
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Query translation from XPath to SQL in the presence of recursive
DTDs

Citation for published version:
Fan, W, Yu, JX, Li, J, Ding, B & Qin, L 2009, 'Query translation from XPath to SQL in the presence of
recursive DTDs', VLDB Journal, vol. 18, no. 4, pp. 857-883. https://doi.org/10.1007/s00778-008-0131-0

Digital Object Identifier (DOI):
10.1007/s00778-008-0131-0

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
VLDB Journal

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2024

https://doi.org/10.1007/s00778-008-0131-0
https://doi.org/10.1007/s00778-008-0131-0
https://www.research.ed.ac.uk/en/publications/c2a4f431-8344-4916-b99d-1f4c8dd4bad4


The VLDB Journal (2009) 18:857–883
DOI 10.1007/s00778-008-0131-0

REGULAR PAPER

Query translation from XPath to SQL in the presence of recursive
DTDs

Wenfei Fan · Jeffrey Xu Yu · Jianzhong Li ·
Bolin Ding · Lu Qin

Received: 23 September 2007 / Revised: 17 November 2008 / Accepted: 17 November 2008 / Published online: 4 February 2009
© Springer-Verlag 2009

Abstract We study the problem of evaluating xpath queries
over xml data that is stored in an rdbms via schema-based
shredding. The interaction between recursion (descendants-
axis) in xpath queries and recursion in dtds makes it chal-
lenging to answer xpath queries using rdbms. We present a
new approach to translating xpath queries into sql queries
based on a notion of extended XPath expressions and a sim-
ple least fixpoint (lfp) operator. Extended xpath expressions
are a mild extension of xpath, and the lfp operator takes a
single input relation and is already supported by most com-
mercial rdbms. We show that extended xpath expressions are
capable of capturing both dtd recursion and xpath queries
in a uniform framework. Furthermore, they can be translated
into an equivalent sequence of sql queries with the lfp oper-
ator. We present algorithms for rewriting xpath queries over

An extended abstract was presented at the 31st international
conference on Very Large Data Bases (VLDB), 2005.

W. Fan (B)
University of Edinburgh, Edinburgh, UK
e-mail: wenfei@inf.ed.ac.uk

W. Fan
Bell Laboratories, Madison, WT, USA
e-mail: wenfei@research.bell-labs.com

J. X. Yu · B. Ding · L. Qin
The Chinese University of Hong Kong, Hong Kong, China
e-mail: yu@se.cuhk.edu.hk

B. Ding
e-mail: blding@se.cuhk.edu.hk

L. Qin
e-mail: lqin@se.cuhk.edu.hk

J. Li
Harbin Institute of Technology, Harbin, China
e-mail: lijzh@hit.edu.cn

a (possibly recursive) dtd into extended xpath expressions
and for translating extended xpath expressions to sql que-
ries, as well as optimization techniques. The novelty of our
approach consists in its capability to answer a large class
of xpath queries by means of only low-end rdbms features
already available in most rdbms, as well as its flexibility
to accommodate existing relational query optimization tech-
niques. In addition, these translation algorithms provide a
solution to query answering for certain (possibly recursive)
xml views of xml data. Our experimental results verify the
effectiveness of our techniques.

Keywords XML database · XPath · SQL · Recursive
DTD · Query translation

1 Introduction

It is increasingly common to find xml data stored in a rela-
tional database system (rdbms), typically based on dtd/
schema-based shredding into relations [59] as found in many
commercial products (e.g., [33,49,52]). With this comes the
need for answering xml queries using rdbms, by translating
xml queries to sql.

The query translation problem can be stated as follows.
Consider a mapping τd , defined in terms of dtd-based shred-
ding, from xml documents conforming to a dtd D to rela-
tions of a schema R. Given an xml query Q, we want to
find (a sequence of) equivalent sql queries Q′ such that
for any xml document T conforming to D, Q over T can
be answered by Q′ over the relation instance τd(T ) of R,
i.e., Q(T ) = Q′(τd(T )). Here we allow dtds D to be recur-
sive and consider queries Q in xpath [15], which is the core
of xml query languages XQuery and XSLT.

123



858 W. Fan et al.

A closely related issue concerns query answering for xml
views of xml data. Consider an xml view V of an xml doc-
ument T . For practical reasons, e.g., xml access control [21]
and data integration [44], the view V may necessarily be
virtual and specified by a recursive dtd. To answer xpath
queries Q posed on V without materializing V , one needs to
rewrite Q into an equivalent xml query Q′ on the underlying
source T such that Q(V ) = Q′(T ).

The query translation problem is, however, nontrivial:
dtds (or xml Schema) found in practice are often recur-
sive [12] and complex. This is particularly evident in real-life
applications (see, e.g., BIOML [10] and GedML [27], which,
when represented as graphs, contains a number of nested and
overlapping cycles). The interaction between recursion in a
dtd and recursion in an xml query complicates the trans-
lation. When the dtd has a tree or DAG structure, a natural
approach [34] is based on enumerating all matching paths of
the input xpath query in a dtd, sharing a single represen-
tation of common sub-paths, rewriting these paths into sql
queries, and taking a union of these queries. However, this
approach no longer works on recursive dtds since it may
lead to infinitely many paths when dealing with the descen-
dant-or-self axis ‘//’ in xpath. Another approach is by means
of a rich intermediate language and middleware as proposed
in [57]: first express input xml queries in the intermediate
language, and then evaluate the translated queries leveraging
the computing power of the middleware and the underlying
rdbms. However, as pointed out by a recent survey [40],
this approach requires implementation of the middleware
on top of rdbms, and introduces communication overhead
between the middleware and the rdbms, among other things.
It is more convenient and possibly more efficient to translate
xpath queries to sql and push the work (sql queries) to
the underlying rdbms, capitalizing on the rdbms to eval-
uate and optimize the queries. This, however, calls for an
extension of sql to support certain recursive operator. As
observed by [40], although there has been a host of work on
storing and querying xml using an rdbms [11,16,26,28,29,
31,36,39,41,42,45,57,58,62,64], the problem of translating
recursive xml queries into sql has not been well studied in
the presence of recursive dtds, and it was singled out as the
most important open problem for schema-based xml storage
in [40].

Recently an elegant approach was proposed in [39] to
translating path queries to sql with the linear-recursion con-
struct with. . .recursive of sql’99. The algorithm of [39] is
capable of translating path queries with // and limited qual-
ifiers to (a sequence of) sql queries with the sql’99 recur-
sion operator, handling xpath recursion and dtd recursion
uniformly by means of product automata. Constraint-based
techniques were also developed to optimize query transla-
tion [41,42]. Unfortunately, this approach has several lim-
itations. The first weakness is that it relies on the sql’99

recursion functionality, which is not currently supported by
many commercial products including Oracle and Microsoft
sql server. One wants an effective query translation approach
that works with a wide variety of products supporting low-
end recursion functionality, rather than requiring an advanced
dbms feature of only the most sophisticated systems. Second,
the sql queries with the sql’99 recursion produced by the
translation algorithm of [39] are typically large and com-
plex, and cannot be effectively optimized by all platforms
supporting sql’99 recursion for the same reasons that not all
rdbms can effectively optimize mildly complex non-recur-
sive queries [26]. Worse still, as the with. . .recursive opera-
tor is treated as a blackbox, the user can do little to optimize
it. A third problem is that the class of path query handled
by the algorithm of [39] is too restricted to express xpath
queries commonly found in practice. Finally, this approach
does not help xpath query answering for xml views despite
its analogy with xpath query translation to relational
views.

There has also been a host of work on translating xml
queries to sql, for schema-oblivious xml storage, e.g., path-
based methods [36,45,64], and region/Dewey encoding [11,
16,31,62]. Combining path index and Dewey encoding, opti-
mization techniques to minimize structural joins, e.g., Prim-
itive Path Fragment (ppf) [28,29], have also been developed.
Following this approach efficient xml query processors, such
as MonetDB [11] and Saxon [55], have been developed on
top of rdbms, capable of processing xpath recursion without
requiring the support of recursive operators by sql. However,
these methods typically store xml data in relations of a fixed
schema, regardless of the schema of the xml data. This makes
it difficult for, among other things, data exchange [38], xml
access control (e.g., [21]) and xml view updates (e.g., [13]).
Furthermore, the encoding and path index incurs additional
overhead. Worse still, when the data is updated frequently,
the cost of maintaining the encoding and path index could
become prohibitively expensive. Moreover, in many appli-
cations one would prefer a lightweight tool that provides the
capability of answering xpath queries within the immediate
reach of commercial rdbms, instead of using a heavy-duty
system. In addition, the encoding and indexing approaches
do not help when it comes to query answering over xml
views.

In light of these, for schema-based xml storage, we pro-
pose a new approach to translating a class of xpath queries
to sql, which also provides a solution to query answering
for certain xml views of xml data. The approach is based
on a notion of extended xpath expressions and a simple least
fixpoint (lfp) operator. Extended xpath expressions gener-
alize xpath and regular xpath [48] by supporting variables
and general Kleene closure E∗ instead of //. The lfp oper-
ator �(R) takes a single input relation R instead of mul-
tiple relations as required by the sql’99 with. . .recursion

123



Query translation from XPath to SQL in the presence of recursive DTDs 859

operator. Although theoretically the with. . .recursive opera-
tor can be encoded in terms of the lfp operator, the coding
introduces additional overhead. The lfp operator is already
supported by many commercial systems such as Oracle (con-
nectby) and IBM DB2 (with. . .recursion), and is supported by
Microsoft sql server (common table [51]). We show that
extended xpath expressions are capable of expressing a large
class of xpath queries over a (recursive) dtd D, by substi-
tuting the general Kleene closure E∗ for //, and by giving
a finite representation of possibly infinite matching paths
of an xpath query in terms of variables and E∗, in poly-
nomial time. That is, extended xpath expressions capture
both dtd recursion and xpath recursion in a uniform and
compact framework. Moreover, we show that each extended
xpath expression can be rewritten to a sequence of equivalent
sql queries with the lfp operator. That is, low-end rdbms
features (sql with �(R)) suffice to support complex xpath
queries.

Taken together, our approach works as follows. Given
an xpath query Q on a (possibly recursive) dtd, we first
rewrite Q into an extended xpath query EQ that character-
izes all matching paths, and then translate EQ to an equiv-
alent sequence Q′ of sql queries. To this end we provide
an efficient algorithm for translating an xpath query over a
(recursive) dtd D to an equivalent extended xpath query, and
a novel algorithm for rewriting an extended xpath query into
a sequence of sql queries with the lfp operator. We show
that the sql queries are bounded by a low polynomial in the
size of the input query Q and the dtd D. Furthermore, the
translation algorithms effectively remove structural joins in
the sql queries by filtering out paths that Q does not match,
based on the structural properties of the dtd. We also pro-
vide optimization techniques to speed up the processing of
lfp computation.

Contributions. The main contributions of this paper include
the following.

• The notion of extended xpath expressions that captures
dtd recursion and xpath recursion in a uniform frame-
work.
• The use of the simple lfp operator commonly found in

commercial products to express a large class of xpath que-
ries.
• An efficient algorithm for rewriting xpath queries over a

(possibly recursive) dtd into extended xpath queries that
characterize matching paths, based on dynamic program-
ming.
• A novel algorithm for rewriting an extended xpath expres-

sion to a sequence of sql queries with the lfp operator.
• Optimization techniques for speeding up the performance

of lfp computation, and for eliminating unnecessary struc-
tural joins based on the properties of the input dtd.

• Experimental results verifying the effectiveness of our
approach and techniques, using real-life xml dtds.

Our approach has several salient features. (1) As will
be seen in Sect. 3, the notion of extended xpath expres-
sions yields a low polynomial-time performance guarantee
on query translation from xpath to sql; in contrast, direct use
of xpath or regular xpath [48] in the translation may incur
exponential blowup. Furthermore, this notion is also useful in
developing native xml query engines [1,19]. (2) As opposed
to prior work [11,39,62], our approach leads to a lightweight
tool that provides a variety of commercial rdbms with an
immediate capability to answer xpath queries over recur-
sive dtds, requiring only low-end rdbms features instead of
the advanced sql’99 recursion functionality. (3) It is capa-
ble of handling a class of xpath queries supporting child,
self-or-descendants and union as well as rich qualifiers with
data values, conjunction, disjunction and negation, which are
beyond those studied in earlier proposals for schema-based
xml storage at the sql level. These thus yield an effective
and efficient method that works with most rdbms products,
to answer a large class of xpath queries found in practice.
(4) It produces sql queries that are often less complex than
their counterparts generated with the sql’99 recursion, and
can be optimized by most rdbms platforms. Furthermore, it
can easily accommodate optimization techniques developed
for sql queries, e.g., multi-query [54], recursive sql query
optimization [56] as well as integrity constraints [41,42].
(5) In contrast to [11,28,29,39,62], our approach provides
also an effective solution to xpath query answering for certain
xml views. As recently observed in [22], the query answer-
ing problem is nontrivial because xpath is not closed under
query rewriting, i.e., for an xpath query Q posed on target
xml data V , there may not exist an equivalent xpath query
Q′ on the underlying source such that Q(V ) = Q′(T ); worse
still, even if an equivalent xpath query Q′ exists and when
V is specified by a nonrecursive dtd, it takes exponential
time to compute Q′ in the size of Q. By leveraging extended
xpath, our first translation algorithm, namely, the one from
xpath to extended xpath, provides an effective solution to the
query answering problem for a class of xml views.

Organization. The remainder of the paper is organized as
follows. Section 2 reviews dtds, xpath and schema-based
mapping from xml to relations. Section 3 outlines our query
translation approach as opposed to the one given in [39],
introduces extended xpath, and discusses its applications for
answering xpath queries by using either rdbms or native xml
query engines. Section 4 provides an algorithm for translating
xpath queries to extended xpath expressions, followed by an
algorithm for rewriting extended xpath expressions into sql
with a simple lfp operator in Sect. 5. Experimental results
are presented in Sect. 6, followed by related work in Sect. 7.
Finally, Sect. 8 concludes the paper.

123



860 W. Fan et al.

course*

*

student

name

*
project

*

requiredptitlepno

dept
*

titlecno *takenByprereq

sno qualified

(a)

*RcRd * Rs Rp

*

* *

*
(b)

Fig. 1 A graph representation of the dept dtd

2 DTD, XPath, and schema-based shredding

We first review dtds, xpath queries, and dtd-based shred-
ding of xml data into relations.

2.1 DTDs

Without loss of generality we represent a dtd D as an
extended context-free grammar of the form (Ele, Rg, r),
where Ele is a finite set of element types; r is a distinguished
type, called the root type; and Rg defines the element types:
for any A in Ele, Rg(A) is a regular expression α:

α ::= ε | B | α, α | (α | α) | α∗,

where ε is the empty word, B is a type in Ele (referred to
as a subelement type of A), and ‘|’, ‘,’ and ‘∗’ denote dis-
junction, concatenation and the Kleene star, respectively. We
refer to A → Rg(A) as the production of A. To simplify
the discussion we do not consider attributes, and we assume
that an element v may possibly carry a text value (PCDATA)
denoted by v.val. An xml document that conforms to a dtd
is called an xml tree of the dtd.

Along the same lines as [59], we represent dtd D as a
graph, called the dtd graph of D and denoted by G D . In
G D , each node represents a distinct element type A in D,
called the A node, and an edge represents the parent/child
relationship. More specifically, for any production A → α,
there is an edge from the A node to the B node for each
subelement type B in α; the edge is labeled with ‘∗’ if B is
enclosed in α∗0 for some sub-expression α0 of α. This sim-
ple graph representation of dtds suffices since, as will be
seen shortly, we do not consider ordering in xpath. When
it is clear from the context, we shall use dtd and its graph
interchangeably.

A dtd D is recursive if it has an element type that is
defined (directly or indirectly) in terms of itself. Note that
the dtd graph G D of D is cyclic if D is recursive. A dtd
graph G D is called a n-cycle graph if G D consists of n sim-
ple cycles, where a simple cycle refers to a cycle in which no
node appears more than once.

A dtd D is contained in another dtd D′ if the dtd graph
of D is a sub-graph of D′, i.e., there is a homomorphism
mapping from D to D′ such that the root of D is mapped to
the root of D′.

Example 2.1 We consider adept dtd (E ,dept, Rg) as our
running example, where E = {course, cno, title,
prereq, takenBy, project, student, sno,
name, qualified, pno, ptitle, required},
and Rg is defined as follows:

dept → course* course → cno,
title, prereq, takenBy, project*

prereq → course* student → sno,
name, qualified

takenBy → student* project → pno,
ptitle, required

qualified → course* required →
course*

A dept has a list of course elements. A course consists
of a cno (course code), a title, a prerequisite hierarchy
(via prereq), and all the students who have registered for
the course (viatakenBy). A course may have several pro-
jects. A student has a sno (student number), a name
and a list of qualified courses. Each project has a
pno (project number), aptitle (title) and required courses
(required). Its dtd graph, a 3-cycle graph, is shown in
Fig. 1a. ��

2.2 XPath

We consider a class of xpath queries [15] that supports recur-
sion (descendant-or-self), union and rich qualifiers, given as
follows.

p ::= ε | A | ∗ | p/p | //p | p ∪ p | p[q]
where ε, A and ∗ denote the empty path, a label and a wild-
card, respectively; ‘∪’, ‘/’ and ‘//’ are union, child-axis and
descendant-or-self-axis, respectively; and q is a qualifier,
defined as

q ::= p | text() = c | ¬q | q ∧ q | q ∨ q

where c is a constant, and p is defined above.
An xpath query p, when evaluated at a context node v in

an xml tree T , returns the set of nodes of T reachable via p
from v, denoted by v[[p]]. In particular, v[[p1[q]]] consists of
nodes reachable via p1 from v that satisfy the qualifier [q].
More specifically, a node v′ satisfies the qualifier [q] as fol-
lows: the atomic predicate [p] holds at v′ iff v′[[p]] is non-
empty, i.e., there exists a node reachable via p from v′; and
[text() = c] is true iff v.val equals the constant c. The bool-
ean operations are self-explanatory. We also use ∅ to denote a

123



Query translation from XPath to SQL in the presence of recursive DTDs 861

special query, which returns the empty set over all xml trees,
with ∅ ∪ p equivalent to p and p/∅/p′ equivalent to ∅.

This class of xpath queries properly contains branching
path queries studied in [39] and tree pattern queries (see,
e.g., [4]). In the sequel, we refer to this class of queries sim-
ply as xpath.

Example 2.2 Consider two xpath queries.

Q1 = dept//project
Q2 = dept/course[//prereq/course[cno =

"cs66"] ∧ ¬//project ∧ ¬ takenBy/
student/qualified//course[cno =
"cs66"]]

Over an xml tree of the dept dtd of Fig.1, query Q1 is to
find all course-related projects, and Q2 is to find courses that
(1) have a prerequisite cs66, (2) have no project related to
them or to their prerequisites, but (3) have no student who
registered for the course and took cs66.

2.3 Mapping DTDs to a database schema

We next review shredding of xml data into relations. We
consider a dtd-based approach since it is supported by most
rdbms [33,49,52]. To simplify the discussion, we focus on
the shared-inlining technique of [59] although our query
translation technique can be readily extended to work on most
xml shredding methods for storing and querying xml data
(see [40] for a comprehensive survey on xml shredding tech-
niques). Extensions of our techniques to handle xml Schema
instead of dtds will be discussed in Sect. 8.

In a nutshell, the inlining algorithm partitions a dtd graph
G D into subgraphs, G1, G2, . . . such that any A-node is rep-
resented in exactly one subgraph and there is no edge labeled
‘∗’ in any subgraph. Each subgraph Gi is mapped to a rela-
tion schema Ri . Each relation schema has a key attribute ID.
The edges from a subgraph Gi to a subgraph G j are specified
using parentId in the corresponding relation schema R j . If a
subgraph G j has more than one incoming edge, say from Gi

and Gk , a parentCode attribute is introduced into the relation
schema R j indicating the parent code of the R j tuples.

We use τ : D→ R to denote a mapping from dtd D to a
relational database schema R, which consists of a set of rela-
tion schemas. Observe that from τ one can easily derive a data
mapping, denoted by τd , from xml trees of D to instances
of R.

To simplify the discussion we assume that the mapping τ

maps each element type A to a relation RA in R, which has
three columns F (from, i.e., parentId), T (to, i.e., ID) and V
(the value of all other attributes). Intuitively, in a database
τd(T ) representing an xml tree T , each RA tuple ( f, t, v)

represents an edge in T from a node f to an A-element t
which may have a text value v, where t and f are denoted by

Table 1 A database encoding an
xml tree of the dept dtd F T

Rd

– d1

Rc

d1 c1

c1 c2

c2 c3

p1 c4

s2 c5

Rs

c1 s1

c1 s2

Rp

c2 p1

c4 p2

the node IDs in T and are thus unique in the database, and v

is ‘_’ in the absence of text value at t . In particular, f = ‘_’
if and only if f is the root of T . This assumption does not
lose generality: our query translation techniques can be easily
extended to cope with mappings without this restriction.

Example 2.3 With the shared-inlining technique, the dtd
graph G D of Fig. 1a is partitioned into four subgraphs rooted
at dept, course, project, and student, respectively (see Fig. 1b).
It is mapped to a relational database schema τ(D) consisting
of four corresponding relation schemas, Rd , Rc, Rp and Rs :

Rd(F, T)
Rc(F, T, cno, title, prereq, takenBy,
parentCode)

Rs(F, T, sno, name, qualified)
Rp(F, T, pno, ptitle, required)

A sample database is shown in Table 1, which only shows F
and T attributes. From Table 1 one can find paths in the xml
tree of thedeptdtd, e.g., d1.c1.c2.c3 and d1.c1.c2.p1.c4.p2.

3 Overview: from XPath to SQL

The query translation problem from xpath to sql is stated as
follows. Let τ : D→ R be a mapping from a dtd D to a rela-
tional schema R, and τd be the corresponding data mapping
from xml trees of D to the relational instance of R. The prob-
lem is to find an algorithm that, given an xpath query Q, effec-
tively computes an equivalent sequence of relational queries
Q′ such that for any xml tree T of the dtd D, Q(T ) =
Q′(τd(T )). In schema-based xml shredding, the relational
schema R and the mapping τd are typically derived from the

123



862 W. Fan et al.

dtd D, as opposed to being fixed as found in schema-obliv-
ious xml storage.

In this section we first review the approach proposed
by [39], the only solution published so far for the query
translation problem in the presence of recursive dtds. To
overcome its limitations, we propose a new approach, which
is based on the notion of extended xpath to handle the inter-
action between xpath recursion and dtd recursion in a uni-
form way. We introduce extended xpath and outline our query
translation approach in this section; detailed translation algo-
rithms will be presented in the next two sections. We also
show that our algorithms also provides a solution to query
answering for certain xml views of xml data.

3.1 Linear recursion of SQL’99

The algorithm of [39], referred to as SQLGen-R, handles
recursive path queries over recursive dtds based on the
sql’99 recursion operator. In a nutshell, given an input path
query, SQLGen-R first derives a query graph, G Q , from the
dtd graph to represent all matching paths of the query in
the dtd graph. It then partitions G Q into strongly-connected
components c1, . . . , cn , sorted in the top–down topological
order. It generates an sql query Qi for each ci in the topo-
logical order, and associates Qi with a temporary relation
TRi such that TRi can be directly used in later queries Q j for
j > i . The sequence TR1 ← Q1; . . . ; TRn ← Qn is the out-
put of the algorithm. If a component ci is cyclic, the sql query
Qi is defined in terms of the with. . .recursive operator. More
specifically, it generates two parts from ci : an initialization
part and a recursive part. The initialization part captures all
“incoming edges” into ci . The recursion part first creates an
sql query for each edge in ci , and then encloses the union of
all these (edge) queries in a with. . .recursive expression. It
should be noted that if ci has k edges, the query Qi actually
calls for a fixpoint operator φ(R, R1, R2, . . . Rk) with k + 1
input relations, defined as follows:

R0 ← R (1)

Ri ← Ri−1 ∪ (Ri−1
��C1 R1) ∪ · · · ∪ (Ri−1

��Ck Rk)

where R0 corresponds to the initialization part, R j corre-
sponds to an sql query coding an edge in ci , and C j indi-
cates additional conditions associated with the join, for each
j ∈ [1, k].
Example 3.1 Recall the mapping given in Example 2.3 from
the dept dtd to the relational schema R consisting of
Rs, Rc, Rp, Rd , and the xpath query Q1 = dept//pro-
ject given in Example 2.2, which, over the dtd graph of
Fig. 1b, indicates Rd//Rp. Given Q1 and the dtd graph
of Fig. 1b, the algorithm SQLGen-R finds a strongly-con-
nected component (Rc//Rp) having 3 nodes and 5 edges,
and produces a single sql query using a with. . .recursive

Fig. 2 The sql statement generated by SQLGen-R

expression, as shown in Fig. 2. More specifically, the initial
part of the recursion is given in lines 3–4, while the recursion
part is lines 6–19. Each edge in the graph Fig.1b is translated
into a select statement. Observe that in the select statement,
it uses Rid to keep track of where the tuples in the result
relation R come from. For example, the select statement for
the edge Rc → Rc (lines 6–7) inserts a tuple into the result
relation R with its F and T values in addition to a Rid value
‘c’ indicating that it is from relation Rc. The usage of Rid
is to join right parent/child tuples. As line 10 shows, in the
select statement for the edge Rc → Rs , it needs to join with
tuples in R that is originally from Rc (Rid = ‘c’). Similarly
for Rs → Rc, Rc → Rp, and Rp → Rc (lines 12–13, 15–16
and 18-19, respectively). When evaluated over the relational
database of Table 1, the query of Fig. 2 returns the result
shown in Table 2. Using a selection on Rid = ‘p’ on Table 2,
one can find that p1 and p2 are the descendants of p.

Observe the following about the query of Fig. 2. First, it
actually requires a fixpoint operator that takes 4 relations as
input. As we have remarked in Sect. 1, φ(R, R1, R2, . . . , Rk)

is a high-end feature that few rdbms support. Although the-
oretically one can encode this in terms of an lfp �(R) that
takes a single input relation and is supported by most com-
mercial rdbms, the coding introduces space overhead. Sec-
ond, it is a complex query consisting of 5 joins and 5 unions.
That is, each iteration of the fixpoint computation needs to
compute 5 joins and 5 unions. Third, with. . .recursive is
treated as a black box. In this example, all 5 relations join
the result relation R in the center, which forms a star shape.
The relation in the center keeps growing, but one can do
little to optimize the operations inside the with. . .recursion
expression.

123



Query translation from XPath to SQL in the presence of recursive DTDs 863

Table 2 An output of SQLGen-
R at each iteration

Iteration F T Rid

0 d1 c1 ‘c’

1 c1 c2 ‘c’

c1 s1 ‘s’

c1 s2 ‘s’

2 c2 c3 ‘c’

c2 p1 ‘p’

s2 c5 ‘c’

3 p1 c4 ‘c’

4 c4 p2 ‘p’

3.2 Extended XPath expressions

To overcome the limitations of the previous approach, we
propose a new approach to translating xpath queries to sql.
In a nutshell, given an xpath query Q and a dtd D, we first
rewrite Q to an expression Q′ that captures all matching
paths of Q in D. We then translate the expression into an
equivalence sequence of sql queries.

We want Q′ to specify all and only those matching paths
of Q in D, for the following reasons. First, to avoid unnec-
essary structural joins in the ultimate sql queries, Q′ should
eliminate those paths that do not match Q in D. Second, Q′
should be generic enough to work with various xml shred-
ding mappings τd . More specifically, suppose that an xml
tree T that conforms to D is stored in relations τd(T ). Here
T can be considered an xml view of relations τd(T ), and
depending on how τd is defined, the “source” τd(T ) may not
adhere to the same dtd D (note that relations are a special
case of xml data). As will be seen in Sect. 3.4, we often
need to deal with cases when view dtds are contained in the
corresponding source dtds. To answer Q by using Q′ and
τd(T ), Q′ should faithfully capture the matching paths of Q
in D. The need for this is more evident when it comes to
query answering using xml views.

One might be tempted to assume that one could also
express Q′ in xpath. Unfortunately, there may not exist any
xpath query that precisely enumerates all matching paths of
Q in D when D is recursive [22]. To illustrate this, let us
consider the following example.

Example 3.2 Consider recursive dtds D, D′ depicted in
Fig. 3a, b, respectively. Note that D is contained in D′, where
D′ has an additional edge (B, C). One can easily define a
mapping σ from instances of D′ to instances of D such that
for any document T that conforms to D′, from σ an xml
document V can be derived such that V conforms to D. Now
consider a query Q = //ε posed on V that is to find all
nodes in V . Suppose that we want to compute an equivalent
query Q′ that, when posed on T , returns the same result as

Q on V . Clearly, Q′ should not return any C nodes that are
children of some B nodes. Then one can verify that Q′ is not
expressible in the xpath fragment given above. Indeed, as
D is recursively defined, Q′ necessarily contains ‘//’, which
returns all descendants of a context node. Within ‘//’, how-
ever, the xpath fragment is not expressive enough to specify
any pattern such that any C children of B nodes are excluded
from the answer to the query.

Worse still, even when we allow Q′ to be in regular xpath
proposed by [48] and D is nonrecursive, the rewriting may
still be beyond reach in practice since it may incur exponen-
tial blowup. Regular xpath expressions are the “least upper
bound” of xpath and regular expressions. They differ from
xpath queries in that, first, they support general Kleene clo-
sure E∗ as opposed to restricted recursion ‘//’, and second,
they do not allow wildcard ∗ and descendant ‘//’. They extend
regular expressions by supporting qualifiers. Although reg-
ular xpath is more expressive than xpath, it is still not rich
enough for query rewriting. The next example is taken
from [18], which shows that representing a nondeterministic
finite state automaton with a regular expression takes at least
exponential time, even if the automaton is non-recursive.

Example 3.3 Consider a dtd D1 for which the dtd graph
consists of (a) nodes Ai for i ∈ [1, n], where the root is A1,
(b) edges (Ai , A j ) for all i, j ∈ [1, n] and i < j . Figure 3c
shows such a dtd graph for n = 4. This dtd is contained
in another dtd D2, shown in Fig. 3d, which, in addition,
has a node B and moreover, edges (B, An) and (Ai , B) for
i < n. Note that these dtd graphs are acyclic, i.e., they are
non-recursive. There is a natural mapping σ0 from instances
of D1 to instances of D2 such that for any document T that
conforms to D2, from σ0 an xml document V can be derived
such that V conforms to D1 and moreover, (a) the root rv

of V maps to the root rt of T , and (b) for any element u in
V that is reached from rv via a path ρ, it is mapped to an
element σ0(u) that is reachable from rt via the same path ρ.

Now consider a query Q = //An posed on V that is to find
all An nodes in V . Suppose that we want to find an equivalent
query Q′ that, when posed on T , returns the same result as Q
on V . The query Q′ is then to find all An nodes in T that are
reachable from the root without going through any B node
in T . One can verify that although query Q′ is expressible
in regular xpath, it takes necessarily O(2n) space. Indeed, a
regular xpath expression of Q′ will be given in Example 3.4,
and a straightforward combinatorial analysis suffices to tell
us that the size of the expression is of O(2n), from which
the O(2n) space bound follows immediately. The example is
borrowed from [18].

These suggest that we further extend xpath and regular
xpath to translate xpath queries over a (possibly recursive)
dtd to sql. Below we introduce such an extension, referred

123



864 W. Fan et al.

A

B C

*

(a)

A

B C

*

(b) (c) (d)

Fig. 3 Example dtd graphs

to as extended xpath expressions and syntactically defined as
follows:

E ::= ε | A | X | E/E | E ∪ E | E∗ | E[q],
q ::= E | text() = c | ¬q | q ∧ q | q ∨ q.

where X is a variable, and E∗ denotes the Kleene closure
of E .

Observe that an expression E without any variable is a
query in regular xpath. The motivation for using E∗ instead
of ‘//’ is twofold. First, the expressive power of E∗ is required
for encoding both dtd recursion and xpath recursion. As will
be seen shortly, with E∗ one can define a finite representation
of (possibly infinite) matching paths of an xpath query over a
recursive dtd. Second, E∗ “instantiates” // with paths in the
dtd. In a nutshell, E takes a union of all matching simple
cycles of // and E∗ then applies the Kleene closure to the
union; each of these paths can then be mapped to a sequence
of relations connected with joins. The semantics of evaluat-
ing E over an xml tree is similar to its xpath counterpart.

An extended xpath query Q is a sequence of equations of
the form Xi = Ei , where for i ∈ [1, k], Xi is a variable, Ei

is an extended xpath expression, and Xi does not appear in
E j if i < j . Intuitively, the equations specify bindings of
variables and sub-queries. It can be easily verified that Q is
equivalent to a sequence of equations of the form Xi = E ′i ,
where E ′i is a regular xpath query, i.e., an extended xpath
expression without variables. The semantics of evaluating Q
over an xml tree is therefore straightforward: for i from k
downward to 1, evaluate Ei and substitute the result of Ei

for Xi−1 in Ei−1.
The use of variables in extended xpath allows us to rep-

resent (possibly infinite) matching paths in polynomial that
would otherwise take exponential time in regular xpath and
would not be expressible in xpath.

Example 3.4 Recall the query //ε from Example 3.2, posed
on xml trees of dtd D. Over dtd D′, it can be readily
translated to an equivalent query (A/B)∗(ε ∪ A ∪ A/C),
in extended xpath. This is also in regular xpath.

The query Q of Example 3.3 posed over D1 can be rewrit-
ten to query Q′ over D2 as follows.

X(1,4) = A1/(A4 ∪ A2)/X(2,4)

X(2,4) = A1/(A4 ∪ A3)/X(3,4)

X(3,4) = A1/A4

This is in extended xpath, but in neither xpath nor regular
xpath. Obviously Q′ can be computed in polynomial time
(and polynomial space), without paying the price of expo-
nential space as required by any equivalent regular xpath
expressions. This motivates us to use extended xpath instead
of regular xpath and xpath.

3.3 A new approach

Based on a notion of extended xpath expressions and the
simple lfp operator �(R), we propose a new approach to
translating xpath queries to sql. Below we first review the
simple lfp operator. We then outline our approach.

The lfp operator. The lfp operator �(R) takes a single
input relation R, as shown below:

R0 ← R

Ri ← Ri−1 ∪ (Ri−1
��C R0) (2)

where C is a condition associated with the join. This lfp
operator is already supported by most commercial products,
e.g., by Oracle and IBM DB2 are shown in Fig. 4.

To illustrate how the lfp operator handles Kleene clo-
sure, consider an extended xpath expression (A1/ · · · /An)∗
representing a simple cycle A1 → · · · → An → A1. This
simple extended xpath expression can be rewritten into �(R)

(Eq. (2)) by letting R← �R1.F,Rn .T (R1 �� R2 �� · · · �� Rn),
where the projected attributes are taken from the attributes
F (from) and T (to) in relations R1 and Rn , respectively.
The join between Ri/R j is expressed as Ri ��Ri .T=R j .F R j ,
i.e., it returns Ri tuples that connect to R j tuples. In gen-
eral, we rewrite E∗ to �(R), where R is a temporary relation
associated with a query that encodes E .

A new approach for query translation. We propose a new
framework for translating xpath to sql that, as depicted in
Fig. 5, translates an input xpath query Q to sql in two steps.
First, it rewrites Q over a (possibly recursive) dtd D to

123



Query translation from XPath to SQL in the presence of recursive DTDs 865

Fig. 4 Implementation of lfp in Oracle and DB2

an equivalent extended xpath query EQ over any dtd D′
that contains D, i.e., the dtd graph of D is a subgraph of
the dtd graph of D′. The query EQ has the form (X1 =
E1, . . . , Xk = Ek) as mentioned above. Second, it rewrites
EQ into an equivalent sequence Q′ of sql queries based on
a mapping τ : D→ R, and using the lfp operator to handle
Kleene closure. The choice of extended xpath in the first step
is motivated by the following reasons. As remarked earlier,
the Kleene closure of extended xpath allows us to instantiate
‘//’ of xpath, and capture recursion in xpath and dtd recur-
sion in a uniform framework. Furthermore, as illustrated in
Example 3.4, the use of variables allows us to extract com-
mon sub-queries and thus avoid the exponential lower bound
of translation to regular xpath.

In contrast to the approach of [39], this framework intro-
duces more opportunities for optimization, as illustrated by
the example below.

Example 3.5 Let us consider again evaluating the xpath
query Q1 = dept//project over the dept dtd of Fig. 1,
in the same setting as in Example 3.1. Our translation algo-
rithms first translate Q1 to an extended xpath query EQ1 =
(X Q1 = Rd/Rc/X∗/Rp, X = Rc ∪ Rs/Rc ∪ Rp/Rc). It
then rewrites EQ1 to a sequence of sql queries (written in
relational algebra):

Rcc ← Rc

Rcsc ← �Rs .F,Rc.T (Rs ��Rs .T=Rc.F Rc)

Rcpc ← �Rp .F,Rc.T (Rp ��Rp .T=Rc.F Rc)

R← Rcc ∪ Rcsc ∪ Rcpc

Rγ ← �(R) ∪�T,T (Rc)

R f ← �Rd .T,Rp .T (Rd ��Rd .T=Rc.F Rc ��Rc.T=Rγ .F

Rγ ��Rγ .T=Rp .F Rp)

The above sql sequence is the output of our algorithms.
Contrast this with Example 3.5. While our sql queries use
3 unions and 5 joins in total, they are evaluated once only,
instead of once in each iteration of the lfp computation. In
other words, we pull join/union out from the black box of
with. . .recursive. This not only gives us more opportunities to
optimize join/union, but also allows us to push selection con-
ditions into the lfp operator, along the same lines as the lfp

optimization by distribution of selections suggested by [3],
as will be illustrated in Sect. 5.

In Sect. 4 we present a translation algorithm to show that
every xpath query Q over a (recursive) dtd D can be rewrit-
ten to an extended xpath query EQ that is equivalent to Q over
all dtds containing D. Then, we provide another algorithm
in Sect. 5 to show that the simple lfp operator �(R) suf-
fices to handle general Kleene closure in an extended xpath
query EQ .

3.4 More on extended XPath: query answering using XML
views

The notion of extended xpath is useful not only in translat-
ing xpath to sql, but also in developing native xml engines
for evaluating xml queries. Indeed, regular xpath, a special
form of extended xpath, is being rapidly introduced into xml
engines [1]. EXSLT [19], for example, supports a transi-
tive closure operatordyn:closure that implements essen-
tially regular xpath. Furthermore, at least some versions of
Saxon [55] also support this operator. Extended xpath pro-
vides a more succinct form of regular xpath and is naturally
expected to help in this line of work as well.

What we have seen so far concerns answering xpath que-
ries posed on xml data that is stored in relations. This can
be considered as answering xpath queries over certain xml
views of relational data. One step further, it is natural to con-
sider answering xpath queries posed on xml views of xml
data. In this context, extended xpath also finds applications.
Indeed, in addition to optimization opportunities, the first
step of our translation framework given earlier in fact pro-
vides a solution to query answering for certain xml views of
xml data.

Consider a class of gav mappings σ : D1 → D2, where
D1, D2 are target and source dtds, respectively (see, e.g., [32,
44] for gav mappings), such that for any instance T of D2, σ
defines a view V such that for any xml elementv ∈ V ,σ(v) is
contained in an xml element u in T , and V is a sub-structure
of T . For instance, the mapping σ0 given in Example 3.3 is
such a mapping from the dtd of Fig. 3c to the dtd of Fig. 3c.
Such views are found in many applications, e.g., access con-
trol for xml [21] where one only wants to reveal parts of T
to authorized users, or data integration [44] where part of the
source is migrated to the target. In these applications V is
often virtual.

Now consider an xpath query posed on V . We want to
answer the query without materializing V . This highlights
the need for a query answering algorithm that, given an xpath
query Q posed on D1, effectively computes a query Q′ on
D2 such that Q(V ) = Q′(T ).

This query answering problem is, however, nontrivial.
Indeed, consider query Q given in Example 3.3, which is

123



866 W. Fan et al.

Fig. 5 Translation from XPath
to SQL

to an extended XPath query

Q
Q’

Dmapping from      to R

outputinput XPath
query Q

translate from extended XPath
to a sequence of SQL queries
with the simple lfp operator

translate from XPath Q

DTD D

E

posed on the view V . The equivalent query Q′ on the source
T is to find all An nodes reachable from A1 without going
through any B nodes. As shown in Example 3.3, although
this query is definable in regular xpath, it is necessarily of
exponential size. As recently observed in [22], xpath is not
closed under query rewriting and although regular xpath is
closed, it incurs an exponential lower bound for rewritten
queries.

In contrast, we show that the translation algorithm of the
step 1 of our framework provides a solution to the query
answering problem for the class of gav xml views described
above. Indeed, given any xpath query Q posed on D1, the
algorithm effectively computes Q′ in extended xpath in poly-
nomial time. Furthermore, the query Q′ has the following
property. For any D2 that contains D1, define a mapping
σ from instances of D1 to instances of D2 that, given any
instance T of D2, derives an instance V of D1 such that V is
a subtree of T : σ maps the root rv of V to the root rt of T ,
each A element v of V to an A element σ(v) of T such that
if v is reached from rv via a path ρ, then σ(v) can reached
from rt via the same path ρ. Then Q(V ) = Q′(T ).

Finally, we give some notations, which will be used in
Sect. 4. We say that Q′ is equivalent to Q over all dtds D2

that contain D1. Furthermore, we say that Q′ is equivalent
to Q w.r.t. two element types A, B over all dtds D2 that
contains D1 if when evaluated at any A element v in V , the
set of B elements returned by Q is the same as the set of B
elements returned by Q′ when evaluated at σ(v) in T .

4 From XPath to extended XPath

In this section, we present an algorithm for rewriting an xpath
query Q over a (recursive) dtd D to an extended xpath query
EQ that is equivalent to Q′ over all dtds containing D. We
first develop an algorithm for handling the descendant-axis
(‘//’) of xpath, and then give the translation algorithm for the
xpath fragment defined in Sect. 2.

4.1 Translation of the descendant axis

Consider an xpath query Q = A//B over a dtd D. The
query, when evaluated at an A-element v in an instance V
of D, is to find all B descendants of v. We want to find
an extended xpath query Q′, denoted by rec(A, B), that is
equivalent to Q over all dtds that contain D.

An algorithm is given by Tarjan in [61] that, given a graph
G D and two nodes A, B ∈ G D , finds a regular expression
which represents the set of all paths in G D from A to B.
We sketch Tarjan’s algorithm [61] in Fig. 6, and denote it by
CycleE as it is based on cycle expansion. Let G D = (N , E),
where N is the set of nodes and E is the set of edges of G D .
Following the notations of [61], we associate the nodes in G D

with numbers from 1 to n = |N |, and use a regular expres-
sion M[i, j, k] to maintain all possible paths from node i to
node j via nodes whose numbers are less than or equal to k,
where k can be zero indicating a “path” via no nodes in G D .
Algorithm CycleE first initializes all M[i, j, 0] (line 1-7). It
then expands M[i, j, k] for all i, j by incrementing k, i.e., by
inspecting M[i, k − 1, k] and M[k, j, k] while including all
possible cycles, i.e., M[k, k, k − 1]∗, at node k (lines 8–13).

The regular expression M[1, n, n] returned by Algorithm
CycleE precisely represents all paths from node A to node B,
where A and B are numbered 1 and n, respectively. Unfortu-
nately, the algorithm takes exponential time and exponential
space.

Lemma 4.1 Given a graph G D with n nodes and nodes A, B
in G D, CycleE finds a regular expression capturing all paths
in G D from node A to B in 
(n32n)-time and 
(n22n)-
space.

Proof The correctness of algorithm was verified in [61]. The
upper bound is due to line 12 in CycleE (Fig. 6), which cop-
ies sub-expressions and concatenates them into one. In fact,
it is already shown in [18] that the bounds given above are
also the lower bounds for converting nondeterministic finite
state (nfa) to regular expressions; as a result, when the graph
DG is treated as a nfa with A as the start state and B the final
state, any regular expressions characterizing the nfa have the
lower bounds given above. ��

Recall the definition of extended xpath expression and
extended xpath query. We show that one can find a query
rec(A, B) representing all paths from A to B in low poly-
nomial time. Indeed, we present a mildly modified CycleE,
denoted by CycleEX, that computes rec(A, B). The algo-
rithm uses the following variables. (a) M[i, j, k] is an
extended xpath expression representing all possible paths
from node i to node j via nodes no larger than k. (b) Variable
X [i, j, k] indicates equation X [i, j, k] = M[i, j, k] in the
output. (c) X [k, k, k−1]∗ indicates equation X [k, k, k−1] =
cycle(M[k, k, k−1]), which represents cycles at node k. The

123



Query translation from XPath to SQL in the presence of recursive DTDs 867

Fig. 6 CycleE (Tarjan’s
Algorithm for finding regular
expressions)

Fig. 7 CycleEX for extended
xpath expressions

algorithm is shown in Fig. 7. The initialization part (lines 1–
7) is the same as its counterpart in CycleE. In contrast to
CycleE, M[i, j, k] is represented as an expression (string)
with only at most four operators and four variables rather than
concatenating four expressions, by capitalizing on variables
(lines 8–13). The length of each M[i, j, k] is thus constant.
Finally, we construct extended xpath query rec(A, B) by list-
ing equations (i.e., Xi = Ei , where Xi is a variable and E is
an extended xpath expression) X [i, j, k] = M[i, j, k] in the
order of k, and return the whole ordered set rec(A, B) as the
output, where variable X [A, B, n] represents the final result
(lines 14–15). In line 15, the following redundant equations
are pruned from rec(A, B): 1) X [i, j, k] = ∅; 2) X [i, j, k] =
‘X [i ′, j ′, k′]’; and 3) the variables that do not contribute to
processing the variable X [A, B, n].
Example 4.1 Consider again the query //An on the dtd
graph D1 of Fig. 3c. Starting from A1 and ending with A4

(A1//An), for n = 4, CycleEX returns an extended xpath
query as follows (suppose nodes A1, A2, A3, and A4 in D1

are associated with numbers 1, 2, 3, and 4, respectively):

X [1, 3, 2] = ‘X [1, 3, 1] ∪ X [1, 2, 1]/X [2, 3, 1]’, (3)

X [1, 4, 2] = ‘X [1, 4, 1] ∪ X [1, 2, 1]/X [2, 4, 1]’, (4)

X [1, 4, 4] = ‘X [1, 4, 2] ∪ X [1, 3, 2]/X [3, 4, 2]’, (5)

where X [1, 2, 1] = 1/2, X [1, 3, 1] = 1/3, X [1, 4, 1] = 1/4,
X [2, 3, 1] = 2/3, X [2, 4, 1] = 2/4, and X [3, 4, 2] = 3/4.1

The output of CycleEX produces an extended xpath query
that contains 3 “∪”-operators and 6 “/”-operators. Note: the
“/” appearing in Eqs. (3), (4), and (5) is used to concatenate
two variables, and is not a “/”-operator in the extended xpath
expression. For example, consider ‘X [1, 2, 1]/X [2, 3, 1]’
[Eq. (3)]. Here, X [1, 2, 1] = 1/2 indicates a path from 1

1 Based on the pruning rule of (2), the X [1, 2, 1] = ‘X [1, 2, 0]’ is
pruned and X [1, 2, 1] = 1/2 produced by Algorithm CycleEX is used.
The equation of X [2, 4, 3] = ‘X [2, 4, 2] ∪ X [2, 3, 2]/X [3, 4, 2]’ will
be pruned following the pruning rule of (3), because it does not con-
tribute to the processing of X [1, 4, 4].

123



868 W. Fan et al.

to 2, and X [2, 3, 1] = 2/3 indicates a path from 2 to 3. Node
2 appears in both X [1, 2, 1] and X [2, 3, 1], and concatenates
the two variables. Similarly, X [1, 2, 1]/X [2, 3, 1] indicates
an extended xpath expression 1/2/3.

In contrast, CycleE gives an extended xpath expression
of X [1, 4, 4] = 1/4∪ 1/2/4∪ (1/3∪ 1/2/3)/4 with 3 “∪”-
operators and 7 “/”-operators.

Example 4.1 illustrates how CycleEX works. Next, we
also show CycleEX (polynomial) outperforms CycleE
(exponential), in terms of the number the ‘/’-operators.

Example 4.2 Consider again the query //An on the dtd
graph D1 of Fig. 3c. Starting from A1 and ending with An

(A1//An), CycleEX returns an extended xpath query (a list
of equations) with 
(n2) ‘/’-operators, while CycleE gives
an extended xpath expression with �(2n) “/"-operators.
Indeed, when CycleEX is used, only one “/"-operator, app-
earing on the right side of the equation for X [1, i, j], where
1 ≤ j < i ≤ n, will be executed. In total, there are n ·(n−1)

/2 ∈ 
(n2) “/"-operators. Consider CycleE. Let f (n) be
the number of “/"-operators in the output of CycleE on the
input dtd graph Dn . We can establish the following recursive
relationship from line 12 in Algorithm CycleE:

f (2) = 1;
f (3) = f (2)+ 2;
f (4) = f (2)+ f (3)+ 3;
. . . . . . . . .

f (n) = f (2)+ f (3)+ · · · + f (n − 1)+ (n − 1);
Thus f (n) = n+ (n− 1)+ 2 · (n− 2)+ 22 · (n− 3)+· · ·+
2i−1 · (n − i)+ · · · + 2n−4 · 3 ∈ �(2n).

Moreover, in contrast to CycleE, Algorithm CycleEX has
the following nice properties.

Theorem 4.1 Given a dtd D with n element types and ele-
ment types A, B in D, CycleEX finds a query rec(A, B)

in extended xpath in O(n3log n) time, and moreover, when
evaluated at any A-element, rec(A, B) is equivalent to //B
for all dtds that contain D.

Proof For the complexity, CycleEX computes at most n3+n
equations, and each equation is of O(log n) size (for encod-
ing the four variables, and there are n3+n variables in total).
Each step of the inner-most loop takes at most O(log n) time.
From this the complexity bound follows.

We next show that rec(A, B) is equivalent to //B for all
dtds that contain D. More specifically, let D′ be an arbitrary
dtd that contains D, and σ be the mapping that, given any
instance T of D′, extracts a subtree V of T that is an instance
of D, as specified in Sect. 3. Let v be an A element in V ,
where σ maps v to an A element σ(v) in T . We need to show
that a node u′ can be reached from σ(v) via rec(A, B) in T

iff there exists a node u in V such that u′ = σ(u) and u can
be reached from v via rec(A, B) in V .

To show this, first observe that a regular expression
X (A, B) can be derived from rec(A, B) by removing vari-
ables as described in Sect. 2. We claim the following: ρ is a
path from A to B in D iff ρ is a word in X (A, B). This can
be easily verified by showing ρ is a path from A to B without
going through any node larger than k iff ρ ∈ M[A, B, k], by
induction on k.

This claim suffices. Indeed, for any xml tree T and any
A element σ(v) in T , a node u′ can be reached from σ(v)

in T via rec(A, B) iff the path ρ from σ(v) to u′ in T is a
word in X (A, B). By the claim and the definition of σ , this
happens iff ρ is in D and there exists a node u in V such that
u′ = σ(u) and u can be reached from v via the same path ρ

in V . ��

4.2 Translation algorithm

We next present an algorithm for translating xpath queries
of the fragment of Sect. 2 over a dtd D to extended xpath
queries that are equivalent over all dtds that contain D.

The algorithm, referred to as XPathToEXp, is based on
dynamic programming: for each sub-query p of the input
query Q and each pair of element types A, B in D, it
computes a local translation from xpath p to an equation
X p(A, B) = x2e(p, A, B), where X p(A, B) is a variable
and x2e(p, A, B) is an extended xpath expression, such that
x2e(p, A, B) is equivalent to p w.r.t. A and B over any
dtd D′ that contains D (recall the notion from Sect. 3).
Composing the local translations one will get the rewriting
EQ = ∪B∈D X Q(r, B) from Q, where r is the root type of D.
For each local translation x2e(p, A, B) the algorithm “eval-
uates” p over the sub-graph of the dtd graph G D rooted
at A, substituting extended xpath expressions over element
types for wildcard ∗ and descendants //, by incorporating the
structure of the dtd into x2e(p, A, B). This also allows us to
“optimize” the xpath query by capitalizing on the dtd struc-
ture: certain qualifiers in p can be evaluated to their truth
values and thus be eliminated during the translation, just by
checking the structure of D.

To conduct the dynamic-programming computation,
Algorithm XPathToEXp uses the following variables. First,
it works over a list L that is a postorder enumeration of the
nodes in the parse tree of Q, such that all sub-queries of a
sub-query p (i.e., its descendants of p in Q’s parse tree) pre-
cede p in L . Second, all the element types of the dtd D are
put in a list N . Third, for each sub-query p in L and each pair
of types A, B in N , we use x2e(p, A, B) to denote the local
translation of p at A, which is an extended xpath expres-
sion. Furthermore, we use a variable X p(A, B) which will
be used in the equation X p(A, B) = x2e(p, A, B), such that
X p(A, B) can be used instead of x2e(p, A, B) whenever the

123



Query translation from XPath to SQL in the presence of recursive DTDs 869

latter is needed. Finally, we also use reach(p, A) to denote
the types in D that are reachable from A via p. Abusing this
notation, we use reach([q], A) for a qualifier [q] to denote
whether or not [q] can be evaluated to false at an A element,
indicated by whether or not x2e([q], A, A) is [ε].

Algorithm XPathToEXp is given in Fig. 8. It computes
EQ as follows. It first enumerates the list L of sub-queries in
Q and the list N of element types in D, as well as initializes
x2e(p, A) to the special query ∅ and reach(p, A) to empty
set for each p ∈ Q and A ∈ N (lines 1–5). Then, for each
sub-query p in L in the topological order and each element
type A in N , it computes the local translation x2e(p, A, B)

(lines 6–28), bottom-up starting from the inner-most sub-
query of Q. To do so, it first computes x2e(pi , B j , B) for
each (immediate) sub-query pi of p at each possible dtd
node B j under A (i.e., B j in reach (p, A)); then, it combines
these x2e(pi , B j , B)’s to get x2e(p, A, B). The details of
this combination are determined based on the formation of p
from its immediate sub-queries pi , if any (cases 1–7). These
cases are illustrated as follows.

First, when p is empty path ε, element type C , wildcard
∗ or descendants-or-self //, namely, cases (1)–(3) and (5),
x2e(p, A, B) and reach(p, A) are determined by the dtd
D alone regardless of the input query Q; thus it can be pre-
computed for each A, B, once and for all, and made available
to XPathToEXp. We include these cases [cases (1)–(3)] in
Fig. 8 for ease of reference (lines 9–14).

When p = p1/p2 [case (4)], for each C reached via p1

from A, XPathToEXp assembles x2e(p1, A, C) and
x2e(p2, C, B) for each B reached via p2 from C to precisely
represent paths from A to B in D. Furthermore, variables
X p1(A, C) and X p2(C, B) are used instead of x2e(p1, A, C)

and x2e(p2, C, B) to avoid that x2e(p, A, B) has an expo-
nential size.

Similarly, in the case p = ε//p1 [case (5)], XPathToEXp
assembles x2e(p1, A, C) and x2e(p2, C, B) for each C
reached via ε// and each B reached via p1 from C . Here
x2e(ε, A, C) is essentially X [A, C, n], the variable in
rec(A, C) representing the final result. Note that rec(A, C)

is precomputed by Algorithm CycleEX, and is also added
into EQ in line 31.

When p = p1 ∪ p2 [case (6)], for each B in D, XPathTo
EXp̨ simply computes x2e(p1, A, B) ∪ x2e(p2, A, B).
However, for the same reason given for case (4), X p1(A, B)

and X p2(A, B) are used instead of x2e(p1, A, B) and
x2e(p2, A, B)

When p comes with a qualifier, i.e., when p = p′[q]
[case (7)], it invokes a procedure RewQual to translate [q].
Procedure RewQual may evaluate [q] to a truth value (ε for
true and ∅ for false) in certain cases based on the structure
of the dtd D alone. If so, XPathToEXp simply drops [q] in
x2e(p, A, B), or leaves x2e(p, A, B) unchanged (i.e., ∅) if
RewQual returns false.

At the end of the iteration, each x2e(p, A, B) is optimized
by removing∅, which returns an empty set over any xml tree,
as described in Sect. 2. Finally, X Q is defined to be the union
of x2e(Q, r, B) for all B ∈ reach(Q, r), and the equations
of the extended xpath query are put together into EQ as the
output of the algorithm (lines 29–32).

Procedure RewQual is shown in Fig. 9. It translates quali-
fiers [q] into an extended xpath query, based on the structure
of q. Furthermore, it “evaluates” q over the dtd and gets
the truth value of [q] if it can be determined based on the
dtd structure alone. For example, when q is a path p, it con-
cludes that [q] is false if no node can be reached from A
via p, and true if ε is contained in p, i.e., the current node
is in the “result” of the query p. For Boolean operations,
it invokes procedure optimize (not shown) that determines
whether q1 ∧ q2, q1 ∨ q2 and ¬q1 can be evaluated to true or
false. For q1 ∧ q2, for example, optimize evaluates it to true
if both q1 and q2 are ε, and to false if one of q1 and q2 is ∅;
similarly for q1 ∨ q2 and ¬q1.

Example 4.3 Recall the xpath query Q2 from Example 2.2.
Observe that the algorithm of [39] cannot handle this query
over the dept dtd of Fig. 1a. In contrast, XPathToEXp trans-
lates Q2 to the extended xpath query EQ2 below:

X Q2 = dept/course[Xcourse_course/prereq/course[cno =
“cs66′′] ∧ ¬Xcourse_project ∧ ¬takenBy/student/

Xqualified_course[cno = “cs66′′]]

Let ic, jp, and kq be the number assigned to course, project,
and quantified, respectively, and let n be the number of nodes
in the dtd of Example 2.2. Here, Xcourse_course = X [ic, ic, n],
obtained by computing rec(course, course); Xcourse_project =
X [ic, jp, n], obtained by computing rec(course, project);
and Xqualified_course = X [kq , ic, n], obtained by computing
rec(qualified, course). The algorithm of Sect. 5 can then
translate EQ2 to equivalent relational queries.

The result below tells us that Algorithm XPathToEXp
computes extended xpath queries in low polynomial time, as
desired.

Theorem 4.2 Each xpath query Q over a dtd D can be
rewritten to an extended xpath expression EQ in O(|D|3 ∗
log|D| ∗ |Q| ∗ log|Q|) time, such that EQ is equivalent to
Q over all dtds that contain D, and that the size of EQ is
bounded by O(|D|3 ∗ |Q| ∗ log|D|).
Proof For the complexity, observe the following. (a) Algo-
rithm XPathToEXp produces an extended xpath query with
O(|D|2∗|Q|) many variables and O(|D|2∗|Q|) many equa-
tions, each consisting of at most two variables and thus takes
O(log(|D||Q|) space (to encode the variables). (b) In addi-
tion, rec(A, B) for ‘//’ computed by Algorithm contains

123



870 W. Fan et al.

Fig. 8 Rewriting algorithm from xpath to extended xpath

O(|D|3) many equations, which takes O(|D|3 ∗ log|D|)
space. Putting these together, the extended xpath query pro-
duced takes no more than O(|D|3 ∗ log|D| ∗ |Q|) space.
(c) Each step of the inner-most loop of Algorithm XPathTo
EXp takes at most O(|D|2 ∗ log|Q| ∗ log|D|) time, where
log|Q|∗log|D| is for writing the variables involved. Thus the
algorithm takes no more than O(|D|3∗log|D|∗|Q|∗log|D|)
time.

We show that EQ is equivalent to Q over all dtds that
contain D, by induction on the structure of Q. For the base
cases, i.e., when Q is ε, A, ∗ and //, the statement trivially
holds. In particular, the argument for // is given in the proof
of Theorem 4.1.

For the inductive step, assume that the statement holds for
sub-queries p1, p2 of Q, i.e., x2e(pi , A, B) is equivalent to

pi w.r.t. A and B for all A, B ∈ D and i = 1, 2. We show
that the statement holds for p1/p2. Proofs for the other cases
are similar.

Let D′ be an arbitrary dtd that contains D, and σ be the
mapping that, given any instance T of D′, extracts a subtree
V of T that is an instance of D, as specified in Sect. 3. Let
v be an A element in V , where σ maps v to an A element
σ(v) in T . We need to show that a node u′ can be reached
from σ(v) via x2e(p1/p2, A, B) in T iff there exists a node
u in V such that u′ = σ(u) and u can be reached from v via
p1/p2 in V .

First, for any node u in V reached from v via p1/p2, there
must be a node w in V such that w is reached from v via
p1 and u is reached from w via p2. Assume w is labeled
C . Then obviously C ∈ reach(p1, A). By the induction

123



Query translation from XPath to SQL in the presence of recursive DTDs 871

Fig. 9 Rewriting algorithm from qualifiers

hypothesis and the definition of σ , there exist w′, u′ in T such
that w′ = σ(w), u′ = σ(u); moreover, w′ can be reached
from σ(v) via x2e(p1, A, C) and u′ can be reached from w′
via x2e(p2, C, B). Thus from the definition of x2e(p1/p2,

A, B) and the semantics of xpath, it follows that u′ can be
reached from σ(v) via x2e(p1/p2, A, B) in T .

Conversely, for any node u′ in T reached from σ(v) via
x2e(p1/p2, A, B), by the definition of x2e(p1/p2, A, B)

and the semantics of xpath, there must be a node w′ in T
such that w is reached from σ(v) via x2e(p1, A, C) and u′
is reached from w′ via x2e(p2, C, A), where w′ is labeled
C . By the induction hypothesis for p1, there exists w in V
such that w′ = σ(w), and w can be reached from v via p1.
Moreover, by the definition of σ , C ∈ reach(p1, A). Then
by the induction hypothesis for p2, there exists u in V such
that u′ = σ(u) and u can be reached from w via p2. By the
semantics of xpath, it follows that u can be reached from v

via p1/p2 in V . ��

Observe the following. First, extended xpath queries cap-
ture dtd recursion and xpath recursion in a uniform frame-
work by means of the general Kleene closure E∗. The use
of variables makes it possible to translate xpath queries in
polynomial time, in contrast to the exponential blowup of
query translation into regular xpath [22]. Second, during the
translation, algorithm XPathToEXp conducts optimization
leveraging the structure of the dtd. Third, Kleene closure
is only introduced when computing rec(A, B); thus there
are no qualifiers within a Kleene closure E∗ in the output
extended query. Fourth, both |Q| and |D| are far smaller than

the data (xml tree) size in practice. Finally, as remarked ear-
lier, Algorithm XPathToEXp also provides query answering
ability for xpath queries over certain virtual xml views.

5 From extended XPath expressions to SQL

In this section we present an algorithm, Algorithm EXpTo
SQL, for rewriting extended xpath expressions into equiva-
lent sql queries with the simple lfp operator. Together with
Algorithm XPathToEXp given in the last section, these pro-
vide a solution for answering xpath queries on xml data
stored in relations. We also discuss optimization of the pro-
duced sql queries.

5.1 Translation algorithm

Consider a mapping τ : D→ R, where D is a dtd and R is
a relational schema, such that its associated data mapping τd

shreds xml trees of D into databases of R. Given an extended
xpath expression EQ over D, Algorithm EXpToSQL com-
putes a sequence Q′ of equivalent relational queries with the
simple lfp operator � such that for any xml tree T of D,
EQ(T ) = Q′(τd(T )). We write Q′ in the relational algebra
(ra), which can be easily coded in sql.

More specifically, Q′ is a list of the form Re ← e2s(e),
where e is an sub-expression of the extended xpath expres-
sion EQ , Re is a temporary table which is used in later
queries, and e2s(e) is the ra query equivalent to e. Con-
ceptually, the list Q′ can be properly ordered such that if

123



872 W. Fan et al.

e is a sub-expression of e′, then Re ← e2s(e) precedes
Re′ ← e2s(e′) in Q′, i.e., when e2s(e) is needed, the query
has already been evaluated and its result is available in Re,
which can be directly used in e2s(e′). As will be seen in
Sect. 5.2, the sql queries can be evaluated “top–down” fol-
lowing a lazy evaluation strategy: e2s(e) is not evaluated
unless it is needed.

Algorithm EXpToSQL suffices to translate the query pro-
duced by Algorithm XPathToEXp into equivalent sql que-
ries. To see this, observe the following. First, the equations
in the extended xpath query returned by Algorithm XPathTo
EXp can be sorted as (X p1 = E p1 , . . ., X pm = E pm ), where
pi ’s are sub-queries of the input query Q such that all sub-
queries of a sub-query p precede p, with pm = Q. In other
words, X pi only appears in E p j if i < j . We can apply Algo-
rithm EXpToSQL to E p1 , . . . , E pm one by one in this order,
creating a temporary table Rpi for each e2s(E pi ). For each
occurrence of X pi in E p j , we simply use Rpi in e2s(E p j ).
Thus it suffices for EXpToSQL to translate extended xpath
expressions E pi . Second, the query returned by XPathTo
EXp is equivalent to the xpath query Q over all dtds that
contain D. Thus it is equivalent to Q over D since D con-
tains itself. Putting these together, we have that EXpToSQL
and XPathToEXp translate the xpath Q over D to equivalent
sql queries over R.

We show Algorithm EXpToSQL in Fig. 10. The algo-
rithm takes an extended xpath expression EQ over the dtd
D as input, and returns an equivalent sequence Q′ of ra
queries with the lfp operator � as output. The algorithm is
based on dynamic programming: for each sub-expression e
of EQ , it computes e2s(e), which is the ra query translation
of e; it then associates e2s(e) with a temporary table Re and
increments the list Q′ with Re ← e2s(e). More specifically,
e2s(e) is computed by assembling e2s(ei ) where ei ’s are its
immediate sub-queries. Thus upon the completion of the pro-
cessing one will get the list Q′ equivalent to EQ . To do this,
the algorithm first finds the list L of all sub-expressions of
EQ and topologically sorts them in ascending order (line 1).
Then, for each sub-query e in L , it computes e2s(e) (lines 3–
24), bottom-up starting from the inner-most sub-query of EQ ,
and based on the structure of e [cases (1)–(12)].

A subtle issue is that the lfp operator � supports (E)+
but not (E)∗ (where (E)∗ means repeating E zero or more
times, while (E)+ indicates repeating E at least once). Thus
(E)∗ needs to be converted to ε ∪ (E)+. To simplify the
handling of ε, we assume a relation Rid consisting of tuples
(v, v, v.val) for all nodes (IDs) v in the input xml tree except
the root r . Note that Rid is the identity relation for join oper-
ation: R �� Rid = Rid �� R = R for any relation R. With
this we translate (E)∗ to �(R)∪ Rid , where R codes E , and
Rid tuples will be eliminated in a later stage. We rewrite ε

into Rid just to simplify the presentation of our algorithm; a
more efficient translation will be described in Sect. 5.2.

More specifically, EXpToSQL handles different cases of
e as follows.
(Case 2) It rewrites a label A to the corresponding relation
RA.
(Case 3) It replaces each occurrence of variable X with its
corresponding temporary table RX . From the discussion
above one can see that for each X appearing in an expression
E p j , X = E pi has already been processed and a table RX

has been associated with e2s(E pi ).
(Case 4) Concatenation is coded with projection� and join ��.
(Cases 5, 11) Union and disjunction are encoded with union
∪ in relational algebra.
(Case 6) Kleene closure (E)∗ is converted to the lfp operator
�, as remarked above.
(Case 10) Conjunction is coded with set intersection imple-
mented with union∪ and set difference\ in relational algebra.
(Qualifiers) An expression with qualifier e = e1[q] is con-
verted to an ra query e2s(e) that returns only those e2s(e1)

tuples t1 for which there exists an e2s(q) tuple t2 with t1.T =
t2.F , i.e., when the qualifier q is satisfied at the node rep-
resented by t1.T (case 6). For example, it converts [e1] to
e2s(e1) when e1 is an extended xpath expression (case 7).
There are, however, two special cases. First, it rewrites e1[¬q]
to a ra query e2s(e) that returns only those e2s(e1) tuples
t1 for which there exists no e2s(q) tuple t2 such that t1.T =
t2.F , i.e., when the qualifier q is not satisfied at the node
t1.T [and hence [¬q] is satisfied at t1.T (case 11)]; this cap-
tures precisely the semantics of negation in xpath. Second,
it rewrites e = e1[text() = c] in terms of selection σ that
returns all tuples of e2s(e1) that have the text value c.

In each of the cases above, the list Q′ is incremented by
adding Re ← e2s(e) as the head of Q′ (line 25). After the
iteration it yields σF=′_′e2s(EQ) (line 26), which selects
only those nodes reachable from the root of the xml tree,
removing unreachable nodes including those introduced by
Rid . It also optimizes the sequence Q′ of ra queries by elimi-
nating empty set and extracting common sub-queries (details
omitted from Fig. 10), and returns the cleaned Q′ (lines
28–29).

Example 5.1 Consider the xpath query Q1 = dept//pro-
ject over the dept dtd of Fig. 1a. Over the simplified
dtd is Fig. 1b, Q1 becomes Rd//Rp. A possible equivalent
ra translations Q′1 has been given in Example 3.5, which
includes a single lfp operation Rγ = �(R) ∪ �T,T (Rc),
where R = Rcc ∪ Rcsc ∪ Rcpc. When evaluated over the
relational database of Fig. 1 (which encodes an xml tree of
the dept dtd), Q′1 produces R, Rγ , and the final result as
shown in Table 3.

As another example, recall the xpath query Q2 from Exam-
ple 2.2, and its extended xpath query translation X Q2 from
Example 4.3, which contains Xcourse_course (= X [ic, ic, n]),
Xcourse_project (= X [ic, jp, n]), and Xqualified_course (= X [kq ,

123



Query translation from XPath to SQL in the presence of recursive DTDs 873

Fig. 10 Rewriting algorithm from extended XPath to SQL

ic, n]) computed by Algorithm CycleEX. Given X Q2 , the
EXpToSQL algorithm generates the ra translation below:

Xcourse_course/prereq/course[cno = “cs66′′] :
σcno=“cs66′′(Rcc �� Rc)

takenBy/student/Xqualified_course[cno = “cs66′′] :
σcno=“cs66′′(Rs �� Rqc)

Suppose the results of Xcourse_course, Xcourse_project, and
Xqualified_course are stored in Rcc, Rcp, and Rqc, respectively.

Note that Q2 is of the form (with a complex qualifier)
dept/course[q1 ∧¬q2 ∧¬q3], which is handled by our algo-
rithms by treating it as Q1

2 = dept/course[q1], Q2
2=Q1

2[¬q2]
and Q2 = Q2

2[¬q3]. Therefore, Q1
2 ← Rd �� Rc �� R1,

Q2
2 ← Q1

2 \ (Q1
2 �� Rcp), and X Q2 becomes Q2

2 \ (Q2
2 ��

R2) where projections are omitted. In contrast, the algorithm
of [39] cannot translate xpath queries of this form to rela-
tional queries.

The corollary below confirms that our translation algo-
rithms provide an effective solution for answering xpath que-
ries over (possibly recursive) dtds by means of traditional
rdbms.

Corollary 5.1 Each xpath query Q over a dtd D can be
rewritten to an equivalent sequence of sql queries (with the
lfp operator) in O(|D|3 ∗ log|D| ∗ |Q| ∗ log|Q|) time.

123



874 W. Fan et al.

Table 3 Intermediate and final
results of dept//project F T

R

d1 c1

c1 c2

c2 c3

p1 c4

s2 c5

c1 c5

c2 c4

Rγ

c1 c2

c1 c3

c1 c4

c1 c5

· · · · · ·
R f

d1 p1

d1 p2

Proof It is easy to verify the following. (a) Given an input
extended xpath expression EQ , Algorithm EXpToSQL takes
O(|EQ |) time to compute a sequence Q′ of sql queries (with
the lfp operator). The size of Q′ is also O(|EQ |). (b) The sql
queries Q′ are equivalent to EQ , i.e., for any xml tree T of
D, EQ(T ) = Q′(τd(T )). This can be verified by induction
on the structure of EQ . Recall from Theorem 4.2 that given
an input xpath query Q over D, Algorithm XPathToEXp
computes an extended xpath query EQ equivalent to Q over
all dtds that contain D. The query EQ can be computed
in O(|D|3 ∗ log|D| ∗ |Q| ∗ log|Q|) time, and its size is
in O(|D|3 ∗ |Q| ∗ log|D|). Putting these together, we have
that the sql queries Q′ can be computed from Q by using
XPathToEXp followed by EXpToSQL in O(|D|3∗log|D|∗
|Q|∗log|Q|) time. Furthermore, the size of Q′ is in O(|D|3∗
|Q| ∗ log|D|). ��

Observe the following. First, algorithm EXpToSQL
shows that the simple lfp operator �(R) suffices to express
xpath queries over recursive dtds; thus there is no need for
the advanced sql’99 recursion operator. Second, the total
size of the produced sql queries is bounded by a low poly-
nomial of the sizes of the input xpath query Q and the dtd D.
Finally, the algorithms XPathToEXp and EXpToSQL can
be easily combined into one; we present them separately to
focus on their different functionality.

5.2 Optimization: pushing selections into the lfp operator

Algorithms XPathToEXp and EXpToSQL show that sql
with the simple lfp operator is powerful enough to answer

xpath queries over recursive dtds. While certain optimi-
zations are already conducted during the translation, other
techniques, e.g., sophisticated methods for pushing selec-
tions/projections into the lfp operator [2,3,5,6,8] can be
incorporated into our translation algorithms to further opti-
mize generated relational queries. Below we present some
optimization strategies.

Top–down evaluation. To simplify the discussion we pre-
sented in Sect. 5.1 a conceptual evaluation strategy for the
list Q′ of sql queries generated: if e is a sub-expression
of e′, then e2s(e) is evaluated before e2s(e′). In practice,
this can be computed following a lazy evaluation strategy:
e2s(e) is not evaluated unless it is explicitly needed and
invoked by e2s(e). Consider, e.g., e1/e2 (case 4 of Algo-
rithm EXpToSQL). Instead of computing e1/e2 in the order
of e2s(e1), e2s(e2) and e2s(e1/e2), this can be conducted
lazily as follows: first evaluate e2s(e1); if the result is empty,
then there is no need to evaluate e2s(e2) and e2s(e1/e2).
That is, e2s(e2) is evaluated only when necessary; similarly
for other cases in Algorithm EXpToSQL. Alternatively, one
can treat e2s(e1) and e2s(e2) as sub-queries of e2s(e1/e2)

such that the queries in Q′ are evaluated top–down following
the inverse order of the list.

Pushing selections into lfp. We next show how to push
selections into lfp. Consider an xpath query Q3 = Rd[id
= a]/Rc//Rp. To simplify the discussion, assume that our
algorithms rewrite Q3 into R1 ← Qd and R2 ← lfp(R0),
where Qd and lfp(R0) compute Rd[id = a] and Rc//Rp,
(i.e., rec(Rc, Rp)), respectively. While R1 �� R2 yields the
right answer, we can improve the performance by pushing
the selection into the lfp computation such that it only tra-
verses “paths” starting from the Rc children of those Rd

nodes with id = a. Recall from Eq. (2) that one can spec-
ify a predicate C on the join between R� and R0 in lfp,
where R0 is the input relation and R� is the relation being
computed by the lfp (Sect. 3; supported by connectby of Ora-
cle and with. . .recursion of IBM DB2). That is, R0

� ← R0,
Ri

�← Ri−1
� ∪(Ri−1

� 
�C R0), and finally, R�← Rm
� , where

Rm
� = Rm+1

� , i.e., the fixpoint. Here C = R�.F ∈ πT (R1)∧
Ri−1

� .T = R0.F . (‘∈’ denotes in in sql), i.e., besides the
equijoin R�.T = R0.F we want the F (from) attribute of
R� to match the T (to) attribute of R1. Then, each iteration
of the lfp only adds tuples ( f, t), where f is a child of a node
in πT (R1).

Similarly the selection in Rd//Rc/Rp[id=c] can be pushed
into lfp(R0) for rec(Rd , Rc). Let R1 be the relation found
and the lfp join condition be: Ri−1

� .F = R0.T ∧ R�.T ∈
πF (R1). Then the lfp only returns tuples of the form ( f, t),
where t is the parent of a node in πF (R1).

In general, given an extended xpath expression R1 ��

lfp(R0) (or lfp(R0) �� R1), where R1 is associated with a
selection condition, we can push the selection into lfp along

123



Query translation from XPath to SQL in the presence of recursive DTDs 875

the same lines as above. Let us denote the query resulted
from this as push(R1, R0).

Below we identify general cases where the push opera-
tion can be applied. We may decompose a list R̄ of ra queries
and employ the push operation as follows:

(i) by union: R̄ = R1 �� lfp(R0) ∪ R′1 �� lfp(R0), and
we can rewrite R̄ to equivalent yet more efficient R̄ =
push(R1, R0) ∪ push(R′1, R′0);

(ii) by conjunction: R̄ = R1 �� lfp(R0) �� R′1 �� lfp(R0);
in this case we can rewrite R̄ to R̄ = push(push(R1,

R0) 
� R′1, R′0);
(iii) by nest: R̄ = R2 �� lfp(R1 �� lfp(R0)), and we can

rewrite it to R̄ = push(R2, push(R1, R0)).

In particular, R̄ = R2 �� R1 �� lfp(R0) and R̄ = R2 ��

lfp(R1 �� R0) can be optimized following cases (ii) and (iii)
above. Here we assume that there may exist arbitrary selec-
tion condition on R1 or R′1. In fact, we can push selections into
lfp even when there are no explicit user-given selection con-
ditions. Consider, for example, R11 �� R12 �� · · · �� R1n ��

lfp(R0). By first computing joins R11 �� R12 �� · · · �� R1n

followed by projection on R1n , namely, πR1n
(R11 �� R12 ��

· · · �� R1n ), we can also push this query into lfp(R0) and
thus speed up the computation of the fixpoint. As will be seen
in Sect. 6, this optimization is effective.

Handling (E)∗. To simplify the discussion, in Sect. 5.1 we
rewrite ε into Rid . In our implementation typically a much
smaller relation is used instead of Rid . Consider e1/e∗ for
instance, with a temporary table R1 ← e2s(e1). Then instead
of using Rid in e2s(e∗), we use R1 instead. Similarly we
handle combinations of e∗ with other sub-queries.

Other optimization: Besides the push operation, several
other optimization techniques can be used to improve the
rewritten sql queries. Observe that in our generated rela-
tional queries, all joins and unions are outside of the lfp
operator, as opposed to embedding joins/unions in the black-
box of the operator with. . .recursive. As a result, one can
capitalize on rdbms to optimize those joins/unions. Indeed,
making use of relational optimizers is one of the reasons for
one to want to push the work to rdbms before xml query
optimizers become as sophisticated as their rdbms coun-
terparts. Furthermore, our translation framework makes it
easy to accommodate all existing techniques in commercial
rdbms [30,50]; in particular, multi-query optimization tech-
niques (e.g., [54]) can be easily incorporated into our frame-
work to optimize a sequence of sql queries produced by
our algorithms. In addition, as remarked earlier, optimiza-
tion techniques by leveraging integrity constraints [41,42]
developed for [39] can also be incorporated into translations
from extended xpath to sql in our approach.

XML reconstruction: It is worth mentioning that our
rewriting algorithms can be easily extended such that they
not only find ancestor/descendant pairs, but also preserve the
path information between each pair. A simple way to do so
is to use an additional attribute P in lfp �() such that the
P attribute keeps track of the path information by concate-
nating edges when tuples are joined. Both DB2 and Oracle
support such a string concatenation operator.

6 A performance study

To verify the effectiveness of our rewriting and optimization
algorithms, we have conducted a performance study on eval-
uating xpath queries using an rdbms with three approaches:

• the SQLGen-R algorithm proposed in [39],
• our rewriting algorithms by using Tarjan’s method

(referred to as CycleE of Fig. 6) to find rec(A, B), i.e.,
paths from node A to B in a dtd graph, and
• our rewriting algorithms by using CycleEX of Fig. 7 to

compute rec(A, B).

We experimented with these algorithms using a simple yet
representative dtd and two complex dtds from real world.
The simple dtd is depicted in Fig. 11a (2 cross cycles).
The two real-life dtds are (1) a 4-cycle dtd extracted from
BIOML (BIOpolymer Markup Language [10]), as shown
in Fig. 11b; and (2) a 9-cycle dtd extracted from GedML
(Genealogy Markup Language [27]), given in Fig. 11c.

While testing several different types of xpath queries, our
performance study focuses on the evaluation of // because
// is the only operator in xpath queries that, in the presence
of recursive dtds, leads to Kleene closures and therefore
lfp in rdbms, and is a dominant factor of xpath query eval-
uation. Two considerations on query evaluation are given
below. First, as shown in our rewriting algorithms, // is trans-
lated into a sequence of projection, join and union, along
with lfp. The evaluation of this sequence should be isolated
from other operators that do not contribute to the evaluation
of //. Second, the non-recursive operators in xpath queries are
translated into selection, projection, join and union that the
existing relational query processing techniques can support,
and is beyond the scope of this evaluation.

Our experimental results demonstrate that our rewriting
algorithms with CycleEX outperform the other two in most
cases.

Implementation. We have implemented a prototype system
supporting SQLGen-R, CycleE and CycleEX, using Visual
C++, denoted by R, E and X, respectively, in all the fig-
ures. SQLGen-R rewrites a query with the with. . .recursive
operator, while CycleE and CycleEX translate a query to

123



876 W. Fan et al.

Fig. 11 dtd Graphs. a Cross,
b BIOML, c GedML

*

**
a b c d

*

* *gene dna clone locus**

*

*

*

*

*

*
*

* * *

*

* *

*

*

Note

Obje

SourData

Even

(c)(b)(a)

a sequence of sql queries. We run a batch to execute these
rewritten sql queries. We conducted experiments using IBM

DB2 Enterprise 9 on a single 2.8 GHz CPU with 1GB main mem-
ory. We did not compare SQLGen-R with ours on Oracle,
because Oracle does not support the sql’99 recursion. The
queries output ancestor-descendant pairs.

Testing data: Testing data were generated using IBM xml
Generator (http://www.alphaworks.ibm.com). The input to
the IBM xml Generator is a dtd file and a set of parameters.
We mainly control two parameters, X L and X R , in order to
study the impacts of the shape of xml trees. Here X L is the
maximum number of levels in the resulting xml tree. If a
tree goes beyond X L levels, it will add none of the optional
elements (denoted by * or ? in the dtd) and only one of each
of the required elements (denoted by + or with no option);
X R controls the maximum number of occurrences of child
elements in the presence of the ∗ or + option. In other words,
the number of children of each element of a type defined with
this option is a random number between 0 and X R . Together
X L and X R determine the shape of an xml tree: the larger the
X L value, the deeper the generated xml tree; and the larger
the X R value, the wider the xml tree. The default values
used in our testing for X L and X R are 4 and 12, respec-
tively. The default number of elements in a generated xml
tree is 120,000. There is a need to control the sizes of xml
trees to be the same in different settings for comparison pur-
poses, and thus excessively large xml trees generated were
trimmed. For the other parameters of the Generator, we used
their default settings.

Relational database. The generated xml data was mapped
to a relational database using the shared-inlining technique
[59]. Indexes were generated for all possible joined attributes.

Experimental study. We conducted five sets of experiments.
(1) We tested four xpath queries: a query with //, a twig join
query, a query with ¬ and //, and a query with ¬, ∨, ∧ and
//. The testing was done using different databases (fixing the
database size while varying the relation sizes). (2) In the sec-
ond set of experiments we evaluated the effectiveness of our
optimization method by pushing selections into the lfp oper-
ator. (3) We tested the scalability of our generated sql que-
ries w.r.t. different database sizes using a query containing //.

Experiments (1)–(3) were conducted with the simple cross-
cycle dtd graph. (4) We tested several xpath queries with
different dtds, which are subgraphs of the real-life dtds BI-
OML using the same database. The main difference between
(1) and (4) is that the former tested the same queries with dif-
ferent databases, and the latter tested different queries with
the same database. (5) Finally, we examined the numbers of
operators (lfp, etc) in the sql queries generated by CycleE
and CycleEX, respectively.

6.1 Exp-1: evaluation of selective queries

In this study, over the simple cross-cycle dtd (Fig. 11a), we
tested the following four xpath queries:

• Qa = a/b//c/d (with //),
• Qb = a[//c]//d (a twig join query),
• Qc = a[¬ //c] (with ¬ and //), and
• Qd = a[¬ //c ∨ (b ∧ //d)] (with ¬, ∨, ∧ and

//).

The XPathToEXp algorithm translates these xpath queries
into four extended xpath expressions, namely, Q′a = a/

Xb_c/d, Q′b = a[Xa_b/c]/Xa_c/d, Q′c = a[¬Xa_b/c], and
Q′d = a[¬Xa_b/c ∨ (b ∧ Xa_c/d)], respectively. Here, Xb_c,
Xa_b, and Xa_c will be computed by rec(b, c), rec(a, b),
and rec(a, c) using CycleE and CycleEX to test CycleE
and CycleEX, respectively. We tested SQLGen-R by gen-
erating a with. . .recursive query for each rec(A, B) in our
translation framework.

We used an xml tree with a fixed size of 120,000 elements.
The same queries were evaluated over different shapes of
xml trees controlled by the height of the tree (X L ) and the
width of tree (X R). Since an xml tree with different heights
and/or widths results in different sizes of relations in a data-
base, even though the database size is the same, the same
translated sql query may end up having different query-
processing costs. We report elapsed time (seconds) for each
query in Fig. 12. For a single query, one figure shows the
elapsed time while varying X L from 8 to 20 with X R = 4,

123

http://www.alphaworks.ibm.com


Query translation from XPath to SQL in the presence of recursive DTDs 877

Fig. 12 Processing time for
cross cycles (Fig. 11a). a Qa :
vary X L , b Qa : vary X R , c Qb:
vary X L , d Qb: vary X R , e Qc:
vary X L , f Qc: vary X R , g Qd :
vary X L , h Qd : vary X R

 0

 500

 1000

 1500

 2000

 2500

 3000

2016128

T
im

e 
(S

ec
)

R
X
E

(a)

 0

 500

 1000

 1500

 2000

10864

T
im

e 
(S

ec
)

R
X
E

(b)

 0

 500

 1000

 1500

 2000

 2500

 3000

2016128

T
im

e 
(S

ec
)

R
X
E

(c)

 0

 500

 1000

 1500

 2000

10864

T
im

e 
(S

ec
)

R
X
E

(d)

 0

 500

 1000

 1500

 2000

2016128

T
im

e 
(S

ec
)

R
X
E

(e)

 0

 200

 400

 600

 800

 1000

10864

T
im

e 
(S

ec
)

R
X
E

(f)

 0

 1000

 2000

 3000

 4000

 5000

2016128

T
im

e 
(S

ec
)

R
X
E

(g)

 0

 500

 1000

 1500

 2000

 2500

 3000

10864

T
im

e 
(S

ec
)

R
X
E

(h)

Fig. 13 Pushing selection
(X R = 8 and X L = 12). a Vary
the number of a elements,
b vary the number of d elements

 0

 50

 100

 150

 200

 250

50000100001000100

T
im

e 
(S

ec
)

Size of a

Push-Selection
Selection

 0

 50

 100

 150

 200

 250

50000100001000100

T
im

e 
(S

ec
)

Size of d

Push-Selection
Selection

(a) (b)

whereas the other figure shows the elapsed time while vary-
ing X R from 4 to 10 with X L = 12.

Figure 12a, c, e, g, show the elapsed time while varying
X L , when X R is fixed. The xml trees become higher, but the

123



878 W. Fan et al.

 0

 500

 1000

 1500

 2000

480K240K120K60K

T
im

e 
(S

ec
)

R
X
E

Fig. 14 Scalability test (X R = 4 and X L = 16)

distribution of widths in the xml trees remains unchanged,
while X L increases. The elapsed time for all the three appro-
aches increases. As can be seen from the figures, the perfor-
mance of SQLGen-R and CycleE is significantly affected
while X L increases. However, the performance CycleEX is
marginally affected. CycleEX noticeably outperforms
SQLGen-R and CycleE.

Figure 12b, d, f, h, show the elapsed time while varying
X R , when X L is fixed. In other words, the average number of
children per element in an xml increases, and the height of
the xml tree remains unchanged, while X R increases. More
precisely, the xml generator generates an xml tree with more
elements at the leaf level for a larger X R value. The percent-
ages of the leaf nodes in the xml trees are 50, 67, 74, 80%,
when X R = 4, X R = 6, X R = 8, and X R = 10, respectively.
With such distributions, SQLGen-R performs better, while
X R increases. It is difficult to analyze the with. . .recursive,
but it can be because the most results are computed in a few
iterations. CycleEX is marginally affected by the changes of
X R values, it shows similar performance while X R increases.
CycleE performs worst due to the large number of operations
it needs to perform.

6.2 Exp-2: pushing selections into lfp

We tested two xpath queries with selection conditions: Qe =
a[id = Ai ]/b//c/d and Q f = a/b//c/d[id = Di ]. For
each query we generated two sql queries, one with selec-
tions pushed into lfp and the other without. We evaluated
these queries using datasets of the dtd of Fig. 11a, fixing the
size of the datasets while varying the size of the set selected
by the qualifiers of Ai and Di . Figure 13a, b show the results.
In Fig. 13a, we vary the number of qualified a elements from
100 to 50,000, while in Fig. 13b, we vary the number of
qualified d elements from 100 to 50,000. It is shown that as
expected, performance improvement by pushing selections
into the lfp operator is significant.

6.3 Exp-3: scalability test

Figure 14 demonstrates the scalability of our algorithms by
increasing the dataset sizes, for an xpath query a//d over
the cross-cycle dtd (Fig. 11a). We set X L = 16, because
the default X L = 12 is not large enough for the xml gen-
erator to generate such large datasets. When the parameters
are fixed, the xml generator can generate different sizes of
xml databases but with the similar distributions in terms of
heights/widths. The xml dataset size increases to 480,000
elements from 60,000 elements. We find that CycleEX out-
performs both SQLGen-R and CycleE noticeably, and
SQLGen-R outperforms CycleE. When the dataset size is
480,000, the costs of CycleE and SQLGen-R are 2.4 times
and 1.7 times of the cost of CycleEX, respectively. This
shows that when dataset is large, our optimization technique
is effective enough to outperform with. . .recursive, because
it can reduce the number of lfp operators and unnecessary
joins and unions.

6.4 Exp-4: complex cycles (extracted from real-life DTDs)

We next show the results of testing xpath queries on the
extracted 4-cycle BIOML dtd.

First, We tested xpath queries over the extracted dtd
graphs from BIOML. We considered four subgraphs of the
BIOML dtd of Fig. 11b in order to demonstrate the impact
of different dtds on the translated sql queries. These sub-
graphs are shown in Fig. 15. The xpath queries tested on
these extracted dtd graphs are summarized in Table 4.

All these xpath queries were run on the same dataset which
was generated using the largest 4-cycle dtd graph extracted
from BIOML (Fig. 11b) with X R = 6 and X L = 16. Unlike
Exp-1, we did not trim the xml trees generated by the IBM
xml Generator. The generated dataset consists of 1,990,858
elements, which is 16 times larger than the dataset (120,000
elements) used in Exp-1. The sizes of relations for gene, dna,
clone and locus are 354,289, 703,249, 697,060 and 236,260,
respectively. We show the query processing results in Fig. 16.
We find that CycleEX outperforms SQLGen-R and CycleE
in all the cases, except case 2b. In case 4a, for example,
SQLGen-R needs to use 7 joins and 7 unions in each iter-
ation; CycleE needs to process 6 join, 2 lfp and 3 union
operators; and CycleEX uses 5 join, 1 lfp and 4 union oper-
ators. CycleEX significantly outperforms SQLGen-R and
CycleE because less number of join and lfp are used, while
it uses more union operators than others. The cost of union
is comparatively small, if one relation involved in the union
operator is indexed.

Second, we tested an xpath query,Even//Data, over the
9-cycle dtd graph extracted from GedML (Fig. 11c). Here
SQLGen-R uses 11 joins and 11 unions in each iteration,
because this dtd consists of 11 edges. CycleE generates a

123



Query translation from XPath to SQL in the presence of recursive DTDs 879

gene dna clone locus

(a)

gene dna clone locus

(b)

gene dna clone locus

(c)

gene dna clone locus

(d)

Fig. 15 Different dtd graphs extracted from BIOML

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

4b4a3b3a2c2b2a

T
im

e 
(S

ec
)

R
X
E

Fig. 16 xpath queries on the extracted BIOML dtds

sequence of 77 join, 6 lfp and 79 union operators. CycleEX
uses 12 join, 3 lfp and 9 union operators.

For this test, we generated large datasets using the IBM
xml Generator without trimming. Figure 17a shows the
results while varying X L with X R = 6, where the data-
set sizes are 286,845 (X L = 13), 845,045 (X L = 14),
and 1,019,798 (X L = 15). Figure 17b shows the results

Table 4 xpath queries over different dtd graphs extracted from
BIOML

Case Query n-Cycles dtd Graph

2a gene//locus 2 Fig. 15a

2b gene//locus 2 Fig. 15b

2c gene//dna 2 Fig. 15b

3a gene//locus 3 Fig. 15c

3b gene//locus 3 Fig. 15d

4a gene//locus 4 Fig. 11b

4b gene//dna 4 Fig. 11b

Table 5 Number of operations (min/max/average)

DTD n m c CycleE CycleEX

LFP ALL LFP ALL

Cross (Fig. 11a) 4 5 2 5/9/6 38/78/51 2/2/2 7/11/8

BIOMLa (Fig. 15a) 4 5 2 8/14/12 80/124/104 3/5/4 12/22/16

BIOMLb (Fig. 15b) 4 6 3 6/14/11 50/94/75 2/5/3 9/20/14

BIOMLc (Fig. 15c) 4 6 3 8/14/12 80/124/104 3/5/4 12/22/16

BIOMLd (Fig. 15d) 4 7 4 8/14/12 88/134/112 3/5/4 13/23/17

GedML (Fig. 11c) 5 11 9 6/22/16 154/222/188 2/8/4 12/27/19

while varying X R with X L = 16, where the dataset sizes
are 226,663 (X R = 6), 119,999 (X R = 7), and 5,041,437
(X R = 8). The largest dataset is 2 times larger than that
used for the BIOML test. CycleEX outperforms CycleE and
SQLGen-R for different X L values in Fig. 17a. As shown in
Fig. 17b, CycleEX performs noticeably better than CycleE.
But CycleEX performs in a similar way as SQLGen-R when
varying X R , because X R has impacts on the join selectivities
but not on the number of iterations in the with. . .recursive.

6.5 Exp-5: number of operations

We show the numbers of operations both in the result-
ing extended xpath expressions obtained from CycleEX and
CycleE and in the resulting relational algebra (R A) in
Table 5. Empirically, the lengths of the resulting extended
xpath expressions and sql are polynomial, even though in
theory, the sizes of resulting extended xpath expressions are

Fig. 17 Even//Data on the
extracted 9-cycle GEDML dtd.
a Vary X L (X R = 6), b vary X R
(X L = 12)

10

100

1000

10000

100000

1000000

13 14 15

T
im

e 
(S

ec
)

R
X
E

(a)

10

100

1000

10000

100000

1000000

6 7 8

T
im

e 
(S

ec
)

R
X
E

(b)

123



880 W. Fan et al.

exponential, in the worst case, in terms of the size of |G D|,
based on [18].

In Table 5, the first column lists six dtd used in the testing.
The second, third, and fourth columns indicate the numbers
of nodes (n), edges (m), and simple cycles (c), respectively,
in the dtd graphs. For each dtd, we enumerate all possi-
ble pairs of two nodes in the dtd, and select one as a start
node (A) and the other as an end node (B). For each pair
of A and B, we use CycleE and CycleEX to compute the
extended xpath expression representing all paths from A to
B, and then determine the number of operations in the result-
ing relational algebra (R A). They are shown in two groups
in Table 5. The LFP and ALL show the numbers of lfp’s and
all operations used in extended xpath expressions in the for-
mat of (min/max/average). CycleEX outperforms CycleE in
terms of the numbers of lfp and all operations used in all the
cases.

7 Related work

This is an extension of the earlier work [24] by including
(a) the notion of extended xpath (Sect. 2) and its application
in query translation and query answering (Sect. 3), (b) revised
translation algorithms (Sects. 4, 5), in particular a new algo-
rithm CycleEX for handling the descendant axis of xpath;
and (c) an extensive experimental study. As remarked ear-
lier, extended xpath is useful not only in query translation
from xpath to sql, but also in developing native xml query
engines [1,19] and answering xml queries over xml views.
In particular, the use of variables in extended xpath allows us
to represent each sub-query q in an extended xpath expres-
sion only once, no matter where and how often q appears in
the query. This yields the low polynomial bound of CycleEX;
in contrast, [24] simply adopted Tarjan’s algorithm for find-
ing a regular-expression representation of all matching paths,
which, in the worst case, may be of an exponential size.

There has been a host of work on querying xml using an
rdbms, over xml data stored in an rdbms or xml views pub-
lished from relations (e.g., [11,16,26,28,29,31,36,39,41,42,
45,57,58,62,64]; see [40] for a comprehensive survey). At
least two approaches have been proposed to querying xml
data stored in relations. One approach is based on middle-
ware and xml views, and the other is by translating xpath
queries to sql.

The middleware-based approach, e.g., XPERANTO [57,58]
and SilkRoute [26], provides clients with an xml view of the
relations representing the xml data. Upon receiving an xml
query against the view, it composes the query with the view,
rewrites the composed query to a query in a (rich) interme-
diate language supported by middleware, and answers the
query by using the computing power of both the middle-
ware and the underlying rdbms. However, this approach is

tempered by the following. First, it is nontrivial to define a
(recursive) xml view of the relational data without loss of
the original information (see, e.g., [7,20] for detailed dis-
cussion). Second, it requires middleware support and incurs
communication overhead between the middleware and the
rdbms. Third, as observed by [39,40], no algorithms have
been developed for handling recursive queries over xml
views with a recursive dtd.

Another approach is by providing an algorithm for rewrit-
ing xml queries into sql (possibly extended with a recursion
operator). This has been studied in two settings: for schema-
based xml storage that chooses relational schema by making
use of xml schema, and for schema-oblivious xml storage
that stores xml data in relations of a fixed schema regardless
of xml schema. The schema-based approach allows one to
derive efficient relational storage for xml data, retaining the
semantic and structural information of the xml data. This is
important for, among other things, query optimization, data
exchange (see, e.g., [38] for a recent survey), xml access con-
trol (e.g., [21]) and xml view updates (e.g., [13]). However,
as observed by [40], with the exception of [28,29,39,41,42]
and this work, we are aware of no algorithm published for
translating recursive xml queries over recursive dtds to sql
for schema-based xml storage.

Closest to our work is [39], which proposed the first tech-
nique to rewrite recursive path queries over recursive dtds to
sql for schema-based xml storage. The translation consists
of two phases. First, by representing the input dtd D and
input xpath query Q as finite state automata, it constructs the
product automaton of the two that captures xpath recursion
and dtd recursion in a uniform framework. Second, it trans-
lates the product automata into a sequence of sql queries
with the sql’99 recursion operator. This approach has a low
polynomial bound O(|D|2 ∗ |Q|4) on the product automata
generated, which is comparable to our bound on extended
xpath queries given in Theorem 4.2. Furthermore, several
optimization techniques have also been developed, to elim-
inate duplicate paths by making part of the automata deter-
ministic, and to optimize sql queries by leveraging integrity
constraints during the translation [41,42]. As remarked ear-
lier, this work differs from [39] in that we use the simple
lfp operator, a low-end recursion functionality already sup-
ported by many rdbms, instead of the sql’99 recursion oper-
ator. In addition, we use extended xpath instead of automata.
This allows us to handle rich qualifiers and selection paths
in an xpath query uniformly rather than treating them sepa-
rately. Furthermore, the approach presented here can also be
used to answer xml queries over certain xml views. On the
other hand, as mentioned earlier, the optimization techniques
developed for [39], e.g., [41,42], are also applicable to our
approach.

For schema-oblivious xml storage, a number of transla-
tion and optimization techniques have been proposed. These

123



Query translation from XPath to SQL in the presence of recursive DTDs 881

include path-based techniques that leverage index structures
to store root-to-node paths [36,45,64], and interval-based
approach, e.g., region encoding [31] and Dewey encoding
[62], that maintains structural relationships among elements
and their ordering [11,16,28,29,31,62]. MonetDB [11], for
example, stores xml data in a “node” relation and associates
each node with a pair of preorder traversal and postorder tra-
versal ranks. Leveraging these, xpath recursion (‘//’) can be
efficiently processed in terms of range comparisons, with-
out requiring the support of recursive operators by sql. This
approach is hampered by the following problems. First, most
of these techniques are developed for schema-oblivious xml
storage and adopt relations of a fixed schema independent of
the xml schema. As mentioned earlier, this makes it difficult
for, among other things, data exchange, secure xml queries,
and update xml views. Second, the indexes and structural
coding introduce additional overhead when storing and que-
rying the data. Worse still, the cost of the maintenance of
the indexes and coding may become prohibitive expensive
when the data is frequently changed (see, e.g., [60], for lower
bounds on the maintenance cost). In contrast, our approach
does not incur extra cost in the dynamic context. Third, in
many applications one would prefer a lightweight tool that
provides the capability of answering xpath queries within the
immediate reach of commercial rdbms, instead of using a
heavy-duty system. Finally, one cannot use the encoding and
indexing approaches to answer xml queries over xml views.

Recently an approach was proposed [28,29] that combines
path-based techniques and Dewey encoding, and is applica-
ble to both schema-oblivious xml storage and schema-based
xml storage. Leveraging path index and regular expression
matching, it introduces a notion of Primitive Path Fragment
(ppf), to split xpath expressions and reduce the need for struc-
tural joins. Experimental results of [28,29] demonstrated that
ppf is effective: an implementation based on ppf outper-
formed MonetDB/XQuery [11]. We expect that the use of
ppf could be also beneficial for translating extended xpath
to sql. It remains to be explored, however, the overhead of
maintaining the path indexing structure and Dewey encoding,
when the data is updated frequently.

There has also been work on translating XSLT queries [34],
XQuery [16,17,47] to sql. While the algorithms of [16,17,
34,47] cannot handle query translation in the presence of
recursive dtds, their optimization techniques by leveraging,
e.g., integrity constraints [17,41], virtual generic schema and
query normalization [47], dynamic interval encoding [16]
and aggregation handling [34] are complementary to our
work. Some of these, along with techniques for query prun-
ing and rewriting [25], minimizing the use of joins [43],
multi-query [54] and recursive-query optimization [56], can
be incorporated into our translation framework.

There has also been recent work on query answering for
virtual xml views in the native xml setting [21,22]. This

issue was studied in [21] for nonrecursive xml views, and it
was revisited for recursive xml views in [22]. As remarked
earlier, it was shown in [22] that for recursive xml views,
query rewriting is not closed for xpath, but it is closed for
regular xpath; however, the rewriting incurs an exponential-
time lower bound even for nonrecursive xml views. To avoid
the exponential blowup, [22] proposed a notion of automata
to represent the rewritten regular xpath queries, and devel-
oped algorithms for evaluating these automata on xml data.
Unfortunately, those automata cannot be directly translated
into sql with lfp. In contrast, this work introduces extended
xpath and shows that extended xpath expressions can be
translated into equivalent sql queries. Regular xpath was
introduced in [48]. Extended xpath proposed by this work is
an extension of regular xpath by allowing bindings of vari-
ables and sub-queries.

Surveys on recursive and cyclic query processing strate-
gies include [6,35]. For OODBs, [37] introduced techniques
for processing cyclic queries restricted to 1-cycle queries.
[14] proposed optimization techniques for generalized path
expressions based on OO algebraic transformation rules.
These techniques are not directly applicable to query trans-
lations from xml to sql.

8 Conclusion

We have proposed a new approach to translating a practical
class of xpath queries over (possibly recursive) dtds to sql
queries with a simple lfp operator found in many commer-
cial rdbms. The novelty of the approach consists in (1) a
notion of extended xpath expressions capable of capturing
dtd recursion and xpath recursion in a uniform framework;
(2) an efficient algorithm for translating an xpath query over
a recursive dtd to an equivalent extended xpath expression
that characterizes all matching paths, without incurring expo-
nential blowup and better still, optimizing the query by filter-
ing unnecessary computation based on the structural prop-
erties of the dtd during the translation; and (3) an efficient
algorithm for rewriting an extended xpath expression into an
equivalent sequence of sql queries. These provide not only
the capability of answering important xpath queries within
the immediate reach of most commercial rdbms, but also the
query answering ability for certain xml views.

Several extensions are targeted for future work. First, we
recognize that several factors affect the efficiency of the sql
queries produced by our translation algorithms, and we are
currently developing a cost model in order to provide bet-
ter guidance for xpath query rewriting. Second, we are also
exploring techniques for multi-query and recursive-query
optimization [54,56] to simplify the sql queries produced.
Moreover, we intend to incorporate optimization by means of
semantic information such as integrity constraints [17,41,42]

123



882 W. Fan et al.

and satisfiability analysis of xpath queries in the presence of
dtds [9]. Third, we plan to extend our algorithms to han-
dle more complex xml queries, over xml data stored in an
rdbms or (virtual) xml views of relational data. Finally, a
topic for future work is to deal with xml Schema [63] instead
of dtds. As observed by, e.g., [46], a schema in xml Schema
is essentially a specialized dtd [53], an extension of dtds
by allowing several productions to be associated with the
same element type A and “specializing” the choice of its
productions based on the context in which A appears. More
specifically, a specialized dtd D over element types Ele is a
triple (Ele’, D′, g), where Ele⊆ Ele’, g is a mapping Ele’ �→
Ele, and D′ is a dtd over Ele’. An xml tree T conforms to D
if there exists an xml tree T ′ that satisfies D′ and moreover,
T = g(T ′). Note that the mapping g can be encoded in terms
of disjunctive production rules (see, e.g., [23] for the encod-
ing), which our translation algorithms can already handle.
The connection between specialized dtds and dtds allows
us to adapt our techniques to translate xpath queries over
xml Schema to sql queries without significant degradation
in performance.

Acknowledgments The work described in this paper was supported
by grants of EPSRC GR/S63205/01, GR/T27433/01, and EP/E029
213/1, and the grants of Research Grants Council of the Hong Kong
SAR, China (No. 418205, No. 418206).

References

1. Afanasiev, L., Grust, T., Marx, M., Rittinger, J., Teubner, J.: An
inflationary fixed point in XQuery. In: Proc. of ICDE (2008)

2. Agrawal, R., Devanbu, P.: Moving selections into linear least fix-
point queries. In: Proc. of ICDE (1988)

3. Aho, A., Ullman, J.: Universality of data retrieval languages. In:
Proc. of POPL (1979)

4. Amer-Yahia, S., Cho, S., Lakshmanan, L., Srivistava, D.: Minimi-
zation of tree pattern queries. In: Proc. of SIGMOD (2001)

5. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.: Magic sets and
other strange ways to implement logic programs. In: Proc. of PODS
(1986)

6. Bancilhon, F., Ramakrishnan, R.: An amateur’s introduction to
recursive query processing strategies. In: Proc. of SIGMOD (1986)

7. Barbosa, D., Freire, J., Mendelzon, A.: Designing information-pre-
serving mapping schemes for XML. In: Prof. of VLDB (2005)

8. Beeri, C., Ramakrishnan, R.: On the power of magic. J. Log. Pro-
gram 10 (1991)

9. Benedikt, M., Fan, W., Geerts, F.: XPath satisfiability in the pres-
ence of DTDs. J. ACM 55(2) (2008)

10. BIOML. BIOpolymer Markup Language. http://xml.coverpages.
org/BIOML-XML-DTD.txt

11. Boncz, P.A., Grust, T., van Keulen, M., Manegold, S., Rittinger, J.,
Teubner, J.: MonetDB/XQuery: a fast XQuery processor powered
by a relational engine. In: Proc. of SIGMOD (2004)

12. Choi, B.: What are real DTDs like. In: Proc. of WebDB (2002)
13. Choi, B., Cong, G., Fan, W., Viglas, S.: Updating recursive XML

views of relations. In: Prof. of ICDE (2007)
14. Christophides, V., Cluet, S., Moerkotte, G.: Evaluating queries with

generalized path expressions. In: Proc. of SIGMOD (1996)

15. Clark, J., DeRose, S.: XML path language (XPath). W3C Recom-
mendation, Nov 1999

16. DeHaan, D., Toman, D., Consens, M., Ozsu, T.: Comprehensive
XQuery to SQL translation using dynamic interval encoding. In:
Proc. of SIGMOD (2003)

17. Deutsch, A., Tannen, V.: MARS: A system for publishing XML
from mixed and redundant storage. In: Proc. of VLDB (2003)

18. Ehrenfeucht, A., Zeiger, P.: Complexity measures for regular
expressions. In: Proc. of STC’74 (1974)

19. EXSLT.: http://www.exslt.org/dyn/functions/closure/index.html
20. Fan, W., Bohannon, P.: Information preserving XML schema

embedding. TODS 33(1) (2008)
21. Fan, W., Chan, C.-Y., Garofalakis, M.: Secure XML querying with

security views. In: Proc. of SIGMOD (2004)
22. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Rewriting regular

XPath queries on XML views. In: Proc. of ICDE (2007)
23. Fan, W., Geerts, F., Neven, F.: Expressiveness and complexity of

XML publishing transducers. TODS (2008)
24. Fan, W., Yu, J.X., Lu, H., Lu, J., Rastogi, R.: Query translation

from XPath to SQL in the presence of recursive DTDs. In: Proc.
of VLDB (2005)

25. Fernandez, M., Suciu, D.: Optimizing regular path expression using
graph schemas. In: Proc. of ICDE (1998)

26. Fernandez, M.F., Morishima, A., Suciu, D.: Efficient evaluation of
XML middleware queries. In: Proc. of SIGMOD (2001)

27. GedML.: Genealogy Markup Language. http://xml.coverpages.
org/gedml-dtd9808.txt

28. Georgiadis, H., Vassalos, V.: Improving the efficiency of XPath
execution on relational systems. In: Proc. of EBDT (2006)

29. Georgiadis, H., Vassalos, V.: XPath on steroids: exploiting rela-
tional engines for XPath performance. In: Proc. of SIGMOD (2007)

30. Graefe, G.: Query evaluation techniques for large databases. ACM
Comput. Surv. 25(2) (1993)

31. Grust, T., van Keulen, M., Teubner, J.: Accelerating XPath evalu-
ation in any RDBMS. TODS 29, 91–131 (2004)

32. Halevy, A.Y.: Theory of answering queries using views. SIGMOD
Record 29(4) (2001)

33. IBM.: DB2 XML Extender. http://www-3.ibm.com/software/data/
db2/extended/xmlext/index.html

34. Jain, S., Mahajan, R., Suciu, D.: Translating XSLT programs to
efficient SQL querie. In: Proc. of WWW (2002)

35. Kambayashi, Y.: Processing cyclic queries. In: Query processing
in database systems, pp. 63–78. Springer, Heidelberg (1985)

36. Kha, D.D., Yoshikawa, M., Uemura, S.: An XML indexing struc-
ture with relative region coordinate. In: Proc. of ICDE (2001)

37. Kim, Y.-C., Kim, W., Dale, A.: Cyclic query processing in object-
oriented databases. In: Proc. of ICDE (1989)

38. Kolaitis, P.G.: Schema mappings, data exchange, and metadata
management. In: Prof. of PODS (2006)

39. Krishnamurthy, R., Chakaravarthy, V.T., Kaushik, R., Naughton, J.:
Recursive XML schemas, recursive XML queries, and rela-
tional storage: XML-to-SQL query translation. In: Proc. of ICDE
(2004)

40. Krishnamurthy, R., Kaushik, R., Naughton, J.: XML-SQL query
translation literature: The state of the art and open problems. In:
Proc. of Xsym (2003)

41. Krishnamurthy, R., Kaushik, R., Naughton, J.: Efficient XML-to-
SQL query translation: Where to add the intelligence. In: Proc. of
VLDB (2004)

42. Krishnamurthy, R., Kaushik, R., Naughton, J.: XML views as integ-
rity constraints and their use in query translation. In: Proc. of ICDE
(2005)

43. Kunen, I.K., Suciu, D.: A scalable algorithm for query minimiza-
tion. Technical Report, University of Washington (2004)

44. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc.
of PODS (2002)

123

http://xml.coverpages.org/BIOML-XML-DTD.txt
http://xml.coverpages.org/BIOML-XML-DTD.txt
http://www.exslt.org/dyn/functions/closure/index.html
http://xml.coverpages.org/gedml-dtd9808.txt
http://xml.coverpages.org/gedml-dtd9808.txt
http://www-3.ibm.com/software/data/db2/extended/xmlext/index.html
http://www-3.ibm.com/software/data/db2/extended/xmlext/index.html


Query translation from XPath to SQL in the presence of recursive DTDs 883

45. Li, Q., Moon, B.: Indexing and querying XML data for regular path
expressions. In: Proc. of VLDB (2001)

46. Likin, L.: Logics for unranked trees: An overview. Log. Meth.
Comput. Sci. 2(3) (2006)

47. Manolescu, I., Florescu, D., Kossmann, D.: Answering XML que-
ries on heterogeneous data sources. In: Proc. of VLDB (2001)

48. Marx, M.: XPath with conditional axis relations. In: Proc. of EDBT
(2004)

49. Microsoft.: SQLXML and XML Mapping Technologies. http://
msdn.microsoft.com/sqlxml/default.asp

50. Mishra, P., Eich, M.H.: Join processing in relational databases.
ACM Comput. Surv. 24(1) (1992)

51. Nunn, M.: An Overview of SQL Server 2005 for the Database
Developer, (2004). http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dnsql90/html/sql_ovyukondev.asp

52. Oracle.: Oracle9i XML Database Developer’s Guide—Oracle
XML DB Release 2. http://otn.oracle.com/tech/xmldb/content.
html

53. Papakonstantinou, Y., Vianu, V.: Type inference for views of semi-
structured data. In: Proc. of PODS (2000)

54. Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient algorithms
for multi query optimization. In: Proc. of SIGMOD (2000)

55. Saxon.: http://www.saxonica.com/
56. Shan, M.-C., Neimat, M.-A.: Optimization of relational algebra

expressions containing recursion operators. In: Proc. of ACM
Annual Computer Science Conference (1999)

57. Shanmugasundaram, J., Kiernan, J., Shekita, E.J., Fan, C.,
Funderburk, J.: Querying XML views of relational data. In: Proc.
of VLDB (2001)

58. Shanmugasundaram, J., Shekita, E., Barr, R., Carey, M., Lindsay,
B., Pirahesh, H., Reinwald, B.: A general techniques for query-
ing XML documents using a relational database system. SIGMOD
Record 30(3) (2001)

59. Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D.,
Naughton, J.: Relational databases for querying XML documents:
Limitations and opportunities. In: Proc. of VLDB (1999)

60. Silberstein, A., He, H., Yi, K., Yang, J.: BOXes: Efficient mainte-
nance of order-based labeling for dynamic XML data. In: Proc. of
ICDE (2005)

61. Tarjan, R.E.: Fast algorithms for solving path problems. J. ACM
28(3), 594–614 (1981)

62. Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J.,
Shekita, E.J., Zhang, C.: Storing and querying ordered XML using
a relational database system. In: Proc. of SIGMOD (2002)

63. Thompson, H. et al.: XML Schema. W3C Working Draft, May
2001. http://www.w3.org/XML/Schema

64. Zhang, C., Naughton, J., DeWitt, D.J., Luo, Q., Lohman, G.M.: On
supporting containment queries in relational database management
systems. In: Proc. of SIGMOD’01 (2001)

123

http://msdn.microsoft.com/sqlxml/default.asp
http://msdn.microsoft.com/sqlxml/default.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql90/html/sql_ovyukondev.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql90/html/sql_ovyukondev.asp
http://otn.oracle.com/tech/xmldb/content.html
http://otn.oracle.com/tech/xmldb/content.html
http://www.saxonica.com/
http://www.w3.org/XML/Schema

	Query translation from XPath to SQL in the presence of recursive DTDs
	Abstract
	1 Introduction
	2 DTD, XPath, and schema-based shredding
	2.1 DTDs
	2.2 XPath
	2.3 Mapping DTDs to a database schema

	3 Overview: from XPath to SQL
	3.1 Linear recursion of SQL'99
	3.2 Extended XPath expressions
	3.3 A new approach
	3.4 More on extended XPath: query answering using XML views

	4 From XPath to extended XPath
	4.1 Translation of the descendant axis
	4.2 Translation algorithm

	5 From extended XPath expressions to SQL
	5.1 Translation algorithm
	5.2 Optimization: pushing selections into the lfp operator

	6 A performance study
	6.1 Exp-1: evaluation of selective queries
	6.2 Exp-2: pushing selections into lfp
	6.3 Exp-3: scalability test
	6.4 Exp-4: complex cycles (extracted from real-life DTDs)
	6.5 Exp-5: number of operations

	7 Related work
	8 Conclusion
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


