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Abstract

XML keyword search is a user-friendly way to query XML data using only keywords. In XML

keyword search, to achieve high precision without sacrificing recall, it is important to remove spurious

results not intended by the user. Efforts to eliminate spurious results have enjoyed some success

by using the concepts of LCA or its variants, SLCA and MLCA. However, existing methods still

could find many spurious results. The fundamental cause for the occurrence of spurious results is

that the existing methods try to eliminate spurious results locally without global examination of

all the query results and, accordingly, some spurious results are not consistently eliminated. In

this paper, we propose a novel keyword search method that removes spurious results consistently

by exploiting the new concept of structural consistency. We define structural consistency as a

property that is preserved if there is no query result having an ancestor-descendant relationship at

the schema level with any other query results. A naive solution to obtain structural consistency

would be to compute all the LCAs (or variants) and then to remove spurious results according to

structural consistency. Obviously, this approach would always be slower than existing LCA-based

ones. To speed up structural consistency checking, we must be able to examine the query results

at the schema level without generating all the LCAs. However, this is a challenging problem since

the schema-level query results do not homomorphically map to the instance-level query results,

causing serious false dismissal. We present a comprehensive and practical solution to this problem

and formally prove that this solution preserves structural consistency at the schema level without

incurring false dismissal. We also propose a relevance-feedback based solution for the problem where

our method has low recall, which occurs when it is not the user’s intention to find more specific

results. This solution has been prototyped in a full-fledged object-relational DBMS. Experimental

results using real and synthetic data sets show that, compared with the state-of-the-art methods,

our solution significantly 1) improves precision while providing comparable recall for most queries

and 2) enhances the query performance by removing spurious results early.
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1 Introduction

As XML becomes the standard for data representation and exchange on the Internet, querying XML

data has become an important issue [28]. Research work in this area can be classified into two categories:

the structured query approach and the keyword query approach [28]. Both approaches have tradeoffs.

The structured query approach specifies the precise structure of the desired results using a structured

query language such as XPath and XQuery. However, it is hard to formulate queries without prior

knowledge about structured query languages or without knowing the schema of the XML data. The

keyword query, on the other hand, can overcome this problem by requiring only keywords rather than

specific structure information. This approach, however, might not deliver precise results since it does

not contain precise structures.

In the structured query, the user’s query intention can be expressed as either a single structured

query or multiple structured queries, depending on the heterogeneity of the underlying XML data. If

there is only one structure matching the user’s intention at the schema level, that intention can be

expressed in a single structured query. However, if there are multiple structures matching the user’s

intention, multiple structured queries for those structures must be composed.

Example 1 The XML data in Fig. 1(a) represent bibliographic data on conference publications. Sup-

pose that a user intends to find the publications of “Levy” on “XML”. This query can be stated as a

single structured query, Q1; in the keyword query, it is represented as “XML Levy”. The query result is

{paper(6)}. Here, we denote the subtree rooted at node p as p in the same way as is done by Xu and

Papakonstantinou [46].

Q1: /bib/conf/paper[“XML”][“Levy”]1 �

Example 2 The XML data in Fig. 1(b) represent bibliographic data on conference and journal publi-

cations. Here, the subtree rooted at conf(1) is the same as in Fig. 1(a). Since there are two structures

matching the user’s intention, one for conference papers and the other for journal articles, a union of

1For ease of exposition, we denote the predicate that checks whether a keyword w is contained in an element e as

e [“w”] instead of e [contains(., “w”)] that uses the contains function in the XPath standard.
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multiple structured queries, Q2, must be used to find the desired results despite the same query intention

as in Example 1. Note that we still use the same keyword query as in Example 1. The query results

are {paper(6), article(101)}.

Q2: /bib/conf/paper[“XML”][“Levy”] union

/bib/journal/article[“XML”][“Levy”] �

paper(6)

bib(0)

conf(1)

author(8)title(7)

“XML”

paper(61)

author(63)title(62)

“Levy”

“IR”

paper(56)

author(58)title(57)

“XML”

chair(3)

fn(64) ln(65)

“A”“Levy”

fn(9) ln(10)

“A” “Lu”

fn(59) ln(60)

“H”

“Levy”

fn(4) ln(5)

“A”

author(13)

“Jagadish”

fn(14) ln(15)

“H”

author(66)

“Lu”

fn(67) ln(68)

“H”

paper(11)

title(12)

“Web”

conf(51)

…title(2)

“ICDE”

… …

(a) XML data on conference publications.

article(101)

author(104)

title(102)

“XML”

journal(100)

author(107)

authors(103)

title(150)

“XML”

“Levy”

fn(105) ln(106)

“A” “Lu”

fn(108) ln(109)

“H”

conf(51)

……

conf(1)

... …paper(6)

author(8)title(7)

“XML”

“Levy”

fn(9) ln(10)

“A”

author(13)

“Jagadish”

fn(14) ln(15)

“H”

paper(11)

title(12)

“Web”

bib(0)

(b) XML data on conference and journal publications.

Figure 1. Querying XML data.

In the keyword search, a user wants to have high recall and high precision [5]. A naive way to

achieve high recall (100%) in XML keyword search would be to return the root of an XML document.

However, with this approach, the user would suffer from very low precision due to a large amount of

spurious results not intended by the user.

Efforts to eliminate spurious results [11, 15, 28, 46] have enjoyed some success by using the concepts

of LCA or its variants, SLCA [46] and MLCA [28]. For a keyword query Q= {w1,w2, ..., wm}, an LCA is
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the common ancestor node of nodes n1, n2, ..., nm where ni is a node directly containing wi (1≤i≤m).

It is located farthest from the root node. The SLCA method, a refinement of the LCA method, finds

LCAs that do not contain other LCAs. For example, if we use the LCA method to find the results in

Fig. 1(a), {bib(0), conf(1), paper(6), conf(51)} are retrieved. With the SLCA me-thod, {paper(6), conf(51)}

are retrieved. As shown here, existing methods for XML keyword search still could find many spurious

results (e.g., {bib(0), conf(1), conf(51)}), i.e., those that are not intended by the user. Here, following

the common practice [11, 26, 28], we define correct results of a keyword query as those returned by

structured queries (such as Q1) corresponding to the keyword query, which are formulated according

to the schema of the underlying XML data. In the real data set (DBLP), spurious results such as

conf(51) can include huge subtrees having thousands of nodes. This serious problem of low precision in

the-state-of-art methods not only overburdens the user with filtering numerous spurious results, but

also degrades the performance of the system due to unnecessary computation. For instance, if we issue

a keyword query “XML Levy” over the DBLP data set, we obtain 388,066 nodes using the SLCA method,

among which only 69 nodes (precision = 69

388,066
≈ 0.02%) are correct results.

The fundamental cause for the occurrence of spurious results is that the existing methods try to

eliminate spurious results locally without global examination of all the query results. For instance, in

Example 1, the LCA method finds a correct result {paper(6)}, but also finds spurious results {bib(0),

conf(1), conf(51)}. With the SLCA method, we can eliminate two spurious results {bib(0), conf(1)} since

they contain other LCAs. However, conf(51) still remains since it is not an ancestor of paper(6). This is

inconsistent since both conf(1) and conf(51) are spurious results having an identical result structure. Here,

we define the result structure2 of a query result qr as a (schema-level) twig pattern composed of the

label path [14] from the root of the XML data to the root qrroot of qr (simply, the incoming label path)

and the ancestor-descendant edges from qrroot to query keywords. In the result structure of a query

result qr, denoted by rs(qr), the node corresponding to qrroot is marked as the query result node [35]

and is distinguished from other nodes by placing it in a box. Fig. 2 shows rs(conf(51)) and rs(paper(6)).

2Intuitively, the result structure is the schema of a query result (an instance).
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conf

bib incoming
label
path

"XML" "Levy"

(a) rs(conf(51)).

paper

conf

bib
incoming
label
path

"XML" "Levy"

(b) rs(paper(6)).

Figure 2. The result structures of query results.

We observe that, if two query results have an ancestor-descendant relationship at the schema level,

the ancestor is spurious. We call this phenomenon structural anomaly. Here, a query result qr1 is an

ancestor of a query result qr2 at the schema level if and only if the incoming label path of rs(qr1) is

a proper prefix of that of rs(qr2). By examining the query results at the schema level, we can remove

spurious results having the same result structure consistently. For example, in Fig. 1(a), the query

results of the SLCA method are {paper(6), conf(51)}, and the incoming label path of rs(conf(51)) is a

proper prefix of that of rs(paper(6)) as in Fig. 2. Hence, conf(51), which has the same result structure as

conf(1), is spurious.

We argue that, to improve precision, there should be no structural anomaly in the query results.

We call this property structural consistency (to be defined more formally in Section 3.1). Otherwise, we

are bound to retrieve inconsistent spurious results.

In this paper, we resolve structural anomalies by exploiting the notion of the smallest result struc-

ture. The smallest result structure is defined to be a result structure whose incoming label path is not a

proper prefix of those of any other result structures. We then remove the query result whose structure

is not the same as a smallest result structure, thereby obtaining structural consistency. For example,

the smallest result structure of {paper(6), conf(51)} is rs(paper(6)) in Fig. 2(b) since the incoming label

path of rs(paper(6)) is not a prefix of that of rs(conf(51)). Thus, conf(51) is removed.

A naive instance-level approach to obtain structural consistency would be to compute all the LCAs

(or variants) and then to remove spurious results according to structural consistency. Obviously, this

approach would always be slower than existing LCA-based ones. To speed up structural consistency

checking, we must examine the query results at the schema level without generating all the LCAs.
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The challenging issue here is “How do we formally guarantee that the schema-level approach

produces the same query results as the instance-level approach does?” That is, if we blindly find

SLCAs at the schema level and compute answers using the SLCAs, we may encounter a false dismissal

problem (to be elaborated in more detail in Section 3.2.2). For example, an empty result can be

obtained even though query results corresponding to smallest result structures exist as in Example 3.

We may also encounter phantom schema-level SLCAs (to be defined in Section 3.2.2), which incurs

structural anomaly. These problems occur because the schema-level SLCAs do not homomorphically

map to the instance-level SLCAs. As a solution to these problems, we introduce the concept of iterative

kth-ancestor generalization, which iteratively finds the kth-ancestors of SLCAs at the schema level and

removes phantom schema-level SLCAs. Through iterative kth-ancestor generalization, the schema-level

definition of structural consistency becomes equivalent to the instance-level one, and we formally prove

this equivalence in Theorem 1 of Section 3.2.4.

Example 3 Consider a keyword query Q = {“Levy”, “Lu”} issued on the XML data in Fig. 1(a). In the

XML data in Fig. 1(a), we see that there is a query result, paper(61), corresponding to the smallest result

structure shown in Fig. 3(a). However, there is no query result corresponding to the XPath query shown

in Fig. 3(b) that is obtained from the schema-level SLCA. (We will formally define the schema-level

SLCA in Section 3.2.1.) �

conf

paper

bib

"Levy" "Lu"

(a) The smallest structure.

conf

paper

author

ln

bib

"Levy" "Lu"

(b) The XPath query obtained

from the schema-level SLCA.

Figure 3. An example of false dismissal.

The contributions of this paper are as follows: 1) we formally propose new notions of structural

consistency and structural anomaly; 2) we formally analyze the relationship between the set of schema-

level SLCAs and the set of instance-level SLCAs, and then, propose an efficient algorithm that resolves
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structural anomaly at the schema level using the relationship analyzed. (we call this algorithm schema-

level structural anomaly resolution.); 3) we formally prove in Theorem 1 that this algorithm preserves

structural consistency as is originally defined at the instance-level without incurring false dismissal; 4) we

propose a relevance-feedback base solution for the problem where our method has low recall, which occurs

when it is not the user’s intention to find more specific results.; 5) we propose an efficient algorithm that

simultaneously evaluates the multiple XPath queries generated by our method; 6) we have prototyped

this algorithm in a full-fledged object-relational DBMS [44]; 7) we perform extensive experiments using

real and synthetic data sets. The results show that we can significantly reduce spurious results compared

with the existing methods by exploiting structural consistency. Furthermore, the experimental results

show that our schema-level algorithm significantly improves the query performance over the existing

ones.

The rest of this paper is organized as follows. Section 2 describes the XML data model, schema

of XML data, query models, and quality measure of XML keyword search. Section 3 proposes the

concept of structural consistency and schema-level structural anomaly resolution. Section 4 presents

the implementation of schema-level structural anomaly resolution. Section 5 reviews existing work, and

Section 6 presents the experimental results. Finally, Section 7 presents our conclusions.

2 Background

2.1 XML Data Model

We model XML data as a labeled tree [11, 28, 31, 46] where a node represents an element, attribute,

or value, and an edge represents the parent-child relationship between two nodes. Every element or

attribute node has a label and a unique id, and each id is assigned a preorder number. A node that has

a label l and an id i is denoted as l(i). Definition 1 defines the label path of a node, and Definition 2

the node path.
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Definition 1 [14] The label path of a node o is defined as a sequence of node labels l1, l2, ..., lm from

the root to the node o, and is denoted as l1.l2. · · · .lm. �

Definition 2 [35] The node path of a node o is defined as a sequence of node identifiers n1, n2, ..., nm

from the root to the node o, and is denoted as n1.n2. · · · .nm. We denote the ith id of a node path

node path as node path[i]. We note that the ids n1, n2, ..., nm have an ascending order since each ni

(1≤i≤m) is assigned a preorder number. �

2.2 Schema of XML Data

Although DTD or XML Schema are used as the schema of XML data, XML data often do not have

them [12]. For schemaless XML data, we can derive a schema from XML data using the DataGuide [14]3.

The DataGuide is a labeled tree that has every unique label path of XML data. In a DataGuide, a node

represents the label of an element (or attribute), and an edge represents the parent-child relationship

between two nodes. A node in a DataGuide is uniquely identified by its label path. In this paper,

we augment the DataGuide with keywords contained in value nodes to support keyword queries at the

schema level. We call the augmented DataGuide DataGuide+ and use it as the schema. Every non-value

node in a DataGuide+ is assigned a preorder number4. Hereafter, we call a node of the DataGuide+ a

schema node to distinguish it from a node of XML data, which we call an instance node. For ease of

explanation, we may refer to a schema node by its label path.

Example 4 Fig. 4 shows the DataGuide+ for the XML data in Fig. 1(b). Every unique label path

of the XML data appears exactly once in the DataGuide+. For example, in the XML data, the label

path “bib.conf.paper.author” appears twice, and so does “bib.journal.article.authors.author”. In contrast, in the

DataGuide+, each appears only once. �

3Recently, Bex et al. [7] have proposed algorithms for the inference of XML Schema Definitions, but we use the

DataGuide since it takes linear time to create and has sufficient power for checking structural consistency. If a DTD or

XML Schema are given along with XML data, we can exploit the given schema.
4We can use other numbering schemes without loss of generality. For example, to handle schema evolution, we can use

Compact Dynamic Quaternary String (CDQS) encoding [25], which allows for updates without the original nodes having

to be renumbered.
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author(15)XML

article(12)

title(13)

journal(11)

authors(14)

title(18)

XML

bib(0)

paper(6)

conf(1)

author(8)title(7)

chair(3)

LevyA XML Web IR

fn(4) ln(5)

LevyA Jagadish

fn(9) ln(10)

H Lu

LevyA H Lu

fn(16) ln(17)

title(2)

ICDE

Figure 4. An example DataGuide+.

2.3 Query Models

2.3.1 Keyword Query

We model a keyword query as a set of keywords [31]. As in the literature [6, 19, 20, 21, 31, 32, 46], each

query keyword may match (1) labels of elements or attributes or (2) keywords contained in value nodes

of the XML data.

2.3.2 XPath Query

We consider a subset of XPath that uses the child (“/”) and descendant (“//”) axes and predicates

(“[]”). We model a query that belongs to this set as a twig pattern [10]. In the twig pattern a node, called

a query node [10], represents a label (or a value), and an edge represents the parent-child or ancestor-

descendant relationship between two nodes. One node of the twig pattern is marked as the query result

node [35] and is distinguished from other nodes by placing it in a box. A query node that has more

than one child node is called a branching query node [35]. A leaf node of the twig pattern is called a leaf

query node.

Example 5 Fig. 5 shows an example twig pattern that represents the XPath query Q1. In Fig. 5, paper

is the query result node and, at the same time, the branching query node. Keywords are located in leaf

query nodes “XML” and “Levy”.

Q1: /bib/conf/paper[“XML”][“Levy”] �
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conf

paper

bib

"XML" "Levy"

Figure 5. An example twig pattern.

2.4 Quality Metrics of XML Keyword Search

As quality metrics for keyword queries, we use precision and recall, which have been widely used in the

field of information retrieval (IR). Formula (1) shows the definitions of precision and recall [5]. Here, R

is the set of nodes relevant to the query (i.e., desired results) in the database, and A is the set of nodes

retrieved as the answer to the query (i.e., actual query results). Precision is the fraction of the retrieved

nodes (i.e., A) that are relevant, and recall is the fraction of the relevant nodes (i.e., R) that have been

retrieved. The search quality is good when both precision and recall are close to 1.0 [5].

precision =
|R ∩ A|

|A|
, recall =

|R ∩ A|

|R|
(1)

3 Structural Consistency

In this section, we formally define the notions of structural consistency and structural anomaly in XML

keyword search. We also propose an efficient algorithm that resolves structural anomaly at the schema

level.

3.1 The Concept

We first define the result structure of a query result in Definition 3. Here, a query result is a subtree

rooted at an SLCA in the XML data. We define structural containment and structural equivalence of

result structures in Definition 4. We then define the structural consistency and the structural anomaly

in Definition 5.
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Definition 3 The result structure of a query result qr, denoted as rs(qr), is a (schema-level) twig

pattern composed of the label path from the root of XML data to the root qrroot of qr (simply, the

incoming label path) and the ancestor-descendant edges from qrroot to query keywords. In the result

structure rs(qr), the node corresponding to qrroot is marked as the query result node. �

In Definition 3, we note that the incoming label path information is sufficient to define the structural

consistency, but we attach query keywords to find query results corresponding to the result structure in

query processing.

Example 6 Suppose that a keyword query Q = {“XML”, “Levy”} is issued on the XML data in Fig. 1(a).

Fig. 6 shows a query result paper(6) and its result structure. Note that a query result is a subtree of

XML data (i.e., an instance), and its result structure is a twig pattern (i.e., a part of schema). �

paper

authortitle

"XML"

"Levy"

fn ln

"A"

(a) A query result paper(6).

paper

conf

bib incoming
label
path

"XML" "Levy"

(b) rs(paper(6)).

Figure 6. The result structure of a query result paper(6).

Definition 4 Given a keyword query Q and the set of query results QR= {qr1, qr2, ..., qrm} of Q, the

result structure rs(qri) structurally contains the result structure rs(qrj), as denoted by rs(qri)≺ rs(qrj),

if and only if the incoming label path of rs(qri) is a proper prefix of that of rs(qrj). rs(qri) and rs(qrj)

are structurally equivalent, as denoted by rs(qri) ≡ rs(qrj), if and only if their incoming label paths are

identical. We define rs(qri)� rs(qrj) as rs(qri)≺ rs(qrj) or rs(qri) ≡ rs(qrj). �

Definition 5 Given a keyword query Q and the set of query results QR= {qr1, qr2, ..., qrm} of Q,

structural consistency is a property where the following condition is satisfied for QR: (∀qri∈QR)

((¬∃qrj∈QR)(rs(qri)≺ rs(qrj))). Structural anomaly is a property where structural consistency is vio-

lated, i.e., (∃qri, ∃qrj ∈QR) (rs(qri)≺ rs(qrj)). �
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Example 7 Suppose that a keyword query Q = {“XML”, “Levy”} is issued on the XML data in Fig. 1(a),

and that a set of query results QR = {conf(51), paper(6)} is obtained. Fig. 7 shows their result structures.

We see that rs(conf(51)) ≺ rs(paper(6)). Thus, QR has structural anomaly. �

conf

bib incoming
label
path

"XML" "Levy"

(a) rs(conf(51)).

paper

conf

bib
incoming
label
path

"XML" "Levy"

(b) rs(paper(6)).

Figure 7. The result structures of query results causing structural anomaly.

We resolve structural anomaly, thereby preserving structural consistency, by removing query results

whose structure is not the same as a smallest result structure as defined in Definition 6. By enforcing

structural consistency, we can remove spurious results having the same result structure consistently.

Definition 6 Given a keyword query Q and the set of query results QR = {qr1, qr2, ..., qrm} of Q, the

set of smallest result structures of QR is {rs(qri) | qri ∈QR∧ (¬∃qrj ∈QR) (rs(qri)≺ rs(qrj))} �

In Definition 6, “smallest” refers to the resulting subtrees since resulting subtrees are smaller if

their incoming label paths are longer.

Lemma 1 Given a keyword query Q, the set of query results QR = {qr1, qr2, ..., qrm} of Q, and the

set of smallest result structures SRS= {srs1, srs2, ..., srsn} of QR, structural consistency holds for QR

if the following condition is satisfied for QR: (∀qri ∈QR)((∃srsj ∈SRS)(rs(qri)≡ srsj)).

Proof: It is straightforward from the definition of the smallest result structure. �

Fig. 8 shows a naive algorithm that resolves structural anomaly at the instance level. The algorithm

consists of the following four steps: (1) computing all the SLCAs, (2) finding smallest result structures

of the SLCAs, (3) removing SLCAs whose result structures are not smallest result structures, and (4)

returning the set of SLCAs preserving structural consistency.
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Algorithm 1 Naive Structural Anomaly Resolution

Input: (1) a keyword queryQ, (2) XML data D
Output: the set QRof query results of Q preserving structural

consistency
Algorithm:
Step 1. Compute the set QRof SLCAs of Q on D
Step 2. Find the set SRSof smallest result structures of QR

2.1 For each qri ∈ QR, obtain rs(qri) and add it to SRS
2.2 Remove all srsk ∈ SRSfrom SRSsuch that 

(∃srsj ∈ SRS)(srsk srsj)
Step 3. Remove all qri ∈ QR such that (¬∃srsj ∈ SRS)(rs(qri) � srsj)
Step 4. Return QR

Algorithm 1 Naive Structural Anomaly Resolution

Input: (1) a keyword queryQ, (2) XML data D
Output: the set QRof query results of Q preserving structural

consistency
Algorithm:
Step 1. Compute the set QRof SLCAs of Q on D
Step 2. Find the set SRSof smallest result structures of QR

2.1 For each qri ∈ QR, obtain rs(qri) and add it to SRS
2.2 Remove all srsk ∈ SRSfrom SRSsuch that 

(∃srsj ∈ SRS)(srsk srsj)
Step 3. Remove all qri ∈ QR such that (¬∃srsj ∈ SRS)(rs(qri) � srsj)
Step 4. Return QR

Figure 8. A naive algorithm for resolving structural anomaly.

3.2 Schema-level Structural Anomaly Resolution

Obviously, the naive algorithm would always be slower than existing SLCA-based algorithms. We

propose an efficient algorithm, called schema-level structural anomaly resolution, that resolves structural

anomaly at the schema level. In this algorithm, we first find smallest result structures at the schema

level. We then compute only those query results that correspond to the smallest result structures by

evaluating structured queries constructed from the smallest result structures. We prove in Section 3.2.4

that we can find the smallest result structures using the schema without incurring false dismissal. To do

that we first define the schema-level SLCA in Section 3.2.1. We then formally analyze the relationship

between the set of schema-level SLCAs and the set of instance-level SLCAs in Section 3.2.2. Through

analysis, we show that simple query evaluation using the schema-level SLCAs cannot obtain the same

query results as the instance-level algorithm does. In Section 3.2.3, we present a solution for this problem,

which we call iterative kth-ancestor generalization. In Section 3.2.4, we present a novel algorithm that

resolves structural anomaly at the schema level using the schema-level SLCAs and iterative kth-ancestor

generalization. We finally prove in Theorem 1 that the schema-level algorithm and the instance-level

algorithm produce an equivalent set of query results that preserve structural consistency.

3.2.1 Schema-level SLCA

We first define the schema-level LCA in Definition 7 and then define the set of schema-level SLCAs in Def-

inition 8. In contrast, we call SLCAs in the XML data instance-level SLCAs. Hereafter, ancestor(sa, s)
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denotes that node sa is an ancestor of node s, and ancestor-or-self(sa, s) denotes that ancestor(sa, s) or

sa = s.

Definition 7 Let G be a DataGuide+ and S be the set of all schema nodes in G. For n schema nodes

s1, s2, ..., sn ∈S, sa ∈S is the schema-level LCA of these n schema nodes if and only if the following

conditions are satisfied: (1) (∀1≤i≤n) (ancestor-or-self(sa, si)), (2) (¬∃sb ∈S)(ancestor(sa, sb) ∧

(∀1≤i≤n)(ancestor-or-self(sb, si))). The schema-level LCA sa for s1, s2, ..., sn is denoted as LCA(s1, s2, ..., sn).

�

We note that, in Definition 7, the LCA is defined for n schema nodes; in Definition 8, the LCA SET

is defined for m sets of schema nodes. Given a keyword query Q= {w1, w2, ..., wm} and a DataGuide+

G, Si (1≤i≤m) denotes the set of schema nodes directly containing wi in G.

Definition 8 Given a keyword query Q= {w1, w2, ..., wm} and the set S of all schema nodes in a

DataGuide+ G, the set of schema-level SLCAs SLCA SET (S1,S2, ...,Sn)= {sa | (sa ∈ LCA SET (S1,S2, ...,

Sn))∧(¬∃sb ∈LCA SET (S1,S2, ...,Sn)) (ancestor(sa, sb))} where LCA SET (S1,S2, ...,Sm) =

{sa | (sa ∈ S) ∧ (∃ s1 ∈S1, ∃ s2 ∈ S2, ..., ∃ sm ∈ Sm)(sa = LCA(s1, s2, ..., sm)). �

Example 8 Suppose that a keyword query Q = {“XML”, “Levy”} is issued on the XML data in Fig. 1(b).

In the DataGuide+ in Fig. 4, the set of schema-level LCAs is {“bib”, “bib.conf”, “bib.conf.paper”, “bib.journal”,

“bib.journal.article”}, and the set of schema-level SLCAs is {“bib.conf.paper”, “bib.journal.article”} since these

schema nodes do not contain other schema-level LCAs. �

3.2.2 The Relationship between the Set of Schema-level SLCAs and the Set of Instance-

level SLCAs

To explain the relationship between the set of schema-level SLCAs and the set of instance-level SLCAs,

we first define the schema structure of a schema node in Definition 9. Since both the schema structure

of a schema node and the result structure of a query result are defined as twig patterns, we will use the

same notions of structural equivalence and structural containment for schema structures.
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Definition 9 The schema structure of a schema node s, denoted as ss(s), is a twig pattern composed

of the incoming label path from the root of DataGuide+ to s and the ancestor-descendant edges from s

to query keywords. In the schema structure ss(s), the node corresponding to s is marked as the query

result node. �

Given a keyword query, the set SS of schema structures of schema-level SLCAs is largely equivalent

to the set SRS of smallest result structures of instance-level SLCAs. However, there exist cases where

SS and SRS are not equivalent since the schema loses some instance-level information by storing only

unique label paths of the instance nodes. For example, in the XML data in Fig. 1(a), “Levy” and “Lu”

appear in the instance nodes with the label path “bib.conf.paper. author.ln”, but they appear in different

instance nodes, ln(65) and ln(68). Nonetheless, in the DataGuide+ in Fig. 4, they appear in the same

schema node with the label path “bib.conf. paper.author.ln” since their label paths are the same. Thus, in

effect, the schema loses the information that “Levy” and “Lu” appear in different instance nodes with the

same label path.

There are two cases where SRS and SS are not equivalent: case 1) for some ssj ∈SS, there exists

an srsi ∈SRS such that srsi ≺ ssj , and case 2) for some ssj ∈SS, there exists no srsi ∈SRS such that

srsi � ssj . We note that ssj ≺ srsi does not hold according to the definition of the schema-level SLCA.

In case 1, if we compute query results corresponding to ssj , we will miss query results corresponding to

srsi, i.e., we will incur false dismissal. Example 9 shows an instance of false dismissal. In Section 3.2.3,

we propose a solution to this problem, which we call iterative kth-ancestor generalization. In case

2, if we blindly apply iterative kth-ancestor generalization for ssj, we could end up with incurring

structural anomaly. We call ssj ∈SS such that (¬∃srsi ∈SRS)(srsi� ssj) a phantom schema structure.

Example 10 shows an example of the phantom schema structure. In the next section, we will provide a

solution to eliminate phantom schema structures.

Example 9 Consider a keyword query Q = {“Levy”, “Lu”} issued on the XML data in Fig. 1(a).

Figs. 9(a) and (b) show srsi ∈SRS and ssj ∈SS, respectively. Here, srsi ≺ ssj . In the XML data

in Fig. 1(a), we see that there is a query result corresponding to srsi, paper(61), but there is no query

result corresponding to ssj . �
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bib
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(a) srsi.
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Figure 9. An example of false dismissal.

Example 10 Suppose that a keyword query Q = {“XML”, “IR”} is used. In the XML data in Fig. 10(a),

SRS = {rs(v1)}. In the DataGuide+ in Fig. 10(b), SS = {ss(s1), ss(s2)}. Thus, we do not have an srs

rs(v2) such that rs(v2)� ss(s2), and ss(s2) is a phantom schema structure. In this case, if we applied

kth-ancestor generalization to s2, we would find conf(1) in Fig. 10(a) as a result, which causes structural

anomaly because rs(conf(1))≺ rs(v1). �

title(4)

bib(0)

conf(1) conf(51)

…title(52)

“IR”

paper(3)

author(5)

“XML IR”

“Jagadish”

fn(6) ln(7)

“H”

title(2)

“XML”
v1

…

(a) XML data.

title(4)

title(2)

bib(0)

conf(1)

author(5)

fn(6) ln(7)

H

paper(3)

XML IR

XML IR

Jagadish

s1

s2

(b) The DataGuide+ for the XML data in (a).

Figure 10. An example of a phantom schema structure.

We now formally state the relationship between SRS and SS, which will be used in iterative

kth-ancestor generalization.

Lemma 2 Given a keyword query Q, for all srsi ∈SRS, there exists ssj ∈SS such that srsi � ssj .

Proof: See Appendix A. �

We can obtain srsi ∈SRS by computing the set QRj of the query results corresponding to ssj ∈SS.

If QRj is non-empty, then we have obtained srsi ∈SRS such that srsi ≡ ssj . If QRj is empty, we can

obtain srsi ∈SRS such that srsi ≺ ssj by applying iterative kth-ancestor generalization.
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3.2.3 Iterative kth-Ancestor Generalization

In this section, we present iterative kth-ancestor generalization to solve the problems of false dismissal

and phantom schema structures. Here, we iteratively find a kth-ancestor sa of the schema-level SLCA

s such that ss(sa)≡ srs∈SRS where srs ≺ ss(s). We define the kth-ancestor in Definition 10.

Definition 10 Given two nodes, sa and s, sa is the kth-ancestor of s if sa is an ancestor of s and

depth(s)= depth(sa)+ k where depth(s) is the length of the path from the root to s. �

Example 11 We can obtain srsi ∈SRS in Fig. 9(a) by finding the 2nd-ancestor of the schema-level

SLCA in Fig. 9(b). �

Lemma 3 Given a keyword query Q, suppose that srsi ∈SRS structurally contains ss(s)∈SS, i.e.,

srsi ≺ ss(s). Then, there must exist a kth-ancestor sa (1≤ k≤ depth(s)) of s such that ss(sa)≡ srsi ∈SRS.

Proof: See Appendix B. �

In iterative kth-ancestor generalization, we iteratively find the kth-ancestor sa of the schema-level

SLCA s from the parent of s (i.e., k=1) until the set of the query results corresponding to ss(sa) is

non-empty. Here, obtaining non-empty results indicates that srs∈SRS has been found. Thus, we solve

the false dismissal problem.

To eliminate phantom schema structures during iterative kth-ancestor generalization, we need to

iteratively check structural consistency. Initially, there is no structural anomaly for the set of schema-

level SLCAs. As schema-level SLCAs are generalized, structural anomaly can be incurred by their

ancestors in the schema. Then, computing query results corresponding to the kth-ancestor incurring

structural anomaly in the schema will incur structural anomaly in the instances. For example, in

Fig. 10(b), the schema structure of the 1st-ancestor of s2, ss(conf(1)), structurally contains the schema

structure ss(s1) of the schema-level SLCA s1. In this case, if we compute query results corresponding to

ss(conf(1)), we obtain conf(1) in Fig. 10(a). Here, rs(conf(1))≺ rs(v1) causing structural anomaly. Thus,

we iteratively remove ancestors incurring structural anomaly and stop applying generalization for them.

That is, we remove phantom schema structures.
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We note that one srsi ∈SRS can structurally contain multiple schema structures ss(s1), ss(s2), ...,

ss(sn)∈SS. In such cases, if we blindly generalize all the schema-level SLCAs s1, s2, ..., sn, we obtain

duplicate query results corresponding to srsi. Thus, we must generalize only one schema-level SLCA

for srsi. This constraint is also enforced by iteratively checking structural consistency. Suppose that

s1, s2, ..., sn are being generalized to srsi in this order. It is clear that sj (1≤j≤n-1) will be removed

since sj , when sufficiently generalized, must become the ancestor of sn. Therefore, we can guarantee

that only one schema-level SLCA, sn, is generalized.

3.2.4 Putting It Altogether

Fig. 11 shows an enhanced algorithm that resolves structural anomaly at the schema-level using the

schema-level SLCAs and iterative kth-ancestor generalization. This algorithm produces the same query

results as the instance-level algorithm in Fig. 8 does. We will present the detailed query processing

method of this algorithm in Section 4. Step 1 finds the set of schema-level SLCAs Sunmarked = {s1, s2,

..., sm}, and Step 2 computes the set of the query results corresponding to ss(si) (1≤i≤m) by evaluating

the XPath query that represent ss(si). Here, we convert ss(si) to an XPath query to make our method

run on top of any query evaluation engine that supports XPath. Step 3 applies iterative kth-ancestor

generalization for si ∈Sunmarked. In Step 3.2.1.1, we check whether an srs∈SRS such that srs≡ ss(si)

has been found by examining whether QRi is non-empty. If it has, in Step 3.2.1.1.1, we move such si

to Smarked. If not, in Step 3.2.1.2.1, we obtain the parent of si using the parent(si) function. In Step

3.2.1.2.2.1, we remove si, which incurs structural anomaly, from Sunmarked.

Example 12 Suppose that a keyword query Q = {“XML”, “IR”} is used to query the XML data in

Fig. 10(a). In Step 1, Sunmarked = {s1, s2}. In Step 2, the set QR1 of the query results corresponding

to ss(s1) is non-empty ({title(4)}), but QR2 for ss(s2) is empty. In Step 3.2.1.1, since QR1 6= {}, we

move s1 from Sunmarked to Smarked and add QR1 to the set QR of query results. Hence, Sunmarked =

{s2}, Smarked = {s1}, and QR = {title(4)}. In Step 3.2.1.2, since QR2 = {}, we generalize s2. Now s2

incurs structural anomaly since (∃s1 ∈Smarked)(ss(s2)≺ ss(s1)). Thus, we remove s2 from Sunmarked.

Now Sunmarked = {}, and we end the iteration.
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Algorithm 2 Schema-level Structural Anomaly Resolution

Input: (1) a keyword queryQ, (2) XML Data D, 
(3) the DataGuide+ G for D

Output: the set QRof query results of Q preserving structural
consistency

Algorithm:
Step 1. Find the set of schema-level SLCAs Sunmarked={s1, s2, ..., sm} 

of Q on G
Step 2. Compute the set QRi of the query results 

in D corresponding to ss(si) (1�i�m) using
the query processing method in Section 4

Step 3. Apply iterative kth-ancestor generalization
3.1 QR:= {}; Smarked:= {} /* initialize */

3.2 Repeat until Sunmarked≠ {}
3.2.1 For each si ∈ Sunmarked

/* check if an srs ∈ SRSsuch that srs � ss(si) has been found */

3.2.1.1 If QRi ≠ {} Then
/* an srs � ss(si) has been found */

3.2.1.1.1 Move si from Sunmarkedto Smarked

/* add the query results corresponding to srs to QR*/

3.2.1.1.2 QR:= QR� QRi

3.2.1.2 Else /* QRi = {} */

/* generalize si */

3.2.1.2.1 si := parent(si) 
/* check structural consistency */

3.2.1.2.2 If (∃sk∈Smarked)(ss(si)   ss(sk)) ∨
(∃sl∈Sunmarked)(ss(si)   ss(sl)) Then

/* si incurs structural anomaly */

3.2.1.2.2.1 Remove si from Sunmarked

3.2.1.2.3 Else
3.2.1.2.3.1 Compute the set QRi of the query results 

in D corresponding to ss(si) using
the query processing method in Section 4

Algorithm 2 Schema-level Structural Anomaly Resolution

Input: (1) a keyword queryQ, (2) XML Data D, 
(3) the DataGuide+ G for D

Output: the set QRof query results of Q preserving structural
consistency

Algorithm:
Step 1. Find the set of schema-level SLCAs Sunmarked={s1, s2, ..., sm} 

of Q on G
Step 2. Compute the set QRi of the query results 

in D corresponding to ss(si) (1�i�m) using
the query processing method in Section 4

Step 3. Apply iterative kth-ancestor generalization
3.1 QR:= {}; Smarked:= {} /* initialize */

3.2 Repeat until Sunmarked≠ {}
3.2.1 For each si ∈ Sunmarked

/* check if an srs ∈ SRSsuch that srs 	 ss(si) has been found */

3.2.1.1 If QRi ≠ {} Then
/* an srs 
 ss(si) has been found */

3.2.1.1.1 Move si from Sunmarkedto Smarked

/* add the query results corresponding to srs to QR*/

3.2.1.1.2 QR:= QR� QRi

3.2.1.2 Else /* QRi = {} */

/* generalize si */

3.2.1.2.1 si := parent(si) 
/* check structural consistency */

3.2.1.2.2 If (∃sk∈Smarked)(ss(si)   ss(sk)) ∨
(∃sl∈Sunmarked)(ss(si)   ss(sl)) Then

/* si incurs structural anomaly */

3.2.1.2.2.1 Remove si from Sunmarked

3.2.1.2.3 Else
3.2.1.2.3.1 Compute the set QRi of the query results 

in D corresponding to ss(si) using
the query processing method in Section 4

Figure 11. The algorithm for resolving structural anomaly at the schema-level.

In Step 3, even if we process s2 first, we can obtain the correct result without a problem. In Step

3.2.1.2.2, s2 incurs structural anomaly since (∃s1 ∈Sunmarked)(ss(s2)≺ ss(s1)). Thus, we remove s2

from Sunmarked obtaining Sunmarked = {s1} and Smarked = {}. Now we move s1 from Sunmarked to

Smarked, add QR1 to QR, and end the iteration. �

Theorem 1 The Schema-level Structural Anomaly Resolution algorithm produces the same query re-

sults as the instance-level algorithm in Fig. 8 does.

Proof: By Lemma 2, for every srsi ∈SRS, there exists ss(sj) ∈ SS such that (1) srsi ≡ ss(sj) or (2)

srsi ≺ ss(sj). For case 1, we can obtain srsi ∈SRS by computing the query results corresponding to
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ss(sj) (Step 2). For case 2, we can obtain srsi ∈SRS by applying iterative kth-ancestor generalization

according to Lemma 3 (Step 3). In this case, even if generalization is stopped for sj because of incurring

structural anomaly, we are still able to obtain srsi ∈SRS since there always exists a schema-level

SLCA sn such that ss(sj)≺ ss(sn) —which is exactly what caused the structural anomaly—and we

can find srsi by generalizing sn. Finally, ss(sj)∈SS such that (¬∃srsi ∈SRS)(srsi � ss(sj)), i.e., the

phantom schema structure, is always removed since the kth-ancestor sa of sj must eventually incur

structural anomaly when sj is generalized to the root node. Otherwise, we contradict the assumption

(¬∃srsi ∈SRS)(srsi � ss(sj)) since it must be that srsi ≡ ss(sa) at the root node. �

We now analyze the complexity of our schema-level algorithm. Given a keyword query Q= {w1,w2,

..., wn}, the worst case time complexity of the schema-level algorithm is O(|S1|d
∑n

i=2
log|Si|+dCXPath)

where Si (1≤i≤n) is the set of schema nodes directly containing the query keywordwi in the DataGuide+,

d the maximum depth of the XML data, and CXPath the cost of XPath query evaluation, which will

be presented in Section 4.2.2. Here, O(|S1|d
∑n

i=2
log|Si|) [46] is the cost of computing schema-level

SLCAs using the algorithm of Xu and Papakonstantinou [46], and O(dCXPath) is the cost of itera-

tive kth-ancestor generalization since, in the worst case, generalization can be applied until one of the

schema-level SLCAs reaches the root node.

Compared with the existing instance-level SLCA algorithm [46], the schema-level algorithm is gen-

erally more efficient since it avoids unnecessary computation of spurious results by removing them

early at the schema-level. The additional overheads of the schema-level algorithm are the computation

of schema-level SLCAs and iterative kth-ancestor generalization. However, those overheads are small

in practice. First, the cost of the schema-level SLCA computation tends to be very small since the

schema is generally several orders of magnitude smaller than the XML data [4]. Second, the cost of

iterative kth-ancestor generalization is negligible since the generalization occurs only occasionally and

is usually applied only once or twice. (According to our experiments in Section 6, the cost of iterative

kth-ancestor generalization is less than 10% of the total query processing cost.) In the worst case,

however, our schema-level algorithm could be about twice slower than the instance-level SLCA algo-

rithm. The reasons are as follows. First, when the schema is as large as the XML data, the overhead

20



of schema-level SLCA computation would be almost the same as the cost of the instance-level SLCA

computation. Second, after obtaining the schema-level SLCAs, we compute query results that corre-

spond to the schema-level SLCAs by evaluating the XPath queries. This query evaluation could also

be as expensive as the instance-level SLCA computation if there exist few spurious results since then

our method loses the benefit over existing SLCA-based methods of avoiding unnecessary computation

of spurious results through early removal. (See the experimental results of QD1 and QD5 in Fig. 23(c)

and QX1 and QX8 in Fig. 27(c) of Section 6.)

3.3 A Relevance-Feedback Based Solution for the Low Recall Problem

When users intend to find more general results (although this is relatively rare), which we regard as

spurious results, our method can have lower recall than existing methods. For example, suppose that a

user intends to find a conference on “XML” where “Levy” is the chair. If there is at least one paper about

“XML” authored by “Levy”, our method does not retrieve the desired conference. We call this problem

the low recall problem.

The fundamental cause for this problem is the inherent ambiguity in keyword search, i.e., the actual

intention of the user is unknown. We can solve this problem by exploiting the user’s relevance feedback.

Relevance feedback is an important way of enhancing search quality by using relevance information

provided by the user [16, 37]. The solution is as follows. The initial query results are presented to the

user, and the user gives feedback if desired results are not retrieved. (This kind of relevance feedback can

be easily implemented using a user-friendly GUI, and users just need to click a button.) This feedback is

sent to the system, and the system generalizes the smallest result structure and finds results again. (We

can repeat this feedback process until all the desired results are retrieved.) For example, our method

does not retrieve the desired conference if there is at least one paper about “XML” authored by “Levy”.

Since the desired result has not been retrieved, the user sends feedback to the system, and the system

now finds conferences containing “XML” and “Levy” by generalizing the smallest result structure. Then,

the user can obtain the desired result. When there are multiple smallest result structures, we can allow

the user to choose which smallest result structure he wants to generalize. To do this, we need to group

the query results for each smallest result structure and show each group to the user.
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We implement this relevance-feedback based solution by modifying Algorithm 2. In Step 3.2.1.1 of

Algorithm 2, we check whether the set QRi of the query results corresponding to a schema-level SLCA

si is non-empty. If QRi is empty, we generalize si in Step 3.2.1.2.1 by finding the parent of si. We

implement relevance feedback by modifying Step 3.2.1.1 such that si should be generalized even if QRi

is non-empty when the user’s relevance feedback is received.

The reason why relevance feedback is possible is that we process queries at the schema level. The

schema-level processing makes the relevance-feedback mechanism feasible since users just need to give

feedback on a small number of schema-level SLCAs. However, it is hard to apply to instance-level

methods since the number of instance-level SLCAs is generally much larger than that of schema-level

SLCAs. Furthermore, it is not clear how we can receive the relevance feedback and generalize the results

in the instance-level SLCA algorithm [46].

We can handle XML data having a recursive schema using the same technique. Fig. 12 shows re-

cursive XML data where the parent-child relationship between two employees represents the supervisor-

supervisee relationship. Suppose that the query is “John employee” and the user intends to find all

employees whose name is “John”. In this case, our method (and also SLCA and MLCA) finds only

employee(3), resulting in low recall. We can also resolve this problem by generalizing the smallest result

structure via relevance feedback.

employee(1)

...

employee(3)name(2)

name(4)“John”

“John”

Figure 12. XML data having a recursive schema.

The low recall problem may also be handled by ranking in a spirit similar to the work of Amer-

Yahia et al. [3]. Enabling users to exploit partial knowledge of the schema in user queries [11, 28, 48]

can also help us to disambiguate user’s intention. We leave these issues for future work.
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3.4 Search Quality Comparisons with Earlier Methods

In this section, we summarize search quality comparisons with earlier methods, SLCA [46], MLCA [28]

(a variant of SLCA), XSEarch [11], CVLCA [26], and XReal [6]. XSEarch and CVLCA are based on a

heuristic called interconnection relationship. According to the heuristic, two nodes are considered to

be semantically related if and only if there are no two distinct nodes with the same label on the path

between these two nodes (excluding the two nodes themselves). Li et al. [28] have pointed out that

the heuristic could retrieve spurious results and have shown that MLCA is generally superior to the

heuristic. XReal infers the user’s intention using the statistics of the underlying XML data.

Since keyword queries are inherently ambiguous, the desired results of a keyword query depend on

the user’s intention. The user may want to find 1) more specific results or 2) more general (as opposed

to specific) results. For example, for a keyword query “XML Levy”, the user may want to find either 1)

papers about “XML” authored by “Levy” or 2) conferences on “XML” where “Levy” is the chair.

When the user’s intention is to find more specific results, the precision values of our method are

higher than or equal to those of existing methods since our method is able to eliminate more spurious

results (i.e., general results) than existing methods by enforcing structural consistency. In addition, the

recall values of our method and those of existing methods are the same since our method finds all the

specific results, i.e., the query results that correspond to smallest result structures, as existing methods

do.

Example 13 Suppose that a keyword query Q = {“XML”, “Levy”, “Lu”} is issued on the XML data in

Fig. 13. The user wants to find papers about “XML” authored by “Levy” and “Lu”, and the desired result

is paper(2). SLCA, XSEarch, and CVLCA find not only paper(2) but also spurious (i.e., general) results

conf(10) and conf(17). MLCA can eliminate conf(10) since in the subtree rooted at conf(10), title(12) and

title(15) are the nodes that contain “XML”, and speaker(13) is the node that contains “Levy” and the LCA

of title(15) and speaker(13), i.e., conf(10), contains the LCA of title(12) and speaker(13), i.e., keynote(11). XReal

retrieves {conf(10), conf(17)} with the ranking since it infers conf as the desired node type5 based on the

5Since the highest confidence value (2.66) is significantly higher than the second highest value (1.41), XReal chooses

the one with the highest confidence, conf, as the desired node type and retrieves only conf nodes.
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XML document frequency [6]. Our method can eliminate all the spurious results by enforcing structural

consistency. Thus, compared with SLCA, MLCA, XSEarch, CVLCA, and XReal, our method improves

precision without sacrificing recall. �

paper(2)

bib(0)

conf(1)

author(4)title(3)

“XML” “Levy”

…

author(5)

“Lu”

keynote(11)

conf(10)

speaker (13)title(12)

“XML” “Levy”

paper(14)

author(16)title(15)

“XML” “Lu”

keynote(18)

conf(17)

speaker(20)title(19)

“XML” “Widom”

paper(21)

author(23)title(22)

“Web” “Levy”

tutorial(24)

presenter(26)title(25)

“IR” “Lu”

Figure 13. The case where structural consistency shows high precision.
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“2000”
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“2001”
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conf_year(70)

author(73)title(72)

“Web” “Levy”

......

conf(50)

title(51)

“VLDB” ...

Figure 14. The case where structural consistency shows low recall.

When the user’s intention is to find more general results, our method can have lower recall than

existing methods, and we can solve this problem using relevance feedback. The recall values of our

method with relevance feedback are higher than or equal to those of existing methods since we can

eventually obtain the desired results via generalization. In the worst case, however, the precision values

of our method with relevance feedback could be lower than those of existing methods since it may find

more spurious results during generalization as we see in Example 14. We note that the worst case is

quite rare in practice.6

Example 14 Suppose that a keyword query Q = {“XML”, “Levy”} is issued on the XML data in Fig. 14

to find conferences on “XML” where “Levy” is the chair. The desired result is conf year(20). SLCA and

MLCA find {paper(6), conf year(20), conf(50)}. XSEarch and CVLCA find {paper(6), conf year(20)}. XReal

6To find one, we had to test more than one hundred queries that are structurally similar to that shown in Example 14

against the NASA and XMark data sets in Section 6. We were not able to find a similar query in the DBLP data set since

its structure is simpler than those of the NASA and XMark data sets.
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finds {conf year(3), conf year(20)}. Here, paper(6), conf year(3) , and conf(50) are spurious results. Our method

initially finds only {paper(6)}, and thus, the recall of our method is 0. By using relevance feedback,

our method obtains {conf year(3), conf year(20)} through generalization, and thus, the recall becomes 1.0.

During generalization, our method finds a spurious result conf year(3), but the precision value of our

method is higher than those of SLCA and MLCA since the subtree rooted at conf(50) is much bigger

than that of conf year(3). However, if we remove the subtree rooted at conf(50) from the XML data (this is

the worst case of our method), the precision value of our method can be lower than those of SLCA and

MLCA. (See Figs. 26(a) and 28(a) in Section 6.2.) Compared with XSEarch and CVLCA, the precision

value of our method is lower since our method finds conf year(3). Compared with XReal, the precision

value of our method is lower since our method finds paper(6). �

4 Implementation

In this section, we describe the implementation details of the schema-level structural anomaly resolution.

Section 4.1 presents the index structures used in the query processing. Section 4.2 presents the query

processing method.

4.1 Index Structures

To speed up query processing, we use indexes for the Data-Guide+ and XML data. We use an inverted

index for a Data-Guide+, which we call the schema index, to efficiently compute the schema-level SLCAs.

We use an inverted index for XML data, which we call the instance index, to efficiently evaluate XPath

queries. Inverted indexes have been used in many XML query processing methods [10, 15, 28, 35]. We

also use a table called LabelPath [35] to store all the label paths occurring in the DataGuide+.

Table 1 summarizes the notation to be used for explaining the index structures. In Table 1, if a

schema (or an instance) node s is a value node, we use parent(s) instead of s as a parameter for all

functions since value nodes themselves do not have ids.
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Table 1. Summary of notation.

Symbols Definitions

snode id(s) the id of a schema node s

label path(s) the label path of a schema
(or an instance) node s

label path id(s) the id of label path(s) = snode id(s)

label path(s) represented as a sequence
numeric label path(s) of snode ids rather than labels

(numeric label path(s)[i] denotes
the ith id.)

inode id(o) the id of an instance node o

node path(o) the node path of an instance node o

A LabelPath table consists of tuples of the form 〈label path id, label path〉, where label path is the

label path of a schema node s, and label path id is the same as the id of s. A B+-tree index is created

on the label path id column, and an inverted index on the label path column.

Example 15 Fig. 15 shows the LabelPath table for the DataGuide+in Fig. 4. In the DataGuide+, the

label path of the schema node having the id of 6 is “bib.conf.paper”. �

......

bib.journal.article12

bib.journal.article.title13

bib.journal.article.authors.author.ln17

label_path_id label_path

6 bib.conf.paper

7 bib.conf.paper.title

10 bib.conf.paper.author.ln

… …

......

bib.journal.article12

bib.journal.article.title13

bib.journal.article.authors.author.ln17

label_path_id label_path

6 bib.conf.paper

7 bib.conf.paper.title

10 bib.conf.paper.author.ln

… …

Figure 15. An example LabelPath table.

The schema index stores a list of postings for each unique value (or label) that appears in the

DataGuide+. The posting of a schema node s has the form 〈snode id(s), numeric label path(s)〉.

numeric label path(s) is used to find the ancestor nodes of s. Postings in a posting list are stored in

ascending order of snode id(s).

Example 16 Fig. 16 shows the schema index for the Data-Guide+ in Fig. 4. Let s be the schema node

with the value = “Jagadish” in Fig. 4. Then, snode id(s) = 10 and numeric label path(s)= 0.1.6.8.10.

Thus, a posting 〈10, 0.1.6.8.10〉 is stored in the posting list of “Jagadish”. �
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<7, 0.1.6.7>, <13, 0.11.12.13>, <18, 0.11.18>

<5, 0.1.3.5>, <10, 0.1.6.8.10>, <17, 0.11.12.14.15.17>

B+-tree on 

keywords

posting list

<10, 0.1.6.8.10>

XML

Levy

Jagadish

…

…

Figure 16. An example schema index.

The instance index stores a list of postings for each unique keyword(or label) that appears in XML

data. The posting of an instance node o has the form 〈inode id(o), node path(o), numeric label path(o)〉.

node path(o) is used to find the ancestor nodes of o, and numeric label path(o) is used to find the label

path of o. Postings in a posting list are stored in ascending order of inode id(o). We create a B+-tree

index, which is called a subindex [43, 44], on each posting list of the instance index in the same way as

was done by Guo et al. [15] and Whang et al. [43, 44]. The key of a subindex is inode id(o).

Example 17 Fig. 17 shows the instance index for the XML data in Fig. 1(b). Let o be the instance

node with the value = “Jagadish” in Fig. 1(b). Then, inode id(o) = 15, node path(o) = 0.1.11.13.15, and

label path(o) = “bib.conf.paper.author.ln”. Since numeric label path(o) = 0.1.6.8.10 for label path(o) in the

Data-Guide+ in Fig. 4, a posting 〈15, 0.1.11.13.15, 0.1.6.8.10〉 is stored in the posting list of “Jagadish”. �

<7, 0.1.6.7, 0.1.6.7>, <102, 0.100.101.102, 0.11.12.13>, <150, 0.100.150, 0.11.18>

<10, 0.1.6.8.10, 0.1.6.8.10>, <106, 0.100.101.103.104.106, 0.11.12.14.15.17>

posting list

<15, 0.1.11.13.15, 0.1.6.8.10>

B+-tree on 

keywords

XML

Levy

Jagadish
…

…

a subindex (for each posting list)
(key = inode_id)

<inode_id,  node_path,  numeric_label_path>

Figure 17. An example instance index.

4.2 Query Processing Method

The query processing method consists of the following two steps. The first step presented in Section 4.2.1

translates a given keyword query Q into multiple XPath queries corresponding to the schema-level

SLCAs. The second step presented in Section 4.2.2 evaluates the XPath queries obtained in the first

step.
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4.2.1 Query Translation

We first compute schema-level SLCAs (or their ancestors) and then generate XPath queries specifying

their schema structures. Fig. 18 shows the algorithm Query Translation, which consists of the following

two steps.

In Step 1, we compute the set S of schema-level SLCAs using the GetSLCA function that im-

plements the SLCA searching algorithm of Xu and Papakonstantinou [46]. They use this function to

compute instance-level SLCAs, but we use it here to compute schema-level ones. For each schema-level

SLCA sslcai, we add the snode id of sslcai to S. In iterative kth-ancestor generalization, the algorithm

is modified to find ancestors of the schema-level SLCAs.

In Step 2, we generate an XPath query xpqi for each schema-level SLCA with the snode id si ∈ S.

In the XPath query generated from si, si becomes the query result node and, at the same time, the

branching query node since si is a schema-level SLCA of all the query keywords; query keywords

that are descendants of si become the leaf query nodes. Here, we first obtain the label path lpi of

si by searching the LabelPath table using snode id(si). We then make the query string of xpqi by

calling the MakeXPathQueryString function with lpi and the query keywords. In Step 2.1 of the

MakeXPathQueryString function, we do not create a predicate when wi is the last label of lp. It means

that wi is the label of the schema-level SLCA. Since it is a part of lp already, a predicate for it is not

needed.

Example 18 We translate a keyword query “XML Levy” on the XML data in Fig. 1(b) into XPath

queries xpq1 and xpq2 in Fig. 19 as follows. In Step 1, we first obtain the posting lists L1, L2 of “XML”,

“Levy” by searching the schema index in Fig. 16. We then compute the set T of numeric label path’s

of schema-level SLCAs for L1 and L2 by evaluating GetSLCA(L1, L2). Here, T = {“0.1.6”, “0.11.12”}.

For each sslcai ∈ T , we add snode id(sslcai) to S. Thus, S = {6, 12} in Fig. 4. In Step 2, for the

schema-level SLCA with the snode id s1 = 6 ∈ S, we first obtain the label path “bib.conf.paper” of s1 from

the LabelPath table in Fig. 15. We note that the label path id = s1 = 6. We then create predicates for

“XML” and “Levy”. The predicates are “[contains(., “XML”)]” and “[contains(., “Levy”)]”. Finally, we generate
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Algorithm 3 Query Translation

Input: (1) a keyword queryQ = { w1, …, wn}, (2) the schema index, 
(3) the LabelPath table

Output: the set XPQof XPath queries
Algorithm:
Step 1. Compute a set Sof schema-level SLCAs

1.1 S:= {} /* initialize */
1.2 Obtain posting lists L1, …, Ln of w1, …, wn

from the schema index
1.3 T := GetSLCA(L1, …, Ln)
1.4 For each schema-level SLCA sslcai ∈ T

1.4.1 Add snode_id(sslcai) to S
Step 2. Generate the set XPQof XPath queries

2.1 XPQ:= {}   /* initialize */
2.2 For each schema-level SLCA si ∈ S

2.2.1 Obtain the label path lpi of si from the LabelPath table
2.2.2 xpqi := MakeXPathQueryString(lpi, w1, …, wn)
2.2.3 XPQ:= XPQ�{ xpqi}

2.3 Return XPQ
Function MakeXPathQuerySting
Input: (1) a label path lp, (2) query keywords w1,…, wn

Output: an XPath queryxpq
Step 1. Convert “.” in lp into “/”
Step 2. For each query keyword wj (1
j�n), create a predicate exprj

2.1 If wj is a label and is not the last label of lp, exprj := wj

2.2 If wj is a value, exprj := contains(., “wj”)
Step 3. xpq:= lp[expr1] … [exprn]
Step 4. Return xpq

Algorithm 3 Query Translation

Input: (1) a keyword queryQ = { w1, …, wn}, (2) the schema index, 
(3) the LabelPath table

Output: the set XPQof XPath queries
Algorithm:
Step 1. Compute a set Sof schema-level SLCAs

1.1 S:= {} /* initialize */
1.2 Obtain posting lists L1, …, Ln of w1, …, wn

from the schema index
1.3 T := GetSLCA(L1, …, Ln)
1.4 For each schema-level SLCA sslcai ∈ T

1.4.1 Add snode_id(sslcai) to S
Step 2. Generate the set XPQof XPath queries

2.1 XPQ:= {}   /* initialize */
2.2 For each schema-level SLCA si ∈ S

2.2.1 Obtain the label path lpi of si from the LabelPath table
2.2.2 xpqi := MakeXPathQueryString(lpi, w1, …, wn)
2.2.3 XPQ:= XPQ�{ xpqi}

2.3 Return XPQ
Function MakeXPathQuerySting
Input: (1) a label path lp, (2) query keywords w1,…, wn

Output: an XPath queryxpq
Step 1. Convert “.” in lp into “/”
Step 2. For each query keyword wj (1�j�n), create a predicate exprj

2.1 If wj is a label and is not the last label of lp, exprj := wj

2.2 If wj is a value, exprj := contains(., “wj”)
Step 3. xpq:= lp[expr1] … [exprn]
Step 4. Return xpq

Figure 18. The query translation algorithm.

the XPath query xpq1 by concatenating the label path and the predicates. We similarly generate the

XPath query xpq2 for the schema-level SLCA with the snode id s2 = 12. �

conf

paper

bib

"XML" "Levy"

/bib/conf/paper
[contains(., "XML")]
[contains(., "Levy")]

(a) xpq1.

journal

article

bib

"XML" "Levy"

/bib/journal/article
[contains(., "XML")]
[contains(., "Levy")]

(b) xpq2.

Figure 19. The XPath queries generated from “XML Levy”.
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4.2.2 Query Evaluation

The set of XPath queries obtained in the query translation step can be evaluated with any existing

XPath engine. In this section, we propose an efficient algorithm that simultaneously evaluates the

specific set of XPath queries generated by our method.

In general, there are multiple structures matching the user’s query intention, and thus, multiple

XPath queries for those structures are generated from a keyword query. The result of the keyword query

is the union of the results of these XPath queries. As explained in Section 4.2.1, an XPath query xpqi

generated from a schema-level SLCA si has one branching node, i.e., si, and the label path of si is the

path from the root node to si. Query keywords that are descendants of si become the leaf query nodes

of xpqi. The query xpqi finds the instance nodes that have the label path of si and that contain all the

query keywords (this is common to all xpqi’s). We exploit this commonality for efficient simultaneous

computation of multiple queries.

There has been a lot of work on XPath evaluation, but most of the work focuses on answering

one query at a time. Some research efforts [9, 29, 49] have been done on answering multiple queries

simultaneously, but they are not optimized for the specific set of XPath queries that are generated by

our method. Bruno et al. [9] and Zhang et al. [49] only handle linear XPath queries. Liu et al. [29] handle

XPath queries with branches. This method is not suitable for the specific set of XPath queries because

of the following reasons. They combine multiple queries into a single structure, called super-twig query,

to exploit query commonalities. They only consider the scenario where query commonalities exist in the

top parts—the parts close to the root node—of multiple original queries. However, in the specific set of

XPath queries, much of the query commonalities exist in the bottom parts of the original queries, which

consist of query keywords. Little query commonalities exist in the top parts since each query has a

unique path from the root node to the branching node. Thus, in the worst case, the cost of the method

is almost the same as that of processing one query at a time. In contrast, our algorithm simultaneously

evaluates all the queries in this specific set by exploiting the query commonalities existing in the bottom

parts of the original queries.
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Since the queries in this specific set share the same query keywords that appear in the original

keyword query, we can simultaneously evaluate all the queries by joining the posting lists of the query

keywords. We obtain the posting lists from the instance index introduced in Section 4.1. Suppose that

XPath queries xpq1,xpq2, ..., xpqm are obtained from a keyword query Q= {w1,w2, ..., wn}. We perform

an index nested-loop join over the posting lists Lj (1≤j≤n) of query keywords wj . For each posting in

the outer-most posting list L1, we identify the query to be evaluated from among xpqi (1≤i≤m). Thus,

we simultaneously evaluate different queries while we are scanning L1. As explained in Section 4.1, the

posting of an instance node o has the form 〈inode id(o), node path(o), numeric label path(o)〉 where

inode id(o) is the node id of o, node path(o) the node path of o, and numeric label path(o) the label

path of o that is represented as a sequence of integer ids rather than labels. node path(o) contains the

ids of the ancestor nodes of o in the ascending order, and its last id is inode id(o). A posting list is sorted

in the ascending order of inode id(o). Hereafter, we refer to an instance node o by its posting for ease of

exposition. For each posting o1a in L1, we find the query to be evaluated using numeric label path(o1a).

For xpqi (1≤i≤m), if the path pi from the root node to the branching node of xpqi is a prefix of the

label path of o1a, xpqi must be the query that we need to evaluate for o1a since xpqi finds the instance

nodes that have the label path pi and that contain all the query keywords. Here, o1a matches the query

keyword w1 since o1a is a posting of w1. We note that at most one xpqi is found since each query has a

unique branching node. We compute the results only for the postings in L1 that have the corresponding

XPath query to be evaluated. Thus, we avoid unnecessary computation of spurious results. We note

that, in contrast, the SLCA algorithm [46] computes SLCAs for all postings in L1 incurring unnecessary

computation.

We now explain how we evaluate xpqi. Let di be the depth of the branching node of xpqi from the

root node, and node path(o1a)[di] be the dith id of node path(o1a). We need to check if the instance

node o with the id node path(o1a)[di] contains all the query keywords wj (1≤j≤n). Here, o corresponds

to the query result since the branching node is the query result node in xpqi. o clearly contains w1

since o is an ancestor of o1a. o contains wj (2≤j≤n) if there exists ojb ∈ Lj for each Lj such that

node path(ojb) and node path(o1a) have the same prefix from the root node to di. Since we assign a
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unique preorder id to each node in the XML data tree, node path(ojb) and node path(o1a) have the same

prefix from the root node to di if node path(ojb)[di] = node path(o1a)[di]. Let k be node path(o1a)[di],

which is inode id(o). To check the existence of ojb ∈ Lj such that node path(ojb)[di] = k, we utilize

the subindex on Lj whose key is inode id of the posting in Lj, exploiting Lemmas 4 and 5. Here,

we do not need to find all ojb ∈ Lj such that node path(ojb)[di] = k since we only need to check if

o—which corresponds to the query result—contains wj . By Lemmas 4 and 5, to check the existence of

ojb ∈ Lj such that node path(ojb)[di] = k, we only need to find a posting ojb such that inode id(ojb)

is the smallest id that is greater than or equal to k in Lj and check whether node path(ojb)[di] = k.

In summary, we simultaneously evaluate all the queries xpqi (1≤i≤m) through one scan of L1 and an

index nested-loop join over the posting lists Lj (1≤j≤n).

Lemma 4 inode id(ojb) ≥ k if node path(ojb)[di] = k.

Proof: It is straightforward since we assign a preorder id to each node. �

Lemma 5 Let inode id(ojb) be the smallest id that is greater than or equal to k in Lj . If node path(ojb)[di] 6=

k, then there is no ojb′ ∈ Lj such that node path(ojb′ )[di] = k.

Proof: Suppose that there exists ojb′ ∈ Lj such that node path(ojb′)[di] = k. Then, as we see in

Fig. 20, ojb′ must be in the subtree rooted at o(k), and ojb must be in the right subtree of o(k). Thus,

inode id(ojb) > inode id(ojb′ ) ≥ k. This contradicts the assumption that inode id(ojb) is the smallest

id that is greater than or equal to k in Lj . �

o(k)

d

ojb’ ojb

Figure 20. An example XML data tree for the proof of Lemma 5.

Our algorithm uses the idea of XIR [35] that exploits the schema information—more precisely,

the label path—for XPath query processing. XIR decomposes a given XPath query into linear XPath

queries. A linear XPath query, which is also known as a linear path expression [35], is an XPath query

without branches. It then finds a set of result node paths by processing each linear XPath query,

and performs prefix match join between the sets of result node paths. Here, the prefix match join [35]
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identifies the prefix (a subpath from the root to the branching node) of a node path on one side and

finds the matching node paths having the same prefix on the other side of the join. In contrast to

XIR, our algorithm simultaneously evaluates multiple XPath queries using the instance index without

computing the result node paths a priori for each linear XPath query. In this sense, our algorithm is

completely different from XIR.

Fig. 21 shows the query evaluation algorithm, which consists of the following two steps.

In Step 1, we obtain necessary information for query evaluation from the XPath queries. For each

XPath query xpqi (1≤i≤m), we first obtain the depth di of the branching node from the root node

(simply, the branching depth). We then obtain the id label path idi of the label path from the root node

to the branching node using the LabelPath table.

In Step 2, we compute the results of the XPath queries. We first obtain the posting lists of the query

keywords. We then scan the outer-most posting list L1 and perform an index nested-loop join over the

posting lists Lj (1≤j≤n). For each posting o1a ∈ L1, we find the query xpqi to be evaluated in Step 2.3.1.

If found, we do the inner loop step to check whether the node with the id node path(o1a)[di] contains all

the query keywords in Step 2.3.2.1. For each posting list Lj (2≤j≤n), we check the existence of ojb ∈ Lj

such that node path(ojb)[di] = node path(o1a)[di], by calling the FindMatchingPosting function in Step

2.3.2.1.1. The FindMatchingPosting function finds such a posting using the subindex created on the

posting list Lj based on Lemmas 4 and 5. If a posting is found for every posting list Lj (2≤j≤n), we

return node path(o1a)[di] as the result of xpqi.

Given a set of XPath queries {xpq1,xpq2, ..., xpqm} having the same query keywords {w1,w2, ...,

wn}, the worst case time complexityCXPath of the query evaluation algorithm isO(|L1|(m+
∑n

j=2
log|Lj|))

where Lj (1≤j≤n) is the posting list of wj . For each posting in L1, we find the query to be evaluated

from among the m queries and one posting from each of the other n− 1 posting lists. Finding a posting

in Lj using the subindex costs O(log|Lj|).

We now compare the performance of our algorithm with that of the instance-level SLCA algo-

rithm [46]. The worst case complexity of the SLCA algorithm is O(|L1|d
∑n

j=2
log|Lj|) [46] where d is
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Algorithm 4 Query Evaluation

Input: (1) a set of XPath queries {xpq1, …, xpqm} having the same
query keywords w1, …, wn, 

(2) the LabelPath table, (3) the instance index
Output: the results of the XPath queries
Algorithm:
Step 1. For each XPath query xpqi (1�i�m)

1.1 di := the depth of the branching node from the root node
1.2 label_path_idi := the id of the label path from the root node to

the branching node
Step 2. Perform an index nested-loop join

2.1 R := {} /* initialize */
2.2 Obtain the posting lists L1, …, Ln of w1, …, wn from the

instance index
/* outer loop */
2.3 For each posting o1a ∈ L1

/* find xpqi to be evaluated */
2.3.1 For i = 1 to m, find xpqi such that 

numeric_label_path(o1a)[di] = label_path_idi
/* Note that at most one xpqi is found since each query has a

unique branching node */
2.3.2 If xpqi is found

/* inner loop */
2.3.2.1 For each posting list Lj (2�j�n)

2.3.2.1.1 Check the existence of a posting ojb ∈ Lj such that
node_path(ojb)[di] = node_path(o1a)[di] 
by calling the function FindMatchingPosting

2.3.2.2 If a posting is found for every posting list Lj (2�j�n)
2.3.2.2.1 Addnode_path(o1a)[di] to R

2.4 Return R
Function FindMatchingPosting
Input: (1) di, (2) node_path(o1a)[di], (3) Lj

Output: a posting ojb

Step 1. k := node_path(o1a)[di]
/* Check the existence of a posting ojb ∈ Lj such that 

node_path(ojb)[di] = k using the subindex and exploiting 
Lemmas 4 and 5 */

Step 2. Find a posting ojb ∈ Lj such that inode_id(ojb) is 
the smallest id that is greater than or equal tok
using the subindex created on Lj

Step 3. If node_path(ojb)[di] = k, returnojb

Algorithm 4 Query Evaluation

Input: (1) a set of XPath queries {xpq1, …, xpqm} having the same
query keywords w1, …, wn, 

(2) the LabelPath table, (3) the instance index
Output: the results of the XPath queries
Algorithm:
Step 1. For each XPath query xpqi (1�i�m)

1.1 di := the depth of the branching node from the root node
1.2 label_path_idi := the id of the label path from the root node to

the branching node
Step 2. Perform an index nested-loop join

2.1 R := {} /* initialize */
2.2 Obtain the posting lists L1, …, Ln of w1, …, wn from the

instance index
/* outer loop */
2.3 For each posting o1a ∈ L1

/* find xpqi to be evaluated */
2.3.1 For i = 1 to m, find xpqi such that 

numeric_label_path(o1a)[di] = label_path_idi
/* Note that at most one xpqi is found since each query has a

unique branching node */
2.3.2 If xpqi is found

/* inner loop */
2.3.2.1 For each posting list Lj (2�j�n)

2.3.2.1.1 Check the existence of a posting ojb ∈ Lj such that
node_path(ojb)[di] = node_path(o1a)[di] 
by calling the function FindMatchingPosting

2.3.2.2 If a posting is found for every posting list Lj (2�j�n)
2.3.2.2.1 Addnode_path(o1a)[di] to R

2.4 Return R
Function FindMatchingPosting
Input: (1) di, (2) node_path(o1a)[di], (3) Lj

Output: a posting ojb

Step 1. k := node_path(o1a)[di]
/* Check the existence of a posting ojb ∈ Lj such that 

node_path(ojb)[di] = k using the subindex and exploiting 
Lemmas 4 and 5 */

Step 2. Find a posting ojb ∈ Lj such that inode_id(ojb) is 
the smallest id that is greater than or equal tok
using the subindex created on Lj

Step 3. If node_path(ojb)[di] = k, returnojb

Figure 21. The query evaluation algorithm.

the maximum depth of the XML data. In practice, d of the SLCA algorithm and m of our algorithm

are small and do not affect performance significantly. Thus, the “worst case” performance of the two

algorithms is almost the same. The critical benefit of our algorithm over the SLCA algorithm is that we

avoid unnecessary computation of spurious results by only computing the results of the XPath queries

obtained from schema-level SLCAs. This effect comes from the fact that we compute the results only
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for the postings in L1 that have the corresponding XPath query to be evaluated (in Step 2.3.2) while

the SLCA algorithm computes SLCAs for all postings in L1.

Example 19 We evaluate the XPath queries xpq1 and xpq2 in Fig. 19 as follows. In Step 1, the

branching depth di = 3 for xpqi (i = 1, 2). Since, in the LabelPath table in Fig. 15, the id of the label

path “bib.conf.paper” is 6 and that of “bib.journal.article” is 12, label path id1 = 6 and label path id2 = 12. In

Step 2, we first obtain the posting lists L1, L2 of the query keywords “Levy”, “XML” as shown in Fig. 22.

For the posting 〈inode id(o1a), node path(o1a), numeric label path(o1a)〉 = 〈10, 0.1.6.8.10, 0.1.6.8.10〉 ∈ L1,

numeric label path(o1a)[d1] = label path id1, or equivalently, “0.1.6.8.10”[3] = 6. That is, “bib.conf.paper”

of xpq1 is a prefix of the label path “bib.conf.paper.author.ln” that corresponds to numeric label path(o1a).

Thus, xpq1 is the query to be evaluated, and we do the inner loop step. We find a posting in L2 such that

node path(o2b)[d1] = node path(o1a)[d1] = “0.1.6.8.10”[3] = 6 using the subindex created on L2. Since

there is a posting 〈7, 0.1.6.7, 0.1.6.7〉 ∈ L2 such that “0.1.6.7”[3] = 6, we return 6, which is the node id of

paper(6) in Fig. 1(b), as the result of xpq1. For the posting 〈106, 0.100.101.103.104.106, 0.11.12.14.15.17〉 ∈ L1,

we can similarly find the result article(101) of xpq2. �

L1:

L2: <7, 0.1.6.7, 0.1.6.7>, <102, 0.100.101.102, 0.11.12.13>, <150, 0.100.150, 0.11.18>

<10, 0.1.6.8.10, 0.1.6.8.10>, <106, 0.100.101.103.104.106, 0.11.12.14.15.17>

Figure 22. An example of Algorithm 4.

5 Related Work

There has been a lot of work on keyword search in relational databases [1, 8, 17, 18, 30, 33], which

inspired XML keyword search. However, the work on relational databases is not directly applicable to

XML since the schema of XML data cannot always be mapped to a rigid relational schema [15] due

to the semi-structured and heterogeneous nature of XML. Our approach provides novel notions and

algorithms that are suitable for the semi-structured and heterogeneous nature of XML and eliminates

spurious results by exploiting the hierarchical nature of XML.
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Extensive research has been done on XML keyword search. Under the assumption that smaller

subtrees are more relevant to the query, most of the existing methods find the smallest subtrees con-

taining all the query keywords based on the concepts of the LCA or its variants. Schmidt et al. [38]

have introduced the notion of the LCA, and Guo et al. [15] have defined a subset of LCAs and proposed

an efficient ranking method for the subtrees rooted at the nodes in this set. Xu and Papakonstanti-

nou [47] have studied the properties of LCAs to accelerate the computation. Hristidis et al. [19] have

focused on computing the whole subtrees rooted at LCAs. Xu and Papakonstantinou [46] have proposed

the concept of the SLCA and presented algorithms for finding SLCAs efficiently. Sun et al. [39] have

proposed a method that processes keyword queries involving boolean operators AND and OR under

the SLCA semantics. Li et al. [28] have proposed the concept of Meaningful LCA (MLCA), a concept

similar to that of SLCA, and incorporated MLCA search in XQuery. Cohen et al. [11] have attempted

to find meaningful results based on a heuristic called interconnection relationship, and Li et al. [26] have

presented an efficient algorithm for the heuristic.

Liu and Chen [31] have pioneered a novel method for inferring return nodes for XML keyword search.

They have proposed a system called XSeek, which infers desirable return nodes by recognizing entities in

the XML data. Huang et al. [21] have addressed the important problem of generating effective snippets

(i.e., summaries) for XML search results. Liu and Chen [32] have proposed properties to find relevant

nodes that matches query keywords in the subtree rooted at each SLCA. These schemes on generating

return nodes are orthogonal to and can be incorporated into our method as we see in Section 6.

Several research efforts [11, 28, 48] have been made to enable users to exploit partial knowledge

of the schema in user queries. The query models used in those methods are commonly called labeled

keyword search [48], which allows the user to annotate query keywords with labels. For example, in

labeled keyword search, “XML Levy” is expressed as “title:XML author:Levy”. Using this partial schema

information, labeled keyword search can retrieve more meaningful results than simple keyword search

that specifies only keywords. The search quality of labeled keyword search relies on the correctness of

the labels in a given query [28]. However, a casual user is unlikely to have perfect knowledge of those

labels [28]. Our method does not have this problem since it uses the simple keyword search model.
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Yu and Jagadish [48] have proposed novel schema-based matching methods for labeled keyword

search and Meaningful Summary Query (schema-aware query). They contrast with our framework that

supports schema-free keyword search. They use the schema of XML data to define the matching

semantics. In contrast, our method uses the schema to efficiently resolve structural anomaly instead.

Most recently, Bao et al. [6] have proposed a probabilistic framework for inferring user’s intention

and ranking the query results. They compute the confidence level of each candidate node type, which

is defined as a label path, using the statistics of the underlying XML data and use it to infer the

user’s intention. The method of Bao et al. processes queries at the instance level and additionally uses

the schema to improve search quality. In contrast, our method, being primarily at the schema level,

improves not only search quality using the schema but also search performance by processing queries at

the schema level.

Besides, there has been extensive work done by W3C to define a full-text extension of XQuery [41],

which has today many implementations such as GalaTex [13]. Amer-Yahia et al. [2] have presented

efficient evaluation algorithms for full-text XQuery queries, and Pradhan [36] has demonstrated several

optimization techniques. In this paper, our focus is to effectively and efficiently support “schema-free”

XML keyword search where users only need to specify keywords as opposed to the full-text extension

of XQuery where users must specify structure information as well as keywords according to the XQuery

grammar.

There has been a lot of work on ranking schemes [1, 6, 8, 15, 17, 18, 20, 27, 30, 42] for keyword

search over XML, RDF, or relational databases. The ranking schemes and the concept of structural

consistency can complement each other to help users find relevant results. For example, enforcing

structural consistency could be too restrictive for certain applications, i.e, some query results eliminated

by structural consistency may be relevant to the query. In this case, we can exploit structural consistency

as one of the ranking criteria that measures the meaningfulness [48] of the results rather than as a

criterion for removing spurious results as has similarly been suggested by Yu and Jagadish [48].

37



6 Experimental Evaluation

6.1 Experimental Setup

The goal of the experiments is to verify the advantage of our method in terms of search quality and

search performance. As for search quality, we compare our method with SLCA [46] and MLCA [28] as

they are the state-of-the-art methods; we exclude XSEarch [11] from the comparison since Li et al. [28]

have shown that MLCA is generally superior to XSEarch. As for search performance, we compare

our method with SLCA, excluding MLCA from the comparison, since Xu and Papakonstantinou [46]

have shown that the SLCA searching algorithm generally shows superior performance over the MLCA

searching algorithm. In addition, we compare the index creation time and index size of our method

with those of the SLCA method to show that an extra schema index for efficient structural consistency

checking incurs negligible overhead to overall system performance. We use precision and recall as the

measure for search quality. Following the common practice [11, 26, 28], we define the desired results of

a keyword query as those returned by structured queries (XPath queries) corresponding to the keyword

query, which are formulated by the users who participated in the experiments. We use the wall clock

time as the measure for search performance and index creation, and the number of pages allocated for

the index size.

Independent of the query processing method, we need to specify which output (i.e., return nodes)

generation strategies [31] to use: Subtree Return, Path Return, Subtree-Entity Return, and Path-Entity

Return. Subtree Return outputs the whole subtree rooted at each query result. Path Return outputs

the paths from the root of each query result to the query keywords. Subtree-Entity Return and Path-

Entity Return first find the lowest entity ancestor-or-self node of each query result, and then, output

the subtree rooted at the node and the paths from the node to the query keywords, respectively. In the

same way as was done by Liu and Chen [31], if a node with label l1 has a one-to-many relationship with

nodes with label l2, we consider the nodes with label l2 as entities. According to Liu and Chen [31], Path

Return usually has higher precision but lower recall than Subtree Return since it returns only paths.

The strategies with entities generally have higher precision and recall than the ones without entities.
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We present experimental results using the output strategies with entities since these strategies

show superior search quality over those without. We note that this superiority has also been verified

in all the experiments we performed. Thus, we omit experimental results for the output strategies

without entities. For complete experimental results including other output strategies, please refer to

our technical report [23]. Hereafter, “SC” denotes our method; “S-E” a method with Subtree-Entity

Return; and “P-E” a method with Path-Entity Return. For example, SC-S-E denotes our method with

Subtree-Entity Return.

We have performed experiments using three real data sets and one synthetic data set. The first

one is the DBLP data set [34]. We use the same schema used in the experiments by Xu and Papakon-

stantinou [46], that groups the DBLP data set first by journal/conference names, and then, by years.

The second one is the SIGMOD Record data set [34]. The third one is the NASA data set [34], which

consists of astronomical data. It has a complex and recursive schema and allows a wider variety of

queries than the DBLP and SIGMOD Record data sets. The fourth and synthetic one is the XMark

benchmark data set available at the XMark web site [45]. These data sets have been extensively used in

the existing work on XML keyword search [11, 15, 19, 26, 28, 31, 38, 39, 46, 48]. Table 2 shows statistics

of these data sets. We see that the size of the schema is significantly smaller than that of the XML

data.
Table 2. Data statistics.

data set size # of instance nodes # of distinct # of schema nodes average
(excl. value nodes) keywords (excl. keywords) depth

SIGMOD Record 0.5 MBytes 15,263 5,652 12 5

DBLP 127 MBytes 3,736,406 572,062 145 3

NASA 23 MBytes 530,528 48,430 110 6

XMark 111 MBytes 2,048,193 127,905 548 5

Experiment 1: To compare search performance and analyze the relationship between search perfor-

mance and precision/recall in a controlled setting, we have generated the queries in Table 3 for the

DBLP, NASA, and XMark data sets7. To show the cases where our method has low precision or recall,

which are seldom, we add the following queries: QD6, QD7, QX6, QX7, QN4 ∼ QN7. We also include

7For the XMark data set, the XMark benchmark queries are not used since the queries are expressed in XQuery and
has complex semantics such as path expressions, join, aggregation, grouping, and ordering. Since keyword queries have
inherently limited expressive power, it is not feasible to rewrite all the benchmark queries into keyword queries. For some
queries that do not have complex semantics and can easily be converted into keyword queries, e.g., QX4 and QX7, we
exploit them.
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QD8, QX8, QN8 to test the case where users specify very long queries containing 9 ∼ 13 keywords. We

run each query in Table 3 ten times and measure precision, recall, and the average wall clock time. Since

how the underlying XML data are stored highly affects the query result construction time, which is not

our focus, we only access the root node r of each query result and report the number of the descendant

nodes of r for the Subtree-Entity Return when measuring the wall clock time of query performance.

Table 3. Query sets.

ID Query

DBLP data set

QD1 “flexibility”

QD2 “scheduling management”

QD3 “quality analysis data”

QD4 “rule programming object system”

QD5 “Levy J Jagadish H”

QD6 “flexibility message scheme”

QD7 “ICDE XML Jagadish”

QD8 “distributed data base systems performance analysis

Michael Stonebraker John Woodfill”

NASA data set
QN1 “astroObjects”

QN2 “Michael magnitude”

QN3 “photometry galactic cluster Astron”

QN4 “pleiades dataset”

QN5 “PAZh components”

QN6 “pleiades journal”

QN7 “textFile name”

QN8 “accurate positions of 502 stars Eichhorn Googe

Murphy Lukac”

XMark data set
QX1 “Zurich”

QX2 “Arizona Mehrdad edu”

QX3 “Takano sun com mailto”

QX4 “homepage name”

QX5 “Helena 96”

QX6 “mehrdad takano net”

QX7 “person id person0 name”

QX8 “harpreet mahony nodak edu 99 lazaro st el svalbard

and jan mayen island”

Experiment 2: To compare search performance for a real set of user queries, we have obtained two

hundred queries8 for each of the real data sets (a total of six hundred queries)—the DBLP, SIGMOD

Record, and NASA data sets—from ten graduate students majoring in databases (but not involved in

this project) for this purpose. We measure the wall clock time for all the queries.

8For the list of queries, please refer to http://dblab.kaist.ac.kr/~drlee/sc.html.
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Experiment 3: To show the superiority of the query evaluation algorithm presented in Section 4.2.2,

we compare search performance of our method that uses the algorithm and the one that uses XIR [35],

which does not process multiple XPath queries simultaneously. We measure the wall clock time for the

six hundred queries used in Experiment 2.

Experiment 4: To compare search quality for real sets of user queries, we measure precision and recall

for the six hundred queries used in Experiment 2.

Experiment 5: To compare the index creation time9 and index size, we measure the wall clock time

and the number of pages allocated.

Experiment 6: To test the scalability of our method, we generate XMark data sets by varying the

size from 1 GBytes to 4 GBytes and from 100 MBytes to 10 GBytes. We measure the wall clock time

for queries QX2, QX3, QX4, and QX8.

All the experiments are conducted on SUN Ultra 60 workstation with UltraSPARC-II 450MHz

CPU and 512 MBytes of main memory. We implement all the methods on ODYSS-EUS ORDBMS [44],

which supports the inverted index. The page size for data and indexes is set to be 4096 bytes. We

use the Indexed Lookup Eager algorithm [46] as the SLCA searching algorithm since it generally shows

superior performance over other algorithms. Finally, all the methods are implemented using C++.

6.2 Experimental Results

Experiment 1: Fig. 23 shows the precision, recall, and wall clock time for the queries QD1 ∼ QD8

in Table 3 over the DBLP data set. SC-S-E (SC-P-E) improves the query performance by up to 2.4

times (2.5 times) over SLCA-S-E (SLCA-P-E). The reason for the improvement is that our method

eliminates spurious results early by enforcing structural consistency at the schema-level. We note that

the recall values of our method and SLCA are the same. The improvement becomes more marked

when the precision of SLCA is low, i.e., when the number of spurious results is high. For example, in

Fig. 23(a), the precision of SLCA for QD4 is lower than that for QD3, and thus, in Fig. 23(c), the query

processing time for QD4 is higher than that for QD3, while those of our method are hardly changed.

9In the index creation time, the time for XML document parsing, keyword extraction, and data loading is excluded.
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However, if the precision of SLCA is high, i.e., when there are few spurious results, for a specific query,

our method could be marginally slower than SLCA due to the overhead of XPath query evaluation and

iterative kth-ancestor generalization. For example, in Fig. 23(c), our method is about 10% slower than

SLCA for QD1 and QD5.
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Figure 23. Precision, recall, and wall clock time of queries in Table 3 for the DBLP data set.

In Fig. 23(a), our method shows low precision for QD6 and QD7. For QD6, there is a conference

paper on “flexibility message scheme” in the database, but no journal article. In this case, our method finds

spurious journal nodes through generalization, resulting in low precision. For QD7, the user wants to

find “ICDE” papers about “XML” authored by “Jagadish”, but our method and SLCA return the whole

subtree rooted at “ICDE” conference node (or the paths from the conference node to the query keywords),

resulting in the same low precision. Even for such queries, the precision of our method is higher than

or equal to that of SLCA since our method is able to eliminate more spurious results than SLCA. For

example, for QD6, our method does not find spurious conf nodes since there is a paper on “flexibility

message scheme”, but SLCA does.

The reason why the SLCA method often has very low precision is that it often finds more spurious

SLCA nodes than correct ones. For example, there are only five publications of “Levy” on “XML” in the

DBLP data set, but the SLCA method finds 50 SLCAs for the query “XML Levy”, 45 of which are spurious

conf nodes. Furthermore, conf nodes typically include huge subtrees having thousands of nodes. Thus,

the number of retrieved nodes that are spurious becomes very large leading to very low precision. The

Subtree-Entity Return (S-E) has even lower precision because this strategy returns the whole subtree

rooted at each query result, and the number of all nodes in the subtree is counted as the number of

retrieved nodes.
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Fig. 24 shows the precision, recall, and wall clock time for the NASA data set, having a tendency

similar to that of the DBLP data set except QN4 and QN5.
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Figure 24. Precision, recall, and wall clock time of queries in Table 3 for the NASA data set.

For QN4, the recall of our method, SC-S-E and SC-P-E, is almost 0 (both 1.3 × 10−4 since they

find the same para nodes). This is because the user intends to find more general results, which we regard

as spurious results. For QN4, “pleiades dataset”, the user wants to find the subtrees rooted at dataset nodes

that contain the keyword “pleiades”. However, our method finds only the para nodes (i.e., paragraphs) that

are contained in the subtrees rooted at the dataset nodes. Thus, we have very low recall. In contrast, the

SLCA method finds (1) the para nodes and (2) the dataset nodes that do not have para nodes containing

the keywords “pleiades” and “dataset”. (We note that the recall value of SLCA-S-E for QN4 looks perfect

in Fig. 24(b), but it is not 1.0 since the SLCA method also finds the para nodes as our method does.)

We can solve this low-recall problem using relevance feedback. The result is shown in Fig. 25. By using

relevance feedback, we can generalize the para nodes to the dataset nodes and obtain the desired results.
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Figure 25. Precision, recall, and wall clock time of QN4 with relevance feedback.

For QN5, the precision and recall of our method are both 0 constituting the worst case of our

method. For QN5, “PAZh components”, the user wants to find the subtrees rooted at the dataset nodes that

(1) have altname nodes whose value is “PAZh” and (2) contain the keyword “components”. However, our
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method finds holding nodes since there are holding nodes that contain the keywords “PAZh” and “components”.

In contrast, existing methods find (1) the holding nodes and (2) the desired dataset nodes. We can also

solve this problem by generalizing the holding nodes to the dataset nodes. The result is shown in Fig. 26.

In Fig. 26(a), the precision of our method is worse than existing methods because we find spurious

results during generalization as explained in Example 14 of Section 3.410 while existing methods do not.

That is, our method finds the dataset nodes that contain “PAZh” and “components” where the altname of the

dataset node is not “PAZh”.
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Figure 26. Precision, recall, and wall clock time of QN5 with relevance feedback.

Fig. 27 shows the precision, recall, and wall clock time for the XMark data set, showing a similar

tendency to those of the DBLP and NASA data sets. Similar to QN5 in the NASA dataset, QX5

constitutes the worst case of our method. Fig. 28 shows the results of QX5 with relevance feedback.

0
1000
2000
3000
4000
5000

QX1 QX2 QX3 QX4 QX5

SC-S-E SLCA-S-E SC-P-E SLCA-P-E

(a) Precision. (b) Recall. (c) Wall clock time.

QX1 QX2 QX3 QX4 QX5 QX6 QX7 QX8

10-2

1

10-1

10-3

QX1 QX2 QX3 QX4 QX5 QX6 QX7 QX8

10-2

1

10-1

10-3 0

1000

2000

3000

4000

5000

QX1 QX2 QX3 QX4 QX5 QX6 QX7 QX8

w
al

l 
cl

o
ck

 t
im

e 
(m

s)

Figure 27. Precision, recall, and wall clock time of queries in Table 3 for the XMark data set.

Experiment 2: Fig. 29 shows the search performance results for a real set of user queries. The Y-axis

represents the fraction of queries for which our algorithm has a given range of performance improvement

over the SLCA algorithm. The performance improvement is defined as the wall clock time TSLCA−S−E

of SLCA over the wall clock time TSC−S−E of SC and denoted as x. In Fig. 29, “-U” denotes our

10In Example 14, conf year nodes correspond to dataset nodes; chair to altname; “Levy” to “PAZh”; “XML” to “compo-
nents”; paper to holding.
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Figure 28. Precision, recall, and wall clock time of QX5 with relevance feedback.

method with relevance feedback. For the NASA data set in Fig. 29(c), SC-S-E (SC-S-E-U) outperforms

SLCA-S-E by more than 10% for 69% (66%) of queries. In contrast, SLCA-S-E outperforms SC-S-E

(SC-S-E-U) for only 10% (12%) of queries. Figs. 29(a) and (b) show a tendency similar to that of the

NASA data set. We omit the results for the Path-Entity Return (P-E) since they show a tendency

similar to those of the Subtree-Entity Return (S-E).
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Figure 29. The search performance results of six hundred queries for the DBLP, SIGMOD Record, and
NASA data sets. The Y-axis represents the fraction of queries for which our algorithm has a given range
of performance improvement over the SLCA algorithm.
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Experiment 3: Our method that uses the algorithm presented in Section 4.2.2 outperforms the one

that uses XIR [35] by 1.8 ∼ 5.2 times since the algorithm simultaneously evaluates multiple XPath

queries while XIR evaluates one query at a time.

Experiment 4: Figs. 30 and 31 show the precision (denoted as p) and the recall (denoted as r) of two

hundred queries over the DBLP data set and the SIGMOD Record data set, respectively. The Y-axis of

the Figures represents the fractions of queries having given precision/recall ranges. MLCA and SLCA

often find more spurious nodes than correct ones. For example, for the query “activity recognition”, they

find 130 results, 122 of which are spurious conf or journal nodes. Thus, for the DBLP data set, the

precision of SLCA and MLCA is less than 0.5 for 46% ∼ 87% of queries! For the SIGMOD Record data

set, their precision is less than 0.5 for 23% ∼ 59% of queries. In contrast, the precision of our method

is 1.0 for all queries since it eliminates all the spurious results by enforcing structural consistency. We

note that the recall values of our method, MLCA, and SLCA are the same. These results are similar to

those of Experiment 1.
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Figure 30. Precision and recall of two hundred queries for the DBLP data set. The Y-axis represents
the fraction of queries having a given precision/recall range.
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In Fig. 31(b), SC-S-E, MLCA-S-E, and SLCA-S-E show low recall for about 16% of queries. In this

case, the users want the articles of an author, e.g., “Jennifer Widom”, but all methods return the author in

the articles since the author is the lowest entity containing all the query keywords. However, SC-S-E-U

shows perfect recall since it finds the articles of an author by using relevance feedback. The average

number of relevance feedbacks provided by the users for the 200 queries on the SIGMOD Record data

set is 0.36/query.
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Figure 31. Precision and recall of two hundred queries for the SIGMOD Record data set. The Y-axis
represents the fraction of queries having a given precision/recall range.

Fig. 32 shows the precision and the recall of two hundred queries over the NASA data set. The

precision of SLCA and MLCA is less than 0.5 for 35% ∼ 56% of queries. In contrast, the precision

of our method is less than 0.5 for only 9% ∼ 10% of queries. Here, our method shows low precision

for some queries due to the complex schema of the NASA data set. For example, for the query “radio

journal”, the user wants to find journal articles on “radio”. Our method finds not only correct results but

also spurious results such as revision nodes, as SLCA and MLCA do, since there are revision nodes that

contain the keywords “radio” and “journal”.
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Figure 32. Precision and recall of two hundred queries for the NASA data set. The Y-axis represents
the fraction of queries having a given precision/recall range.

In Fig. 32(b), for about 9% of queries, the recall values of our method without relevance feedback

are lower than those of SLCA and MLCA due to the same reason as in Example 14 of Section 3.4.

However, by using the relevance feedback, we can archive higher recall values than SLCA and MLCA.

The average number of relevance feedbacks provided by the users for the 200 queries on the NASA data

set is 0.30/query.

Experiment 5: Fig. 33 shows the index creation time and the index size. All methods use an inverted

index for XML data and the Dewey index [31] to find the lowest entity ancestor of each query result. SC-

S-E and SC-P-E additionally use the schema index for efficient structural consistency checking. Thus,

the index creation time of SC-S-E and SC-P-E is about 5% ∼ 7% longer, and the index size is about 5%

∼ 7% larger than those of SLCA-S-E and SLCA-P-E. This verifies that an extra schema index incurs

negligible overhead to overall system performance. We note that the index is bigger than the original

data due to the space required for storing id paths from the root to each node. SLCA-based methods

have similar space overhead since they also use id paths, i.e., Dewey numbers. We could reduce the
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space by exploiting the UTF-8 encoding as an efficient way to represent id paths, which was proposed

by Tatarinov et al. [40].
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Figure 33. Index creation time and index size for the DBLP and XMark data sets.

Experiment 6: Figs. 34 and 35 show the processing time of queries QX2, QX3, QX4, and QX8 as the

data set size is varied from 1 GBytes to 4 GBytes and from 100 MBytes to 10 GBytes. As we can see,

the processing time of all methods increases approximately linearly when the data set size increases and

that our methods are largely superior or comparable to SLCA-based methods.
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Figure 34. Query processing time with increasing data set size from 1 GBytes to 4 GBytes in a linear
scale.
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7 Conclusions

We have proposed a new notion of structural consistency (and structural anomaly) in XML keyword

search. By exploiting structural consistency, we can eliminate spurious results having the same result

structure consistently. We have introduced the concept of the result structure in Definition 3 and the

smallest result structure in Definition 6. We have formally defined the structural anomaly in Definition 5

as a phenomenon where there exist result structures that structurally contain other result structures.

We have defined the structural consistency as a property where there is no structural anomaly in the

query results.

We have proposed a naive algorithm that resolves structural anomaly at the instance level. We

have then proposed an advanced algorithm that resolves structural anomaly at the schema level. To

this end, we have formally analyzed the relationship between the set of schema-level SLCAs and the

set of instance-level SLCAs in Lemmas 2 ∼ 3, identified the discrepancies between them, and proposed

the notion of iterative kth-ancestor generalization to resolve the anomalies (false dismissal and phantom

schema structures) that are caused by these discrepancies. We have formally proved that the proposed

algorithms produce the same set of results preserving structural consistency in Theorem 1. We have

proposed a solution using relevance feedback for the problem where our method has low recall; this

problem occurs when it is not the user’s intention to find more specific results. We have provided an

efficient algorithm that simultaneously evaluates multiple XPath queries generated by our method. We

have implemented our method in a full-fledged object-relational DBMS.

We have performed extensive experiments using real and synthetic data sets. Experimental results

show that our method improves precision significantly compared with the existing methods while pro-

viding comparable recall for most queries. Experimental results also show that our method improves

the query performance over the existing methods significantly by removing spurious results early.
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Appendix A. Proof of Lemma 2

Let {w1, w2, ..., wn} be the set of query keywords of Q, and l1.l2.· · · .lm be the incoming label path of srsi. We

need to show that there always exists a schema-level SLCA s such that l1.l2.· · · .lm is a prefix of the label path

of s. Since srsi is a smallest result structure of instance-level SLCAs, there exists an instance node v such that

l1.l2.· · · .lm is the label path of v, and w1, w2, ..., wn are descendants of v. It follows that there exists a schema

node sa such that l1.l2.· · · .lm is the label path of sa and w1, w2, ..., wn are descendants of sa (i.e., srsi ≡ ss(sa))

since the DataGuide+ has every unique label path of instance nodes. Thus, by the definition of schema-level

SLCA, there exists a schema-level SLCA s such that ss(sa)� ss(s). �

Appendix B. Proof of Lemma 3

Let ILP (srsi) be the incoming label path of srsi, and ILP (ssj) be the incoming label path of ssj . Since

srsi ≺ ssj , ILP (srsi) is a proper prefix of ILP (ssj). This implies that there must exist a kth-ancestor sa

(1≤ k≤ depth(s)) of the schema-level SLCA s whose label path is the same as ILP (srsi). Here, ss(sa)≡ srsi

since the label path of sa is the same as ILP (srsi). �
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