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Abstract In this paper we study the following problem. Given a database
and a set of queries, we want to find a set of views that can compute the
answers to the queries, such that the amount of space, in bytes, required
to store the viewset is minimum on the given database. (We also handle
problem instances where the input has a set of database instances, as de-
scribed by an oracle that returns the sizes of view relations for given view
definitions.) This problem is important for applications such as distributed
databases, data warehousing, and data integration. We explore the decid-
ability and complexity of the problem for workloads of conjunctive queries.
We show that results differ significantly depending on whether the workload
queries have self-joins. Further, for queries without self-joins we describe a
very compact search space of views, which contains all views in at least one
optimal viewset. We present techniques for finding a minimum-size viewset
for a single query without self-joins by using the shape of the query and its
constraints, and validate the approach by extensive experiments.

Keywords: views, data warehouses, minimum-size viewsets, distributed
systems.

1 Introduction
In this paper we study the following problem: given a set of queries, how

to choose views to compute the answers to the queries, such that the total
size of the viewset (i.e., the amount of space, in bytes, required to store

* Part of this article was published in [CLO03]. In addition to the prior materials,
this article contains new theoretical results, as well as new results on how to
efficiently implement the proposed techniques (Sections 5 and 6).



2 Rada Chirkova et al.

the viewset) is minimum. This problem exists in many environments, such
as distributed databases [BGWT81,CP84,0V99], data integration [Len02],
and the recent “database-as-a-service” model [HIMO02]. For example, medi-
ators in data-integration systems support seamless access to autonomous,
heterogeneous information sources [Wie92]. A mediator translates a given
user query to a sequence of queries on the sources, and then uses the answers
from the sources to compute the final answer to the user query [HKWY97].
After receiving many user queries, the mediator can send multiple queries
to the same source to receive data. As another example, “database as a
service” is a new model for enterprise computing [HILMO02], in which com-
panies and organizations choose storing their data on a server over having
to maintain local databases. The server provides client users with the power
to create, store, modify, and query data on the server. When a client issues
a query, the server uses the stored data to compute the answer and sends
the results to the user over the network.

These applications share the following characteristics. (1) Both the client
and the server are able to do computation. Notice that the client might pre-
fer computing some part of the query answer to receiving excessively large
amounts of data from the server, as in the database-as-a-service scenario;
in the mediation scenario, the client (mediator) might have to do compu-
tation anyway. (2) The computation is data driven; the data resides on the
server that is different from the client where a query is issued — either by
client’s choice, as in the database-as-a-service scenario, or by design, as in
the mediation scenario. (3) The server needs to send data to the client over
a network. When query results are large, the network could become a bot-
tleneck, and the client may want to minimize the costs of transferring the
data over the network.

In client-server applications, an important metric is minimizing data-
transfer time. In contrast, in a data warehouse, minimizing data-transfer
time is irrelevant, but it is crucial to keep around materialized views whose
total size is as small as possible, to try to prevent accessing original stored
relations in the data sources when processing and answering warehouse
queries. Here the problem is how to materialize locally (in the warehouse)
relations with small total size, to avoid excessive transfer time for big orig-
inal stored relations.

In general, given a set of queries (a query workload) and a fixed database,
we want to define and compute a set of intermediate results (views), such
that these view results can be used to compute the answer to each query
in the workload. In addition, we want to choose the views in such a way
that their total size is minimum on the given database. In this paper we
study this problem for select-project-join queries. (We also handle problem
instances where the input has a set of databases; see Section 2.3.) We make
the following contributions:

1. In Section 3 we study the decidability and complexity of the problem.
We show that if workload queries have self-joins, disjunctive views can
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give rise to smaller viewsets than purely conjunctive views. We estab-
lish that the problem of finding a minimum-size viewset in the space
of disjunctive views is decidable, and give an upper bound on the com-
plexity of the problem. Further, we show that for arbitrary conjunctive
query workloads, to find rewritings of the workload queries in terms of
a minimum-size viewset it is not necessary to consider nontrivial dis-
junctive rewritings — that is, rewritings that are unions of at least two
select-project-join queries.

2. In Section 4 we study workloads of conjunctive queries without self-
joins, and show that for singleton query workloads, disjunctive views
cannot provide smaller viewsets than purely conjunctive views. Thus,
it is enough to consider purely conjunctive views when looking for a
minimum-size disjunctive viewset; moreover, it is enough to explore a
very restricted search space of such views. In addition, we show that the
problem of finding a minimum-size viewset is in NP, for both singleton
and non-singleton workloads of queries without self-joins.

3. In Section 5 we present techniques for finding a minimum-size viewset
for a single query without self-joins by using the shape of the query and
its key constraints. In Section 6 we report our experimental results to
evaluate these techniques.

1.1 Related Work

The problem of finding views to materialize to answer queries has tradi-
tionally been studied under the name of view selection. Its original mo-
tivation comes up in the context of data warehousing. The problem is to
decide which views to store in the warehouse to obtain optimal perfor-
mance [Gup97, TLS99,TS97, YKL97]; one direction is to materialize views
and indexes for data cubes in online analytic processing (OLAP) [BPT97,
GHRU97, HRU96]. Another motivation for view selection is provided by
recent versions of several commercial database systems. These systems sup-
port incremental updates of materialized views and are able to use material-
ized views to speed up query evaluation [BDD'98, GL01,ZCL"00]. Choos-
ing an appropriate set of views to materialize in the database is crucial in
order to obtain performance benefits from these new features [ACNOO].
Traditional work on view selection uses certain critical tacit assumptions.
The first assumption is that the only views to be considered to materialize
are those that are subexpressions of the given queries, or are given in the in-
put to the problem in some other way. The second assumption is that there
is some low upper bound on the number of views in an optimal viewset.
These assumptions have been questioned in recent work on database re-
structuring [Chi02, CG00,CHS02], which considers all possible views that
can be invented to optimize a given metric of database performance.
Other related topics include answering queries using views (e.g., [ALUO1,
LMSS95,Hal01]), view-based query answering (e.g., [CGL00,CGLV00]), and
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minimizing viewsets without losing query-answering power [LBUO1]. In ad-
dition, there has been a lot of work on minimizing data-communication costs
in distributed database systems (e.g., [CP84,0V99]). Our novel approach
complements existing techniques. In particular, our approach is orthogo-
nal to data-compression approaches (see, e.g., [CS00]); combining the two
approaches in client-server systems can further reduce the communication
costs and thus save on the total time required to send the query result to
the client.

2 Problem Formulation

In this section we formulate the problem of finding a set of views with the
minimum size to answer queries. We first present and discuss a motivating
example and then give a formal specification of the problem.

2.1 Motivating Example

Consider the following simplified versions of three relation schemas in the
TPC-H benchmark [TPC]:

customer (custkey(4) ,name (25) ,mktsgmt (10))
order (orderkey(4) ,custkey(4) ,orderdate(8) ,shippriority(4),comment (79))
lineitem(linenum(4) ,orderkey(4),quantity(4),shipdate(8),shipmode(10))

The number after each attribute is the size of the values of the attribute,
in bytes. For simplicity, we assume for each attribute that all its values are
of the same size. We further assume that the relations reside on a server
that accepts queries from a client.

SELECT c.name, o.orderdate, o.shippriority, o.comment,
1l.orderkey, l.quantity, 1l.shipmode

FROM customer c, orders o, lineitem 1

WHERE c.mktsgmnt = ’BUILDING’
AND c.custkey = o.custkey
AND o.orderkey = 1l.orderkey;

Fig. 1 Query Q.

Suppose a user at the client issues a query )1, shown in Figure 1. Q4
is a variation on the Query 3 in the TCP-H benchmark [TPC]. The server
computes the answer to (J; and sends it back to the client. Suppose there
are 4000 tuples in the answer to ()1 on the database at the server. It follows
that the total number of bytes sent to the client is:

4,000 X (25 + 8 + 444+ 79+ 4 + 10) = 516, 000.
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Table 1 Partial results of query Q1.

id | name | orderkey | comment | shippriority orderdate quantity | shipmode
t1 | Tom 134721 . 0 3/14/1995 26 REG AIR
to | Tom 134721 0 3/14/1995 75 REG AIR
ts | Tom 134721 0 3/14/1995 43 AIR

ty | Jack 571683 0 12/21/1994 43 MAIL
ts | Jack 571683 0 12/21/1994 33 AIR

Let us see if we can reduce the communication costs by reducing the
amount of data to be transferred to the client, while still giving the client
necessary data to compute the final answer to (1. Table 1 shows a frag-
ment of the answer to 1. The answer to ()1 has redundancies; for instance,
tuples t; through t3 are the same except in the values of 1.quantity and
1.shipmode; tuples t4 and t5 have similar redundancy. One reason for the
redundancy is that an order could have several lineitems with different quan-
tities and shipmodes. In the join results, this information generates several
tuples with the same values of customer and order. Based on this observa-
tion, we can decompose the answer to ()1 into intermediate results — views
V1 and Vo — as shown in Figure 2. We will obtain the answer to the query
@1 by joining the views.

View Vi:
SELECT c.name, o.orderdate, o.shippriority,
o.comment, o.orderkey
FROM customer c, orders o, lineitem 1
WHERE c.mktsgmnt = ’BUILDING’
AND c.custkey = o.custkey
AND o.orderkey = 1l.orderkey;

View Vs:
SELECT 1l.orderkey, l.quantity, 1l.shipmode
FROM customer c, orders o, lineitem 1

WHERE c.mktsgmnt = ’BUILDING’
AND c.custkey = o.custkey
AND o.orderkey = 1l.orderkey;

Fig. 2 Decomposing the query answer into two views.

To illustrate the motivation of work, let us assume that there are 1,200
tuples in the answer to view V; and 4,000 tuples in the answer to view V5.
By using the sizes of the attribute values in the answers to the two views,
we obtain that the total size of the answers to the views is 216,000 bytes.
Recall that the size of the answer to the query @)1 is 516,000 bytes, and that
it is possible to compute the answer to Q1 using the answers to the views
V1 and V4. Tt follows that instead of sending the client the (large) answer to
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the query @1, the server can reduce the transmission costs by sending the
client the results of the two views; the client can then use the view results
to compute the answer to the query.

This example shows that it is possible to decompose queries into inter-
mediate views, such that the answers to the views can be used to compute
the exact answer to the query, and the total size of the answers to the views
can be much smaller than the size of the answer to the query. At the same
time, we make the following two observations. (1) When trying to reduce
the redundancy in the query answers, we may need to add more attributes
that will allow joins of the view results. (2) There is more than one way to
decompose the answer into views.

Before giving the problem formulation, we briefly review important con-
cepts of conjunctive queries and answering queries using views.

2.2 Queries and Rewritings

In this paper we consider select-project-join SQL queries and their unions.
For convenience of notation in the definitions and proofs, in the remainder
of the paper we use the following conjunctive query representation of select-
project-join SQL queries:

ans(X) - R1(Xy1),..., Ro(X,).

In a subgoal R;(X;), i € {1,...,n}, predicate R; corresponds to a base
(stored) relation, and each argument in the subgoal is either a variable or a
constant. A disjunctive query is a union of conjunctive queries; a disjunctive
query is nontrivial if it is a union of at least two conjunctive queries that are
not all pairwise equivalent. We consider views defined on base relations by
safe conjunctive or disjunctive queries. A query is safe if each variable in the
query’s head appears in the body. A query variable is called distinguished if
it appears in the query’s head. We assume set semantics for query answers.

For instance, query Q7 in Section 2.1 can be represented as the following
conjunctive query:

Q1(N,0D,SP,C,OK,QT,SM) :- customer(CK, N, BUILDING’),
orders(OK,CK,OD, SP,C),lineitem(LN,OK,QT,SD,SM).

A query @ is contained in a query @', denoted Q C @', if for every
database instance D, the answer to Q on D is a subset of the answer to Q’
on D. The two queries are equivalent if Q E Q' and Q' C Q. A conjunctive
query (Q is contained in a conjunctive query @’ if and only if there is a
containment mapping from Q' to @ [CM77] — that is, there is a homomor-
phism g from the variables of Q' to variables and constants of @) such that,
after p is applied to @', (1) the head of Q" becomes the head of @, and
(2) each subgoal of ' becomes some subgoal of Q. (Not all subgoals of @
need to be in the image of the body of Q" under u.) Consider an abstract
example:
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Q(X, Y) - p(X,a7Y)7s(Y, b)'
Q'(A,C) - p(AB,C),p(A a,D).

Here, a and b are constants. By definition, mapping 4 = {A — X,B —
a,C — Y, D — Y}isacontainment mapping from @’ to . Thus, by [CM77],
Q is contained in Q’. (Because Q' does not have subgoals with predicate
name s, Q' is not contained in @.)

The expansion of a query P on a set of views V, denoted P“*P| is obtained
from P by replacing all views in P by their definitions in terms of the base
relations. Existentially quantified variables in a view are replaced by fresh
variables in P¢*P. Given a query @ and a set of views V, a query P is an
equivalent rewriting of () using V if P uses only the views in V and P¢*P
is equivalent to Q. In the rest of the paper, we use “rewriting” to mean
“equivalent rewriting.”

For instance, the following are the views V; and V5 from Section 2.1, in
a conjunctive-query form.

Vi(N,OD,SP,C,0K) :- customer(CK, N, >BUILDING’),
orders(OK,CK,0OD,SP,C),
lineitem(LN,OK,QT,SD,SM).

V2(OD,QT,SM) :- customer(CK, N, >BUILDING’),
orders(OK,CK,OD,SP,C),
lineitem(LN,OK,QT,SD,SM).

The following query P is an equivalent rewriting of the query )1 using
the two views.

P(N,0D,SP,C,0K,QT,SM) :- Vi(N,0D,SP,C,0K),
V2(OD,QT, SM).

In this paper we consider query rewritings that are either conjunctions
of views (conjunctive query rewritings) or unions of conjunctions of views
(disjunctive query rewritings), under set semantics.

2.3 Problem Statement

Given a set, or workload, Q of conjunctive queries on stored relations Ry, . . .,
R,,, and given a fixed database D, we want to find and precompute a set V
of intermediate results, defined as views Vi,...,Vj on these relations, such
that there exist equivalent rewritings of all the queries in the workload Q
in terms of the views in V only. Our goal is to find an optimal solution —
to choose, among all such sets of views V), a set V* whose total size

Z size(V;, D)

Viev+

is minimum on the given database. The size of a view V;, size(V;, D), is
the amount of space, in bytes, required to store the answer to V; on the



8 Rada Chirkova et al.

database D. In addition to finding the views, we also find a plan to compute
the answer to each query in the workload Q using the views in V.

The above problem statement is appropriate in settings such as database
as a service. At the same time, having a single database in the problem input
is not practical in all settings. For instance, in data warehousing one would
not like to recompute the set of actual views to materialize on each change of
the data. Because our goal is to find a set of views with minimum total size,
all the results in this paper apply to a more general problem setting, where a
database in the problem input is replaced by an oracle that instantaneously
gives the size of the relation for each permissible (in our setting, conjunctive
or disjunctive) view on a database. By definition, such an oracle describes a
set of databases. This form of the problem statement has been used in the
literature — see, for instance, [CHS02].

3 Decidability and Complexity

In this section and in Section 4, we study decidability and complexity of
the problem, and the search space of the possible solutions.

3.1 Disjunctive Rewritings Are Not Needed

In the problem of finding a minimum-size viewset for a given database and
query workload, suppose we allow disjunctive views. Thus, a minimum-size
disjunctive viewset for a workload of conjunctive queries is a minimum-
size viewset for the workload in the space of disjunctive views. Some of its
disjunctive views can be purely conjunctive. Suppose we allow conjunctive or
disjunctive rewritings of the workload queries using the views. In this section
we show that to find a minimum-size viewset under these assumptions,
purely conjunctive rewritings are all we need to examine.

Theorem 1 Let Q be an arbitrary finite workload of conjunctive queries,
and let V be a disjunctive viewset that gives an equivalent disjunctive rewrit-
ing of each query in the workload Q. Then there exists a subset V' of V, such
that each query in Q@ has an equivalent conjunctive rewriting in terms of V'.

Proof Given a query workload Q, let V be a disjunctive viewset, such that V
gives an equivalent disjunctive rewriting of each query in Q. For each query
Q@ in Q, consider an equivalent disjunctive rewriting P of @ in terms of the
views V. The query P is a union of conjunctive queries P4, ..., P,, where

PZ(X) - ‘/z (Xll),,Vlml(lel),z € {1,,77,}

Here, each view Vj;, is an element of the set V.

By definition, the conjunctive query @ is equivalent to the union of the
expansions of these queries P;,i € {1,...,n}. Each expansion is a union
of conjunctive queries, because each view V;;, may be a disjunctive view.
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From [SY80], the query @Q is equivalent to one of the expanded queries, which
we denote by Ej, and the remaining expanded queries are contained in Q.
Let E} come from the query P; in Py, ..., P,. Notice that P; is an equivalent
conjunctive rewriting of @ using V. We modify V into V' by removing all
the views that satisfy the following condition: there is no query in Q whose
equivalent expanded query these views can contribute to. The resulting
viewset V' provides an equivalent conjunctive rewriting of each query in Q.

In the remainder of this paper we consider the problem of finding a
minimum-size set V of disjunctive views for a given database D and work-
load of conjunctive queries Q, assuming conjunctive rewritings of the queries
Q using the views. From Theorem 1, all such viewsets are also minimum-size
for D and Q assuming disjunctive rewritings of the workload queries.

3.2 Different Types of Views

There are two types of views in a rewriting of a query: (1) containment-
target views, and (2) filtering views [ALU01,PLO00]. They can be distin-
guished by examining containment mappings from the query to the expan-
sion of the rewriting. Intuitively, in a rewriting, a containment-target view
— unlike a filtering view — “covers” at least one query subgoal. Covering
all query subgoals is enough to produce a rewriting of the query.

Ezample 1 Consider two relations: r(Dealer, Make) and s(Dealer, City).
A tuple r(d, m) means that dealer d sells a car of make m. A tuple s(d, c¢)
means that dealer d is located in city ¢. Consider the following query @ and
three views Vi, Vo, and V5. The query asks for all pairs (m,c), such that
there is a dealer in city c selling cars of make m.

Q: ans(M,C) - r(D,M),s(D,C).
Vi: ans(D,M) :r(D,M).

Vo : ans(D,C) - r(D,M),s(D,C).
Vs ans(D) - 1(D,M),s(D,C).

P is an equivalent rewriting of @) using the three views:
P:ans(M,C) :- V3(D),V1(D, M), Va(D, C).

We can show that there are two containment mappings: one (an identity
mapping) from @ to the expansion P¢*P of P, and another from P¢*? to Q.

View Vi (D, M) covers the query subgoal (D, M), whereas view V2(D, C)
covers the subgoal s(D,C"). Thus V; and V5 are containment-target views
for the query.

Definition 1 (Containment-target view) A conjunctive view V is a contain-
ment-target view for a query Q if the following is true. There exists a rewrit-
ing P of Q (P uses V), and there is a containment mapping from Q to the
expansion P¢*P of P, such that V provides the image of at least one subgoal
of Q under the mapping.
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3.8 Containment-Target Views Are Enough

We now show that when looking for a minimum-size disjunctive viewset for
a database and workload of conjunctive queries, we only need to consider
containment-target views. In addition, there is a linear upper bound, in the
size of the query workload, on the number of views in each such viewset.

Lemma 1 Given a database D, for each conjunctive query workload Q and
for each minimum-size disjunctive viewset V for Q and D, each view V in
V such that size(V,D) > 0 is a containment-target view for at least one
query in the workload Q.

Proof Suppose a set V of views is a minimum-size disjunctive viewset for
a given conjunctive query workload Q and database D. Without loss of
generality, we can assume that all views in V are useful views — that is,
each view in V is present in all equivalent rewritings of at least one query in
Q using V. We now prove the lemma by assuming that there exists a useful
view V in V, size(V, D) > 0, that is not a containment-target view for any
query in the workload Q, and by showing that under this assumption we
arrive at a contradiction. Indeed, let Q" be the (nonempty) set of queries @’
in the workload Q, such that all equivalent rewritings of )" in terms of V use
the view V' and, furthermore, all occurrences of V in all these rewritings
are filtering views. By definition of filtering views, from each equivalent
rewriting R’ of Q' in terms of V we can obtain another equivalent rewriting
R” of Q' by removing all occurrences of the view V from R’. Thus, the
viewset W =V — {V'} can be used to produce equivalent rewritings of all
the queries in Q. At the same time, the total size of the relations for the
views in W on D is strictly smaller than the corresponding size for V (recall
that size(V, D) > 0). Thus, we arrive at a contradiction by concluding that
V is not a minimum-size viewset for @ and D.

Note 1. It follows from the proof of Lemma 1 that for each conjunc-
tive query workload Q and for each database D, if there exists a finite
minimum-size disjunctive viewset )V for Q and D, then there exists a finite
minimum-size disjunctive viewset W for Q and D, such that each view in
W is a containment-target view for at least one query in Q. Indeed, we
can construct W by removing from V all views V such that (1) V is not a
containment-target view for any query in 9, and (2) size(V, D) = 0.

Theorem 2 Given a database D, for each conjunctive query workload Q
and for each minimum-size disjunctive viewset V for Q and D, if n is the
total number of subgoals in all the queries in the workload Q, then the viewset
V has at most n views.

Proof (sketch)

1. By Lemma 1, given a database, for each Q and V that satisfy the con-
ditions of this theorem, each view in V is a containment-target view for
at least one query in Q.
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2. For each query @ in Q, to produce an equivalent rewriting of @ it is
necessary to cover all the subgoals of @) using views.

3. In a minimum-size viewset V), there is no need to have more than one
(containment-target) view to cover each subgoal of each query in Q.

It has been shown [LMSS95] that for each conjunctive query with n sub-
goals, if the query has a rewriting using views, then there exists a rewriting
with at most n views. At the same time, that result did not provide opti-
mality guarantees for the views in the rewriting.

Even though Lemma 1 says that in searching for a minimum-size viewset,
we can restrict our consideration to containment-target views only, the
search space of views for a query workload can still be very large, even
if we examine conjunctive views only. There are mainly two reasons: (1)
there are many ways to choose subsets of the query subgoals; and (2) there
are many ways to project out variables in a view definition. The following
example illustrates the point.

Ezample 2 For an integer k > 1, consider a query workload {Qy}, where:
Qk : anS(Xa Y17 R Yk) - pl(Xa Y1)7 s 7pk(X7 Yk)

We can define at least the following containment-target views for {Q}.
Each view is defined as a subset of the subgoals of (), and all variables in
each view are distinguished. It is easy to see that by taking conjunctions of
some of these views, we can obtain many different rewritings of Q). Further,
the total number of these containment-target views is 2 — 1. Notice that
the set of possible containment-target views for the workload {Qj} will be
even larger if we also consider views with nondistinguished variables.

Based on Example 2, we make the following observation. The length of
a definition of a query (or view) is the number of its subgoals.

Observation 1 Given a database D and a workload Q of conjunctive
queries, for the problem of finding a minimum-size viewset for Q and D, the
size of the search space of views can be (at least) exponential in the length
of the definitions of the queries. o

3.4 Disjunctive Views Can Provide Better Solutions

Each conjunctive query () has a unique minimal equivalent query @Q’, i.e.,
removing any of the subgoals in Q" will yield a query that is not equivalent to
Q' [CMT77]. We say a query has a self-join if its minimal equivalent query has
at least two subgoals with the same relation name. In the rest of the paper,
we assume that each query is already minimal. When workload queries have
self-joins, we show that it might be better to materialize disjunctive views
than conjunctive views.
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Proposition 1 There exists a query workload and a database, such that a
solution with disjunctive views requires strictly less storage space than each
solution using conjunctive views only.

Proof We give the proof by constructing such an example. Let P(A,B) be
a base table. A query workload {@Q} has a single query @ that asks for all
P-paths of length two: @Q: ans(X,Y,Z) - p(X,Y),p(Y,Z). We define a
disjunctive view V = V; U V,, where

Vi ans(X,Y) - p(X,Y),p(Y, Z).
Vor  ans(Y,Z) - p(X,Y),p(Y, Z).

In the definition of V, V7 gives all pairs of attribute values for the “first
hop” in a P-path of length two, whereas V5 provides the pairs of values for
all “second hops.” Note that the relations for V; and V5 will share tuples if
there exist P-paths of length at least three.

For a database D = {p(1,2),p(2,1),p(3,4)}, we show that the disjunc-
tive viewset {V'} is smaller than each possible conjunctive viewset. The
relation V(D) = {p(1,2),p(2,1)} has four data values. Let W be an op-
timal conjunctive solution for the workload. By Lemma 1, W consists of
conjunctive containment-target views only. We show that for the database
D, the total number of occurrences of data values in W is greater than four.

Let R be an equivalent rewriting of the query @ using the views in W.

R:ans(A,B,C) - wi(Xy), ..., we(Xg).

By Theorem 2, R has no more than two view literals, i.e., k < 2. There are
two cases: (1) each view w; is used once in the rewriting R, or (2) some view
wj is used more than once in R. We consider the two cases separately.

Case 1: Each view w; is used exactly once in rewriting R. From Theorem
3 in [CGO00], each view in R can be defined as a subexpression of the query
Q. Thus, all views in the rewriting R come from a set .S of all conjunctive
containment-target views that can be defined as subexpressions of the query
@; this set has just four views, and the relation for each view has at least
four data values. By considering all combinations of the views in the set S
that produce equivalent rewritings of @@ and by computing the sizes of the
resulting viewsets W on the database D, we obtain that for all such W,
size(W, D) > size({V},D) = 4.

Case 2: Some conjunctive view w; can be used more than once in the
rewriting R. Because R has at most two view subgoals, the only possibility
in this case is that R is a self-join of a single conjunctive view:

R:ans(A,B,C) - w(Xy),w(Xz).

By Theorem 3.1 in [CHS02], in this case views in R can have more subgoals
than the query ). Suppose there exists a conjunctive view w that, after
minimization, has more subgoals than the query @. Then the minimized
definition of w has at least three P-subgoals. In addition, the definition of w
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cannot have cross-products; otherwise, the solution {w} would be subopti-
mal for @) and for the database D. By considering all possible combinations
of nontrivial equality join predicates on three P-subgoals, we verify that
the three subgoals in w cannot contain a subset of subgoals of the query
Q. In assuming that a view can be used in the rewriting R and have more
subgoals than @), we have arrived at a contradiction. On the other hand,
suppose the view w is a subexpression of the query @ (i.e., w is in the set
S, see case 1). Then for each equivalent rewriting of the query @ that is a
self-join of w, the viewset {w}, on the given database, has more data values
than the disjunctive solution {V}.

3.5 Disjunctive Views and Rewritings: The Problem Is Decidable

In this section we show that the problem of finding a minimum-size set
of disjunctive views for a database and workload of conjunctive queries is
decidable.

Theorem 3 Given a database D and a finite workload Q of conjunctive
queries, we can construct a finite search space of views that includes all
views in at least one minimum-size disjunctive viewset for Q and D. The
number of views in the search space is at most triply-exponential in the sum
of lengths of the definitions of the workload queries.

Proof We show that for all conjunctive query workloads Q and databases
D, to obtain all nontrivial disjunctive views in at least one minimum-size
disjunctive viewset U, we can consider rewritings of the queries in Q using
sets of representative conjunctive views that we proceed to define; unions of
some of those conjunctive views are the disjunctive views in Y. The proof
of the theorem follows from this claim and from the bound we give on the
number of such conjunctive views.

We first show that given a conjunctive query workload Q and a database
D, there exists a minimum-size conjunctive viewset 1, such that each view
V in V has at least one definition whose length is at most singly-exponential
in the length of the longest query definition in the workload Q.

Let W be a minimum-size set of conjunctive views for Q and D. Let
mazg|Q| be the length of the longest query definition in the workload Q,
and let size(W, D) be the total size of the relations for the views in W on the
database D. Suppose some view in W has a definition whose length is more
than singly-exponential in the length of the longest query definition in Q. By
Theorem 3.1 in [CHS02], for Q, D, W, and for a storage limit size(W, D),
there exists another viewset, V, with three properties: (1) for each view
V in V, the length of the definition of V is at most singly-exponential in
maxg|Q|, (2) the relations for the views in V on the database D satisfy
the storage limit size(W, D), and (3) for each query @ in Q, there is an
equivalent rewriting of @) in terms of V. Moreover, by construction, there is a
homomorphism between the views in VW and the views in V, such that each
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view V in V is contained in the respective view W in W. By construction,
V is a minimum-size viewset for the query workload Q on the database D.

For all minimum-size viewsets W for Q and D, we call the corresponding
set V a representative viewset of VW in the space S of all sets of views whose
definition length is at most singly-exponential in the length of the longest
query definition in @, in the following sense. (1) size(V, D) = size(W, D)
on D, and (2) for each query @ in Q, a rewriting of @) using V is the result
of replacing, in the rewriting of @ using W, the literal for each view W in
W by the literal for the image, in V, of W under the homomorphism from
W to V. Because the set S is finite, it takes finite time to construct all
representative viewsets of all minimum-size viewsets for a given Q and D.

We now prove the claim of the theorem, first for singleton query work-
loads and then for non-singleton workloads.

Case 1: Let the query workload Q have just one query @, and let V
be a minimum-size disjunctive solution for Q. Consider a rewriting of the
query ) using V, and consider the expansion of the rewriting in terms of
the conjunctive components V' of the views in V. The expansion is a union
of several conjunctive queries, and one of the queries, P, is equivalent to
the query @ modulo the view definitions [SY80]. We call P the equivalent
congunct of ) in terms of V'; let P**? be the expansion of P in terms of the
schema of the database D.

Suppose the viewset V contains exactly one nontrivial disjunctive view,
V', that is a union of two conjunctive views, V7 and V5. Consider an al-
ternative conjunctive solution W that is obtained by replacing, in V), this
disjunctive view V by V7 and V5. W is a solution for the query @) because
of the conjunct P. We say the viewset V is a better solution for the query @
than W if size(V, D) < size(W, D) on the database D. Note that size(V, D)
can be less than size(W, D) only when the equivalent conjunct P (of @ in
terms of V') has a join of V7 and V5. (If P has either just one conjunct of V,
or if P has a self-join of just one conjunct of V', we could obtain a conjunc-
tive solution W' for the query @ that is at least as good on the database D
as V, by replacing, in V, the view V by that one conjunct.)

Next, we show that we can construct, from the expansion PP of the
equivalent conjunct P of @, a disjunctive view V', such that (1) V' is used
in the same way as V in rewriting Q, and (2) size({V'}, D) < size({V}, D)
on D. The view V' is a union of the views V{ and VJ, which are the rep-
resentatives of the views V7 and V5 in the space S of all conjunctive views
whose length is at most singly-exponential in the length of the query Q.
From the properties of representative views, the result of replacing V' with
V' in the viewset V is at least as good a solution for {@} and D as the
viewset V. We can find the view V'’ by testing all unions of two views in S;
thus, we can construct a search space of all disjunctive views that are part
of at least one optimal solution for ({Q}, D).

We obtain V' from P®*? as follows. By Theorem 2, the maximal number
of view subgoals in P is the number n of subgoals in the query Q. We take
all partitions of the subgoals of P**P into up to n parts; for each partition
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that has k elements, we design k conjunctive views whose bodies are the
elements of the partition; we consider each resulting conjunctive viewset 7°
that gives an equivalent rewriting of @, such that P¢*P is the expansion
of the rewriting. (In particular, this procedure gives us the viewset W.)
Now, for each 7, we construct its representative viewset 7", including the
representative viewset of W. On the database D, size(7’, D) < size(T, D),
and the number of subgoals in each view in 7’ is at most singly-exponential
in the number n of subgoals of the query Q.

Recall that, under our assumption, size(V, D) < size(W, D). We now
construct, from each viewset 7", all disjunctive views T that are each a union
of two elements of 7’. By construction, from the representative viewset of
W we obtain a disjunctive view V' that is contained in V' and can replace
V in the rewriting of @ in terms of V. Because V is a minimum-size viewset
for ({Q}, D), the result of replacing V by V' in V is also a minimum-size
viewset for ({Q}, D).

Observe that each such view V' can be generated by taking a union
of two conjunctive views in S, and that the process of generating all such
views V' is finite because the number of views in S is finite. From this
observation, we obtain the claim for Case 1 of the theorem. (The proof is
extended in a straightforward way to cases where the viewset V has more
than one disjunctive view and where a disjunctive view in V' can have more
than two conjuncts.)

Case 2. Suppose the query workload Q has at least two queries: Q =
{Q1,...,Qm}, m > 2. In addition to finding all disjunctive views that can
be used to rewrite individual queries in the workload O, we now want to
account for each nontrivial disjunctive view that can be used to equivalently
rewrite more than one query in Q. To achieve this goal, all we have to do
is to replace, in the reasoning for Case 1 above, P (the equivalent conjunct
of the only query @ in the workload in Case 1) by a conjunction P, which
we obtain as follows:

— we take an equivalent conjunct P; of each query Q; (i ¢ {1,...,m}) in
the workload Q,
— if necessary, we rename the variables in the conjuncts Pi,..., Py, to

avoid using a variable name in more than one conjunct,

— finally, we take a conjunction P of all these conjuncts: the body of P
is P, &...& P,,, and the head of P comprises all head variables of
Py, ..., Ppy.

By applying the reasoning in Case 1 to the individual conjuncts P; in P,
we show that there exists a rewriting P’ that is equivalent to P on D, whose
view relations have the same size on D as the relations for minimum-size
disjunctive viewsets for P, and such that that the number of subgoals of
each disjunctive view for P’ is at most singly-exponential in the sum of the
lengths of the queries in the workload Q.

For each minimum-size disjunctive viewset V for the workload Q and
assuming conjunctive rewritings only, V is also a minimum-size disjunctive
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viewset for the conjunction P. Using the reasoning in Case 1 above, we
can find all representative disjunctive viewsets, YW, that can equivalently
rewrite the conjunction P; the complexity bounds are the same as in Case 1.
All that remains to be done is to find those viewsets among W’ that can be
used to equivalently rewrite all individual queries in the workload Q. This
observation concludes the proof of Case 2 and the proof of the theorem.

By construction of the viewset V' from V in Theorem 1, size(V', D) <
size(V, D) for each database D. It follows that for an arbitrary conjunctive
query workload @ and database D, we can find at least one minimum-size
disjunctive viewset for (Q, D) by searching among only those sets of views
that provide equivalent conjunctive rewritings of all queries in Q. Thus, the
following result is a direct consequence of Theorems 1 and 3:

Corollary 1 For each finite workload Q of conjunctive queries and a
database D, the problem of finding a minimum-size disjunctive viewset for
Q and D is decidable.

Note 2. We observe that the problem has a triply-exponential upper
bound: A naive algorithm will find a minimum-size viewset for a given
query workload and database by exploring all subsets of the at most doubly-
exponential search space of views.

4 Conjunctive Queries without Self-Joins: The Problem Is in NP

In this section we study workloads of conjunctive queries without self-joins.
Figure 3 shows the view spaces we consider to find a minimum-size set of
disjunctive views. We first show that for a single query without self-joins,
we need to consider only conjunctive views, because nontrivial disjunctive
views do not add new solutions (Section 4.1). We then further restrict our
consideration to subexpression-type views (Section 4.2), and then to full-
reducer views (Section 4.3). For arbitrary workloads of conjunctive queries
without self-joins, we show that, given a database, the problem of finding an
optimal disjunctive viewset is in NP, because we can construct a rewriting
of each workload query by using a small number of conjunctive views with a
bounded number of subgoals (Section 4.4). We also study the case of a single
conjunctive query with arithmetic comparisons (Section 4.5), and define the
notion of a view associated with a set of relations (Section 4.6), which will
be used in later sections.

4.1 Congunctive Views Are Enough for a Single Conjunctive Query

Theorem 4 Suppose a set V of disjunctive views is a solution for a given
database D and a single conjunctive query Q without self-joins. Then there
exists another solution V' for D and {Q}, such that all views in V' are
congunctive, and size(V', D) < size(V, D).
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disjunctive views

full-reducer
views

Fig. 3 View space for a single conjunctive query without self-joins.

Proof Let Q be a singleton query workload, @ = {Q}, where the query
Q:ans(Z) - Ri(Y1),..., Rn(Y,).

is conjunctive and does not have self-joins. Let D be an arbitrary database,
and let a set V of disjunctive views be a solution for @ and D. Then there
exists an equivalent rewriting P of @ using the views in V. Without loss
of generality, we assume that all views in V are used in P. Consider each
nontrivial disjunctive view

V=ViUVU: - UV,

k > 1, that is used in P; Vi,..., Vi are conjunctive views. The idea of the
proof is that there exists a transformation p of the view V that produces a
new disjunctive view:

Vi=V/uVyu - UV,

where V/ = u(V;), i =1,..., k. The new disjunctive view V' is used in a new
equivalent rewriting P’ of the query Q. We show that for each conjunctive
component V; of the view V', V/ can replace the entire view V in the
equivalent rewriting P’. Therefore, we can replace the disjunctive view V
with a conjunctive view V/, where |V/| < |V’| < |V|.

Now we give the details of the proof. Assume there are m occurrences
of V in P:

P:ans(X) - V(X1),...,V(Xn),G.

where each of X, X1, ..., X,, is a list of arguments, and G represents the
instances of other views that are not V. By replacing all the disjunctive views
by their definitions as unions of conjuncts, we get a union of conjunctive
queries, which is equivalent to the query Q. From [SY80], at least one of these
conjunctive queries — we denote it by P — is equivalent to Q: PP = Q,
where P¢*P is an expansion of P [CM77]. Let u be a containment mapping
from PP to (). By applying p on P, we get another equivalent rewriting:

P’ rans(X') - V(X]),...,V(X]),G.

where X’ = pu(X), X! = pu(X;), i = 1,...,m. G’ represents the subgoals in
P’ that do not use the conjunctive components in V. In the definition of V/,
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V=ViuVaU --- UV, we remove all the V;’s that do not appear in P’.
Without loss of generality, P’ = p(P) can be represented as:

P’ ans(X) - Vl(X{),...,Vm(XqIn)aG/-

where each V; is a conjunctive component of the view V.
Consider the conjunctive view V7 and its corresponding contained rewrit-
ing (in P’) that does not use the conjunctive components Va,...,V,, of V:

H :ans(X') - Vi(X}),...,Vi(X)),G.

Let 0 be a containment mapping from @ to H*P. For each j > 2, we
show that for all the local mappings (of 3) from @ to the subgoals/arguments
in Vi(X ;)eP, we can ‘“redirect” them to the corresponding subgoals/
arguments in the expansion of V;(X}) and thus get another containment
mapping 4’ from Q to H**P, where the images of the subgoals of @ do not
come from the expansion of each V; (Xj’-)e‘”’, ji>2.

Q:ans(Z):—...R(...W...)...
N
He? ans(Z): —...R(...Y'..)...R(...Y ..))...

Y

H: CLTLS(Z) : _‘A/l(X{%vf/l(X],L,‘A/l(Xl )7G

m

Fig. 4 Redirecting the mapping 3 to 5’

Here are the details on redirecting the mappings. Consider each subgoal
R(...Y..)in Vl(X’J’»)ezp, where j > 2. Let R(...W ...) be the correspond-
ing query subgoal in ). Because ) does not have self-joins, it has only
one instance of relation R. Here both Y and W are the [-th argument for
relation R. There are two possible cases.

1. Y is a distinguished variable of Vi. That is, in the definition of Vl,
there is at least one R-subgoal whose [-th attribute appears in the head
of V4. Since R(...W...) is the only R-subgoal in @, the mapping u
guarantees that ¥ = W. In addition, the expansion of Vi(X}) has a
subgoal R(...W ...) because of the mapping p. We then redirect the
mapping from W in  — which used to be to W in the expansion of
Vi (X)) — to W in the expansion of Vi(X)).!

2. Y is a nondistinguished variable of Vl, i.e., Y is a fresh variable in the
expansion of Vi (X 7). Then W must also be a nondistinguished vari-

able of Q. The expansion of Vi (X}) also provides a corresponding fresh

! Note that we cannot do the redirection in this manner if the relation R appears
more than once in @; see proof of Proposition 1 in Section 3.4.
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variable Y’/ that can be used as the image of W. Notice that in this
case, V1(X])¢*P and \%(X})e“p provide all instances of Y/ and Y, re-
spectively [PL00,ALUO1]. So we can redirect the mappings — which
used to be to Y in VﬂX;)”ﬂ j>2—to Y in Vi(X})e.

By redirecting all the local mappings from the expansion of ‘A/l(X]’),

j > 2, to the subgoals in the expansion of Vl(X 1), we have obtained, from
the containment mapping 3, another containment mapping 3, from Q to
the expansion of the following rewriting:

Hypew : ans(X') == Vi(X}),G.

The containment mapping 8’ implies that H¢*2 C (). Since P’ is an equiv-
alent rewriting of ), we obtain that @ is contained in the expansion of P’.
In addition, the expansion of P’ is also contained in HEZP | since the sub-

goals in H,,.,, are a subset of those in P’. Thus Q C HE*P . So H,ey is also
an equivalent rewriting of (). Notice that in Hje,, of all the conjunctive
components of V' we use only one component Vi. Thus we can replace the
disjunctive view V with a conjunctive view Vi.

By doing this replacement for all the disjunctive views in V, we get a set
V' of purely conjunctive views that can answer the query Q. By construction,

V' does not require more storage space than V.

We now show that we cannot extend the result of Theorem 4 to non-
singleton query workloads. Consider an example.

Ezxample 3 Consider the problem of finding a minimum-size viewset for a
database D = {p(1,2), p(3,2), p(1,4), p(3,4)} and a query workload Q =
{Q1,Q2}:

Q1:ans(X)Y) :—p(X)Y), X =1

Q2 :ans(X,)Y) :—p(X,Y), Y =2.

The size of the database is 32 bytes — 4 tuples each of size 8 bytes for

P. (We assume that storage of an integer takes four bytes.) The answer

to Q1 on the database D is {(1,2), (1,4)}, and the answer to Q2 on D is

{(1,2), (3,2)}. Thus, the total size of the answers to the workload queries on

D is (2x4) x4 = 32 bytes. It is easy to see that for each set U of conjunctive

views that is useful in rewriting the workload queries, size(U, D) > 32 bytes.
Now consider a disjunctive view V:

Vians(X,Y) : — ¢ (X,Y).

Vians(X,Y) : — ¢(X,Y).

The view V(X,Y") can be used to answer each query in Q:

Ry :ans(X,Y) :—v(X,)Y), X =1.

Ry :ans(X,Y) :—v(X)Y), Y =2

The answer to V on D is {(1,2), (3,2), (1,4)} and is thus of size 24

bytes. Thus, size({V'}, D) < size(U, D) for each minimum-size conjunctive
viewset U for the pair (Q, D).
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4.2 Subexpression-Type Views Are Enough for a Single Conjunctive Query

We saw in the proof of Theorem 3 that to find a minimum-size conjunctive
viewset for a workload Q of conjunctive queries, it is enough to consider
views with definitions whose size is at most exponential in the length of the
longest query definition in @. Now we show that for singleton workloads
of queries without self-joins, we can further reduce the size of the search
space of views by considering only those views whose definitions are subex-
pressions of the query. By considering such views only, we can still find a
conjunctive viewset that is an optimal solution for the given problem in-
put in the space of disjunctive views. In Section 4.4 we will see that, given
a database and a non-singleton workload of queries without self-joins, all
views in at least one optimal viewset can be defined as unions of conjunctive
subexpression-type views for the individual workload queries.

Definition 2 A conjunctive view V is a subexpression-type view for a con-
junctive query Q if, for some definition of V, there exists a containment
mapping to the body of the definition from a subset of subgoals of Q.

Theorem 5 Given a database D and a conjunctive query Q without self-
joins, there is a minimum-size conjunctive viewset U for D and {Q}, such
that each view in U is a subexpression-type view for some query in Q.

Proof (sketch) Suppose a viewset )V is an arbitrary conjunctive viewset,
such that the query @ has a rewriting using V. From V we can construct
another viewset, W, such that W also provides a rewriting of @ and has
the following properties. The amount of space required to store YW does not
exceed the space required to store V, on all databases, and each view in
W is defined as a subexpression of the query @, with possibly attributes
projected. Thus, when looking for minimum-size conjunctive viewsets U for
the given @ and an arbitrary database D, we can restrict our consideration
to views that can be defined using subexpressions of the query Q.

Let R be an equivalent rewriting of the query @ using views V, R = Q.
The main steps in the construction of W from V are as follows.

1. Without loss of generality, by Lemma 1 we can assume that all views in
R are containment-target views of Q.

2. From R we construct a new equivalent rewriting R’ of ), such that R’
does not have self-joins of a view. The construction of R’ from R is
done by redirecting variable and subgoal mappings from @ to R®*P, as
described in the proof of Theorem 4.

3. From each view V in R’ we can construct a view W, such that the query
defining W is contained in the query that defines V. (We construct the
W’s from the corresponding V’s using two arbitrary fixed containment
mappings, 1/ from Q to R ¢“P and v/ from R P to Q, by (1) finding
the image V' in @ of the expansion of each subgoal V of R’ under v/,
and by then (2) using the image of V/ in R ¢*? under 4/ to define the
view W.)
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4. By Theorem 3 in [CGO00], by replacing each view V in R’ with the
corresponding W, we obtain a new equivalent rewriting R” of Q, in
terms of the viewset W = {W}. The properties of W that we mention
in the beginning of this proof hold by construction of W from V.

4.8 Full-Reducer Views Are Enough for a Single Conjunctive Query

Now we further reduce the size of the search space of views for a single
conjunctive query without self-joins, by considering only full-reducer views;
a full-reducer view is a view whose body is the query body [Yan81]. (In
Section 4.4 we show that for non-singleton query workloads, full-reducer
views are not always part of an optimal solution.) Consider Example 2
again. In that example, the body of each view can be replaced by the full
body of the query Q. After the replacement, the number of tuples in each
view cannot increase. More precisely, none of the views will have dangling
tuples after the replacement. At the same time, for each such view, there
exists a database where the view is part of some minimum-size viewset for
the query Q. We formalize these observations in the following result.

Lemma 2 Given a database D, consider a conjunctive query @ without self-
joins; let V be a solution for Q and D. For each view V € V that is not
a full-reducer view, we can construct from the view V a new view W, by
replacing the body of V with the body of Q. Then the resulting viewset V' is
also a solution for Q and D, and size(V', D) < size(V, D).

Proof For a conjunctive query ) without self-joins and for its conjunctive
solution V, consider a containment-target view V' € V. such that V is
defined as a proper subexpression of the query. From each such view V| we
can construct a full-reducer view W, by simply adding to the definition of
V' the missing subgoals of the query @. We can show that W is contained
in V. Therefore, on each database we have size(W, D) < size(V, D). Now
consider an equivalent rewriting P of @ in terms of the viewset V. If, in
the rewriting P, we replace V by W, the resulting rewriting P’ will still be
equivalent to @, as the containment mappings between () and the expansion
of P can be extended to mappings between @ and the expansion of P’.

Theorem 6 Given a database D and a conjunctive query @ without self-
joins, there exists a minimum-size conjunctive viewset V for Q and D, such
that each view in V is a full-reducer containment-target view.

4.4 Workloads of Queries without Self-Joins: The Problem Is in NP

Recall (see Example 3 in Section 4.1) that for non-singleton workloads of
queries without self-joins, it is not enough to consider conjunctive views
when searching for a minimum-size viewset for the workload and some
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database. Nevertheless, we show in this section that the view-selection prob-
lem is in NP for arbitrary workloads of queries without self-joins.

We first observe that in rewriting arbitrary workloads of conjunctive
queries without self-joins using disjunctive views, we do not need to consider
rewritings that have self-joins of views; the proof follows immediately from
the proof of Theorem 4.

Proposition 2 Let Q be an arbitrary workload of conjunctive queries with-
out self-joins, and let V be a disjunctive viewset such that each query in Q
has an equivalent rewriting using V. Then for each query in Q there exists
an equivalent rewriting R without self-joins of the views in V.

We now show that when looking for minimum-size viewsets for non-
singleton workloads of queries without self-joins, we can restrict our consid-
eration to those disjunctive views whose each conjunctive component is a
subexpression-type view for some workload query.

Theorem 7 Given a database D and a workload Q of conjunctive queries
without self-joins, there is a minimum-size disjunctive viewset U for D and
Q, such that each conjunctive element U of each view inU is a subexpression-
type view for some query in Q.

Proof (sketch) From Proposition 2 and from the proof of Theorem 4 it fol-
lows that in each rewriting R without self-joins of each query in Q, each
occurrence in R of each disjunctive view V € V can be replaced by a sin-
gle conjunctive component of V. From Theorem 5, each such conjunctive
component is a subexpression-type view for some query in Q.

Observe that we cannot strengthen the statement of Theorem 7 by re-
placing “subexpression-type view” with “full-reducer view.” Consider an
example.

Ezample 4 Consider the problem of finding a minimum-size viewset for a
database D = {p(1,2), p(12,13), s(2,4,9), s(2,5,10), s(6,4,11), t(4,7),
t(14,15)} and a query workload Q@ = {Q1,Q2}:

Q1:ans(X,Y,Z) :—p(X,)Y), s(Y,Z,T).
Q2 :ans(Y, Z, W) = s(Y,Z,T), t(Z,W).

The size of the database is 68 bytes. (We assume that storage of an integer
takes four bytes.) The answer to )1 on the database D is {(1,2,4), (1,2,5)},
and the answer to Q2 on D is {(2,4,7), (6,4,7)}. Thus, the total size of the
answers to the workload queries on D is (2 x 6) x 4 = 48 bytes. It is easy
to see that for each set U of conjunctive full-reducer views that is useful in
rewriting the workload queries, size(U, D) > 48 bytes. In addition, unions
of such conjunctive full-reducer views do not produce nontrivial disjunctive
views that would be useful in equivalently rewriting the workload queries.
Now consider a set of conjunctive views V = {V;, V5, V3 }:
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Vi:ans(X,)Y) : — p(X,Y), s(Y, Z,T).
Vorans(Y,Z) :— s(Y,Z,T).
Vs rans(Z,W) : — s(Y,Z,T), t(Z,W).

Each view in V is a subexpression-type view for either Q)1 or @Qs; view V5 is
not a full-reducer view for either query.
The viewset V can be used to answer each query in Q:

Ry :ans(X,Y,Z) :— v (X,Y), na(Y,2).
Ry :ans(Y,Z, W) :—w(Y,Z2), vs(Z,W).

The total size of the answers to the views V on D is 40 bytes, which is less
than the size of each set of full-reducer views for Q on D.

Theorems 4 through 7, together with the results in Section 3, imply that
to find a minimum-size disjunctive viewset for a database and a workload of
conjunctive queries without self-joins, it is enough to consider conjunctive
subexpression-type views without self-joins. As a result, we have reduced the
size of the search space of conjunctive views that includes all conjunctive
components of all views in some minimum-size disjunctive viewset, from
doubly-exponential to singly-exponential in the size of the (singleton or
non-singleton) query workload.

Corollary 2 For all databases D and all workloads Q@ of conjunctive queries
without self-joins we can construct a finite search space of views that includes
all conjunctive components of all views in at least one minimum-size dis-
junctive viewset for Q and D, such that the number of views in the search
space is at most singly-exponential in the size of the queries in Q.

We conclude with a complexity result for view selection for arbitrary
workloads of conjunctive queries without self-joins:

Theorem 8 Given a database D and an arbitrary workload Q of conjunc-
tive queries without self-joins, the decision version of the problem of finding
a minimum-size disjunctive viewset for @ and D is in NP.

Proof Consider a workload Q of queries with at most n subgoals, a database
D, and an integer K. To check whether a disjunctive viewset V is a solution
for Q, such that storing the views in the database D will require at most
K bytes, we can do two things. First, to see whether the viewset V gives
an equivalent rewriting of each query in Q, we need to check a witness
that provides (1) a rewriting of the query in terms of the views, and (2)
the containment mappings between the query and the rewriting. Second, to
check whether storing the views in the database D will require at most K
bytes, it is enough to add up the sizes of the views in V on the database D.
From the results in Section 3 and in this section, it follows that the sizes
of the structures we need to examine (and, therefore, the time required to
examine them) are polynomial in the size of the query workload Q.
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4.5 Queries with Arithmetic Comparisons

We can extend Theorem 6 to queries without self-joins and with arithmetic
comparisons. We assume that (1) Each inequality comparison is between
a variable and a constant, such as Year >= 1999 or price < 5000; each
comparison operator is one of {<, <,>,>,#}. (2) The attribute of the vari-
able in each comparison is over a densely totally ordered domain. (3) The
comparisons are not contradictory, that is, there exists an instantiation of
the variables such that all the comparisons are true. (4) All the comparisons
are safe, that is, each variable in the comparisons appears in some ordinary
(relational) subgoal.

Theorem 9 Given a database D and a conjunctive query Q without self-
joins that may have arithmetic comparisons between variables and constants,
there exists a minimum-size viewset V for @ and D, such that each view in
V is a full-reducer conjunctive view, possibly with arithmetic comparisons
with constants in the query. This result holds assuming conjunctive views
and rewritings that may have arithmetic comparisons.

Before giving the proof, we first revisit related results on testing con-
tainment of two conjunctive queries with arithmetic comparisons [GSUW94,
Klu88]. Let @1 and Q2 be two conjunctive queries with arithmetic compar-
isons. We normalize both queries as follows.

— For all occurrences of a shared variable X in the ordinary subgoals ex-
cept the first occurrence, replace the occurrence of X by a new distinct
variable X;, and add X = X; to the comparisons of the query; and

— For each constant ¢ in an ordinary subgoal, replace the constant by a
new distinct variable Z, and add Z = ¢ to the comparisons of the query.

Theorem 10 ([GSUWY94, Klu88]) Let Q1 and Q2 be two normalized con-
junctive queries with arithmetic comparisons. Let 31 and By be the com-
parisons in Q1 and Q2, respectively. Let uq, ..., ug be all the containment
mappings from the ordinary subgoals of Q1 to the ordinary subgoals of Qs.

Then Qo C Q1 if and only if B2 can logically imply p1(B1) V ...V pur(B1).
Now we give the proof of Theorem 9.

Proof Let W = {W7,..., W} be a set of conjunctive views with arithmetic
comparisons that is an arbitrary (not necessarily optimal) solution for a
given query workload {@} and database D. Let P be an equivalent rewrit-
ing (with comparisons) of the query @ using these views. That is, P*P,
the expansion of P, is equivalent to Q. We construct from W a new set
V = {V1,...,Vi} of views, such that (1) each view in V is a full-reducer
conjunctive view, possibly with comparisons with constants, (2) we can
equivalently rewrite @) using V as a conjunctive query with comparisons,
and (3) the size of V on the database D does not exceed the size of W. It
follows that at least one optimal viewset for {@Q} on D is a set of full-reducer
views for Q.
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We normalize queries Q and P¢*P to Q and Peep , respectively. Since Q
does not have self-joins, each relation appears in Q only once. Therefore,
for each ordinary subgoal g of PerP there can be only one subgoal in Q
to which g can be mapped in all containment mappings from the ordinary
subgoals of Perp 1o the ordinary subgoals of Q. So there can be at most one
such containment mapping. By Theorem 10, there must be one and only
one such containment mapping u, such that

62 = :u(ﬁl)a

where (3> and (3, are the comparisons in Q and Peep , respectively, and “=-"
stands for logical implication.

We do the following modifications on Pep and the corresponding mod-
ifications on the views used in P:

1. We apply the mapping p on those variables in Perp that are not fresh
during the expansion. Correspondingly we apply the mapping on the
definition of each view. After this application, if a view is used more
than once in the rewriting, then their instances in the new rewriting
become the same, because ) does not have self-joins and the mapping
is unique. Let Wl(l), ceey W,El) be the new views, and E(!) be the new
expansion of the rewriting, which has comparisons u(81).

2. Each comparison in (s is either X = Y or X op ¢, where X and Y
are variables, ¢ is a constant, and op is a comparison operator. Since
B2 = p(B1), each comparison in p(B1) must also be either Z op U or
Z op d, where Z and U are variables and d is a constant. We replace the
comparisons in the expansion E(!) with comparisons in 3. Clearly the
logical implication By = (2 is still true. We add these comparisons in
(B2 to all the views whose expansion uses a variable in the comparisons.
Let Wl(Q), ey W,EZ) be the new views, and E( be the new expansion of
the rewriting.

3. For each view VVZ-@)7 if its body does not have a relation used in @, we
add this relation to this view’s body. In addition, if there is a condition
X op U in @, where X is a variable, and U is a variable or a constant,
we add the corresponding condition to the view’s body. We do the mod-
ification for all the views. We can show that for these modified views, we
can add their additional subgoals and conditions to their expansions in
E®_ In addition, there is a containment mapping x from the ordinary
subgoals of the new expansion, such that 82 = u/(05), where 35 is the
comparisons in the new expansion.

Notice that each modification makes the views more contained, and the
final expansion more contained (due to the additional conditions). In addi-
tion, the final expansion still contains Q. Therefore, we obtain an equivalent
rewriting of the query @ using a new set of views V = {V;,...,V;}, such
that (1) each V; is constructed from the corresponding view W; in W, (2)
each view in V satisfies the conditions in the theorem, and (3) the size of
each V; on the database D does not exceed the size of W; on D.
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4.6 View Associated with a Subset of Relations

Finally, we observe that to find an optimal solution for a single conjunctive
query, it is enough to consider those full-reducer views whose head projects
only “necessary” body attributes, that is, just head attributes of the rewrit-
ing and the attributes required for joins with the remaining views. Formally,
let G be an arbitrary subset of the relations in the query. Let G’ be the re-
maining relations in (). We say an attribute A of a relation in G is a relevant
attribute of G if either (1) A is an output (i.e., distinguished) attribute of @,
or (2) A is a join attribute in the query, i.e., in @, this attribute appears in
a subgoal of a relation in G and a subgoal of a relation in G’. A full-reducer
view Vg is called the associated view of G if the head arguments Yg of Vg
are exactly the relevant attributes of G.

For example, the view Vi in Figure 2 is associated with the subset
Gi1={customer, order}. The relevant attributes of the view V; include
output attributes of the query @y (Figure 1) — c.name, o.orderdate,
o.shippriority, o.comment — as well as a join attribute o.orderkey.
Table 2 shows all possible subsets of the relations in the query @; that need
to be considered in searching for an optimal rewriting of the query Q1.

Table 2 Possible views for query Q1.

Relation subset Associated view
{customer} Wi

{order} Wa

{lineitem} Ws =V,
{customer, order} Wy=W
{customer, lineitem} Ws

{order, lineitem} W

{customer, order,lineitem} | W7z = Q1

In the rest of this paper, when the query is given, unless otherwise spec-
ified, if {R1,..., Ri} is a set of relations, we use “V{Ry,...,Ri}” to rep-
resent the corresponding full-reducer view associated with this subset. For
instance, for query @1, we use “V{customer}” to represent the view Wj.

5 Computing a Viewset Efficiently

So far we have studied the problem of constructing search spaces of views
that contain a minimum-size solution for a query workload and the corre-
sponding complexity issues. In this section we study how to compute such
a viewset efficiently. The efficiency is especially important for cases where
we need to compute a good solution online. We focus on the case of a single
conjunctive query without self-joins. We study issues related to computing
a viewset, including pruning rules to reduce the number of solutions and
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views that need to be considered, estimating the size of each view, and
heuristics for finding a solution.

5.1 Ezxhaustive-Search Algorithm

Consider a single conjunctive query ) without self-joins. An exhaustive-
search algorithm for finding a minimum-size set of conjunctive views would
consider all partitions of the relational subgoals in the query Q. Each par-
tition T = {Gi,...,Gn} yields a decomposition plan (called solution)
Pr = {Vq,,..., Vg, }, where each view Vg, is the associated view of Gj,
see Section 4.6. The algorithm searches for a minimum-size partition and
generates the corresponding decomposition plan.

If the query has N relational subgoals, the total number of plans con-
sidered by the basic search algorithm is Zi\; S(N, i), where S(m,n) is the
Stirling number that represents the number of ways of partitioning a set
of N elements into i nonempty sets. For instance, this total number is 52
for N =5, and is 203 for N = 6. Since the number of relational subgoals
in many queries tends to be small, we could afford to use this algorithm
to search for an optimal solution. In Section 5.4 we will study how to find
a solution using heuristics when the number N is large. Notice that even
without heuristics, the size of the search space here is dramatically smaller
than the number of physical plans considered by a standard System-R-style
query optimizer for relational database systems [SAC™79], since we consider
the total number of partitions of (the relational) subgoals, while traditional
optimizers also need to consider other factors such as different join methods
and join orders.

5.2 Reducing the Numbers of Views and Solutions

We develop pruning rules to reduce the number of views and solutions that
need to be considered while still allowing us to find an optimal plan. These
rules are based on specific properties of the query, such as its shape, output
attributes, and possible key constraints where join conditions involve keys.
We use the following simplified schemas of the TPC-H relations. The under-
lined attribute(s) of each relation form(s) a primary key for this relation.

part(partkey,mfgr,type,size)
partsupp (partkey, suppkey,availqty)
supplier (suppkey,name,nationkey)
nation(nationkey,name,regionkey)
region(regionkey,name)

We use the query @2 in Figure 5, which is a slight variation on “Query
2” in the TPC-H benchmark [TPC]. Recall (Section 4.3) that a full-reducer
view is associated with a subset of the relations used in the query.
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SELECT p.mfgr, ps.partkey, ps.suppkey, s.name, n.name
FROM part p, supplier s, partsupp ps, nation n, region r
WHERE p-partkey = ps.partkey AND s.suppkey = ps.suppkey
AND p.size = 24 AND s.nationkey = n.nationkey
AND n.regionkey = r.regionkey AND r.name = ’AMERICA’;

Fig. 5 Query Q2

We now review the concept of “RI-join graphs” that will be used in the
pruning rules. Formally, the RI-join graph of a query @ is a directed graph
G(Q) = (V, E), in which the set of vertices V represents the set of relations
used in Q. There is a directed edge R; — R; in E if the query has a join
condition R;.B = R;.A, and B is a foreign key referring to R;.A.?

The RI-join graph of the query Qs is shown in Figure 6. The edge nation
— region in the graph represents the fact that there is a join condition
nation.regionkey = region.regionkey, and nation.regionkey is a for-
eign key referring to region.regionkey.

part

e

partsupp — supplier — nation =/ region

Fig. 6 RI-Join graph G(Q2) of query Q2.

Because the FROM clause of the query Q5 has five relations, the number of
plans for Q5 considered by the exhaustive-search algorithm is 30_, S(5,1) =
52. The number of views considered by the algorithm is 2° — 1 = 31.

5.2.1 Pruning Rule 1: Ignoring plans that use “disconnected” views Using
this pruning rule, we never consider one class of views, which we call “dis-
connected views.” As discussed in Section 4.6, given a query, we associate
one view with each subset G of the relations. Disconnected views correspond
to those subsets G that can be partitioned into two groups of relations, GV
and G(® | such that the query does not have join conditions between the re-
lations in the two groups. Rather than considering a disconnected view for
a subset G of relations, we can always project the answer to the extended
query on the relevant attributes of the groups G and G separately. In
addition, in each decomposition plan for the query, the two views for the
groups GV and G(®, taken together, have the same functionality as the
disconnected view for the subset G. After we apply this rule on @5, we still
have 2% = 16 possible plans, with Zlei = 15 views.

2 “RI” stands for “Referential Integrity.” The concept of “Rl-join graph” is
similar to the concept of “join graph” introduced in [QGMWO96], which requires
that A is a key of Rj, not necessarily a foreign key.
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5.2.2 Pruning Rule 2: Removing ear relations without output attributes
Let us look at the region relation in query Q2. This relation does not
have output attributes in @2, and its only join condition r.regionkey
= n.regionkey involves another relation, nation. The only contribution
of region to the query is in providing a selection condition r.name =
’AMERICA’ and a join condition n.regionkey = r.regionkey. Therefore,
we can ignore the region relation when enumerating relation subsets for
views. We further reduce the number of plans for Q)5 that need to be searched
to 23 = 8, with 3% i = 10 views.

In general, we look for ear relations that do not have output attributes in
Q. A relation is an ear relation if all its join attributes are shared with just
one other relation [Gra79]. If an ear relation does not have output attributes,
then its only contribution to the query’s results is to provide selection or
join conditions in the query. After applying these conditions, we can ignore
this relation when generating relation subsets for views. (Notice that the
ignored relation’s conditions still remain in @); we just do not consider it
when enumerating relation subsets.) By ignoring an ear relation R, we could
make another relation R’ an ear relation in a more general sense, i.e., R’
does not have output attributes of @, and all its join attributes are shared
with either R or one other remaining relation. We repeat this process until
we cannot eliminate more ear relations that do not have output attributes.
Note that we may not be able to remove those relations that do not have
output attributes but are connected to more than one other relation, since
those relations could be connecting two other relations.

5.2.8 Pruning Rule 3: Using Key Constraints This rule is based on key
constraints in the query relations. We use query @2 to illustrate the rule.
After ignoring relation region in enumerating relation subsets (pruning
rule 2), we notice that for every database instance, no matter how relations
nation, supplier, and partsupp are grouped in views, the data-size dif-
ference between the following two plans is always the same: (1) a plan with
partsupp and part in the same relation subset; and (2) a plan that uses
the same partition of the relations, except that partsupp and part are in
different subsets. In particular, consider the following decomposition plans.

Plan | Relation subsets of views in the plan
Py | {nation, supplier}, {partsupp}, {part}
Py, | {nation, supplier}, {partsupp, part}
P; | {nation}, {supplier}, {partsupp}, {part}
P, | {nation},{supplier}, {partsupp, part}
Ps | {nation}, {supplier, partsupp}, {part}
Ps | {nation}, {supplier, partsupp, part}
P; | {nation supplier, partsupp}, {part}
Ps | {nation supplier, partsupp, part}

Interestingly, independently of the database instance D,
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size(Py, D) — size(Py, D) = size(Ps, D) — size(Py, D)
= size(Ps, D) — size(Ps, D) = size(Pr, D) — size(Ps, D)

is always true. Therefore, we can locally decide whether to consider a view
whose relation subset includes both partsupp and part, by comparing the
sizes of the views for {{partsupp}, {part}} and for {{partsupp, part}}. If
the latter is smaller, then we only need to consider plans that include just
one view for these two relations. Otherwise, we only need to consider the
other four plans.

By analyzing the query shape closely, we see the following reasons for
this effect: (1) the partsupp relation has a directed path to each relation
in the RI-join graph; and (2) the part relation is a “leaf” relation joined
with the partsupp relation. That is, in the RI-join graph, the relation part
is connected to only one relation. Now we generalize this relationship as
follows.

Lemma 3 In the relations used in a query Q, suppose there are two relations
Ry and Ry such that: (1) Ry has a directed path to each relation in the RI-
join graph G(Q); and (2) Ry is a leaf relation joined with Ry. For a given
database instance, consider all pairs of plans Py and Py that are the same,
except that Ry and Ry are in the same relation subset in Py and in different
subsets in Py. Then size(Py, D) — size(P2, D) is a constant, regardless of
how other relations are grouped in the plans.

The main intuition behind this lemma is that the relations on the di-
rected path from R; are just “padding” additional values to the tuples in the
view V(Ry), without increasing the number of tuples in the result. We call
the relation Ry in the lemma a core relation of the query (see [BKSW91] for
the related notion of “pivot relation”), and the edge from Ry to Ry an inde-
pendent edge. If a query has an independent edge from R; to Ry, Lemma 3
allows us to make use of the edge to prune plans in the search space. In par-
ticular, when searching for an optimal plan on a database D, we compare
size(V(Ry1), D) + size(V(R2), D) and size(V(Ry, R2), D). Once we deter-
mine which of them is smaller, say, size(V(R;), D)+ size(V(R2), D), we do
not need to consider views in which relations R; and Ry are in the same
relation subset. Using this pruning rule, by making this local decision in the
example we can reduce the number of solutions from 8 to 4.

In summary, the pruning rules can help us reduce the number of solutions
and views without sacrificing the optimality of the outcome. We will show
these advantages experimentally in Section 6.

5.8 Computing View Sizes

In searching for an optimal solution, we need to know the size of a full-
reducer view. One way to get the size of a view is to execute the view as a
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query on the database. This approach can be computationally expensive, es-
pecially when there are many views. An alternative is to estimate the size of
each view. There have been many studies on size-estimation function using
database statistics (e.g., [IP95, GM98, Cha98]). However, these approaches
are not effective in estimating the size of a full-reducer view with more than
just a few join relations.

Our proposed approach to estimating the sizes of views is the following.
The size of each view V on a database D can be computed as:

size(V, D) = distinct(V, D) x (size of each tuple in V)

where distinct(V, D) is the number of distinct tuples in the view V on D.
(Recall that we are using set semantics in the query results.) The size of
each tuple is the sum of sizes of the output attributes of the view. All that
remains to be computed is the number of distinct tuples in the view V.

To estimate the sizes of full-reducer views of a query (), we modify the
query as follows. To the output attributes of (), we add all its join attributes
that are not among its output attributes, and denote the new query Q We
execute this new query to get its results, denoted Dg. To estimate the
number of distinct tuples in a full-reducer view V', we treat all the values,
taken together, in a tuple of Q as a single value, and the attributes of
these values correspond to the output attributes of the view V. This way,
we can reduce the view-size estimation problem to that of estimating the
number of distinct values in a relation. This problem has received a lot
of attention in query optimization. For instance, [HNSS95] proposed two
estimators, Smoothed Jackknife Estimator and Shlosser’s Estimator. One
advantage of our approach is that we only need to run a single query Q, and
its results can be used to estimate the sizes of different views using multiple
sampling phases. In the experiments (Section 6) we show that this approach
can estimate the size of each view efficiently and accurately. The accuracy
depends on the number of tuples we sample from the results of Q

Finding views with the same number of distinct tuples: Estimating the
number of distinct tuples in a view by sampling could still be expensive. We
could further reduce the number of times we need to do sampling, by using
this easy observation.

Lemma 4 Given a database D, suppose that for each subset of connected re-
lations {R, S1, ..., Sk} of a query, in the RI-join graph of the query relation
R has a directed path to each relation in the subset. Then the view associ-
ated with this relation subset has the same number of distinct tuples as that
of the view associated with {R}, that is, distinct(V (R, S1,...,S),D) =
distinct(V(R), D).

It follows from this lemma that we can use the number of distinct tuples
in the view V(R) on a database D to obtain the number of distinct tuples
in the view associated with {R,S1,...,Sr}. This lemma helps us reduce
the amount of effort in estimating the number of distinct tuples in views.
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For instance, for the query Q- above, its RI-join graph has a directed path
partsupp — part. Thus distinct(V (partsupp), D) = distinct(V (partsupp, part), D).
Similarly, consider the subset of relations of partsupp, supplier, and
nation. The graph has a directed path partsupp — supplier — nation.

Thus distinct(V (partsupp), D) = distinct(V (partsupp, supplier), D) =
distinct(V (partsupp, supplier,nation), D). After applying pruning rules 1

and 2, we can estimate the number of distinct tuples for just four views:
V(nation), V(supplier), V(partsupp), and V (part). For other views, the
number of tuples in each view can be found from these four estimates.

5.4 Heuristic-Based Algorithms

When the number of relations in a query is large and the pruning rules can-
not effectively reduce the search space of solutions and views, an exhaustive-
search algorithm can be computationally prohibitive. We propose two
heuristic-based algorithms for searching for a solution. They greedily mod-
ify a viewset by “merging” or “splitting” the views, trying to reduce the
total size of the viewset. These algorithms can also reduce the number of
views whose sizes need to be estimated. This reduction is useful when each
view-size estimation is expensive, such as when it is done by sampling.

Bottom-Up Heuristic: This heuristic starts from a set of single-
relation full-reducer views, that is, each view is associated with a single
relation only. In each step, the algorithm considers combinations of two
views whose relation sets are connected in the current solution, and finds
one pair of views that, if “merged” into a single view, can reduce the total
size the most. The “merged” view is associated with the set of relations that
is the union of the relation sets with which the two views are associated.
The algorithm repeats the step until it cannot find two views whose merged
view has a size smaller than the total size of the two views.

Top-Down Heuristic: This heuristic starts from the single full-reducer
view associated with all the relations in the query, that is, the view is the
query itself. In each step, for each view in the current solution, the algorithm
considers different ways to partition the relations into two connected sets of
relations, and considers the corresponding associated views. The algorithm
chooses the partition that can reduce the total view size the most. The
algorithm repeats this step until it cannot find a “splitting” view which can
further reduce the total view size.

In the experiments we evaluate these two heuristics on the degree to
which they reduce the number of views whose sizes need to be estimated,
and on the quality of their generated solutions.

6 Experiments

We have conducted experiments to evaluate the techniques proposed in Sec-
tion 5. We focus on the case where we are given a database instance, a single
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query without self-joins and possibly with arithmetic comparisons, and we
want to find a minimum-size viewset that can be used to form an equiva-
lent rewriting of the query using the views. (The results in Section 5 can be
extended to queries with comparisons based on Theorem 9 in Section 4.5.)

To choose a set of realistic queries with reasonably large result sizes,
we generated queries based on the TPC-H benchmark [TPC], which repre-
sents typical queries in a wide range of decision-support applications. The
definitions of the queries are given in the Appendix. The first four queries
Py, ..., Py were used to show the pruning effect of the rules. The last three
queries Ps, ..., P; had relatively more subgoals and were used to compare
the exhaustive-search algorithm with the two heuristic-based algorithms.

In the experiments, we varied the database size from 10MB to 100MB us-
ing different scaling factors. We used Microsoft SQL Server Version 8.00.760,
running on a PC with a Celeron 2.7GHz CPU, 760MB memory, and a 200GB
hard disk. The sampling program was implemented in C++. It interacted
with the database using the standard ODBC interface.

6.1 Benefits of Decomposing a Query into Views

We first studied how much size reduction we can achieve by decomposing
the results of a query to views. For each query, we ran the exhaustive-search
algorithm to find an optimal solution and computed the total size of the
resulting views. We also ran the query to get its result size. Table 3 shows
the results for the queries on the 100MB database, including the size of
each query’s results, the size of an optimal decomposition solution, and the
size-reduction ratio. For instance, for query P;, the size of the query results
was 8.8MB, while the size of an optimal solution was only 0.78MB, with
a reduction ratio about 11. These experiments show that, if a query has a
lot of redundancy in its results, by decomposing the query results into view
results we could reduce the size significantly.

Table 3 Size reduction for the queries on the 100MB database.

Query | Query result size | Optimal View-Set Size | Size-reduction Ratio
(MBytes) (MBytes)
P 8.8 0.78 11.28
Ps 4.7 2.08 2.28
Ps 3.2 2.18 1.47
Py 33.1 9.37 3.53
Ps 9.1 3.97 2.29
Ps 10.0 2.46 4.08
Pr 2.3 1.29 1.81
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6.2 Effect of Pruning Rules

We applied the four pruning rules on the queries. Table 4 presents the results
of applying the pruning rules in Section 5.2 to queries Py, ..., Py. It shows
the number of relations in each query and the number of solutions that need
to be considered after applying each rule. It also shows the number of views
whose sizes need to be estimated. Notice that if pruning rule 3 is applicable,
the number of distinct tuples in one view can be used to estimate the sizes
of multiple views. Thus this rule can help us reduce the number of times we
need to do sampling.

Table 4 Effect of pruning rules. In each “(a,b)” entry, “a” and “b” are the number
of solutions and views that need to be considered, respectively.

Query | Number | Exhaustive After After After
of Search pruning | pruning | pruning

Relations rule 1 rule 2 rule 3

P 5 (52,31) (16,15) (8,10) (4,8)
P 6 (203,63) (32,35) (16,23) (8,16)

Ps 4 (15,15) (8,10) (4,6) (4,6)

Py 4 (15,15) (8,10) (8,10) (4,8)
Ps 8 (4140,255) | (128,66) | (64,49) | (64,49)
Ps 7 (877,127) (64,54) (64,54) | (32,38)
P 6 (203,63) (32,36) (16,24) | (16,24)

Take query P» as an example. The exhaustive search algorithm needed
to consider 203 possible solutions and 63 different views. After applying
pruning rule 1, we needed to consider 32 solutions and 35 views. After
applying pruning rule 2, we needed to consider 16 solutions and 23 views.
Finally, pruning rule 3 reduced the number of solutions that needed to
be considered to 8. Notice that after applying all these rules we can still
guarantee to find an optimal solution.

6.3 Estimating View Sizes

To estimate the size of each full-reducer view of a query P;, as described in
Section 5.3, we modified the query P; by adding to its output attributes all
its join attributes. We executed the extended query and got its results. We
estimated the number of tuples in a full-reducer view by sampling the tuples
in the extended-query results, and by then estimating the number of distinct
values for the output attributes of this view. We have implemented both
the Smoothed Jackknife Estimator and the Shlosser’s Estimator developed
in [HNSS95]. We report the results of the Smoothed Jackknife estimator
since it returned more accurate results for our dataset and queries.
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In doing the estimation for each query, to avoid sampling a large number
of tuples while keeping enough sampling data, we randomly sampled either
8,000 tuples or 40% of the total number of tuples in the answer to the
extended query, whichever was smaller. We ran the queries on database
instances with different sizes. Figure 7 shows how the accuracy changed for
some selected views for queries Ps, Ps, and Py, where accuracy is defined as

StZ€estimate — S1Z€real

1—] |.

Sizereal

The experiments corroborated good accuracy of the estimators. In most
cases, accuracy was close to 90%.

Estimation accuracy on varying data sizes
115 T T T T T
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Fig. 7 Accuracy of view-size estimates on different database sizes.

Table 5 shows the sizes of these selected views and corresponding size-
estimation times for the 100MB database. For example, the size of the view
V{supplier, customer} of query P is about 1.5MB, which was estimated
in 3.64 seconds with an accuracy of 98.5%.

Table 5 Size and estimation time of views for the 100MB database.

Query | View View size (KB) | Estimation time (sec)
Ps | Vi{order} 625 0.34
Ps V{part} 342 0.25
Ps V{customer} 16 6.84
P; V{customer} 496 0.23
P, V{supplier,customer} 1,458 3.64

We also evaluated the effect of Lemma 4 in Section 5.3 to reduce the
number of times we need to do sampling to estimate view sizes. It was
very effective. For instance, for queries P, ..., P;, after applying the three
pruning rules, the lemma allowed us to reduce the number of sampling times
from 8, 16, 6, 8, 49, 38, and 24 to 4, 5, 3, 4, 7, 8, and 6 respectively.
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6.4 Ezhaustive Search and Heuristics

We have implemented the exhaustive-search algorithm and the two heuristic-
based algorithms described in Section 5. Since the pruning rules can effec-
tively reduce the number of views and solutions for queries Py, ..., Py, we
used the three algorithms on queries Ps, Py, and P;. The size of each view
was estimated by sampling, which was computationally expensive. On the
other hand, the number of solutions was small for all three algorithms, and
the time to search for the best solution in the search space was relatively
small compared to the time required to estimate view sizes. Therefore, we
focus on reporting the number of views considered by each algorithm; the
running time of each algorithm can be determined from this number.

60

50 E Exhaustive
Search

M BottomUp
Heuristic

O TopDown
Heuristic

40

30

20

10

Number of views considered

P5 P6 pP7

Fig. 8 Views considered by the exhaustive and heuristic algorithms.

Figure 8 shows the results. Take query Ps5 as an example. The exhaustive-
search algorithm needed to consider 49 views in order to find an optimal
solution, while the bottom-up heuristic and the top-down heuristic only
needed to consider 19 and 24 views, respectively. For all three queries, the
two greedy algorithms found an optimal solution. The results also indicate
that the bottom-up heuristic tends to consider fewer views than the top-
down heuristic.

7 Conclusions

In this paper we studied the problem of finding viewsets to answer a work-
load of conjunctive queries, such that the total size of the views on a
given database is minimum. We gave decidability and complexity results
for workloads of conjunctive queries; the results differ significantly depend-
ing on whether the queries have self-joins. We studied the complexity of the
problem for query workloads without self-joins and developed techniques to
compute a view decomposition plan efficiently for a single query without
self-joins. Our experiments show that the techniques can reduce the size of
the relations needed to compute the query answer, and that our proposed
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pruning rules and heuristic-based algorithms can efficiently find a viewset
with a small size.
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A Queries Used in the Experiments

Query P1:

select s_acctbal, s_name, s_address, s_phone, s_comment,
p_partkey, p_mfgr, n_name

from part, supplier, partsupp, nation, region

where  p_partkey = ps_partkey and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey and n_regionkey = r_regionkey
and p_size < 30 and r_name != ’ASIA’;

Query P2:

select p_name, p_brand, o_orderdate, ps_supplycost,
1_extendedprice, 1l_discount, l_quantity

from part, orders, partsupp, supplier, lineitem, nation

where s_suppkey = 1l_suppkey and ps_suppkey = l_suppkey
and ps_partkey = 1l_partkey and p_partkey = 1l_partkey
and o_orderkey = 1l_orderkey and s_nationkey = n_nationkey
and p_retailprice < 1000 and n_nationkey > 4;

Query P3:

select c_custkey, c_name, c_acctbal, c_address, c_phone, c_comment,
1_extendedprice, 1l_discount, l_orderkey, 1l_linenumber

from customer, lineitem, nation, orders

where c_custkey = o_custkey and c_nationkey = n_nationkey
and 1_orderkey = o_orderkey and o_orderdate >= ’1995-06-01’
and o_orderdate < ’1996-06-01’ and 1l_returnflag = ’N’
and n_regionkey != 0;
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Query P4:

select

from
where

c_custkey, c_name, c_address, c_phone, c_acctbal, c_comment,
1_quantity, l_extendedprice, 1l_orderkey, 1l_linenumber,
o_orderpriority, o_clerk, p_name, p_brand, p_type, p_comment
customer, orders, lineitem, part

c_custkey = o_custkey and o_orderkey = 1_orderkey

and 1_partkey = p_partkey and 1l_quantity < 10

and 1_discount <= 0.08;

Query P5:

select

from
where

n_name, c_name, c_phone, p_name, p_brand,

o_orderdate, ps_supplycost, 1l_extendedprice, l_discount, 1l_quantity
part, orders, customer, partsupp, supplier, lineitem, nation, region
o_orderdate > ’1996-01-01’ and r_name = ’Asia’

and s_suppkey = 1l_suppkey and ps_suppkey = 1l_suppkey

and ps_partkey = 1l_partkey and p_partkey = 1l_partkey

and o_orderkey = 1_orderkey and o_custkey = c_custkey

and s_nationkey = n_nationkey and n_regionkey = r_regionkey;

Query P6:

select

from
where

p_name, o_orderdate, o_orderpriority, o_clerk,
1_extendedprice, 1l_discount, l_shipmode, n_name, r_comment
part, supplier, lineitem, orders, customer, nation, region
p_partkey = 1l_partkey and s_suppkey = 1l_suppkey

and s_nationkey !'= n_nationkey and 1_orderkey = o_orderkey
and o_custkey = c_custkey and c_nationkey = n_nationkey
and n_regionkey = r_regionkey and r_name = ’ASIA’

and p_retailprice < 1200;

Query P7:

select

from
where

n_name, c_name, c_address, o_orderdate, o_orderstatus,
1_quantity, l_extendedprice, l_discount

region, nation, supplier, customer, orders, lineitem
c_custkey = o_custkey and 1l_orderkey = o_orderkey

and 1_suppkey = s_suppkey and c_nationkey = s_nationkey

and s_nationkey = n_nationkey and n_regionkey = r_regionkey
and r_name !'= ’Middle East’ and o_orderdate >= ’21990-01-01’
and o_orderdate < ’1998-06-01’;





