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Abstract

We present a decomposition-based approach to manag-
ing incomplete information. We introduceworld-set decom-
positions (WSDs), a space-efficient and complete represen-
tation system for finite sets of worlds. We study the prob-
lem of efficiently evaluating relational algebra queries on
world-sets represented by WSDs. We also evaluate our tech-
nique experimentally in a large census data scenario and
show that it is both scalable and efficient.

1 Introduction

Incomplete information is commonplace in real-world
databases. Classical examples can be found in data inte-
gration and wrapping applications, linguistic collections, or
whenever information is manually entered and is therefore
prone to inaccuracy or partiality.

There has been little research so far into expressiveyet
scalablesystems for representing incomplete information.
Current techniques can be classified into two groups. The
first group includes representation systems such asv-tables
[15] andor-set relations[16] which are not strong enough
to represent the results of relational algebra queries within
the same formalism. In v-tables the tuples can contain both
constants and variables, and each combination of possible
values for the variables yields a possible world. Relations
with or-sets can be viewed as v-tables, where each variable
occurs only at a single position in the table and can only
take values from a fixed finite set, the or-set of the field oc-
cupied by the variable. The so-calledc-tables[15] belong to
the second group of formalisms. They extend v-tables with
conditions specified by logical formulas over the variables,
thus constraining the possible values. Although c-tables are
a strong representation system, they have not found appli-
cation in practice. The main reason for this is probably that
managing c-tables directly is rather inefficient. Even very
basic problems such as deciding whether a tuple is in at least
one world represented by the c-table are intractable [3].

As a motivation, consider two manually completed
forms that may originate from a census and which allow
for more than one interpretation (Figure 1). For simplic-
ity we assume that social security numbers consist of only
three digits. For instance, Smith’s social security number
can be read either as “185” or as “785”. We can represent
the available information using a relation with or-sets:

(TID) S N M
t1 { 185, 785} Smith { 1, 2}
t2 { 185, 186} Brown { 1, 2, 3, 4}

It is easy to see that this or-set relation represents2 · 2 ·
2 · 4 = 32 possible worlds.

Given such an incompletely specified database, it must
of course be possible to access and process the data. Two
data management tasks shall be pointed out as particularly
important, the evaluation of queries on the data anddata
cleaning[17, 13, 18], by which certain worlds can be shown
to be impossible and can be excluded. The results of both
types of operation turn out not to be representable by or-
set relations in general. Consider for example the integrity
constraint that all social security numbers be unique. For
our example database, this constraint excludes 8 of the 32
worlds, namely those in which both tuples have the value
185 as social security number. It is impossible to repre-
sent the remaining 24 worlds using or-set relations. This is
an example of a constraint that can be used for data clean-
ing; similar problems are observed with queries, e.g., the
query asking for pairs of persons with differing social secu-
rity numbers.

What we could do is store each world explicitly using
a table called aworld-set relationof a given set of worlds.
Each tuple in this table represents one world and is the con-
catenation of all tuples in that world (see Figure 2).

The most striking problem of world-set relations is their
size. If we conduct a survey of 50 questions on a popula-
tion of 200 million and we assume that one in104 answers
can be read in just two different ways, we get210

6

worlds.
Each such world is a substantial table of 50 columns and
2 · 108 rows. We cannot store all these worlds explicitly in
a world-set relation (which would have1010 columns and
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Name:


Marital Status:


Social Security Number:


Name:


Marital Status:


Social Security Number:


(1) single
 (2) married


(3) divorced
 (4) widowed


(1) single
 (2) married


(3) divorced
 (4) widowed


Figure 1. Two completed survey forms.

t1.S t1.N t1.M t2.S t2.N t2.M
185 Smith 1 186 Brown 1
185 Smith 1 186 Brown 2
185 Smith 1 186 Brown 3
185 Smith 1 186 Brown 4
185 Smith 2 186 Brown 1

...
785 Smith 2 186 Brown 4

Figure 2. World-set relation containing only
worlds with unique social security numbers.

210
6

rows). Data cleaning will often eliminate only some of
these worlds, so a DBMS should manage those that remain.

This article aims at dealing with this complexity and pro-
poses the new notion ofworld-set decompositions (WSDs).
These are decompositions of a world-set relation into sev-
eral relations such that their product (using the product op-
eration of relational algebra) is again the world-set relation.

Example 1.1 The world-set represented by our initial or-
set relation can also be represented by the product

t1.S
185
785

×
t1.N
Smith

×
t1.M

1
2

×
t2.S
185
186

×
t2.N

Brown
×

t2.M
1
2
3
4

Example 1.2 In the same way we can represent the result
of data cleaning with the uniqueness constraint for the social
security numbers as the product of Figure 3.

One can observe that the result of this product is exactly
the world-set relation in Figure 2. The presented decompo-
sition is based on theindependencebetween sets of fields,
subsequently calledcomponents. Only fields that depend on

t1.S t2.S
185 186
785 185
785 186

×
t1.N
Smith

×
t1.M

1
2

×
t2.N

Brown
×

t2.M
1
2
3
4

Figure 3. WSD of the relation in Figure 2.

each other, for examplet1.S andt2.S, belong to the same
component. Since{t1.S, t2.S} and{t1.M} are indepen-
dent, they are put into different components. ✷

Often, one can quantify the certainty of a combination of
possible values using probabilities. For example, an auto-
matic extraction tool that extracts structured data from text
can produce a ranked list of possible extractions, each asso-
ciated with a probability of being the correct one [14].

WSDs can elegantly handle such scenarios by simply
adding a new column Pr to each component relation, which
contains the probability for the corresponding combination
of values.

t1.St2.S Pr
185 186 0.2
785 185 0.4
785 186 0.4

×
t1.N Pr
Smith 1

×
t1 .M Pr

1 0.7
2 0.3

×
t2.N Pr

Brown 1
×

t2.M Pr
1 0.25
2 0.25
3 0.25
4 0.25

Figure 4. Probabilistic version of the WSD of
Figure 3.

Example 1.3 Figure 4 shows a probabilistic version of the
WSD of Figure 3. The probabilities in the last component
imply that the possible values for the marital status oft2 are
equally likely, whereast1 is more likely to be single than
married. The probabilities for the name values fort1 andt2
equal one, as this information is certain. ✷

Given a probabilistic WSD{C1, . . . , Cm}, we obtain a
possible world by choosing one tuplewi out of each com-
ponent relationCi. The probability of this world is then
computed as

∏

i

wi.P r. For example, in Figure 4 choosing

the first, the second and the third tuple from the first, the
third and the fifth component, respectively, results in the
world

R SSN Name MS
t1 185 Smith 2
t2 186 Brown 2

The world’s probability can be computed as0.2·0.3·0.25 =
0.015.



In practice, it is often the case that fields or even tu-
ples carry the same values in all worlds. For instance, in
the census data scenario discussed above, we assumed that
only one field in 10000 has several possible values. Such a
world-set decomposes into a WSD in which most fields are
in component relations that have precisely one tuple.

We will also consider a refinement of WSDs,WSDTs,
which store information that is the same in all possible
worlds once and for all in so-calledtemplate relations.

Example 1.4 The world-set of the previous examples can
be represented by the WSDT of Figure 5. ✷

Template S N M
t1 ? Smith ?
t2 ? Brown ?

t1 .St2.S Pr
185 186 0.2
785 185 0.4
785 186 0.4

×
t1.M Pr

1 0.7
2 0.3

×

t2.M Pr
1 0.25
2 0.25
3 0.25
4 0.25

Figure 5. Probabilistic WSD with a template
relation.

WSDTs combine the advantages of WSDs and c-tables.
In fact, WSDTs can be naturally viewed as c-tables whose
formulas have been put into anormal formrepresented by
the component relations, and null values ‘?’ in the template
relations represent fields on which the worlds disagree. In-
deed, each tuple in the product of the component relations
is a possible value assignment for the variables in the tem-
plate relation. The following c-table with global condition
Φ is equivalent to the WSDT in Figure 5 (modulo the prob-
abilistic weights):

T S N M
x Smith y

z Brown w

Φ = ((x = 185 ∧ z = 186) ∨ (x = 785 ∧ z = 185) ∨

(x = 785 ∧ z = 186)) ∧ (y = 1 ∨ y = 2) ∧

(w = 1 ∨ w = 2 ∨ w = 3 ∨w = 4)

The technical contributions of this article are as follows.

• We formally introduce WSDs and WSDTs and study
some of their properties. Our notion is a refinement
of the one presented above and allows to represent
worlds over multi-relation schemas which contain re-
lations with varying numbers of tuples. WSD(T)s can
represent any finite set of possible worlds over rela-
tional databases and are therefore a strong representa-
tion system forany relational query language.

• A practical problem with WSDs and WSDTs is that a
DBMS that manages such representations has to sup-
port relations of arbitrary arity: the schemata of the
component relations of a decomposition depend on the
data. Unfortunately, DBMS (e.g. PostgreSQL) in prac-
tice often do not support relations beyond a fixed arity.

For that reason we present refinements of the notion
of WSDs, theuniform WSDs (UWSDs), and their ex-
tension by template relations, theUWSDTs, and study
their properties as representation systems.

• We show how to process relational algebra queries
over world-sets represented by UWSDTs. For illus-
tration purposes, we discuss query evaluation in the
context of the much more graphic WSDs.

We also develop a number of optimizations and tech-
niques for normalizing the data representations ob-
tained by queries to support scalable query processing
even on very large world-sets.

• We describe a prototype implementation built on top
of the PostgreSQL RDBMS. Our system is called
MayBMS and supports the management of incomplete
information using UWSDTs.

• We report on our experimental evaluation of UWSDTs
as a representation system for large finite sets of pos-
sible worlds. Our experiments show that UWSDTs al-
low highly scalable techniques for managing incom-
plete information. We found that the size of UWSDTs
obtained as query answers or data cleaning results re-
mains close to that of a single world. Furthermore, the
processing time for queries on UWSDTs is also com-
parable to processing just a single world and thus a
classical relational database.

• For our experiments, we develop data cleaning tech-
niques in the context of UWSDTs. To clean data of in-
consistent worlds we chase a set of equality-generating
dependencies on UWSDTs, which we brief-ly de-
scribe.

WSDs are designed to cope with large sets of worlds,
which exhibit local dependencies and large commonalities.
Note that this data pattern can be found in many applica-
tions. Besides the census scenario, Section 9 describes two
further applications: managing inconsistent databases using
minimal repairs [7, 9] and medicine data.

A fundamental assumption of this work is that one wants
to managefinite sets of possible worlds. This is justified
by previous work on representation systems starting with
Imielinski and Lipski [15], by recent work [12, 4, 8], and
by current application requirements. Our approach can
deal with databases with unresolved uncertainties. Such
databases are still valuable. It should be possible to do



data transformations that preserve as much information as
possible, thus necessarily mapping between sets of possi-
ble worlds. In this sense, WSDs represent acompositional
frameworkfor querying and data cleaning. A different ap-
proach is followed in, e.g., [7, 10], where the focus is on
finding certain answersof queries on incomplete and in-
consistent databases.

Related Work. The probabilistic databases of [12, 11] and
the dirty relations of [4] are examples of practical represen-
tation systems that are not strong for relational algebra. As
query answers in general cannot be represented as a set of
possible worlds in the same formalism, query evaluation is
focused on computing the certain answers to a query, or the
probability of a tuple being in the result. Such formalisms
close the possible worlds semantics using clean answers [4]
and probabilistic-ranked retrieval [12]. As we will see in
this article, our approach subsumes the aforementioned two
and is strictly more expressive than them.

In parallel to our approach, [21, 8] propose ULDBs
that combine uncertainty and a low-level form of lineage
to model any finite world-set. Like the dirty relations of
[4], ULDBs represent a set of independent tuples with al-
ternatives. Lineage is then used to represent dependencies
among alternatives of different tuples and thus is essential
for the expressive power of the formalism.

As both ULDBs and WSDs can model any finite world-
set, they inherently share some similarities, yet differ inim-
portant aspects. WSDs support efficient algorithms for find-
ing a minimal data representation based on relational factor-
ization. Differently from ULDBs,
WSDs allow representing uncertainty at the level of tuple
fields, not only of tuples. This causes, for instance, or-setre-
lations to have linear representations as WSDs, but (in gen-
eral) exponential representations as ULDBs. As reported in
[8], resolving tuple dependencies, i.e., tracking which alter-
natives of different tuples belong to the same world, often
requires to compute expensive lineage closure. Addition-
ally, query operations on ULDBs can produce inconsisten-
cies and anomalies, such as erroneous dependencies and in-
existent tuples. In contrast, WSDs share neither of these
pitfalls. As no implementation of ULDBs was available at
the time of writing this document, no experimental compar-
ison of ULDBs and WSDs could be established.

2 Preliminaries

We use the named perspective of the relational model
with the operations selectionσ, projection π, product
×, union ∪, difference −, and attribute renamingδ
(cf. e.g. [2]). A relational schemais a tuple Σ =
(R1[U1], . . . , Rk[Uk]), where eachRi is a relation name
andUi is a set of attribute names. LetD be a set of do-
main elements. Arelation over schemaR[A1, . . . , Ak] is a

set of tuples(A1 : a1, . . . , Ak : ak) wherea1, . . . , ak ∈ D.
A relational databaseA over schemaΣ is a set of relations
RA, one for each relation schemaR[U ] from Σ. Some-
times, when no confusion of database may occur, we will
useR rather thanRA to denote one particular relation over
schemaR[U ]. By the size of a relationR, denoted|R|, we
refer to the number of tuples inR. For a relationR over
schemaR[U ], let S(R) denote the setU of its attributes
and letar(R) denote the arity ofR.

A productm-decompositionof a relationR is a set of
non-nullary relations{C1, . . . , Cm} such thatC1 × · · · ×
Cm = R. The relationsC1, . . . , Cm are calledcomponents.
A productm-decomposition ofR is maximalif there is no
productn-decomposition ofR with n > m.

A set ofpossible worlds(or world-set) over schemaΣ is
a set of databases over schemaΣ. LetW be a set of struc-
tures,rep be a function that maps fromW to world-sets of
the same schema. Then(W, rep) is astrong representation
systemfor a query language if, for each queryQ of that lan-
guage and eachW ∈ W such thatQ is applicable to the
worlds in rep(W), there is a structureW ′ ∈ W such that
rep(W ′) = {Q(A) | A ∈ rep(W)}. Obviously,

Lemma 2.1 If rep is a function from a set of structuresW
to the set of all finite world-sets, then(W, rep) is a strong
representation system for any relational query language.

3 Probabilistic World-Set Decompositions

In order to use classical database techniques for storing
and querying incomplete data, we develop a scheme for rep-
resenting a world-setA by a single relational database.

Let A be a finite world-set over schemaΣ =
(R1, . . . , Rk). For eachR in Σ, let |R|max = max{|RA| :
A ∈ A} denote the maximum cardinality of relation
R in any world of A. Given a worldA with RA =
{t1, . . . , t|RA|}, let tRA be the tuple obtained as the con-
catenation (denoted◦) of the tuples ofRA in an arbitrary
order padded with a special tuplet⊥ = (⊥, . . . ,⊥)

︸ ︷︷ ︸

ar(R)

up to

arity |R|max:

tRA := t1 ◦ · · · ◦ t|RA| ◦ (t⊥, . . . . . . . . . . . . , t⊥
︸ ︷︷ ︸

|R|max−|RA|

)

Then tupletA := tRA
1

◦· · ·◦tRA

k
encodes all the information

in world A. The “dummy” tuples with⊥-values are only
used to ensure that the relationR has the same number of
tuples in all worlds inA. We extend this interpretation and
generally define ast⊥ any tuple that has at least one symbol
⊥, i.e.,(A1 : a1, ..., An : an), where at least oneai is ⊥, is
a t⊥ tuple. This allows for several different inlinings of the
same world-set.



By a world-set relationof a world-setA, we denote the
relation{tA | A ∈ A}. This world-set relation has schema
{R.ti.Aj | R[U ] ∈ Σ, 1 ≤ i ≤ |R|max, Aj ∈ U}. Note
that in defining this schema we useti to denote the position
(or identifier) of tupleti in tRA and not its value.

Given the above definition that turned every world in a
tuple of a world-set relation, computing the initial world-set
is an easy exercise. In order to have every world-set relation
define a world-set, let a tuple extracted from sometRA be
in RA iff it does not contain any occurrence of the special
symbol⊥. That is, we maptRA = (a1, . . . , aar(R)·|R|max

)
toRA as

tRA 7→ {(aar(R)·k+1, . . . , aar(R)·(k+1)) | 0 ≤ k < |R|max,

aar(R)·k+1 6= ⊥, . . . , aar(R)·(k+1) 6= ⊥}.

Observe that although world-set relations are not unique
as we have left open the ordering in which the tuples of
a given world are concatenated, all world-set relations of
a world-setA are equally good for our purposes because
they can be mapped invariantly back toA. Note that for
each world-set relation a maximal decomposition exists, is
unique, and can be efficiently computed [6].

Definition 3.1 Let A be a world-set andW a world-set re-
lation representingA. Then aworld-setm-decomposition
(m-WSD)of A is a productm-decomposition ofW .

We will refer to each of them elements of a world-setm-
decomposition ascomponents, and to the component tuples
as local worlds. Somewhat simplified examples of world-
set relations and WSDs over a single relationR (thus “R”
was omitted from the attribute names of the world-set re-
lations) were given in Section 1. Further examples can be
found in Section 4. It should be emphasized that with WSDs
we can also represent multiple relational schemata and even
components with fields from different relations.

It immediately follows from our definitions that

Proposition 3.2 Any finite set of possible worlds can be
represented as a world-set relation and as a1-WSD.

Corollary 3.3 (Lemma 2.1) WSDs are a strong represen-
tation system for any relational query language.

As pointed out in Section 1, this is not true for or-set
relations. For the relatively small class of world-sets that
can be represented as or-set relations, the size of our repre-
sentation system is linear in the size of the or-set relations.
As seen in the examples, our representation ismuch more
space-efficient than world-set relations.

Modeling Probabilistic Information. We can quantify
the uncertainty of the data by means of probabilities us-
ing a natural extension of WSDs. Aprobabilistic world-
set m-decomposition(probabilistic m-WSD) is an m-WSD

{C1, . . . , Cm}, where each component relationC has a spe-
cial attributePr in its schema defining the probability for
the local worlds, that is, for each combination of values de-
fined by the component. We require that the probabilities in
a component sum up to one, i.e.

∑

tC∈C

tC .P r = 1.

Probabilistic WSDs generalize the probabilistic tuple-
independent model of [12], as we show next. Figure 6 (a)
is an example taken from [12]. It shows a probabilistic
database with two relationsS andT . Each tuple is assigned
a confidence value, which represents the probability of the
tuple being in the database, and the tuples are assumed inde-
pendent. A possible world is obtained by choosing a subset
of the tuples in the probabilistic database, and its probability
is computed by multiplying the probabilities for selectinga
tuple or not, depending on whether that tuple is in the world.
The set of possible worlds forD is given in Figure 6 (b). For
example, the probability of the worldD3 can be computed
as(1− 0.2) · 0.5 · 0.6 = 0.06.

S A B Pr
s1 m 1 0.8
s2 n 1 0.5

T C D Pr
t1 1 p 0.6

(a)

world Pr
D1 = {s1, s2, t1} 0.24
D2 = {s1, t1} 0.24
D3 = {s2, t1} 0.06
D4 = {t1} 0.06
D5 = {s1, s2} 0.16
D6 = {s1} 0.16
D7 = {s2} 0.04
D8 = ∅ 0.04

(b)

Figure 6. A probabilistic database for rela-
tions S and T (a), and the represented set of
possible worlds (b).

We obtain a probabilistic WSD in the following way.
Each tuplet with confidencec in a probabilistic database
induces a WSD component representing two local worlds:
the local world with tuplet and probabilityc, and the empty
world with probability1 − c. Figure 7 gives the WSD en-
coding of the probabilistic database of Figure 6. Of course,
in probabilistic WSDs we can assign probabilities not only
to individual tuples, but also to combinations of values for
fields of different tuples or relations.

C1 s1.A s1.B Pr
1 m 1 0.8
2 ⊥ ⊥ 0.2

×
C2 s2.A s2.B Pr
1 n 1 0.5
2 ⊥ ⊥ 0.5

×
C3 t1.C t1.D Pr
1 1 p 0.6
2 ⊥ ⊥ 0.4

Figure 7. WSD equivalent to the probabilistic
database in Figure 6 (a).



Adding Template Relations. We now present our refine-
ment of WSDs with so-calledtemplate relations. A tem-
plate stores information that is the same in all possible
worlds and contains special values ‘?’ /∈ D in fields at which
different worlds disagree.

Let Σ = (R1, . . . , Rk) be a schema andA a fi-
nite set of possible worlds overΣ. Then, the database
(R0

1, . . . , R
0
k, {C1, . . . , Cm}) is called anm-WSD with

template relations (m-WSDT) of A iff there is a WSD
{C1, . . . , Cm, D1, . . . , Dn} of A such that|Di| = 1 for
all i and if relationDi has attributeRj .t.A and valuev in
its uniqueRj .t.A-field, then the template relationR0

j has a
tuple with identifiert whoseA-field has valuev.

Of course WSDTs again can represent any finite world-
set and are thus a strong representation system for any rela-
tional query language. Example 1.4 shows a WSDT for the
running example of the introduction.
Uniform World-Set Decompositions.In practice database
systems often do not support relations of arbitrary arity
(e.g., WSD components). For that reason we introduce next
a modified representation of WSDs calleduniform WSDs.
Instead of having a variable number of component relations,
possibly with different arities, we store all values in a single
relationC that has a fixed schema. We use the fixed schema
consisting of the three relation schemata

C[FID ,LWID ,VAL], F [FID ,CID ],W [CID ,LWID ,PR]

whereFID is a triple1 (Rel ,TupleID ,Attr) denoting the
Attr-field of tupleTupleID in database relationRel .

In this representation we need a restricted flavor of
world-ids calledlocal world-ids(LWIDs). The local world-
ids refer only to the possible worlds within one component.
LWIDs avoid the drawbacks of “global” world IDs for the
individual worlds. This is important, since the size of global
world IDs can exceed the size of the decomposition itself,
thus making it difficult or even impossible to represent the
world-sets in a space-efficient way. If any world-set over a
given schema and a fixed active domain is permitted, one
can verify that global world-ids cannot be smaller than the
largest possible world over the schema and the active do-
main.

Given a WSD{C1, . . . , Cm} with schemataCi[Ui], we
populate the corresponding UWSD as follows.

• ((R, t, A), s, v) ∈ C iff, for some (unique)i, R.t.A ∈
Ui and the field of columnR.t.A in the tuple with ids
of Ci has valuev.

• F := {((R, t, A), Ci) | 1 ≤ i ≤ m, R.t.A ∈ Ui},

• (Ci, s, p) ∈ W iff there is a tuple with identifiers in
Ci, whose probability isp.

1That is, FID really takes three columns, but for readabilitywe keep
them together under a common name in this section.

R0 S N M
t1 ? Smith ?
t2 ? Brown 3

C FID LWID VAL
(R, t1, S) 1 185
(R, t2, S) 1 186
(R, t1, S) 2 785
(R, t2, S) 2 185
(R, t1, S) 3 785
(R, t2, S) 3 186
(R, t1,M) 1 1
(R, t1,M) 2 2

F FID CID
(R, t1, S) C1

(R, t1,M) C2

(R, t2, S) C1

W CID LWID PR
C1 1 0.2
C1 2 0.4
C1 3 0.4
C2 1 0.7
C2 2 0.3

Figure 8. A UWSDT corresponding to the
WSDT of Figure 5.

Intuitively, the relationC stores each value from a com-
ponent together with its corresponding field identifier and
the identifier of the component-tuple in the initial WSD
(columnLWID of C). The relationF contains the map-
ping between tuple fields and component identifiers, andW
keeps track of the worlds present for a given component.

In general, the VAL column in the component relation C
must store values for fields of different type. One possibility
is to store all values as strings and use casts when required.
Alternatively, one could have one component relation for
each data type. In both cases the schema remains fixed.

Finally, we add template relations to UWSDs in com-
plete analogy with WSDTs, thus obtaining the UWSDTs.

Example 3.4 We modify the world-set represented in Fig-
ure 4 such that the marital status int2 can only have the
value 3. Figure 8 is then the uniform version of the WSDT
of Figure 4. HereR0 contains the values that are the same
in all worlds. For each field that can have more than one
possible value,R0 contains a special placeholder, denoted
by ‘?’. The possible values for the placeholders are defined
in the component tableC. In practice, we can expect that
the majority of the data fields can take only one value across
all worlds, and can be stored in the template relation.✷

Proposition 3.5 Any finite set of possible worlds can be
represented as a1-UWSD and as a1-UWSDT.

It follows again that UWSD(T)s are a strong representa-
tion system forany relational query language.

4 Queries on World-set Decompositions

In this section we study the query evaluation problem for
WSDs. As pointed out before, UWSDTs are a better repre-
sentation system than WSDs; nevertheless WSDs are sim-



pler to explain and visualize and the main issues regarding
query evaluation are the same for both systems.

The goal of this section is to provide, for each relational
algebra queryQ, a queryQ̂ such that for a WSDW ,

rep(Q̂(W)) = {Q(A) | A ∈ rep(W)}.

Of course we want to evaluate queries directly on WSDs
usingQ̂ rather than process the individual worlds using the
original queryQ.

The algorithms for processing relational algebra que-ries
presented next are orthogonal to whether or not the WSD
stores probabilities. According to our semantics, a query is
conceptually evaluated in each world and extends the world
with the result of the query in that world. A different class
of queries are those that close the possible world semantics
and computeconfidenceof tuples in the result of a query.
This will be the subject of Section 6.

When compared to traditional query evaluation, the eval-
uation of relational queries on WSDs poses new challenges.
First, since decompositions in general consist of several
components, a querŷQ that maps from one WSD to another
must be expressed as a set of queries, each of which defines
a different component of the output WSD. Second, as cer-
tain query operations may cause new dependencies between
components to develop, some components may have to be
merged (i.e., part of the decomposition undone using the
product operation×). Third, the answer to a (sub)queryQ0

must be represented within the same decomposition as the
input relations; indeed, we want to compute a decomposi-
tion of world set{(A, Q0(A)) | A ∈ rep(W)} in order
to be able to resort to the input relations as well as the re-
sult ofQ0 within each world. Consider for example a query
σA=1(R) ∪ σB=2(R). If we first computeσA=1(R), we
must not replaceR by σA=1(R), otherwiseR will not be
available for the computation ofσB=2(R). On the other
hand, ifσA=1(R) is stored in a separate WSD, the connec-
tion between worlds ofR and the selectionσA=1 is lost and
we can again not computeσA=1(R) ∪ σB=2(R).

We say that a relationP is a copy of another relationR
in a WSD ifR andP have the same tuples in every world
represented by the WSD. For a componentC, an attribute
R.t.Ai of C and a new attributeP.t.B, the functionext
extendsC by a new columnP.t.B that is a copy ofR.t.Ai:

ext(C,Ai, B) := {(A1 : a1, . . . , An : an, B : ai) |

(A1 : a1, . . . , An : an) ∈ C}

Then copy(R,P ) executesC := ext(C,R.ti.A, P.ti.A)
for each componentC and eachR.ti.A ∈ S(C).

The implementation of some operations requires the
composition of components. LetC1 andC2 be two com-
ponents with schemata(A1, . . . , Ak, P r), and
(B1, . . . , Bl, P r), respectively. Then the composition ofC1

andC2 is defined as:

compose(C1, C2) :=

{(A1 : a1, . . . , Ak : ak, B1 : b1, . . . , Bl : bl,

P r : p1 · p2) |

(A1 : a1, . . . , Ak : ak, P r : p1) ∈ C1,

(B1 : b1, . . . , Bl : bl, P r : p2) ∈ C2}

In the non-probabilistic case the composition of compo-
nents is simply the relational product of the two compo-
nents.

Figure 9 presents implementations of the relational alge-
bra operations selection (of the formσAθc or σAθB, where
A andB are attributes,c is a constant, andθ is a compari-
son operation,=, 6=, <, ≤, >, or ≥), projection, relational
product and union on WSDs. In each case, the input WSD
is extendedby the result of the operation.

Let us now have a closer look at the evaluation of rela-
tional algebra operations on WSDs. For this, we use as run-
ning example the set of eight worlds over the relationR of
Figure 10 (a) and its maximal 7-WSD of Figure 10 (b). The
second component (from the left) of the WSD spans over
several tuples and attributes and each of the remaining six
components refer to one tuple and one attribute. The first
tuple of the second component of the WSD of Figure 10
contains the values forR.t1.B, R.t1.C, andR.t2.B, i.e.
some but not all of the attributes of the first and second tu-
ple of RA, for all worldsA. Because of space limitations
and our attempt to keep the WSDs readable, we consistently
show in the following examples only the WSDs of the result
relations.

Selection with conditionAθc. In order to compute a selec-
tion P := σAθc(R), we first compute a copyP of relation
R and subsequently drop tuples ofP that do not match the
selection condition.

Dropping tuples is a fairly subtle operation, since tuples
can spread over several components and a component can
define values for more than one tuple.

Thus a selection must not delete tuples from component
relations, but should mark fields as belonging to deleted tu-
ples using the special value⊥. To evaluateσAθc(R), our
selection algorithm of Figure 9 checks for each tupleti in
the relationP andtC in componentC with attributeP.ti.A
whethertC .(P.ti.A)θc. In the negative case the tupleP.ti
is marked as deleted in all worlds that take values fromtC .
For that,tC .(P.ti.A) is assigned value⊥, and all other at-
tributesP.ti.A′ of C referring to the same tupleti of P are
assigned value⊥ in tC , (cf. the algorithmpropagate-⊥ of
Figure 12). This assures that if we later project away the
attributeA of P , we do not erroneously “reintroduce” tuple
P.ti into worlds that take values fromtC .

Example 4.1 Figure 11 shows the answers toσC=7(R) and
σB=1(R). Note that the resulting WSDs should contain



algorithm select[Aθc] // computeP := σAθcR
begin

copy(R,P );
for each1 ≤ i ≤ |P |max do begin

let C be the component ofP.ti.A;
for each tC ∈ C do

if not (tC .(P.ti.A) θ c) then
tC .(P.ti.A) := ⊥

propagate-⊥(C);
end

end

algorithm select[AθB] // computeP := σAθBR
begin

copy(R,P );
for each1 ≤ i ≤ |P |max do begin

let C be the component ofP.ti.A;
let C′ be the component ofP.ti.B;
if (C 6= C′) then

replace componentsC, C′ by C := compose(C,C′);
for each tC ∈ C do

if not (tC .(P.ti.A) θ tC .(P.ti.B)) then
tC .(P.ti.A) := ⊥

propagate-⊥(C);
end

end

algorithm product // computeT := R × S
begin

for each1 ≤ j ≤ |S|max andR.ti.A ∈ S(R) do begin
let C be the component ofR.ti.A;
C := ext(C,R.ti.A, T.tij .A);

end;
for each1 ≤ i ≤ |R|max andS.tj .A ∈ S(S) do begin

let C′ be the component ofS.tj .A;
C′ := ext(C′, S.tj .A, T.tij .A);

end
end

algorithm union // computeT := R ∪ S
begin

for each1 ≤ i ≤ |R|max andA ∈ S(R) do begin
let C be the component ofR.ti.A;
C := ext(C,R.ti.A, T.(R.ti).A);

end;
for each1 ≤ j ≤ |S|max andA ∈ S(S) do begin

let C′ be the component ofS.tj .A;
C′ := ext(C′, S.tj .A, T.(S.tj).A);

end
end

algorithm project[U ] // computeP := πU (R)
begin

copy(R,P );
for each1 ≤ i ≤ |P |maxdo

while no fixpoint is reacheddo begin
let C be the component ofP.ti.A, whereA ∈ U ;
let C′ 6= C be the component ofP.ti.B, where
B 6∈ U and (∀A′ ∈ U : P.ti.A

′ /∈ S(C′)) and
(∃tC′ ∈ C′ : tC′ .B = ⊥);

replace componentsC, C′ byC := compose(C,C′);
propagate-⊥(C);
project awayP.tj .B from C whereB 6∈ U andj ≤ i;

end
for each1 ≤ i ≤ |P |max andB /∈ U do begin

let C be the component ofP.ti.B;
project awayP.ti.B from C;

end
end

algorithm rename // computeδA→A′(R)
begin

for each1 ≤ i ≤ |R|max do begin
let C be the component ofR.ti.A;
C := δR.ti.A→R.ti.A

′(C);
end;

end

algorithm difference // computeP := R − S
begin

copy(R,P );
for each1 ≤ i ≤ |P |maxdo

for each1 ≤ j ≤ |S|maxdo
let C1, . . . , Ck be the components for the fields ofP.ti andS.tj ;
replaceC1, . . . , Ck by C := compose(C1, . . . , Ck);
for each tC ∈ C do begin

if tC .(P.ti.A) = tC .(S.tj .A) for all A ∈ S(R) then
tC .(P.ti.A) := ⊥;

end
end

end

Figure 9. Evaluating relational algebra operations on WSDs .
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(a) Set of eight worlds of the relationR.

R.t1.A
1
2

×
R.t1.B R.t1.C R.t2.B

1 0 3
2 7 4

×
R.t2.A

4
5

×
R.t2.C

0
×

R.t3.A
6

×
R.t3.B

6
×

R.t3.C
7

(b) 7-WSD of the world-set of (a).

Figure 10. World-set and its decomposition.
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(a)P := σC=7(R) applied to the WSD of Figure 10.
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(b) P := σB=1(R) applied to the WSD of Figure 10.

Figure 11. Selections P := σC=7(R) and P := σB=1(R) with R from Figure 10.

algorithm propagate-⊥(C: component)
begin

for each tC ∈ C andP.ti.A ∈ S(C) do
if tC .(P.ti.A) = ⊥ then

for eachA′ such thatP.ti.A′ ∈ S(C) do
tC .(P.ti.A

′) := ⊥;
end

Figure 12. Propagating ⊥-values.

both the query answerP and the original relationR, but due
to space limitations we only show the representation ofP .
One can observe that for both results in Figure 11 we obtain
worlds of different sizes. For example the worlds that take
values from the first tuple of the second component relation
in Figure 11 (a) do not have a tuplet1, while the worlds
that take values from the second tuple of that component
relation containt1. ✷

Selection with conditionAθB. The main added difficulty
of selections with conditionsAθB as compared to selec-
tions with conditionsAθc is that it creates dependencies be-
tween two attributes of a tuple, which do not necessarily
reside in the same component.

As the current decomposition may not capture exactly
the combinations of values satisfying the join condition,
components that have values forA andB of the same tuple
are composed. After the composition phase, the selection
algorithm follows the pattern of the selection with constant.

Example 4.2 Consider the queryσA=B(R), whereR is
represented by the 7-WSD of Figure 10. Figure 13 shows
the query answer, which is a 4-WSD that represents five
worlds, where one world has three tuples, three worlds have
two tuples each, and one world has one tuple. ✷

Product. The productT := R × S of two relationsR and
S, which have disjunct attribute sets and are represented by
a WSD requires that the product relationT extends a com-
ponentC with |S|max (respectively|R|max) copies of each
column ofC with values ofR (respectivelyS). Addition-
ally, theith (jth) copy is namedT.tij .A if the original has
nameR.ti.A or S.tj .A.

Example 4.3 Figure 14 (b) shows the WSD for the prod-
uct of relationsR andS represented by the WSD of Fig-
ure 14 (a). To save space, the relationsR andS have been
removed from Figure 14 (b), and attribute names do not
show the relation name “T ”. ✷

Projection. A projectionP = πU (R) on an attribute set
U of a relationR represented by the WSDC is translated
into (1) the extension ofC with the copyP of R, and (2)
projections on the components ofC, where all component
attributes that do not refer to attributes ofP in U are dis-
carded. Before removing attributes, however, we need to
propagate⊥-values, as discussed in the following example.

Example 4.4 Consider the 3-WSD of Figure 15 (a) repre-
senting a set of two worlds forR, where one world contains
only the tuplet1 and the other contains only the tuplet2. Let
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Figure 13. P = σA=B(R) with R from Figure 10.
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(b) WSD of their productR× S.

Figure 14. The product operation R× S.

P ′ represent the first two components ofR, which contain
all values for the attributeA in both tuples. The relationP ′

is not the answer toπA(R), because it encodes one world
with both tuples, and the information from the third com-
ponent ofR that only one tuple appears in each world is
lost. To compute the correct answer, we progressively (1)
compose the components referring to the same tuple (in this
case all three components), (2) propagate⊥-values within
the same tuple, and (3) project away the irrelevant attributes.
The correct answerP is given in Figure 15 (b). ✷

R.t1.A
a

×
R.t2.A

b
×

R.t1.B R.t2.B
c ⊥
⊥ d

P.t1.A P.t2.A
a ⊥
⊥ b

(a) WSD for R. (a) WSD for P.

Figure 15. Projection P := πA(R).

The algorithm for projection is given in Figure 9. For
each tupleti, attributeA in the projection list, and attribute
B not in the projection list, the algorithm first propagates
the⊥-values ofP.ti.B of componentC′ to P.ti.A of com-
ponentC. If C andC′ are the same, the propagation is
done locally within the component. Otherwise,C andC′

are merged before the propagation. Note that the propaga-
tion is only needed if some tuples ofC′ have at⊥-value
for ti.B. This procedure is performed until no other compo-
nentsC andC′ exist that satisfy the above criteria. After
the propagation phase, the attributes not in the projection
list are dropped from all remaining components.
Union. The algorithm for computing the unionT := R ∪
S of two relationsR andS works similarly to that for the
product. Each componentC containing values ofR or S is

extended such that in each world ofC all values ofR andS
become also values ofT .
Renaming. The operationδA→A′(R) renames attributeA
of relationR to A′ by renaming all attributesR.t.A in a
componentC toR.t.A′.
Difference. To compute the difference operationP :=
R − S we scan and compose components of the two re-
lationsR andS. For the worlds where a tuplet from R
matches some tuple fromS, we place⊥-values to denote
that t is not in these worlds ofP ; otherwiset becomes a
tuple ofP . The difference is by far the least efficient oper-
ation to implement, as it can lead to the composition of all
components in the WSD.

5 Efficient Query Evaluation on UWSDTs

The algorithms for computing the relational operations
on WSDs presented in Section 4 can be easily adapted to
UWSDTs. To do this, we follow closely the mapping of
WSDs, represented as sets of componentsC, to equivalent
UWSDTs, represented by a triple (F ,C,W ) and at least one
template relationR0:

• Consider a componentK of WSD C having an at-
tribute R.t.A with a value v. In the equivalent
UWSDT, this value can be stored in the template re-
lationR0 if v is the only value ofR.t.A, or in the com-
ponentC otherwise. In the latter case, the template
R0 contains the placeholderR.t.A in the tuplet. In
addition, in the mapping relationF there is an entry
with the placeholderR.t.A and a component identifier
c, andC contains a tuple formed byR.t.A, the valuev
and a world identifierw.

• Worlds of different sizes are represented in WSDs by



allowing⊥ values in components, and in UWSDTs by
allowing for a same placeholder different amount of
values in different worlds.

Any relational query is rewritten in our framework to a
sequence of SQL queries, except for the projection and se-
lection with join conditions, where the fixpoint computa-
tions are encoded as recursive PL/SQL programs. In all
cases, the size of the rewriting is linear in the size of the
input query. Figure 16 shows the implementation of the se-
lection with constant on UWSDTs.

algorithm select[Aθc] // computeP := σAθcR
begin

1. P 0 := σAθc∨A=?R
0;

2. F := F ∪ {(P.t.B, k) | (R.t.B, k) ∈ F, t ∈ P 0};
3. C := C ∪ {(P.t.B, w, v) | (R.t.B,w, v) ∈ C, t ∈ P 0,

(B = A ⇒ vθc)};
// Remove incomplete world tuples
4. C := C − {(P.t.X, w, v) ∈ C | (P.t.X, k), (P.t.Y, k) ∈ F,

t ∈ P 0, X 6= Y, 6 ∃v′ : (P.t.Y, w, v′) ∈ C};
5. F := F − {(P.t.B, k) | (P.t.B, k) ∈ F ,

6 ∃w, v : (P.t.B, w, v) ∈ C};
6. P 0 := P 0 − {t | t ∈ P 0, 6 ∃B, a : (P.t.B, a) ∈ F};

end

Figure 16. Evaluating P := σAθc(R) on UWS-
DTs.

In contrast to some algorithms of Figure 9, for UWSDTs
we do not create a copyP of R at the beginning, but rather
compute directlyP from R using standard relational alge-
bra operators. The templateP 0 is initially the set of tuples
of R0 that satisfy the selection condition, or have a place-
holder ‘?’ for the attributeA (line 1). We extend the map-
ping relationF with the placeholders ofP 0 (line 2), and the
component relationC with the values of these placeholders,
where the values of placeholdersP.t.A for the attributeA
must satisfy the selection condition (line 3). If a placeholder
P.t.A has no value satisfying the selection condition, then
t is removed fromP 0 (line 6) and all placeholders oft are
removed fromF (line 5) together with their values fromC
(line 4).

Many of the standard query optimization techniques are
also applicable in our context. For our experiments reported
in Section 8, we performed the following optimizations on
the sequences of SQL statements obtained as rewritings.
For the evaluation of a query involving join, we merge the
product and the selections with join conditions and dis-
tribute projections and selections to the operands. When
evaluating a query involving several selections and projec-
tions on the same relation, we again merge these operators
and perform the steps of the algorithm of Figure 16 only
once. We further tuned the query evaluation by employing

indices and materializing often used temporary results.

6 Confidence Computation in Probabilistic
WSDs

Section 4 discussed algorithms for evaluating relational
algebra queries on top of WSDs. Since we consider queries
that transform worlds, the algorithms were independent of
whether or not probabilities were stored with the data. A
different class of queries are ones that compute confidence
of tuples. Theconfidenceof a tuplet in the result of a query
Q is defined as the sum of the probabilities of the worlds
that containt in the answer toQ. Clearly, iterating over
all possible worlds is infeasible. We therefore adopt an ap-
proach where we only iterate over the local worlds of the
relevant components.

// compute the confidence of tuplet
algorithm conf(t)
begin
c := 0;
let t1, . . . , tk be the tuple ids

that matcht in some world;
let C1, . . . , Cn be the components

for the fields oft1, . . . , tk;
let C := compose(C1, . . . , Cn);
for each tC in C do begin

if t = (tC .(ti.A1), . . . , tC .(ti.Am)) for somei
then c := c+ tC .P r;

end
returnc;

end

Figure 17. Computing confidence of possible
tuples.

Figure 17 shows an algorithm for computing the confi-
dence of tuplet of schema(A1, . . . , Am). It first finds those
tuple ids t1, . . . , tk that match the given tuplet in some
world and composes all components defining fields of those
tuple ids into one componentC. A world that containst is
thus obtained whenever we select a local world fromC that
makes the value of some tuple idti, 1 ≤ i ≤ m, equal to
t. Fixing a local world inC defines a set of possible worlds
- the ones that share the values specified by the selected lo-
cal world. The probability of this set of worlds is given in
thePr field of the local world. Since the local worlds of a
component define non-overlapping sets of worlds, to com-
pute the confidence oft we need to sum up the probabilities
of those local worlds that definet.

Note that the algorithms for computing tuple confidence
in [12] rely heavily on the fact that input tuples are indepen-



dent. Tuple confidence is computed during the evaluation of
the query in question to avoid having to store intermediate
results. This restricts the supported types of queries and the
query plans that can be used. In probabilistic WSDs on the
other hand, the query evaluation can be completely decou-
pled from confidence computation, since the latter form a
strong representation system. For the same reason we need
no independence assumptions about the input data.

The algorithm of Figure 17 does not explore possible
independence between tuples. One can design a better
approach in the following way. In a probabilistic WSD
each component id corresponds to an independent random
variable, whose possible outcomes are the local worlds of
the component. We will call aworld-set descriptor (ws-
descriptor)a set

{(C1, L1), . . . , (Cn, Ln)}

whereCi is a component id,Li is a local world id ofCi,
and no two elements(Ci, Li), (Cj , Lj) of the set exist with
Ci = Cj andLi 6= Lj . A ws-descriptor defines, as its name
suggests, a set of possible worlds, whose probability can be
computed as the product of the probabilities of the selected
local worlds:

P ({(C1, L1), . . . , (Cn, Ln)}) =
n∏

i=1

P (Ci, Li)

A ws-descriptor that specifies a local world for each com-
ponent id of a probabilistic WSD corresponds to a single
world. For computing tuple confidence we need to also con-
sider sets of ws-descriptors. A ws-descriptor set defines a
set of possible worlds - the union of the worlds defined by
each descriptor in the set. Given a fixed tuplet and a proba-
bilistic world-set decompositionW representing the answer
R to queryQ, we compute a ws-descriptor setD for the
worlds containingt in the following way. Letti be a tuple id
of R andCi1 , . . . , Cij be the components ofW that define
fields ofR.ti. If the value ofti is t when we fix the local
world of Cik to beLik for 1 ≤ k ≤ j, respectively, then
D contains the ws-descriptor{(Ci1 , Li1), . . . , (Cij , Lij )}.
The confidence oft is then computed as the probability of
the worlds defined byD. Computing tuple confidence can
be reduced to computing the probability of a formula in dis-
junctive normal form, which is known to have #P complex-
ity. This follows from the mutual reducibility of the prob-
lem of computing the probability of the union of the (pos-
sibly overlapping) world-sets represented by a set of ws-
descriptors and of the #P-complete problem of counting the
number of satisfying assignments of Boolean formulas in
disjunctive normal form. Indeed, we can encode a set ofk
ws-descriptors{{(Ci1 , Li1), . . . , (Cij , Lij )}}, 1 ≤ i ≤ k
as a formula

∨

1≤i≤k

(Ci1 = Li1 ∧ . . .∧Cij = Lij ). Different

optimization techniques exist for computing the probabil-
ity of a boolean formula, such as variable elimination and
Monte Carlo approximations [19].

Remark 6.1 The U-relations of [5] associate each possible
combination of values with a ws-descriptor. In WSDs and
UWSDTs on the other hand a combination of values is as-
sociated with a single pair of component and local world id.
Thus WSDs form a special case of U-relations with depen-
dency vectors of size one. ✷

We next consider the operator possible that computes the
tuples appearing in at least one world of the world-set. For-
mally, if R is a relation name andA - a world-set, the oper-
ator possible is defined as:

possible(R)(A) := {t | A ∈ A, t ∈ RA}

// computeP := possible(R)
algorithm possible
begin
P := ∅;
for each1 ≤ i ≤ |R|max do begin

let C1, . . . , Ck be the components for
the fields ofR.ti;

let C := compose(C1, . . . , Ck);
addπR.ti.A1,...,R.ti.Am(σV

j R.ti.Aj 6=⊥(C)) toP ;
end

end

Figure 18. Computing possible tuples.

Figure 18 shows an algorithm for computing possible tu-
ples in the non-probabilistic case. For each tuple idti for R
we compose the components defining fields ofti to obtain
the possible values forti.

// computeP := possiblep(R)
algorithm possiblep

begin
P := ∅;
for each distinctt in possible(R) do begin

add(t, conf(t)) toP ;
end

Figure 19. Computing possible tuples to-
gether with their confidence.

In the probabilistic case the operator possible can be ex-
tended to compute the confidence of the possible tuples. To



do that, we compute the confidence of each tuplet, which
is a possible answer toQ. Figure 19 shows an algorithm
implementing the operator possible in the probabilistic case
that computes the possible tuples together with their confi-
dence. For computing the confidenceconf(t) of tuplet we
can plug in any exact or approximate algorithm, e.g. the one
from Figure 17.

Example 6.2 Consider the probabilistic WSD of Figure 4,
queryQ = πS(R), and tuplet = (185). LetC1 denote the
first component. This component represents the answer to
the projection query. There are two tuple ids whose values
match the given tuplet, and they are already defined in the
same componentC1. To compute the confidence oft we
therefore need to sum up the probabilities of the first and
second local world, obtaining0.2 + 0.4 = 0.6. The fol-
lowing table contains the possible tuples in the answer toQ
together with their confidence:

Q S conf
185 0.6
186 0.6
785 0.8

✷

7 Normalizing probabilistic WSDs

The normalization of a WSD is the process of finding
an equivalent probabilistic WSD that takes the least space
among all its equivalents. Examples of not normalized
WSDs are non-maximal WSDs or WSDs defining invalid
tuples (i.e., tuples that do not appear in any world). Note
that removing invalid tuples and maximizing world-set de-
compositions can be performed in polynomial time [6].

Figure 20 gives three algorithms that address these nor-
malization problems. The third algorithm scans for identi-
cal tuples in a component and compresses them into one by
summing up their probabilities.

Example 7.1 The WSD of Figure 11 (a) has only⊥-values
for P.t2.C. This means that the tuplet2 of P is absent (or
invalid) in all worlds and can be removed. The equivalent
WSD of Figure 21 shows the result of this operation. Simi-
lar simplifications apply to the WSD of Figure 11 (b), where
tuplest2 andt3 are invalid. ✷

Example 7.2 The 4-WSD of Figure 13 admits the equiva-
lent 5-WSD, where the third component is decomposed into
two components. This non-maximality case cannot appear
for UWSDTs, because all but the first component contain
only one tuple and are stored in the template relation, where
no component merging occurs. ✷

algorithm removeinvalid tuples
begin

for each1 ≤ i ≤ |P |max andA ∈ S(P ) do begin
let C be the component ofP.ti.A;
if πP.ti.A = {⊥} then

for eachB ∈ S(P ) do begin
let C′ be the component ofP.ti.B;
project awayP.ti.B from C′;

end
end

end

algorithm decompose
begin

while no fixpoint is reacheddo begin
let C be a component such that

C = compose(C1, C2);
replaceC byC1, C2;

end
end

algorithm compress
begin

while no fixpoint is reacheddo begin
let C be a component,w1, w2 ∈ C such that

w1.A = w2.A for all A ∈ S(C), A 6= Pr;
let w be a tuple such thatw.Pr := w1.P r + w2.P r,

w.A := w1.A for all A ∈ S(C), A 6= Pr;
replacew1, w2 in C byw;

end
end

Figure 20. Algorithms for WSD normalization.
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Figure 21. Normalization of WSD of Fig-
ure 11 (a).

8 Experimental Evaluation

The literature knows a number of approaches to repre-
senting incomplete information databases, but little work
has been done so far on expressive yet efficient represen-
tation systems. An ideal representation system would allow
a large set of possible worlds to be managed using only a
small overhead in storage space and query processing time
when compared to a single world represented in a conven-
tional way. In the previous sections we presented the first
step towards this goal. This section reports on experiments



with a large census database with noise represented as a
UWSDT.
Setting. The experiments were conducted on a 3GHz/
2GB Pentium machine running Linux 2.6.8 and Post-
greSQL 8.0.
Datasets. The IPUMS 5% census data (Integrated Pub-
lic Use Microdata Series, 1990) [20] used for the experi-
ments is the publicly available 5% extract from the 1990 US
census, consisting of 50 (exclusively) multiple-choice ques-
tions. It is a relation with 50 attributes and 12491667 tuples
(approx. 12.5 million). The size of this relation stored in
PostgreSQL is ca. 3 GB. We also used excerpts represent-
ing the first 0.1, 0.5, 1, 5, 7.5, and 10 million tuples.
Adding Incompleteness. We added incompleteness as fol-
lows. First, we generated a large set of possible worlds by
introducing noise. After that, we cleaned the data by re-
moving worlds inconsistent with respect to a given set of
dependencies. Both steps are detailed next.

We introduced noise by replacing some values with or-
sets2. We experimented with different noise densities:
0.005%, 0.01%, 0.05%, 0.1%. For example, in the 0.1%
scenario one in 1000 fields is replaced by an or-set. The
size of each or-set was randomly chosen in the range
[2,min(8, size)], wheresize is the size of the domain of
the respective attribute (with a measured average of 3.5 val-
ues per or-set). In one scenario we had far more than2624449

worlds, where 624449 is the number of the introduced or-
sets and 2 is the minimal size of each or-set (cf. Figure 22).

We then performed data cleaning using 12 equality gen-
erating dependencies, representing real-life constraints on
the census data. Note that or-set relations are not expressive
enough to represent the cleaned data with dependencies.

To remove inconsistent worlds with respect to given de-
pendencies, we adapted the Chase technique [2] to the con-
text of UWSDTs. We explain the Chase by an example.
Consider the dependency WWII = 1⇒ MILITARY != 4
that requires people who participated in the second world
war to have completed their military service. Assume now
the dependency does not hold for a tuplet in some world
and letC1 and C2 be the components definingt.WWII
andt.MILITARY, respectively. First, the Chase computes
a componentC that defines botht.WWII andt.MILITARY.
In caseC1 andC2 are different, they are replaced by a new
componentC = C1 × C2; otherwise,C is C1. The Chase
removes then fromC all inconsistent worldsw, i.e., worlds
wherew.WWII = 1 andw.MILITARY = 4. Repeating these
steps iteratively for each dependency on a given UWSDT
yields a UWSDT satisfying all dependencies.

Figure 22 shows the effect of chasing our dependencies
on the 12.5 million tuples and varying placeholder density.
As a result of merging components, the number of com-

2We consider it infeasible both to iterate over all worlds in secondary
storage, or to compute UWSDT decompositions by comparing the worlds.

Density 0.005% 0.01% 0.05% 0.1%
Initial #comp 31117 62331 312730 624449
After #comp 30918 61791 309778 612956
chase #comp>1 249 522 2843 10880

|C| 108276 217013 1089359 2150935
|R| 12.5M 12.5M 12.5M 12.5M

After #comp 702 1354 7368 14244
Q1 #comp>1 1 4 40 158

|C| 1742 3625 19773 37870
|R| 46600 46794 48465 50499

After #comp 25 56 312 466
Q2 #comp>1 0 1 8 9

|C| 93 269 1682 2277
|R| 82995 83052 83357 83610

After #comp 38 76 370 742
Q3 #comp>1 0 0 0 0

|C| 89 202 1001 2009
|R| 17912 17936 18161 18458

After #comp 1574 3034 15776 30729
Q4 #comp>1 11 28 127 557

|C| 4689 9292 48183 94409
|R| 402345 402524 404043 405869

After #comp 3 10 53 93
Q5 #comp>1 3 10 53 93

|C| 1221 5263 33138 50780
|R| 150604 173094 274116 393396

After #comp 97 189 900 1888
Q6 #comp>1 0 0 0 0

|C| 516 1041 4993 10182
|R| 229534 230113 234335 239488

Figure 22. UWSDTs characteristics for 12.5M
tuples.

ponents with more than one placeholder (#comp>1) grows
linearly with the increase of placeholder density, reaching
about 1.7% of the total number of components (#comp) in
the 0.1% case. A linear increase is witnessed also by the
chasing time when the number of tuples is also varied.
Queries. Six queries were chosen to show the behavior of
relational operators combinations under varying selectivi-
ties (cf. Figure 23). QueryQ1 returns the entries of US cit-
izens with PhD degree. The less selective queryQ2 returns
the place of birth of US citizens born outside the US that
do not speak English well. QueryQ3 retrieves the entries
of widows that have more than three children and live in
the state where they were born. The very unselective query
Q4 returns all married persons having no children. Query
Q5 uses queryQ2 andQ3 to find all possible couples of
widows with many children and foreigners with limited En-
glish language proficiency in US states with IPUMS index
greater than 50 (i.e., eight ‘states’, e.g., Washington, Wis-
consin, Abroad). Finally, queryQ6 retrieves the places of
birth and work of persons speaking English well.

Figure 22 describes some characteristics of the answers
to these queries when applied on the cleaned 12.5M tu-
ples of IPUMS data: the total number of components
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Figure 24. The evaluation time for queries of Figure 23 on UWS DTs of various sizes and densities.

Q1 := σYEARSCH=17∧CITIZEN=0(R)

Q2 := πPOWSTATE,CITIZEN,IMMIGR(σCITIZEN<>0∧ENGLISH>3(R))

Q3 := πPOWSTATE,MARITAL,FERTIL(σPOWSTATE=POB

(σFERTIL>4∧MARITAL=1(R)))

Q4 := σFERTIL=1∧(RSPOUSE=1∨RSPOUSE=2)(R)

Q5 := δPOWSTATE→P1
(σPOWSTATE>50(Q2)) ⊲⊳P1=P2

δPOWSTATE→P2
(σPOWSTATE>50(Q3))

Q6 := πPOWSTATE,POB(σENGLISH=3(R))

Figure 23. Queries on IPUMS census data.

(#comp) and of components with more than one placeholder
(#comp>1), the size of the component relationC, and the
size of the template relationR. One can observe that the
number of components increases linearly with the place-
holder density and that compared to chasing, query evalua-
tion leads to a much smaller amount of component merging.

Figure 24 shows that all six queries admit efficient and
scalable evaluation on UWSDTs of different sizes and
placeholder densities. For accuracy, each query was run ten
times, and the median time for computing and storing the
answer is reported. The evaluation time for all queries but
Q5 on UWSDTs follows very closely the evaluation time
in the one-world case. The one-world case corresponds to
density 0% in our diagrams, i.e., when no placeholders are
created in the template relation and consequently there are
no components. In this case, the original queries (that is,

not the rewritten ones) of Figure 23 were evaluated only on
the (complete) template relation.

An interesting issue is that all diagrams of Figure 24
show a substantial increase in the query evaluation time
for the 7.5M case. As the jump appears also in the one-
world case, it suggests poor memory management of Post-
gres in the case of large tables. We verified this statement by
splitting the 12.5M table into chunks smaller than 5M and
running queryQ1 on those chunks to get partial answers.
The final answer is represented then by the union of each
UWSDT relation from these partial answers.

Although the evaluation of join conditions on UWSDTs
can require theoretically exponential time (due to the com-
position of some components), our experiments suggest that
they behave well in practical cases, as illustrated in Fig-
ures 24 (c) and (e) for queriesQ3 andQ5 respectively. Note
that the time reported forQ5 does not include the time to
evaluate its subqueriesQ2 andQ3.

In summary, our experiments show that UWSDTs be-
have very well in practice. We found that the size of
UWSDTs obtained as query answers remains close to that
of one of their worlds. Furthermore, the processing time
for queries on UWSDTs is comparable to processing one
world. The explanation for this is that in practice there are
rather few differences between the worlds. This keeps the
mapping and component relations relatively small and the
lion’s share of the processing time is taken by the templates,
whose sizes are about the same as of a single world.



9 Application Scenarios

Our approach is designed to cope with large sets of pos-
sible worlds, which exhibit local dependencies and large
commonalities. This data pattern can be found in many ap-
plications. In addition to the census scenario used in Section
8, we next discuss two further application scenarios that can
profit from our approach. As for the census scenario, we
consider it infeasible both to iterate over all possible worlds
in secondary storage, or to compute UWSDT decomposi-
tions by comparing the worlds. Thus we also outline how
our UWSDTs can be efficiently computed.
Inconsistent databases.A database is inconsistent if it
does not satisfy given integrity constraints. Sometimes,
enforcing the constraints is undesirable. One approach to
manage such inconsistency is to consider so-calledminimal
repairs, i.e., consistent instances of the database obtained
with a minimal number of changes [7]. A repair can there-
fore be viewed as a possible (consistent) world. The num-
ber of possible minimal repairs of an inconsistent database
may in general be exponential; however, they substantially
overlap. For that reason repairs can be easily modeled
with UWSDTs, where the consistent part of the database
is stored in template relations and the differences between
the repairs in components. Current work on inconsistent
databases [7] focuses on findingconsistent query answers,
i.e., answers appearing in all possible repairs (worlds). With
our approach we can provide more than that, as the answer
to a query represents a set of possible worlds. In this way,
we preserve more information that can be further processed
using querying or data cleaning techniques.
Medical data.Another application scenario is modeling in-
formation on medications, diseases, symptoms, and medical
procedures, see, e.g., [1]. A particular characteristic ofsuch
data is that it contains a big number of clusters of interde-
pendent data. For example, some medications can interact
negatively and are not approved for patients with some dis-
eases. Particular medical procedures can be prescribed for
some diseases, while they are forbidden for others. In the
large set of possible worlds created by the complex interac-
tion of medications, diseases, procedures, and symptoms, a
particular patient record can represent one or a few possible
worlds. Our approach can keep interdependent data within
components and independent data in separate components.
One can ask then for possible patient diagnostics, given an
incompletely specified medical history of the patient, or for
commonly used medication for a given set of diseases.

In [1] interdependencies of medical data are modeled as
links. A straightforward and efficient approach to wrap such
data in UWSDTs is to follow the links and create one com-
ponent for all interrelated values. Additionally, each differ-
ent kind of information, like medications, diseases, is stored
in a separate template relation.
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