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Abstract We consider the Entity Resolution (ER) problem
(also known as deduplication, or merge-purge), in which
records determined to represent the same real-world entity
are successively located and merged. We formalize the gen-
eric ER problem, treating the functions for comparing and
merging records as black-boxes, which permits expressive
and extensible ER solutions. We identify four important prop-
erties that, if satisfied by the match and merge functions, en-
able much more efficient ER algorithms. We develop three
efficient ER algorithms: G-Swoosh for the case where the
four properties do not hold, and R-Swoosh and F-Swoosh
that exploit the 4 properties. F-Swoosh in addition assumes
knowledge of the “features” (e.g., attributes) used by the
match function. We experimentally evaluate the algorithms
using comparison shopping data from Yahoo! Shopping and
hotel information data from Yahoo! Travel. We also show
that R-Swoosh (and F-Swoosh) can be used even when the
four match and merge properties do not hold, if an “approx-
imate” result is acceptable.

Keywords Entity resolution · Generic entity resolution ·
Data cleaning

1 Introduction

Entity Resolution (ER) (sometimes referred to as dedupli-
cation) is the process of identifying and merging records
judged to represent the same real-world entity. ER is a well-
known problem that arises in many applications. For exam-
ple, mailing lists may contain multiple entries representing
the same physical address, but each record may be slightly
different, e.g., containing different spellings or missing some
information. As a second example, consider a company that
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has different customer databases (e.g., one for each sub-
sidiary), and would like to consolidate them. Identifying match-
ing records is challenging because there are no unique iden-
tifiers across databases. A given customer may appear in dif-
ferent ways in each database, and there is a fair amount of
guesswork in determining which customers match.

Deciding if records match is often computationally ex-
pensive and application specific. For instance, a customer in-
formation management solution from a company 1 we have
been interacting with uses a combination of nickname al-
gorithms, edit distance algorithms, fuzzy logic algorithms,
and trainable engines to match customer records. On the lat-
est hardware, the speeding of matching records ranges from
10M to 100M comparisons per hour (single threaded), de-
pending on the parsing and data cleansing options executed.
A record comparison can thus take up to about 0.36ms, greatly
exceeding the runtime of any simple string/numeric value
comparison. How to match and combine records is also ap-
plication specific. For instance, the functions used by that
company to match customers are different from those used
by others to match say products or DNA sequences.

In this paper we take a “generic approach” for solving
ER, i.e., we do not study the internal details of the functions
used to compare and merge records. Rather, we view these
functions as “black-boxes” to be invoked by the ER engine.
(Incidentally, there has been a lot of work done on the design
of effective comparison and merge functions; see Section 6.)
Given such black-boxes, we study algorithms for efficiently
performing ER, i.e., we develop strategies that minimize the
number of invocations to these potentially expensive black-
boxes. In a way, our work is analogous to the design of ef-
ficient join algorithms, except that the operator we study is
the ER operator. An important component of our work is
that we identify a set of properties that, if satisfied by the
match and merge functions, lead to significantly more effi-
cient ER. For example, associativity of merges is one such
important property: If merges are not associative, the order
in which records are merged may impact the final result. An-

1 This company wishes to remain anonymous so that the perfor-
mance numbers we give here are not associated with their product
specifically.
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other notable feature is that we do not perform the matching
and merging separately, but tightly integrate them into a sin-
gle process.

In this paper we focus on “pairwise ER,” a common way
to resolve records in the commercial world. In particular, the
following assumptions are made:

– Pairwise decisions. Our black-box functions to match
and merge records operate on two records at a time. Their
operation depends solely on the data in these records,
and not on the evidence in other records. In general, it is
easier for application specialists to write pairwise record
comparison and merge functions, as opposed to, say, func-
tions that determine when a group of records may repre-
sent the same entity. Note that this requirement needs
only be true at the time ER is performed, and does not
preclude a prior training phase that considers the whole
dataset, or a representative sample. (For example, a first
phase can compute term frequencies for say all prod-
uct descriptions, and the frequencies can then be used
in comparing pairs of descriptions.) Thus, approaches
based on machine learning can be leveraged to match
or merge records.

– No confidences. We do not work with numeric similarity
values or confidences. Record comparison functions may
indeed compute numeric similarities (e.g., how close is
this name to that name), but in the end they make a yes-
no decision as to whether records match. Carrying confi-
dences in the ER computations could in principle lead to
more accurate decisions, but complicates processing sig-
nificantly. For instance, one must decide how to combine
confidences when records are merged. Also, confidences
may decrease upon merges, which makes it more chal-
lenging to compare the information in merged records
to that of base records. In a technical report [26], we
study generic ER with confidences, in an extension of the
framework presented here, where confidences are also
handled by the black-box match and merge functions.

– No relationships. In our model, records contain all the in-
formation that pertains to each entity (See Figure 1 for an
example). We do not consider a separate class of records
that describe relationships between entities. Of course,
some relationships can be represented in our model: for
example, say Fred is Bill’s brother. Then the record for
Fred may contain the value “brother: {Bill}”.

– Consistent labels. We assume that the input data has gone
through a schema-level integration phase, where incom-
ing data is mapped to a common set of well-defined la-
bels. For instance, we assume that a “salary” label means
the same thing, no matter what the source of the infor-
mation is. However, we do not impose a rigid structure
on records: we allow missing or multiple values for each
label.

The particular variant of the ER problem that we study
in this paper may not be the most sophisticated, but is used
frequently in practice, at least in the commercial world. In-
deed, IBM’s recently introduced “DB2 Entity Analytic Solu-

Name Phone E-mail
r1 {John Doe} {235-2635} {jdoe@yahoo}
r2 {J. Doe} {234-4358}
r3 {John D.} {234-4358} {jdoe@yahoo}

Fig. 1 An instance of records representing persons

tions” [21] (formerly SRD) provides an exact, order insen-
sitive solution to the ER problem (applied to human iden-
tities), which abstracts away from the particular functions
used to compare values. Another leading commercial of-
fering from Fair Isaac Corp. also encapsulates the match
process as pairwise Boolean functions [10]. The customer
information management company uses a pairwise match-
ing framework to which a combination of comparison al-
gorithms can be applied. Although these products have ex-
tra features, the core of their approach is the same as ours.
In fact, their commercial success originally motivated our
study of this particular approach to entity resolution (see
Section 6 for an overview of alternative techniques).

In summary, the ER variant we address here is relatively
simple, but as we will see, can still be very expensive to
compute. One fundamental cause of this complexity in ER
is that record merges can lead to new matches. To illustrate,
consider the records of Figure 1. Suppose that our black-box
record match function works as follows: The function com-
pares the name, phone and email values of the two records.
If the names are very similar (above some threshold), the
records are said to match. The records also match if the
phone and email are identical. For matching records, the
black-box merge function combines the names into a “nor-
malized” representative, and performs a set-union on the e-
mails and phone numbers. Note that phone and e-mail are
being treated as a unit for comparison purposes. We call such
a unit a feature (defined formally in Section 4). Thus, in this
example, there are two features: one is “name” and the other
is the pair “phone+ email”.

For our example, the black-box comparison function de-
termines that r1 and r2 match, but r3 does not match either
r1 or r2. For instance, the function finds that “John Doe” and
“J. Doe” are similar, but finds “John D.” not similar to any-
thing (e.g., because John is a frequent first name). Thus, r1

and r2 merge into a new record r4:

r4 {John Doe} {234-4358, {jdoe@yahoo}
235-2635}

Now notice that r4 now matches r3 since the same phone
and e-mail appear in both records. The combination of the
information in r1 and r2 led us to discover a new match with
r3, therefore yielding an initially unforeseen merge. Thus,
every time two records are merged, the combined record
needs to be re-compared with “everything else”.

Because record matching is inherently expensive, large
sets of input records are often divided into “buckets” using
application knowledge, and then ER is run on each bucket.
For instance, if we are resolving products, we may be able to
divide them using a “category” field. Thus, camera records
will only be matched against other cameras, CDs will only
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be matched against other CDs, and so on. If a record may
match records in more than one category, then typically co-
pies of the record are placed in multiple buckets. For exam-
ple, a cell phone with a camera may be placed in the camera
and the telephone buckets. (In our related work section we
briefly mention other ways in which domain knowledge can
be used to prune the search space.) In this paper we focus
on resolving records within one bucket, that is, we study al-
gorithms that must exhaustively consider all (within bucket)
possible record matches. This type of exhaustive algorithm
is invoked by a higher-level process that divides the data and
decides what buckets need to be resolved. And since buckets
can be quite large, it is still important to have as efficient an
algorithm as possible for exhaustive ER. (Note that if the se-
mantic function that divides records is imprecise, then over-
all matches may be missed, e.g., two wet-suits may be incor-
rectly placed in different buckets, say clothing and sporting
goods. In this paper we do not consider the accuracy of the
semantic function that partitions records.)

In summary, in this paper we make the following contri-
butions:

– We formalize the generic ER problem (Section 2). Un-
like other works that focus only on identifying matching
records (see related work in Section 6), we also include
the process of merging records and how it may lead to
new matches.

– We identify the ICAR properties (see Section 2.2) of
match and merge functions that lead to efficient strate-
gies.

– We present ER algorithms for three scenarios:
– G-Swoosh: The most general ER algorithm, for the

case where the 4 properties of match and merge func-
tions do not hold (Section 3.1).

– R-Swoosh: An algorithm that exploits the 4 prop-
erties of match and merge functions, and that per-
forms comparisons at the granularity of records (Sec-
tion 3.2).

– F-Swoosh: An algorithm that also exploits the 4 prop-
erties, and uses feature-level comparison functions
(Section 4.1). F-Swoosh avoids repeated feature com-
parisons and can be significantly more efficient than
R-Swoosh.

For each algorithm, we show that it computes the correct
ER result and that it is “optimal” in terms of the number
of comparisons performed. (What we mean by “optimal”
varies by scenario and is precisely defined in each sec-
tion.)

– We experimentally evaluate the algorithms using actual
comparison shopping data from Yahoo! Shopping and
hotel information data from Yahoo! Travel. Our results
show that G-Swoosh can only be used on relatively small
data sets when merges occur frequently, while R-Swoosh
and F-Swoosh can handle substantially more data. Fur-
thermore, when we know the features used for compar-
isons, we can use F-Swoosh and achieve between 1.1 and
11.4 performance improvement.

– Since G-Swoosh is so expensive, we investigate using
R-Swoosh even when the ICAR properties of match and
merge functions do not hold. In this case R-Swoosh does
not produce the correct answer, but we show that what R-
Swoosh produces is close to what G-Swoosh produces.
Thus, if the application can tolerate an approximate an-
swer, R-Swoosh and F-Swoosh are viable algorithms for
all scenarios.

2 Fundamentals of Generic ER

We first consider entity resolution at the granularity of records.
Our approach is very generic, since no assumption is made
on the form or data model used for records. Finer granularity
ER will be considered in Section 4.

2.1 Basic Model

We assume an infinite domain of records R. An instance
I = {r1, . . . , rn} is a finite set of records from R.

A match function M is a Boolean function over R ×
R, used to determine if two records r1 and r2 represent the
same real-world entity (in which case M(r1, r2) = true).
Such a match function reflects the restrictions we are making
that (i) matching decisions depend solely on the two records
being compared, and (ii) that such decisions are Boolean,
and not associated with any kind of numeric confidence. In
practice, such functions are easier to write than functions
that consider multiple records.

A merge function µ is a partial function fromR×R into
R, that captures the computation of merged records. Func-
tion µ is only defined for pairs of matching records (i.e., for
r1, r2 s.t. M(r1, r2) = true).

When M and µ are understood from the context, M(r1, r2)
= true (resp. M(r1, r2) = false) is denoted by r1 ≈ r2

(resp. r1 6≈ r2), and µ(r1, r2) is denoted by 〈r1, r2〉.
In order to define ER, we need to introduce two key in-

termediary notions: the merge closure of an instance, and
record domination.

Merge closure Intuitively, given an instance I , we would
like to find all pairs of matching records in I and merge
them, using the match and merge functions defined above.
The notion of extending I with all the records that can be
derived this way is called the merge closure of I:

Definition 2.1 Given an instance I , the merge closure of I ,
denoted Ī is the smallest set of records S such that:

– I ⊆ S
– For any records r1, r2 ∈ S, if r1 ≈ r2, then 〈r1, r2〉 ∈ S.

For any instance I , the merge closure of I clearly exists
and is unique. It can be obtained as the fixpoint of adding to
I merges of matching records.
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Note that the merge closure of a (finite) instance I may
be infinite. Intuitively, arbitrarily long chains of matches and
merges may keep producing new records. However, the match
and merge functions used in practice for ER do not exhibit
such a behavior. We will give in Section 2.2 some simple
properties, often satisfied by match and merge functions,
which guarantee that the merge closure is finite.

Domination The merge closure is only a first step towards
defining ER. The goal of ER is to determine the set of records
that best represent some real-life entities. Intuitively, if two
records r and r′ are about the same entity but r holds more
information than r′, then r′ is useless for representing this
entity. In this case, we say that r′ is dominated by r, denoted
r′ ¹ r. For instance, in our example, it is natural to con-
sider that r1 ¹ r4, as r4 contains all the values of r1, and
maybe also that r2 ¹ r4. Even though the name “J. Doe”
does not appear in r4 it can be considered as subsumed by
“John Doe”.

Formally, domination is defined to be any partial order
relation on records (i.e., a reflexive, transitive and anti-sym-
metric binary relation). The choice of a specific partial order
depends on the particular data and application at hand. Just
like the match and merge functions, we view domination as
a “black-box”. Hence, our focus is not on the accuracy of
the domination test. We will see in Section 2.2 that when
the match and merge function have some simple and natural
properties, then a canonical domination order can be defined
using them.

Domination on records can be naturally extended to in-
stances as follows:

Definition 2.2 Given two instances I1, I2, we say that I1

is dominated by I2, denoted I1 ¹ I2 if ∀r1 ∈ I1, ∃r2 ∈
I2, such that r1 ¹ r2.

It is straightforward to verify that instance domination
is a partial pre-order, i.e., that it is a reflexive and transitive
relation. Instance domination is not a partial order because it
is not anti-symmetric. Indeed, if r1 ¹ r2, the instances {r2}
and {r1, r2} are distinct yet dominate each other.

Entity Resolution We are now ready to define entity resolu-
tion formally:

Definition 2.3 Given an instance I , recall that Ī is the merge
closure of I . An entity resolution of I is a set of records I ′

that satisfies the following conditions:

1. I ′ ⊆ Ī ,
2. Ī ¹ I ′,
3. No strict subset of I ′ satisfies conditions 1 and 2

The following property establishes that ER is well-de-
fined. Proofs for this result and subsequent ones can be found
in Appendixes A and B.

Proposition 2.1 For any instance I , the entity resolution of
I exists and is unique. We denote it ER(I).

Although ER is well defined, just like the merge clo-
sure it may be infinite, and therefore not computable. Even
when it is finite, its computation may be very expensive. In-
tuitively, any finite sequence of merges may produce a differ-
ent record, and dominated records can only be removed after
all matches have been found. We will give in Section 3.1 an
algorithm that computes ER when the merge closure is fi-
nite, which is optimal in terms of the number of record com-
parisons it performs. Before that, we introduce in the next
section some natural properties often satisfied by the match
and merge functions, which ensure the ER computation is
tractable.

2.2 ICAR Match and Merge Properties

In practice, some M and µ functions have some desirable
properties that lead to efficient ER. We have identified the
following four such properties, which are quite intuitive.

1. Idempotence: ∀r, r ≈ r and 〈r, r〉 = r. A record always
matches itself, and merging it with itself still yields the
same record.

2. Commutativity: ∀r1, r2, r1 ≈ r2 iff r2 ≈ r1, and if r1 ≈
r2, then 〈r1, r2〉 = 〈r2, r1〉.

3. Associativity: ∀r1, r2, r3 such that 〈r1, 〈r2, r3〉〉 and 〈〈r1,
r2〉, r3〉 exist, 〈r1, 〈r2, r3〉〉 = 〈〈r1, r2〉, r3〉.

4. Representativity: If r3 = 〈r1, r2〉 then for any r4 such
that r1 ≈ r4, we also have r3 ≈ r4.

We call these the ICAR properties. We stress that not all
match and merge functions will satisfy these properties, but
it is nevertheless important to study the special case where
they hold.

Commutativity and idempotence are fairly natural prop-
erties to expect from match and merge functions. Associa-
tivity is also a reasonable property to expect from a merge
function. Note that if associativity does not hold, then it be-
comes harder to interpret a result record, since it not only
depends of the source records, but on the order in which they
were merged.

The meaning of the representativity property is that record
r3 obtained from merging two records r1 and r2 “repre-
sents” the original records, in the sense that any record r4

that would have matched r1 (or r2 by commutativity) will
also match r3. Intuitively, this property states that there is no
“negative evidence”: merging two records r1 and r2 cannot
create evidence (in the merged record r3) that would prevent
r3 from matching any other record that would have matched
r1 or r2.

Note also that we do not assume the match function to
be transitive (i.e. r1 ≈ r2 and r2 ≈ r3 does not necessarily
imply r1 ≈ r3). Transitive match functions were considered
by [27]. In practice, designing transitive match functions is
difficult.
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Merge domination When the match and merge functions sat-
isfy the ICAR properties, there is a natural domination order
that can be defined based on them, which we call the merge
domination:

Definition 2.4 Given two records, r1 and r2, we say that r1

is merge dominated by r2, denoted r1 6 r2, if r1 ≈ r2 and
〈r1, r2〉 = r2.

The properties of the match and merge functions defined
in the previous section guarantee that merge domination is a
valid domination partial order on records:

Proposition 2.2 Merge domination is a valid domination
order.

Note that all the properties we required for match and
merge functions are necessary to ensure that domination is a
partial order relation.

The merge domination order on records is useful to un-
derstand how records relate to each other. For instance one
can easily check that the following monotonicity conditions
hold:

(A) for any records r1, r2 such that r1 ≈ r2, it holds that r1 6
〈r1, r2〉 and r2 6 〈r1, r2〉, i.e., a merge record always
dominates the records it was derived from,

(B) if r1 6 r2 and r1 ≈ r, then r2 ≈ r, i.e., the match
function is monotonic,

(C) if r1 6 r2 and r1 ≈ r, then 〈r1, r〉 6 〈r2, r〉, i.e., the
merge function is monotonic,

(D) if r1 6 s, r2 6 s and r1 ≈ r2, then 〈r1, r2〉 6 s.

Interestingly, merge domination is a canonical domina-
tion order in the sense that it is the only one for which the
match and merge functions “behave well”, i.e., satisfy the
above monotonicity conditions:

Proposition 2.3 Given match and merge functions such that
the match function is reflexive and commutative, if a domi-
nation order ¹ exists such that the four monotonicity condi-
tions (A)-(D) above are satisfied with 6 replaced by ¹, then
the ICAR properties of Section 2.2 are also satisfied, and ¹
coincides with the merge domination order 6.

In some sense, the above proposition justifies the prop-
erties we required from match and merge functions, as they
capture the requirements needed to make entity resolution
a monotonic process. We believe that checking our simple
properties on match and merge functions is more practical
than looking for an order for which the monotonicity condi-
tions (A)-(D) are satisfied. In the rest of the paper, whenever
the match and merge function satisfy the ICAR properties of
Section 2.2, we consider merge domination to be our default
domination order.

ER with ICAR properties When the match and merge func-
tions satisfy the ICAR properties above, then the ER process
itself has interesting computational properties: it is guaran-
teed to be finite, records can be matched and merged in any
order, and dominated records can be discarded anytime. We
next define the notion of maximal derivation sequence, and
then use it to state these properties precisely.

Definition 2.5 Given an instance I , a derivation step I → I ′

is a transformation of instance I into instance I ′ obtained by
applying one of the following two operations:

– Merge step: Given two records r1 and r2 of I s.t. r1 ≈
r2, and r3 = 〈r1, r2〉 /∈ I , I ′ = I ∪ {r3},

– Purge step: Given two records r1 and r2 of I s.t. r1 6
r2, I ′ = I − {r1}.

A derivation sequence I
∗→ In is any non-empty sequence of

derivation steps I → I1 → . . . → In. A derivation sequence
I
∗→ In is maximal if there exists no instance In+1 s.t. In →

In+1 is a valid derivation step.

The following theorem (proven in appendix) states the
properties of ER:

Theorem 2.1 Given match and merge functions that are idem-
potent, commutative, associative and representative, for any
instance I , ER(I) is finite, and any maximal derivation se-
quence starting from I computes ER(I).

Union Class of Match and Merge Functions There is a broad
class of match and merge functions that satisfy the ICAR
properties because they are based on union of values. We
call this class the Union Class. The key idea is that each
record maintains all the values seen in its base records. For
example, if a record with name {John Doe} is merged with a
record with name {J. Doe}, the result would have the name
{John Doe, J. Doe}. Unioning values is convenient in prac-
tice since we record all the variants seen for a person’s name,
a hotel’s name, a company’s phone number, and so on. Keep-
ing the “lineage” of our records is important in many appli-
cations, and furthermore ensures we do not miss future po-
tential matches. Notice that the actual presentation of this
merged record to the user does not have to be a set, but can
be any string operation result on the possible values (e.g.,
{John Doe}). Such a strategy is perfectly fine as long as the
records only use the “underlying” set values for matching
and merging. Two records match if there exists a pair of val-
ues from the records that match. In our example, say the
match function compares a third record with name {Johnny
Doe} to the merged record obtained earlier. If the function
compares names, then it would declare a match if Johnny
Doe matches either one of the two names. The match and
merge functions in this Union Class satisfy the ICAR prop-
erties as long as the match function is reflexive and commu-
tative (two properties that most functions have):
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Proposition 2.4 Given match and merge functions such that
the match function is reflexive and commutative, if the match
and merge functions are in the Union Class, the ICAR prop-
erties are satisfied.

Beyond the Union Class, there are other functions that
while not strictly in this class, also record in some way all
the values they have encountered. For example, a record
may represent the range of prices that have been seen. If
the record is merged with another record with a price out-
side the range, the range is expanded to cover the new value.
Thus, the range covers all previously encountered values. In-
stead of checking if the prices in the records match exactly,
the match function checks if price ranges overlap. It can be
shown that match and merge functions that keep all values
explicitly or in ranges also satisfy the ICAR properties.

In this section, we proposed four simple and natural con-
ditions on merge and match functions for records: commu-
tativity, idempotence, representativity, and associativity. We
showed that under these conditions, records and instances
can be meaningfully ordered through merge domination, and
that ER is finite and independent from the order in which
records are processed. We believe that the ICAR properties
above are important in practice, for two main reasons:
(a) There are many applications where these properties hold.

For example, in some intelligence gathering applications,
values are unioned during merges, to accumulate all ev-
idence. One can show that such “additive” applications
use Union Class match and merge functions, satisfying
the properties. The properties also hold if values can be
combined (when two record are merged) into a “repre-
sentative value” that captures all matches with values it
represents.

(b) By understanding the huge performance advantages that
the properties give us we believe that application de-
signers will be strongly incentivized to develop func-
tions that have the properties. In some cases, achieving
the properties involves small changes. For example, in
one application we ran across a match function that was
not idempotent. However, it was easy to make the func-
tion idempotent by adding an explicit check for the case
where both input records had identical content. In other
cases, obtaining good functions may involve more com-
plex changes. But without knowing what efficient algo-
rithms exist for the case where the properties hold, the
designer may never put the effort into developing good
functions.
In the next two sections, we propose actual algorithms

to compute ER for both the cases when the properties do
not hold and when they do. The performance advantage of
having the properties satisfied will be illustrated by our ex-
periments in Section 5.

3 Record-Level ER Algorithms

We start by presenting G-Swoosh, an algorithm that does not
require the match and merge functions to satisfy any partic-

1: input: a set I of records
2: output: a set I ′ of records, I ′ = ER(I)
3: I ′ ← I; N ← ∅
4: repeat
5: I ′ ← I ′ ∪N ; N ← ∅
6: for all pairs (r, r′) of records in I ′ do
7: if r ≈ r′ then
8: merged ← 〈r, r′〉
9: if merged 6∈ I ′ then

10: add merged to N
11: end if
12: end if
13: end for
14: until N = ∅
15: for all pairs (r, r′) of records in I ′ where r 6= r′ do
16: if r′ ¹ r then
17: Remove r′ from I ′

18: end if
19: end for

Alg. 1: The BFA algorithm for ER(I)

ular properties. As ER may be infinite, G-Swoosh may not
terminate, and in general is expensive, but we show that it is
cost optimal for this very general scenario. We then present
R-Swoosh, an algorithm that applies when the match and
merge functions satisfy the ICAR properties, and which is
also optimal for that situation.

3.1 The G-Swoosh Algorithm

To motivate G-Swoosh, we first present a simple, naive al-
gorithm that makes no assumptions about the match and
merge functions. As defined in Section 2.1, ER(I) is the set
of all non-dominated records that can be derived from the
records in I , or from records derived from them. Algorithm 1
presents a “brute force” algorithm, BFA, that performs ER.
The proposition that follows states the correctness of BFA.
Its proof is given in Appendix.

Proposition 3.1 For any instance I such that Ī is finite, BFA
terminates and correctly computes ER(I).

To illustrate how BFA works, consider the instance of
Figure 2. The initial instance I is represented by the records
in the left column. Matching (similar) records are enclosed
by a rectangle, and the arrow points to the resulting merged
record. The horizontal order corresponds to the progression
of the algorithm.

In the first iteration, BFA compares all possible pairs of
records in the initial I , generating the new records r12 and
r23. Since new records were generated, the algorithm contin-
ues with a second iteration, in which 7 records are compared
(the 5 original ones plus the two new ones). Thus, in this sec-
ond iteration, the new record r123 is generated. Again, since
a new record was found, we iterate with I ′ now containing 8
records generating r1235. The fourth and last iteration finds
no matches. Finally, BFA eliminates all dominated records
and terminates.
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Fig. 2 “Brute force” ER on a simple instance

It is clear that BFA is performing a large number of match
calls, and that many of them are unnecessary. For example,
note that records r4 and r5 are compared a total of four
times. The three redundant comparisons could be avoided
by “remembering” results of previous match calls. The G-
Swoosh algorithm (Algorithm 2) avoids all these unneces-
sary comparisons, not by explicitly remembering calls, but
by intelligently ordering the match and merge calls.

1: input: a set I of records
2: output: a set I ′ of records, I ′ = ER(I)
3: I ′ ← ∅
4: while I 6= ∅ do
5: r ← a record from I
6: remove r from I
7: for all records r′ in I ′ ∪ {r} do
8: if r ≈ r′ (resp. r′ ≈ r) then
9: merged ← 〈r, r′〉 (resp. 〈r′, r〉)

10: if merged 6∈ I ∪ I ′ ∪ {r} then
11: add merged to I
12: end if
13: end if
14: end for
15: add r to I ′

16: end while
17: Remove dominated records from I ′ (See lines 15-18 in BFA)
18: return I ′

Alg. 2: The G-Swoosh algorithm for ER(I)

G-Swoosh works by maintaining two sets. I is the set
of records that have not been compared yet, and I ′ is a set
of records that have all been compared with each other. The
algorithm iteratively takes a record r out of I , compares it to
every record in I ′, and then adds it to I ′. For each record r′

that matches r, the record 〈r, r′〉 is added to I .
Returning to the example of Figure 2, r1 is first added

to I ′ (there is nothing yet to compare against). Next, r2 is
compared against all records in I ′, i.e. against r1. This step
generates r12, which is placed in I . At the same time, r2

is added to I ′. Next, r3 is compared against I ′ = {r1, r2},
adding r23 to I and r3 to I ′. Records r4, r5 and r12 gen-
erate no matches, so at this point we have I = {r23} and
I ′ = {r1, r2, r3, r4, r5, r12}. When we compare r23 against

I ′ we add r123 to I and r23 to I ′. We continue in this fashion
until I is empty and I ′ contains Ī (i.e., all the records shown
in Figure 2), then dominated records are removed and the
algorithm terminates. It is easy to see that in this example
G-Swoosh performs many fewer comparisons than BFA.

Note incidentally that if the commutativity and idempo-
tence properties hold, we can eliminate many comparisons
in G-Swoosh (as well as in BFA). Idempotence and commu-
tativity of the match and merge functions are easy to satisfy
in most applications. If they hold, in G-Swoosh we can elim-
inate one of the two match calls in line 8, and one of the two
merge calls in line 9. Furthermore, we do not need to match
r against itself (line 7).

Proposition 3.2 For any instance I such that Ī is finite, G-
Swoosh terminates and computes ER(I).

Even though G-Swoosh may not terminate (because the
match and merge functions are so general), it is an optimal
algorithm, in terms of the number of record comparisons,
our main cost metric.

Theorem 3.1 G-Swoosh is optimal, in the sense that no al-
gorithm that computes ER(I) makes fewer comparisons in
the worst case.

Notice that in our evaluation of BFA and G-Swoosh we
have used the number of calls to the match function as the
main metric. We believe this metric is the right one. Each
record comparison may be quite complex, taking into ac-
count several data values and using costly techniques. More-
over, the number of record comparisons is roughly quadratic
in the number of records in the original instance (see Sec-
tion 5). (As an aside, note that the quadratic cost is not spe-
cific of our approach; for instance, machine learning ap-
proaches, overviewed in Section 6, need to compute simi-
larities for at least all pairs of records.) By contrast, merg-
ing records is generally less costly, as it often relies on sim-
ple syntactic rules. It is also less of a discriminating factor
between algorithms, since for a given instance they will all
roughly perform the same merges.

Another cost factor in G-Swoosh is the elimination of
dominated records at the end. Depending on how domina-
tion is defined, this step can also be quite expensive, but is
similar for both BFA and G-Swoosh algorithms.

If domination is a “black-box” partial order, then we
can only eliminate dominated records after we generate the
merge closure Ī (Definition 2.1). However, if we know how
domination is checked, we may be able to perform dom-
inated record elimination more efficiently. In particular, if
we know that dominated records can never generate undom-
inated records, then we can eliminate dominated records as
soon as they are found. Note that this informal property ex-
actly corresponds to monotonicity properties B and C of
Proposition 2.2. There are actually several ways to exploit
this property to improve G-Swoosh by eliminating domi-
nated records early, but we do not discuss them here.
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1: input: a set I of records /* Initialization */
2: output: a set I ′ of records, I ′ = ER(I)
3: I ′ ← ∅
4: while I 6= ∅ do /* Main loop */
5: currentRecord ← a record from I
6: remove currentRecord from I
7: buddy ← null
8: for all records r′ in I ′ do
9: if M(currentRecord, r′) = true then

10: buddy ← r′

11: exitfor
12: end if
13: end for
14: if buddy = null then
15: add currentRecord to I ′

16: else
17: r′′ ←< currentRecord, buddy >
18: remove buddy from I ′

19: add r′′ to I
20: end if
21: end while
22: return I ′

Alg. 3: The R-Swoosh algorithm for ER(I)

3.2 The R-Swoosh Algorithm

In this section we assume that the ICAR properties defined
in Section 2.2 hold. Furthermore, we assume that merge dom-
ination (Definition 2.4) is used as the definition of domina-
tion. As we argued earlier, these properties hold naturally
in some applications. In other applications the match and
merge properties may not initially satisfy these properties,
but with small changes to the functions we may achieve the
properties.

The properties simplify ER processing in two significant
ways:

1. When two records r1 and r2 match to yield r12, we are
able to immediately discard the source records r1 and r2,
since whatever records can be derived from r1 or r2 can
now be derived from r12.

2. If we eliminate records used in a merge, we do not need
to explicitly eliminate dominated records. To see this
fact, say we run ER without explicitly eliminating domi-
nated records at the end. In particular, say two records r1

and r2 appear in the final answer, and r1 6 r2. By def-
inition of merge domination, r1 ≈ r2 and 〈r1, r2〉 = r2.
Thus, the comparison of r1 and r2 should have generated
merged record r2, and r1 should have been eliminated.

We use these two ideas in the R-Swoosh algorithm, given
in Algorithm 3. To illustrate the operation of R-Swoosh, we
revisit the example of Figure 2. Processing is similar to that
of G-Swoosh, except when we find a match, we immediately
discard both source records. In particular, when we find that
r in I matches r′ in I ′, we do not need to compare r to
any other I ′ records: we simply remove r from I and r2

from I ′ and add the new records to I . For example, after r1

and r2 are processed, I ′ is empty (in G-Swoosh it contained
{r1, r2}) and I = {r3, r4, r5, r12}. When we next compare
r3 against I ′ we do not perform any comparisons and just

add r3 to I ′. The final result is I ′ = {r4, r1235}. At the end,
there is no need to remove dominated records.

With R-Swoosh we clearly avoid many comparisons that
G-Swoosh would have performed. For instance, once r1 is
merged into r12, we do not need to compare r1 to any other
records. Furthermore, we avoid generating some intermedi-
ate merged records. For example, R-Swoosh never generates
r23; r3 merges directly with r12 to generate r123.

The following proposition establishes the correctness of
the R-Swoosh algorithm.

Proposition 3.3 Given an instance I , the R-Swoosh algo-
rithm computes ER(I).

As R-Swoosh randomly picks the next record from the
set I , this leaves room for improvement. In some cases, addi-
tional knowledge can be used to influence the order in which
records are picked (e.g. through sorting the records, in the
style of [19]), so that the number of comparisons is reduced
on average. However, if we have no knowledge of what order
is best, then R-Swoosh is “optimal” in the sense that even on
the most unfavorable instances, R-Swoosh performs at least
as well as any other possible algorithm.

Proposition 3.4 For any instance I of n records such that
entity resolution yields j records, R-Swoosh performs at most
(n − 1)2 − (j−1)(j−2)

2 record comparisons. There exists an
instance (with n records, yielding j records) on which any
algorithm performs at least as many record comparisons.

4 Feature-Level ER

Although R-Swoosh is optimal in terms of record compar-
isons, it may still perform redundant comparisons of the un-
derlying values. To see why, recall the example we used in
the introduction, corresponding to the instance of Figure 1.
The names “John D.” and “John Doe” are first compared
when records r1 and r3 are compared, and then recompared
when r4 (obtained from merging r1 and r2) and r3 are com-
pared. More generally, different records may share common
values, therefore the same comparisons may be performed
redundantly.

We classify value comparisons based on their outcome:
Positive comparisons are the ones that succeed (e.g., the
names “John Doe” and “J. Doe” are similar), while nega-
tive comparisons fail (e.g., “John D.” and “John Doe” do not
match in our example). Our goal is to avoid repeating both
positive and negative value comparisons.

To avoid these redundant comparisons, we refine the gran-
ularity of the match function, to take into account the con-
tents of records. We break down the process of comparing
records into several fine-grained comparisons on features
(data subsets) of the compared records. In the previous ex-
ample, the name is such a feature, while the combination of
e-mail and phone number forms another feature. For each
feature, a specific comparison function is used. Two records
match if one or more of their features match. In a nutshell,
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the F-Swoosh algorithm will improve performance by tak-
ing into account these feature comparisons, and by keeping
track of encountered values in order to avoid positive and
negative redundant comparisons.

More formally, we consider a finite set of features f1,. . .,
fm. Each feature fi is a function on records that returns
a set of feature values from some domain Dfi

. For exam-
ple, since the second feature f2 of our example above is
“phone+email,” f2(r4) = {{234-4358, jdoe@yahoo}, {235-
2635, jdoe@yahoo}}. Each feature fi comes with a boolean
match function Mfi

defined over Dfi
× Dfi

. Two records
r1, r2 match iff there exists a feature fi and feature values
v1, v2 s.t. v1 ∈ fi(r1), v2 ∈ fi(r2) and Mfi

(v1, v2) = true.
Thus, record matching is defined as an existentially quan-

tified disjunction over feature matches. One could think of
the scenario where record matching can be done by any one
of several match functions. Suppose two records match if
they are similar according to either an edit distance algo-
rithm or a fuzzy logic algorithm. In this case, the entire match-
ing is a disjunction of the two match functions. On the other
hand, if the individual match functions by themselves are
not powerful enough to determine matches, one may want
to consider more complex combinations of features, e.g.,
involving conjunction, universal quantification, or negation.
However, the disjunctive case we consider here leads to sim-
ple bookkeeping, since one can determine if records match
by comparing one feature at a time. We believe that with
more complex conditions, bookkeeping will be significantly
more complex, and more storage will be necessary, slowing
down the performance of F-Swoosh. Bookkeeping becomes
more complex because we can no longer store each feature
separately as we do in F-Swoosh based on the assumption
that a single feature match implies an entire record match.
Managing several features together also requires larger data
structures, which take longer to access.

Just as for R-Swoosh, we still require that the ICAR
properties of Section 2.2 be satisfied. We need to make sure
that the feature-level match functions Mfi are such that their
combination yields a record-level match function that satis-
fies these properties. A simple sufficient condition is to have
an idempotent, commutative and associative merge function,
and have each of the Mfi be idempotent, commutative and
representative for this merge function.

4.1 The F-Swoosh Algorithm

We now present the F-Swoosh algorithm. As its name sug-
gests, F-Swoosh has a similar structure to that of R-Swoosh.
The set I ′ is here also used to incrementally build a set of
non-dominated, non-matching records. The main difference
is that for each feature, a hash table and a set are used to keep
track of previously seen feature values and save redundant
positive and negative comparisons, respectively. An impor-
tant point is that these data structures have a size which is
only linear in the size of the data. Simply recording the out-
come of all previously performed match comparisons would

occupy a quadratic space, which is unacceptable for large
datasets. The F-Swoosh algorithm is given in Algorithm 4.
We first introduce the data structures used by F-Swoosh, be-
fore discussing the algorithm itself and its properties.

For each feature fi, we maintain a data structure Pfi that
avoids repeating positive value comparisons for fi. Pfi

is a
hash table that records all previously seen values of fi, and
associates with each feature value v the record r 2 that cur-
rently “represents” v. The record r is either the first record
where feature value v appeared for feature fi, or one that was
derived from it through a sequence of merge steps. If there is
no such record, i.e., feature value v is seen for the first time,
Pfi

(v) returns null. Note that there can be at most one record
associated with the feature value v for fi; if more than one
record has been seen, the records have been merged into the
record returned by Pfi

(v). The hash table is updated by a
command of the form Pfi

(v) ← r. If the feature value v (for
fi) had not been recorded earlier, then this command adds
the pair (v, r) to the table. If v had been seen (for fi), then
the command replaces the (v, r′) pair by (v, r), indicating
that the old record r′ has been merged into r.

For each feature fi, we also maintain a data structure Nfi

aimed at avoiding redundant negative value comparisons.
Nfi is a set that records the feature values of fi that were
compared against all the feature values of records in I ′ and
did not match any of them (line 31). By representativity, this
implies that if the record currently processed by the algo-
rithm has an fi value that appears in Nfi , then this value
need not be further compared (line 23).

Algorithm When a new record is processed by F-Swoosh,
the algorithm first registers any new feature values (lines 12-
14), then checks if any of the values of the record already ap-
peared in a different record (lines 15-20). If this is the case,
the record will be merged with the one pointed by the corre-
sponding entry in the Pfi hash table. If not, the feature values
of the record are compared to those of the records in I ′ (lines
21-34), and if no match is found, the record is inserted in I ′.
As for R-Swoosh, when a match is found, the old records
buddy and currentRecord are purged, while the merged
record is placed in I for processing. Additionally, the Pfi

hash tables are updated so that feature values that previously
pointed to buddy or currentRecord now point to the new
merged record (lines 42-44).

As an optimization, and to avoid scanning the hash tables
in this last step, one can keep an “inverted” hash table that
maintains, for each record, a list of (features, feature value)
pairs that point to it. This data structure costs space linear
in the size of the instance, and its maintenance is straight-
forward. This optimization was used in the code that ran our
experiments.

To illustrate the operation of F-Swoosh, suppose we have
the three records r1 = {name: John Doe, phone: 235-2635,
email: jdoe@yahoo}, r2 = {name: Fred, phone: 678-1253,
email: fred@yahoo}, and r3 = {name: John Doe, phone:

2 In fact, we slightly abuse notation, as this is a pointer to the corre-
sponding record, and not the record itself.
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235-2635, email: jdoe@microsoft}. Suppose that there are
two features “name” and “phone+email,” and that two records
match if their names are similar or if both their phones and
emails are the same. We first add r1 to I ′ and then com-
pare r2 to r1. Since r2 does not match with r1, r2 is also
added to I ′. Unlike R-Swoosh, however, r3 is then directly
merged with r1 (without running the match function) be-
cause the feature value {John Doe} is found in Pname. The
merged record r13 = {name: John Doe, phone: 235-2635,
email: {jdoe@yahoo, jdoe@microsoft}} is now the current
record. This time, we do not need to compare the names of
r13 and r2 (unlike R-Swoosh) because {John Doe} is found
in Nname (which means that we know {John Doe} has al-
ready been compared with all the feature values of “name”
in I ′ and thus does not match with {Fred}). After we com-
pare the “phone+email” values of r13 and r2, r13 is added
to I ′. As a result, F-Swoosh performs fewer feature value
comparisons than R-Swoosh.

The correctness of F-Swoosh is established by the fol-
lowing proposition.

Proposition 4.1 Given an instance I, the F-Swoosh algo-
rithm computes the maximal derivation of I, and therefore
solves the ER problem.

F-Swoosh exercises a lot of care not to perform redun-
dant or unnecessary feature value comparisons. The Pfi hash
tables records all previously seen feature values, (including
those that may have disappeared from I ′ because of merges)
and keep track of records that represent them, to immedi-
ately merge any records where these feature values may ap-
pear again (lines 15-20). Pairs of feature values that match
immediately lead to a merge, and are never recompared again,
while pairs of feature values that do not match (or feature
values that represents them) are added to the sets Nfi , and
once this happens, are guaranteed to never be recompared
again.

Some feature value comparisons may still be carried out
multiple times by F-Swoosh. In particular, pairs of feature
values that do not match may be recompared at a later time
if a merge happens, and at least one of the feature values
hasn’t been recorded in Nfi . Avoiding such redundancies
would require to store the outcome of all previous unsuc-
cessful feature value comparisons, which would have an un-
acceptable storage cost. Instead, our algorithm tries to min-
imize the windows where such redundant comparisons may
occur, by constraining the order in which records are pro-
cessed. Whenever a match is found, the merged record will
be set as the next record to be processed (line 45), and no
new record will be processed before the merged record, or
one derived from it is added to I ′. At this time, encountered
feature values have been added to Nfi and will not be re-
compared against each other.

The benefits of F-Swoosh are further illustrated by our
experimental evaluation, presented in Section 5.

1: input: a set I of records
2: output: a set I ′ of records, I ′ = ER(I)
3: Pf ← empty hash table, for each feature f /* Initialization */
4: Nf ← empty set, for each feature f
5: I ′ ← ∅, currentRecord ← null
6: while I 6= ∅ or currentRecord 6= null do /* Main loop */
7: if currentRecord = null then
8: currentRecord ← a record from I
9: remove currentRecord from I

10: end if
11: buddy ← null
12: for all (f, v) of currentRecord do /* Keep track of any new

values in the record */
13: if Pf (v) = null then Pf (v) ← currentRecord
14: end for
15: for all (f, v) of currentRecord do /* Was any value previ-

ously encountered? */
16: if Pf (v) 6= currentRecord then
17: buddy ← Pf (v)
18: exitfor
19: end if
20: end for
21: if buddy = null then /* If not, look for matches */
22: for all (f, v) of currentRecord do
23: if v 6∈ Nf then /* If a value never made it to Nf ... */
24: for all value v′ of each r′ ∈ I ′ do /* ... compare it to

the values of I’ */
25: if Mf (v, v′) then
26: buddy ← r′

27: exitfor
28: end if
29: end for
30: if buddy 6= null then exitfor
31: add v to Nf

32: end if
33: end for
34: end if
35: if buddy = null then
36: add currentRecord to I ′

37: currentRecord ← null
38: else
39: r′′ ←< currentRecord, buddy >
40: remove buddy from I ′ /* Update Pf ’s to point to the

merged record */
41: for all (f, v) where Pf (v) ∈ {currentRecord, buddy}

do
42: Pf (v) ← r′′

43: end for
44: currentRecord ← r′′

45: end if
46: end while
47: return I ′

Alg. 4: The F-Swoosh algorithm for ER(I)

Incremental F-Swoosh One important advantage of F-Sw-
oosh is that it is very easy to adapt to an incremental sce-
nario where new data or new features are added. For exam-
ple, suppose we have performed ER on a set of records S
and have obtained S′ using F-Swoosh. Next, new evidence
arrives, in the form of new records ∆S. We do not need to
run F-Swoosh on S ∪ ∆S. Instead, we run F-Swoosh with
I ′ ← S′ and I ← ∆S, and initialize the hash tables Pfi

and the sets Nfi to the state they had at the end of the orig-
inal run. This setup will avoid unnecessary comparisons be-
tween S′ records, which we already know have no matches
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among themselves. In fact, this will avoid any comparison
of feature values that was performed during the original run.
Note, incidentally, that R-Swoosh can also be made incre-
mental, in the same fashion. Since R-Swoosh does not use
additional data structures, no internal state needs to be saved
or restored.

An analogous setup can be used if a new feature fm+1

is defined after F-Swoosh ran and generated S′. We again
initialize each Pfi

and Nfi
to the state they had after the

original run, and add a new hash table Pfm+1 and a new set
Nfm+1 , both empty. We take I ← S′ (and I ′ ← ∅) and
run F-Swoosh with the full set of features (old ones plus
fm+1). Because the data structures already hold the feature
values for old features, no unnecessary comparisons will be
performed during the new run.

5 Experiments

We implemented G-Swoosh (assuming commutativity and
idempotence; see Section 3.1), R-Swoosh, and F-Swoosh as
described in the paper and conducted extensive experiments
on a comparison shopping dataset from Yahoo! Shopping
and a hotel information dataset from Yahoo! Travel. To eval-
uate the performance of an algorithm, we counted the num-
ber of feature value comparisons done by the match func-
tion. As confirmed by practitioners (see some of the com-
panies we interacted with in the Introduction), black-box
match functions are very expensive and hence the number of
times they are invoked is the natural metric here. We com-
pared the performance of the three algorithms, while varying
the selectivity of the match function, to cover a large spec-
trum of ER situations. We also compared their scalability
as the size of the input dataset grows. Finally, we quantita-
tively investigated whether R-Swoosh and F-Swoosh could
be used even when some of the properties do not hold.

Notice that in our context it does not make sense to eval-
uate the run-time of the match functions themselves, nor the
accuracy of the results. We have only studied when and how
to invoke match and merge functions, not how to build effi-
cient functions nor how to build ones that are good at iden-
tifying records that truly correspond to the same real-world
entity (see Section 6).

5.1 Experimental Setting

We ran our experiments on a comparison shopping dataset
provided by Yahoo! Shopping. In this application, hundreds
of thousands of records arrive on a regular basis from dif-
ferent online stores and must be resolved before they are
used to answer customer queries. Because of the volume of
data, records cannot be exhaustively compared to each other,
and must first be partitioned into independent clusters us-
ing some semantic knowledge, e.g., by product category, a
technique commonly known as “blocking.” Exhaustive algo-
rithms such as those proposed in this paper are then used to

resolve similar records within a partition or bucket. In our
experiments, we used a partition of size 5,000 containing
records with the sub-string “iPod” in their titles; we will call
these iPod-related records from now on (As mentioned in
the Introduction, when we partition the data, we miss inter-
partition matches).

In addition, we ran our experiments on a hotel dataset
from Yahoo! Travel. This time, many records arrive from
different travel sources (e.g., Orbitz.com), and must be re-
solved before they are shown to the users. The hotels are
located in different countries including the United States,
United Kingdom, Germany, etc. Thus, a natural way to par-
tition the hotels is by their countries. In our experiments,
we used a partition of size 14,574 containing hotels in the
United States (called U.S. hotels from now on).

The ER code was implemented in Java, and our experi-
ments were run on an 1.8GHz AMD Opteron Dual Core pro-
cessor with 24.5GB of RAM. Though our server had multi-
ple processors, we did not exploit parallelism. This is a topic
we are addressing in a separate paper [7].

5.2 Match and Merge Strategies

We used for the two datasets different match and merge strate-
gies – called MMshop and MMtrav – that satisfy all the
ICAR properties of Section 2.2. MMshop uses three attributes
– title, price, and category – for matching and merging shop-
ping data records while MMtrav uses eight – name, street
address, city, state, zip, country, latitude, and longitude – for
hotel records. Each strategy will be explained in detail. Since
all the ICAR properties are satisfied, G-Swoosh may use the
merge domination of Definition 2.4 as its domination func-
tion.

MMshop The MMshop strategy uses a union approach for
titles and categories, and a range approach for prices. Ti-
tles are compared using the Jaro-Winkler similarity mea-
sure 3 [22], to which a threshold t from 0 to 1 is applied
to get a yes/no answer. Categories are compared using exact
string matches. When two records merge, the titles and cat-
egories are unioned. (Note that, since we do exact matches
for categories, each record has one category.) Prices are rep-
resented by ranges of possible values and are matched when
their ranges overlap. Initially, a single price x has a range
that includes all the prices that match within percentage α,
i.e., [x–αx,x+αx]. When two prices merge, the two ranges
are merged into a new range.

MMshop uses two features: F 1
sh, which consists of the

attributes title and price, and F 2
sh, which consists of title,

price, and category. Although the attributes of F 1
sh are a sub-

set of the attributes of F 2
sh, using F 1

sh and F 2
sh makes sense

by giving higher thresholds to F 1
sh for matching. The feature

values of a record for a certain feature is the combination
3 The Jaro-Winkler similarity measure returns a similarity score in

the 0 to 1 range base on many factors, including the number of charac-
ters in common and the longest common substring.
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of all possible values of the attributes in the feature. Two
records match if at least one of their feature values match for
F 1

sh or F 2
sh. Two feature values match if each of the corre-

sponding attribute values match, as described in the previous
paragraph.

MMshop satisfies the ICAR properties because each record
keeps all the values explicitly for titles and categories, and a
range that covers all encountered prices (see our discussion
in Section 2.2).

We experimented with MMshop using various thresh-
olds. We fixed the price threshold α to 0.1 (10%). Also, we
always set the title threshold of F 1

sh halfway between the ti-
tle threshold of F 2

sh and 1.0 to make it stricter than F 2
sh’s

title threshold. Thus, for the experiments we report on here
we only varied the title threshold of F 2

sh.
There are obviously many other strategies we can use on

the shopping dataset. In our technical report [6], we show
more experimental results comparing additional strategies.
However, we think that the MMshop is representative of the
behavior of all those strategies.

MMtrav The MMtrav strategy uses match and merge func-
tions in the Union Class (see Section 2.2). Each attribute of
a record retains all the distinct attribute values of the base
records. When comparing two records, we do pairwise com-
parisons between all the feature values from each record
and look for an existing match. The names and street ad-
dresses are compared using the Jaro-Winkler similarity mea-
sure to which a threshold is applied. The attributes city, state,
zip, country are compared using exact string matches. Fi-
nally, the latitude and longitude are compared by checking
if the absolute difference of the numeric values is less than
a threshold. Since the match and merge functions are inside
the Union Class, MMtrav naturally satisfies the ICAR prop-
erties.

MMtrav uses three features for matching records: F 1
tr

consists of the attributes name, street address, city, state, and
country; F 2

tr consists of name, street address, zip, and coun-
try; and F 3

tr consists of name, street address, latitude, and
longitude.

We also experimented with MMtr using various thresh-
olds. We used the same threshold for comparing the names
and street addresses because they had similar string lengths.
This threshold was used by all three features. We also fixed
the latitude and longitude thresholds to 0.1 degree (which
corresponds to about 11.1 km). Thus, for our experiments
we only vary the name threshold of F 1

tr.
In summary, we tested a variety of match and merge

functions, each representing different “application seman-
tics.” For each scenario we may get fewer or more matches,
and the runtime may vary. As mentioned in the Introduction,
our focus is on how the different scenarios perform, not on
how well the match and merge functions capture application
semantics.

5.3 Match Selectivity Impact

We measured the performances of G-Swoosh, R-Swoosh,
and F-Swoosh using the MMshop strategy by varying the se-
lectivity of the match function on 3,000 random iPod-related
records. We did not test on the entire block of 5,000 records
because there were too many matching records, making G-
Swoosh extremely slow. Varying the threshold of the match
function affects its selectivity. In our experiments, we varied
the title threshold of F 2

sh to capture a variety of match cri-
teria. However, instead of plotting all graphs with the title
threshold of F 2

sh as the horizontal axis, we plotted against
the number of actual merges that occurred, i.e., the num-
ber of records in the initial set minus that in the result set.
We think that the number of merged records is a more in-
tuitive parameter, one that captures the “selectivity” of an
application. The higher the number of merged records, the
more selective the match function is (allowing more records
to match and merge).

Figure 3 shows the number of feature value comparisons
for each algorithm as the number of merges increases for the
MMshop scenario. The comparisons of G-Swoosh rapidly
increase even if a moderate number of records merge. This
is because the complexity of G-Swoosh is exponential on the
number of records that match each other. R-Swoosh also in-
creases rapidly compared to F-Swoosh because, as merged
records become larger, their numbers of feature values in-
crease linearly for both F 1

sh and F 2
sh. As a result, R-Swoosh

does many feature value comparisons when comparing large
records. F-Swoosh, on the other hand, saves many of these
comparisons by using the Pfi and Nfi hash tables. Another
noticeable trend is that the comparisons of R-Swoosh start to
increase rapidly after a certain point where many titles start
to match each other and result in a burst of new matches.
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Fig. 3 MMshop feature value comparisons

To illustrate how the number of feature value compar-
isons relates to the actual performance, Figure 4 shows the
runtime for each algorithm (same MMsh scenario). The run-
time results mainly depend on the number of feature value
comparisons. The most dominant factor of the runtime for
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any algorithm in our application turns out to be the total
time for matching titles during the feature value compar-
isons. This is because title matching involves string similar-
ity measuring, which takes much longer than number com-
paring (used for matching prices) and exact string matching
(used for matching categories). The total merge time is neg-
ligible because the number of merges is much less than the
number of matches done.

 0

 1

 2

 3

 4

 5

 6

 7

 600  700  800  900  1000  1100  1200  1300  1400  1500  1600

R
un

tim
e(

hr
s)

Number of merges

G-Swoosh
R-Swoosh
F-Swoosh

Fig. 4 MMshop runtime

Next, we compared G-Swoosh, R-Swoosh, and F-Swoosh
using the MMtrav strategy on the block of 14,574 U.S. ho-
tel records. This time, we varied the name threshold of F 1

tr

to capture different selectivities of the application. One no-
table feature of the hotel dataset was that most of the merged
records consisted of exactly two base records. The reason
is twofold. First, the hotel records came from four different
data sources where each data source did not contain dupli-
cates in itself. Hence, the only way for duplicates to occur
was for different sources to share the same hotels. Second,
each hotel usually came from at most two different sources.
Since the merged records were so small, F-Swoosh was not
significantly better than R-Swoosh whereas G-Swoosh actu-
ally performed reasonably well.

Figure 5 shows the number of feature value comparisons
for each algorithm as the number of merges increases for
the MMtrav scenario. Although the differences among the
algorithms are minor compared to Figure 3, the performance
gap between algorithms steadily increases as the number of
merges grows.

The reason is that, as we lower the comparison threshold,
some merged records do get larger and have many feature
values to compare.

Figure 6 compares the actual performance of the three
algorithms using MMtrav. F-Swoosh is slightly faster than
R-Swoosh while G-Swoosh has a reasonable performance
and is only about twice as slow as F-Swoosh. Compared to
Figure 5, there is a larger gap between G-Swoosh and the
other algorithms. This additional runtime is used in the last
stage of removing dominated records.
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In summary, the actual number of comparisons and run-
time depend on the “application semantics,” i.e., on how se-
lective the match function is, how merged records “grow”
(e.g., by storing all the feature values of the base records),
and how efficient the value comparisons are. However, in
general:

– F-Swoosh is 1.1 to 11.4 times faster than R-Swoosh in
the scenarios we considered.

– G-Swoosh is extremely expensive and not practical (even
when we assume commutativity and idempotence) when
many merges occur, but performs reasonably well when
most of the merged records are very small.

– Of course, even when G-Swoosh is impractical, it is an
important algorithm to understand, as it represents the
cost of exact ER when the ICAR properties do not hold.

5.4 Scalability

We conducted scalability tests for G-Swoosh, R-Swoosh and
F-Swoosh using MMshop and MMtrav. We first tested MMshop

on randomly-selected shopping data (regardless of product
types) ranging from 2,000 to 16,000 records. We then tested
MMtrav on randomly-selected hotel data (regardless of the
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countries) ranging from 2,000 to 20,000 records. The string
comparison thresholds for MMshop and MMtrav were set
to values (0.9 and 0.85, respectively) that give good results.

Figure 7 shows the runtime scalability test results for
each algorithm. Both R-Swoosh and F-Swoosh illustrate the
quadratic cost of ER. As the dataset gets larger, F-Swoosh
outperforms R-Swoosh by up to 49% (for the 16,000 shop-
ping records). G-Swoosh increases more rapidly than the
other algorithms. While G-Swoosh cannot handle more than
3,900 shopping records in a reasonable amount of time, it
scales better on the hotel data.
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Fig. 7 Runtime scalability

In summary, ER is an inherently expensive process, so
that only relatively small sets of records can be handled.
Thus, large data sets need to be partitioned into smaller sets
that can be resolved in detail. How large a data set can be
exhaustively resolved depends on the application. It is also
possible to distribute the ER computations across multiple
processors, in order to handle larger data sets. In [7] we
study various strategies for distributing the work done by
R-Swoosh.

5.5 Without The Properties

So far, we have only studied scenarios where the ICAR prop-
erties of Section 2.2 hold. We now consider a scenario where
the properties do not hold. In this case, we need to run G-
Swoosh to get a correct answer. From our previous results,
however, we know that G-Swoosh can be very expensive,
especially when there are many large merges. The alterna-
tives are (i) to modify the match and merge functions so that
the ICAR properties hold and that they still capture reason-
ably what the application intends or (ii) to run R-Swoosh
and F-Swoosh even though we will not get correct answers.
It would be interesting to see what results we get for the sec-
ond alternative.

We used a variant of MMshop for our strategy. Instead of
saving all the titles when merging records, we simply choose

the longer string. If two strings have the same length, how-
ever, we choose the string that lexicographically precedes
the other in order to satisfy commutativity. For the price at-
tribute, we choose the numerically larger value. We did not
take the average of the values because, otherwise, G-Swoosh
would have produced an infinite number of new records with
slightly differing prices. We used the same match function as
that of MMshop. In order to provide a partial order domina-
tion, we used a variation of Definition 2.4 where r1 is dom-
inated by r2 if r1’s base records are included in r2’s base
records. This new strategy does not satisfy the ICAR prop-
erties because the ER result now depends on the order of
record merges.

Our results show that, at least for our product resolution
application, the answer produced by R-Swoosh is very sim-
ilar to the answer G-Swoosh generates. Since R-Swoosh is
so much more efficient, it is thus attractive to use R-Swoosh
even when the ICAR properties do not hold. Note that even
the G-Swoosh answer may not be 100% accurate (some re-
solved records may not represent true real-world entities) be-
cause the match and merge functions themselves may not be
not perfect. Thus, the difference between the G-Swoosh and
R-Swoosh answers can also be viewed as “additional” er-
ror beyond whatever error that may occur in the G-Swoosh
answer.

Before presenting our results, we give a simple exam-
ple that helps interpret the results. Consider an initial in-
stance with three records I = {r1, r2, r3}. Suppose that
r1 and r2 match, yielding 〈r1, r2〉 = r12. Similarly, r2 and
r3 match and 〈r2, r3〉 = r23. However, there are no other
matches. (Representativity does not hold. If it did, for in-
stance, r3 would match r12 yielding r123.) In this case, G-
Swoosh computes the set I ′ = {r12, r23}, assuming that r1,
r2, r3 are dominated. On the other hand, R-Swoosh com-
putes I ′ = {r12, r3}, assuming the r1, r2 comparison is done
first. (After r12 is found, r1 and r2 are discarded, so r3 has
nothing to match with.) If r2 and r3 are compared first, then
R-Swoosh computes I ′ = {r23, r1}. Thus, we see that R-
Swoosh may miss some records in the correct answer, and
can generate records not in the G-Swoosh answer.

Figure 8 shows the result size comparison between G-
Swoosh and R-Swoosh tested on 2,000 random iPod records
varying the title threshold of F 2

sh. (Figure 8 shows the re-
sults for a particular record ordering, based on the order of
records in the input file. Results for other orderings are sim-
ilar). Again, we did not test on the entire 5,000 records be-
came G-Swoosh was too expensive for low thresholds. Sur-
prisingly, the result size of G-Swoosh is slightly smaller than
that of R-Swoosh. This fact is because G-Swoosh considers
all possible merges and tends to produce large records that
dominate smaller records (like r3 in our example) that are
also part of the result of R-Swoosh.

Figure 9 shows the intersection between G-Swoosh and
R-Swoosh. On average, 99.49% of all the records produced
by R-Swoosh are also produced by G-Swoosh. The remain-
ing 0.51% are those that have been discarded by domination
in G-Swoosh. The result is also similar the other way: on
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average, 99.64% of the records produced by G-Swoosh are
also produced by R-Swoosh. This time, the missing records
are the ones that R-Swoosh was not rigorous enough to come
up with (like r23 in our example).
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Returning to our example, G-Swoosh computes the set
{r12, r23} while R-Swoosh computes {r12, r3}. In this case,
only 50% of the R-Swoosh records are in the G-Swoosh an-
swer. One can argue that this low number is misleading be-
cause the “incorrect” r3 record is closely related to the r23

record in the G-Swoosh set, and hence is not “completely
wrong.” To capture this intuition, we define a precision met-
ric that takes into account similarity between records. For
each record r in the R-Swoosh answer, we find the maxi-
mum value of the Jaccard similarity coefficients between r
and each record in the G-Swoosh answer. The Jaccard sim-
ilarity coefficient between two records is defined as the size
of the intersection set of base records divided by the size of
the union set of base records (e.g., records r12 and r23 have
the Jaccard similarity coefficient of |{r2}|

|{r1,r2,r3}| = 1
3 ). The pre-

cision of R-Swoosh is then the sum of the maximum Jaccard
similarity coefficients for all r’s divided by the size of the R-
Swoosh answer. In our example, the sum of the maximum

Jaccard coefficients for {r23, r1} is 2
2 + 1

2 = 1.5, and the
precision is 1.5

2 = 75%. Figure 10 shows the precision of
R-Swoosh compared to G-Swoosh. The average precision is
99.77%, showing that the R-Swoosh answer is very similar
to the G-Swoosh answer.
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We have also done similar experiments on the hotel data
using a variant of MMtrav for our strategy. When merging
names and street addresses, we choose the longer strings.
If two strings have the same length, we choose the string
that lexicographically precedes the other. For numerical at-
tributes such as latitude and longitude, we choose the numer-
ically larger values. We used the same match function as that
of MMtrav. Finally, we used the same domination order as
the one used in our MMshop variant.

Figure 11 shows the result size comparison between G-
Swoosh and R-Swoosh tested on the block of 14,574 U.S.
hotel records varying the name threshold of F 1

tr. We show
the result sizes in a table because the results of G-Swoosh
and R-Swoosh are almost identical for all the thresholds we
tested on, and the sizes are hard to distinguish using a graph
presentation. Indeed, even in the worst case, the sizes differ
only by 0.35%.

Figure 11 also shows the precision of R-Swoosh using
the Jaccard similarity coefficient. The average precision is
99.88%, making the R-Swoosh result almost the same as that
of G-Swoosh.

Name Threshold G-Swoosh R-Swoosh Precision
0.99 14095 14095 100.0
0.95 13843 13843 100.0
0.90 13385 13385 99.996
0.85 12579 12580 99.984
0.80 11316 11324 99.890
0.75 10327 10363 99.389

Fig. 11 Result Size and Precision on the Hotel Data

The experiments show that R-Swoosh and F-Swoosh are
indeed reasonable ways to do ER even if the match and
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merge functions do not satisfy all the ICAR properties. They
solve the scalability problem of G-Swoosh while producing
most of the records G-Swoosh does.

6 Related Work

Originally introduced by Newcombe et al. [29] as “record
linkage”, entity resolution was then studied under various
names, such as merge/purge [19], deduplication [31], refer-
ence reconciliation [14], object identification [36], and oth-
ers.

Several works have addressed the issue of performance
for ER algorithms. However, most of them make strong as-
sumptions on the data and/or the comparison functions to
make their algorithms efficient. For example, references [19,
20] assume that records can be represented by one or mul-
tiple alphanumeric keys, and that most matches occur be-
tween records whose keys are lexicographically close. A “blo-
cking key” can be used to split records into buckets [22] or
canopies [25]. Reference [23] proposed mapping the records
values into a multi-dimensional Euclidean space, then per-
forming a similarity join. An overview of such “blocking”
methods can be found in [4]. Since they do not compare all
records, such techniques make ER algorithms approximate,
to an extent that depends on properties of the data. More
recently, reference [2] proposed efficient algorithms for set
similarity joins using string similarity functions. In contrast,
we view the match and merge functions as black-boxes and
provide exact ER algorithms that are optimal in the number
of black-box invocations.

Reference [27] proposes a generic and exact approach,
where the ER problem is viewed as an instance of the clas-
sical set-union problem [35], for which efficient data struc-
tures and algorithms were extensively studied. However, their
work requires the record comparison function to be transi-
tive, a property we believe is constraining and difficult to
satisfy.

Iterative approaches [8,14] identified the need to tran-
sitively compare merged records to discover more matches,
for merges that are simple groupings of the data in merged
records. Our approach allows richer, “custom” merges. More
importantly, it eliminates redundant comparisons by tightly
integrating merges and comparisons, and naturally yields in-
cremental algorithms.

Our match functions are specified as logical formulas
of smaller feature-level match functions, in the style of the
“equational theory” of [19], and similar in spirit to works on
declarative data cleaning (e.g., [16]). Such a specification
has the benefits of (1) having clear semantics, (2) allowing
the kinds of optimizations we perform.

While our work focuses on performance, there has also
been a significant amount of work on enhancing the preci-
sion and recall of the ER process. The first formalization, by
Fellegi and Sunter [15] optimizes the relative importance of
numerical similarity functions between records, in a proba-
bilistic setting. In this paper and most follow-ups (see [38,

18] for recent surveys), the assessment of ER is in terms
of precision and recall of the obtained classification. Many
string comparison techniques based on edit-distances [34],
TF-IDF [13], or adaptive techniques such as q-grams [11,
17] are used for matching records. Reference [28] removes
attribute level conflicts of matching records by comparing
the quality of their data sources. Reference [32] provides
user-defined grouping as part of an SQL extension. As domain-
independent techniques may not be suitable for some do-
mains, one may need domain-specific value comparison func-
tions [1]. Any of these techniques can fill in the black-boxes,
which we decouple from our match and merge process.

Finally, there has also been a great amount of research on
non-pairwise ER, including clustering techniques [27,3,12],
classifiers such as Bayesian networks [37], decision trees,
SVM’s, or conditional random fields [33]. The parameters
of these models are learned either from a (hopefully repre-
sentatitive) set of labeled example, possibly with the help of
a user [31], or in an unsupervised way [39,12]. A recent line
of works focuses on the relationships among records [14,30,
24,5]. Reference [9] proposed a technique to resolve entities
collectively based on the relationship graph among records.
Such techniques are not pairwise because they generally ex-
amine all or part of the dataset to learn match decisions. In
contrast, our focus is on pairwise ER because of its practi-
cal values such as easier coding and efficiency. As we men-
tioned in the introduction, however, we can use non-pairwise
techniques during a prior training phase.

7 Conclusion

Entity Resolution (ER) is an important information integra-
tion problem arising when data from diverse sources is com-
bined. We have divided the problem into two aspects: the
black-box functions that match and merge records, and the
ER algorithm that invokes these functions. In our opinion,
this division has two important advantages: (i) it yields gene-
ric ER algorithms that can be used, with well-defined se-
mantics, in many applications, and (ii) it lets us focus on
our performance measure, the number of black-box invoca-
tions. While there may be other factors that affect the over-
all runtime performance, we assume that the black-box in-
vocations are potentially expensive and thus are the criti-
cal runtime factors. We have presented three algorithms, G-
Swoosh, R-Swoosh, and F-Swoosh, that make as few calls
as possible, thus yielding significant performance improve-
ments over naive algorithms. We have also presented four
important yet natural ICAR properties for match and merge
functions, that lead to the significantly more efficient R-Sw-
oosh and F-Swoosh. We have argued that these properties
should guide the development of merge and match functions.
If the properties do not hold because of application seman-
tics, the designers will know that ER will be inherently ex-
pensive.
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A Proofs

A.1 Basic Model

Proposition 2.1 For any instance I , the entity resolution of I exists
and is unique. We denote it ER(I).

Proof Existence: Starting from Ī , we can remove dominated records
one at a time, until no more dominated records exist. The obtained set
satisfies the conditions for being an ER(I) solution.

Unicity: Suppose there are two ER(I) solutions: I ′1 and I ′2. Say,
some record r1 is in I ′1 but not I ′2. There exists r2 in I ′2 s.t. r1 ¹ r2,
and r3 in I ′1 s.t. r2 ¹ r3. Hence r1 ¹ r3, and they are distinct since
r1 6= r2. I ′1 −{r1}, a strict subset of I ′1 satisfies conditions 1 and 2, a
contradiction. ut

A.2 Match and Merge Properties

Proposition 2.2 Merge domination is a partial order on records.

Proof We show that merge domination is reflexive, transitive and anti-
symmetric:

– Reflexivity: r 6 r, follows from idempotence.
– Transitivity: Suppose r1 6 r2 and r2 6 r3. In particular, 〈r2, r3〉

= r3 and r1 ≈ r2 hold, which implies, by representativity, that
r1 ≈ r3. This ensures the existence of 〈r1, r3〉. 〈r1, r3〉 =
〈r1, 〈r2, r3〉〉 also equals, by associativity, 〈〈r1, r2〉, r3〉= 〈r2, r3〉
= r3. Therefore r1 6 r3 holds.

– Anti-symmetry: Suppose r1 6 r2 and r2 6 r1 hold. This means
that 〈r1, r2〉 = r2 and 〈r2, r1〉 = r1. Commutativity ensures that
the two left terms are equal, and therefore that r1 = r2.

ut
Proposition 2.3 Given match and merge functions such that the match
function is reflexive and commutative, if a domination order ¹ exists
such that the four monotonicity conditions [that follow proposition 2.2]
are satisfied with 6 replaced by ¹, then the ICAR properties of Sec-
tion 2.2 are also satisfied, and¹ coincides with the merge domination
order 6.

Proof We first prove that all four properties of Section 2.2 hold, and
then that the orders coincide.

– Idempotence: The match function is reflexive, i.e., r ≈ r always
holds. Since r ¹ r, by the first monotonicity property, r ¹ 〈r, r〉,
and by the fourth 〈r, r〉 ¹ r, and hence r = 〈r, r〉 follows.

– Commutativity: Suppose r1 ≈ r2. The match function is com-
mutative so r2 ≈ r1. Hence both 〈r1, r2〉 and 〈r2, r1〉 are de-
fined. By applying the fourth monotonicity property, it follows that
〈r1, r2〉 ¹ 〈r2, r1〉 and symmetrically that 〈r2, r1〉 ¹ 〈r1, r2〉,
hence 〈r1, r2〉 = 〈r2, r1〉.

– Representativity: Suppose 〈r1, r2〉 = r3 and r1 ≈ r4. Since r1 ¹
r3, it follows from the second monotonicity property that r3 ≈ r4.

– Associativity: Suppose 〈〈r1, r2〉, r3〉 and 〈r2, r3〉 are defined. Since
r3 ¹ 〈r2, r3〉, we have that 〈〈r1, r2〉, r3〉 ¹ 〈〈r1, r2〉, 〈r2, r3〉〉
by the third monotonicity property. By the same argument, 〈r2, r3〉
¹ 〈〈r1, r2〉, r3〉. Therefore, 〈〈r1, r2〉, 〈r2, r3〉〉 ¹ 〈〈r1, r2〉, r3〉,
and since¹ is anti-symmetric, 〈〈r1, r2〉, 〈r2, r3〉〉 is equal to 〈〈r1,
r2〉, r3〉. By a symmetrical argument, we obtain that 〈〈r1, r2〉, 〈r2,
r3〉〉 equals 〈r1, 〈r2, r3〉〉.

We now show that r 6 s iff r ¹ s. Recall that r 6 s means that
〈r, s〉 = s. The forward implication directly follows from the property
r ¹ 〈r, s〉. For the backward implication, suppose r ¹ s. Since r ≈ r,
it follows that r ≈ s, and that 〈r, s〉 ¹ 〈s, s〉, i.e, that 〈r, s〉 ¹ s. We
also know that s ¹ 〈r, s〉, and since¹ is anti-symmetric, we have that
〈r, s〉 = s, which is the definition of r 6 s. ut

A.3 ER with ICAR Properties

In order to prove the results of Theorem 2.1, we need first to define
some terminology: the notions of a derivation tree, and the base and
depth of a record.

Definition A.1 Given an instance I , for any record r ∈ Ī , a deriva-
tion tree dr of r represents a hierarchy of records in Ī − {r} that
were merged to produce r. The base of r for derivation dr , denoted
B(r, dr), is the set of I records at the leaves of dr . The depth of r for
derivation dr , denoted D(r, dr) is the size of the longest path in dr .
The depth of r, denoted D(r) is its smallest depth across derivation
trees of r in Ī .

We can now show an important intermediary result:

Proposition A.1 For any two records r, s if B(r, dr) ⊆ B(s, ds) for
some derivation trees dr, ds of r, s respectively, then r 6 s.

Proof The proof is by induction on the depth of the record with the
smallest base.

Induction hypothesis: Given two records r, s such that B(r, dr) ⊆
B(s, ds) (for some dr, ds) and an integer n, 0 ≤ n: If D(r, dr) ≤ n
then r 6 s.

Base: n = 0. In this case, r is a base record that belongs to the
derivation tree of s. Following the path from s to r in this derivation
tree, each record is dominated by its parent node and therefore, by
transitivity of 6, we have that r 6 s.

Induction step: We now show that if the hypothesis holds for n =
k, then it also holds for n = k + 1.

If D(r, dr) ≤ k, we can directly apply the induction hypothesis.
The case to deal with is D(r, dr) = k + 1. Consider the children of
r in its dr derivation tree: r = 〈r1, r2〉. Clearly, D(r1, dr1) ≤ k and
D(r2, dr2) ≤ k (with dr1 , dr2 being the derivation trees of r1, r2 in
dr) . Since B(r1, dr1) ⊆ B(s, ds) and B(r2, dr2) ⊆ B(s, ds), we
can apply the induction hypothesis to r1 and r2. It follows that r1 6 s,
and r2 6 s. By the monotonicity properties of 6, we can inject r2 to
obtain that 〈r1, r2〉 6 〈s, r2〉. Similarly, by injecting s we obtain that
〈r2, s〉 6 〈s, s〉. By merge commutativity and idempotence, and since
6 is transitive, it follows that r 6 s. ut

The finiteness of ER when the properties hold is a direct corollary
of the above result:

Corollary A.1 When the match and merge properties are satisfied, for
any instance I , Ī (hence ER(I)) is finite.

Proof A direct consequence of the previous theorem is that any two
records with the same base are equal. The possible bases for records
derivable from I are the elements of the powerset of I , a finite set.
Therefore Ī is finite. Since ER(I) ⊆ Ī , ER(I) is finite as well. ut

To prove the second part of Theorem 2.1, we first need to show a
confluence result on derivation sequences:

Proposition A.2 (Confluence) Given an instance I and a derivation
sequence I

∗→ I ′, for any other derivation sequence I
∗→ I ′′, there

exists a continuation I ′′
∗→ I ′′′ such that I ′ 6 I ′′′.

Proof (sketch) The key observation is that derivation steps are mono-
tonic, i.e., if I → I ′ then I 6 I ′: In the case of a merge step, clearly
I ⊆ I ′, and in the case of a purge step, the only record in I which is not
in I ′ is dominated by another record in I (and therefore in I ′). Now,
consider I ′ and I ′′. The only records of I ′ that may not be dominated
by records in I ′′ are those that are not in the initial instance I , and
therefore were produced through merge steps. Since I 6 I ′′, ∀ri ∈ I ,
∃r′′i ∈ I ′′ s.t. ri 6 r′′i . The idea is to continue I ′′ by applying the
same merge steps as those that lead to I ′, but using instead of each ri

an r′′i ∈ I ′′ that dominates it (skipping the steps that do not modify
the current instance). The obtained records, because merges are also
monotonic, dominate the corresponding records in I ′, hence I ′ 6 I ′′′.

ut
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We can now prove the second part of Theorem 2.1:

Proposition A.3 Every derivation sequence is finite. Every maximal
derivation sequence starting from an instance I computes ER(I).

Proof For finiteness, observe that for each derivation step I → I ′,
I 6= I ′. Since derivation sequences are monotonic (w/r to instance
domination), all instances involved in a derivation sequence are dis-
tinct. Moreover, all these instances are subsets of Ī . There is a fi-
nite number of them, since we showed Ī to be finite. Therefore every
derivation sequence is finite.

We now construct a maximal derivation sequence that computes
ER(I): Starting from I , perform all necessary merge steps to produce
the records in ER(I). This is possible since all the needed records
are in Ī . Then, perform purge steps to remove all records which are
not in ER(I). Each step is a valid purge step, since Ī 6 ER(I).
No additional purge step are possible, since ER(I) does not contain
dominated records, and no additional merge steps are possible, since
Ī 6 ER(I). Therefore the derivation is maximal.

To conclude the proof, we show that all maximal derivations of
an instance I compute the same result. By contradiction, suppose an
instance I has two maximal derivations I

∗→ I1 and I
∗→ I2. Then,

by Proposition A.2, there exists I3 s.t. I1
∗→ I3 and I2 6 I3. Since

I1 is maximal, it has no derivation but itself, and therefore we have
that I3 = I1, hence I2 6 I1. Symmetrically, we obtain that I1 6
I2. Now, if I1 6= I2, some record in one of the instances (say, r1 ∈
I1) is not present in the other instance (here, I2). Since I1 6 I2, r1

is dominated by some record r2 ∈ I2, and we know that r2 6= r1.
Similarly, since I2 6 I1, r2 is dominated by some record r3 in I1, and
by transitivity r1 6 r3 (with r1 6= r3). Removing r1 from I1 would
therefore be a valid purge step, which contradicts the fact that I1 is a
maximal derivation. ut

Proposition 2.4 Given match and merge functions such that the match
function is reflexive and commutative, if the match and merge functions
are in the Union Class, the ICAR properties are satisfied.

Proof Since the match and merge functions are in the Union Class,
each record can be represented as a set of base records (records with
single values), i.e., r = {b1,b2,...,bn}. The merge of two records µ(r1,r2)
= r1 ∪ r2 (i.e., the set union of records). Given a match function
for base records BM , the match of two records M (r1,r2) = true
if ∃b1 ∈ r1, b2 ∈ r2 s.t. BM (b1,b2) = true.

We now prove that all four properties of Section 2.2 hold.

– Idempotence: The match function is reflexive, i.e., r ≈ r always
holds. Since set union is idempotent, the merge function guaran-
tees r = 〈r, r〉.

– Commutativity: Suppose r1 ≈ r2. The match function is com-
mutative, so r2 ≈ r1. Hence, both 〈r1, r2〉 and 〈r2, r1〉 are de-
fined. Since set union is commutative, the merge function guaran-
tees 〈r1, r2〉 = 〈r2, r1〉.

– Associativity: Suppose that for r1, r2, r3, there exist 〈r1, 〈r2, r3〉〉
and 〈〈r1, r2〉, r3〉. Since set union is associative, the merge func-
tion guarantees 〈r1, 〈r2, r3〉〉 = 〈〈r1, r2〉, r3〉.

– Representativity: Let r3 = 〈r1, r2〉. Suppose we have r4 such
that r1 ≈ r4. Since we use an existential match, there exists a
pair of values from r1 and r4 that match. Since the merge function
guarantees r3 to have all the possible values of r1, there also exists
a pair of values from r3 and r4 that match. Hence, according to the
match function, r3 ≈ r4.

ut

B Record-Level Algorithms

Proposition 3.1 For any instance I such that Ī is finite, BFA terminates
and correctly computes ER(I).

Proof (Sketch) BFA essentially computes Ī by recursively adding to
the set I merges of all matching records, until a fixpoint is reached,
then removes dominated records. The set I increases by at least one
record at each iteration, therefore BFA terminates if Ī is finite, and
returns ER(I). ut

Proposition 3.2 For any instance I such that Ī is finite, G-Swoosh
terminates and computes ER(I).

Proof Similarly to BFA, G-Swoosh also first computes Ī , then re-
moves dominated records (line 17). Observe that all records added to
I ′ are either records initially in I or records derived from them by suc-
cessive merges, therefore I ′ ⊆ Ī . I ′ increases by at least one record at
each iteration, therefore G-Swoosh necessarily terminates if Ī is finite.

To prove that G-Swoosh computes ER(I), all we need to show
is that Ī ⊆ I ′ before dominated records are removed. We prove this
inclusion by recursion on the depth of records in Ī . (Recall that the
depth of a record was introduced in Definition A.1.) More precisely,
our induction hypothesis is that all records of Ī of depth less or equal
than k (k ≥ 0) appear in the working set I at some point in the algo-
rithm. Since all records that appear in I are added to I ′ later on, this
will establish that Ī ⊆ I ′ before dominated records are removed.

Records of depth 0 are the records of the initial dataset, which are
present in I at the start of the algorithm. Suppose the hypothesis holds
for all records of Ī of depth less or equal than k (k ≥ 0), and let us
show that the hypothesis is also verified for any record r ∈ Ī of depth
k + 1. Since r ∈ Ī , r is derived either (1) from merging a record r′ of
depth k with itself, or (2) from merging two records r1 and r2 of depth
less than or equal to k. For case (1), by our induction hypothesis, r′

appears in I , therefore when r′ is processed (line 7), r′ matches itself
and r = 〈r′, r′〉 is added to I (line 11). For case (2), both r1 and r2

are of depth ≤ k, and therefore appear in I . G-Swoosh picks these
two records (line 5) in some order. W.l.o.g., say r1 is picked before
r2. When r1 is processed, it is added to I ′ (line 15), and when r2’s
turn comes, a match is found and r = 〈r1, r2〉 is added to I (line 11).
All records in I are added to I ′, therefore Ī ⊆ I ′ when the algorithm
reaches line 17. At that point, dominated records are removed, hence
G-Swoosh computes ER(I). ut
Theorem 3.1 G-Swoosh is optimal, in the sense that no algorithm that
computes ER(I) makes fewer comparisons in the worst case.

Proof It is fairly immediate to see that for any pair of records r1, r2

(resp. for any single record r) in Ī , G-Swoosh checks whether r1 ≈ r2

(resp. whether r ≈ r) exactly once. Suppose there exists an algo-
rithm A that generates ER(I) but performs fewer comparisons than
G-Swoosh. Then for some run of A, there must exist two records r1, r2

in Ī such that A does not check whether r1 ≈ r2. (The case of a single
record r can be represented by taking r1 = r2 = r). Now, we con-
struct new match and merge functions. Functions M ′ and µ′ are the
same as the original functions M and µ, unless the two records are r1

and r2. In this case, M ′(r1, r2) returns true and µ′(r1, r2) returns
a new record r3 that is not dominated, and is not in ER(I) using the
original match and merge functions.

Using M ′ and µ′, r3 ∈ ER(I). But the run of algorithm A never
checks whether r1 ≈ r2, so it cannot merge them to obtain r3. There-
fore, algorithm A does not generate ER(I). This is a contradiction,
so no algorithm that generates ER(I) can perform fewer comparisons
than G-Swoosh. ut
Proposition 3.3 Given an instance I, the R-Swoosh algorithm com-
putes ER(I).

Proof Consider the instance J = I ∪ I ′ ∪ {currentRecord}. What
the algorithm computes is indeed a derivation sequence of J . When-
ever two records r and r′ match (line 9), a merge step is performed by
adding r′′ = 〈r, r′〉 to I (an hence to J) (line 19). Immediately after
that, two purge steps are performed: record r (removed from I at line
6) is not added to I ′, while records r′ is removed from I ′ (line 19).
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Therefore, r, r′ are removed from J). These two purge steps are valid,
since both r and r′ are dominated by r′′. When a record r from I has
no match in I ′, it is added to I ′, leaving J unchanged.

Moreover, observe that the following is an invariant for I ′: for any
two records r, r′ ∈ I ′, r 6≈ r′. This is because a record is added
to I ′ iff it does not match any record already there. The algorithm
stops when I is empty. Since no two records in I ′ match, the derivation
sequence is maximal. ut

Proposition 3.4 For any instance I of n records such that entity resolu-
tion yields j records, R-Swoosh performs at most (n−1)2− (j−1)(j−2)

2
record comparisons. There exists an instance (with n records, yielding
j records) on which any algorithm performs at least as many record
comparisons.

Proof We first count the maximal number of record comparisons per-
formed by Swoosh. For each record removed from I , at most |I ′| com-
parisons are conducted. When no merges occur, at each iteration |I|
decreases by 1, while |I ′| increases by 1. If the original size of |I| is n,
this gives us at most n(n−1)

2
comparisons. Whenever a merge occurs,

|I ′| is decreased by 1, while |I| is not decreased. Therefore one extra
round of comparisons is added, but the number of records to compare
to is decreased. For the first merge, the number of added comparisons
is at most the maximal size of I ′ minus 1, i.e. (n−2), and for k merges,
we obtain that the maximal number of comparisons performed by R-
Swoosh is n∗(n−1)/2+(n−2)+ . . .+(n−k−1). For R-Swoosh,
it holds that j = n − k. Therefore, at most (n − 1)2 − (j−1)(j−2)

2
comparisons are performed.

We now prove that any exhaustive algorithm will do the same num-
ber of comparisons in the worst case. We consider a dataset consist-
ing of n distinct records, and construct “adversarial” match and merge
functions (satisfying the four properties of Section 2.2) that behave as
follows: The match function returns true only after it was asked to com-
pare all pairwise combinations of the original records, thus effectively
forcing the algorithm to perform n∗ (n−1)/2 comparisons. For these
two matching records, the merge function creates a new record, and
the match function waits for this record to be compared against all the
original records, (except the two that were merged) before declaring a
match, thus forcing the algorithm to perform n − 2 additional record
comparisons. The merge function will again create a new record for
the new match that was found. At the next step, n−3 comparisons are
incurred, and so on. After k merges, j = n − k records remain, and
the algorithm was forced to perform at least (n − 1)2 − (j−1)(j−2)

2
record comparisons. ut

C Feature-Level Algorithms

Proposition 4.1 Given an instance I, the F-Swoosh algorithm com-
putes the maximal derivation of I, and therefore solves the ER problem.

Proof (sketch) The algorithm essentially computes a derivation of the
instance J = I∪I ′∪{currentRecord}. It is easy to see that the deriva-
tion is correct: records are merged only if one of their feature values
for one feature match. The tricky part is to show that the derivation is
maximal, because the feature values of currentRecord which already
appear in some Nfi are not compared to the values of the records in
I ′. However, as we mentioned earlier, the feature values in Nfi do not
match each other (except when they are from the same record), and
therefore if one of them appears in the current record, it cannot match
another feature value of a different record in Nfi . Since the feature
values of the records in I ′ are a subset of the values in Nfi , it follows
that no match can be missed. Just like in R-Swoosh, records in I ′ are
non dominated, and the set I ∪ currentRecord is empty at the end of
the algorithm, therefore the derivation is maximal. ut
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