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Abstract Histograms are used to summarize the contents of relations into
a number of buckets for the estimation of query result sizes. Several tech-
niques (e.g., MaxDiff and V-Optimal) have been proposed in the past for
determining bucket boundaries which provide accurate estimations. How-
ever, while search strategies for optimal bucket boundaries are rather so-
phisticated, no much attention has been paid for estimating queries inside
buckets and all of the above techniques adopt naive methods for such an
estimation. This paper focuses on the problem of improving the estimation
inside a bucket once its boundaries have been fixed. The proposed tech-
nique is based on the addition, to each bucket, of 32-bit additional informa-
tion (organized into a 4-level tree index), storing approximate cumulative
frequencies at 7 internal intervals of the bucket. Both theoretical analysis
and experimental results show that, among a number of alternative ways
to organize the additional information, the 4-level tree index provides the
best frequency estimation inside a bucket. The index is later added to two
well-known histograms, MaxDiff and V-Optimal, obtaining the non-obvious
result that despite the spatial cost of 4LT which reduces the number of al-
lowed buckets once the storage space has been fixed, the original methods
are strongly improved in terms of accuracy.

Key words histograms – range query estimation – approximate OLAP
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1 Introduction

A histogram is a lossy compression technique used for representing efficiently
a relation. It is based on the partition of one of the relation attributes into
buckets and the storage, for each of them, of a few summary information in
place of the detailed one. Among others, some important examples of ap-
plication domains of histograms are the estimation of query selectivity [12,
14,18,13,22], temporal databases, where histograms are used for improving
the join processing [20], statistical databases, where histograms represent
a method for approximating probability distributions [15]. Recently, his-
tograms have received a new deal of interest, mainly because they can be
effectively used for approximating query answering in order to reduce the
query response time in on-line decision support systems and OLAP [17], as
well as the problem of reconstructing original data from aggregate informa-
tion [2] and, finally, in the context of Data Streams [9,1,7,10].

For a given storage space reduction, the problem of determining the
best histogram is crucial. Indeed, different partitions lead to dramatically
different errors in reconstructing the original data distribution, especially
for skewed data. To better explain the problem, consider a typical case of
recovering original data from a histogram: the evaluation of range queries.
Think to a histogram defined on the attribute X of a relation R as a set of
non-overlapping intervals of X covering all values assumed by X in R. To
each of these intervals, say B, the number of occurrences (called frequency)
in R, having the value of X belonging to the interval B, is associated (and
included into a data structure called bucket). A range query, defined on an
interval Q of X , evaluates the number of occurrences in R with value of
X in Q. Thus, buckets embed a set of pre-computed disjoint range queries
capable of covering the whole active domain of X in R (with active here
we mean attribute values actually appearing in R). As a consequence, the
histogram does not give, in general, the possibility of evaluating exactly
a range query not corresponding to one of the pre-computed embedded
queries. In other words, while the contribution to the answer coming from
the sub-ranges coinciding with entire buckets can be returned exactly, the
contribution coming from the sub-ranges which partially overlap buckets
can be only estimated, since the actual data distribution inside the buckets
is not available.

It turns out that it is convenient to define the boundaries of buckets in
such a way that the estimation error of the non-precomputed range queries
is minimized (e.g., by avoiding that large frequency differences arise inside
a bucket). In other words, among all possible sets of pre-computed range
queries, we find the set which guarantees the best estimation of the other
(non-precomputed) queries, once a technique for estimating such queries is
defined. This issue is being investigated since some decades, and a large
number of techniques for arranging histograms have been proposed [5,6,12,
14,18,8,13].
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All these techniques adopt simple methods for estimating non-precomputed
queries (actually, their portions partially overlapping buckets). The most
significant approaches are the continuous value assumption (often denoted
in this paper by CVA) [19], where the estimation is made by linear in-
terpolation on the whole domain of the bucket, and the uniform spread
assumption (denoted by USA) [18], which assumes that values are located
at equal distance from each other so that the overall frequency sum can be
equally distributed among them.

An interesting problem is understanding whether, by exploiting infor-
mation typically contained in histogram buckets, and possibly adding a few
summary information, the frequency estimation inside buckets, and then,
the histogram accuracy, can be improved. This paper focuses on this prob-
lem. Starting from the consideration of limits of CVA and USA studied in
[2], we propose to use some additional storage space in order to describe the
distribution inside a bucket in an approximate yet very effective way.

The first step is studying how to use these 32 additional bits in order to
maximize benefits in terms of accuracy. Our analysis shows that the trivial
technique of partitioning the bucket into 8 equal-size parts and encoding
each corresponding sum by 4 bits, leads to high scaling errors since it is
needed to represent each sum as a fraction of the overall sum of the bucket.
Our proposal then relies on the idea of storing partial sums internal to the
bucket in a hierarchical fashion, using a tree-like index (occupying 32 bits).
This way, the sum contained in a given tree node, can be represented as
a fraction of the sum contained in the parent node, which is a value (rea-
sonably) smaller than the overall sum of the bucket. It turns out that the
encoding length may decrease as the level of the tree increases. The benefits
we expect by applying this approach concern the scaling error. But a crucial
point is to decide how to arrange the tree, that is, how far going down in
depth with the index. Of course, the higher the resolution, the larger the
number of embedded precomputed range queries (internal to the buckets) is.
Hence, we expect better accuracy as the resolution increases. However, in-
creasing resolution reduces the number of bits available for encoding nodes,
and, thus, amplifies scaling errors. We study the above trade-off by con-
sidering the two possible (from a practical point of view) tree-indices with
32 bits, which we call 3LT and 4LT, with depth 3 and 4, respectively. The
analysis leads to the conclusion that the 4LT-index represents the best so-
lution.

The next step is then understanding whether this improvement of accu-
racy for the estimation inside buckets can really give benefits in terms of
accuracy of a histogram arranged by one of the existing techniques. This
problem is not straightforward: think, to mention the most evident aspect,
that 4LT buckets use 32 bits more than CVA ones, and, then, for a fixed
storage space, allows a smaller number of buckets. The last part of this
paper is thus devoted to evaluate the effects of the combination of the 4LT
technique with existing methods for building histograms. Through a deep
experimental comparative analysis conducted, for a fixed storage space, over
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several data sets, both synthetic and real-life, we show that 4LT improves
significantly the accuracy of the considered histograms. Therefore this pa-
per, beside giving the specific contribution of proposing a technique (i.e.,
the 4LT) for estimating accurately range queries internal to buckets, proves
the more general result that going beyond classical techniques (i.e., CVA
and USA) for the estimation inside buckets may give concrete improvements
of histogram accuracy.

It is worth noting that the choice of MaxDiff and V-Optimal histograms
for testing our method does not limit the generality of the 4LT index, which
is applicable to every bucket-based histogram1. Nevertheless, it is not lim-
ited the validity of our comparison, since MaxDiff and V-Optimal, despite
their non-young age, are still considered in this scientific community as point
of references due to their accuracy [11].

The paper is organized as follows. In Section 2, we introduce some pre-
liminary definitions. The comparison, both experimental and theoretical,
among a number of techniques including our tree-based methods (3LT and
4LT) for estimating range queries inside a bucket is reported in Section 3.
Therein, 3LT and 4LT are also presented. From this analysis it results that
4LT has the best performances in terms of accuracy. Thus, 4LT can be com-
bined to every bucked-based histogram for increasing its accuracy. Section
4 presents a large set of experiments, conducted by applying 4LT to two,
well-known methods, MaxDiff and V-Optimal [18]. Results show high im-
provements in the estimation of range queries w.r.t. to the original methods
— of course, the comparisons are made at parity of storage consumption
so that the revised methods use less buckets to compensate the additional
storage for the 4LT indices. The 4LT technique provides good results also
when combined with the very simple method EquiSplit, which consists in
dividing the histogram value domain into buckets of the same size so that
the bucket boundaries need not to be stored, thus obtaining a very high
number of buckets at the same compression rate. We draw our conclusions
in Section 5.

2 Basic Definitions

Given a relation R and an attribute X of R, a histogram for R on X
is constructed as follows. Let U = {u1, ..., um} be the set of all possible
values (the domain) of X and let ui < ui+1, for each i, 1 ≤ i < m. The
frequency set for X is the set F = {f(u1), ..., f(um)} such that for each i,
1 ≤ i ≤ m, f(ui) is the number of occurrences of the attribute value ui

in the relation R. The cumulative frequency set S = {s1, ..., sm} contains

the value si =
∑i

j=1 f(uj) for each attribute value ui. The value set V =
{ui ∈ U | f(ui) > 0} is the active domain of X in R as it consists of
all attribute values actually occurring in the relation R (non-null values).

1 There are histograms, like wavelet-based ones, that are not based on a set of
buckets.
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Given any ui in V , the spread di of ui ∈ V for 1 ≤ i < n is defined as 1 if
ui is the last non-null value or otherwise as the difference uj − ui, where uj

is the first non-null value for which uj > ui (i.e., di is the distance from ui

to the next non-null value).
A bucket B for R on X is a 4-tuple 〈inf, sup, t, c〉, where uinf and usup,

1 ≤ inf ≤ sup ≤ m, are the boundaries of the domain range pertaining to
the bucket, t is the number of non-null values occurring in the range, and
c =

∑sup
i=inf f(ui) is the sum of frequencies of all values in the range. We

say that the bucket B is 1-biased if usup is not null; if also uinf is not null,
then we say that B is 2-biased.

A histogram H for R on X is a h-tuple 〈B1, B2, ..., Bh〉 of buckets such
that: (1) for each 1 ≤ i < h, the upper bound of Bi precedes the lower bound
of Bi+1 and (2) u ∈ V implies u ∈ Bi, for some i, 1 ≤ i ≤ h. Condition
(1) guarantees that buckets do not overlap each other, and condition (2)
enforces that every non-null value be hosted by some bucket. Classically,
histograms have 2-biased buckets; sometime, for storage optimizations, 2-
biased buckets are made 1-biased by replacing the lower bound of each
bucket with the successive in the domain of the upper bound of the preceding
bucket.

A classical problem on histograms is: given a histogram H and a (range)
query of the form uj ≤ X ≤ ui, 1 ≤ j ≤ i ≤ m, estimate the overall

frequency
∑i

k=j f(i) in the range from uj to ui.

3 Estimation Inside a Bucket

In this section we deeply investigate the problem of frequency estimation
inside buckets. First of all, we present the classical two techniques (CVA and
USA), discuss their limitations and propose some simple alternatives. Then
we introduce a novel technique which is based on a 4-level tree index storing
approximate representations of the partial sums of 7 fixed bucket intervals.
Later we evaluate the accuracy of the various techniques by performing both
a theoretical analysis of errors and a number of experiments on some typical
sample distributions.

3.1 Notations and Problem Formulation

Let B = 〈inf, sup, t, c〉 be a bucket on an attribute X of a relation R. With-
out loss of generality, we assume that inf = 1 and sup = b so that we can
represent the frequency set inside the bucket as a vector F with indexes
ranging from 1 to b (frequency vector of B). Similarly, the cumulative fre-
quencies are represented by a vector S with indexes from 1 to b (cumulative
frequency vector of B). Hence, for each i, 1 ≤ i ≤ b, F [i] ≥ 0 is the frequency

of the value ui while S[i] =
∑i

j=1 F [j] is the cumulative frequency. Then
c = S[b] is the sum of all frequencies in the bucket; moreover, for notation
convenience, we assume that S[0] = 0.
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The problem of the estimation inside a bucket can be formulated as
follows: given any pair i, j, 1 ≤ i ≤ j ≤ b, such that d = j − i + 1 < b,
estimate the range query S[j]−S[i−1] =

∑j
k=i F [k]. We focus our attention

on the basic problem of estimating S[d] (then by assuming i = 1).

We introduce now the following notation. Given 1 ≤ i ≤ j ≤ 8, we
denote by δi/j the sum

∑y
i=x F [i], where x = 1+ ⌈ b

j · (i−1)⌉ and y = ⌈ b
j · i⌉.

δi/j represents the frequency sum of the i−th elements of the partition of B
into j equal size sub-ranges. Thus, the frequency sum for a bucket is δ1/1;
the frequency sums for two halves are δ1/2 and δ2/2; the frequency sums for
the 4 quarters are δi/4, 1 ≤ i ≤ 4; the frequency sums for the 8 eighths are
δi/8, 1 ≤ i ≤ 8, and so on.

3.2 Estimation Techniques

Next we illustrate the existing approximation techniques and discuss some
additional simple approaches.

Continuous Value Assumption (CVA). The estimation of S[d] is com-

puted as S̃[d] = d
b · c. In words, the partial contribution of a bucket to

a range query result is estimated by linear interpolation. As pointed out
in [4,2], the above estimation coincides with the expected value of the S[d]
when it is considered a random variable over the population of all frequency
distributions in the bucket for which the overall cumulative frequency is c.
Uniform Spread Assumption (USA). The estimation of S[d] is given

by S̃[d] =
(
1 + (t−1)·(d−1)

(b−1)

)
· c
t , where t is the number of non-null attribute

values in the bucket. The uniform spread assumption assumes that such
values are distributed at equal distance from each other and the overall fre-
quency sum is equally distributed among them. Obviously, in this case the
information t is necessary. We stress that, as discussed in [2], this estimation
is not supported by any unbiased probabilistic model so the assumption is
rather arbitrary.

1-Biased Estimation (1b). The possibly available information on the
number t of non-null elements cannot be exploited in the estimation unless
some further information on the frequency distribution is either available or
assumed (as for the USA estimation). We next show how to exploit the fact
that a bucket is often 1-biased (i.e., ub is not null) using the probabilistic
approach proposed in [2]. This approach assumes that the query is a random
variable on the population of all 1-biased frequency distributions having c
as overall cumulative frequency. The estimation of the range query S[d] for

a 1-biased bucket is given by S̃[d] = d
b−1 · t−1

t · c.

2-Split Estimation (2s). We split the bucket into two parts of the same
size and store the cumulative frequency of the first part, say δ1/2 = S[b/2]
— we therefore need additional storage space (typically 32 bits). We call
this method 2-split or 2s for short. Following this approach, the estimation
of the range query S[d] is given by 2 · db ·δ1/2 if d ≤ b

2 , δ1/2+2 · d−b
b ·(c−δ1/2),
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otherwise. Thus we use the CVA techniques for each of the two halves of
the bucket.
4-Split Estimation (4s). We split the bucket into 4 parts of the same
size (quarts) and store the approximate values of the cumulative frequency
of the each part δi/4, 1 ≤ i ≤ 4. In case the additional available space
is 32 bits, we use 8 bits for each approximate value, which is therefore

computed as δ̃i/4 = 〈
δi/4
c × (28 − 1)〉, where 〈x〉 stands for round(x). The

frequency sum for an interval d is estimated by adding the approximate
values of all first quarts that are fully contained in the interval plus the
CVA estimation of the portion of the last eighth that partially overlaps
the interval. Obviously, in order to reduce the approximation error, in case
d > b/2, it is convenient to derive the approximate value from the estimation
of the cumulative frequency in the complementary interval from d+ 1 to b.
8-Split Estimation (8s). It is analogous to the 4-Split Estimation. The
only difference is that the bucket is divided into 8 parts (eighths) and, for
each of them, we use 4 bits for storing the cumulative frequency. Thus, the
approximate value of the i-th eight (1 ≤ i ≤ 4) , is computed as δ̃i/8 =

〈
δi/8
c × (24 − 1)〉, where 〈x〉 stands for round(x).

3.3 The Tree Indices for Bucket Frequency Estimation

We now propose to use 32 bits as sophisticated tree-indices for providing an
approximate description of the cumulative frequencies in the bucket — this
index can be easily extended also to the case that more bits are available.
To this end, we store the approximate value of the cumulative frequency in
a suitable number of intervals inside the bucket. The first type of tree-index
is 3LT.
3 Level Tree index (3LT) The 3LT index uses 11 bits for approximating
the value of δ1/2, and 10 bits both for approximating δ1/4 and for δ3/4.

Let L1/2 be the 11-bits string corresponding to δ1/2, and let L1/4 and
L3/4 be the 10-bits strings corresponding, respectively, to δ1/4 and δ3/4.

The three L strings are constructed as follows:

L1/2 = 〈
δ1/2
δ1/1

· (211 − 1)〉; L1/4 = 〈
δ1/4
δ1/2

· (210 − 1)〉; L3/4 = 〈
δ3/4
δ2/2

· (210 − 1)〉

where, we recall, 〈x〉 stands for round(x).
The approximate values for the partial sums are given by:

δ̃1/1 = δ1/1 = s

δ̃1/2 =
L1/2

211−1
· δ̃1/1; δ̃2/2 = δ̃1/1 − δ̃1/2

δ̃1/4 =
L1/4

210−1
·δ̃1/2; δ̃2/4 = δ̃1/2− δ̃1/4; δ̃3/4 =

L3/4

210−1
·δ̃2/2; δ̃4/4 = δ̃2/2− δ̃3/4

Observe that the 32 bits index refers to a 3-level tree whose nodes store
directly or indirectly the approximate values of the cumulative frequencies
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8678 (8678)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

707 548 680 899 798 356 924 682 700 625 980 513 130 23 43 70

d1/ 2

d1/ 1

d2/ 2

d1/ 4 d2/ 4
d3/ 4 d4/ 4

3084 (3082)

2834 (2833) 2760 ( )2762 2818 (2819) 266 (265)

32 bits

1x11 bits

2x10 bits

5594 (5596)

Fig. 1 The 3-level tree.

for fixed intervals: the root stores the overall cumulative frequency c, the
two nodes of the second level store the cumulative frequencies for the two
halves of the bucket and so on.

Example 1 Consider the 3-level tree in Figure 1. The 32 bits store the fol-
lowing approximate cumulative frequencies: L1/2 = 〈55948678 · 2047〉 = 1320,

L1/4 = 〈28345594 · 1023〉 = 518, L3/4 = 〈 2818
8678−5594 · 1023〉 = 935.

We are now ready to solve the frequency estimation inside the bucket B.
Given d, 1 ≤ d < b, let i be the integer for which ⌈(i−1)/4·b⌉ ≤ d < ⌈i/4·b⌉.
Then the approximate value of F [d] is:

F̃ [d] = P (i) + P ′(i) + d−⌈(i−1)/4·b⌉
⌈i/4·b⌉−⌈(i−1)/4·b⌉ · δ̃i/4

where

P (i) =

{
δ̃1/2 if i > 2
0 if i ≤ 2

P ′(i) =






δ̃1/4 if i = 2

δ̃3/4 if i = 4
0 otherwise

Thus we use the interpolation based on the CVA only inside a segment of
length ⌈(1/4) ·b⌉. This component becomes zero at each distance d = ⌈i · b4⌉,
1 ≤ i < 4.

32 bits may be distributed in such a way that the granularity of the
tree-index increases w.r.t. 3LT. 4LT index has 4 levels and uses 6 bits for
the first level, 5 bits for the second one and 4 bits for the last level.
4 Level Tree index (4LT) We reserve 4 bits to store the approximate
value of each of the following 4 partial sums: δ1/8, δ3/8, δ5/8 and δ7/8 — let
Li/8, i = 1, 3, 5, 7, denote such 4-bits strings. We then use the remaining 16
bits as follows: the partial sums δ1/4 and δ3/4 are approximated by the 5-bit
strings L1/4 and L3/4, respectively, while the partial sum δ1/2 with a 6-bits
string L1/2. As a result, the larger the intervals, the higher is the number
of bits used. The 8 L strings are constructed as follows:

L1/2 = 〈
δ1/2
δ1/1

· (26 − 1)〉

Li/4 = 〈
δi/4
δj/2

· (25 − 1)〉 (i = 1 ∧ j = 1), (i = 3 ∧ j = 2)

Li/8 = 〈
δi/8
δj/4

· (24 − 1)〉 (i = 1 ∧ j = 1), (i = 3 ∧ j = 2),

(i = 5 ∧ j = 3), (i = 7 ∧ j = 4)
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100 ( )100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

7 5 18 0 6 10 0 6 0 6 9 5 13 0 8 7

d1/ 2

d1/ 1

d2/ 2

d1/ 4 d2/ 4
d3/ 4 d4/ 4

d1/ 8 d2/ 8 d3/ 8 d4/ 8 d5/ 8
d6/ 8 d7/ 8

d8/ 8

48 ( )48

30 ( )30 22 ( )22 20 (20) 28 ( )28

16 ( )1618 ( )1812 ( )12 6 ( )6 6 (7) 14 ( )13 13 ( )14 15 ( )14

32 bits

1x6 bits

2x5 bits

4x4 bits

53 ( )52

Fig. 2 The 4-level tree.

where, we recall, 〈x〉 stands for round(x).
The approximate values for the partial sums are eventually computed

as:

δ̃1/1 = δ1/1 = c

δ̃1/2 =
L1/2

26−1 × δ̃1/1
δ̃2/2 = δ̃1/1 − δ̃1/2
δ̃i/4 =

Li/4

25−1 × δ̃j/2 (i = 1 ∧ j = 1), (i = 3 ∧ j = 2)

δ̃i/4 = δ̃j/2 − δ̃i−1/4 (i = 2 ∧ j = 1), (i = 4 ∧ j = 2)

δ̃i/8 =
Li/8

24−1 × δ̃j/4 (i = 1 ∧ j = 1), (i = 3 ∧ j = 2)

(i = 5 ∧ j = 3), (i = 7 ∧ j = 4)

δ̃i/8 = δ̃j/4 − δ̃i−1/8 (i = 2 ∧ j = 1), (i = 4 ∧ j = 2)
(i = 6 ∧ j = 3), (i = 8 ∧ j = 4)

Similarly to the 3LT-index, the 4LT-index refers to a 4-level tree whose
nodes store directly or indirectly the approximate values of the cumulative
frequencies for fixed hierarchical intervals starting from the root which stores
the overall cumulative frequency c.

Example 2 Consider the 4-level tree in Figure 2. The 32 bits store the follow-
ing approximate cumulative frequencies: L1/2 = 33, L1/4 = 18, L3/4 = 13,
L1/8 = 6, L3/8 = 11, L5/8 = 5, L7/8 = 7.

Again, similarly to the 3LT-index, the frequency estimation inside the
bucketB can be obtained by exploiting the content of the nodes of the index.
Given d, 1 ≤ d < b, and the integer i which ⌈(i− 1)/8× b⌉ ≤ d < ⌈i/8× b⌉,
the approximate value of F [d] is:

F̃ [d] = P (i) + P ′(i) + P ′′(i) + d−⌈(i−1)/8×b⌉
⌈i/8×b⌉−⌈(i−1)/8×b⌉ × δ̃i/8

where

P (i) =

{
δ̃1/2 if i > 4
0 if i ≤ 4

P ′(i) =





δ̃1/4 if i = 3, 4

δ̃3/4 if i = 7, 8
0 otherwise
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P ′′(i) =

{
δ̃i−1/8 if i is even
0 otherwise

Thus we use the interpolation like in CVA only inside a segment of length
⌈(1/8)b⌉. This component becomes zero at each distance d = ⌈i × b/8⌉,
1 ≤ i < 8. We call the estimation 4-level tree or 4LT for short.

3.4 Worst-case Error Analysis

The approximation error for CVA, 1b, USA and 2s arises only from interpo-
lation. On the contrary, for other methods (i.e., 4s, 8s, 3LT and 4LT), the
scaling error due to bit saving is added to the interpolation error. However,
all methods but CVA, 1b and USA implement a equi-size division of the
bucket and 3LT and 4LT provide also an index over sub-buckets. We expect
that such a division into sub-buckets produces an improvement from the side
of the interpolation error. Indeed, sub-buckets increase the granularity of
summarization. In addition, we expect that index-based methods (i.e., 3LT
and 4LT), reduce the scaling error, since hierarchical tree-like organization
allows us to represent the sum inside a given sub-bucket, corresponding to
a node of the tree, as a fraction of the sum contained in the parent node,
instead of a fraction of the entire bucket sum (as it happens for the ”flat”
methods 4s and 8s). The worst-case analysis confirms the above observa-
tions. In particular we show that while CVA, 1b and USA are the same,
under the worst-case point of view, 4LT outperforms the other methods.

Results of our analysis are summarized in the following theorem. Recall
that, throughout the whole section, a bucket B of size b is given.

Theorem 1 Let F be the maximum frequency value occurring in B and let
assume that b mod 8 = 0. Then, the interpolation and scaling worst-case
errors of CVA, 1b, USA, 2s, 4s, 8s, 3LT and 4LT are the following:

error/method CVA 1b USA 2s 4s 8s 3LT 4LT

interpolation F ·b
4

F ·b
4

F ·b
4

F ·b
8

F ·b
16

F ·b
32

F ·b
16

F ·b
32

scaling 0 0 0 0 F ·b
29

F ·b
32

F ·b
212

F ·b
27

total F ·b
4

F ·b
4

F ·b
4

F ·b
8

F ·b
16

F ·b
16

F ·b
16

F ·b
32

Proof Let bM the size of the smallest sub-bucket produced by the method
M , where M is either CVA, 1b, USA, 2s, 4s, 8s, 3LT or 4LT. Observe that
bM = b for CVA, 1b and USA (since they do not produce sub-buckets),
while b2s =

b
2 , bM = b

4 for M = 4s or M = 3LT, bM = b
8 otherwise.

Consider first the interpolation error (by assuming that no scaling error
occurs).
Interpolation error bounds. It can be easily verified that the worst case
for a method M happens whenever both the following conditions hold:

(1) there is a smallest sub-bucket, say B (of size bM ) containing, in the first
half, bM

2 frequencies with value F , and, in the second half, bM
2 frequencies

with value 0, and
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(2) the range query involves exactly the first half of the sub-bucket B.

The proof of this part is conducted separately for each method, by deter-
mining the maximum absolute interpolation error:

CVA: In this case, bM = b, that is the sub-bucket coincides with the entire
bucket and the query boundaries are 1 and b

2 . The cumulative value of the

bucket is F · b2 . Under CVA, the estimated value of the query is
F · b

2

b · b2 , that

is F ·b
4 . The actual value of the query is F ·b

2 . Therefore the absolute error is
F ·b
4 .

1b: We obtain the same absolute error F ·b
4 . Indeed, being the first value of

the bucket F (i.e., not null), 1-biased estimation does not give additional
information w.r.t. CVA.

USA: Also in this case, bM = b, that is the sub-bucket coincides with the
entire bucket and the query boundaries are 1 and b

2 . The cumulative value

of the bucket is F · b2 . USA assumes that the b
2 non null values are located at

equal distance from each other, and each has the value F . As a consequence
the estimated value of the query is F · b

4 , since the query involves just half

non null estimated values. The actual value is F ·b
2 . Thus, the absolute error

is F ·b
4 , that is the same as CVA.

2s: In this case bM = b
2 . According to the case CVA, the absolute error is

F ·bM
4 , that is F ·b

8 .

4s and 3LT: Both 4s and 3LT produce sub-buckets of size b
4 . Thus, in these

cases bM = b
4 . Identically to the previous case, the absolute error is F ·bM

4 ,

that is F ·b
16 .

8s and 4LT: Both 8s and 4LT produce sub-buckets of size b
8 . Thus, in these

cases bM = b
8 . Identically to the previous case, the absolute error is F ·bM

4 ,

that is F ·b
32 .

Now we consider the scaling error.

Scaling error bounds. The proof that CVA, 1b, USA and 2s do not
produce scaling error is straightforward. Let us consider the other methods:

4s: Since each sub-bucket sum is encoded by 8 bits and is scaled w.r.t. the
overall bucket sum, the maximum scaling error is F ·b

29 .

8s: Since each sub-bucket sum is encoded by 4 bits and scaled w.r.t. the
overall bucket sum, the maximum scaling error is F ·b

25 = F ·b
32 .

3LT: In this case, the scaling error may be propagated going down along the
path from the root to the leaves of the tree. We may determine an upper
bound of the worst-case error by considering the sum of the maximum
scaling error at each level. Thus, we obtain the following upper bound:
F ·b

212
+F ·b

2

211 . Indeed, the maximum scaling error of the first level is F ·b
212 . The

above value is obtained by considering that the maximum sum in the half
bucket corresponding to the first level is F ·b

2 , and that going down to the
second level introduces a maximum scaling error obtained by dividing the
overall sum by 211. Thus, the maximum scaling error for 3LT is Θ(F ·b

212 )
(that is, the scaling error of the first level).
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4LT: For 4LT can be applied the same argumentation as 3LT, by obtaining
that the maximum scaling error is of the same order as the first level. That
is, Θ(F ·b

27 ), since the first level uses 6 bits.
The proof is thus completed.

It is worth noting that, as expected, 4LT and 8s produce the smallest
interpolation worst-case error, that is F ·b

32 . Considering also the results about
scaling error, the overall conclusion we may draw from the above analysis is
that the best two methods w.r.t. interpolation, that is 8s and 4LT, are not
the same in terms of scaling error. Indeed 4LT shows a relevant accuracy
improvement since the error goes from F ·b

25 of 8s to F ·b
27 of 4LT.

In the next subsection we shall perform a number of experiments to
provide additional arguments in favor of the superiority of 4LT estimation,
by performing also an average-case analysis of methods under a number
of meaningful data distributions. We shall not conduct experiments on the
CVA because we are aware that CVA uses 32 bits less and, therefore, could
reduce the size of the bucket, thus providing a better accuracy. Actually,
the performance analysis coincides with the one of 2s estimation, that is
CVA in half bucket.

3.5 Experiments inside a Bucket

In this section we report the results of a large number of experiments per-
formed with various synthetic data sets obtained with different distribu-
tions. We measure the accuracy of all the above mentioned methods in
estimating range queries inside a bucket. In particular, the methods consid-
ered are: USA, 1b, 2s, 8s, 3LT and 4LT. We observe that the space required
for storing a bucket is the same for all the considered methods. Experiments
are conducted on synthetic data generated according several data distribu-
tions. A data distribution is characterized by a distribution for frequencies
and a distribution for spreads. Frequency set and value set are generated
independently, then frequencies are randomly assigned to the elements of
the value set.

3.5.1 Test Bed. In this section we illustrate the test bed used in our ex-
periments. In particular, we describe (1) the data distributions, that is the
probability distributions used for generating frequencies in the tested buck-
ets, (2) the bucket populations, that is the set of parameters characterizing
bucket used for generating them under the probability distributions, (3) the
data sets, that is the set of samples produced by the combination of (1) and
(2), (4) the query set and error metrics, that is the set of query submitted
to sample data and the metrics used for measuring the approximation error.
Data Distributions:We consider four data distributions: (1) Zipf-cusp max
(0.5,1.0): Frequencies are distributed according to a Zipf distribution [23]
with the z parameter equal to 0.5. Spreads are distributed according to a
Zipf cusp max [16] (i.e., increasing spreads following a Zipf for the first half
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elements and decreasing spreads following a Zipf distribution for the remain-
ing elements) with z parameter equal to 1.0. (2) Zipf-cusp max(1.0,1.0).
(3) Zipf-cusp max(1.5,1.0). (4) Gauss-rand: Frequencies are distributed ac-
cording to a Gauss distribution with standard deviation 1.0. Spreads are
randomly distributed as well.

Bucket Populations: A population is characterized by the values of c
(overall cumulative frequency), b (the bucket size) and t (number of non-
null attribute values) and consists of all buckets having such values. We
consider 9 different populations divided into two sets, that are called t-var
and b-var, respectively.

Set of populations t-var. It is a set of 6 populations of buckets, all of them
with c = 20000 and b = 500. The 6 populations differ on the value of the
parameter t (t=10, 100, 200, 300, 400, 500), and are denoted by t-var(10),
t-var(100), t-var(200), t-var(300), t-var(400) and t-var(400), respectively.

Set of populations b-var. It is a set of 4 populations of buckets, all of them
with c = 20000. They differ on the value of the parameters b and t. We
consider 4 different values for b (b=100, 200, 500, 1000). The number of
non-null values t of each population is fixed in a way that the ratio t/b
is constant and equal to 0.2; so the values of t are 20, 40, 100 and 200.
The four populations are denoted by b-var(100), b-var(200), b-var(500) and
b-var(1000).

Moreover, a generic population whose parameter values are, say, c̄, b̄ and
t̄ (for c, b and t, respectively), is denoted by p(c̄, b̄, t̄).

Data Sets: As a data set we mean a sampling of the set of buckets be-
longing to a given population following a given data distribution. Each data
set included in the experiments is obtained by generating 100 buckets be-
longing to one of the populations specified above under one of the above
described data distributions. We denote a data set by the name of the data
distribution and the name of the population. For example, the data set
(Zipf-cusp max(0.5,1.0), b-var(200)) denotes a sampling of the set of buck-
ets belonging to the population of b-var corresponding to the value 200 for
the parameter b following the data distribution Zipf-cusp max(0.5,1.0).

We generate 23 different data sets classified as follows: (1) Zipf-t (i.e.,
Zipf data, different bucket density), containing the five data sets (Zipf-
cusp max(0.5,1), t-var(t)), for t=10, 100, 200, 300, 400, 500. (2) Zipf-b
(i.e., Zipf data, different bucket size), containing the four data sets (Zipf-
cusp max(0.5,1), b-var(b)), for b=100, 200, 500, 1000. (3) Gauss-t (i.e.,
Gauss data, different bucket density), containing the five data sets (Gauss-
rand, t-var(t)), for t=10, 100, 200, 300, 400, 500. (4) Gauss-b (i.e., Gauss
data, different bucket size), containing the four data sets (Gauss-rand, b-
var(b)), for b=100, 200, 500, 1000. (5) Zipf-z (i.e., Zipf data, different skew),
containing the three data sets Zipf-cusp max(z,1.0), p(20000,400,200)), for
z=0.5, 1.0, 1.5. Recall that p(20000,400,200) denotes the population char-
acterized by c = 20000, b = 400, t = 200.

Each class of data sets is designed for studying the dependence of the
accuracy of the various methods on a different parameter (parameter t mea-
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suring the density of the bucket, parameter b measuring the size of the
bucket and parameter z, measuring the data skew). For each data set, 1000
different samples obtained by permutation of frequencies was generated and
tested, in order to give statistical significance to experiments.
Query set and error metrics: We perform all the queries S[d], for all
1 ≤ d < b. We measure the error of approximation made by the various
estimation techniques on the above query set by using both:

– the average of the relative error 1
b−1

∑b−1
d=1 e

rel
d , where ereld is the relative

error of the query with range d, i.e., ereld = |S[d]−S̃[d]|
S[d] , and

– the normalized absolute error, that is the ratio between the average ab-
solute error and the overall sum of the frequencies in the bucket, i.e.
∑b−1

d=1
|S[d]−S̃[d]|

c·b

where S̃[d] is the value of S[d] estimated by the technique at hand.

3.5.2 Results of Experiments and Discussion. In this section we give a
qualitative discussion about the approximation error of the considered meth-
ods, excluding USA and 1-biased, about which we have already provided a
theoretical analysis in Section 3.4. First we consider methods working sim-
ply by splitting the original bucket, that are 2s, 4s and 8s. For all these
methods, the estimation error may arise from the following approximation
sources:

1. the linear interpolation (i.e., CVA), concerning the evaluation of the
query inside the “smallest” sub-buckets (for instance, in the case of the
4s, the smallest sub-buckets are the quarts of the bucket),

2. the numeric approximation, in case sums are stored by less than 32 bits
(note that only 2s is not affected by this error).

We call error of type 1 and 2, respectively, the above described components
of the approximation error.

Relative error vs data density. Concerning error of type 1, what we expect
is that, for all methods, it increases as data sparsity increases. Indeed, in
case of sparse data, the sum tends to concentrate in a few points, and this
reduces the suitability of linear interpolation to approximate the frequency
distribution. Moreover, we expect that such a component of the error de-
creases as splitting degree increases: for instance, in case of 8s, which splits
the bucket into 8 parts, we expect more accuracy (in terms of the error of
type 1) than the 2s method. The reason is that having smaller sub-buckets
means applying linear interpolation to shorter (and, thus, better linearly-
approximable) segments of the cumulative frequency distribution.

About error of type 2 we expect that both (i) it increases as the splitting
degree increases and (ii) it is independent of data sparsity. Claim (i) is
explained by considering that increasing the splitting degree means reducing
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the number of bits used for representing the sum of sub-buckets. Claim (ii)
is related to the numeric nature of the error.

The observations above show the existence of a trade-off between the
need of increasing the splitting degree for improving CVA precision on one
hand, and the need of using as more bits as possible for representing partial
sums in the bucket on the other hand. However, we expect that such a
trade-off is more evident in case of high splitting degree, that is, when the
error of type 2 is more relevant. For instance, recalling that the maximum
absolute error of type 2 is c

2k+1 , where k is the number of bits assigned to
smallest sub-buckets, being k = 4 for 8s and k = 8 for 4s, the maximum
absolute error of type 2 for 8s in case c = 20000 is 625 (i.e., about the 3%
of c) while it is 39 (i.e., a negligible percentage of c) for 4s.

Experiments confirm the above considerations. By looking at graphs of
Figure 3.(a) we may observe that for 2s and 4s the error decreases as the data
density increases. On the contrary, for 8s, the error is quasi-constant (slightly
increasing) in case of Zipf distributions, while it is slightly decreasing (but
much less quickly than 4s) in case of Gauss distribution (see Figure 4.(a)).
Concerning the comparison between 2s, 4s and 8s, we may observe in Figures
3.(a) that for low values of data density, as expected, accuracy of 8s is higher
than 4s and, in turn, accuracy of 4s is higher than 2s. But, as observed
above, for increasing data density, trends of 4s and 8s suffer, in a different
measure, the presence of the error of type 2. This appears quite evident
in Figure 3.(a), whereby we may note that 8s becomes worse than 4s from
about 210 non null elements on and the improving trend of 2s is considerable
faster than the other methods (since 2s does not suffer the error of type 2).

We observe that USA gives better estimation than 1b on Zipf data (see
Figures 3.(a)). Accuracy of USA becomes the worst when the data sets
follow the Gauss distribution (see Figures 4.(a)). This proves that the as-
sumption made by USA can be applicable for particular distributions of
frequencies and spreads, like those of data sets Zipf-t. Results obtained
on data sets distributed according a Gauss distribution confirm the above
claim: accuracy of USA becomes the worst when the data sets have a ran-
dom distribution as it happens for Gauss-t (see Figure 4.(a)).

Concerning 1b we may observe that the behaviours of 1b and 2s are
similar. As expected, the exploitation of the information that the bucket
is 1-biased does not give a significant contribution to the accuracy of the
estimation. Indeed, the knowledge of the position of just one element in the
bucket does not add in general appreciable information.

Consider now the usage of the tree-indices 3LT and 4LT. Recall that 3LT
has the same splitting degree of 4s, since both methods divide the bucket
into 4 sub-buckets. Possible difference in terms of accuracy between the two
methods may arise from error of type 2. Indeed, the tree-like organization
of indices allows us to represent the sum inside a given sub-bucket corre-
sponding to a node of the tree as a fraction of the sum contained in the
parent node, instead of the entire sum (as it happens for the ”flat” meth-
ods). Thus, we expect that tree-indices produce smaller errors of type 2.
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(b): Error for different values of b

Fig. 3 Experimental Results for data sets Zipf

However, as previous noted, 4s produces a negligible percentage of error of
type 2. This explains why 3LT and 4s basically present the same error (lines
in the graphs are almost entirely overlapped).

4LT has the same splitting degree as 8s (since both methods divide the
bucket into 8 sub-buckets). As a consequence, being appreciable the error
of type 2 of the 8s (as already discussed), we may expect improvements by
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the usage of 4LT. This is that results from experiments. 4LT has the best
performances: it shows only benefits deriving from the increasing of data
density (producing the reduction of error of type 1), with no appreciable
increasing of error of type 2. 4LT, thanks to the tree-like organization of
the sums, seems to solve the trade-off between increasing splitting degree
(for improving CVA precision) and controlling numeric error arising from
the usage of a reduced number of bits for representing sums.

Relative error vs bucket size and data skew. First consider populations b-
var. Recall that for such data sets we have maintained constant the data
density around 20%. Thus, increasing the bucket size means increasing also
non-null elements. While, as for previous experiments, error of type 2 is
independent of the bucket size, (even though all the above considerations
about the relationship between error of type 2, splitting degree and num-
ber of bits per smallest sub-buckets are still valid), we expect that CVA
precision suffers the variation of the bucket size. Indeed, on the one hand
the CVA precision decreases as the bucket size increases, since, for a larger
bucket, linear interpolation is applied to a larger segment of the cumulative
frequency. But, on the other hand, increasing the bucket size means increas-
ing the number of non-null elements (keeping constant the overall sum) and
this means reducing the probability that the sum is concentrated into a few
picks. Thus, whenever the cumulative frequency is smooth, linear interpo-
lation tends to give better results. Depending on data distribution, we may
observe either that the two opposite component compensate each other or
one prevails over the other. Indeed, experiments with Zipf data, correspond-
ing to Figure 3.(b), show that methods have a quasi-constant trend (with
a slight prevalence of the first component), while experiments conducted
on Gauss data, corresponding to Figure 4.(b), show a net prevalence of the
second component (all the methods present a decreasing trend for increas-
ing bucket size). Such experiments do not give new information about the
comparison between the considered methods, confirming substantially the
previous results. Again 4LT has the best performance.

Results of experiments conducted on the class of data sets Zipf-z, for
measuring the dependence of the accuracy of methods on the data skew are
reported in Figure 5. We note that all methods become worse as z increases
(as it can be intuitively expected). The behaviours of 1b and 2s are similar,
while 4LT shows the best performance.

As a final remark we may summarize the comparison between the con-
sidered methods concluding that the worst method is always 2s, followed by
8s and then by 3LT and 4s for sparse data. On the contrary, for dense data
3LT and 4s show better performance than 8s. Observe that 4s and 3LT have
basically the same accuracy. The best methods appears definitely 4LT.
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(a): Data sets Gauss-t: error for different values of t

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

number of non−null values

re
la

tiv
e 

er
ro

r 
(%

)

4LT
3LT
2s 
4s 
8s 
USA
1b 

(b): Data sets Gauss-D: error for different values of b

Fig. 4 Experimental Results for data sets Gauss

4 Applying the 4LT Index to the Entire Histogram

The analysis described in the previous sections suggests to apply the tech-
nique of the 4-level tree index to a whole histogram in order to improve its
accuracy on the approximation of the underlying frequency set. We stress
that the problem of investigating whether such an addition is really con-
venient is not straightforward: observe that 4LT buckets use 32 bits more
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Fig. 5 Data sets Zipf-z: dependence on data skew

than CVA ones, and, then, for a fixed storage space, allow a smaller num-
ber of buckets. In this section we show how to combine the 4LT technique
with classical methods for constructing histograms and we perform a large
number of experiments to measure the effective improvement given by the
usage of the 4LT. The advantage of the 4LT index is shown to be relevant
also when it is compared with buckets using CVA, that is, when the stor-
age space required by 4LT is larger than the original method. Moreover,
the 4LT index shows very good performances if it is combines with a very
simple method for constructing histograms, called EquiSplit, consisting on
partitioning the attribute domain into equal-size buckets. Let us start with
a quick overview of the most relevant methods proposed so far for the con-
struction of histograms.

4.1 Methods for Constructing Histograms

Besides the method used for approximating frequencies inside buckets, the
capability of a histogram of accurately approximating the underlying fre-
quency set strongly depends on the way such a set is partitioned into buck-
ets. Typically, criteria driving the construction of a histogram is the min-
imization of the error of the reconstruction of the original (cumulative)
frequency set from the histogram. Partition rules proposed in [18,14], try
to achieve this goal. Among those, we sketch the description of two well-
known approaches: MaxDiff and V-optimal (see [18,16] for an exhaustive
taxonomy). Note that these methods are defined for 2-histograms but are
in practice mainly used for 1-histograms to minimize storage consumption.
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MaxDiff. A MaxDiff histogram [5,18] of size h is obtained by putting a
boundary between two adjacent attribute values vi and vi+1 of V if the
difference between f(vi+1) · σi+1 and f(vi) · σi is one of the h − 1 largest
such differences (where σi denotes the spread of vi). The product f(vi) · σi

is said the area of vi.
V-Optimal. A V-Optimal histogram [18,14] gives very good performances.
It is obtained by selecting the boundaries for each bucket, infi and supi, 1 ≤
i ≤ n, so that

∑n
i=1 SSEi is minimal, where SSEi =

∑supi

j=infi
(f(j)−avgi)

2

and avgi is equal to the average frequency in the i-th bucket, thus the
cumulative frequency in the whole bucket divided by the size supi−infi+1.

We now propose to combine both methods, MaxDiff and V-Optimal,with
the 4LT index in order to have an approximate representation of frequency
distributions inside the buckets. We shall compare the so-revised methods
with the original ones with CVA estimation at parity of storage consump-
tion. The results will show that the 4LT index very much increases the esti-
mation accuracy of both methods. The additional estimation power carried
by the 4LT index even enables a very simple method like the one described
below to produce very accurate estimations.
EquiSplit. The attribute domain is split into k buckets of approximately
the same size b = ⌈m/k⌉. In this way, as the boundaries of all buckets
can be easily determined from the value b, we only need to store a value
for each bucket: the sum of all frequencies. This method has been first
introduced in [5] and, as the experimental analysis will confirm, it has very
good performances for low skewed data, while its performances get worse
in case of high skew.

4.2 Experiments on Histograms

In this section we shall conduct several experiments both on synthetic and
real-life data in order to compare the effectiveness of several histograms in
estimating range query size.

Experiments on Synthetic Data. First we present the experiments performed
on synthetic data. Below we describe data sets, error metrics and the query
set considered in our experiments.
Available Storage: Note that under CVA each bucket stores only two inte-
gers, while with the 4LT index each bucket needs three integers. Assuming
32 bits the storage space for an integer, given a fixed K number of bits
for the total storage space required for the whole histogram, both MaxDiff
and V-Optimal under CVA produce ⌊K

64⌋ buckets while both of them with

4LT indices only produce ⌊K
96⌋ buckets. On the other hand, a bucket for

EquiSplit just needs one integer (the sum of all the frequencies), while for
EquiSplit-4LT it needs two integers. Thus, for a fixed K number of bits for
the total storage space, EquiSplit with CVA produces ⌊K

32⌋ and EquiSplit

with 4LT indices produces ⌊K
64⌋ as MD CV A.
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For our experiments, we shall use a storage space, that is 42 four-byte
numbers to be in line with experiments reported in [18,14], which we repli-
cate. Using the above considerations, it can be easily realized that MaxDiff
with CVA, V-Optimal with CVA, and EquiSplit with 4LT indices produce
21 buckets, EquiSplit with CVA produces 42 buckets, and both MaxDiff
and V-Optimal with 4LT indices only produce 14 buckets.

Data Distributions: A data distribution is characterized by a distribu-
tion for frequencies and a distribution for spreads. Frequency set and value
set are generated independently, then frequencies are randomly assigned to
the elements of the value set. We consider 5 data distributions: (1) D1:
Zipf-cusp max(0.5,1.0). (2) D2 = Zipf-zrand(0.5,1.0): Frequencies are dis-
tributed according to a Zipf distribution with the z parameter equal to 0.5.
Spreads follow a ZRand distribution [16] with z parameter equal to 1.0 (i.e.,
spreads following a Zipf distributions with z parameter equal to 1.0 are ran-
domly assigned to attribute values). (3) D3 = Gauss-rand: Frequencies are
distributed according to a Gauss distribution with standard deviation 1.0.
Spreads are randomly distributed. (4) D4 = Zipf-cusp max(1.5,1.0). (5)
D5 = Zipf-cusp max(3.0,1.0).

Histograms Populations: A population is characterized by the value of
three parameters, that are T , D and t and represents the set of histograms
storing a relation of cardinality T , attribute domain size D and value set
size t (i.e., number of non-null attribute values).

Population P1. This population is characterized by the following values for
the parameters: D = 4100, t = 500 and T = 100000.

Population P2. This population is characterized by the following values for
the parameters: D = 4100, t = 500 and T = 500000.

Population P3. This population is characterized by the following values for
the parameters: D = 4100, t = 1000 and T = 500000.

Data Sets: Similarly to the experiments inside buckets, each data set in-
cluded in the experiments is obtained by generating under one of the above
described data distributions 10 histograms belonging to one of the popula-
tions specified below. We consider the 15 data sets that are generated by
combining all data distributions and all populations.
All queries belonging to the query set below are evaluated over the his-
tograms of each data set:

Query set and error metrics: In our experiments, we use the query
set {X ≤ d : d ∈ U} (recall that X is the histogram attribute and U
is its domain) for evaluating the effectiveness of the various methods. We
measure the error of approximation made by histograms on the above query
set by using the average of the relative error 1

Q

∑Q
i=1 e

rel
i , where Q is the

cardinality of the query set and ereli is the relative error , i.e., ereli = |Si−S̃i|
Si

,

where Si and S̃i are the actual answer and the estimated answer of the query
i-th of the query set.
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method/distr. D1 D2 D3 D4 D5

ES 0.79 1.69 10.61 3.89 57.63

ES 4LT 0.29 0.84 2.01 2.89 29.63

MD 4.29 19.37 11.65 7.02 31.46

MD 4LT 0.70 1.57 3.14 1.92 4.39

V O 1.43 5.55 10.6 5.16 21.57

V O 4LT 0.29 1.33 2.32 1.62 3.15

Table 1 Pop. 1: error for various methods.

method/distr. D1 D2 D3 D4 D5

ES 0.76 1.78 4.83 3.63 59.74

ES 4LT 0.28 0.84 6.40 1.40 31.12

MD 5.79 16.04 6.65 13.56 33.51

MD 4LT 0.80 1.60 2.32 2.36 4.87

V O 1.68 5.96 6.16 7.25 18.10

V O 4LT 0.32 1.41 4.85 1.53 3.12

Table 2 Pop. 2: error for various methods.

method/distr. D1 D2 D3 D4 D5

ES 0.47 0.87 2.31 7.54 66.41

ES 4LT 0.27 0.35 1.14 3.59 25.01

MD 8.37 2.89 3.30 3.46 25.01

MD 4LT 0.70 0.59 1.33 1.79 2.02

V O 1.77 2.16 2.82 3.37 7.78

V O 4LT 0.32 0.56 1.24 1.68 1.82

Table 3 Pop. 3: error for various methods.

4.2.1 Results of the Experiments. In Tables 1, 2 and 3 the results of ex-
periments conducted on all data sets are reported. We denote the methods
MaxDiff, V-Optimal and EquiSplit with CVA by MD, VO and ES, respec-
tively; these methods with 4LT indices are denoted by MD 4LT, VO 4LT,
ES 4LT.

The cross behavior of the various methods is similar for the three popu-
lations. Experiments confirm the good performance of the MaxDiff method
and, particularly, of V-Optimal but they also pinpoint that 4LT adds to
both methods relevant benefits. Indeed MD 4LT and VO 4LT show very
low errors. Also EquiSplit and EquiSplit-4LT have good performances. But,
as shown in Figure 6.(a), where the dependence of the estimation error on
data skew is plotted, these methods quickly get worse for high data skew.
Indeed, in such cases, the benefit given by the higher number of buckets
is lost because of the high skew inside buckets. In case of high skew, par-
tition rules play a central role, and the naive approach of EquiSplit is not
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method data set A data set B

ES 4.32 7.02

ES 4LT 0.97 3.59

MD 11.30 22.82

MD 4LT 1.63 1.25

V O 4.49 17.19

V O 4LT 1.86 3.05

Table 4 Errors obtained on real data.

suitable. Interestingly, we observe that the improving of MaxDiff and V-
Optimal by the usage of 4LT indices is relevant also for high skew, proving
the effectiveness of such indices. In Figure 6.(b) we show the dependence
of the accuracy of the methods on the amount of space. There, we consider
the data distribution D4 and the population P1 and generate 10 histograms
belonging to P1 according to D4 for different amounts of space. The aim
of this experiment is to study the behaviour of the various methods as the
compression factor increases. Clearly, when the available amount of space
increases, all methods behave well. The differences are more relevant for
values corresponding to high compression. Methods using 4TL are the best.
This can be intuitively explained by considering that in case of large buck-
ets the role of the approximation technique inside buckets becomes more
important than the rules followed for constructing buckets.

Experiments on Real-Life Data. We have performed further experiments
using real-life data. We have considered two data sets (that we denote by
Data Set A and Data Set B) obtained from the 1997 U.S. Census Statistics
[21], by choosing two attributes of the table Special District Governments,
having the following characteristics:
Data Set A: attribute name: Type Code, domain size: D = 998, number
of non-null attribute values: t = 787, cardinality: T = 34683.
Data Set B: attribute name: Function Code, domain size: D = 99, number
of non-null attribute values: t = 32, cardinality: T = 34683.

We use for each histogram the same amount of storage space, that is
21 four-byte numbers. Query set and error metrics are the same used for
experiments on synthetic data.
Results of the Experiments. As shown in Table 4, experiments on real
data confirm the results obtained with synthetic data. We note that 4LT
adds to MaxDiff and V-Optimal relevant benefits and both EquiSplit and
EquiSplit-4LT have good performances. Not surprisingly, for the data set
A, EquiSplit-4LT produces the smallest error. This can be explained by
considering that data of this set are rather uniform, and, in this case, as
discussed previously, the cheapest technique (in terms of storage space) gives
the best performances. In other words, the extra storage space required for
recording bucket boundaries of the more sophisticate techniques does not
give benefits due to the trivial data distribution.
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Fig. 6 Experimental Results

5 Conclusions

In this paper we have presented a technique for improving the frequency
estimation within each bucket of a histogram. This technique goes beyond
the simple methods used in the literature, that is, the continuous value as-
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sumption and the uniform spread assumption. Our method is based on the
addition of a 32 data item to each bucket organized into a 4-level tree index
(4LT, for short) that stores, in a bit-saving approximate form, a number of
hierarchical range queries internal to the bucket. We have shown both theo-
retically and experimentally that such an additional information effectively
allows us to better estimate range queries inside buckets. Interestingly, the
usage of 4LT on top of histograms built through well-know techniques like
MaxDiff and V-Optimal, outperforms such histograms in terms of accuracy.
This claim is proven in the paper through a large number of experiments
conducted on both synthetic and real-life data, where classical histograms
combined with 4LT are compared with the standard versions (i.e., with no
4LT) under several different data distributions at parity of consumed stor-
age space. It turns out that the price we have to pay in terms of storage
space by consuming 32 bits more per bucket w.r.t. CVA-based histograms is
overcome by the benefits given by the improvement of precision in estimat-
ing queries inside buckets. Thus, the main conclusion we draw is that the
4LT index may represent a general technique that can be combined with
any bucket-based histogram for significantly improving its accuracy.
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