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Abstract 

Web caching proxy servers are essential for improving web performance and scalability, and recent 

research has focused on making proxy caching work for database-backed web sites.  In this paper, we 

explore a new proxy caching framework that exploits the query semantics of HTML forms.  We 

identify two common classes of form-based queries from real-world database-backed web sites, 

namely, keyword-based queries and function-embedded queries.  Using typical examples of these 

queries, we study two representative caching schemes within our framework: (i) traditional passive 

query caching, and (ii) active query caching, in which the proxy cache can service a request by 

evaluating a query over the contents of the cache.  Results from our experimental implementation 

show that our form-based proxy is a general and flexible approach that efficiently enables active 

caching schemes for database-backed web sites.  Furthermore, handling query containment at the 

proxy yields significant performance advantages over passive query caching, but extending the power 

of the active cache to do full semantic caching appears to be less generally effective. 

Keywords: web proxy caching, database-backed web sites. 

1 Introduction 

Many web sites managing significant amounts of data use a database system for 

storage.  When users access such a web site, clicking on a URL in the HTML page 

they are viewing causes an application at the web site to generate database queries.  

After the DBMS executes these queries, the application at the web site takes the result 
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of the queries, embeds it in an HTML page, and returns the page to the user.  Figure 

1 illustrates such a configuration.  Under heavy loads, the database system can 

become the bottleneck in this process.  Our goal in this paper is to explore proxy 

caching techniques to alleviate this bottleneck. 

Throughout the Internet, proxy caches are used to improve performance and share 

server workload.  There are two kinds of deployment for these proxies.  One is a 

traditional deployment, in which the proxies serve the content from the Internet to a 

group of users.  In this case, the web sites being proxied may not even know of the 

existence of the proxies.  An example is a campus proxy for speeding up the Internet 

access of local users.  The other is reverse proxy caching, in which the proxies serve 

a specified set of servers to general Internet users.  In this case the web sites and the 

proxies can collaborate.  For example, web sites often set up their own reverse 

proxies or contract with the Content Delivery Network services to use theirs. 

In either deployment scheme, the function of these proxies is simple – if a proxy 

has seen a URL before, and has cached the page corresponding to that URL, it can 

return the cached page without accessing the web site that is the “home” for that page.  

When extending a proxy cache to handle access through a form-based interface, one 

needs to consider the relationship between the user, the form on the HTML page, and 

the queries that are generated at the database system at the web site. 

If clicking on a given URL always generates the same database query (that is, the 

request generated by clicking on the URL embeds no information from the user), then 

the proxy can work as if the URL refers to a static page stored at the web server.  We 

call this scheme passive caching, because it caches a page and returns it on a hit 

without any extra processing on the page.  Unfortunately, in general things are not 

Figure 1: A DB-backed web site 
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this simple, because instead of clicking on a URL, users are filling in forms.  The 

user input from these forms is incorporated in the queries that eventually get executed 

by the database system.  A common example of this might be in a book selling web 

site, where a user keyword search on the book title might generate an SQL query 

containing a “LIKE” predicate with the keywords provided by the user. 

One can still use passive caching in such a scenario – the proxy cache associates 

cached pages with (URL, user input) rather than just with the URL.  However, this 

means that the proxy cache will only be able to service a request if it has cached a 

previous request for the same form with the exact same user input.  Our goal is to see 

if we can do better than that – we want to extend the proxy cache so that it can not 

only service requests that exactly match previous requests, but it can also service 

requests that can be answered by processing results of previous requests.  We term 

this kind of caching active caching, because the proxy is actively functioning in a 

limited query processing role. 

Caching in this context poses a number of challenges not found in other database 

caching applications; many of these challenges arise because there is a high degree of 

independence between the database system and the proxy cache.  In our work, we 

characterize what can be done in terms of how closely the web site is willing to 

collaborate with the proxy cache.  For example, we show that if the web site will 

give no information at all, only passive caching is possible.  If the web site is willing 

to expose the text of the queries its applications generate from the forms, then 

containment-based active caching is possible.  Finally, if the web site provides a 

facility whereby the proxy can submit modified queries to the server, the proxy can 

do full semantic active caching, exploiting query overlap as well as containment.   

Also, if an active proxy scheme is to be widely useful, it must not require custom 

modifications to existing proxy servers, nor can it require programming effort on 

behalf of the individual web sites that are being served by the proxy.  In our 

implementation, the caching module is a Java servlet for the unmodified Apache 

Tomcat servlet engine [4], and there is no programming required of the represented 

web sites. 
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We identify two representative classes of queries from real-world web sites to test 

our proxy caching schemes.  One is keyword-based queries, which contain keyword 

search predicates, and the other is function-embedded queries, which embed calls to 

user-defined functions.  Although simple, these two classes of queries are common 

in practice and pose challenges for active caching in a web proxy.  Among the most 

prominent challenges are how to extract the query semantics of these two classes of 

queries and how to perform efficient active caching for these queries in an 

environment with limited collaboration from web sites.  Moreover, function-

embedded queries are harder to handle than keyword-based queries, due to the black-

box nature of user-defined functions.  Note that the keyword-based queries we 

handle are for the backend SQL databases of the web sites and are not web search 

queries over documents.  Also, as a first step of studying active caching for function-

embedded queries, we focus on the user-defined functions with spatial selection 

semantics. 

In addition to defining and implementing this framework, we have performed 

experiments with our implementation using the TPC-W benchmark [42] and 

modifications of that benchmark.  Moreover, we validated these synthetic workload 

results with experiments in which a real online bookseller and the SkyServer [38] 

web sites were proxied and real-world user traces were sent through our proxy to the 

original sites.  These experiments show that query containment active caching 

generally provides a substantial improvement over purely passive caching; however, 

extending to full semantic caching was only effective in specially crafted workloads. 

The remainder of the paper is organized as follows.  In Section 2, we present our 

form-based proxy-caching framework.  In Section 3, we define the two classes of 

queries handled in our framework.  In Section 4, we describe our form-based active 

caching schemes for the two classes of queries.  In Section 5, we present our 

experimental results.  We discuss related work in Section 6 and draw conclusions in 

Section 7. 
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2 Form-Based Proxy Caching Framework 

The goal of this framework is to efficiently facilitate active caching mechanisms for 

database-backed web sites in a general way.  Despite the large volume of user 

queries that these web sites must handle, these queries are not arbitrary SQL; instead, 

they are usually submitted through simple HTML forms.  Our key observation is the 

following: form-based queries enable a useful variety of active caching schemes that 

would be impractical for arbitrary SQL queries.  Inspired by this observation, we 

built a proxy caching framework based on query templates, which are parameterized 

query definitions that are instantiated with the parameter values in user requests at run 

time.  For function-embedded queries, we further define function templates to 

describe the query semantics of user-defined functions. 

2.1 Forms and Query Templates 

We start with a running example of keyword-based queries.  The HTML form shown 

in Figure 2 is a simplified search request page for an online bookstore as given in the 

TPC-W benchmark [42].  When a user types “Java Programming” in the text box and 

clicks the “Submit” button, an HTTP request containing the user input is sent to the 

server side.  No matter what application program implementation the server side 

uses, be it a CGI script, a Java servlet, an Active Server Page, the HTTP request will 

result in an SQL query for the backend DBMS to execute.  A corresponding SQL 

query from the example form is given in Figure 3. 

 Figure 2: The title-search HTML form 

Search Request Page

Search by: 

tpcwSearchForm.html
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Notice that when the user input changes, only the string in the LIKE predicate 

changes in the SQL query.  The form in Figure 2 can be abstracted into a keyword-

based query template as shown in Figure 4. 

We emphasize that these templates and queries are not executed at the proxy; 

rather, the proxy uses them for analysis purposes, so that it can exploit the semantics 

of the queries for more sophisticated caching schemes than exact-match passive 

caching. 

2.2 Forms and Function Templates 

Having seen an example HTML form and query template for keyword-based queries, 

we continue with function-embedded queries.   

Traditionally, user-defined functions are employed in database applications that 

handle complex data, such as Geographical Information Systems (GIS) and Computer 

Aided Design (CAD) systems.  With the proliferating use of the Web, certain types 

of database-backed web sites also heavily utilize user-defined functions in answering 

user queries.  These function-embedded queries appear in applications for 

functionality extension, performance improvement, and user convenience.  Take the 

nearest-neighbor query as an example.  First, application-specific distance functions 

used in the query are likely to fall out of the range of DBMS built-in functions.  In 

such a case, users must code their own functions and register the functions with the 

DBMS.  Second, users can write their distance functions in the high-level 

SELECT  TOP 50 i_title, i_id, a_lname, a_fname 
FROM     item, author 
WHERE   a_id = i_a_id    
AND       i_title LIKE ‘%$search_string%’ 
ORDER BY  i_title 

Figure 4: The title-search query template 

SELECT  TOP 50 i_title, i_id, a_lname, a_fname 
FROM     item, author 
WHERE   a_id = i_a_id    
AND       i_title LIKE ‘%Java Programming%’ 
ORDER BY  i_title 

Figure 3: An SQL query from the title-search form 
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programming language of their choice and employ optimization techniques based on 

their domain knowledge.  As a result, the compiled and registered user-defined 

functions can run efficiently in queries.  Last, other users can call the registered 

functions without knowing the implementation details of the functions, which is 

especially convenient for non-expert users.  

Unlike keyword strings, user-defined functions have diversified and complex 

semantics that may be very different from application to application.  Consequently, 

for function-embedded queries, caching for real-world user traces is more meaningful 

than synthetic benchmarks.  In our work, we use the SkyServer web site [38] as a 

case study to investigate proxy caching for function-embedded queries. 

The SkyServer web site serves terabytes of the public Sloan Digital Sky Survey 

(SDSS) data for both astronomers and science educators.  The web site contains 

many pre-defined functions, such as fGetNearbyObjEq(ra, dec, radius),  

fGetObjFromRect(min_ra, max_ra, min_dec, max_dec), and fPhotoFlags 

(FlagName).  These functions are frequently called to serve queries submitted 

through HTML search forms.  In addition, web users can input arbitrary function-

embedded queries directly by using the “SQL” section of the “Search” facility 

provided by the web site.  The semantic information of the functions as well as the 

text of the function-embedded queries is available through various online public 

documentations of the web site. 

In this paper, we focus our study on table-valued functions, which return a set of 

tuples, as opposed to scalar functions, which return a scalar value, because the special 

properties of the former bring additional challenges as well as opportunities for active 

caching in our form-based proxy.  For example, compared with the single value 

returned by a scalar function, the multiple result tuples of a table-valued function 

consume more network resource for shipping, but accumulate more data for future 

query answering. 

Figure 5 shows the radial search form of the SkyServer web site 

(http://skyserver.sdss.org/en/tools/search/radial.asp).  This form is one of the search 

facilities provided by the SkyServer.  It searches the celestial sky around a given 

point and returns objects (tuples) within a given radius.  It has a corresponding 
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function-embedded query template calling a table-valued function named 

fGetNearbyObjEq().  The query template of the form is shown in Figure 6. 

 

 
 

As shown in Figure 6, the table-valued function fGetNearbyObjEq() is called in 

the FROM clause of the SQL statement.  Moreover, the parameters of the function 

correspond to the user input parameters in the form.  The query template is a join 

between the result table of the function and the PhotoPrimary table.  From the 

documentation of the SkyServer, we know that the join with the PhotoPrimary table is 

for the purpose of tuple filtering and attribute list expansion.  When a user fills out 

the form with some input values and clicks the “Submit” button on the HTML page, 

the function parameters are instantiated and the result table of the function can be 

computed.  Then the query can be evaluated as an SQL query on the two tables. 

In addition to the join condition, there are other optional predicates (the range 

predicates on the attributes u, g, r, i, z) in the WHERE clause.  We use 

“other_predicates” to represent them, since they are not our focus in this work and 

SELECT  [top n] 
           p.objID, p.run, p.rerun, p.camcol, p.field, p.obj, p.type, p.ra, p.dec,  
           p.u, p.g, p.r, p.i, p.z, p.Err_u, p.Err_g, p.Err_r, p.Err_i, p.Err_z 
FROM   fGetNearbyObjEq($ra, $dec, $radius) n,  PhotoPrimary p 
WHERE  n.objID = p.objID [AND other_predicates] 

Figure 5: The SkyServer radial search form 

Figure 6: The radial search query template 
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they do not affect the properties of the function-embedded queries we study.  Finally, 

there is an optional top-n operation on the tuples of projected attributes.  In general, 

these optional components of function-embedded queries are seldom used by web 

users in real-world scenarios, as we observed in the query traces of various HTML 

forms extracted from the SkyServer web logs.  

If we consider active caching for queries of such a function-embedded query 

template, we immediately encounter a problem: active caching requires checking the 

relationship between two queries, but we can not tell the relationship (except an exact 

match) between two queries from this template even after the function parameters are 

instantiated.  The fundamental reason is that we do not know the processing logic of 

the function.  To solve this problem, we propose to use function templates to capture 

the semantic information of user-defined functions for the purpose of enabling the 

relationship checking between two function-embedded queries from the same 

template.  Note that this is not a problem for keyword-based queries, since the 

processing logic of keywords in database systems, i.e., matching substrings, is well 

known. 

There are at least two problems associated with providing information about 

functions.  The first is the diversity – user-defined functions vary widely from one 

application to another.  How do we design general templates to cover as many cases 

as possible?  The second problem is the complexity – some user-defined functions 

may have a mix of control statements and SQL statements, and may be implemented 

in some host languages such as C or Java.  For such complex cases, how do we 

extract useful information about the functions? 

Considering these two problems, we propose to define a function template based 

on its query semantics.  This has two implications.  First, if a function performs 

updates, we regard it unsuitable for active caching and do not provide a function 

template for it.  Second, different function definitions may have different application 

semantics, but we attempt to abstract high-level semantics of these functions into a 

function template with the same query semantics.  

Let us continue with the table-valued function fGetNearbyObjEq() called in the 

Radial search form to illustrate a function template example (Figure 7). 
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Figure 7: The function template of function fGetNearbyObjEq()    
 

In our implementation, a function template is an XML text file specifying high-

level query semantics about the user-defined function.  As shown in Figure 7, the 

function template specifies the following information about the function: 

(1) The function name is fGetNearByObjEq. 

(2) The function has three parameters: $ra, $dec, and $radius. 

(3) The returned result tuples are considered as points bounded by a hypersphere. 

(4) The hypersphere is three-dimensional, i.e., each point has three Cartesian 

coordinates. 

(5) The center of the hypersphere has three coordinates, each of which is 

computed from the function input parameters $ra and $dec using the specified 

formula. 

(6) The radius of the hypersphere is given by the function input parameter $radius.  

In this template, the query semantics of the function is abstracted as finding all 

points that are bounded by a 3-D hypersphere.   

2.3 Implementation 

We implemented a Java servlet on top of the Apache Tomcat servlet engine [4]; 

together they serve as a caching proxy.  The cache servlet runs in the same process 

space as Tomcat, and a pool of multiple threads in the servlet engine handles 

simultaneous requests.  We chose the Tomcat servlet engine for ease of 

<functionTemplate> 
    <name>fGetNearByObjEq</name> 
    <params> 
        <1>$ra</1> 
        <2>$dec</2> 
        <3>$radius</3> 
    </params> 
    <shape>hypersphere</shape> 
    <numDimensions>3</numDimensions> 
    <centerCoordinate> 
        <1>cos($ra)*cos($dec)</1> 
        <2>sin($ra)*cos($dec)</2> 
        <3>sin($dec)</3> 
    </centerCoordinate> 
    <radius>$radius</radius> 
</functionTemplate> 
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development, portability, and performance, but the same approach could be applied to 

the Apache web server, the Squid proxy, or enterprise application servers.  

Our proxy cache stores the results of queries and uses them to answer subsequent 

queries.  One question that must be addressed is how these query results should be 

represented in the cache.  Because XML is the emerging data transfer format on the 

web, we chose to cache query results in XML format.  This frees us from data 

representation issues and allows us to cache for web sites without any format 

translation as long as they provide their query results in XML.  However, this is not a 

requirement for our approach; any storage scheme at the proxy cache will work as 

long as one provides translators from the form result format into this cache format, 

and then again from the cache format to the browser format.  In our experiments with 

a real-world bookstore web site (Section 5.2.5), we built such a translator at the proxy 

for the HTML-serving web site, and the translation time for the query results was 

negligible compared with the network time.  Moreover, some web sites are able to 

provide their query results in various formats.  For example, the SkyServer provides 

the query results of its HTML forms in XML, HTML and CSV formats.   

In our framework, each query template is a text file containing a parameterized 

query such as those in Figure 4 and Figure 6.  In addition, associated with a 

keyword-based query template, there is a keyword-based query template information 

file in XML, which specifies the correspondence between the form parameters and 

the query template keyword parameters. 

Figure 8 shows the query template information file for the keyword-based query 

template in Figure 4.  The information file specifies that the query template is for the 

form queries sent to the URI “/tpcwSearchRequest.xsql”, the file name of the query 

template is BookTitleSearch.sql, and the parameter “search_type” in the requests 

should have the value “i_title”.  In addition, it specifies that the parameter 

“search_string” in the HTTP requests from the form corresponds to the parameter 

“$search_string” in the query template. 

Similarly, each function-embedded query template in our framework is associated 

with a function-embedded query template information file for the same mapping 

purpose.  The one that corresponds to the query template in Figure 6 is shown in 
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Figure 8: The title-search query template information file 

Figure 9: The SkyServer radial search query template information file 

Figure 9.  This template information file specifies that the query template is for the 

form queries sent to the URI “/en/tools/search/radial.asp”, and the file names of the 

query template and the embedded function template are RadialSearch.sql and 

fGetNearbyObjEq.xml (Figure 7) correspondingly.  The parameters “ra”, “dec”, and 

“radius” in the HTTP requests submitted by the search form correspond to the input 

parameters “$ra”, “$dec”, and “$radius” of the embedded function, respectively.  By 

specifying query and function templates and their associated mapping information 

with forms in this declarative manner, we separate the proxy caching functionality 

from the implementation and data representation issues of the web sites. 

 

 

2.4 System Architecture 

Having in place the query templates, the function templates, and the information files 

for the templates, we describe the system architecture of our proxy framework. 

<keywordBasedQueryTemplateInfo> 
    <URI>/tpcwSearchRequest.xsql</> 
    <queryTemplateName>BookTitleSearch.sql</> 
    <paramPair> 
        <paramName>search_type</><paramValue>i_title</> 
    </paramPair> 
    <paramNameMapping> 
        <requestParam>search_string</><queryParam>$search_string</> 
    </paramNameMapping> 
</keywordBasedQueryTemplateInfo>  

<functionEmbeddedQueryTemplateInfo> 
    <URI>/en/tools/search/radial.asp</> 
    <queryTemplateName>RadialSearch.sql</> 
    <functionTemplateName>fGetNearbyObjEq.xml</> 
    <paramNameMapping> 
       <requestParam>ra</><functionParam>$ra</> 
    </paramNameMapping> 
    <paramNameMapping> 
       <requestParam>dec</><functionParam>$dec</> 
    </paramNameMapping> 
    <paramNameMapping> 
       <requestParam>radius</><functionParam>$radius</> 
    </paramNameMapping> 
 
 
</functionEmbeddedQueryTemplateInfo> 
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Figure 10: System architecture 
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Figure 10 illustrates the system architecture of our form-based proxy.  The major 

components of the proxy include an HTTP listener, a request parser, a query 

processor, a template manager, a cache manager, an HTTP requester, a response 

parser, and a response assembler.  In addition to the templates and the information 

files, the proxy keeps cached query results as disk files and has in-memory 

descriptions for the cache content.   

In this implementation, the template information for each form is kept separately 

from one another and the two kinds of queries are handled separately because they 

have different types of template information.  As a result, even if there may be 

commonality among different forms or different kinds of queries, the system is 

unaware of this commonality and processes queries for each form separately. 

When the HTTP listener receives an HTTP request with a keyword-based or 

function-embedded query from a web browser, it passes the request to the request 

parser.  The request parser parses the request and passes the information in the 

request to the query processor.  The query processor invokes the template manager to 

translate the request information into a query with corresponding templates and 

template information files.  It then works with the cache manager and the template 

manager to check the relationship between the new query and previously cached 

queries using the templates and the corresponding cache description in memory.  

Each entry in the cache description corresponds to one cached query, and has a 

pointer to the query result file stored on disk.  

For passive query caching, the proxy just needs to map an incoming HTTP request 

to a file name according to the parameter descriptions in the query template 
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information, and to check if this file is cached on disk.  If the file is not cached, the 

proxy forwards the request to the server, caches the result by that file name when the 

result comes back from the server, and returns the result to the user.  Otherwise, the 

proxy reads the cached file and returns the content to the user.   

For active caching, the proxy goes through a similar process of checking the cache 

using query and function templates, although the proxy processing and server 

interaction is more complex.  For instance, if the new query is an exact match to or is 

contained in some cached query, the query processor will evaluate the new query with 

the help of the information provided in the template files.  Otherwise, the query 

processor may send the original query or a remainder query [10] to the original web 

site through the HTTP requester.  The response parser receives the query result in an 

HTTP response from the web site, parses it into the format that the query processor 

can recognize, and passes the parsed result to the query processor.  At last, the query 

processor assembles the result and passes it to the response assembler, which will in 

turn assemble the query result into an HTTP response and send it back to the browser. 

We discuss form-based active caching along with the proxy deployment and 

maintenance issues in detail in Section 4. 

3 Two Classes of Queries Handled 

Since the efficiency of caching techniques is related to the characteristics of the 

queries, we focus on two simple but common classes of form-based web queries, 

which are keyword-based queries and function-embedded queries.  In the following, 

we describe these two classes of queries handled in detail. 

3.1 Keyword-Based Queries 

The keyword-based queries we study in this paper are top-n conjunctive keyword-

based queries (TCKQ).  This class of web queries can be expressed in an SQL-like 

syntax as shown in Figure 11. 

The characteristics of this class of queries include: 

• Selection-Projection-Join (SPJ) 
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Figure 11: The class of keyword-based queries handled 

• A parameterized keyword search predicate  

• An order by clause 

• A top-n operation  

• All attributes involved in the query are contained in the selection list. 
 

 
 

As simple as it looks, this class of keyword-based queries represents a large 

number of forms on the web, including those used in online catalog search forms and 

online bibliography search forms.  

Although keywords can be connected using “OR” and “NOT”, users on the web 

seldom use them.  We examined a 1-million entry Excite Search Engine [13] log and 

found only 361 entries used “NOT” and 519 entries used “OR”.  A report [37] on a 

1-billion entry AltaVista search engine log also showed that 80% of the queries did 

not have any operators (+, –, AND, OR, NOT, and NEAR).  Thus, we focus on 

conjunctive keyword predicates in our study. 

While our proxy handles keyword-based query templates that look like the one in 

Figure 11, it does not mean that our proxy executes joins.  Rather, we treat all 

keyword-based queries from a given form as simple top-n selection queries on a 

single view with a keyword predicate.  This is because under each query template, 

the only difference among the queries is the search strings in the search predicate.  

This is an advantage of our approach – we cache tuples that may have been generated 

by complex processing at the server, and avoid that complex processing at the proxy.  

This approach also applies to function-embedded queries (to be described in Section 

3.2); the only difference is that for function-embedded queries we need to consider 

the function parameters instead of keyword predicate parameters. 

In the remainder of this section, we discuss keyword-based queries from the same 

form.  Whenever appropriate, we omit the n value of the top-n operation, the fields in 

the SELECT clause, the target relations in the FROM clause, the search field in the 

SELECT    TOP n selection_list 
FROM      target_relations 
WHERE    search_predicate(search_field, $search_string) AND other_predicates 
ORDER BY  orderby_fields 
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search predicate, the other predicates in the WHERE clause, and the order-by fields.  

We use terminology from relational databases as well as from XML interchangeably.  

For example, fields correspond to elements, and tuples correspond to sets of elements.  

Because of order-by and top-n operations, we need to include list semantics in 

addition to set semantics.  These definitions and facts are not new; we repeat them 

here to make this paper self-contained. 

3.1.1 Definitions 

A list is an ordered set.  A list L1 is a sub-list of another list L2 if and only if the 

elements in L1 all appear in L2, and in the same order ignoring absent elements.  L2 is 

then a super-list of L1.  We also define a list intersection, union, and equivalence to 

be a set intersection, union, and equivalence with order correspondingly.  We use the 

symbols ⊆, ⊄, =, ∩, ∪ to denote operators between sets as well as between lists.  

We follow the standard definitions of query containment and equivalence for 

general SQL queries [17] and extend them to lists.  A query Q1 is contained in 

another query Q2, denoted Q1 ⊆ Q2, if and only if for any database D, the result of the 

former, Q1(D), is always a subset (or sub-list, if order is required) of the latter, Q2(D).  

Q1 and Q2 are equivalent (exact match) if and only if Q1 ⊆ Q2 and Q2 ⊆ Q1.  Two 

queries Q1 and Q2 are disjoint if and only if for any databases D, Q1(D) ∩ Q2(D) = ∅.  

Q1 and Q2 overlap if and only if Q1 ⊄ Q2, Q2 ⊄ Q1, and Q1 and Q2 are not disjoint.  

Next, we explore conjunctive keyword-based queries.  

Definition 1. [Conjunctive keyword predicate] An n-ary conjunctive keyword 

predicate is of the form contains(e, {k1, k2, …, kn}), where e is a field name, and {k1, 

k2, …, kn} is a set of distinct words.  The predicate contains(e, {k1, k2, …, kn}) is true 

if and only if all of the keywords k1, k2, …, kn (not necessarily in that order) appear in 

the field e.■ 

In relational databases a conjunctive keyword predicate can be simulated using the 

string “LIKE” predicates.  Also, our keyword predicate corresponds to a Boolean 

query in Information Retrieval with e being the top-level document. 
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Definition 2. [SORT] A sort operation is of the form SORTo(T), where o is a list of 

fields, and T is a set of tuples whose fields are a superset of the fields in o.  The 

operation returns a list of all tuples from T ordered by o.  For simplicity, we will use 

SORT(T) when appropriate.■ 

Definition 3. [Top-n] A top-n operation is of the form TOPn(L), where n is a natural 

number, and L is a list of tuples.  The operation returns a list of the first min(n, 

cardinality(L)) tuples from L.  For simplicity, we will use TOP(L) when 

appropriate.■ 

Definition 4. [CKQ] A conjunctive keyword-based query (CKQ) is of the form 

Qe({k1, k2, …, kn}) where Qe is a query with a keyword predicate contains(e, {k1, k2, 

…, kn}).  The query returns a set of tuples.  For simplicity, we will use Q({k1, k2, 

…, kn}) when appropriate.■ 

Definition 5. [OCKQ] An order-by conjunctive keyword-based query (OCKQ), 

denoted OQ({k1, k2, …, kn}), is defined as SORT(Q{k1, k2, …, kn}) where Q is a 

CKQ.  The query returns a list of tuples.■ 

Definition 6. [TCKQ] A top-n conjunctive keyword-based query (TCKQ), denoted 

TQ({k1, k2, …, kn}), is defined as TOP(OQ{k1, k2, …, kn}).  The query returns a list 

of tuples.■ 

3.1.2 Properties of Keyword-Based Queries 

From definitions in Section 3.1.1, we have the following simple but useful facts and 

properties about the keyword-based queries that we are caching. 

Fact 1.  Q({k1, k2, …, kn} ∪ {j1, j2, …, jm}) = σ contains(e, {k1, k2, …, kn})(Q({j1, j2, …, 

jm}))■ 

Fact 2.  Q({k1, k2, …, kn} ∪ {j1, j2, …, jm}) = Q({k1, k2, …, kn}) ∩ Q({j1, j2, …, 

jm})■ 

These two facts tell us how to answer more restrictive conjunctive keyword-based 

queries from less restrictive CKQs, by selection or intersection.  Similar facts hold 
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for OCKQs except the set semantics is replaced by the list semantics.  However, 

these facts do not hold for TCKQs.  

Fact 3.  TQ({k1, k2, …, kn} ∪ {j1, j2, …, jm}) ⊇ σ contains(e, {k1, k2, …, kn})(TQ({j1, j2, …, 

jm}))■ 

Fact 4.  TQ({k1, k2, …, kn} ∪ {j1, j2, …, jm}) ⊇ TQ({k1, k2, …, kn}) ∩ TQ({j1, j2, …, 

jm})■ 

Next we show that CKQs and OCKQs have similar properties on containment and 

equivalence, but TCKQs do not. 

Proposition 1.  A CKQ Q1 = Q({k1, k2, …, kn}) is contained in a CKQ Q2 = Q({j1, j2, 

…, jm}) if and only if {k1, k2, …, kn} is a superset of {j1, j2, …, jm}.  This also holds 

for OCKQ.■ 

Proposition 2.  A TCKQ TQ1 = TQ({k1, k2, …, kn}) is contained in a TCKQ TQ2 = 

TQ({j1, j2, …, jm}) implies {k1, k2, …, kn} is a superset of {j1, j2, …, jm}, but not vice 

versa.■ 

For TCKQs the following stronger proposition holds.  

Proposition 3.  A TCKQ TQ1 = TQ({k1, k2, …, kn}) is contained in a TCKQ TQ2 = 

TQ({j1, j2, …, jm}) if and only if {k1, k2, …, kn} = {j1, j2, …, jm}.■ 

For query equivalence, similar results hold for the family of conjunctive keyword-

based queries. 

Proposition 4.  A CKQ Q1 = Q({k1, k2, …, kn}) is equivalent to a CKQ Q2 = Q({j1, j2, 

…, jm}) if and only if {k1, k2, …, kn} = {j1, j2, …, jm}.  The same holds for OCKQs 

and TCKQs.■ 

The following result says that if a CKQ is contained in a union of CKQs, it is 

contained in at least one of the CKQs in the union.  Similar results hold for OCKQs.  

Proposition 5.  A CKQ Q1 = Q({k1, k2, …, kn}) is contained in a union of other 

CKQ’s Q2 ∪ Q3 ∪ … ∪ Qx, if and only if for some Qy, 2 <= y <= x, Q1 is contained 

in Qy.■ 

Finally, two CKQs are never disjoint because we can always find a database in 

which there is an answer that satisfies both of them: 
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Figure 12: The class of function-embedded queries handled 

Proposition 6.  For any two CKQs Q1 = Q({k1, k2, …, kn}), Q2 = Q({j1, j2, …, jm}), 

Q1 and Q2 are not disjoint.  The same holds for OCKQs and TCKQs.■ 

3.2 Function-Embedded Queries 

In addition to the keyword-based queries, our proxy also handles a class of function-

embedded queries as shown in Figure 12. 

 
 

The characteristics of this class of queries include: 

• Selection-Projection-Join (SPJ) 

• A parameterized table-valued function in the FROM clause 

• An optional WHERE clause  

• An optional top-n operation  

• All attributes involved in the query are contained in the selection list. 

In addition to these syntactical characteristics, the class of function-embedded 

queries that can be handled by our proxy cache also has the following properties: 

(1) Spatial Selection Query Semantics.  The tuples in the result table of the 

table-valued function are abstracted as points in a multidimensional region.  The 

function is equivalent to a spatial selection query, which returns all points in the 

multidimensional region.  The shape of the region can be a hypercube (most 

common), a hypersphere, or even a polytope (more complex) [31].  As examples, the 

fGetNearbyObjEq() function of the SkyServer returns all objects within a 3-D sphere, 

and the fGetObjFromRect() function returns all objects within a 2-D rectangular 

region. 

(2) Semantics-Preserving Join.  If the table-valued function is joined with other 

tables in a function-embedded query, such joins should preserve the query semantics 

of the table-valued function.  For example, the queries for the Radial search form 

SELECT  [top n] selection_list 
FROM    table-valued_function(parameter1, parameter2, …,parametern) [,other_ relations] 
[WHERE  predicate_list] 
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preserve the query semantics of the fGetNearbyObjEq() function, and return objects 

within a 3-D sphere with some additional predicates. 

(3) Result Attribute Availability.  Some attributes are required for checking the 

spatial relationship between a new function-embedded query and previously cached 

queries as well as for evaluating a new query result over previously cached ones.  An 

important case is the attributes that serve as the Cartesian coordinates of the point that 

a result tuple represents in the multidimensional space.  Therefore, we require that 

the attributes involved in the query relationship checking and local query evaluation 

are all contained in the cached result tuples. 

If a function-embedded query has these three properties, we can transform the 

problem of checking the relationship between two queries (query exact match, 

containment, overlap, or disjoint) into that of checking the spatial relationship 

between the two corresponding regions.  This is the basic idea that we use to 

implement our active caching schemes for function-embedded queries in our 

framework. 

4 Form-Based Active Caching 

In this section, we present the active caching schemes that we have designed and 

implemented in our form-based proxy for the two classes of queries.  Our active 

caching schemes are all based on the semantic caching [10] and are tailored for the 

class of queries and the proxy-caching environment.  The main idea of the original 

semantic caching is to treat cached query results as semantic regions and to evaluate a 

new query by utilizing the cache content and contacting the database server for the 

non-cached content.  Each new query is compared with the description of the cached 

query results (which we call relationship checking) and is split into two queries: the 

probing query that is evaluated over the cache and the remainder query that is sent to 

the database server for the remaining result.   

Even though the two classes of queries have similar active caching schemes, the 

implementation considerations for the two classes are different.  For the clarity of 

presentation, we describe active caching for each class separately.  
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4.1 Active Caching for Keyword-Based Queries 

4.1.1 Design Decisions 

We consider active proxy caching in which the cache can execute top-n conjunctive 

keyword-based queries.  Certainly other classes of predicate-based queries are 

possible (range queries are one obvious alternative), but top-n conjunctive keyword-

based queries are a useful class and general enough to illustrate the strengths and 

limitations of our approach. 

From the properties we studied in Section 3.1, we know that limiting the result size 

with top-n operation implies that one query contains another only when the two are 

equivalent (Proposition 3), which prohibits anything other than passive query 

caching.  Therefore, we cache only order-by conjunctive queries at the proxy.  A 

cache of order-by conjunctive queries is immediately useful if the form being cached 

issues such queries; it is also useful if the web site being proxied provides facilities by 

which the proxy can “strip off” top-n operators.  In the latter case we cache order-by 

conjunctive queries without a top-n, applying the top-n operator at the proxy before 

returning results to the user. 

Given a cache of the union of results from order-by conjunctive queries, when a 

new query comes in, there are three possibilities: the result of the new query could be 

contained in the cache (including exact match), it could overlap with the cache, or it 

could be disjoint from the cache.  

By Proposition 5, if an OCKQ is contained in a union of OCKQs, it is contained in 

at least one of them.  Thus we do not need to consider combinations of the cached 

queries, but only need to check the 1-1 relationships between the new query and the 

individual cached queries.  Moreover, we can determine query containment for 

OCKQs by examining the keywords in the queries (Proposition 1).  So for query 

containment, we only need to compare the keywords in the new query and in the 

cached queries without examining the contents of the cache. 

The situation changes for query overlap.  If a new query is not contained in a 

cached query, by Proposition 6, it could overlap with any previously cached query; 
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furthermore, we cannot tell if the query indeed overlaps with previously cached 

queries without going through the contents of the cache.  If upon examining the 

contents of the cache we find that the query does overlap, we issue a query to the web 

server for the form to get the answers “missing” from the cache.  Using the 

terminology from semantic caching [10], the query evaluated over the cache is the 

probing query, whereas the difference query sent to the web server DBMS is the 

remainder query.  In this context, the remainder query is easy to specify. 

Consider a new query Q, with keywords k1, k2, …, km.  Furthermore, let Q1(c1), 

Q2(c2), …, Qn(cn) be the queries that currently appear in the cache, where ci is the 

conjunct of keywords that appear in query Qi.  Then the remainder query QR is just 

QR(k1, k2, …, km, not c1, not c2, …, not cn).  We refer to the not ci as remainder 

predicates. 

Clearly, with a large cache QR will be enormous, and would cause severe problems 

if sent to the DBMS at the web site.  Thus we need to pick out a few remainder 

predicates that can reduce the remainder query result size effectively.  Choosing a 

minimum number of remainder predicates from the cached queries to cover all the 

cached tuples is a computationally hard problem (it can be shown NP-complete by 

reduction from the vertex cover problem).  Instead, we use simple heuristics to try to 

pick a fixed number of predicates that cover a large portion of the cache.   

Finally, another decision is whether redundancy in cache-overlapping query results 

should be allowed in the cache.  For keyword-based queries, we chose to eliminate 

duplicates when merging results of queries into the cache.  As we will see in the 

experiments, this choice causes some computational overhead but avoids filling the 

cache with duplicates. 

4.1.2 Query Evaluation and Cache Organization 

If a new query presented to the cache is contained in a previous query, we simply 

execute the conjunctive keyword-based query over the contents of the cache.  If the 

query is not contained in a previous query, then things are more complex.  Here the 

probing step is a selection query with the current search predicate on the cached query 

results.  If we are using full semantic caching, we need to send a remainder query to 
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the server.  When the web server responds with the result of the remainder query, the 

proxy cache merges this result with the result of the probe query, and sends the 

combined result on to the user.  Furthermore, our cache merges the result of the 

remainder query with the existing cache contents, and adds the original query to the 

list of cached queries. 

An important special case occurs if our proxy decides to handle only containment 

relationships and to ignore query overlap.  In this case, the proxy never sends a 

remainder query; rather, it always passes on the original query to the web server, and 

merges the result of that query with the current cache contents.  This case is 

important because it does not require any special collaboration between the proxy 

cache and the web server (since no “new” queries need to be sent to the web server, it 

only sees requests that it would see in the absence of our proxy cache). 

When there is a top-n operator in the class of cached queries, we once again 

require closer collaboration with the web server, because we handle such queries by 

“stripping off” the top-n operator before sending the queries to the web server.  To 

support this class of query we also have a top-n operator in the cache, so that the 

proxy can apply it to the full result before it is passed to the user.  If we consider that 

a user would examine only a few top results in practice, we could progressively get 

the next-n results instead of getting the full result set at once.  The danger of this 

progressive next-n alternative is its incomplete result set and potential inefficiency if 

many results are needed for query processing anyway. 

As we see from Figure 13, each cache for keyword-based queries consists of an 

array of cached queries from the same query template, a set of cached result tuples, 

and a lexicon of the words in the search field in the cached result tuples.  The queries 

Figure 13: Cache organization for keyword-based queries 
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that exactly match or are contained in a previously cached query are not added to the 

cache, in order to keep the number of cached queries small.  The cached tuples are 

the union of all the result tuples from previously cached queries.  We use LRU 

(Least Frequently Used) for cache replacement. 

The list of cached queries is an in-memory cache description that is used to check 

the relationship between a new query and previously cached queries.  If a new query 

is neither an exact match nor a cache-contained query, the cached tuples are examined 

through the lexicon indexes to pick out satisfying tuples (those in the overlap between 

the query and the cache) for the new query. 

The result pointers of a cached query are ordered by the order-by field in the query 

template so that for an exact match or a cache-contained query, the top-n result tuples 

can be returned efficiently.  However, the tuple pointers of a lexicon word are not 

ordered by the query template’s order-by field, but by the pointer values themselves.  

This is to enable fast set intersection between the tuple pointers of two lexicon words.  

In our current implementation, we use a linear search on the cached queries because 

the queries are simple and cache replacement will limit the number of them.  For a 

large number of complex cached queries, techniques such as those proposed by 

Altinel and Franklin [2] may be applicable. 

Finally, a special case of query overlap is that the new query contains (subsumes) 

some cached queries.  Previous work [9] terms this case region containment, in that 

the new query subsumes a region of the cache (one or more cached queries).  For 

example, a new query containing the search keyword “Programming” subsumes the 

cached queries with the keywords “Java Programming” and “C++ Programming”.  In 

this special case, we remove the subsumed cached queries from the list of cached 

queries in order to limit the number of queries in the cache.  Note that all tuples of 

the cached queries contained in the region are the results for the new query, so in 

region containment the cached tuples do not need to be checked one by one as in the 

query containment cases.  This special case deserves attention, because it reduces the 

number of cached queries and improves cache utilization.  To differentiate region 

containment with other cases of query overlap, we call those cases of query overlap 

that are not region containment query intersection. 
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4.2 Active Caching for Function-Embedded Queries 

4.2.1 Algorithms for Relationship Checking 

As described in Section 3.2, we transform the problem of checking the relationship 

between two function-embedded queries into that of checking the spatial relationship 

between the two corresponding regions for the class of queries we handle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Agorithm 1: Hypersphere Relationship Checking 
Input: the Cartesian coordinates of the centers and the radii     
        radius1 and radius2 of two hyperspheres 
Output: status (DS, EM, FCS, SCF, or IS) 
1.  Compute the Euclidean distance d between the two centers   
    using their Cartesian coordinates 
2.  if ( d > (radius1 + radius2) ) 
3.    return DS;  
4.  else if ( (d = = 0) && ( radius1 = = radius2) ) 
5.       return EM; 
6.  else if ( (d + radius2) <= radius1 ) 
7.       return FCS; 
8.  else if ( (d + radius1) <= radius2 ) 
9.       return SCF; 
10. else return IS; 

Figure 14: The hypersphere relationship checking algorithm 

Algorithm 2: Hypercube Relationship Checking 
Input: the lower bound, upper bound pairs (lb1i, ub1i), (lb2i, 
       ub2i) for each dimension i of two hypercubes 
Output: status (DS, EM, FCS, SCF, or IS) 
1.  for each dimension i 
2.    if ( (lb1i >= ub2i) || (lb2i >= ub1i) )  
3.      return DS; 
4.  equivalent = true; 
5.  for each dimension i 
6.    if ( (lb1i != lb2i) || (ub1i != ub2i) ) 
7.      { equivalent = false; break; } 
8.  if (equivalent) return EM; 
9.  contained = true; 
10. for each dimension i 
11.   if ((lb1i > lb2i) || (ub1i < ub2i) ) 
12.     { contained = false; break; } 
13. if (contained) return FCS; 
14. contained = true; 
15. for each dimension i 
16.   if (lb1i < lb2i) || (ub1i > ub2i) ) 
17.     { contained = false; break; } 
18. if (contained) return SCF; 
19. return IS; 

Figure 15: The hypercube relationship checking algorithm 
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We have implemented active caching for the hypersphere and hypercube cases.  

The algorithms for checking the relationship between two regions (hyperspheres or 

hypercubes) in a multidimensional space are given in Figures 14 and 15 

correspondingly.  In these algorithms, the output DS, EM, FCS, SCF, and IS are pre-

defined flags, which represent “the two regions are disjoint”, “the two regions are 

equivalent (exact match)”, “the first region contains the second one”, “the second 

region contains the first one”, and “the two regions intersect”, respectively. 

Figures 16 and 17 illustrate the relationships that are checked by the two 

algorithms respectively (both figures show 2-D cases only). 
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Figure 16: Hypersphere relationship illustration   Figure 17: Hypercube relationship illustration   

4.2.2 Query Evaluation 

Given a new function-embedded query and the previously cached queries, the proxy 

uses the relationship checking algorithm (without looking at the query results) and 

returns a status for this new query.  The status can be one of the five cases: (1) exact 

match, (2) query containment, (3) region containment, (4) query intersection, and (5) 

disjoint.  After the status is identified, the proxy will evaluate the new query at the 

proxy correspondingly. 

The handling of the two extreme cases (cases 1 and 5) is simple.  On one extreme, 

if the new query is an exact match to a cached query, the proxy will read the cached 

result and return it to the user.  On the other extreme, if the new query is disjoint 
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from all of the cached queries, the proxy will forward the query to and get a response 

from the web server, cache this result, and return it to the user. 

If the new query is contained in a cached query (case 2), the proxy evaluates the 

new query over the result of that cached query and returns the new result to the user.  

The result of the new query is not cached, since it is already contained in the result of 

the cached query.  The local evaluation process of the cache-contained query is as 

follows. 

As described in Section 3.2, some attributes of a cached result tuple serve as the 

Cartesian coordinates of the point that the tuple represents in a multi-dimensional 

space.  Therefore, the proxy evaluates the new query by checking the cached result 

tuples and selecting those that represent points falling into the multidimensional 

region of the new query.  In essence, the evaluation of a subsumed query becomes 

that of a spatial region selection query over the cached results. 

Note that the local evaluation procedure is determined by the spatial semantics 

(e.g., the shape and dimensions of region) of the function template and the function-

embedded query template.  Since we assume that the abstraction of the semantics of 

an application is correct, the local evaluation procedure will produce correct results 

for the application.  Moreover, this local evaluation implementation is much simpler 

than the evaluation procedure at the web server, since the web server has to deal with 

a large amount of base data and executes its own (probably more application-specific) 

implementation of functions. 

If there are multiple cached queries that subsume the new query, we choose the 

one that has the least number of result tuples.  It is also possible that the new query is 

not subsumed by any single cached query but is contained in the union of some 

cached queries.  We have not yet handled this case, since the complexity for such 

relationship checking is high and the performance gain is unclear. 

Cases 3 and 4 both belong to query overlap, in which the cache can serve only a 

portion but not all of the answers to the new query.  As in caching for keyword-based 

queries, the major decision is whether the proxy should send the original query or a 

remainder query to the web server.  If the web server does not support modified 

queries at all, i.e., it does not have a remainder query facility, the proxy has no choice 



 

 

28

but always sends the original query to the web site.  In contrast, if the web site has a 

facility to handle remainder queries, we need to further consider the performance 

tradeoffs between the proxy, the original web server, and the network. 

In the region containment case (case 3), our proxy merges the results of all of 

subsumed cached queries with the result of the remainder query to form the final 

result of the new query.  After answering this new query, the result of the new query 

is cached and all those subsumed cached queries and their results are removed.   

In the query intersection case (case 4), there may be multiple cached queries 

intersecting the new query.  Correspondingly, the proxy needs to exclude these 

queries when formulating the remainder query.  When there are many cached 

queries, the number of queries that overlap with the new query may be large as well.  

We used heuristics in selecting a fixed number of cached queries to be used in 

probing query evaluation and remainder query formulation.  For queries representing 

hypercubes, we select candidates by the volume of the region that a cached query 

overlaps with the new query; the larger the volume, the better.  However, for queries 

representing hyperspheres, computing the volume of the overlapping region is 

computationally expensive due to the shape.  Therefore, we used approximation for 

hyperspheres.  Let d be the Euclidian distance between the centers of the new query 

and a cached query (this distance is already computed during query relationship 

checking), and r be the radius of the cached query, we select candidates who have a 

small d / r value.  The intuition is that the larger volume (r) a cached query has and 

the closer it is to the new query (d), the better it would be for answering the new 

query. 

4.2.3 Cache Organization 

Similar to cached keyword-based queries, cached function-embedded queries and 

their results are organized by query templates.  However, the result of each function-

embedded query is stored in a separate file.  Therefore, there might be redundancy in 

the cached results of overlapping queries.  This redundancy is tolerated so that there 

is no need to maintain the descriptions of the overlapping regions, whose shapes may 

be complex.  Instead, duplicate elimination is performed in the query evaluation 
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process, specifically, in the merging process.  We have implemented both hashing-

based merging and sorting-based merging, and adopted the former for performance 

reasons. 

For the cached results on disk, there are in-memory cache descriptions used for 

relationship checking between a new query and the previously cached queries.  Each 

entry of the cache description describes the corresponding spatial region of a 

function-embedded query and contains a pointer to the corresponding cached result.  

We have implemented the cache description with both linear arrays and R-Trees [16] 

(since the cached queries have spatial semantics), and have compared their 

performance in our experiments.  We used LRU as the cache replacement policy. 

4.3 Proxy Deployment and Maintenance Issues 

In summary, we have implemented three active caching schemes for the two classes 

of queries in our form-based proxy framework: (1) the full semantic caching; (2) a 

variant of the full semantic caching that checks exact match, query containment, and 

region containment relationships between the new query and the cached queries; and 

(3) the containment-based active caching that only checks query containment 

(including exact matches).  These three active caching schemes in addition to the 

traditional passive query caching have different requirements on the proxy 

deployment and maintenance.  In the following, we discuss issues on the proxy 

deployment and maintenance for the four caching schemes. 

First, if our proxy handles only traditional passive query caching, it becomes a 

regular proxy and has no need for any template information.  Rather, the proxy 

administrator specifies rules for cacheable URLs at the proxy configuration time.  By 

default, regular proxies disable caching dynamic URLs that embed parameters or use 

the POST method.  To enable caching web pages generated from form-based 

queries, the rules need to be set to allow cacheable URLs containing parameters and 

POST requests.  The proxy maintains its cache content as disk files and 

communicates with any web server as a regular proxy. 

Next, if our proxy handles active caching schemes in addition to the passive 

caching, the only difference between deploying our form-based proxy and deploying 
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a regular proxy is that for active caching our proxy needs to know the query 

semantics of the forms.  This requirement is because the application at the web 

server can perform arbitrary computation based upon the user input.  Thus, to enable 

active caching, we require the web site to provide the text of the SQL query 

corresponding to each form and the mapping information between the form 

parameters and query template parameters.  These information are provided in the 

form of query templates and template information files.  For function-embedded 

queries, we further require the web site to provide high-level semantic information 

about functions through function templates.  We assume that these templates provide 

correct semantic information, as this assumption is the basis for the correctness of the 

query processing in the proxy. 

In our experiments, we generated the template files ourselves for the web sites 

being proxied by analyzing the HTML source of the forms and the publicly available 

documentation, e.g., those at the SkyServer web site.  Our effort was minimal as it 

involved only a couple of web sites and these web sites had simple form interfaces 

and sufficient documentation.  Moreover, our template files require only high-level 

semantic information and therefore it is safe to ignore the internal processing logic of 

the forms at the web sites, which is unknown to us.  Nevertheless, it is an interesting 

question whether we should automate the template generation process, partially or 

fully at the proxy, rather than requiring the web sites to provide them.  Additionally, 

it is possible to identify and generate query templates if the SQL queries are visible at 

the proxy, as done in DBProxy [3], which intercepts SQL statements in the JDBC 

driver. 

After the templates and template information files are generated, they are usually 

registered at the proxy at configuration time.  In the configuration step of a regular 

proxy, the proxy administrator specifies in the configuration file which URLs the 

proxy is allowed to cache.  When configuring our form-based proxy, the proxy 

administrator specifies which forms that the proxy may cache and adds the template 

and template information files to the appropriate cache directories at the proxy.  At 

the proxy startup time, these template information are loaded into memory and are 

checked at runtime upon an incoming HTTP request.  Furthermore, after the proxy 
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starts up, new templates can be added and loaded dynamically and there is no need to 

restart the proxy. 

After the proxy is deployed, the pure containment based active caching requires no 

further collaboration from the original web site for query processing whereas the 

other two, full semantic caching and its variant that handles region containment, 

requires the original web site to support remainder queries.  While some web sites, 

such as the SkyServer, provide SQL-based facility that can handle remainder queries, 

pure containment based caching is more practical for other real-world database-

backed web sites. 

Consistency is always an issue in caching.  In the current form of our proxy 

implementation, the changes of the forms or the data at the original web site can only 

be detected by the proxy administrator manually, and the cache consistency 

maintenance is to clear all cached data from the affected templates.  Nevertheless, we 

regard consistency as an interesting area for future work that is largely orthogonal to 

this paper.  The web currently works surprisingly well with a relaxed attitude toward 

consistency.  It is possible that many form-based applications will be well served by 

simply providing a facility for the web site to invalidate its data and/or templates 

stored at a proxy.  Furthermore, web sites such as the SkyServer update their data in 

batches off-line [41].  Consequently, the invalidation at the proxy can be done 

infrequently when the proxy administrator detects such batch updates at the original 

web site. 

Finally, recent research in the web caching community has focused on adding 

application logic to the proxy from remote sites while the proxy is running.  For 

example, the Active Cache Protocol [7] allows small software modules to be shipped 

from the web servers to the proxy on demand, specifying application-specific caching 

policies, while the Dynamic Content Cache Protocol [39] supports application-

specific headers specifying caching policies.  Our caching modules could also be 

shipped on-demand if the Active Cache Protocol were supported, while the 

application-specific query and function template information for our framework could 

also be easily shipped from web sites if either of the protocols were supported.  In 
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Table 1: The software deployment in the experiments on synthetic TPC-W traces 

this way, proxies could dynamically implement our active caching schemes “on the 

fly” without manual intervention. 

5 Experiments 

In this section, we examine the feasibility of our form-based proxy and the 

performance of active caching schemes using extensive experiments. 

For keyword-based queries, we first exercised the proxy caching framework using 

the TPC-W book title search query traces.  We then used modified workloads to 

investigate properties of active caching not revealed by the simple TPC-W traces.  

Finally, we played a user trace through our proxy to an online bookseller’s web site.  

For function-embedded queries, we only used real-word user traces extracted from 

the SkyServer web logs in the experiment.  This is because the usefulness of 

synthetic workloads for performance evaluation is less definitive for this class of 

queries due to the application-specific nature of the embedded functions.  

Additionally, for both classes of queries our proxy recorded various timing 

information in each step of query processing for the purpose of detailed analysis. 

5.1 Experimental Setup 

At first, we used four computers for the TPC-W synthetic workload experiments.  

The four machines all had a Pentium III 800MHz CPU and 256MB memory.  The 

machine for the database server had 20GB disk space, while the other three machines 

each had a 9GB disk. 

 
Computer RBE Proxy Server Database 
Software RBE Tomcat + servlet Tomcat + XSQL Oracle8i 

 

All four machines used the Red Hat Linux 6.2 operating system.  The RBE 

program (Remote Browser Emulator) and proxy servlet were homegrown.  The RBE 

program ran the query traces in a batch and stored all the returned query results on 

disk for analysis.  The servlet engine was the Apache Tomcat Servlet Engine.  The 

database server was Oracle 8.1.6 Enterprise Edition with the InterMedia Text 8.1.6 

index server.  We used Oracle XSQL servlet version 1.0.1.0 at the server side to 
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process form-based queries and generate query results in XML.  Table 1 summarizes 

the configuration. 

Next, we conducted further experiments for keyword-based queries with an online 

bookseller’s web site.  In this set of experiments, the RBE and proxy configuration 

remained the same whereas our own web server and database server were replaced by 

the real-world website. 

Finally, we used a different set of hardware and software configuration for 

function-embedded queries using real-world SkyServer traces. The RBE machine had 

256MB memory and 60GB disk space.  The proxy machine had 1GB memory and 

100GB disk space.  Both machines had a Pentium IV 1.8GHz CPU and were running 

the Windows XP Professional operating system.  As the setup for the two classes of 

queries are different due to implementation considerations, the performance results 

are compared within each class of queries only.  

All the machines involved in our experiments (except for the real web servers) 

were on a 100Mbit/second Ethernet.  In the following, we present in detail our 

experimental results for keyword-based queries and function-embedded queries 

respectively. 

5.2 Experimental Results for Keyword-Based Queries 

As the result size of a keyword-based query was usually small in our setting, in all 

experiments on keyword-based queries we assume an unlimited cache size, i.e., no 

cache replacement was triggered. 

5.2.1 On TPC-W Query Traces 

To measure the effects of proxy caching for keyword-based queries on response 

times, we set up the TPC-W databases at three scales: 10K, 100K, and 1M (in terms 

of the cardinality of the item table) in Oracle.  The cardinality of the author table was 

¼ of that of the item table.  The ASCII data files of the two tables were of a total size 

of about 5MB, 50MB, and 500MB respectively.  We used the default buffer pool 

size of 16MB in Oracle.  We used the TPC-W search-by-title workload (HTML form 

in Figure 2 and queries as in Figure 4). 
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Table 2: The example titles in the TPC-W databases 

Table 3: The TPC-W average response time (in milliseconds) 

The i_title field of the item table was generated using the TPC-W WGEN utility.  

Table 2 shows a few examples. 
 

 

In this dataset each title got one “signature word” (as shown in Table 2), and each 

signature word was inserted into an average of five titles.  The search string in a 

TPC-W query is a signature word.  This caused each query to return an average of 

five books, and two queries in the trace were either identical (if they have the same 

search string) or had disjoint results (otherwise).  This is the worst case for active 

caching because there is no query containment or overlap. 

We ran a ten thousand query trace to the three scales of the TPC-W databases.  

This query trace contained two thousand distinct queries, and the caches reached a hit 

ratio of 80%.  At the end of the experiment, both caches contained nearly 10K items. 
   

 

We compared timings in four cases: RBE directly to the server (DIRECT), RBE 

through the proxy without any cache (NC), RBE through the proxy with passive 

query caching (PC), and RBE through the proxy with active query caching sending no 

remainder predicates (AC0).  The response times were measured in the RBE.  

Because the timings in the non-cache proxy case were almost identical to those of a 

miss in the PC setting, we only show the other three cases in Table 3. 

From Table 3, we see that the database server processing time dominated 

(comparing PC cache misses with the direct-to-server case) and this got worse when 

the scale of the database increased.  Passive query caching achieved an overall 

average response time ¼ of that of the direct-to-server case.  On a miss, passive 

i_id i_title 
3 Years will break BABABABABABARI pleasant, free terms-- 
4 Final, previous feet can want BABABABABABARE more? 
5 Visitors should result. Public, BABABABABABASElikely 

Database scale 10K 100K 1M 
DIRECT OVERALL 74 384 4144 

HIT 11 11 12 
MISS 110 442 4215 PC 

OVERALL 31 98 853 
HIT 11 13 12 

MISS 262 539 4499 AC0 
OVERALL 61 118 905 
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Table 4: The composition of NounPhrase trace 

caching added less than 70 milliseconds of overhead when compared to the direct-to-

server case.  The active cache added another 100-280 milliseconds overhead on miss 

because of its more sophisticated query cache management.  As the scale of the 

database increased, this overhead was dominated by the server time.  As a result, the 

slight increase in the proxy load achieved a large gain in the overall response time. 

5.2.2 Adding Overlap in Queries  

Since the TPC-W query trace generates queries with only disjoint small results, we 

generated another set of traces, which we term NounPhrase traces, from the TPC-W 

vocabulary.  NounPhrase traces explore how well the active caching performs when 

a new query is contained in a cached query or overlaps with some data in the cache. 
 

 

The four NounPhrase traces we experimented with were Noun40, Noun60, 

Noun80, and Noun100.  Each trace contained two thousand queries; which could be 

queries with one noun, two nouns,  …, five nouns, or a dummy word as the search 

string (their percentages in the traces are shown in Table 4).  Each noun was chosen 

independently from one another with a Zipfian distribution from the 100 most popular 

nouns in the TPC-W vocabulary.  The dummy words in each trace were distinct and 

returned no answers.  The different percentages of noun queries in the traces were 

designed to yield similar exact-match ratios but different containment ratios across 

the traces.  As a result, the exact-match ratios of the four traces were all around 20%, 

and the ratios of cache-contained queries were 12%, 33%, 52%, and 71%. 

Figure 18 shows the average response time of the four NounPhrase traces on the 

100K-scale TPC-W database running directly to the server (DIRECT), through a 

passive caching proxy (PC), or through an active caching proxy with no remainder 

Trace Noun100 Noun80 Noun60 Noun40 

1-noun 20% 20% 20% 20% 

2-noun 20% 20% 20% 20% 

3-noun 20% 20% 20% 0 

4-noun 20% 20% 0 0 

5-noun 20% 0 0 0 

Dummy 0 20% 40% 60% 
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Figure 18: The average response time of NounPhrase traces 

Table 5: The response time (in milliseconds) of four cases in the Noun40 trace 

predicates (AC0).  Recall that this AC0 is the case that does not require close 

collaboration between the web server and the proxy cache.  When the number of 

noun queries on the fixed vocabulary increased, the ratio of exact matches did not 

change much and the passive caching had a limited performance, but the ratio of 

cache-contained queries increased and benefited active caching to a larger extent. 

 
 

Next we examine in detail the time spent by individual queries at the proxy. 

We compared four cases at the active cache: an exact match (EM), a query 

containment (QC), a query intersection (IS), and a disjoint query (DS).  In this set of 

synthetic traces we generated, the region-containment queries had similar response 

times as cache-intersecting queries on average, so we only show four cases here.  For 

the passive query cache, the cases are simply cache MISS or HIT.  Because the 

response time of a query depends on many factors, such as the current contents of the 

cache, the result size, and the database web server status, we ran the Noun40 trace 

three times, chose four representative queries in the trace, and showed their response 

times averaged from the three runs. 
 

 

From Table 5 we see that both caches had similar response times on an exact 

match query (Query 515).  A cache-contained query (Query 511) also had similar 

response time to an exact match in the active cache, which was much better than a 

Query ID 515 511 510 514 

Status EM QC IS DS AC0 Time 17 18 2683 472 
Status HIT MISS MISS MISS PC 
Time 18 361 664 376 
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Table 6: Numbers of remainder tuples of Query 510 

miss in the passive query cache.  Query 514 was a dummy query returning no 

answers, and an active cache miss on it was 27% more expensive than a passive cache 

miss.  Query 510 was a 2-noun query returning 50 tuples (top 50), and an active 

cache intersection was three times slower than a passive cache miss.  This was 

because in the passive query cache, only the top 50 tuples were obtained from the 

server, returned to the user, and saved into the cache while in the active cache case 

the active cache got 62 result tuples from the cache, got 510 result tuples (the whole 

answer set) from the server, merged these two parts of answers to eliminate 

duplicates, returned the top 50 to the user, and cached the un-cached answers. 

We conducted further experiments on the Noun40 trace and found that increasing 

the number of remainder predicates had a very limited effect on limiting the number 

of remainder tuples (as an example, we show this for Query 510 in Table 6).  This 

was because in the TPC-W database there is very little overlap among titles. 
 

5.2.3 Adding Overlap in Datasets 

Because the TPC-W dataset had so little overlap, we generated a dataset with the 

same TPC-W item schema but used a 10-word vocabulary {w0, w1, w2, …, w9} for the 

title field.  This data set was tailor-made to benefit remainder query processing. 

In this dataset, each title field had three words: the id, wi, and wj, where 0 =< i, j < 

9.  There were 100 distinct combinations of the (wi, wj) pairs, but the id field was 

unique so that each title was unique.  We generated 1000 tuples with each 

combination of (wi, wj) appearing in 10 titles and appended these 1000 tuples to the 

100K TPC-W database.  We then ran the ten queries w0, w1, …, w9, and compared 

the performance of the 10th query with varying numbers of remainder predicates.  

Note that here the selection heuristic used for remainder predicates is not important, 

because in this scenario all remainder predicates are equivalent.  Table 7 shows the 

number of remainder tuples of Query 10 and Figure 19 shows the time breakdown, 

averaged over three runs. 

#Remainder predicates 0 10 20 30 40 

#Remainder tuples 510 502 491 484 480 
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Table 7: Numbers of remainder tuples of Query 10 
 

 

 
The legends from bottom to up in Figure 19 correspond to the portions bottom up 

in the bars.  The time spent on checking the query relationship (checkRelationship) 

and probing the cache (probeCache) were very small and were negligible in 

comparison with other times, so they are omitted in the figure.  The time spent on 

sending the remainder query to the server (reqToServer) was also small.  The time 

taken waiting for the server response (getResponse) and merging the probe query 

results and the remainder query results (mergeResult) were comparable.  Both the 

server response time and the proxy result merging time decreased when the number 

of remainder predicates increased.  We also experimented with a dataset one 

magnitude larger than this one (10,000 special tuples inserted into the 1M TPC-W 

database) and observed the same pattern. 

5.2.4 Passive Caching and Combinatorial Cache Overload 

Passive caching does no duplicate elimination in the cache.  This is especially bad 

for keyword-based queries because different combinations of keywords can all return 

the same data.  We conducted a simple experiment to illustrate this point.  

We chose 5 words that were not in the TPC-W vocabulary and inserted 50 tuples 

with the title field all containing these five words to the item table in the 100K-scale 

#Remainder predicates 0 5 10 

#Remainder tuples 190 90 10 

Figure 19: Time breakdown of Query 10
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Table 8: The BBQ trace on two bookstore web sites 

TPC-W database.  We then ran a 325-query trace that consisted of all distinct 

combinations of one to five of these words.  At the end of the run, the passive query 

cache held 325 copies of these 50 tuples, or 16250 tuples, while the active query 

cache just kept one copy of the 50 tuples.  Clearly, if there are a lot of containment 

patterns among queries in a trace, passive caching runs the risk of a combinatorial 

blow-up.  More importantly, the passive cache has no cache hits, while the active 

cache has almost all cache hits. 

5.2.5 Proxy Caching for Real Web Sites 

In this section, we further explore the performance of our proxy framework for 

keyword-based queries with real user traces over real-world web sites.  We obtained 

a server log from an online comparison-shopping bookstore and extracted a query 

trace on book titles.  We call this query trace BBQ (Best Book Queries).  The BBQ 

trace had 2416 queries on book titles, representing book title searches from users in 

the U.S. and Europe over a period of one week in October 2000.  They all were 

conjunctive keyword-based queries with 1 to 18 words in each query.  The median 

length (in words) of the queries was 3 and the average length was 3.3.  The 1-word 

queries, 2-word queries, …, and 5-word queries made up 13%, 25%, 24%, 15%, and 

11% of the trace. 

 

Category AM BM 

Ratio of requests with less than 1 page result 74% 87% 

Total number of books in the 1st page 42.2K 14.3K 

Total number of distinct books in the 1st page 24.4K 6.7K 

Duplicate ratio of books in the 1st page 42% 53% 
 

To investigate the properties of the query trace and its interaction with real-world 

data sets, we replayed the BBQ trace to two large operational online bookstore web 

sites in November 2000. (In this study we did not use any caching.) We call them site 

AM and site BM.  From Table 8 we see that the query result size was usually very 

small in comparison with the backend database sizes.  74% and 87% of the requests 
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Table 9: The response time of BBQ trace 

got results of less than one page.  Moreover, the duplicate book ratios across requests 

were as high as 42% and 53%, which represents significant opportunities for 

duplicate elimination at the cache. 

To investigate the performance of our form-based proxy framework in a real-world 

setting, we built a wrapper server for the BM site and replayed the BBQ trace through 

our proxy.  Notice that there was no change for the proxy code; we just added a 

dummy book title search query template for the BM site to the query template 

directory.  The wrapper server was used to wrap the results into XML before giving 

it back to the proxy.  The setup is as shown in Figure 20. 

 

Recall that in such a situation, where there is no collaboration between the web site 

and the proxy, we can do passive caching or containment-based active caching, but 

not the full semantic caching. 

We compared the RBE response times of three cases: NC, PC, and AC0.  The hit 

ratio of the passive cache was 30% while that of the active cache was 47% (22% 

exact matches plus 25% cache-contained queries).  The ratio of exact matches was 

lower in the active cache than the passive cache because we did not cache subsumed 

queries.  There were few cache-overlapping queries (2 out of the entire BBQ trace) 

so there is essentially no room for remainder predicates to improve performance. 

Because the response time of a query depends on the locality, the result size, and the 

cache status, we report average response times for several portions of the trace in 

Table 9.  Not surprisingly, passive caching outperformed the no cache case, and 

active caching outperformed passive caching.  More interestingly, active caching 

warmed up the proxy cache faster than passive caching. 
 

Avg. time(ms) NC PC AC0 
Entire Trace 1827 1216 992 
Query 1-1000 1827 1196 1171 
Query 1001-2000 1827 1163 795 
Query 1001-1500 1853 1322 923 
Query 1501-2000 1540 1004 666 

RBE BM SiteWrapperProxy
HTTP Request

XML

HTTP Request

XML

HTTP Request

HTML
Figure 20: The setup of proxy caching for the BM site 
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5.3 Experimental Results for Function-Embedded Queries 

After evaluating the performance of our active caching schemes for keyword-based 

queries with both synthetic and real-world workloads, we continue to investigate its 

effects on function-embedded queries. 

We conducted our experiments on caching the query results of the Radial web 

search form of the SkyServer.  We extracted real-world query traces for this form 

from the SkyServer web logs.  We chose this form because it is representative of 

function-embedded queries, and the fGetNearbyObjEq() function embedded in the 

query template is the building block of many other functions at the SkyServer.  We 

varied the cache size for the query trace, and an unlimited cache size reached 500MB 

for caching the entire trace. 

5.3.1 Analysis of the Radial Search Form Query Trace 

Before using the Radial query trace for experiments, we analyzed its characteristics 

with respect to caching. 

The query trace had a total of 11,323 queries from June 2001 to May 2003.  A 

large portion of the queries were not directly issued from the Radial search form at 

the SkyServer; instead, they were issued from the Radial search form at another 

astronomy web site MAST [30].  The Radial search form at MAST forwards the 

queries it receives to its counterpart at the SkyServer, gets the result and returns it to 

the user.  The query templates of the two Radial search forms are almost identical, 

except a few differences in the optional parameterized predicates.  After confirming 

the validity of this query trace, we used them in our experiments. 

To study the characteristics of the trace with respect to active caching, we ran the 

trace through our active caching module with the full semantic caching scheme and 

an unlimited cache size.  Table 10 summarizes the numbers of occurrences of exact 

match, query containment and query overlap.  It shows that nearly 51% (17% exact 

matches and 34% cache-contained queries) of the Radial search form queries can be 

completely answered by the cache if the query results are cached.  Additionally, 

about 9% of the queries overlap.  Combining with the analytical results of real-world 
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Table 10: Characteristics of the Radial query trace 

keyword-based query traces in Section 5.2.5, this relatively small number further 

convinces us that in real-world scenarios there are not much performance 

improvement opportunities for handling query overlap at a proxy. 

 

 

 

Note that since our active query cache does not store the results of subsumed 

function-embedded queries, the number of exact matches shown in Table 10 is fewer 

than that of exact matches in a passive query cache, which is 3628. 

5.3.2 Proxy Caching with the Radial Query Trace 

We ran the Radial query trace through our proxy in various configurations to the 

SkyServer.  A configuration includes the caching scheme, the cache description 

implementation, and the cache size.  The caching scheme can be no cache, a passive 

cache, or an active cache.  An active cache can be one of the three alternatives we 

implemented: (1) the full semantic caching, (2) the variant of full semantic caching 

handling exact match, query containment, and region containment, and (3) the 

containment-based active caching.  The cache description implementation can be an 

array or an R-tree. 

In addition to response time, we used cache efficiency as another performance 

metric in the experiments for function-embedded queries.  The cache efficiency of a 

query is defined as the percentage of the result tuples that are served from the proxy 

cache to the total number of result tuples of the query.  The average cache efficiency 

of a query trace is the arithmetic average of the cache efficiency values of all queries.  

By trial experiments, we found that for function-embedded queries the cache 

efficiency reveals the cache utilization more accurately than a cache hit ratio. 

We first examined the performance impact of active caching for function-

embedded queries in comparison with a proxy without any cache (NC) and a proxy 

with passive caching (PC).  We picked the full semantic caching as the active 

caching scheme since it exercises all aspects of active caching.  We further compared 

the performance impact of the cache description implementation of the active caching 

Total # queries # exact match # query containment # query overlap 
11323 1958 3829 1022 
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Figure 21: The average response time of four cases in the Radial trace 

Table 11: The average cache efficiency of AC and PC 

– ACR is the active caching with an R-tree cache description and ACNR is the active 

caching with a linear array cache description.  In addition, the cache size was varied 

from 1/6 of the total result size of the query trace to the total result size (nearly 

600MB XML files). 

Figure 21 illustrates the average response times of the first 10,000 queries in the 

trace under various proxy configurations.  Table 11 summarizes the average cache 

efficiencies of active caching (which was the same for ACNR and ACR) and passive 

caching on the trace.  Apparently, the cache efficiency of active caching, 53-59%, 

was much higher than that of passive caching, 30%.  Moreover, the increase in cache 

size improved cache efficiency better for active caching than for passive caching. 
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Cache Size 1/6 1/3 1/2 1 

AC 0.531 0.565 0.582 0.593 
PC 0.290 0.305 0.311 0.313 

 

Associating Table 11 with Figure 21, we see that the general trend in response 

time corresponded to that in cache efficiency.  Without any cache (NC), the average 

response time was more than 2 seconds.  With a passive cache, it went down to 

around 1.4 seconds, resulting in 30% improvement over NC.  With an active cache, 

it went down further to around 1.2 seconds.  However, the average response time of 

either caching scheme did not improve much when the cache size increased.  This is 

because response time is not only affected by the cache efficiency, but also by the 

cache maintenance cost.  Therefore, in the remainder of this section, we show the 

results on the unlimited cache size; results on other cache sizes are similar. 

Interestingly, Figure 21 shows that the R-tree index on the cache description did 

not accelerate the active caching scheme and in some cases even slowed it down 
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Table 12: The response time of five queries with a large result size (in milliseconds) 

slightly.  The main reason was that the size of the cache description was not large in 

our experiment so that a linear search and a tree search had similar main memory 

performance.  A more detailed study on the time breakdown of individual queries 

revealed that the cache checking time with or without the R-tree index was always 

under 100 milliseconds.  Finally, the maintenance of the R-tree index is more costly 

than that of an array. 

We then picked some individual queries from the query trace to investigate their 

response times in ACNR and PC with an unlimited cache size.  Table 12 shows the 

response times of five representative queries at about halfway in the trace.  The 

cache checking status of these queries in active caching were exact match (EM), 

query containment (QC), region containment (RC), query intersection (IS), and 

disjoint (DS), respectively. 

 
Query ID 4365 4057 4093 4062 4046 

Status EM QC RC IS DS ACNR Time 312 531 5203 3172 6735 
Status HIT MISS MISS MISS MISS PC Time 312 6718 6391 6468 6812 

 

The five queries shown in Table 12 all had a large result size (nearly 1000 tuples).  

In the exact match and disjoint cases, the two caching schemes had very similar 

response times.  In the query containment case, active caching outperformed passive 

caching greatly (531 milliseconds versus 6718 milliseconds).  Query 4062 

intersected with a cached query and almost 86% of its result was served locally from 

the cache in active caching.  Because sending a remainder query rather than the 

original query greatly reduced the transmitted data volume in this case, the response 

time of active caching was less than half of that of passive caching.  Finally, Query 

4093 subsumed a cached query.  In this case, the active cache served some of the 

result tuples from the cache and fetched the others from the server.  Consequently, it 

outperformed the passive query cache by 20%. 

Figure 22 shows the time breakdown of these five queries recorded in the proxy 

with the active caching.  Here “checkRelationship” was the time spent on checking 

the cache upon a new query, “getResponse” was the time spent on receiving results 

from the original web site, and  “handleResult” was the time spent generating the 
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Table 13: Response time (milliseconds) of five queries with a small result size 

Figure 23: Time breakdown of five queries with a small result size 

Figure 22: Time breakdown of five queries with a large result size 
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query result as well as updating the cache, including probing the cache (probeCache) 

and merge the probe and remainder (if any) query results (mergeResult).  In the 

figure, the relationship checking time was too small to be visible (at most 100 

milliseconds).  The time spent in sending the remainder query to server 

(reqToServer) was even smaller so we omit it in the figure.  In comparison, the time 

spent for getting the result from the server dominated and the time for result handling 

and cache maintenance was considerable. 

 
Query ID 4000 4030 4034 4162 4006 

Status EM QC RC IS DS ACNR Time 15 47 657 656 610 
Status HIT MISS MISS MISS MISS PC Time 15 640 640 609 609 
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We also show in Table 13 the response times of five representative queries of a 

small result size (less than five result tuples) at about halfway in the trace.  For these 

queries, the active caching still outperformed passive caching by over a factor of ten  

in the case of query containment while it performed similarly to or slightly worse than 
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Table 14: The worst cases of cache-intersecting queries 

passive caching in other cases.  Figure 23 shows the time breakdown of these queries 

in active caching.  Due to the small result size, the time for result handling was 

negligible. 

Next, we examined the worst cases for query overlap in active caching.  We have 

shown that when the cache efficiency is high for cache-intersecting queries with a 

large result size, the performance can be improved greatly.  However, when the 

cache efficiency is low and the number of cached queries is large, cache-intersecting 

function-embedded queries will have a much worse performance in active caching 

than in passive caching.  We picked four such queries towards the end of the query 

trace (Table 14) to demonstrate this problem. 

  
Query ID 9469 9472 9505 9516 

Status IS IS IS IS ACNR Time 12734 11156 641 641 
Status MISS MISS MISS MISS PC Time 10688 10625 547 532 

 

The first two cache-intersecting queries shown in Table 14 had a large result size 

and the other two had a small result size.  Each of them intersected with a number of 

cached queries, but the cache efficiency of each query was low (less than 1%).  After 

checking the time breakdown of the queries recorded in the proxy, we found that the 

difference in response times between the two caching schemes was mainly resulted 

from the difference in the time spent on getting results from the server.  This was 

because the handling efforts at the cache were fruitless and the complicated remainder 

queries increased the query processing time at the web site. 

Since cache-intersecting queries may not always be helpful for active caching, we 

continued to compare the full semantic caching with the other two active caching 

alternatives that have no handling of cache-intersecting queries.  In Figure 24, the 

“First” is full semantic aching, the “Second” is active caching without handling query 

overlap other than region containment, and the “Third” is pure query containment 

based active caching.  The results shown in the figure were for the first 10,000 

queries in the Radial query trace with an unlimited cache sizes and an array-based 

cache description.  The latter two schemes had slightly worse cache efficiency than 

that of the first (0.544 and 0.511 respectively as opposed to 0.593), but they 
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Figure 24: The average response time of three active caching schemes 

outperformed the full semantic caching in response time.  This highlights the 

usefulness of containment-based active caching, which does not require a high degree 

of cooperation with the web sites. 
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5.4 Summary 

The experimental results show that our form-based proxy works well with both 

synthetic benchmark workloads and real-world user traces and that active caching 

generally achieves a better response time and cache hit ratio (or cache efficiency) 

than passive caching.  For both classes of queries, the time of cache operations is 

small in the total query time; rather, the server response time dominates in all cases.  

Consequently, the slight increase on the proxy workload in the caching schemes 

generates a large gain in the overall system response time.  Nevertheless, the 

usefulness of handling cache-intersecting queries depends on the cache efficiency of 

such queries.  In general, pure query containment based active caching is sufficient 

for performance improvement in addition to its advantage of low requirement on 

server collaboration.  Additionally, active caching schemes, especially those sending 

no remainder queries, reduce server workload, which is highly desirable when the 

database server is under a heavy workload and becomes the bottleneck. 

6 Related Work 

There has been a large body of work in the literature on data caching and query 

caching.  Some of them [10][12][19][36] dealt with relational queries while others 
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[1][9][22] focused on caching for heterogeneous sources.  Semantic caching [10] and 

predicate caching [19] were initially proposed in traditional client-server database 

architectures.  Lee and Chu [22] focused on algorithms for choosing the best 

matching query in the context of semantic caching for range queries.  While 

Chidlovskii et al. [9] studied semantic caching for keyword-based queries over meta-

searchers, we focus on using templates to enable active caching for database-backed 

web sites.   

Query templates have previously proven useful in other contexts, e.g. in 

information integration systems [34] and declarative specification of data-intensive 

web sites [5][14].  Amiri et al. [3] proposed query containment checking algorithms 

for general predicate-based queries based on query templates.  Their DBProxy 

processes a full SQL processing capability locally.  The OLAP view caching [24] is 

a simulation study in the context of an enterprise LAN to minimize the cost of OLAP 

processing.  It assumes the proxy has a query processing capability for OLAP 

aggregations.  In comparison, we designed and implemented various active caching 

schemes with simple but efficient query processing logic in our form-based proxy for 

both keyword-based queries and function-embedded queries using query and function 

templates. 

Caching and materialization for databases on the web has received a lot of 

attention recently [6][8][20][43].  These studies all consider passive caching of the 

HTML or XML pages generated from DBMS-resident data.  In contrast, our major 

focus is active proxy caching at the query level. 

There have been many publications in web caching that are closely related to our 

work [11][29][39].  All of these studies did not consider database queries.  Our 

previous work [26] focused on how a custom proxy caching protocol could be used to 

distribute caching code for select-project-join queries to proxies on the fly.  

However, it did not study the main issues we focus on here, including how forms can 

be used in the definition and deployment of caching schemes, and how well these 

schemes perform for keyword-based or function-embedded queries over the web. 

User-defined functions have been widely supported in commercial DBMS 

products, such as IBM DB2 and Microsoft SQL Server.  Hellerstein and Naughton 
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proposed a query execution technique called Hybrid Cache [18] for caching the 

results of expensive methods in a full-fledge DBMS.  The MOCHA system [35] 

implemented a migration paradigm for shipping application-specific Java code 

around distributed data sources.  In comparison, our work focuses on caching for 

table-valued functions in a web proxy, as opposed to migration or execution of scalar 

functions.  

Our work is also related to answering queries using views [15][17][21][23][33] 

[40].  Although table-valued functions can be regarded as a kind of parameterized 

views, they usually have non-SQL application-specific semantics (as an evidence, 

they are often implemented in programming languages other than SQL).  

Consequently, known view selection and view matching algorithms are not directly 

applicable to the active caching of table-valued functions.  Moreover, our proxy has 

only a limited query processing capability such that we chose to answer new 

function-embedded queries fully at the proxy based on query-containment checking.  

Recently, there is an increasing commercial interest in caching for database web 

servers, for example, the Oracle 9i Application Server [32] and the IBM DBcache 

project [25].  The Oracle 9i Application Server includes the Oracle Database Cache 

and the Oracle Web Cache.  The Oracle Web Cache does passive caching.  The 

Oracle Database Cache and the IBM DBCache mainly cache full tables; and features 

such as caching selected rows, columns and query results may be available in the 

future release.  To be used in a proxy cache scenario, the table level caching 

approach requires the DBMS data to be replicated to the proxy and an SQL query 

processor at the cache.  This shifts the entire query computation from the DBMS to 

the proxy.  Our approach, on the other hand, caches query results, thereby avoiding 

re-computation and requiring much simpler computation at the cache.  Furthermore, 

unlike our approach, full table caching cannot take advantage of caching only “hot 

regions” of the result space.  However, also unlike our approach, full table caching 

with an SQL processor can answer arbitrary queries on those tables.  In general, 

using full-fledged databases for the cache provides powerful query processing 

capabilities but requires more schema information and administrative effort, which 

seems to be overkill in our proxy caching scenario. 
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An alternative to our lightweight proxy-caching framework approach is to develop 

customized caching solutions at the home web sites.  This alternative has no 

collaboration issues and is easy to control.  However, it is unable to take advantage 

of the widely deployed proxy servers on the Internet to save the wide-area network 

latency.  If this alternative is pushed to the network edges, it seems to be cost-

inefficient as it only works for the home web site. 

The form-based proxy caching framework presented in this paper is an integration 

and extension of our previous work on form-based active proxy caching for keyword-

based queries [27] and function-embedded queries [28].  In comparison with our 

previous work, we have added real-world query trace evaluation for keyword-based 

queries, and have significantly extended our active caching techniques for function-

embedded queries and conducted more extensive performance evaluation for them.   

7 Conclusion 

We have proposed a form-based proxy caching framework for database-backed web 

sites with two common classes of web queries, which are keyword-based queries and 

function-embedded queries.  Our form-based proxy operates around query and 

function templates that describe high-level query semantics, and query template 

information files that describe the parameter mapping between the HTML forms and 

the templates.  We study the traditional passive query caching and various active 

caching schemes for both classes of queries using a full system implementation and 

evaluation.  We show that while passive caching is sufficient for some synthetic 

benchmark workloads, active caching is more promising for other generated traces 

and real-world workloads.  More specifically, answering cache-contained queries 

results in a significant performance gain, but answering cache-intersecting queries is 

probably not worthwhile for the top-n conjunctive keyword-based queries and queries 

calling table-valued functions.  Finally, different caching schemes rely on different 

degrees of collaboration from servers.  Passive query caching does not need query 

semantics information from the server whereas the contain-based active caching 

needs; full semantic caching further needs the server to handle remainder queries. 
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There are several lines of future work that we intend to consider.  One challenge 

is to use our framework to study other classes of web queries.  Another is to do 

further empirical studies over real traces and web sites.  Still another challenge to 

tackle is consistency.  The Web, as it currently exists, works with relaxed 

consistency in its proxy caches; we intend to explore how this can be used in 

conjunction with active caching for database-backed web sites. 
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