the following discussion we assume that deadlines are
specified at the level of a query as the maximum latency that

can be tolerated for the output tuples of the query, denoted
the latency threshold for the query. For the purposes of this
discussion we make the following assumptions:

1. The timestamp of an input stream tuple is the wall-clock
time at which the tuple arrived at the system.

2. We consider plans consisting of selection and join opera-
tors only. The timestamp of a tuple passed by a selection
operator remains unchanged. The timestamp of a joined
tuple produced by a join operator is the higher of the times-
tamps of the joining tuples.

3. The latency of a tuple output by the system is the difference
between the timestamp of the tuple and the wall-clock time
at which the tuple was output.

We maintain a data structure, denoted Q, where for each
queue q in the system we store a four-tuple of the form
〈q, th, rq, pq〉, where th is the timestamp of the head tuple
of the queue, rq is the latency threshold for the query corre-
sponding to the query plan containing q, and pq is the sum of
the average tuple-processing times for all operators starting
from the operator that reads from q to the output operator of
the plan containing q. Consider the head tuple of q and let τ
denote the current time. By definition, assuming the head tu-
ple produces an output tuple eventually, τ + pq is the earliest
time at which we can produce this output tuple. Furthermore,
the deadline for this output tuple is at th + rq. Q is main-
tained incrementally in nondecreasing order of th + rq − pq

as operators execute.
Recall from Sect. 4.2 that Chain needs to make a schedul-

ing decision only when an operator finishes processing all
tuples in its input queue, or when a new block of tuples ar-
rives in an input stream. However, Chain-Flush needs to make
scheduling decisions more frequently to avoid an operator with
many input tuples from taking much more than its share of the
processor and thereby causing tuples in other parts of the query
plan(s) to be delayed indefinitely. To ensure that scheduling
decisions can be made in a timely manner without increas-
ing scheduling overhead substantially, each operator on being
scheduled is given a maximum number of tuples, e.g., 1000,
that it can process before it returns control back to the sched-
uler.

At each scheduling step the scheduler checks whether the
first entry 〈q, th, rq, pq〉 of Q satisfies τ + pq ≥ th + rq,
where τ is the current time. If not, it schedules the operator
that Chain would have scheduled at that point, i.e., the operator
with the highest priority. If so, the scheduler switches to the
flush mode of processing to process the head tuple of q to
completion. Effectively, it creates a virtual segment consisting
of all operators starting from the reader operator of q to the
output operator of the plan containing q. The operators in this
segment are scheduled in succession so that the head tuple of
q and all tuples in intermediate queues between operators in
this segment are processed to completion.

Our implementation of Chain-Flush does not provide hard
guarantees about meeting latency constraints. However, as our
experiments in Sect. 6.2 show, in practice our implementation
is able to keep output latency extremely close to the speci-
fied latency threshold. Furthermore, the scheduling overhead
of our Chain-Flush implementation is comparable to that of
Chain and is significantly lower than that of a direct implemen-
tation of Chain-Flush based on Sect. 5.1. Our Chain-Flush

B. Babcock et al.: Operator scheduling in data stream systems 13

implementation invokes the scheduler more often than does
Chain, but the extra work per scheduling step simply involves
accessing the first entry in Q and comparing it with the current
time.

5.3 Mixed algorithm

Mixed is another simple modification of Chain to deal with
latencies caused by multiple segments of low slope toward the
end of the progress chart. Mixed(γ) clips those segments in the
lower envelope that have a slope below a threshold γ so that
FIFO is applied to those segments. In other words, Mixed(γ)
modifies the lower envelope to combine the segments with
slope less than γ to form a unified segment.

Example 2 Consider a simple progress chart whose lower en-
velope is given by the points (0,1), (1,0.1), (99,0.001), (100,0).
Although the second segment has a steeper slope than the third,
Mixed(0.01) combines both of them to form a single segment
in the modified lower envelope. Mixed now applies Chain on
this modified lower envelope.

We compare FIFO, Chain, and Mixed with respect to the
maximum memory requirement and the latency of the output
produced. Note that the latency of a tuple is the difference
in time between its being completely processed and its being
available for processing. The average latency is the latency
averaged over all output tuples. Consider the following two
arrival patterns.

1. One hundred tuples arrive, with the ith tuple arriving at
time 99 × i. For this arrival pattern the Chain algorithm
always selects the arriving tuple for processing the next
one immediately.

Metrics Chain FIFO Mixed
Max. memory 1.099 2 2
Avg. latency 5000 150 150
Max. latency 9901 199 199

2. Now consider the arrival pattern where ten tuples arrive,
with the ith tuple arriving at time 10 × i.

Metrics Chain FIFO Mixed
Max. memory 1.9 9 1.9
Avg. latency 595 550 595
Max. latency 910 910 910

The first pattern shows how tuples arriving at rates just
above the processing rates can cause large latencies in Chain.
The second pattern shows how FIFO, being nonadaptive, can
have large memory requirements. The Mixed algorithm offers
a way to avoid the worst excesses of both Chain and FIFO.

Mixed can be viewed as a heuristic strategy that is interme-
diate between Chain and FIFO. The slope threshold γ serves
as a tuning parameter that modulates the behavior of Mixed:
higher values ofγ cause Mixed to behave more like FIFO, lead-
ing to increased memory usage but improved latency, whereas
lower values of γ make Mixed behave more like Chain, lead-
ing to lower memory usage at the cost of higher latency during
bursts.

6 Experiments

In this section we describe the results of various experiments
that we conducted to compare the performance of the various
operator-scheduling policies described in this paper. We be-
gin with a brief description of our simulation framework. In
Sect. 6.1, we compare the performance of the scheduling poli-
cies in terms of the total memory requirement of all queues in
the system, and in Sect. 6.2 we compare the performance in
terms of the output latency.

Our implementation of FIFO processes each block of input
stream tuples to completion before processing the next block
of tuples in strict arrival order. Round-Robin cycles through a
list of operators, and each ready operator is scheduled for one
time unit. The size of the time unit does affect the performance
of Round-Robin, but it does not change the nature of the results
presented here.

The notion of the progress chart captures the average be-
havior of the query execution in terms of the sizes of memory
units as they make progress through their operator paths. The
experiments we describe were designed by choosing a partic-
ular progress chart to use for both the real and synthetic data
sets and then adjusting selection conditions and join predi-
cates to closely reflect the progress chart. Of course, during
actual query execution there are short-term deviations from the
average behavior captured in the progress chart. In our exper-
iments, we follow the query execution and report the memory
usage at various times. The experiments described here used
static estimates for operator selectivities and processing times
(derived from a preliminary pass over the data) to build the
progress charts.

Next we briefly describe the data sets used in the various
experiments:

1. Synthetic data set: The networking community has con-
ducted considerable research on how to model bursty traf-
fic to most closely approximate the distributions prevalent
in most real data sets. A good reference is the paper by
Willinger et al. [53]. Based on their “ON/OFF” model we
generate synthetic bursty traffic by flows that begin ac-
cording to a Poisson process (with mean interarrival time
equal to 1 time unit) and then send packets continuously for
some duration chosen from a heavy-tailed distribution. We
use the Pareto distribution for packet durations, which has
a probability mass function given by p(x) = αkαx−α−1,
for α, k > 0, x ≥ k. We use k = 1 and α = 2.3 in
our experiments. While the arrival times are generated as
above, the attribute values are generated uniformly from a
numeric domain; this allows us to choose predicates with
desired selectivities.

2. Real data set: The Internet Traffic Archive [22] is a good
source of real-world stream data sets. One of their traces,
named “DEC-PKT”, contains 1 hour’s worth of all wide-
area traffic between Digital Equipment Corporation and
the rest of the world. We use this trace as the real-world
data set for our experiments. Attributes such as IP ad-
dresses and packet sizes were used in selection and join
predicates. The exact predicates were chosen to give the
desired selectivities for each experiment.

14 B. Babcock et al.: Operator scheduling in data stream systems

6.1 Memory requirement of queues

We now present the experimental evaluation of the total mem-
ory requirement of all queues in the system for the Chain,
FIFO, Greedy, and Round-Robin policies. Section 6.1.1
presents the experimental results for single-stream queries,
Sect. 6.1.2 considers queries having joins with stored rela-
tions, Sect. 6.1.3 considers sliding-window join queries, and
Sect. 6.1.4 considers multiple queries. Chain-Flush and Mixed
are evaluated in Sect. 6.2 and are not considered in this section.
We ignore the cost of context switching in our experiments in
this section.As discussed in Sect. 4.2, Chain makes fewer con-
text switches as compared to FIFO, Greedy, or Round-Robin.
Therefore, had we included context switching costs, the rela-
tive performance of Chain would have been even better than
shown here.

6.1.1 Single-stream queries without joins

Our first experimental results compare the performance of dif-
ferent scheduling strategies for single-stream queries without
joins. We first consider a simple query with two operators.
Its progress chart in terms of coordinates (ti, si) of operator
points is: (0, 1), (500, 0.3), and (4000, 0), where times are in
microseconds. In terms of the terminology in Sect. 3, a tu-
ple in the progress chart contains 100 individual tuples of size
24 bytes each. This query consists of a fast and highly selective
operator followed by a slow operator that “consumes” much
fewer tuples per unit time. This is similar to example 1.

Figures 4 and 5 show the variation in total queue size
over time for the real and synthetic data set, respectively. We
observe that Chain and Greedy have almost identical perfor-
mance for this simple query plan. This is explained by the fact
that each operator forms a chain of its own and hence they are
expected to behave identically. Round-Robin performs almost
as well as Chain on both data sets. In later experiments we will
see how as the number of operators increases, the performance
of Round-Robin degrades. FIFO performs badly with respect
to Chain since it underutilizes the fast and highly selective first
operator during any burst.

The second query that we consider has four operators
with selectivities less than 1. Its progress chart in terms of
coordinates (ti, si) of operator points is: (0, 1), (400, 0.9),
(2000, 0.88), (2200, 0.1), and (4000, 0). The third operator is
fast and highly selective and is hidden behind the second op-
erator that has much lower tuple consumption per unit time.
This is a typical scenario where Greedy is expected to perform
badly as compared to Chain. Indeed, we observe this in Figs. 6
and 7, which show the variation in total queue size over time
for this query on the real and synthetic data sets, respectively.
(For legibility, we have not shown the performance of FIFO
and Round-Robin in Figs. 6 and 7 respectively, both of which
perform nearly as badly as Greedy in either case.) Because
Greedy does not schedule the less selective second operator
during bursts, the fast and selective third operator remains un-
derutilized, explaining Greedy’s bad performance. Because it
uses the lower envelope to determine priorities, Chain sched-
ules the very selective and fast third operator, although it is
hidden behind an a less selective operator. Notice that, un-
like the previous case, Round-Robin does badly compared to
Chain in Fig. 6.

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000

T
ot

al
 q

ue
ue

 s
iz

e
(K

B
yt

es
)

Time (milliseconds)

FIFO
Greedy

Round-Robin
Chain

Fig. 4. Queue size vs. time (single stream, two operators, real data
set)

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200 1400

T
ot

al
 q

ue
ue

 s
iz

e
(K

B
yt

es
)

Time (milliseconds)

FIFO
Greedy

Round-Robin
Chain

Fig. 5. Queue size vs. time (single stream, two operators, synthetic
data set)

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000

T
ot

al
 q

ue
ue

 s
iz

e
(K

B
yt

es
)

Time (milliseconds)

Greedy
Round-Robin

Chain

Fig. 6. Queue size vs. time (single stream, four operators, real data
set)

6.1.2 Queries having joins with stored relations

Recall from Sect. 2 that a join with a relation could result in
an operator with selectivity strictly greater than one. The real
data set that we worked with did not include stored relations,
so we report experimental results over synthetic data only. The
progress chart used here in terms of coordinates (ti, si) of op-
erator points is: (0, 1), (400, 0.9), (1300, 2.0), (1500, 0.2), and

B. Babcock et al.: Operator scheduling in data stream systems 15

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500

T
ot

al
 q

ue
ue

 s
iz

e
(K

B
yt

es
)

Time (milliseconds)

FIFO
Greedy

Chain

Fig. 7. Queue size vs. time (single stream, four operators, synthetic
data set)

0

2

4

6

8

10

0 500 1000 1500 2000 2500 3000

T
ot

al
 q

ue
ue

 s
iz

e
(K

B
yt

es
)

Time (milliseconds)

Greedy
FIFO

Chain

Fig. 8. Queue size vs. time (single stream, s > 1, synthetic data)

(4000, 0), where the second operator is a join with a stored re-
lation. Figure 8 shows the performance of different scheduling
strategies for the bursty synthetic data. (For legibility, we have
not shown the performance of Round-Robin in Fig. 8, which
performs as badly as Greedy. Also, we have not connected
the points corresponding to FIFO by line segments.) Since
FIFO and Round-Robin do not take operator selectivities into
account, their performance remains more or less similar to
what we observed in the previous experiments (Sect. 6.1.1).
Because of the low priority of the join operator, during bursts
Greedy does not utilize the fast and selective operator that
follows the join. On the other hand, the first three operators
comprise a single segment in Chain, so the fast and selec-
tive third operator is used during bursts, leading to substantial
benefits over Greedy (Fig. 8).

6.1.3 Queries with sliding-window joins between streams

We study the performance of the different strategies for a query
over two streams R and S that are joined by a sliding-window
join. Both semijoins in the sliding-window join have an aver-
age selectivity of 2. The output of the windowed join passes
through two selection conditions σ2 and σ3. Furthermore, be-
fore joining with S, stream R passes through a selection con-
dition σ1. The selection conditions σ1 and σ3 are not very

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000 3500 4000

T
ot

al
 q

ue
ue

 s
iz

e
(K

B
yt

es
)

Time (milliseconds)

Greedy
FIFO

Round-Robin
Chain

Fig. 9. Queue size vs. time (sliding-window join and three selections,
real data set)

0

5

10

15

20

0 100 200 300 400 500 600 700 800

T
ot

al
 q

ue
ue

 s
iz

e
(K

B
yt

es
)

Time (milliseconds)

Greedy
FIFO

Round-Robin
Chain

Fig. 10. Queue size vs. time (sliding-window join and three selec-
tions, synthetic data set)

selective, while σ2 (the selection following the join) is very
selective. The performance graphs for this query over the real
and synthetic data sets are shown in Figs. 9 and 10, respec-
tively. We observe that Greedy and FIFO perform much worse
than Chain. Round-Robin compares well with Chain for the
real data set but does very badly on the synthetic data set. As
in the experiment described in Sect. 6.1.2, Greedy does badly
because of the sliding-window join preceding the highly selec-
tive operator. The low priority of the join discourages Greedy
from scheduling it so Greedy underutilizes the highly selec-
tive operator following it. FIFO performs badly for the reasons
mentioned earlier, namely, the presence of a less selective op-
erator (σ3) with relatively high tuple processing time.

6.1.4 Multiple queries

Finally, we compared the performance of different strategies
over a collection of three queries: a sliding-window join query
similar to the one presented in the last experiment (Sect. 6.1.3)
and two single-stream queries with selectivities less than 1
similar to those presented in Sect. 6.1.1. The performance
graphs for this query workload over real and synthetic data sets
are shown in Figs. 11 and 12, respectively. For improved legi-
bility of Fig. 11, we have not connected the points correspond-

16 B. Babcock et al.: Operator scheduling in data stream systems

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500 3000 3500 4000

T
ot

al
 q

ue
ue

 s
iz

e
(K

B
yt

es
)

Time (milliseconds)

Greedy
FIFO

Round-Robin
Chain

Fig. 11. Queue size vs. time (plan with multiple queries, real data
set)

ing to Chain and FIFO by line segments. The graphs show that
the maximum memory requirement of Chain is much lower
than that of other schedulers. The reason for the impressive
performance of Chain is the increase in complexity and size
of the underlying problem. Chain is able to pick out the par-
ticular chain of operators that is most effective at reducing
memory usage and will schedule it repeatedly during a burst
of input arrivals. On the other hand, since there is a larger
number of operators in this multiquery experiment compared
to the earlier single-query experiments, Round-Robin ends up
executing the best operator much less frequently than if there
were a lesser number of operators. In other words, as the num-
ber of operators increases, the fraction of time Round-Robin
schedules the most selective operator decreases. This holds for
FIFO as well. Greedy performs badly for reasons mentioned
earlier: the queries consist of highly selective operators hid-
den behind not so selective ones, which Chain recognizes but
Greedy fails to recognize. This experiment suggests that, as
we increase the number of queries, the benefits of Chain be-
come more pronounced. Indeed, the results in Figs. 11 and 12
were obtained by going from a single query to a collection of
only three queries. In a real system with many more queries,
the benefits would be even greater.

We have found the performance of Chain to be very robust
to small deviations of selectivities from those assumed in the
progress chart. Recall that in our experiments we choose spe-
cific progress charts first and then choose selection and join
predicates with selectivities that closely reflect the progress
charts on the data sets. In the experiments with real data, the
average selectivity over the entire data set is used while choos-
ing these predicates. In most cases, these selectivities show
short-term deviations from the global average. As Figs. 4, 6,
and 9 show, and as we have observed throughout in our ex-
periments, the performance of Chain is fairly robust to such
deviations.

6.2 Output latency

The experiments in the previous section show how Chain keeps
the total queue memory requirement much lower than that of
FIFO, Greedy, or Round-Robin. We now evaluate the perfor-
mance of all scheduling policies in terms of the latency of

0

5

10

15

20

0 100 200 300 400 500 600 700 800

T
ot

al
 q

ue
ue

 s
iz

e
(K

B
yt

es
)

Time (milliseconds)

Greedy
FIFO

Round-Robin
Chain

Fig. 12. Queue size vs. time (plan with multiple queries, synthetic
data set)

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000 3500 4000

La
te

nc
y

(m
ill

is
ec

on
ds

)

Time (milliseconds)

Chain
Round-Robin

Greedy
FIFO

Fig. 13. Output latency vs. time (single stream, four operators, real
data set)

the output produced. Specifically, our experiments answer the
following questions:

1. How does Chain compare with the other policies in terms
of output latency?

2. How do Chain-Flush and Mixed compare to Chain and the
other policies in terms of both the memory requirement
and the output latency?

Figures 13–16 show the output latency for the different
scheduling policies. Figures 13 and 14 use the same real data
set and progress chart as the four-operator query described in
Sect. 6.1.1 and whose total queue size over time is shown in
Fig. 6. Figures 15 and 16 use the same real data set and set
of progress charts as the queries described in Sect. 6.1.4 and
whose total queue size over time is shown in Fig. 11. To reduce
clutter, we plot the average latency over consecutive blocks of
400 output tuples in all these graphs.

It is clear from Figs. 13 and 15 that Chain introduces con-
siderable delays in producing tuples during periods of long
bursts. For clarity, the plots for Greedy and Round-Robin are
not shown in Fig. 15. Their performance is similar to that ob-
served in Fig. 13. An interesting observation from Fig. 15 is
that there are intervals of time when Chain outputs tuples with
latency lower than that produced by FIFO. The reason for this
behavior is as follows. In the presence of multiple queries,

B. Babcock et al.: Operator scheduling in data stream systems 17

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000 3500 4000

La
te

nc
y

(m
ill

is
ec

on
ds

)

Time (milliseconds)

Chain
Chain-Flush (Latency threshold 180 ms)
Chain-Flush (Latency threshold 120 ms)

FIFO

Fig. 14. Output latency vs. time (single stream, four operators, real
data set)

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000

La
te

nc
y

(m
ill

is
ec

on
ds

)

Time (milliseconds)

Chain
FIFO

Fig. 15. Output latency vs. time (plan with multiple queries, real data
set)

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000

La
te

nc
y

(m
ill

is
ec

on
ds

)

Time (milliseconds)

Chain
Chain-Flush (Latency threshold 150 ms)
Chain-Flush (Latency threshold 100 ms)

Fig. 16. Output latency vs. time (plan with multiple queries, real data
set)

FIFO is restricted to processing blocks of tuples in global or-
der of arrival across all input streams. Since Chain does not
have a similar restriction, it might schedule query plans that
produce output tuples faster temporarily. However, it is clear
from Fig. 15 that the peak latency of Chain is much higher
than that of FIFO.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 50 100 150 200 250 300

P
ea

k
qu

eu
e

si
ze

 (
K

B
yt

es
)

Latency threshold (milliseconds)

Chain-Flush
Greedy

FIFO
Round-Robin

Chain

Fig. 17. Peak queue size vs. latency threshold (single stream, four
operators, real data set)

 0

 20

 40

 60

 80

 100

 120

 50 100 150 200 250

P
ea

k
qu

eu
e

si
ze

 (
K

B
yt

es
)

Latency threshold (milliseconds)

Chain-Flush
Round-Robin

FIFO
Greedy

Chain

Fig. 18. Peak queue size vs. latency threshold (plan with multiple
queries, real data set)

In Fig. 14 we show the output latency produced by Chain-
Flush for two values of the latency threshold – 120ms and
180ms. Notice that in both cases Chain-Flush imitates Chain
closely as long as Chain’s output latency remains below the
threshold, and Chain-Flush prevents the output latency from
going above the threshold otherwise. A similar observation
can be made from Fig. 16.

Figures 17 and 18 show the tradeoff between the peak
queue memory requirement on the y-axis and latency thresh-
old on the x-axis for the Chain-Flush algorithm. Figure 17
uses the same real data set and progress chart as the four-
operator query in Sect. 6.1.1 and whose total queue size over
time is shown in Fig. 6. As seen in Fig. 6, the peak queue
memory requirement for this query happens during the burst
around 3500 ms. Figure 18 uses the same real data set and set
of progress charts as the queries in Sect. 6.1.4 and whose total
queue size over time is shown in Fig. 11. As can be seen in
Fig. 11, the peak queue memory requirement in this experi-
ment happens during the burst around 1000 ms.

If the latency threshold is high enough, then Chain-Flush
never needs to invoke the flush step and behaves identically
to Chain. As the latency threshold is reduced, Chain-Flush
starts to deviate from Chain and consequently has a higher
peak queue memory requirement. When the latency threshold
is set to the minimum value that can be sustained for these

18 B. Babcock et al.: Operator scheduling in data stream systems

workloads, which is the peak output latency of FIFO – around
100 ms for Fig. 17 (Fig. 13) and around 75 ms for Fig. 18
(Fig. 15) – Chain-Flush has almost the same queue memory
requirement as FIFO. For lower values of the latency thresh-
old, the memory requirement of Chain-Flush increases beyond
that of FIFO because, for efficiency reasons, our implementa-
tion of Chain-Flush does not mirror FIFO while in the flush
mode (Sect. 5.2).

Figures 19 and 20 compare the Mixed algorithm to the
Chain and FIFO algorithms in terms of the runtime queue
memory requirement and in terms of the output latency. For
these experiments we used the real data set and a single stream
query with four operators whose progress chart in terms of
coordinates (ti, si) of operator points is: (0, 1), (1000, 0.3),
(1990, 0.2), (3490, 0.1), and (5490, 0). The four operators in
this progress chart are in decreasing order of selectivity per
unit time, so Chain puts each operator in a separate segment.
Figures 19 and 20 show the runtime queue memory require-
ment and the output latency respectively for Chain, FIFO, and
three invocations of Mixed – Mixed(0.0001), Mixed(0.0002),
and Mixed(0.0008) – with the slope threshold set to 0.0001,
0.0002, and0.0008, respectively. Mixed(0.0001) ends up com-
bining the third and fourth operators into a single segment
and runs Chain on the three resulting segments. Similarly,
Mixed(0.0002) combines the second, third, and fourth oper-
ators into a single segment, and Mixed(0.0008) combines all
operators into a single segment. Figures 19 and 20 show that as
the slope threshold for Mixed is increased, its behavior devi-
ates more and more from Chain and becomes more and more
like FIFO – note the performance of all policies during the
burst around 3000 ms in Figs. 19 and 20.

Table 1 compares the performance of Chain-Flush and
Mixed for different values of the respective latency and slope
thresholds. The performance of Chain and FIFO are also
shown for reference. We used the same data set and progress
chart as in Figs. 19 and 20. The conclusions from Table 1 are
similar to those from Figs. 17–20: The higher (lower) the la-
tency (slope) threshold for Chain-Flush (Mixed), the more it
deviates from FIFO and behaves like Chain. In reality, the la-
tency threshold for Chain-Flush will be specified based on ap-
plication requirements. However, the appropriate slope thresh-
old for Mixed will have to be chosen by trial and error as part
of query performance tuning. An interesting avenue for fu-
ture work is to design adaptive algorithms for choosing the
Mixed slope threshold based on the tradeoff between latency
and memory observed at runtime.

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000

T
ot

al
 q

ue
ue

 s
iz

e
(K

B
yt

es
)

Time (milliseconds)

FIFO
Mixed (Slope threshold 0.0008)
Mixed (Slope threshold 0.0002)
Mixed (Slope threshold 0.0001)

Chain

Fig. 19. Queue size vs. time (single stream, four operators, synthetic
data set)

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

La
te

nc
y

(m
ill

is
ec

on
ds

)

Time (milliseconds)

FIFO
Mixed (Slope threshold 0.0008)
Mixed (Slope threshold 0.0002)
Mixed (Slope threshold 0.0001)

Chain

Fig. 20. Output latency vs. time (single stream, four operators, real
data set)

7 Related work

This paper is an extended version of our paper that appeared
in the proceedings of SIGMOD 2003 [5]. The basic Chain
algorithm and its theoretical and experimental analysis were
reported in the SIGMOD paper. The NP-completeness result
showing the intractability of the problem of minimizing mem-
ory in Sect. 4 and the theoretical results and experiments for
handling latency constraints in Sects. 5 and 6.2, respectively,
are being presented for the first time in this paper.

Recently there has been considerable research activity per-
taining to stream systems and data stream algorithms. An
overview is provided in the recent survey paper by Golab and

Table 1. Comparing Chain-Flush and Mixed

Algorithm Peak queue size (KB) Peak latency (ms)

Chain 2.5 76.2
FIFO 17.1 24.1
Chain-Flush (latency threshold =50ms) 9.2 50.9
Chain-Flush (latency threshold =10ms) 17.6 10.6
Mixed (slope threshold =0.0001) 2.9 48
Mixed(slope threshold =0.0002) 6.3 34.4
Mixed (slope threshold =0.0008) 17.1 24.2

B. Babcock et al.: Operator scheduling in data stream systems 19

Ozsu [18]. Most closely related to our paper is the suite of
research in adaptive query processing. (See the IEEE Data
Engineering Bulletin special issue on Adaptive Query Pro-
cessing [33]). The novel Eddies architecture [3,12,34,42] en-
ables very fine-grained adaptivity by eliminating query plans
entirely, instead routing each tuple adaptively across the op-
erators that need to process it. Unlike Eddies, which takes a
holistic approach to adaptivity, we focus on adapting to chang-
ing arrival characteristics of data, in particular the bursty na-
ture of data as documented in the networking community [17,
32,53,54]. Although we assumed fixed query plans in this
paper, our scheduling algorithms are applicable to plan-based
stream systems with coarse-grained adaptivity, e.g., STREAM
[8]. In the future we plan to consider how our techniques can
be applied to Eddy-like architectures with fine-grained adap-
tivity; see Sect. 8. Earlier work on adaptive query processing
includes the query scrambling work by Urhan et al. [51], the
adaptive query execution system Tukwila [23] for data inte-
gration, and mid-query reoptimization techniques developed
by Kabra and DeWitt [25]. More closely related to ours is
the work on dynamic query operator scheduling by Amsa-
leg et al. [1] aimed at improving response times in the face
of unpredictable and bursty data arrival rates, the Xjoin op-
erator of Urhan and Franklin [49], which is optimized to re-
duce initial and intermittent delay, and the work on dynamic
pipeline scheduling for improving interactive performance of
online queries [50]. However, in all these cases, the focus is
exclusively on improving response times without considering
runtime memory minimization.

Various operator-scheduling strategies have been sug-
gested for stream systems, ranging from simple ones like
Round-Robin scheduling [37] to more complex ones that aim
at leveraging intra- and interoperator nonlinearities in process-
ing [10,11]. To the best of our knowledge, ours is the first work
to address the problem of scheduling with the aim of mini-
mizing memory usage with and without latency constraints.
Carney et al. [11] propose separate scheduling algorithms for
memory minimization, latency minimization, and throughput
maximization. Their algorithm for memory minimization is
closely related to the Greedy algorithm described in Sect. 4.2.

Job scheduling has been a rich area of research in theo-
retical computer science and operations research. Excellent
surveys of research in scheduling theory have been written by
Karger et al. [28] and Lawler et al. [31]. Typically, this work
aims to minimize a metric related to latency, such as the aver-
age or maximum job completion time or waiting time. While
latency is an important secondary concern in our work, our
primary objective of minimizing memory usage differentiates
our work from the problems considered in the job-scheduling
literature, where the notion of memory consumption is not
applicable.

Our technique of combining adjacent operators that lie on
the same lower envelope segment into operator chains is an
adaptation of the technique introduced by Monma and Sid-
ney [35] for scheduling jobs under series-parallel precedence
constraints. The results in [35] require that the objective func-
tion satisfy a property known as the adjacent sequence inter-
change (ASI) property. The ASI property is not satisfied by
our objective function (although our Lemma 4.2 can be inter-
preted as stating that the ASI property holds in an approximate
sense), and thus the results from [35] do not directly apply to

our problem. The scheduling technique of [35] has previously
been applied to other database problems such as join order se-
lection [21,30] and ordering of expensive predicates [13,20].
The ranking function we use to prioritize operators (i.e., the
slope of the lower envelope segment) was also used in [13,20,
21,30], although the objective in these papers was to minimize
execution time rather than to minimize memory requirements.

In this paper we assume that the average input stream ar-
rival rate is such that it is eventually possible to clear backlogs
of unprocessed tuples (e.g., when bursts of high arrival rate
have receded). References [7,16,47] propose algorithms for
the scenario when the stream system has to drop input tuples
to bring the system load down to manageable levels. These al-
gorithms are largely orthogonal to the algorithms we propose
in this paper and could be used in conjunction with our algo-
rithms. Algorithms to use disk efficiently in stream systems
are proposed in [36]. Again, these algorithms are orthogonal
to our algorithms.

Also related to our work is the set of papers [10,12,16,26,
34] championing the use of sliding-window joins for stream
systems. The rate-based optimization framework ofViglas and
Naughton [52] considers the problem of static query opti-
mization with the modified aim of maximizing the throughput
of queries for stream systems; however, it does not address
runtime scheduling. The problem of allocating main memory
among concurrent operators in a traditional DBMS in order
to speed up query execution has been considered in [9,15,
38]. These techniques do not extend directly to data stream
systems.

A recent paper byAyad and Naughton [4] makes the obser-
vation that in some cases, the query plan that is most efficient
(i.e., has the highest throughput) when stream rates are low
can perform suboptimally when arrival rates become high.
For this reason, [4] argues that the performance of a query
plan in overloaded conditions should be one factor taken into
consideration during query optimization. This suggests a pos-
sible additional usage for the operator-scheduling algorithms
that we have presented: our scheduling policies could help the
query optimizer estimate the memory usage of various query
plans during bursts of various sizes, allowing the optimizer to
use peak memory usage as an additional criterion (along with
throughput) for determining the best query plan.3

8 Conclusion and open problems

We studied the problem of operator scheduling in data stream
systems, with the goal of minimizing memory requirements
for buffering tuples. We proposed the Chain scheduling strat-
egy and proved its near-optimality for the case of single-stream
queries with selections, projections, and foreign-key joins with
static stored relations. Furthermore, we showed that Chain
scheduling performs well for other types of queries, includ-
ing queries with sliding-window joins. We demonstrated that
Chain can result in high-output latency in some scenarios and
proposed two adaptations of the Chain algorithm, Chain-Flush
and Mixed, that are designed to simultaneously achieve low
memory usage and low latency.

3 We are grateful to an anonymous reviewer for pointing out this
possibility.

20 B. Babcock et al.: Operator scheduling in data stream systems

In this work, we made some simplifying assumptions
about system architecture that might be violated in real sys-
tems. For example, the following capabilities violate our as-
sumptions but may be desirable in real systems: the ability
to generate adaptive query plans, where the structure of the
query plan itself is allowed to change over time; sharing of
computation and memory buffers across query plans; and mul-
tithreaded query processing for multiprocessor systems.A bet-
ter understanding of how the introduction of such capabilities
impacts operator scheduling for memory minimization is an
interesting open problem.

References

1. Amsaleg L, Franklin M, Tomasic A (1998) Dynamic query op-
erator scheduling for wide-area remote access. J Distrib Parallel
Databases 6(3):217–246

2. Arasu A, Babu S, Widom J (2002) An abstract semantics and
concrete language for continuous queries over streams and re-
lations. Technical report, Stanford University Database Group.
http://dbpubs.stanford.edu/pub/2002-57

3. Avnur R, Hellerstein J (2000) Eddies: continuously adaptive
query processing. In: Proc 2000 ACM SIGMOD international
conference on management of data, pp 261–272

4. Ayad AM, Naughton JF (2004) Static optimization of conjunc-
tive queries with sliding windows over infinite streams. In: Proc
2004 ACM SIGMOD international conference on management
of data

5. Babcock B, Babu S, Datar M, Motwani R (2003) Chain: op-
erator scheduling for memory minimization in data stream sys-
tems. In: Proc 2003 ACM SIGMOD international conference
on management of data

6. Babcock B, Babu S, Datar M, Motwani R, Widom J (2002)
Models and issues in data stream systems. In: Proc 2002 ACM
symposium on principles of database systems

7. Babcock B, Datar M, Motwani R (2004) Load shedding for ag-
gregation queries over data streams. In: Proc 2004 international
conference on data engineering, pp 350–361

8. Babu S, Motwani R, Munagala K, Nishizawa I, Widom J (2004)
Adaptive ordering of pipelined stream filters. In: Proc 2004
ACM SIGMOD international conference on management of
data

9. Bouganim L, Kapitskaia O, Valduriez P (1998) Memory-
adaptive scheduling for large query execution. In: Proc
1998 ACM CIKM international conference on information and
knowledge management, pp 105–115

10. Carney D, Cetintemel U, Cherniack M, Convey C, Lee S, Seid-
man G, Stonebraker M, Tatbul N, Zdonik S (2002) Monitoring
streams – a new class of data management applications. In: Proc
28th international conference on very large data bases

11. Carney D, Cetintemel U, Rasin A, Zdonik S, Cherniack M,
Stonebraker M (2003) Operator scheduling in a data stream
manager. In: Proc 2003 international conference on very large
data bases

12. Chandrasekaran S, Franklin M (2002) Streaming queries over
streaming data. In: Proc 28th international conference on very
large data bases

13. Chaudhurim S, Shim K (1999) Optimization of queries with
user-defined predicates. ACM Trans Database Sys 24(2):177–
228

14. Cortes C, Fisher K, Pregibon D, Rogers A, Smith F (2000) Han-
cock: a language for extracting signatures from data streams. In:
Proc 2000 ACM SIGKDD international conference on knowl-
edge discovery and data mining, pp 9–17

15. Dageville B, Zait M (2002) SQL memory management in Ora-
cle9i. In: Proc 2002 international conference on very large data
bases

16. Das A, Gehrke J, Riedewald M (2003) Approximate join pro-
cessing over data streams. In: Proc 2003 ACM SIGMOD inter-
national conference on management of data

17. Floyd S, Paxson V (1995) Wide-area traffic: the failure of pois-
son modeling. IEEE/ACM Trans Network 3(3):226–244

18. Golab L, Ozsu T (2003) Issues in data stream management.
SIGMOD Record 32(2):5–14

19. Hellerstein J, Franklin M, Chandrasekaran S, Deshpande A,
Hildrum K, Madden S, Raman V, Shah MA (2000) Adaptive
query processing: technology in evolution. IEEE Data Eng Bull
23(2):7–18

20. Hellerstein J, Stonebraker M (1993) Predicate migration: opti-
mizing queries with expensive predicates. In: Proc 1993 ACM
SIGMOD international conference on management of data,
pp 267–276

21. Ibaraki T, Kameda T (1984) On the optimal nesting order
for computing n-relational joins. ACM Trans Database Sys
9(3):482–502

22. Internet Traffic Archive: http://www.acm.org/sigcomm/ITA/
23. Ives Z, Florescu D, Friedman M, Levy A, Weld D (1999) An

adaptive query execution system for data integration. In: Proc
1999 ACM SIGMOD international conference on management
of data, pp 299–310

24. Johnson T, Cranor C, Spatsheck O, Shkapenyuk V (2003) Gi-
gascope: a stream database for network applications. In: Proc
2003 ACM SIGMOD international conference on management
of data

25. Kabra N, DeWitt DJ (1998) Efficient mid-query re-optimization
of sub-optimal query execution plans. In: Proc ACM SIGMOD
international conference on management of data, pp 106–117

26. Kang J, Naughton JF, Viglas S (2003) Evaluating window joins
over unbounded streams. In: Proc 2003 international conference
on data engineering

27. Kao B, Garcia-Molina H (1995) An overview of real-time
database systems. In: Son SH (ed) Advances in real-time sys-
tems. Prentice Hall, Englewood Cliffs, NJ, pp 463–486

28. Karger D, Stein C, Wein J (1997) Scheduling algorithms. In:
Atallah MJ (ed) Handbook of algorithms and theory of compu-
tation. CRC, Boca Raton, FL

29. Kleinberg J (2002) Bursty and hierarchical structure in streams.
In: Proc 2002 ACM SIGKDD international conference on
knowledge discovery and data mining

30. Krishnamurthy R, Boral H, Zaniolo C (1986) Optimizing non-
recursive queries. In: Proc 1986 international conference on
very large data bases, pp 128–137

31. Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB (1993)
Sequencing and scheduling: algorithms and complexity. In:
Graves SC, Zipkin PH, Rinnooy Kan AHG (eds) Logistics of
production and inventory, Handbooks in operations research
and management science, vol 4, North-Holland, Amsterdam,
pp 445–522

32. Leland W, Taqqu M, Willinger W, Wilson D (1994) On the self-
similar nature of ethernet traffic. IEEE/ACM Trans Network
2(1):1–15

33. Lomet D, Levy A (2000) Special issue on adaptive query pro-
cessing. IEEE Data Eng Bull 23(2):1–48

34. Madden S, Shah M, Hellerstein J, Raman V (2002) Continu-
ously adaptive continuous queries over streams. In: Proc 2002
ACM SIGMOD international conference on management of
data

B. Babcock et al.: Operator scheduling in data stream systems 21

35. Monma C, Sidney J (1987) Optimal sequencing via modular
decomposition: characterization of sequencing functions. Math
Oper Res 12:22–31

36. Motwani R, Thomas D (2004) Caching queues in memory
buffers. In: Proc 2004 annual ACM-SIAM symposium on dis-
crete algorithms

37. Motwani R, Widom J, Arasu A, Babcock B, Babu S, Datar
M, Manku G, Olston C, Rosenstein J, Varma R (2003) Query
processing, approximation, and resource management in a data
stream management system. In: Proc 1st biennial conference
on innovative data systems research (CIDR)

38. Nag B, DeWitt DJ (1998) Memory allocation strategies for
complex decision support queries. In: Proc 1998 ACM CIKM
international conference on information and knowledge man-
agement, pp 116–123

39. Niagara Project. http://www.cs.wisc.edu/niagara/
40. Parker DS, Muntz RR, Chau HL (1989) The tangram stream

query processing system. In: Proc 1989 international conference
on data engineering, pp 556–563

41. Parker DS, Simon E,Valduriez P (1992) SVP: a model capturing
sets, lists, streams, and parallelism. In: Proc 1992 international
conference on very large data bases, pp 115–126

42. Raman V, Deshpande A, Hellerstein J (2003) Using state mod-
ules for adaptive query processing. In: Proc 2003 international
conference on data engineering

43. Shah M, Madden S, Franklin M, Hellerstein J (2001) Java sup-
port for data-intensive systems: experiences building the tele-
graph dataflow system. SIGMOD Record 30(4):103–114

44. SQR – a stream query repository. http://www-
db.stanford.edu/stream/sqr

45. Stanford Stream Data Management (STREAM) Project.
http://www-db.stanford.edu/stream

46. Sullivan M (1996) Tribeca: a stream database manager for net-
work traffic analysis. In: Proc 1996 international conference on
very large data bases, p 594

47. Tatbul N, Cetintemel U, Zdonik S, Cherniack M, Stonebraker M
(2003) Load shedding in a data stream manager. In: Proc 2003
international conference on very large data bases, pp 309–320

48. Terry D, Goldberg D, Nichols D, Oki B (1992) Continuous
queries over append-only databases. In: Proc 1992 ACM SIG-
MOD international conference on management of data, pp 321–
330

49. Urhan T, Franklin M (2000) Xjoin: a reactively-scheduled
pipelined join operator. IEEE Data Eng Bull 23(2):27–33

50. Urhan T, Franklin MJ (2001) Dynamic pipeline scheduling for
improving interactive performance of online queries. In: Proc
2001 international conference on very large data bases

51. Urhan T, Franklin MJ, Amsaleg L (1998) Cost-based query
scrambling for initial delays. In: Proc 1998 ACM SIGMOD
international conference on management of data, pp 130–141

52. Viglas S, Naughton J (2002) Rate-based query optimization for
streaming information sources. In: Proc 2002 ACM SIGMOD
international conference on management of data

53. Willinger W, Paxson V, Riedi R, Taqqu M (2002) Long-range
dependence and data network traffic. In: Doukhan P, Oppen-
heim G, Taqqu MS (eds) Long-range dependence: theory and
applications. Birkhäuser, Basel, Switzerland

54. Willinger W, Taqqu M, Erramilli A (1996) A bibliographical
guide to self-similar traffic and performance modeling for mod-
ern high-speed networks. In: Kelly FP, Zachary S, Ziedins I (eds)
Stochastic networks: theory and applications. Oxford Univer-
sity Press, Oxford, UK, pp 339–366

55. Wilschut AN, Apers PMG (1991) Dataflow query execution in
a parallel main-memory environment. In: Proc 1991 interna-
tional conference on parallel and distributed information sys-
tems, pp 68–77

