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Abstract Google and other products have revolutionized
the way we search for information. There are, however, still
a number of research challenges. One challenge that arises
specifically in desktop search is to exploit the structure and
semantics of documents, as defined by the application pro-
gram that generated the data (e.g., Word, Excel, or Out-
look). The current generation of search products does not
understand these structures and therefore often returns wrong
results. This paper shows how today’s search technology can
be extended in order to take the specific semantics of certain
structures into account. The key idea is to extend inverted file
index structures with predicates which encode the circum-
stances under which certain keywords of a document become
visible to a user. This paper provides a framework that allows
to express the semantics of structures in documents and algo-
rithms to construct enhanced, predicate-based indexes. Fur-
thermore, this paper shows how keyword and phrase queries
can be processed efficiently on such enhanced indexes. It is
shown that the proposed approach has superior retrieval per-
formance with regard to both recall and precision and has
tolerable space and query running time overheads.
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1 Introduction

Current search engines, such as Google [28], Yahoo! [46],
Live Search [36], solve well the problem of crawling and
searching the Web. However, searching application data on
the desktop is still an unsolved problem. Users access data
through an application such as Word, Excel, Wiki (Web
browser) or an E-mail client. The problem is that Google
Desktop, Apple SpotLight, and related products do not see
the application data with the eyes of the user. The reason
is that applications encode properties with special semantics
into the data using annotations. Typical examples are com-
ments or footnotes in text documents, E-mail threads, and his-
tory information of versions in Wikis. The semantics of these
properties and annotations are important for search. Com-
ments, for instance, need to be interpreted correctly when
users search for a specific phrase in a text document.

Figure 1 shows the problem of existing search engines:
They index the raw data as stored in the file system. In con-
trast, users see the data using applications (e.g., Word, Out-
look, or a Wiki system). As a result, traditional search engines
return wrong and unexpected results in a number of scenar-
ios.

1.1 Motivating examples

Example 1 Bulk Letters (Word and Excel) Traditional search
engines fail to return correct results if the data is partitioned
into several files. The Mail merge functionality of office
applications such as Word and Excel used in order to cre-
ate bulk letters demonstrates this deficiency of traditional
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Application

Search engine

File SystemData

User

Fig. 1 Search engine view vs. User view

Dear <recipient/>

The meeting is
today, at 2PM.

Peter Jones
Project Manager.

Letter Template in Word Excel Stylesheet

Dear Paul,

The meeting is
today, at 2PM.

Peter Jones
Project Manager.

Dear Mary,

The meeting is
today, at 2PM.

Peter Jones
Project Manager.

User View: Virtual letters

(a) (b)

(c)

Fig. 2 Example 1: bulk letters (word �� excel)

search engines. Figure 2a shows a letter written in Word,
containing placeholders for the recipient name. Furthermore,
Fig. 2a shows an Excel spreadsheet containing the names of
the recipients who are supposed to receive the letter. When
the Mail merge function is applied using the Word applica-
tion, the bulk letters are instantiated so that from a user’s and
application perspective the letters shown in Fig. 2b are gener-
ated. Correspondingly, the queries Dear Paul and Dear Mary
should match the Word document, as illustrated in the third
column of Fig. 2c. More specifically, the query Dear Paul
matches the first letter (indicated as Instance 1 in Fig. 2c) and
Dear Mary matches the second letter. Unfortunately, tradi-
tional search engines do not find these results because the
keywords Dear and Paul are not part of the same file. For
the same reason, traditional search engines return no results
for the Dear Mary query, as shown in the second column of
Fig. 2c.

Figure 2c lists a third example query: Paul, Mary. Natu-
rally, traditional search engines return the Excel file as the
only result because the Excel file is the only file that contains
both keywords. In many usage scenarios, however, it may
be desirable to return the Word letter in addition (or instead
of) the Excel spreadsheet. The Word letter provides valuable

(a)

(b)

(c)

Fig. 3 Example 2: versioned data (OpenOffice)

context by showing that both Paul and Mary were invited
to the same meeting. This work will show how search can
be parameterized so that a search engine returns either the
Excel file, the Word file, or both files, depending on the user’s
intentions.

In summary, traditional search engines fail in this exam-
ple because they do not realize that the Word and Excel files
represent a set of letters. Rather than indexing the Word and
Excel files, the letters should be indexed.

Example 2 Versioning (Multiple Worlds) Another scenario
in which traditional search engines fail is when different
worlds are encoded into a single document. A classic example
are documents which encode their own history of insertions
and deletions. Figure 3a shows an OpenOffice document.
The initial version of the document was Mickey likes Minnie.
On March 28, 2009, a user deleted Mickey and Minnie and
replaced them by Donald and Daisy. The user actions were
traced in the document using deleted and inserted
annotations. Figure 3b shows the two versions of the doc-
ument as they are seen by a user.

Again, traditional search engines return wrong results
because they do not interpret the deleted and inserted
annotations correctly. Figure 3c lists three queries. These
three queries show how users who want to search in the ver-
sions of the document can get confused by traditional search
engines. The first query is Mickey likes Daisy. All three key-
words can be found in the document so that a traditional
search engine naturally returns the document as a match for
this query. However, at no point in time were all three key-
words part of the document. In other words, no version of
the document (Fig. 3b) contains all three keywords. So, the
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Predicate-based indexing for desktop search 737

desired result should be that the document does not match
this query. The second query asks for Mickey likes Minnie.
Indeed, the document matches this query. Nevertheless, the
result of a traditional search engine is confusing: When the
user opens the document using OpenOffice, the user will see
the latest version, Donald likes Daisy, and wonder why the
document was returned as a result. The correct answer is more
specific and indicates that the first version of the document
should be considered. The third query carries out a phrase
search for “Mickey likes Minnie” (indicated with quotation
marks). According to a traditional search engine, the doc-
ument does not match because the three keywords are not
stored adjacently in the document. However, the user would
expect the document to match.

In summary, traditional search engines fail in this exam-
ple for similar reasons as in Example 1: A traditional search
engine should index the set of instances (or versions) encoded
in the document rather than the raw data as stored in the
file system. Traditional search engines only do well in this
example if the user intends to do an inter-version search. In
this scenario, indeed, interpreting the document as a single
instance is the right interpretation. Nevertheless, even in such
a scenario, phrase searches are not processed correctly.

1.2 Problem statement

The examples of the previous subsection showed that a doc-
ument is best represented as a set of instances. Each instance
(rather than the raw data stored in the file system) represents
a specific variant of the document as seen by the user. Search
engines should, therefore, index this set of instances rather
than the raw data.

A naïve approach to index instances is to materialize
all instances and index the materialized instances. Unfor-
tunately, this approach is not viable because the number of
instances can become very large. Concretely, the number of
instances grows exponentially with the number of rules that
are needed to describe the instances. (Rules are described in
Sect. 3.) For example, Word documents can represent bulk
letters (as in Example 1) and be versioned (as in Example 2):
In such a scenario, the number of instances is the product of
the number of bulk letters and the number of versions. The
goal of this paper is to index these instances with linear space
requirements and process queries on instances in linear time.

The examples demonstrate another important require-
ment: search modes. In some scenarios, users wish to con-
trol the set of instances considered for a search. For instance,
a user might toggle between searching across versions or
searching each version individually in Example 2. Further-
more, a user may want to control whether the Paul, Mary
query returns the Word letter, the Excel spreadsheet, or both
in Example 1. The goal is to have a unified framework and

Query resultApplication
Data (XML)

Normalized
View (XML)

Normalization
Query result

Enh.Query Proc. &
Result aggregation

Index

Rules

Enh.Indexing

Query

View Definition &

Crawl Time

Query Time

Fig. 4 Enhanced desktop search

a single index which allows to specify and process all these
queries in all modes.

The focus of this work is on a Boolean information
retrieval model. That is, the semantics of queries are defined
such that a document / instance either matches a query or
it does not. The framework presented in this paper can be
extended to various scoring schemes and we will briefly indi-
cate how that can be done. Studying such scoring schemes in
detail, however, is beyond the scope of this paper. Further-
more, this paper focuses on desktop search; that is, search
through personal data such as E-Mail, Office documents (e.g.,
Word, Excel, Powerpoint, Latex), and Wikis. It is shown (and
experimentally evaluated) how the framework can be used to
index and search through object-oriented code with inheri-
tance (e.g., Java and C++ code). How to adapt the proposed
framework for more general Web applications has been stud-
ied in [22].

1.3 Plan of attack

Figure 4 shows the proposed architecture of an enhanced
search engine. Just like any other search engine, it is com-
posed of two sub-systems: (a) the crawler and (b) the query
processor. The crawler scans through the data, thereby, cre-
ating the search index. The query processor uses the index in
order to process keyword and/or phrase searches.

When compared to a traditional search engine, the archi-
tecture of Fig. 4 has the following differences:

– View definition: Application-specific rules describe how
to create instances for a document. For example, there
is a specific set of rules that can be applied to all Word
documents.

– Normalization: We propose a special representation of
the set of all instances of a document. We call this repre-
sentation the normalized view of a document. The magic
is that it encodes all the variable parts of a document and
stores the parts that are common to all instances only
once.
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738 C. Duda et al.

Table 1 Inverted file for versions (Fig. 8)

Keyword DocId Predicate

Mickey disney.doc R2 < 3/28/2009

likes disney.doc true

Minnie disney.doc R2 < 3/28/2009

Donald disney.doc R2 ≥ 3/28/2009

Daisy disney.doc R2 ≥ 3/28/2009

Table 2 Query language on application data

Operator Name Description

w1 AND w2 Conjunction Instances containing both keywords.

w1 OR w2 Disjunction Instances containing either keyword.

NOT w1 Negation Instances not containing the keyword.

w1 NEXT w2 Phrase Search Instances where keywords are adjacent.

– Predicate-based Index: Furthermore, we propose to
extend traditional inverted indexes (e.g., Lucene) by an
additional column that contains a predicate. This predi-
cate encodes in which instances of a document a certain
keyword can be found. Furthermore, different ways of
applying this predicate allow to toggle between different
search modes.

– Result aggregation: As shown in the two examples, it
is often important to identify the specific instance that
matches the query. For instance, only the letter to Paul
matches the query Dear Paul in Example 1. Again, the
predicates in the index help to identify these instances if
not all instances match the query.

Arguably the most striking difference to traditional search
is the use of predicates in inverted indexes. To get a feeling
for this mechanism, we would like to show how it works for
Example 2. For this example, this mechanism is particularly
simple and intuitive. Table 1 shows the extended inverted file
for this example. The predicate encodes under which con-
ditions a document involves a keyword. In other words, the
predicate encodes the set of instances of the document that
involve the keyword. Here, R2 is a variable that represents
the rule that created this predicate (details described later).

Using the index of Table 1, the query Mickey likes Daisy
is processed as follows:

1. Each keyword is looked up individually. The results are
the following three inverted lists: (The three dots indicate
that the inverted index may contain references to other
documents which contain these keywords.)

〈Mickey, disney.doc, R2 < 3/28/2009〉,…
〈likes, disney.doc, true〉,...
〈Daisy, disney.doc, R2 ≥ 3/28/2009〉,…

2. The intersection of the three lists is computed, thereby
computing a logical AND of the predicates. The result is:

〈disney.doc,
R2 < 3/28/2009 ∧ true ∧ R2 ≥ 3/28/2009〉

3. Postprocessing: The predicate is evaluated. In this case,
the reduction of the predicate is false. Consequently, dis-
ney.doc is not a match to this query.

The other queries of Example 2 can be processed corre-
spondingly. For phrase search, position information needs to
be kept in the inverted index (detailed in Sect. 9). To rank the
relevance of a document, the index needs to be extended
with scoring information (outlined in Sect. 10); however,
the bulk of this paper will assume a Boolean information
retrieval model without scores. In order to toggle between
search modes, certain predicates need to be suppressed; to
carry out an inter-version search, for instance, all R2 pred-
icates which encode the versioning need to be suppressed.
If the R2 predicates are suppressed, disney.doc would be
returned as a result for the Mickey likes Daisy query. Even
though this predicate-based indexing mechanism looks sim-
ple, it is extremely powerful: It can handle all use cases
that we have encountered for desktop search (E-Mail, Wi-
kis, any kind of Office document). Furthermore, this mecha-
nism is composable so that different patterns such as place-
holders of Example 1 and versions of Example 2 can be
combined. Finally, as will be shown, it can be implemented
efficiently.

1.4 Contributions and overview

In summary, the main contributions of this work are as fol-
lows:

– Rule language: A declarative rule language that is able to
specify the instances of any kind of desktop documents
that we have encountered so far.

– Normalized view: An algorithm to apply the rules to a
document in order to create a normalized view of the
document. The normalized view encodes all instances of
the document. The running time of the algorithm is linear
with the size of the document. Furthermore (and conse-
quently), the size of the normalized view is linear with
the size of the document.

– Predicate-based index: An algorithm to construct a pred-
icate-based index from the normalized view. The index
can be extended with positioning and scoring information
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for more sophisticated information retrieval tasks (e.g.,
phrase searches and ranking).

– Enhanced query processing: An efficient sweep-line
algorithm in order to process keyword and phrase search
queries on predicate-based indexes.

The remainder of this paper is organized as follows: Sect. 2
discusses related work. Section 3 presents the rule language.
Section 4 presents the query language. Section 5 details the
normalization algorithm. Section 6 shows how the predicate-
based indexes are constructed. Section 7 presents the sweep-
line algorithm for query processing. Section 8 shows how
individual instances of a query result are referenced (i.e.,
result aggregation). Section 9 shows how positioning infor-
mation is encoded in a predicate-based index. Section 10
outlines how the framework could be extended for scoring
and ranking. Section 11 gives the results of experiments that
study the retrieval quality (precision and recall) and perfor-
mance (space and running time overheads) of the proposed
framework when compared to traditional search engines.
Section 12 contains conclusions and possible avenues for
future work.

2 Related work

This work is based on results from several other research
projects on databases and information retrieval. To the best
of our knowledge, however, no other existing system covers
all the use cases we have looked at and is, for instance, able
to handle the two motivating examples of the introduction
and the other examples studied in this paper and the experi-
ments.

Several use cases addressed in this paper have been studied
in separate projects. For example, the PIX project at AT&T
[4] has studied phrase search in the presence of comments and
formatting instructions (i.e., the Excluded pattern described
in Sect. 3). Phrase search has also been extensively studied
in [29]. Information retrieval across versions has been inves-
tigated in [9]. Again, to the best of our knowledge, our work
is the first comprehensive framework to deal with all these
(and many other) use cases.

The Semantic Web also tries to provide a framework for
adding meta-data in order to enhance search and query pro-
cessing. Specifically, the Semantic Web defines new meta-
data languages (i.e., RDF [41] and OWL [37]) and a new
query language that operates on that meta-data (i.e., SPAR-
QL [23]). Our work is less ambitious and more focused. Our
goal is to merely annotate the data in order to describe seman-
tic properties of the data and to have a simple query language
based on keywords and phrases. Another, more theoreti-
cal, difference is that the Semantic Web relies on descrip-
tion logic, whereas our work relies on propositional logic.

Description logic is much more powerful and undecidable
in general. Propositional logic is not Turing-complete and
can always be evaluated in polynomial time. We exploit this
property for efficient query processing (Sect. 7). Proposi-
tional logic works for our purposes because we are focused
on defining user views. We do not need to reverse engineer
entire applications and describe their semantics—we only
need to describe what a user observes.

Another line of related work are semantic search engines
for XML; e.g., [19]. These engines extend traditional IR
techniques for defining correlations between a query and the
returned XML fragments. Another line of related work is Col-
orful XML [31]. Colorful XML encodes multiple views (or
instances) into a single document and is, therefore, related to
the normalized view devised in this work. The foundations
for all these approaches are the possible worlds semantics
which were first defined in [26]. Possible worlds are also the
basis for probabilistic database systems such as TRIO [1].
As a result, work on storage structures for probabilistic data-
base is related to our work on encoded multiple worlds (or
instances) into a single document. The work of Koch et. all
[5], for example, defines a similar storage structure as the
one used in this work for the Alternative pattern. The prob-
lem of shared content in documents was also addressed by
[11]. Finally, superimposed information is another technique
which is applicable in this context [38].

With regard to the rule language used in this work, our lan-
guage can be seen as a special case of a transformation lan-
guage such as XSLT [17] or XQuery [10]. Indeed, we could
have used one of these standard languages. We decided to
use a simplification (Sect. 3) in order to ease implementation
and because the full (Turing-complete) power does not seem
to be needed.

The term normalization is borrowed from database theory
[18]. Its goal is to eliminate redundancy. XML Normaliza-
tion has been studied in [6]. Normalization is also a compres-
sion techniques for XML (e.g., XMill [35] or [13]). In order
to store a normalized view, several XML serialization tech-
niques are applicable; e.g., Colorful XML [31] and binary
XML [24]. XML Views and XML summaries are also studied
in [42] and DataGuides [27]. Special positioning techniques
are part of work on relational [44], XML [39], or XML-IR
systems [30].

Advanced indexing techniques for XML are proposed
by [3], while query relaxation techniques are presented in
[14,34]. The aim of those techniques is to increase specific-
ity of results and to infer the semantics of the data by using
IR-specific techniques. As opposed to [3], we use the Dewey
ID positioning technique instead of structural indexes in
order to optimize the computation of results with nested
XML elements. Optimal join processing algorithms have
been studied in [2,16,32]. For ranking, Top-k search (e.g.,
[45]) and ranking strategies in XML (e.g., [30]) have been
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740 C. Duda et al.

extensively studied in the literature. We have adapted [7] for
the purpose of our prototype implementation.

3 View definition: patterns in desktop application data

As shown in the introduction, the challenge of desktop search
is to understand and optimize the semantics of the data. Con-
cretely, these semantics are expressed as an application view,
consisting of a set of instances. The purpose of this section
is to define a comprehensive set of rules that declaratively
specify the set of instances for each document. These rules
should be defined per application (e.g., Word, Wiki, Outlook,
etc.) and the rules of an application should be applicable to
all documents generated by that application.

In our experience, desktop data exhibits re-occurring pat-
terns. That is, a few types of view definitions are sufficient
to define the application views of all desktop data that we
are aware of. We identified these patterns and created an
XML-based rule language which can declaratively associ-
ate patterns to the data. The syntax of the language is not
important; important is that a few patterns are sufficient. We
used XML in order to represent documents because most
document formats are either based on XML (e.g., all Office
documents according to the latest Microsoft and OpenOf-
fice specifications, Wikis, etc.) or have wrappers that trans-
form the documents into XML (e.g., PDF, Latex, etc.). As an
expression language for the rules, we use XQuery [10].

In our experience, it is rare that rules need to be custom-
ized for individual documents; instead, a small set of rules
can be devised for all documents generated by an applica-
tion. For example, only seven rules are needed for all Word
documents. A different set of rules applies to the E-Mail
repository of a client-like Outlook or Thunderbird. Again, it
is not important that the rules model the whole application
logic of a complex application like Word or the E-Mail cli-
ent: The rules merely need to model the view users have on
the data.

The patterns defined in this work are: Excluded, Com-
ment, Alternative, Version, Placeholder, and Field. For each
pattern, we provide syntax in order to specify rules for that
pattern. Patterns and rules are explained in this section fol-
lowing the order of complexity. As a reference, the patterns
which describe Examples 1 and 2 from Sect. 1 are Field and
Version.

3.1 Excluded pattern

The first pattern is Excluded. It specifies that parts of a
document are invisible to the user. These parts should not
be considered in a search query. Examples are formatting
instructions which a user is typically not interested in for
searching. Users who wish to search for all documents that

(a)

(b)

(c)

Fig. 5 Excluded example

use a particular font would surpress the Excluded rule for
fonts during query processing, as described in Sect. 7.3. An
f pattern to exclude certain fragments from an XML docu-
ment for phrase search has been proposed in the PIX project
[4]. Figure 5 gives an example. Figure 5a shows the origi-
nal data with the formatting instructions. Figure 5b shows
the view (without formatting instructions) as it is relevant for
most users. Figure 5c shows the rule that is used in order to
declare that the formatting instructions of the original doc-
ument should not be included in the view. The name of a
rule describes the pattern and the match attribute contains
an XQuery expression that defines to which elements the
rule should be applied. Here and in the remainder of this
paper, XML namespace declarations are omitted for brevity.
Of course, the rule language defines its own namespace in
order to avoid ambiguity with other XML names.

3.2 Comment pattern

The second pattern is Comment. Examples for Comments
are footnotes or inlined annotations in a text. Figure 6
gives an example. Figure 6a shows the original document.
Figure 6b and 6c show two instances that could be of inter-
est to the user: one which contains the comment (identical
to the original) and one that does not contain the comment.
Figure 6d shows the rule that users can use in order to declare
that they are interested to query the two instances separately.
As for the Excluded pattern, the motivation for this pattern
was provided by the PIX project [4]: Only the application
of this pattern makes it possible to apply a phrase search for
“Mickey likes Minnie”, since the original document would
not match. Both instances in Fig. 6 are therefore part of the
view.

Comments are an example that demonstrate how the views
can become larger than the original data. The number of
instances in the view grows exponentially with the number
of comment rules that declare comments in a document (e.g.,
in OpenOffice, separate rules would indicate that note and
comment elements should be treated as comments).
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(a)

(b)

(c)

(d)

Fig. 6 Comment example

(a)

(b)

(c)

(d)

Fig. 7 Alternative example

3.3 Alternative pattern

The Alternative pattern specifies that one out of several
options of a text is chosen. For example, a song could con-
tain markup that specifies for which audience (e.g., adults
or general public) certain parts are targeted. Likewise, an
electronic health record could contain markup that indicates
which doctor is allowed to get what kind of information from
the patient. The Alternative pattern is also useful to specify
that a Web page could have versions in English and Chinese.
The images and tables of the Web page would be identical for
both versions, but the text should either be only in English
or only in Chinese.

Figure 7 gives a simple example. The original document
contains markup with option elements that indicate whether
text fragments belong to the world of Mickey Mouse or Don-
ald Duck. If the text of Fig. 7a is viewed from the perspec-
tive of the world of Mickey Mouse, it should read “Mickey
Mouse likes Minnie Mouse” (Fig. 7b); otherwise it should
read “Donald Duck likes Daisy Duck” (Fig. 7c).

The rule in Fig. 7d specifies exactly these semantics. It
contains three properties:

– match: The match attribute contains an XQuery expres-
sion that describes the target items of the document that

are affected by the rule; option elements in this example.
Furthermore, the XQuery expression in the match attri-
bute binds a variable, $m, that is used in the key specifi-
cation.

– key: The key attribute contains an XQuery expression that
uniquely identifies an alternative. For example, all text
fragments that belong to the world of Mickey Mouse can
be identified by the value “mouse” in the world attribute
(the key) of option elements (the target of the rule).

– optional: This attribute contains a Boolean value and
specifies whether an alternative should be generated that
does not contain any option elements. In this example, the
optional attribute is set to false. If it had been set to true,
a third instance with content “likes”. would have been
generated (not shown in Fig. 7).

Logically, Alternative rules are evaluated in the follow-
ing way. First, the whole document is inspected in order to
find all key values (typically, atomic values such as strings
and numeric values). For each such key value, an instance is
generated by inspecting the document again and ignoring all
target nodes that do not match that key value. If the optional
attribute is set to true, an additional instance is generated that
ignores (i.e., excludes) all target nodes.

Alternatives partition the document. In order to draw an
analogy, the expression in the key attribute corresponds to
the expression of a GROUP BY clause of a SQL query with
the match expression acting as the FROM clause. As a result,
the number of instances in a view specified using this pattern
grows linearly with the number of key values specified in the
document. It is worth mentioning that the Comment pattern
is a special case of an Alternative pattern. It is given by an
alternative with two options, one of which is empty.

3.4 Version pattern

The Version pattern is useful for use cases such as Example 2
of the introduction. In addition to tracking changes in office
documents (Word and OpenOffice), this pattern can also be
found in Wiki data. In contrast to the Alternative pattern
which partitions the elements that match an Alternative rule,
the Version pattern orders all matching elements and speci-
fies that the view contains an instance for each subsequence.

The rule shown in Fig. 8e declares that elements selected
by the match expressions (i.e., insert and delete elements)
are versioned. The moments of time when versions occurred
are defined by the key expression, which selects the values
6am and 7am.1 The action attribute specifies where on the
timeline, the content in the insert and delete elements is valid.
For example, the content of insert elements is valid on and
after the key time, specified by the literal AFTER_AT in the

1 For brevity, we omit the date in the timestamps in this example.

123



742 C. Duda et al.

(a)

(b)

(c)

(d)

(e)

Fig. 8 Version example

action attribute. Similarly, the content of the delete elements
is valid before the time indicated by the value of the key attri-
bute, indicated by the literal BEFORE in the action attribute.
The complete set of values for the action attribute are the
literals BEFORE, BEFORE_AT, AFTER_AT, AFTER corre-
sponding to the <, ≤, ≥, > operators.

Figure 8 gives an example, again using the OpenOffice
data format. Initially (before moment “6am”), the document
was “Mickey likes Minnye” (Fig. 8b). Then, by a sequence of
insertions and corrections (deletions), the document became
“Mickey likes Minnie Mouse” (at moment “6am”) and
“Mickey Mouse likes Minnie Mouse” (at moment “7am”).
The two rules shown in Fig. 8e capture exactly these seman-
tics and ensure that each version can be queried as a separate
instance, as outlined in the introduction.

3.5 Placeholder pattern

Placeholders specify that data stored in a different document
or data stored within the same document at a different loca-
tion should be inlined. In addition to a match attribute which
specifies the target of the rule (as for all other rules), a Place-
holder rule has a ref attribute that contains an XQuery expres-
sion, which specifies the data that should be inlined. Figure 9
gives a simple example. It shows an Office document with a
footnote (Fig. 9a). In this document, the texts of footnotes are
stored separately from the actual text. The Placeholder rule
(Fig. 9c) brings a copy of the footnote text to the right loca-
tion (Fig. 9b). As in the Alternative rule, the match expression
binds a variable, $m, which can be used in the ref expression.

An application of a Placeholder rule transforms an XML
document into exactly one instance. It is possible that the

(a)

(b)

(c)

Fig. 9 Placeholder example

ref expression refers to a different document (e.g., a spread-
sheet). Any XQuery expression is allowed in the ref expres-
sion. Furthermore, it is possible that the ref expression
evaluates to a sequence of several items (values and nodes,
possibly hundreds or even thousands). In that event, the whole
sequence is inlined. How to generate a set of instances if the
ref expression evaluates to a sequence is described in the
next subsection (Field pattern).

In addition to Office documents, the Placeholder pattern
occurs in object-oriented code such as Java. If a class, A, is
derived from a class, B, and inherits properties (e.g., meth-
ods and class variables), these properties become searchable
in the context of the source code of class A by using the
Placeholder pattern.

3.6 Field pattern

A Field rule combines the behavior of an Alternative and a
Placeholder rule. It is a useful rule to implement use cases
such as that of Example 1 of the introduction. Figure 10a
shows a Word document (a letter) referring to the Excel
spreadsheet of Fig. 10b that contains a list of names; one
instance of the letter is generated for each name (Fig. 10c, d).
Figure 10e gives the Field rule that generates these two
instances.

Like a Placeholder rule, a Field rule has a match and a
ref expression. Furthermore, a Field rule has a key and an
optional expression like an Alternative rule. The Field rule
of Fig. 10e specifies that for each line in the Excel stylesheet
“names.xls” an instance should be generated. In a Field rule,
the ref expression binds a variable, $r, which can be used in
the key expression. In this example, the key of each instance
that is generated is the line number (i.e., the attribute id).

As in all other rules, the match expression binds a vari-
able, $m, which can be used in the ref and key expressions.
The use of the $m variable is not shown in the example rule
of Fig. 10e. Furthermore, this example rule does not specify
the optional attribute. By default, the optional attribute is set
to false so that it need not be specified if that is the desired
value.
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(a)

(b)

(c)

(d)

(e)

Fig. 10 Field example

Figure 10c and d show the two instances that are gener-
ated if the Field rule of Fig. 10e is applied to the document of
Fig. 10a. Just like Alternative rules, the number of instances
generated by a Field rule grows linearly with the domain of
the key expression.

3.7 Multiple rules and conflicts

The rule framework presented in this section extends natu-
rally to applications in which several different rules are appli-
cable to one document. It is even possible that the same or
different rules are applied to nested elements inside a doc-
ument. In such a scenario, two questions arise: (a) in which
order should rules be applied; and (b) what happens if two
(conflicting) rules are to be applied to the same matching
element.

Following the SQL standard [43] and the proposal for the
XQuery Update Facility of the W3C [15], we use Snapshot
semantics. Snapshot semantics specify that rules are applied
in two phases. In the first phase, all matching elements are
marked and the expressions referring to each matching ele-
ment are pre-computed using the original version of the doc-
ument(s). If two rules are in conflict and match the same
element in the first phase, then the process aborts with an
error. In the second phase, the instances of the document
are constructed, thereby combining the pre-computed trans-
formations of the matching elements of the first phase. This

step is implementation dependent. As shown in the following
sections, the instances are not physically constructed in our
implementation.

Snapshot semantics served the purposes of all use cases
that we have looked at so far. Nevertheless, it is worth-while
to study alternative models. For instance, a model that sup-
ports composability of conflicting rules can reduce the num-
ber of classes that are needed; e.g., the Field rule could be
expressed as a composition of Alternative and Placeholder
rules, applied to the same elements. We plan to study such
models as one avenue for future work.

4 Query language

This section defines the operators of the query language stud-
ied in this work. As opposed to traditional keyword search,
these operators are applied to instances, instead of files. Con-
sequently, the results of queries are instances (not files). Other
than that, the query language is straight-forward and strongly
resembles the query language used in traditional search prod-
ucts such as Google.

Retrieval model. This work focuses on the Boolean
retrieval model. According to this model, a search engine
returns an instance if and only if the query keywords appear
in the instance’s content. This work also briefly addresses
ranking, but the main contribution lies in techniques to effect
Boolean information retrieval. Studying issues of ranking in
more detail is an important avenue for future work.

The main operators of the query language for Boolean
retrieval are presented in Table 1 and explained in the fol-
lowing.

AND. This operator corresponds to the “,” operator in
search engines like Google. The input of this operator is a
list of two or more keywords. The result is a list of instances
which contain all of the keywords given as input.

OR. This operator implements disjunctions. The input of
this operator is a list of two or more keywords. The result is a
list of instances which contain either of the keywords given
as input.

NOT. This operator implements negation. The input of this
operator is a single keyword. The result is a list of instances
which do not contain the keyword.

NEXT. This operator implements phrase search. As
opposed to keyword search, this operator returns all instances
in which all keywords given as input are contained and adja-
cent. For brevity, this paper often uses quotation marks as
an equivalent syntax to represent phrase search. The NEXT
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operator can be composed with all other operators as part of
complex search queries and queries which combine keyword
and phrase search.

5 Normalization of documents

The first step in the system outlined in Fig. 4 of the introduc-
tion is the creation of a normalized view for every document.
The normalized view is the basis for all further steps: index-
ing and query processing. The goal is to have a representa-
tion of the documents that captures the affects of all rules
that are applicable to the document so that all further steps
can be carried out independent of the presence of any rules.
As stated in the introduction, the naïve approach of simply
generating all instances is not viable because the number
of instances grows exponentially with the number of rules,
thereby resulting in wasted space for storing the instances,
large crawl times to generate the instances, and large query
processing times to scan indexes that reference all materi-
alized instances. Instead, this section shows how such nor-
malized views can be created without actually creating any
instances and with linear space and time overhead in the num-
ber and size of the documents. The key idea is to identify the
common parts of a document which are not affected by any
rules and factor out all variable parts of the document which
are affected by the rules. Syntactically, the variable parts are
annotated in the document in a uniform way that encodes the
effects of applying a rule.

5.1 Examples

Normalization can be described best using an example.
Figure 11 shows the normalized view for the example of
Fig. 7. This normalized view encodes the two instances
“Mickey likes Minnie” (Fig. 7b) and “Donald likes Daisy”
(Fig. 7c). The key idea of normalization is as follows: markup
the variable parts of the data using special select ele-
ments. In this example, all option elements are tagged in this
way, indicating that all option elements are variable. Com-
mon parts of the original data (e.g., “likes”), which are not
affected by any rule, are not tagged.

As shown in Fig. 11, each select element contains
a predicate that specifies in which kind of instances of
the view its content should be considered.2 The predicate
R3=mouse, for instance, specifies that the <option world

= “mouse”> Mickey </option> and <option world =

“mouse”> Minnie </option> elements should be included
into the instance that represents Mickey Mouse’s perspective
on the original data; however, these two elements should not

2 Again, the namespaces of the qualified names of select elements
and pred attributes are omitted for brevity.

Fig. 11 Normalized view—alternatives

Fig. 12 Normalized view—versions

be included into the instance that represents Donald Duck’s
view of the world. Here, R3 is a variable with a generic name
that is generated for the Alternative rule of Fig. 7d. In general,
each rule is uniquely identified in this way and the identifi-
ers of rules are used as variables in the pred attributes of a
select annotation generated by the rule. mouse and duck
are the values of the evaluation of the key expression of the
Alternative rule of Fig. 7d. The predicate specifies an equality
because the rule of Fig. 7d is an Alternative rule, and equality
corresponds to the semantics of the Alternative pattern.

Another example of a normalized view is given in Fig. 12.
This normalized view encodes all the instances of the view
described in Fig. 8. Again, select elements define the var-
iable parts of the document and predicates specify the inclu-
sion of such variable content in instances. In case of insert
elements, which correspond to the match expression of the
Version rule with an AFTER_AT action (Fig. 8e), the pred-
icates involve the “≥” operator. Similarly, delete elements
match the Version rule with an BEFORE action so that the
predicates involve the “<” operator. Here, R4 is the identifier
generated for both Version rules of Fig. 8e. The time values
in the predicates are computed from the key expressions of
those rules. The results of the key expression must belong to
a domain on which a total ordering can be defined.

5.2 Normalization algorithm

Algorithm 5.1 shows the details on how the normalized view
of a document is constructed, given the document and a
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Algorithm 5.1 Normalization Algorithm
1: Input: Document d, Rule[] R
2: Output: Document NV {Normalized View}

3: Function constructTaggingTable(Document d, Rule[] R): TT
4: Output: TT(ruleId, pattern, nodeId, keyvalue, op, optional) {Tagging Table}
5: LET matches = {}
6: for all rule ∈ R do
7: if rule.type = “Alternative” OR rule.type = “Comment” OR rule.type = “Excluded” then
8: rule.operator = “=”
9: end if
10: for all m ∈ rule.match(d) do
11: if $m ∈ matches then
12: ’ERROR: Conflict!’ {Node already matched by other rules.}
13: else
14: if rule.ref = NU L L then
15: key = rule.key($m)
16: if key != NU L L OR rule.type = “Comment” then
17: INSERT INTO TT(ruleID, pattern, nodeId, keyvalue, op, optional)

VALUES (rule.ID, rule.pattern, $m.nodeId, key, rule.operator, rule.optional)
18: end if
19: else
20: refs = rule.ref($m) {Evaluate key on each referenced node}
21: for all $r ∈ refs do
22: key = rule.key($m, $r)
23: if key != NU L L then
24: INSERT INTO TT(ruleID, pattern, nodeId, refId, keyvalue, operator, optional)

VALUES (rule.ID, rule.pattern, $m.nodeId, key, rule.operator, rule.optional)
25: end if
26: end for
27: end if
28: end if
29: end for
30: matches := matches ∪ rule.match(d) {Adding matches of current rules to set of matched items.}
31: end for
32: end Function

33: Function constructNormalizedView(Document d, Rule[] R, TaggingTable TT): NV
34: Output: Document NV {Normalized View}
35: for all $n ∈ $d do
36: if ∃ $row ∈ TT where $n.nodeID = $row.nodeID then
37: if $row.pattern = “Alternative” OR $row.pattern = “Version” OR $row.pattern = “Comment” OR $row.pattern = “Field” then
38: $select = new Node(<option pred = “$row.ruleID $row.operator $row.keyvalue”/>)
39: $select.content = $n
40: N V .append($select)
41: if $row.pattern = “Comment” OR $row.optional = “true” then
42: $select := new Node(<option pred = “$row.ruleID $row.operator NULL”/>)
43: N V .append($select)
44: end if
45: else if $row.pattern != “Excluded” then
46: N V .append($n)
47: end if
48: end if
49: end for
50: end Function

set of rules as input. According to the snapshot semantics
described in Sect. 3.7, the algorithm operates in two phases.
The first phase constructs the so-called tagging table. The
tagging table has an entry for each element of the docu-
ment that matches the match expression of a rule. In addition
to the identifier of the element, each entry of the tagging
table contains the identifier of the rule and the pattern of

the rule. Depending on the pattern, in addition, the entry can
contain the key value, as computed by evaluating the key
expression of the rule (Line 15 or 22 of Algorithm 3.7).
Furthermore, an entry of the tagging table has an opera-
tor which is set to equality for all patterns except for the
Version pattern. For the Version pattern, the operator is set
according to the action specified in the Version rule (e.g.,
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Table 3 Tagging table (alternatives example)

Rule Pattern NodeId KeyValue Op

R3 Alternative 1 mouse =

R3 Alternative 2 duck =

R3 Alternative 4 mouse =

R3 Alternative 5 duck =

Table 4 Tagging table (versions example)

Rule Pattern NodeId Key value Op

R4 Version 2 7am >

R4 Version 5 6am <

R4 Version 7 6am ≥

< or ≥). If an element matches more than one rule, the pro-
cess is terminated and an error is returned (Lines 11 and 12
of Algorithm 5.1), according to the semantics of conflicts
defined in Sect. 3.7.

Continuing the examples from Figs. 7 and 8 of Sects. 3.3
and 3.4, Tables 3 and 4 show the corresponding tagging
tables. It can already be seen that the entries of the tagging
table contain all the information needed in order to annotate
the elements in the normalized view.

Indeed, the second phase of normalization (function con-
structNormalizedView in Algorithm 5.1) is merely a traversal
of the tagging table, thereby creating a select element for
each entry of the tagging table and inserting that select
element into the document in order to annotate the match-
ing element (referenced by its NodeId). The pred attribute
of the select element is generated by the identifier of
the rule (e.g., R3), the operator (e.g., =), and the KeyValue
(e.g., “mouse”). This logic is conceptually straightforward
and described in Lines 37–47 of Algorithm 5.1.

It should be noted that the application of rules to nested
elements results in nested select annotations. Logically,
such nesting corresponds to a conjunction of conditions under
which the inner element occurs in instances of the document.
This aspect is revisited in Sect. 6 when the construction of
the predicate-based index is described.

Even though Algorithm 5.1 contains a procedural notation
for the implementation of normalization, both the construc-
tion of the tagging table and the construction of the normal-
ized view can be implemented quite easily using a declarative
language such as XSLT or XQuery. For instance, the imple-
mentation used for the performance experiments (Sect. 11)
was based on Microsoft’s XSLT processor which is inte-
grated into the .NET framework.

5.3 Discussion

The normalized view, as described in this section, has the
following advantages:

Completeness. The normalized view encodes all the
instances of the (potentially huge) application view, in a way
which is independent of the rules that specify the view. This
way, the normalized view can serve as a basis for indexing and
all further query processing. Having such a rule-independent
representation of data makes it possible to extend the rule lan-
guage as new patterns become important, without adjusting
the indexing and query- processing components.

Compactness. The normalized view is a compact repre-
sentation of the original data. As each element of the docu-
ment is annotated at most once, the size of the normalized
view is linear to the size of the original document (at most
a factor of two with regard to the number of elements). It is
even possible that the normalized view is smaller than the
original document if the Excluded pattern is applied.

The normalized view can be further compressed in order
to reduce its size. For example, we used dictionary-based
compression in the implementation of our prototype. As a
result, the two selections mouse and duck can be represented
by a single Bit in the example of Fig. 11. Furthermore, it is
not necessary to serialize the normalized view as XML; in
our implementation, we used a serialized XML format that is
based on tokenization [25]. Such an implementation reduces
the size of the normalized view and significantly speeds up
query processing because no parsing is required.

Instance Computation. From the normalized view, all
instances can be computed by instantiating the variables (e.g.,
R3 and R4) and evaluating the pred attributes accordingly.
The “Mickey likes Minnie” instance of the normalized view
of Fig. 11, for example, can be retrieved by instantiating the
R3 variable to “mouse”. Similarly, the second version of the
document in Fig. 8 can be computed by instantiating the R4
variable to “6am”. As part of instantiation, all elements which
are embraced by select elements whose pred evaluates
to false, are removed. This way of referencing individual
instances is exploited for indexing (next section) and result
aggregation (Sect. 8).

6 Enhanced indexing

This section describes how to extend a conventional inverted
file index in order to index the normalized views of a col-
lection of documents. In other words, this section describes
how to index all the instances of a collection of documents.
Again, the naïve approach is to index each instance sepa-
rately. This approach is impractical for the same reasons as
the naïve approach to materialize all instances is impractical
(discussed in the previous section). Again, as with normal-
ized views, the key idea is to factor out the common and
variable parts in the index and to encode the instances in
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Table 5 Enhanced inverted file—alternative (Fig. 7)

Keyword DocId Predicate

Mickey d1 R3 = “mouse′′

Donald d1 R3 = “duck′′

likes d1 true

Minnie d1 R3 = “mouse′′

Daisy d1 R3 = “duck′′

Table 6 Enhanced inverted file for versions (Fig. 8)

Keyword DocId Predicate

Mickey d2 true

likes d2 true

Minnye d2 R4 < 6am

Minnie d2 R4 ≥ 6am

Mouse d2 R4 ≥ 6am

Mouse d2 R4 ≥ 7am

which variable parts occur using predicates. This way, com-
mon parts which are present in all instances of a document
are indexed only once.

6.1 Example

Table 5 shows the extended inverted file of the example of
Fig. 7. In addition to the document ID (d1 is used in this exam-
ple to refer to the original data of Fig. 7a), keyword and pos-
sibly other properties such as position information and scores
(not shown), the enhanced inverted file keeps a predicate that
logically specifies in which instances the keyword appears.
These predicates are derived from the predicates specified in
the select elements of the normalized view. The keyword
“likes” appears in all instances; correspondingly, it is associ-
ated with the predicate true. All other keywords inherit the
predicate(s) of their surrounding select element(s).

Table 6 shows the inverted file for the versions exam-
ple of Fig. 8. The keywords Mickey and likes appear in all
instances. As a result, the predicate is true for these key-
words. The keyword Minnie only occurs after the typo has
been corrected at timestamp 6am. Correspondingly, the con-
dition of this entry is R4 ≥ 6am. Likewise, the typo Minnye
only occurs in instances with timestamp before 6am. For the
keyword Mouse, two entries are constructed; one for each
occurrence. Judging from Table 6, it may seem overkill to
have two entries for the same keyword and document. For an
exact Boolean retrieval model with phrase search, however,
it is important to have both entries because both entries have
different positioning information. For instance, it is impor-
tant to have both entries in order to infer that the phrase
query “Mickey likes Minnie” only matches Version 2 of the

document (between 6am and 7am), whereas the phrase query
“Mickey Mouse likes Minnie Mouse” only matches the latest
version of the document (after 7am). Positioning information
is not shown in Table 6. It is discussed in detail in Sect. 9.
Two index entries may only be merged if they involve the
same document, keyword, and positioning information.

6.2 Index creation algorithm

The algorithm to construct an enhanced index with predi-
cates is straightforward and omitted for brevity. Again, the
logic looks complicated, but the principles are straightfor-
ward. Essentially, the algorithm scans through the normal-
ized view, picks up all keywords, adds an entry for each
occurrence of the keyword and the conjunction of the pred-
icates of all embracing select elements. That is, if a key-
word, k, occurs in three nested select elements with, say,
predicates p1, p2, and p3, then an index entry for k with
predicate p1 ∧ p2 ∧ p3 is generated.

This way to construct indexes is compact and efficient
in the same way as the normalized view is a compact and
efficient way to construct and represent the set of instances
associated with a document. Just as in traditional information
retrieval, it is possible to fuzzify the index for a more compact
representation and better query performance. In many sce-
narios, it is too wasteful to keep multiple entries for the same
keyword and document and keep exact positioning informa-
tion. Traditional fuzzification techniques can be applied to
such enhanced, predicate-based indexes in the same way as
to traditional inverted file indexes. Studying the impact of
such fuzzifications is beyond the scope of this paper and an
important avenue for future work. The performance exper-
iments reported in Sect. 11 indicate that acceptable perfor-
mance can be achieved for desktop search even with precise
indexes and without fuzzifications.

7 Enhanced query processing

This section discusses how simple keyword queries (with-
out the NEXT operator for phrase search) can be processed
using the enhanced inverted file index described in the previ-
ous section. Phrase search is discussed in Sect. 9. The basic
algorithms are almost the same as for traditional informa-
tion retrieval systems [8]. In this work, we have adopted the
approach to partition the inverted file by keyword and to sort
the resulting inverted lists by document id. The inverted lists
for a specific query can then be merged in a similar way as
a merge join in a relational database system with the docu-
ment id being the join key [12]. The difference to traditional
information retrieval is that the predicates of the index entries
need to be processed when index entries of different inverted
lists need to be merged. Furthermore, we propose a special
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Fig. 13 Processing
conjunctions with multiple rules

merge algorithm in order to deal with multiple index entries
for the same keyword and document (e.g., there are multiple
entries for Mouse in Table 6).

7.1 Example

Two simple examples that demonstrate how the predicates of
index entries are used during query processing were already
given in the introduction (Sect. 1.3). Figure 13 shows a more
complex example that involves multiple index entries in each
inverted list and more complex predicates that involve more
than one variable. For each document (only the entries for
Document d1 are shown in Fig. 13), all combinations of index
entries are considered when the two lists are merged. Since
our framework is constrained to propositional logic (all pred-
icates are conjunctions of the form variable operator con-
stant), consolidating the predicates of two (or more) index
entries is simple and can be carried out in linear time with the
number of conjuncts. In particular, it is simple to detect the
infeasibility of a conjunction such as R1 = 4 ∧ 1 ≤ R1 ≤ 3
when merging the second entry of the bar list and the first
entry of the foo list in Fig. 13. Even processing disjunctions
as part of OR queries (Sect. 4) can be carried out in a linear
and straightforward way. In any way, the result lists (as the
input lists) are kept in disjunctive normal form so that each
entry is a conjunction of predicates.

With regard to performance, it is critical to process a large
number of entries for the same document efficiently. In order
to do that, we propose the use of a sweepline algorithm which
is described in the remainder of this section.

7.2 Sweepline algorithm

This section describes the algorithm used to intersect multiple
lists of keywords. As mentioned in the beginning of this sec-
tion, the inverted lists are sorted by document id so that they
can be merged efficiently. For extended information retrieval,
this sort-merge algorithm needs to be extended. In addition to
the document ids, the predicates in the entries of the inverted
lists must be processed. This extension can be achieved as
follows:

1. Each predicate on each variable is represented as an inter-
val. For instance, the predicate R1 = 1 can be represented
as R1 ∈ [1], where [1] is a point in the domain of Var-
iable R1. Likewise, the predicate 1 ≤ R1 ≤ 3 can be
interpreted as R1 ∈ [1; 3]. If R1 is not constrained, then

Fig. 14 Intervals on sweep area

R1 ∈ (−∞;+∞) holds (or more generally, using the
minimum and maximum values of the domain).

2. At crawl time, when the index is created, one variable
is selected to be the sort key for each document. Then,
all entries for that document are sorted by the lower left
bound of the corresponding interval. For instance, if an
inverted list has several entries for a document and Vari-
able R3, ([7;10], [3;4], [8;9], [6], [2;4], [5;9]), then these
entries are sorted in the following way: L1 = ([2;4], [3;4],
[5;9], [6], [7;10], [8;9]).

3. At query time, an interval join is applied in order to merge
two interval lists for the same document. We chose an
interval join algorithm that is based on the plane sweep
paradigm [40]. That is, a sweep area (as defined in [21])
is used to efficiently perform the merge on the two inter-
val lists. For instance, if we want to intersect list L1 (from
the example of the previous paragraph) with a second list
L2=([1;3], [3;7], [5;6], [6;7], [8;10]), the intervals can be
visualized as shown in Fig. 14.
The intervals in the upper part of Fig. 14 represent inter-
vals of L2 and the intervals in the lower part of the
figure represent intervals of L1. The interval join moves a
sweep line along the R3 axis. Whenever it hits the lower
left bound of an interval (representing a predicate), it
inserts that interval into a so called sweep area struc-
ture [21]. Whenever the sweep area hits the upper bound
of an interval, it removes that interval from the appropri-
ate sweep area structure. Details of this algorithm can be
found in [7,21,40].

This sweepline algorithm merges index entries accord-
ing to a single dimension (e.g., variable R3 in the example of
Fig. 14). As shown in Fig. 13, index entries may involve mul-
tiple variables and it is possible that two index entries overlap
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in one dimension and do not overlap in another dimension. In
order to finalize the merge between two index entries, there-
fore, the other dimensions need to be taken into account, too.
This situation is analogous to a multi-dimensional sort-merge
join in relational databases: One join predicate, the so-called
primary join predicate, is favored and the other join predi-
cates need to be applied separately for all tuples that match
the primary join predicate. As for relational sort-merge joins,
performance is best if the most selective join predicate is cho-
sen as the primary join predicate. Likewise, the most selec-
tive dimension (or variable) should be selected in order to
sort the index entries of a document and for carrying out the
sweepline algorithm.

In all experiments that we conducted so far, this algorithm
was efficient enough to meet the performance requirements
of modern information retrieval (Sect. 11). There are, how-
ever, several additional optimizations that can be applied.
First, if only points (rather than intervals) are present, then a
traditional sort-merge join can be applied. This opportunity
arises if no Version rules have been applied to the relevant
documents. Second, in some situations, multi-dimensional
join techniques (e.g., [7,20]) can be applied. We plan to study
the trade-offs of the different join techniques as part of future
work.

7.3 Search modes

As mentioned in the introduction, it is possible to toggle
between different search modes. It is possible, for instance,
to let the user decide whether the search should be carried
out across all versions of a document or in each version of
the document individually, depending on the intent of the
user or the requirements of an application. Implementing this
toggling is straightforward by disabling rules during query
processing. For instance, inter-version search can be carried
out by disabling all Version rules. During query processing,
a rule can be disabled by simply ignoring all predicates that
involve the identifier of that rule; in other words, predicates
that involve the identifier of that rule are set to true. Doing so,
can be done on the fly as part of merging the inverted lists. In
particular, this toggling can be implemented using the same
enhanced index. That is, no dedicated indexes for different
search modes need to be constructed: One enhanced index
for all search modes is sufficient.

8 Result aggregation

The last step of query processing is result aggregation (Fig. 4
in Sect. 1.3). The goal of result aggregation is to provide users
with links to specific instances that match a query, if not all
instances of a document match the query. Result aggregation
can be carried out in a straight-forward way. A result tuple

contains a predicate which can be used to instantiate vari-
ables in the normalized view. For instance, the first entry of
the result list of Fig. 13 indicates that Document d1 matches
the foo, bar query, if R1 = 1. Consequently, the normalized
view of d1 can be instantiated using R1 = 1 and random
settings for all other variables. Just like the predicates in the
select elements of a normalized view are a compact rep-
resentation of all instances of a document, the predicate of a
query result is a compact representation of all the instances
of a document that match a query.

9 Phrase search

Processing phrase queries is an important part of modern
Information Retrieval systems. Unfortunately, the traditional
flat positioning scheme does not work well with predicate-
based indexing: Adjacency must be defined taking the pred-
icates and the levels of select elements in the normalized
view into account. In order to encode adjacency in the pres-
ence of select elements (whose contents may or may not
appear in an instance of the document), we propose to use a
hierarchical positioning scheme with Dewey codes.

9.1 Example

To illustrate the need for a new positioning scheme, Fig. 15
shows the traditional (flat) positioning information for the
normalized view of our running versioning example (Fig. 12).
We omit the insert and delete elements of the normalized
view for brevity; they do not contain any keywords and are
therefore not relevant. Figure 15 shows why flat positioning
does not work in our context. Although the phrase “Mickey
Mouse likes Minnie Mouse” matches Instance 3 of the doc-
ument (any version after 7am), there is not enough informa-
tion in the flat positioning scheme to detect this. The keyword
likes is at Position 2 and the keyword Minnie is at Position 4.
In Instance 3 (after the deletion of Minnye), however, these
two keywords are adjacent. This deficiency of the traditional
positioning scheme is not an artifact of using the normalized
view: The same problem arises if positions are associated
with keywords in the original document. Furthermore, the
same kind of deficiency arises for all the other patterns. The
remainder of this section presents a better encoding of posi-
tioning information that allows to reason about potential gaps
such as the one between likes and Minnie.

9.2 Enhanced positioning scheme

The proposed positioning scheme is based on the following
principles:
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Fig. 15 Traditional (flat) positioning scheme (Fig. 8)

Fig. 16 Dewey IDs (Fig. 8)

Fig. 17 Dewey IDs/next level (Fig. 8)

Table 7 Inverted file with Dewey IDs (version example)

Keyword DocId Predicate Dewey Pos. Next level

Mickey d2 true 0 0

likes d2 true 2 0

Minnye d2 R4 < 6am 3.0 0

Minnie d2 R4 ≥ 6am 4.0 1

Mouse d2 R4 ≥ 7am 1.0 0

Mouse d2 R4 ≥ 6am 4.1 0

Table 8 Skip spaces (version example)

Keyword DocId Predicate Dewey Pos. Next level

“ ” d2 R4 < 7am 1 0

“ ” d2 R4 ≥ 6am 3 0

“ ” d2 R4 < 6am 4 0

1. Eachselect element has a position. A select element
and all its descendants consume exactly one position at
the level at which the select occurs. Figure 16 shows
the corresponding numbering scheme of (top-level) key-
words and select elements.

2. Hierarchical positions. Keywords within a select
element are numbered according to a Dewey encoding
scheme [39]. For instance, Minnie is associated to the
position 4.0 because it is the first keyword in theselect
element at position 4. Nested select elements (not
shown in this example) would be numbered in the same
way as keywords inselect elements. In the presence of
nested select elements, the Dewey codes can become
arbitrarily long. Table 7 shows the extended inverted
index with the Dewey position of each keyword. (The
level column of Table 7 is described in Point 4, below.)

3. Skip Spaces. For each select element of the nor-
malized view an additional Skip Entry is inserted into
the inverted index. The three skip entries for the three
select elements of the example of Fig. 16 are shown
in Table 8. A skip entry encodes under which condition a

select element can be skipped; i.e., which instances do
not contain the contents of the select element. There-
fore, a skip entry has the negation of the predicate asso-
ciated to the select element. Skip entries have no key-
word because they represent empty content.
As a technicality, negating a predicate that is composed
of several conjuncts results in a predicate with several
disjunctions. In order to ensure that all predicates in the
inverted file have conjunctions only (no ORs), several
skip entries are generated if the predicate associated to
a select element involves several conjuncts: one for
each conjunct.

4. Levels. There are two cases in which two keywords may
be adjacent:

– The two keywords are at the same level (i.e.,
embraced by no or the same select element) and
are next to each other. In this case, their Dewey code
only differs in the last position. Examples are Minnie
(Dewey code 4.0) and Mouse (Dewey code 4.1).

– They are at different levels and the levels are com-
patible.

In order to deal with the second case, the next level at
which all adjacent keywords can be found is recorded for
each keyword. Figure 17 shows this next level information
for each keyword. For instance, any adjacent (NEXT) key-
word to Mickey must be found at Level 0, either within the
following select element (i.e., Mouse) or after this (and
potentially other) select elements (i.e., likes). In general,
two keywords, p and q with Dewey IDs p0.p1. . . . .pn and
q0.q1. . . . .qm and levels l p and lq are possibly adjacent if and
only if

(∀i = 0..n − 1 : pi = qi ) ∧ pn + 1 = qm ∧ l p =
lq ∧ n = m
OR (∃l : ∀i = 0..l − 1 : pi = qi ) ∧ pl + 1 = ql

There are several simplifications which can be used in
order to reduce computation and storage requirements: First,
the next level can be inferred from the Dewey ID and the
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presence of an adjacent (following) keyword within the same
select element. A single bit is, therefore, sufficient to store
this information. Second, Dewey IDs can be compressed as
proposed in [39]. Third, there are various ways to speed up
the evaluation of the adjacency equations. Trailing zeroes
can be ignored on the right side of the adjacency equation.
Furthermore, the next level information is only needed when
the next keyword is at a higher level.

It should be noted that the positioning scheme described
in this section has some shortcomings. For instance, it does
not support distance functions that ask for keywords that
are within a certain range (greater than 1). Furthermore, the
scheme is not update friendly: If a document is updated,
the whole document needs to be re-indexed. In order to
decrease the overhead of incremental updates, interval-based
ID schemes such as XISS [33] could be used. Studying these
extensions is beyond the scope of this paper.

9.3 Processing phrase search queries

This section describes how the query processing phase
described in Sect. 7 is extended in order to take Dewey IDs
and skip spaces into account for phrase search queries. Log-
ically the query w1 N E XT w2 is equivalent to a (recursive)
join query between the inverted list of all entries that match
w1, zero, one, or more times the skip entries, and the inverted
list of all entries that match w2. Denoting the skip entries as
“ ”, this recursive query can be described by the following
regular expression:

w1(””)∗w2

As join predicates, the adjacency predicate of the previous
subsection needs to be considered. Furthermore, of course,
the logic of consolidating predicates described in Sect. 7
needs to be applied. In particular, the sweep line algorithm
of Sect. 7 continues to be applicable.

In the worst case, this operation (i.e., a recursive query) is
quite expensive, but it is always polynomial with the size of
the document. In practice, the overhead is tolerable because
the number of adjacent skip entries (i.e., adjacent select
elements in the normalized view) is limited. We will revisit
query processing performance in Sect. 11 when we present
the results of performance experiments.

10 Ranking

The focus of this work has been on Boolean retrieval. Accord-
ing to that model, a document (or an instance of a docu-
ment) either matches a query or it does not. Nevertheless,
the model can naturally be extended to a model that assigns
a score to each document / instance, determining how well
the document / instance matches a query. Such an approach

is particularly beneficial if the inverted index is fuzzified for
efficiency as described in Sect. 6.

Adding scoring and ranking of search results is (almost)
orthogonal to the techniques presented in this paper. In par-
ticular, many different scoring schemes can be incorporated.
Doing so involves adding weights to entries in the inverted
index. For instance, such weights could be based on the term
frequency (tf) and inverse document frequence (idf), as in
traditional information retrieval systems [8]. During query
processing, these weights need to be merged in addition to
the predicates and the positioning information. Section 11.7
presents some experimental results we carried out with such
a scoring and ranking scheme. Overall, we believe that rank-
ing is less relevant for desktop search because the number of
results that match according to a Boolean retrieval model is
limited in this context.

11 Experiments and results

We implemented the techniques presented in the previous
sections (normalization, indexing, and extended query pro-
cessing with and without phrase search) and experimentally
compared our implementation with traditional search tech-
niques, the naïve approach to integrate rules, and a com-
mercial search engine. Correspondingly, we refer to these
approaches as “Enhanced” (with rules), “Naïve” (with rules),
and “Traditional” (no rules). As a commercial search engine
Windows Desktop Search was used (denoted as WDS). The
goal of the experiments was to show that (a) our extended
approach gives better search results than traditional search;
(b) the space and processing overhead over traditional search
is tolerable; and (c) the overhead of the naïve approach is not
tolerable.

11.1 Experimental setup

Software and hardware used. The indexing engine (i.e.,
crawler, normalization and index creation) and query proces-
sor were implemented in Visual Studio.NET using the Micro-
soft .NET Framework 2.0. All experiments were performed
on an IBM ThinkPad T42, with a Pentium-M 1.7 GHz pro-
cessor and 1 GB of RAM under Windows XP Professional.

Experimental data. For the experiments reported in this
paper, we crawled data collections from the authors’ per-
sonal desktops. The data involved E-Mail (Outlook), CVS
(Java source code), and LATEXfiles. Furthermore, we crawled
TWiki and Wikibooks data. For all these kinds of data, open-
source tools were available in order to convert them to XML
so that rules according to the syntax of Sect. 3 could be
applied.
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Table 9 Patterns in
experimental data sets Data collection Patterns Description Trad.search produces Trad.search produces

false positives false negatives

LATEX Annotation, Annotated footnotes, Yes

Placeholder External includes Yes

E-mail Alternative Group by message and Yes

by conversation thread

Java code Placeholder, Modeling inheritance Yes

Annotation

Twiki Version Versioned documents Yes

CVS Version Versioned software repos. Yes

Wikibooks Version Versioned information Yes

Table 10 Experimental data collections

Data collection Size (MB) No of files No.of instances

LATEX 13.2 1093 1473

E-Mail 45.9 1 26692

Java code 182 6624 8005

Twiki 4.54 410 3743

CVS 5.92 827 1442

Wikibooks 79.7 9846 72576

Table 9 shows the most important patterns that can be
found in each kind of data. For example, the LATEXdata
involves footnotes and an incorrect interpretation of foot-
notes results in false negatives for phrase searches. That is,
traditional search engines will miss a document even though
it matches a query and expose poor recall. The Version pat-
tern (as of Example 2 in the introduction) can be found in
the Twiki, CVS, and Wikibooks data. If that pattern is not
interpreted correctly, false positives may be returned. As a
result, traditional search engines may have poor precision for
this kind of data. Java code has the Placeholder pattern; due
to inheritance, a class may have more properties than listed
in its source code (similar to Example 1 of the introduction).
Again, misinterpreting inheritance may result in poor recall.

The size of the data collections is given in Table 10. The
data varies from 4.54 MB in case of TWiki to 182 MB in
case of Javacode and contains several levels of nesting of the
elements carrying patterns.

Experimental queries. Since the data was personal data
from the authors’ desktops, the queries were handcrafted.
The complete list of queries is given in Fig. 18. The queries
tried to test a variety of scenarios, including queries with a
high and a low recall and queries that involve frequent and
rare keywords and any combination of these. Furthermore,
the queries tried to test the correct interpretation of the pat-
terns. All queries contained between two and five keywords.

Precision and recall were computed relative to the enhanced,
predicate-based index approach presented in this paper.

11.2 Precision and recall

The main goal of this work is to increase the quality of
queries in terms of precision and recall. Figure 19 shows
the precision and recall of the three alternative approaches
(Traditional, Enhanced, Naïve) for the various data sets.
Again, the precision and recall of Enhanced and Naïve were
set to 1 and the precision and recall of Traditional was com-
puted relative to Enhanced. One way to compute the precision
and recall of Traditional search is to consider how many rel-
evant documents are returned as compared to the Enhanced
and Naïve methods, as shown in Fig. 19a and b. These fig-
ures show that Traditional has merely a recall of 50% for the
Java code. Again, the reason is that Traditional misinterprets
inheritance. For the LATEXand E-Mail collections, the recall
of Traditional is 80%. Again, misinterpreting the placeholder
pattern in this data is the cause for this sub-optimal recall.

With regard to precision, Traditional is fine for all data that
does not exhibit the Version pattern (i.e., LATEX, E-Mail, and
Java code) and shows fairly high precision if the precision
metric is regarded in the granularity of whole documents
(Fig. 19a). An alternative way to measure precision is to take
the number of instances as a baseline, as shown in Fig. 19c.
This figure shows that the precision drops dramatically if this
way of computing precision is used. This phenomenon indi-
cates that Traditional search is indeed able to locate the right
documents, but it is very difficult to find the right version of
the document that matches a query with Traditional search
engines. Again, this phenomenon has been described as part
of both examples in the introduction.

For completeness, Fig. 19d shows the recall of all three
approaches on a per-instance basis. Obviously, Traditional
performs better in terms of recall if a per-instance metric is
used because for Traditional all instances of a document are
considered to be part of a query result. (Traditional search is
not able to identify individual instances of a document.)
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Fig. 18 Experimental queries

Fig. 19 Precision and recall for experimental data sets

11.3 Index Size

The second set of experiments assessed the space overhead
of the Enhanced and Naïve approaches. Tables 11 and 12

summarize the results. Table 11 gives the index sizes for
an index without positioning information; Table 12 gives the
results including positioning information (Sect. 9). As a base-
line, these two tables also include the index size of WDS
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Table 11 Index size (MB)
Collection Trad index Enh index Naïve index WDS index Overhead Space Gain

Enh/Trad Enh/Naïve (%) Enh/Naïve (%)

LATEX 2.19 2.81 3.7 19.1 ×1.28 24

E-mail 21.1 33.4 50.4 484 ×1.58 34

Java Code 6.6 7.08 8.16 68 ×1.07 13

Twiki 0.70 1.30 4.62 27.3 ×1.86 72

CVS 1.05 1.18 2.23 17.7 ×1.12 47

Wikibooks 22.1 43.6 256 664.5 ×1.97 83

Table 12 Index size with
positioning info (MB) Collection Trad index Enh index Naïve index WDS index Overhead Space gain

Enh/Trad Enh/Naïve (%)

LATEX 6.81 10.3 13 19.1 ×1.51 21

E-mail 33.9 60.8 96.8 484 ×1.79 37

Java Code 22.9 27.1 32.2 68 ×1.83 15

Twiki 2.23 4.68 11.7 27.3 ×2.09 60

CVS 2.77 3.51 6.91 17.7 ×1.26 49

Wikibooks 54.7 207 581 664.5 ×3.78 64

Table 13 Index creation time
(s) Collection Trad Enh. +Normaliz. Naïve+Inst. materializ. Overhead Gain

Enh/Trad Enh/Naïve (%)

LATEX 18.15 23.83 33.33 ×1.31 29

E-mail 110 163 21080 ×1.49 99

Java Code 125.8 149 204.5 ×1.18 27

Twiki 5.25 7.12 40.126 ×1.36 82

CVS 7.9 8.36 30 ×1.06 72.13

Wikibooks 129.21 219.107 1605.9 ×1.70 86

Table 14 Index creation time
with positioning info (s) Collection Trad Enh. +Normaliz. Naïve+Inst. materializ. Overhead Gain

Enh/Trad Enh/Naïve (%)

LATEX 20.27 28.62 37.63 ×1.41 24

E-mail 148 182 21116 ×1.23 99

Java Code 131.63 162.06 233 ×1.23 19

Twiki 6 8.23 41.611 ×1.39 80

CVS 8.98 9.79 31.276 ×1.09 68

Wikibooks 123.12 525 1731.5 ×4.26 70

(a commercial product) and of a handcoded traditional index.
For WDS, the use of positioning information could not be
configured.

The results are pretty straight-forward. Without position-
ing information, the space overhead of Enhanced when com-
pared to the (handcrafted) Traditional approach is tolerable;
it is a factor of two in the worst case (Twiki). With positioning
information, the overhead of Enhanced as compared to Tradi-
tional is up to a factor of four in the worst case (Wikibooks).
The Naïve approach is consistently worse than Enhanced.

In the worst case by a factor of almost six (Wikibooks, no
position information).

11.4 Index creation time

The third set of experiments assessed the time to create the
index and the normalized view. Tables 13 (without position-
ing) and Table 14 (with positioning) show the results; all
times are given in milliseconds. The overhead of Enhanced
versus Traditional is still acceptable in both cases. Only for
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Table 15 Normalized view vs.
materialized instances Collection Trad:Original Enh:Norm. Naïve:Mat. Gain(%)

size (MB) view (MB) instances (MB) by norm.

LATEX 13.2 19.4 25.4 23.62

E-mail 45.9 46.8 5252.12 99.11

Java Code 182 201 307.72 34.68

Twiki 4.54 4.3 22.7 81.06

CVS 5.92 6.9 16.5 58.18

Wikibooks 79.7 102 1117 90.90

Table 16 Query proc. time (ms)
Collection Trad. Enh. Naive WDS Overhead Enh/Trad Overhead Naïve/Enh (%)

LATEX 1.38 1.61 2.47 29.31 ×1.17 34.8

E-mail 4.17 4.73 11.08 7.28 ×1.13 57.3

Java Code 3.91 4.84 6.04 23.65 ×1.24 19.9

Twiki 0.82 1.24 2.68 31.56 ×1.51 53.7

CVS 1.75 2.01 2.81 14.27 ×1.48 28.5

Wikibooks 2.35 3.20 12.86 26.46 ×1.36 75.1

Table 17 Query proc. time
(ms), phrase search Collection Trad. Enh. Naive WDS Overhead Enh/Trad Overhead Naïve/Enh (%)

LATEX 6.03 12.76 8.41 21.86 ×2.12 0

E-mail 4.17 12.88 13.45 8.94 ×3.08 4.2

Java Code 7.88 15.69 5.72 23.65 ×1.99 0

Twiki 1.38 9.28 3.43 29.64 ×6.72 0

CVS 3.72 8.64 2.75 11.86 ×2.32 0

Wikibooks 3.69 8.62 14.47 26.46 ×2.34 40

the Wikibooks data set, the overhead is substantial (factor
of 4). The Wikibooks data involves applications of rules to
nested elements; the maximum depth of nested select ele-
ments is 500. In all other cases, the data is fairly flat and the
overhead of the Enhanced approach is below a factor of 1.5.
The Naïve approach, again, is consistently worse than the
Enhanced approach. In the extreme case (E-Mail), it took
two orders of magnitudes more to materialize the instances
and index the materialized indexes than it took to construct
the normalized views and index that.

11.5 Space gain through normalization

Table 15 shows that the size of the normalized view is compa-
rable with that of the original data (denoted as Trad:Original
in Table 15). The space required to store the materialized
instances using the Naïve approach, however, is prohibitive.
For the E-Mail data, the compression rate of normalization
is above 99%.

11.6 Query processing time

Table 16 presents the average running times (in milliseconds)
of keyword queries ( no positional information needed).

Table 17 shows the query processing times for phrase search
when the positional information is used. It is obvious that the
running times of an Enhanced search are longer as compared
to the running times of a Traditional desktop search engine
because the indexes that need to be scanned are larger, and the
logic that merges two inverted lists is more complex (Sect. 7).

The differences in running times depend on the data set, on
the rules applied, and more importantly, on the type of query.
In almost all cases, however, the overhead of the Enhanced
approach is tolerable. The times are given in milliseconds and
all times are clearly fast enough for human interaction. More
specifically, the response times of the Enhanced approach are
always below 15 ms, even for phrase search. Even the Naïve
approach has acceptable response times of always less than
15 ms.

11.7 Ranking

Throughout this work, we focused on the Boolean retrieval
model. In order to study the impact of ranking, Table 18
presents the recall results of a small Top k experiment.
For this experiment, we only considered the Top k results
returned by the Enhanced approach using the traditional tf/idf
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Table 18 Recall of enhanced,
T opk Results Collection Top 1 (%) Top 2 (%) Top 3 (%) Top 4 (%) Top 5 (%)

LATEX 6 12 18 23 29

E-mail 16 30 32 34 35

Javacode 9 19 28 34 37

Twiki 18 30 35 43 45

CVS 31 61 63 65 66

Wikibooks 22 29 29 30 30

Fig. 20 Indexing time (s), partial indexing

ranking model. This experiment studied how fast the relevant
results are returned. The results are encouraging: the recall is
what could be expected from similar experiments with tradi-
tional search engines. Therefore, it seems that the Enhanced
indexing and query processing mechanisms introduced in
this work have no impact on the scoring and ranking mecha-
nism so that scoring and ranking can be seen as an orthogonal
issue and improvements in scoring and ranking models are
directly applicable to our approach, too.

11.8 Partial indexing

As shown in the previous section, there is a tradeoff between
the quality of query results (precision and recall) and the
space and time overhead of index creation and query pro-
cessing. The Traditional and Enhanced approaches represent
extreme points in the spectrum of possible alternatives. An
approach to trade better performance for worse query results
is to fuzzify the Enhanced index. To study the impact of such
a fuzzification, we studied variants of the Enhanced index
for the Wikibooks data set. In these variants, we varied the
number of versions of each Wikibook document from 10 to
100. The results are shown in Figs. 20, 21, 22, 23, 24. As
a baseline, these figures also show the complete Enhanced
approach that indexes all variants, denoted as all in the
figures.

Fig. 21 Index size (MB), partial indexing

Fig. 22 Size of normalized view, partial indexing

Index creation time. Figure 20 shows the index creation
time for 10 to 100 indexed versions per Wikibook document.
The results are not surprising; the effort grows roughly lin-
early with the number of versions that are indexed. For the
Enhanced approach, the index creation time increases from
105 s (for 10 versions) to 206 s (for 100 versions). Again, the
Enhanced approach is much better than the Naïve approach
and has tolerable overhead as compared to the Traditional
approach. Obviously, the index creation time of the Tradi-
tional approach is constant, independent of the number of
indexed versions.

Index size. Figure 21 shows the size of the index as a func-
tion of the number of indexed versions. Again, the results are
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Fig. 23 Query processing time (s), partial indexing

Fig. 24 Recall (returned instances), partial indexing

as expected. The size of the index of the Enhanced approach
grows from 25 MB (for 10 versions) to 50 MB (for 100 ver-
sions). As in all other experiments, the Enhanced approach
significantly outperforms the Naïve approach and is worse
(yet, tolerably) than the Traditional approach. Comparing the
fuzzified index sizes with the size of the full Enhanced index,
it can be seen that the savings of fuzzification are not signif-
icant.

Space gain by normalization. Figure 22 shows the size of
the normalized view (Enhanced) as compared to the size of
the original data (Traditional) and the space requirements of
materialzing all instances (Naïve). Again, there are no sur-
prises. Normalization is important even for fuzzified indexes
that only contain partial information.

Query processing time. Figure 23 shows the average run-
ning time of queries (keyword queries, no positioning infor-
mation needed) with a varying degree of fuzzification. Again,
it can be seen that the savings that can be achieved by partial
indexing are not significant.

Result quality. Finally, Fig. 24 shows the recall of the three
alternative approaches with a varying degree of fuzzifica-
tion of the index. Here, it can be seen that for the Enhanced
approach, indeed, the recall drops significantly if less ver-
sions are indexed. In summary, we conclude that partial

indexing does not seem to be beneficial. The performance
improvements are moderate, whereas the reduction in query
result quality is substantial.

12 Conclusions and future work

This work was motivated by the observation that current
desktop search engines see data with different eyes than
users. As a result, traditional desktop search engines return
wrong results in many scenarios. The main contribution of
this work was to provide a framework that teaches desktop
search engines to see the data with the same eyes as the user
and to extend search indexes and query processing to effi-
ciently implement this framework. Experiments showed that
indeed the improvements in the quality of query results can be
substantial and that the space and time overhead is tolerable.

There are several avenues for future work. One avenue is to
apply more powerful query paradigms to normalized views,
i.e., extend keyword search to XQuery. Furthermore, XML
information retrieval approaches, such as query relaxation
and structure-based search, could be explored, as described
in Sect. 2. Adjusting indexing and search based on the type
of the annotations is another optimization idea that we plan
to study as part of future work. Another important direction
for future work is to apply these techniques to other clas-
ses of applications, such as Scientific data, electronic health
records, and even enterprise application data.

Another direction is to apply the techniques proposed in
this work to the “Hidden Web”. Rules could be seen as a mod-
ern version of robots.txt files that describe how to inter-
pret the data found by the crawler. In order to be practical,
it is important to create libraries of rules for documents gen-
erated by popular applications (e.g., Microsoft Office, Sun’s
OpenOffice, Twiki, LATEX, E-Mail, CVS, etc.).
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