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Abstract Preference queriesincorporate the notion of bi-
nary preference relationinto relational database querying.
Instead of returningall the answers, such queries return only
thebestanswers, according to a given preference relation.

Preference queries are a fast growing area of database re-
search.Skylinequeries constitute one of the most thoroughly
studied classes of preference queries. A well known limi-
tation of skyline queries is that skyline preference relations
assign the same importance to all attributes. In this work, we
studyp-skylinequeries that generalize skyline queries by al-
lowing varying attribute importance in preference relations.

We perform an in-depth study of the properties of p-
skyline preference relations. In particular, we study the prob-
lems of containment and minimal extension. We apply the
obtained results to the central problem of the paper:eliciting
relative importance of attributes. Relative importance is im-
plicit in the constructed p-skyline preference relation. The
elicitation is based on user-selected sets ofsuperior (pos-
itive) and inferior (negative) examples. We show that the
computational complexity of elicitation depends on whether
inferior examples are involved. If they are not, elicitation
can be achieved in polynomial time. Otherwise, it is NP-
complete. Our experiments show that the proposed elicita-
tion algorithm has high accuracy and good scalability.
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1 Introduction

Effective and efficientuser preference managementis a cru-
cial part of any successful sales-oriented business. Know-
ing whatcustomers like and more importantlywhythey like
that and what theywill like in the future is an essential part
of the modern risk management process. The essential com-
ponents of preference management include preference spec-
ification, preference elicitation, and querying using prefer-
ences. Many preference handling frameworks have been de-
veloped [Börzsönyi et al(2001),Kießling and Köstler(2002),
Brafman and Domshlak (2002),Chomicki(2003),P. Pu and Torrens(2003),
Hansson(1995),Fishburn(1970)].

Our starting point here is theskyline framework[Börzsönyi et al(2001)].
The skyline preference relation is defined on top of a set
of preferences over individual attributes. It represents the
Pareto improvementprinciple: a tuple o1 is preferred to a
tuple o2 iff o1 is as good as o2 according to all the attribute
preferences, and o1 is strictly better than o2 according to at
least one attribute preference. Now given a set of tuples, the
set of thebesttuples according to this principle is called a
skyline.

Example 1Assume the following cars are available for sale.

make price year
t1 ford 30k 2007
t2 bmw 45k 2008
t3 kia 20k 2007
t4 ford 40k 2008
t5 bmw 50k 2006

http://arxiv.org/abs/1008.5357v1
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Also, assume that Mary wants to buy a car and her at-
tribute preferences are as follows:

>make BMW is better than Ford, Ford is better than Kia
>year the car should be as new as possible
>price the car should be as cheap as possible.

Then the skyline is

make price year
t1 ford 30k 2007
t2 bmw 45k 2008
t3 kia 20k 2007
t4 ford 40k 2008

A large number of algorithms for computing skyline que-
ries have been developed [Börzsönyi et al(2001),Chomicki et al(2003),
Godfrey et al(2005), Lin et al(2005)]. Elicitation of skyline
preference relations based on user-provided feedback has
also been studied [Jiang et al(2008)].

One of the reasons of the popularity of the skyline frame-
work is the simplicity and intuitiveness of skyline seman-
tics. Indeed, in order to define a skyline preference rela-
tion, one needs to provide only two parameters: the setA

of relevant attributes and the setH of corresponding pref-
erences over each individual attribute inA . (In Example 1,
A = {make, price,year} andH = {>make,>price,>year}.)

At the same time, the simplicity of skyline semantics
comes with a number of well known limitations. One of
them is the inability of skyline preference relations to cap-
ture the important notion ofdifference in attribute impor-
tance. The Pareto improvement principle implies that all rel-
evant attributes have the same importance. However, in real
life, it is often the case that benefits in one attribute may out-
weigh losses in one or more attributes. For instance, given
two cars that differ in age and price, for some people the age
is crucial while the price is secondary. Hence, in that case,
the price has to be considered only when the benefits in age
cannot be obtained, i.e., when the age of the two cars is the
same.

Example 2Assume that Mary decides thatyear is more im-
portant for her thanmakeandprice, which in turn are equally
important. Thus, regardless of the values ofmakeandprice,
a newer car is always better than an old one. At the same
time, given two cars of the same age, one needs to compare
their makeandprice to determine the better one. The set of
the best tuples according to this preference relation is

make price year
t2 bmw 45k 2008
t4 ford 40k 2008

Namely,t2 andt4 are better than all other tuples inyear,
but t2 is better thant4 in make, andt4 is better thant2 in
price.

Another drawback of the skyline framework is that the
size of a skyline may be exponential in the number of at-
tribute preferences [Godfrey(2004)]. A query result of that
size is likely to overwhelm the user. Ininteractive prefer-
ence elicitation scenarios[Balke et al(2007)], user prefer-
ences are elicited in a stepwise manner. A user is assumed to
analyze the set of the best tuples according to theintermedi-
atepreference relation and criticize it in some way. Clearly,
if such a tuple set is too large, it is hard to a expect high
quality feedback from the user. The large size of a skyline
is caused by the looseness of the Pareto improvement prin-
ciple. Pareto improvementimplies that if a tupleo is better
thano′ in one attribute, then the existence of some attribute
in which o′ is better thano makes the tuplesincomparable.
Thus, every additional attribute increases the number of in-
comparable tuples.

Here we develop thep-skylineframework which gener-
alizes the skyline framework and addresses its limitations
listed above: the inability to capture differences in attribute
importance and large query results. The skyline semantics is
enriched with the notion ofattribute importancein a natural
way. Assuming two relevant attributesA andB such thatA
is more important thanB, a tuple with a better value ofA
is unconditionallypreferred to all tuples with worse values
of A, regardless of their values ofB. However, given a tuple
with the same value ofA, the one with a better value ofB
is preferred (assuming no other attributes are involved). For
equally important attributes, the Pareto improvement princi-
ple applies. Therefore, skyline queries are also representable
in our framework.

Relative attribute importance implicit in a p-skyline pref-
erence relation is represented explicitly as ap-graph: a graph
whose nodes are attributes, and edges go from more to less
important attributes. Such graphs satisfy the properties quite
natural for importance relationships: transitivity and irref-
lexivity. We show that, in addition to representing attribute
importance, p-graphs play another important role in the p-
skyline framework: they can be used to determineequiva-
lenceandcontainmentof p-skyline relations, and tupledom-
inance.

We notice that two p-skyline relations may differ in the
following aspects:

– the setA of relevant attributes,
– the setH of preferences over those attributes, and
– the relative importance of the corresponding attributes,

represented by a p-graph.

In this work, we are particularly interested in the classFH of
full p-skyline relationsfor which the set of relevant attributes
A consists of all the attributes and the set of corresponding
attribute preferences isH . Hence, two different p-skyline
relations fromFH are different only in the corresponding p-
graphs. We show the following properties of such relations:
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– the containment and equivalence of p-skyline relations
are equivalent to the containment and equivalence of their
p-graphs;

– four transformation rules are enough to generate all min-
imal extensions of a p-skyline relation;

– the number of all minimal extensions of a p-skyline re-
lation ispolynomialin |A |;

– every⊂-chain inFH is of polynomiallength, although
FH contains at least|A |! relations.

The properties listed above are used to develop the elici-
tation algorithm and prove its correctness. Incorporatingat-
tribute importance into skyline relations allows not only to
model user preferences more accurately but also to make the
size of the corresponding query results more manageable.

At the same time, enriching the skyline framework with
attribute importance comes at a cost. To construct a p-sky-
line preference relation from a skyline relation, one needsto
provide a p-graph describing relative attribute importance.
However, requiring users to describe attribute importance
explicitly seems impractical for several reasons. First, the
number of pairwise attribute comparisons required may be
large. Second, users themselves may be not fully aware of
their own preferences.

To address this problem, we develop a method ofelici-
tation of p-skyline relations based on simpleuser-provided
feedback. The type of feedback used in the method consists
of two sets of tuples belonging to a given set:superior ex-
amples[Jiang et al(2008)], i.e., thedesirabletuples, andin-
ferior examples[Jiang et al(2008)] i.e., theundesirabletu-
ples. This type of feedback is quite natural in real life: given
a set of tuples, a user needs to examine them and identify
some tuples she likes and dislikes most. Moreover, it is ad-
vantageous from the point of view of user interface design
– a user is required to perform a number of simple “check
off” actions to identify such tuples. Finally, such feedback
can be elicited automatically [Holland et al(2003)].

We consider the problems related to the construction of
p-skyline relations covering the given superior and inferior
examples. Specifically, we need to guarantee that the supe-
rior examples are among the best tuples and that the inferior
examples are dominated by at least one other tuple. Also, to
guarantee an optimal fit we postulate that the constructed re-
lation be maximal. We show that determining the existence
of a p-skyline relation covering the given examples isNP-
complete and constructing a maximal such relationFNP-
complete.

In real-life scenarios of preference elicitation using su-
perior and inferior examples, users may only be indirectly
involved in the process of identifying such examples. For
instance, the click-through rate may be used to measure the
popularity of products. Using this metric, it is easy to find
the superior examples – the tuples with the highest click-

through rate. However, the problem of identifying inferior
examples – those which the user confidently dislikes – is
harder. Namely, low click-through rate may mean that a tu-
ple is inferior, the user does not know about it, or it sim-
ply does not satisfy the search criteria. Thus, there is a need
for eliciting p-skyline relations based on superior examples
only. We address that problem here. We show a polynomial-
time algorithm for checking the existence of a p-skyline re-
lation covering a given set of superior examples, and a poly-
nomial-time algorithm for constructing a maximal p-skyline
relation of that kind. The latter algorithm is based on check-
ing the satisfaction of asystem of negative constraints, each
of which captures the fact that one tuple does not domi-
nate another according to the p-skyline relation being con-
structed.

We provide two effective methods forreducingthe size
of systems of negative constraints and hence improving the
performance of the elicitation algorithm. At the same time,
we show that the problem ofminimizingthe size of such a
system is unlikely to be efficiently solvable. The experimen-
tal evaluation of the algorithms on real life and synthetic
data sets demonstrates high accuracy and scalability of the
elicitation algorithm, as well as the efficacy of the proposed
optimization methods.

The paper is organized as follows. In section 2, we in-
troduce the concepts used throughout the paper. In section
3, we describe p-skylines – skylines enriched with relative
attribute importance information. We also discuss the fun-
damental properties of such relations. In section 4, we study
the problem of eliciting p-skyline relations based on supe-
rior and inferior examples. In Section 5, we show the results
of the experimental evaluation of the proposed algorithms.
Section 6 concludes the paper with a discussion of related
and future work. The proofs of all the results presented in
the paper are provided in the Appendix.

2 Basic notations

2.1 Binary relations

A binary relation Rover a (finite of infinite) setS is a subset
of S×S. Binary relations may befiniteor infinite. To denote
(x,y) ∈ R, we may writeR(x,y) or x R y. Here we list some
typical properties of binary relations. A binary relationR is

– irreflexiveiff ∀x . ¬R(x,x),
– transitiveiff ∀x,y,z . R(x,y)∧R(y,z)→ R(x,z),
– connectediff ∀x,y,z . R(x,y)∨R(y,x)∨x= y,
– a strict partial order (SPO)if it is irreflexive and transi-

tive,
– a weak orderiff it is an SPO such that

∀x,y,z . R(x,y)→R(x,z)∨R(z,y),
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– a total orderif it is a connected SPO.

The transitive closure TC(R) of a binary relationR is de-
fined as

(x,y) ∈ TC(R) iff Rm(x,y) for somem> 0,

where

R1(x,y)≡ R(x,y)

Rm+1(x,y)≡ ∃z . R(x,z)∧Rm(z,y)

A binary relationR⊆ S×Smay be viewed as a directed
graph. The setS is calledthe set of nodes of Rand denoted
asN(R). We say that the tuplexy is anR-edge from x to y
if (x,y) ∈ R. A path in R(or anR-path) from x to y for an
R-edgexy is a sequence ofR-edges such that the start node
of the first edge isx, the end node of the last edge isy, and
the end node of every edge (except the last one) is the start
node of the next edge in the sequence. Thelength of an R-
pathis the number ofR-edges in the path. AnR-sequenceis
the sequence of nodes participating in anR-path. Thelength
of an R-sequenceis the number of nodes in it.

Given a directed graphR and its nodex,

– ChR(x) = {y | (x,y) ∈R} is the set ofchildren of x in R,
– PaR(x) = {y | (y,x) ∈ R} is the set ofparents of x in R,
– Pa∗R(x) = PaR(x)−PaR(PaR(x)) is the set ofimmediate

parents of x in R,
– DescR(x) = {y | (x,y)∈TC(R)} is the set ofdescendents

of x in R,
– AncR(x) = {y | (y,x) ∈ TC(R)} is the set ofancestors of

x in R,
– SiblR(x) = N(R)− (DescR(x)∪AncR(x)∪{x}) is the set

of siblings of x in R

We also writeDesc-sel fR(x) andAnc-sel fR(x) as short-
hands of(DescR(x)∪{x}) and(AncR(x)∪{x}), respectively.
Similarly, we define set versions of the above definitions,
e.g.,ChR(X) = {y | ∃x∈ X.(x,y) ∈ R}.

Given two nodesx andy of R and two sets of nodesX
andY of R, we write

– R |= x∼ y iff (x,y) 6∈R and(y,x) 6∈ R;
– R |= X ∼Y iff ∀x∈ X,y∈Y . R |= x∼ y;
– (X,Y) ∈R iff ∀x∈ X,y∈Y . (x,y) ∈R.

2.2 Preference relations

Below we describe some concepts of a variant of the prefer-
ence framework [Chomicki(2003)], which we adopt here.

Let A = {A1, ...,An} be a finite set of attributes (a rela-
tion schema). Every attributeAi ∈ A is associated with an
infinite domainDAi . The domains considered here are ratio-
nals and uninterpreted constants (numerical or categorical).

We work with theuniverse of tuplesU = ∏Ai∈A DAi . Given
a tupleo∈U, we denote the value of its attributeAi aso.Ai .

Preference relations we consider in this paper are of two
types:attributeandtuple.

Definition 1 (Attribute preference relation) An attribute
preference relation>Ai for an attributeAi ∈ A is a subset of
DAi ×DAi , which is atotal orderoverDAi .

An attribute preference relation describes a preference
over the values of a single attribute e.g., thered color is pre-
ferred to thebluecolor, or the makeBMW is preferred to the
makeKia.

Definition 2 (Tuple preference relation) A tuple prefer-
ence relation≻ is a subset ofU×U, which is a strict partial
order overU.

In contrast to an attribute preference relation, a tuple
preference relation describes a preference overtuples, e.g.,
a red BMWis preferred to ablue Kia. We say that

– a tupleo1 dominates(is preferred to, is better than) a
tupleo2, and

– o2 is dominated by(is worse than) o1,

according to a preference relation≻, iff t1 ≻ t2. In the re-
maining part of the paper, tuple preference relations are sim-
ply referred to as preference relations.

We assume that both attribute and tuple preferences are
defined as quantifier-free formulas over some appropriate
signature. In this way both finite and infinite preference re-
lations can be captured. For instance, the following formula
defines aninfinitetuple preference relation over the domains
of the attributesmake, year, andprice.

o1≻1 o2 = o1.year ≥ o2.year∧o1.price ≤ o2.price∧

(o1.make = BMW∧o2.make = Ford ∨

o1.make = Ford ∧o2.make = Kia∨

o1.make = BMW∧o2.make= Kia∨

o1.make = o2.make)∧ (o1.year 6= o2.year ∨

o1.price 6= o2.price∨o1.make 6= o2.make)

Given a tuple preference relation, the two most common
tasks are:

1. dominance testing: checking if a tuple is preferred to an-
other one, and

2. computing the best (most preferred) tuplesin a given fi-
nite set of tuples.

The first problem is easily solved by checking if the for-
mula representing the preference relation evaluates to true
for the given pair of tuples. (Nevertheless, we will revisit
this problem in section 3.) To deal with the second prob-
lem, a newwinnowrelational algebra operator was proposed
[Chomicki(2003),Kießling(2002)].
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Definition 3 (Winnow) If ≻ is a tuple preference relation
over U, then thewinnowoperatorω≻(A) is defined as

ω≻(r) = {t ∈ r | ¬∃t ′ ∈ r . t ′ ≻ t}.

for every finite subsetr of U.

3 p-skylines

Let A = {A1, ...,An} be a finite set of attributes andH =
{>A1, . . . ,>An} be a set of the corresponding attribute pref-
erence relations. Below we define the syntax and the seman-
tics of p-skyline relations.
Notation: We use “=” for syntactic identity of expressions
and “≡” for equality of relations viewed as sets of tuples.

Definition 4 (p-expression)An expressionπ is ap-expres-
sion if

– π is >Ai for Ai ∈ A , or
– π = π1 ⊗ π2 for two p-expressionsπ1 andπ2, or
– π = π1 & π2, for two p-expressionsπ1 andπ2.

Definition 5 (Relevant attributes)Given a p-expressionπ,
the correspondingset of relevant attributes Var(π) is:

– {Ai}, if π is >Ai ;
– Var(π1)∪Var(π2) for π = π1 & π2 or π = π1 ⊗ π2,

whereπ1 andπ2 are p-expressions.

Given a set of attributesX

o1≈X o2 iff ∀A∈ X.o1.A= o2.A.

Definition 6 (Preference relation induced by p-expression)
The preference relation≻π induced by a p-expressionπ is
defined as

1. if π is >Ai andAi ∈ A ,

≻π ≡ {(o,o
′) | o,o′ ∈U . o.A>Ai o′.A},

and≻π is also written as≻Ai , and called anatomicpref-
erence relation,

2. for π = π1 & π2,

≻π ≡ ≻π1 ∪ (≈Var(π1) ∩ ≻π2),

3. for π = π1 ⊗ π2,

≻π ≡ (≻π1 ∩ ≈Var(π2)) ∪ (≻π2 ∩ ≈Var(π1)) ∪

(≻π1 ∩ ≻π2),

where≻π1 and≻π2 are preference relations induced by the
p-expressionsπ1 andπ2.

In the second case, we say that≻π ≡ ≻π1 & ≻π2 and
in the third case, that≻π ≡ ≻π1 ⊗ ≻π2. We also refer to
the set of relevant attributesVar(π) of π asVar(≻π). When
the context in clear, we may omit the subscriptπ and re-
fer to p-skyline relations as≻,≻1,≻2, . . .. Note the differ-
ence between theattribute preference relation>A and the
tuplepreference relation≻A. However, the correspondence
between those two relations is straightforward.

The intuition behind Definition 6 is as follows. In the
first case,≻Ai is the tuple preference relation correspond-
ing to the attribute preference relation>Ai . In the second
case,≻π is composed of≻π1 and≻π2 in such a way that
≻π1 hashigher importancethan≻π2: a tupleo is preferred
to o′ according to≻π iff o is preferred too′ according to
≻π1 (regardless of≻π2), or o and o′ are equal in all the
relevant attributes of≻π1 and o is preferred too′ accord-
ing to≻π2. The operator & is calledprioritized accumula-
tion [Kießling(2002)]. Similarly, ifπ = π1 ⊗ π2, then≻π1

and≻π2 are considered to beequally importantin ≻π. The
operator⊗ is calledPareto accumulation[Kießling(2002)].
Some known properties of these operators are summarized
below.

Proposition 1 [Kießling(2002)]The operators⊗ and &
are associative. The operator⊗ is commutative.

Since accumulation operators are associative, we extend
them from binary to n-ary operators.

Proposition 2 [Kießling(2002)]A relation induced by a p-
expression is an SPO, i.e., a tuple preference relation.

Definition 7 (p-skyline relation) A p-skyline relation≻π
is the relation induced by a p-expressionπ such that for all
subexpressions ofπ of the formπ1 & π2 or π1 ⊗ π2:

– Var(π1)∩Var(π2) = /0;
– the relations induced byπ1 and π2 are p-skyline rela-

tions.

A p-skyline relation≻π induced byπ is full iff Var(π) = A .

Essentially, p-skyline relations are induced by those p-
expressions in which every member ofH is used at most
once (exactly once in the case of full p-skyline relations).
The set ofall full p-skyline relationsfor H is denoted by
FH . Further we consider only full p-skyline relations.

A key property of p-skyline relations is that theskyline
preference relationskyH is the p-skyline relation induced by
the p-expression>A1 ⊗ . . . ⊗ >An . That is, the p-skyline
framework is anextensionof the skyline framework.

3.1 Syntax trees

Dealing with p-skyline relations, it is natural to represent
the corresponding p-expressions assyntax trees. This rep-
resentation is used in Section 3.4 for constructing minimal
extensions of a p-skyline relation.
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Definition 8 (Syntax tree)A syntax tree T≻π of a p-skyline
relation≻π is an ordered rooted tree representing the p-
expressionπ.

Every non-leaf nodeof the syntax tree is labeled with an
accumulation operator and corresponds to the result of ap-
plying the operator to the p-skyline relations representedby
its children, from left to right. Everyleaf node of the syntax
tree is labeled with an attributeA ∈ A and corresponds to
the attribute preference relation>A ∈ H (and the atomic
preference relation≻A).

Definition 9 (Normalized syntax tree)A syntax tree isnor-
malizediff each of its non-leaf nodes is labeled differently
from its parent.

Clearly, for every p-skyline relation, there is a normal-
ized syntax tree which may be constructed in polynomial
time in the size of the original tree. To do that, one needs to
find all occurrences of syntax tree nodesC1 and their chil-
drenC2 such thatC1 andC2 have the same label. After that,
C2 has to be removed from the list of children ofC1, and the
list of children ofC2 has to be added to the list of children of
C1 in place ofC2. The correctness of this procedure follows
from Proposition 1.

We note that a normalized syntax tree is not unique for
a p-skyline relation. That is due to the commutativity of⊗
(Proposition 1).

Example 3Let a p-skyline relation≻ 1 be defined as

≻ = (≻A ⊗ (≻B & ≻C)) ⊗ (≻D & (≻E ⊗ ≻F))

An unnormalized syntax tree of≻ is shown in Figure 1(a).
Two normalized syntax trees of≻ are shown in Figures 1(b)
and 1(c).

⊗

A &

B C

⊗

&

D ⊗

E F

(a) Unnormalized

⊗

A
&

B C

&

D ⊗

E F

(b) Normalized

⊗

A&

B C

&

D ⊗

EF

(c) Equivalent normalized

Fig. 1 Syntax trees of≻

Every node of a syntax tree is itself a root of another
syntax tree. Let us associate with every nodeC of a syntax

1 Strictly speaking, we should use attribute preference relations
from H , instead of atomic preference relations. However, due to the
close correspondence of the two kinds of relations, we abusethe nota-
tion a bit.

A B

C

(a) p-graphΓ≻1

A B C

(b) p-graphΓ≻2

Fig. 2 P-graphs from Example 4

tree the setVar(C) of attributes which are descendants of
C in the syntax tree orC itself (if it is a leaf). Essentially,
Var(C) corresponds toVar(πC) whereπC is the p-expression
represented by the subtree with the root nodeC.

3.2 Attribute importance in p-skyline relations

Recall that the p-skyline relations composed using & (resp.
⊗) have different (resp. equal) importance in the resulting
relation. However, the composed p-skyline relations do not
have to beatomicand may themselves be composed using &
or⊗. The problem we discuss in this section ishow to rep-
resent relative importance of attributes in different subtrees.
For this purpose, we define another graphical representation
of a p-skyline relation – thep-graph.

Definition 10 (p-graph) Thep-graphΓ≻ of a p-skyline re-
lation≻ has the set of nodesN(Γ≻) =Var(≻) and the set of
edgesE(Γ≻):

– E(Γ≻) = /0, if ≻ is an atomic preference relation;
– E(Γ≻) = E(Γ≻1) ∪ E(Γ≻2), if ≻ = ≻1 ⊗ ≻2;
– E(Γ≻) =E(Γ≻1) ∪ E(Γ≻2) ∪ (Var(≻1)×Var(≻2)), if
≻ = ≻1 & ≻2,

for two p-skyline relations≻1 and≻2.

A p-graph represents the attribute importance relation-
ships implicit in a p-skyline relation≻ in the following way:
an edge inE(Γ≻) goes from amore importantattribute to
a less importantattribute. This follows from Definition 10:
if ≻ = ≻1 ⊗ ≻2 (i.e.,≻1 and≻2 are equally important in
≻), then no new attribute importance relationships are added
to E(Γ≻), and those which exist inE(Γ≻1) andE(Γ≻2) are
preserved inE(Γ≻). Similarly, if≻=≻1 & ≻2, then the at-
tribute importance relationships inE(Γ≻1) andE(Γ≻2) are
preserved inE(Γ≻), but new importance relationships are
added: every attribute relevant to≻1 is more important than
every attribute relevant to≻2.

Example 4Take the p-skyline relations≻1 and≻2 as below.
Their p-graphs are shown in Figure 2.

≻1 ≡ (≻A ⊗ ≻B) & ≻C

≻2 ≡ ≻A ⊗ ≻B ⊗ ≻C

In the previous section, we showed that the skyline re-
lation skyH is constructed as the Pareto accumulation of all
the members ofH . Hence, the following holds.
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Proposition 3 The p-graphΓskyH
of the skyline relationskyH

has the set of nodes N(ΓskyH
) = A and the set of edges

E(ΓskyH
) = /0.

Theorem 1 shows that p-graphs indeed represent attribute
importance. According to the theorem, a p-skyline relation
can be decomposed into “dimensions” which are attribute
preference relations. This decomposition shows which at-
tribute preferences (resp. the corresponding attributes)are
less importantthan a given attribute preference (resp. the
corresponding attribute) in a preference relation.

Theorem 1 Every p-skyline relation≻ ∈ FH is equal to

≻ ≡ TC

(
⋃

A∈A

qA

)
,

where

qA≡ {(o1,o2) | o1.A>A o2.A}∩ ≈A−(ChΓ≻ (A)∪{A})
.

The relationqA may be viewed as a “projection” of the p-
skyline relation≻ to a “dimension” which is a preference re-
lation overA. Comparing tuples on the attributeA one needs
to consider only the attributesA−(ChΓ≻(A)∪{A}) The val-
ues of the remaining attributesChΓ≻(A) do not matter: those
attributes areless importantthanA. The relation≻′ above
can also be viewed as a relaxedceteris paribus preference
relation [Boutilier et al(2004)], for which attribute prefer-
ences are unconditioned on each other, and“everything else
being equal”is replaced with“ A− (ChΓ≻(A) ∪{A}) being
equal”.

Now let us take a closer look at the properties of p-
graphs. Since p-graphs represent attribute importance im-
plicit in p-skyline relations, there are some properties ofim-
portance relationships that p-graphs are expected to have,
for exampleSPO. In particular:

– no attribute should be more important than itself (irreflex-
ivity), and

– if an attributeA is more important than an attributeB
which is more important than an attributeC, A is ex-
pected to be more important thanC too (transitivity).

As Theorem 2 shows, a p-graph is indeed an SPO2.
However, a graph needs to satisfy some additional prop-

erties in order to be a p-graph of some p-skyline relation.
In particular, there is a requirement that the p-expressionin-
ducing the p-skyline relation contain exactly one occurrence
of each member ofH . This requirement is captured by the
Envelope property visualized in Figure 3: if a graphΓ has
the three bold edges, then it must have at least one dashed
edge.

2 The SPO properties of p-graphs should not be confused with the
SPO properties of the p-skyline relations. In the former case, we are
talking about orderingattributes; in the latter, about orderingtuples.

Theorem 2 (SPO+Envelope)
A directed graphΓ with the set of nodesA is a p-graph of
some p-skyline relation iff

1. Γ is an SPO, and
2. Γ satisfies theEnvelope property:

∀A,B,C,D ∈ A ,all different

(A,B) ∈ Γ∧ (C,D) ∈ Γ∧ (C,B) ∈ Γ⇒
(C,A) ∈ Γ∨ (A,D) ∈ Γ∨ (D,B) ∈ Γ

B D

A C

Fig. 3 TheEnvelope property

We note that so far we have introduced two graph nota-
tions for p-skyline relations: syntax trees and p-graphs. Al-
though these notations represent different concepts, there is
a correspondence between them shown in the next proposi-
tion.

Proposition 4 (Syntax tree and p-graph correspondence)
Let A and B be leaf nodes in a normalized syntax tree T≻ of
a p-skyline relation≻ ∈ FH . Then(A,B) ∈ Γ≻ iff the least
common ancestor C of A and B in T≻ is labeled by& , and
A precedes B in the left-to-right tree traversal.

3.3 Properties of p-skyline relations

In this section, we show several fundamental properties of
p-skyline relations. These properties are used later to effi-
ciently perform essential operations on p-skyline relations:
checking equivalence and containment of relations and (tu-
ple) dominance testing. Before going further, we note that
p-skyline relations are representable as formulas constructed
from the corresponding p-expressions. So one can use such
formulas to perform the operations mentioned above. For
example, relation containment corresponds to formula im-
plication. However, we show below more direct ways of per-
forming the operations on p-skyline relations. The results
presented in this section are used in sections 3.4 and 4.

Recall Example 3, where we showed that a p-skyline re-
lation may have more than one syntax tree (and hence p-
expression) defining it. In contrast, as shown in the next the-
orem, the p-graph corresponding to a p-skyline relation is
unique.

Theorem 3 (p-graph uniqueness)Two p-skyline relations
≻1, ≻2∈ FH are equal iff their p-graphs are identical.
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A1 A2 A3

(a) ΓskyH

A1 A2

A3

(b) Γ≻1

A2 A3

A1

(c) Γ≻2

A1 A2 A3

t1 2 1 0
t2 1 2 0
t3 1 0 2
t4 1 0 0

(d) r

Fig. 4 Containment of p-skyline relations

According to Theorem 3, to check equality of p-skyline
relations, one only needs to compare their p-graphs. As the
next theorem shows, containment of p-skyline relations may
be also checked using p-graphs.

Theorem 4 (p-skyline relation containment)For p-skyline
relations≻1,≻2 ∈ FH ,≻1 ⊂ ≻2 ⇔ E(Γ≻1)⊂ E(Γ≻2).

Theorem 4 implies an important result. Recall that in
Corollary 3 we showed that the edge set of the p-graphΓskyH
of the skyline preference relationskyH is empty. Hence, the
following facts are implied by Theorem 4.

Corollary 1 For every relation instance r and p-skyline re-
lations≻1, ≻2 ∈ FH , s.t.Γ≻2 ⊂ Γ≻1, we haveω≻1(r) ⊆
ω≻2(r)⊆ ωskyH

(r)

The importance of Corollary 1 is that for every p-skyline
relation, the winnow query result will always be contained
in the corresponding skyline. In real life, that means that if
user preferences are modeled as a p-skyline relation instead
of a skyline relation, the size of the query result will not be
larger than the size of the skyline, and may be smaller.

Example 5Let A = {A1,A2,A3}, and for every attribute,
larger values are preferred. Consider the relations

skyH = ≻A1 ⊗ ≻A2 ⊗ ≻A3

≻1 = (≻A1 & ≻A3) ⊗ ≻A2

≻2 = (≻A2 & ≻A1) ⊗ ≻A3

whose p-graphs are shown in Figures 4(a), 4(b), and 4(c), re-
spectively. Theorems 4 and 3 imply thatskyH ⊂≻1, skyH ⊂
≻2, ≻1 6⊆ ≻2, and≻2 6⊆ ≻1. Take the relation instancer
shown in Figure 4(d). ThenωskyH (r) = {t1, t2, t3}, ω≻1(r) =
{t1, t2}, andω≻2(r) = {t2, t3}.

In Theorem 5, we show how one can directly test tuple
dominance. The dominance is expressed in terms ofcon-
tainment constraintson attribute sets. This formulation is
essential for our approach to preference elicitation (section
4).

Given two tupleso,o′ ∈ U, a p-skyline relation≻ and
its p-graphΓ≻, let

– Di f f (o,o′) be the attributes in whicho differs fromo′:

Di f f (o,o′) = {A∈ A | o1.A 6= o2.A},

A1

A2

A3

A4

A5

A6

A7

(a) Γ≻

id A1 A2 A3 A4 A5 A6 A7

t1 1 1 1 1 1 1 1
t2 2 0 1 0 2 1 0
t2 2 0 1 0 1 2 0

(b) Tuples to compare

Fig. 5 Theorem 5 for dominance testing

– Top≻(o,o′) be the topmost members ofDi f f (o, o′):

Top≻(o,o
′) = {A | A∈Di f f (o,o′)∧

¬∃B∈ Di f f (o,o′). B∈ PaΓ≻(A)},

– BetIn(o,o′) be the attributes in whicho is better thano′:

BetIn(o1,o2) = {A∈ A | o1.A>A o2.A}.

Theorem 5 (p-skyline dominance testing)Let o,o′ ∈ U

s.t. o 6= o′ and≻ ∈ FH . Then the following conditions are
equivalent:

1. o≻ o′;
2. BetIn(o,o′)⊇ Top≻(o,o′);
3. ChΓ≻(BetIn(o,o′))⊇ BetIn(o′,o).

Example 6Let A = {A1, . . . ,A7}, and for every attribute,
larger values are preferred. Let a p-skyline relation≻ be
represented by the p-graph shown in Figure 5(a). Consider
the tuplest1, t2, t3 shown in Figure 5(b).BetIn(t1, t2) =
{A2,A4,A7}, BetIn(t2, t1) = {A1,A5}, Di f f (t1, t2) = {A1,

A2,A4,A5, A7}, andTop≻(t1, t2) = {A1,A5}. Thus,t2 ≻ t1,
t1 6≻ t2, BetIn(t1, t3)= {A2,A4,A7}, BetIn(t3, t1)= {A1,A6},
Di f f (t1, t3) = {A1, A2, A4, A6, A7}, andTop≻(t1, t3) = {A1,

A4, A6}. Sot3 6≻ t1 andt1 6≻ t3.

In Theorem 2, we showed that p-graphs satisfySPO+

Envelope, where the propertyEnvelopewas formulated
in terms of single p-graph nodes. However, it is often neces-
sary to deal withsetsof nodes. The next theorem generalizes
theEnvelope property to disjoint sets of nodes.

Theorem 6 (GeneralEnvelope) Let ≻ be a p-skyline
relation with the p-graphΓ≻, andA,B,C,D, disjoint node
sets ofΓ≻. Let the subgraphs ofΓ≻ induced by those node
sets be singletons or unions of at least two disjoint sub-
graphs. Then

(A,B) ∈ Γ≻ ∧(C,D) ∈ Γ≻∧ (C,B) ∈ Γ≻⇒
(C,A) ∈ Γ≻∨ (A,D) ∈ Γ≻∨ (D,B) ∈ Γ≻
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A1
A7

A2

A4

A3

A5 A6

Fig. 6 TheGeneralEnvelope property

Unlike Envelope which holds for every combination
of four different nodes, the property ofGeneralEnve-
lope holds for node subsets of a special form. That form
is quite general. For instance,Var(≻) induces disjoint sub-
graphs if≻ is defined as Pareto accumulation of p-skyline
relations. Theorem 6 is used in the following section.

Example 7Let A = {A1, . . . ,A7}. Consider the p-graphΓ≻
(Figure 6) of

≻=((≻A1 ⊗ ≻A2 ⊗ ≻A3)& (≻A4 ⊗ ≻A5 ⊗ ≻A6))⊗ ≻A7

Let A = {A1}, B= {A4}, C= {A2,A3}, D= {A5,A6}. Then
the p-graph satisfiesGeneralEnvelope because

(A,B) ∈ Γ≻∧ (C,D) ∈ Γ≻∧ (C,B) ∈ Γ≻∧ (A,D) ∈ Γ≻

3.4 Minimal extensions

We conclude this section by studying the notion ofminimal
extensionof a p-skyline relation. This notion is central for
our approach to preference elicitation (section 4). Intuitively,
we will construct a p-skyline relation that incorporates user
feedback using an iterative process that starts from the sky-
line relation and extends it repeatedly in a minimal way.

Definition 11 (p-extension)For a p-skyline relation≻ ∈
FH , a p-skyline relation≻ext ∈ FH is ap-extension of≻ if
≻ ⊂ ≻ext. The p-extension≻ext is minimalif there exists no
≻′ ∈ FH such that≻ ⊂ ≻′ ⊂ ≻ext.

Theorem 4 implies that for every p-skyline relation≻,
a p-extension≻ext of ≻, if it exists, may be obtained by
constructing an extensionΓ≻ext of the p-graphΓ≻. Hence,
the problem of constructing a minimal p-extension of a p-
skyline relation can be reduced to the problem of finding a
minimal set of edges that when added toΓ≻ form a graph
satisfyingSPO+Envelope. However, it is not clear how to
find such a minimal set of edges efficiently: adding a sin-
gle edge to a graph may not be enough due to violation of
SPO+Envelope, as shown in the following example.

Example 8Take the relation≻ from Example 7 (Figure 6),
and add the edge(A6,A7) to its p-graph. Then to preserve
SPO, we need to add the edges(A1, A7), (A2, A7), and(A3,

A7). The resulting graph satisfiesSPO+Envelope. How-
ever, if instead of the edge(A6, A7), we add the edge(A3,
A7), then for preservingEnvelope, it is enough to add(A1,

A7) and (A2, A7) (other extension possibilities exist too).
The resulting graph satisfiesSPO+Envelope.

The method of constructing all minimal p-extensions we
propose in this paper operates directly on normalized p-ex-
pressions represented as syntax trees. In particular, we show
a set of transformation rules of syntax trees such that ev-
ery unique application of a rule from this set results in a
unique minimal p-extension of the original p-skyline rela-
tion. If all minimal p-extensions of a p-skyline relation are
needed, then one needs to apply to the syntax treeeveryrule
in every possible way.

The transformation rules are shown in Figure 8. On the
left hand side, we show a part of the syntax tree of an origi-
nal p-skyline relation. On the right hand side, we show how
this part is modified in the resulting relation. We assume that
the rest of the syntax tree is left unchanged. All the trans-
formation rules operate on two childrenCi andCi+1 of a
⊗ -node of the syntax tree. For simplicity, these nodes are
shown as consecutive children. However, in generalCi and
Ci+1 may be any pair of children nodes of the same⊗ -node.
Their order is unimportant due to the associativity of⊗ .

Let us denote the original relation as≻ and the relation
obtained as the result of applying one of the transformation
rules as≻ext. Observation 1 shows that all the rules onlyadd
edges to the p-graph of the original preference relation and
hence extend the p-skyline relation.

Observation 1 If T≻ext is obtained from T≻ using some of
Rule1, . . . , Rule4, then E(Γ≻)⊂ E(Γ≻ext). Moreover,

– if T≻ext is a result of Rule1(T≻,Ci ,Ci+1), then

E(Γ≻ext) =E(Γ≻)∪{(X,Y) | X ∈Var(N1),Y ∈Var(Ci+1)}

– if T≻ext is a result of Rule2(T≻,Ci ,Ci+1), then

E(Γ≻ext) =E(Γ≻)∪{(X,Y) | X ∈Var(Ci+1),Y∈Var(Nm)}

– if T≻ext is a result of Rule3(T≻,Ci ,Ci+1), then

E(Γ≻ext) = E(Γ≻)∪ (Ci ,Ci+1)

– if T≻ext is a result of Rule4(T≻,Ci ,Ci+1,s, t) for s∈ [1,
n−1], t ∈ [1,m−1], then E(Γ≻ext) = E(Γ≻)∪

{(X,Y) | X ∈
⋃

p∈1...s

Var(Np),Y ∈
⋃

q∈t+1...n

Var(Mq)} ∪

{(X,Y) | X ∈
⋃

p∈1...t

Var(Mp),Y ∈
⋃

q∈s+1...m

Var(Nq)}

We note that every & - and⊗ -node in a syntax tree
has to have at least two children nodes. This is because the
operators & and⊗ must have at least two arguments.
However, as a result of a transformation rule application,
some & - and⊗ -nodes may end up with only one child
node. These nodes are:

1. R′ if k= 2 for Rule1,Rule2,Rule3,Rule4;
2. R′2 if m= 2 for Rule1,Rule2;
3. R′3 or R′5 if s= 1 ors= m−1, respectively, forRule4;
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Before single-child
node elimination

δ

N

After single-child
node elimination

N

Fig. 7 Single-child node elimination (δ ∈ { & , ⊗ })

4. R′4 or R′6 if t = 1 or t = n−1, respectively, forRule4.

In such cases, we remove the nodes with a single child
and connect the child directly to the parent (Figure 7).

Theorem 7 (minimal p-extension)Let≻ ∈ FH , and T≻
be a normalized syntax tree of≻. Then≻ext is a minimal
p-extensionof≻ iff the syntax tree T≻ext of≻ext is obtained
from T≻ by a single application of a rule from Rule1, . . . ,

Rule4, followed by a single-child node elimination if neces-
sary.

Theorem 7 has two important corollaries describing prop-
erties of minimal p-extensions.

Corollary 2 For a p-skyline relation≻ with a normalized
syntax tree T≻, a syntax tree T≻ext of each of its minimal p-
extensions≻ext may be constructed in timeO(|A |).

In Corollary 2, we assume the adjacency-list representa-
tion of syntax trees. The total number of nodes in a tree is
linear in the number of its leaf nodes [Cormen et al(2001)],
which is |A |. Thus the number of edges inT≻ is O(|A |).
The transformation ofT≻ using every rule requires remov-
ing O(|A |) and addingO(|A |) edges.

Corollary 3 For a p-skyline relation≻, the number of its
minimal p-extensions isO(|A |4).

The justification for Corollary 3 is as follows. The set of
minimal-extension rules is complete due to Theorem 7. Ev-
ery rule operates on two nodesCi andCi+1 of the syntax tree.
Hence, the number of such node pairs isO(|A |2). Rule4 also
relies on some partitioning of the sequence of child nodes
of Ci andCi+1. The total number of such partitionings is
O(|A |2). Thus, the total number of different rule applica-
tions is O(|A |4). Consequently, the number of minimal p-
extensions ispolynomialin the number of attributes. This
differs from the number ofall p-extensions of a p-skyline
relation, which isΩ(|A |!).

The last property related to p-extensions that we con-
sider here is as follows. By Theorem 4, a p-extension of a
p-skyline relation is obtained by adding edges to its p-graph.
However, the total number of edges in a p-graph is at most
O(|A |2). Hence, the next Corollary holds.

Corollary 4 Let S be a sequence of p-skyline relations

≻1, . . . ,≻k ∈ FH

such that for every i∈ [1,k−1],≻i+1 is a p-extension of≻i .
Then|S|= O(|A |2).

Original tree part

⊗

C1 . . .

&

Ci+1. . . Ck

N1. . .Nm

R

Ci

Transformed tree part

⊗

C1 . . .Ci−1 Ci+2. . . Ck

&

N1 ⊗

Ci+1&

Nm. . .N2

R′

C′i

R′1

R′2

(a) Rule1(T≻,Ci ,Ci+1)

Original tree part

⊗

C1 . . .

&

Ci+1. . . Ck

N1 . . .Nm

R

Ci

Transformed tree part

⊗

C1 . . .Ci−1 Ci+2. . . Ck

&

Nm⊗

Ci+1 &

Nm−1. . .N1

R′

C′i

R′1

R′2

(b) Rule2(T≻,Ci ,Ci+1)

Original tree part

⊗

C1 . . . Ci Ci+1 . . . Ck

R

Transformed tree part

⊗

C1 . . .Ci−1 Ci+2. . . Ck

&

Ci Ci+1

R′

R′1

(c) Rule3(T≻,Ci ,Ci+1)

Original tree part

⊗

C1 . . . . . . Ck

&

N1 . . . Nm

&

M1 . . . Mn

R

Ci Ci+1

Transformed tree part

⊗

C1 Ci−1. . . Ci+2. . . Ck

&

⊗

& &

Ns+1. . . NmMt+1. . . Mn

⊗

&&

Mt. . .M1Ns. . .N1

R′

C′i

R′2R′1

R′3

R′4 R′5

R′6

(d) Rule4(T≻,Ci ,Ci+1,s, t)

Ci - leaf node

Ci - leaf or non-leaf node
Fig. 8 Syntax tree transformation rules

4 Elicitation of p-skyline relations

In Section 3, we proposed a class of preference relations
called p-skyline relations. In this section, we introduce a
method of constructing p-skyline relations based on user-
provided feedback.

4.1 Feedback-based elicitation

As we showed in the previous section, the p-skyline frame-
work is a generalization of the skyline framework. The main
difference between those frameworks is that in the p-skyline
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framework one can express varying attribute importance. On
the other hand, one of the main distinguishing properties of
the skyline framework is the simplicity of representing pref-
erences. Namely, the user needs to provide only a set of at-
tribute preferences to specify a preference relation. For p-
skylines, an additional piece of information, the relativeim-
portance of the attributes (in the form of, e.g., a p-graph ora
p-expression), has to be also provided by the user. But how
can relative attribute importance be specified? It seems im-
practical to ask the user to compare distinct attributes pair-
wise for importance: even though some relationships can be
deduced by transitivity, the number of comparisons may still
be too large. Another issue is even more serious: the users
themselves may be not fully aware of their own preferences.

In this section, we propose an alternative approach to
elicitation of attribute importance relationships, basedon
user feedback. We use the following scenario. A fixed, finite
set of tuples is stored in a database relationO ⊆U. All the
tuples have the same set of attributesA . We assume that, in
addition toA , a corresponding set of attribute preference re-
lationsH is given. The user partitionsO into three disjoint
subsets: the setG of tuples she confidently likes (superior
examples), the setW of tuples she confidently dislikes (infe-
rior examples), and the set of remaining tuples about which
she is not sure. The output of our method is a p-skyline re-
lation≻ (with the set of relevant attributesA), according to
which all tuples inG are superior and all tuples inW are
inferior. A tupleo∈ O is superiorif O does not contain any
tuples preferred too, according to≻. A tupleo∈ O is infe-
rior if there is at least one superior example inO, which is
preferred too. The last assumption is justified by a general
principle that the user considers something bad because she
knows of a better alternative.

Formally: givenA , H , O, G, andW, we want to con-
struct a p-expression inducing a p-skyline relation≻∈ FH

such that

1. G ⊆ ω≻(O), i.e., the tuples inG are among the most
preferred tuples inO, according to≻, and

2. for every tupleo′ in W, there is a tupleo in G such that
o≻ o′, i.e.,o′ is an inferior example.

Such a p-skyline relation≻ is calledfavoring G and disfa-
voring W inO. We may also skip “inO” when the context
is clear.

The first problem we consider is the existence of a p-
skyline relation favoringG and disfavoringW in O.

Problem DF-PSKYLINE. Given a set of attributesA ,
a set of attribute preference relationsH , a set of superior
examples G and a set of inferior examples W in a setO, de-
termine if there exists a p-skyline relation≻ ∈ FH favoring
G and disfavoring W inO.

In most real life scenarios, knowing that a favoring/ dis-
favoring p-skyline relationexistsis not sufficient. One needs
to know thecontentsof such a relation.

ProblemFDF-PSKYLINE. Given a set of attributesA ,
a set of attribute preference relationsH , a set of superior
examples G and a set of inferior examples W in a setO,
construct a p-skyline relation≻ ∈ FH favoring G and dis-
favoring W inO.

We notice thatFDF-PSKYLINE is the functional ver-
sion[Papadimitriou(1994)] ofDF-PSKYLINE. Namely, gi-
ven subsetsG andW of O, an instance ofFDF-PSKYLINE
outputs “no” if there is no≻∈ FH favoringG and disfavor-
ing W in O. Otherwise, it outputssomep-skyline relation
≻∈ FH favoringG and disfavoringW in O.

Example 9Let the setO consist of the following tuples de-
scribing cars for sale:

make price year
t1 ford 30k 2007
t2 bmw 45k 2008
t3 kia 20k 2007
t4 ford 40k 2008
t5 bmw 50k 2006

Assume also Mary wants to buy a car and her prefer-
ences over automobile attributes are as follows.

>make: BMW is better thanFord, Ford is better thanKia.
>year: higher values ofyear(i.e., newer cars) are preferred.
>price: lower values ofprice (i.e., cheaper cars) are pre-

ferred.

Let G = {t4}, W = {t3}. We elicit a p-skyline relation
≻ favoring G and disfavoringW. First, >make cannot be
more important than all other attribute preferences, since
thent2 andt5 dominatet4 and thust4 is not superior. More-
over, >price cannot be more important than the other at-
tribute preferences, because thent3 andt1 dominatet4. How-
ever, if>year is more important than the other attribute pref-
erences, thent4 dominatest1, t3, t5 andt2 does not dominate
t4 in >year. At the same time, botht2 andt4 are the best ac-
cording to>year, but t2 dominatest4 in >make. Therefore,
>make should not be more important than>price. Thus, for
example, the following p-skyline relation3 favorsG and dis-
favorsW in O

≻1 = ≻year & (≻price ⊗ ≻make)

The set of the best tuples inO according to≻1 is {t2, t4}.

3 Here we again replace attribute preference relations by atomic
preference relations.
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Generally, there may be zero, one or more p-skyline re-
lations favoringG and disfavoringW in O. When more than
one such relation exists, we pick amaximalone (in the set-
theoretic sense). Larger preference relations imply more dom-
inated tuples and fewer most preferred ones. Consequently,
the result ofω≻(O) is likely to get more manageable due to
its decreasing size. Moreover, maximizing≻ corresponds to
minimizing ω≻(O)−G, which implies more precise corre-
spondence of≻ to the real user preferences. Thus, the next
problem considered here is constructing maximal p-skyline
relations favoringG and disfavoringW.

ProblemOPT-FDF-PSKYLINE.Given a set of attributes
A , a set of attribute preference relationsH , a sets of supe-
rior examples G and a set of inferior examples W in a setO,
construct a maximal p-skyline relation≻ ∈ FH favoring G
and disfavoring W inO.

Example 10TakeG, W, and≻1 from Example 9. Note that
to maket4 dominatet2, we need to makepricemore impor-
tant thanyear. As a result, the relation

≻2 = ≻year & ≻price & ≻make

also favorsG and disfavorsW in O but the set of best tuples
in O according to≻2 is {t4}. Moreover,≻2 is maximal. The
justification is that no other p-skyline relation favoringG
and disfavoringW contains≻2 since the p-graph of≻2 is a
total order of the attributes{year, price,make} and thus≻2

is a maximal SPO.

Even though the notion of maximal favoring/disfavoring
reduces the space of alternative p-skyline relations, there
may still be more than one maximal favoring/disfavoring p-
skyline relation, givenA , H , G, W, andO.

4.2 Negative and positive constraints

We formalize now the kind of reasoning from Examples 9
and 10 usingconstraints on attribute sets. The constraints
guarantee that the constructed p-skyline relation favorsG
and disfavorsW in O.

Consider the notion offavoring Gin O first. For a tuple
o′ ∈ G to be in the set of the most preferred tuples ofO, o′

must not be dominated by any tuple inO. That is,

∀o∈ O,o′ ∈G . o 6≻ o′ (1)

Using Theorem 5, we can rewrite (1) as

∀o∈ O,o′ ∈G . ChΓ≻(BetIn(o,o′)) 6⊇ BetIn(o′,o), (2)

whereBetIn(o1,o2) = {A∈A | o1.A>A o2.A}. Note that no
tuple can be preferred to itself by irreflexivity of≻. Thus, a

p-skyline relation favoringG in O should satisfy(|O|−1) ·
|G| negativeconstraintsτ in the form:

τ : ChΓ≻(Lτ) 6⊇ Rτ

whereLτ = BetIn(o,o′),Rτ = BetIn(o′,o). We denote this
set of constraints asN (G,O).

Example 11Take Example 9. Then some p-skyline relation
≻∈ FH favoringG= {t3} in O has to satisfy each negative
constraint below

t1 6≻ t3 ChΓ≻({make}) 6⊇ {price}
t2 6≻ t3 ChΓ≻({make,year}) 6⊇ {price}
t4 6≻ t3 ChΓ≻({make,year}) 6⊇ {price}
t5 6≻ t3 ChΓ≻({make}) 6⊇ {price,year}

Now consider the notion ofdisfavoring Win O. Accord-
ing to the definition, a p-skyline relation≻ favoringG dis-
favorsW in O iff the following holds

∀o′ ∈W ∃o∈G . o≻ o′. (3)

Following Theorem 5, it can be rewritten as a set ofpositive
constraintsP (W,G)

∀o′ ∈W
∨

oi∈G

ChΓ≻(BetIn(oi,o
′))⊇ BetIn(o′,oi). (4)

Therefore, in order for≻ to disfavorW in O, it has to
satisfy|W| positive constraints.

Example 12Take Example 9. Then every p-skyline relation
≻ ∈ FH favoringG= {t1, t3} and disfavoringW = {t4} in
O has to satisfy the constraint

t1≻ t4∨ t3≻ t4

which is equivalent to the following positive constraint

ChΓ≻({price})⊇ {year}∨ChΓ≻({price})⊇ {year,make},

which in turn is equivalent to

ChΓ≻({price})⊇ {year,make}.

Notice that positive and negative constraints are formu-
lated in terms of relative importance of the attributes cap-
tured by the p-graph of the constructed p-skyline relation.
Since p-skyline relations are uniquely identified by p-graphs
(Theorem 3), we may refer toa p-skyline relation satisfy-
ing/not satisfying a system of positive/negative constraints.
Formally, a p-skyline relationsatisfiesa system of (positive
or negative) constraints iff it satisfiesevery constraintin the
system.

Let us summarize the kinds of constraints we have con-
sidered so far. To construct a p-skyline relation≻ favoring
G and disfavoringW in O, we need to construct a p-graph
Γ≻ that satisfiesSPO+Envelope to guarantee that≻ be a
p-skyline relation,N (G,O) to guarantee favoringG in O,
andP (W,G) to guarantee disfavoringW in O. By Theorem
4, the p-graph of a maximal≻ is maximalamong all graphs
satisfyingSPO+Envelope, N (G,O), andP (W,G).
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4.3 Using superior and inferior examples

In this section, we study the computational complexity of the
problems of existence of a favoring/disfavoring p-skylinere-
lation and of constructing a favoring/disfavoring p-skyline
relation.

Theorem 8 DF-PSKYLINE is NP-complete.

Now consider the problems of constructing favoring/dis-
favoring p-skyline relations. First, we consider the problem
of constructingsomep-skyline relation favoringGand disfa-
voringW in O. Afterwards we address the problem of con-
structing amaximalp-skyline relation. The results shown
below are based on the following proposition.

Proposition 5 Let≻ be a p-skyline relation,O a finite set
of tuples, and G and W disjoint subsets ofO. Then the next
two operations can be done in polynomial time:

1. verifying if≻ is maximal favoring G and disfavoring W
in O;

2. constructing a maximal p-skyline relation≻ext that fa-
vors G and disfavors W inO, and is a p-extension of≻
favoring G and disfavoring W inO.

Theorem 9 FDF-PSKYLINE is FNP-complete

Surprisingly, the problem of constructing a maximal fa-
voring/disfavoring p-skyline relation is not harder then the
problem of constructing some favoring/disfavoring p-skyline
relation.

Theorem 10 OPT-FDF-PSKYLINE is FNP-complete

4.4 Using only superior examples

In view of Theorems 8, 9, and 10, we consider now restricted
versions of the favoring/disfavoring p-skyline relation prob-
lems, where we assume no inferior examples (W = /0). De-
note asDF+-PSKYLINE, FDF+-PSKYLINE, andOPT-
FDF+-PSKYLINE the subclasses ofDF-PSKYLINE,FDF-
PSKYLINE, andOPT-FDF-PSKYLINE in which the sets
of inferior examplesW are empty. We show now that these
problems are easier than their general counterparts: they can
all be solved in polynomial time.

ConsiderDF+-PSKYLINE first. We showed in Corol-
lary 1 that the set of the best objects according to the skyline
preference relation is the largest among all p-skyline rela-
tions. Hence, the next proposition holds.

Proposition 6 There exists a p-skyline relation≻ ∈ FH fa-
voring G inO iff

G⊆ ωskyH
(O).

Proposition 6 implies that to solveDF+-PSKYLINE,
one needs to run a skyline algorithm overO and check if
the result containsG. This clearly can be done in polyno-
mial time.

FDF+-PSKYLINE can also be solved in polynomial time:
if G⊆ ωskyH (O), thenskyH is a relation favoringG and dis-
favoringW in O. Otherwise, there is no such a relation.

Now considerOPT-FDF+-PSKYLINE. To specify a p-
skyline relation≻ favoring G in O, we need to construct
the corresponding graphΓ≻ which satisfiesN (G,O) and
SPO+Envelope. Furthermore, to make the relation≻max-
imal favoringG in O, Γ≻ has to be amaximalgraph satis-
fying these constraints. In the next section, we present an
algorithm for constructing maximal p-skyline relations.

4.4.1 Syntax tree transformation

Our approach to constructing maximal favoring p-skyline
relations favoringG is based on iterative transformations
of normalized syntax trees. We assume that the provided
set of superior examplesG satisfies Proposition 6, i.e.,G⊆
ωskyH (O). The idea beyond our approach is as follows. First,
we generate the set of negative constraintsN (G,O). The p-
skyline relation we start with isskyH since it is the least
p-skyline relation favoringG in O. In every iteration of the
algorithm, we pick an attribute preference relation inH and
apply a fixed set of transformation rules to the syntax tree
of the current p-skyline relation. As a result, we obtain a
“locally maximal” p-skyline relation satisfyingthe given set
N (G,O) of negative constraints. Recall that a negative con-
straint inN (G,O) represents the requirement that no tuple
in G is dominated by a tuple inO. Eventually, this technique
produces a maximal p-skyline relation satisfyingN (G,O).

Let us describe now what we mean by “locally maxi-
mal”.

Definition 12 LetM be a nonempty subset ofA . A p-skyline
relation≻ ∈ FH that favorsG in O such thatE(Γ≻) ⊆
M×M is M-favoring G inO.

We note that, similarly to a maximal favoring p-skyline
relation, a maximalM-favoring p-skyline relation is often
not unique for givenG, O, andM.

id A1 A2 A3 A4

t1 0 0 0 0
t2 1 0 −1 0
t3 −1 1 −1 0
t4 1 0 1 −1

(a) Set of tuplesO

L R

τ1 {A1} {A3}
τ2 {A2} {A1,A3}
τ3 {A1,A3} {A4}

(b) Negative constraints
N (G,O)

A1

A2

A3

A4

(c) maximal
M-favoring
p-skyline
relation

Fig. 9 Example 13
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L R

τ1 {A1} {A3}
τ2 {A2} {A1,A3}
τ3 {A1,A3} {A4}

(a) Negative constraints
N (G,O)

A1

A2

A3

A4

(b) Γ≻1

A1

A2

A3

A4

(c) Γ≻2

Fig. 10 Example 14

Example 13Let A = {A1,A2,A3,A4} andH = {>A1,>A2

,>A3,>A4}, where a greater value of the corresponding at-
tribute is preferred, according to every>Ai . Let the set of
objectsO be as shown in Figure 9(a) andG = {t1}. Then
the set of negative constraintsN (G,O) is shown in Figure
9(b). Consider the p-skyline relation≻ represented by the p-
graphΓ≻ shown in Figure 9(c). It is a maximal{A1,A2,A3}-
favoring relation becauseΓ≻ satisfies all the constraints in
N (G,O) and every additional edge from one attribute to
another attribute in{A1,A2,A3} violatesN (G,O). In par-
ticular, the edge(A1,A3) violatesτ1 and the edge(A2,A1)
violatesτ2. Every other edge betweenA1, A2 andA3 induces
one of the two edges above.

At the same time,≻ is not a maximalA-favoring relation
because, for example, the edge(A4,A1) may be added toΓ≻
without violatingN (G,O).

By Definition 12, the edge set of the p-graph of every
maximalM-favoring relation is maximal among all the p-
graphs ofM-favoring relations. Note that ifM is a singleton,
the edge set of a p-graphΓ≻ of a maximalM-favoring rela-
tion ≻ is empty, i.e.,≻= skyH . If M = A , then a maximal
p-skyline relationM-favoring G in O is also a maximal p-
skyline relation favoringG in O. Thus, if we had a method
of transforming a maximalM-favoring p-skyline relation to
a maximal(M∪{A})-favoring p-skyline relation for each at-
tributeA, we could construct a maximal favoring p-skyline
relation iteratively. A useful property of such a transforma-
tion process is shown in the next proposition.

Proposition 7 Let a relation≻ ∈ FH be a maximal M-fa-
voring relation, and a p-extension≻ext of≻ be(M∪{A})-
favoring. Then every edge in E(Γ≻ext)− E(Γ≻) starts or
ends in A.

Example 14ConsiderN (G,O) from Example 13 (also de-
picted in Figure 10(a)), and the maximal{A1,A2,A3}-favoring
relation≻. Several different maximalA-favoring p-skyline
relations containing≻ exist. Two of them are≻1 and≻2

whose p-graphs are shown in Figures 10(b) and 10(c).

In section 3.4, we showed four syntax tree transforma-
tion rules ,Rule1 – Rule4, for extending p-skyline relations
in a minimal way. Although a maximal(M∪{A})-favoring
p-skyline relation is a p-extension of a maximalM-favoring
p-skyline relation, it is not necessary a minimal p-extension

≻{A}= sky

≻{A,B}

≻{A,B,C}

≻{A,B,C,D}

Fig. 11 A path to a maximalA-favoring p-skyline relation. The path
starts from the maximal singleton-favoring p-skyline relation: the sky-
line relation. Every step is a minimal p-extension. The pathgoes
through maximalM-favoring p-skyline relations (≻{A},≻{A,B}, . . .) for
incrementally increasingM. The path ends with a maximalM-favoring
p-skyline relation forM = A.

in general. However, an important property of that set of
rules is its completeness, i.e., every minimal p-extensioncan
be constructed using them. Hence, a maximal(M ∪ {A})-
favoring p-skyline relation can be produced from a maximal
M-favoring p-skyline relation byiterative application of the
minimal extension rules. This process is illustrated by Figure
11.

We use the following idea for constructing maximal(M∪
{A})-favoring relations. We start with a maximalM-favoring
p-skyline relation≻0 and apply the transformation rules to
T≻0 in every possible way guaranteeing that the new edges
in the p-graph go only from or toA. In other words, we con-
struct all minimal(M ∪ {A})-favoring p-extensions of≻0.
We construct such p-extensions until we find the first one
which does not violateN (G,O). When we find it (denote it
as≻1), we repeat all the steps above but for≻1. This process
continues until for some≻m, every of its constructed mini-
mal p-extension violatesN (G,O). Since in every iteration
we construct all minimal(M ∪{A})-favoring p-extensions,
≻m is a maximal(M∪{A})-favoring p-extension of≻0.

There is subtle point here. We can limit ourselves tomin-
imal p-extensions because if a minimal p-extension violates
N (G,O), so do all non-minimal p-extensions containing it.
Also, if there exists a p-extension satisfyingN (G,O), so
does some minimal one. In fact, each p-extension of a p-
skyline relation can be obtained through a finite sequence of
minimal p-extensions. Those properties are characteristic of
negativeconstraints. The properties do not hold forpositive
constraints and thus our approach cannot be directly gener-
alized to such constraints.

An important condition to apply Theorem 7 is that the
input syntax tree for every transformation rule be normal-
ized. At the same time, syntax trees returned by the transfor-
mation rules are not guaranteed to be normalized. Therefore,
we need to normalize a tree before applying transformation
rules to it.

Consider the rulesRule1 – Rule4 which can be used to
construct an(M ∪{A})-favoring p-skyline relation from an
M-favoring one. By Proposition 7, such rules mayonly add
to the p-graph the edges that go toA or from A. Accord-
ing to Observation 1,Rule1 adds edges going to the nodeA
if Ci+1 = A or N1 = A. Similarly, Rule2 adds edges going
from A if Ci+1 = A or Nm = A. Rule3 adds edges going from
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or to A if Ci = A or Ci+1 = A correspondingly. However,
Rule4 can only be applied to a pair of & -nodes. Hence, as
we showed in section 3.4,Rule4 adds edges going from at
least two nodes to at least two different nodes of a p-graph.
Hence, every application ofRule4 violates Proposition 7. We
conclude thatRule1,Rule2, and Rule3 are sufficient to con-
struct every maximal(M∪{A})-favoring p-skyline relation.

4.4.2 Efficient constraint checking

Before going into the details of the algorithm of p-skyline
relation elicitation, we consider an important step of the al-
gorithm: testing if a p-extension of a p-skyline relation sat-
isfies a set of negative constraints. We propose now an effi-
cient method for this task.

Recall that a negative constraint is of the form

τ : ChΓ≻(Lτ) 6⊇ Rτ.

It can be visualized as two layers of nodesLτ andRτ. For a
p-skyline relation≻ ∈ FH satisfyingτ, its p-graphΓ≻ may
contain edges going between the nodes of the layersLτ and
Rτ. However, in order for≻ to satisfyτ, there should be at
least one member ofRτ with no incoming edges fromLτ.

The method of efficient checking of negative constraints
against a p-graph that we propose here is based on the fact
that the edge set of the p-graph of a transformed p-skyline
relation monotonically increases. Therefore, while we trans-
form a p-skyline relation≻, we can simply drop the ele-
ments ofRτ which already have incoming edges fromLτ. If
we do so after every transformation of the p-skyline relation
≻, the negative constraintτ will be violated byΓ≻ only if Rτ
is empty. The next proposition says that such a modification
of negative constraints is valid.

Proposition 8 Let a relation≻ ∈ FH satisfy a system of
negative constraintsN . Construct the system of negative
constraintsN ′ from N in which every constraintτ′ ∈ N ′

is created from a constraintτ of N in the following way:

– Lτ′ = Lτ
– Rτ′ = Rτ−{B∈ Rτ | ∃A∈ Lτ . (A,B) ∈ Γ≻}

Then every p-extension≻′ of ≻ satisfiesN iff ≻′ satisfies
N ′.

A constraintτ′ constructed fromτ as shown in Proposi-
tion 8 is called aminimal negative constraint w.r.t.≻. The
corresponding system of negative constraintsN ′ is called a
system of minimal negative constraints w.r.t.≻.

Minimization of a system of negative constraints is illus-
trated in the next example.

Example 15Consider the system of negative constraintsN

and the p-skyline relation≻ from Example 13 (they are

L R

τ1 {A1} {A3}
τ2 {A2} {A1,A3}
τ3 {A1,A3} {A4}

(a) Original system of nega-
tive constraintsN

A1

A2

A3

A4

(b) Maximal
M-favoring
p-skyline
relation

L R

τ′1 {A1} {A3}
τ′2 {A2} {A1}
τ′3 {A1,A3} {A4}

(c) System of minimal
negative constraintsN ′

Fig. 12 Example 15

shown in Figures 12(a) and 12(b) correspondingly). The re-
sult N ′ of minimization ofN w.r.t ≻ is shown in Figure
12(c). Only the constraintτ′2 is different fromτ2 because
(A2,A3) ∈ Γ≻ andA2 ∈ Lτ2, A3 ∈ Rτ2.

The next proposition summarizes the constraint check-
ing rules over a system of minimal negative constraints.

Proposition 9 Let a relation≻ ∈ FH satisfy a system of
negative constraintsN , and N be minimal w.r.t.≻. Let
≻′ be a p-extension of≻ such that every edge in E(Γ≻′)−
E(Γ≻) starts or ends in A. Denote thenewparents and chil-
dren of A inΓ≻′ as PA and CA correspondingly. Then≻′

violatesN iff there is a constraintτ ∈N such that

1. Rτ = {A}∧PA∩Lτ 6= /0, or
2. A∈ Lτ∧Rτ ⊆CA

Proposition 9 is illustrated in the next example.

Example 16Take the system of minimal negative constraints
N ′ w.r.t.≻ from Example 15. Construct a p-extension≻′ of
≻ such that every edge inE(Γ≻′)−E(Γ≻) starts or ends in
A4. Consider possible edges going toA4. Use Proposition 9
to check if a new edge violatesN ′. The edge(A1,A4) is not
allowed inΓ≻′ because thenA1 ∈ Lτ′3

and{A4} = Rτ′3
(and

thus the constraintτ′3 is violated). The edge(A3,A4) is not
allowed inΓ≻′ becauseA3 ∈ Lτ′3

and{A4}= Rτ′3
. However,

the edge(A2,A4) is allowed inΓ≻′ . The p-graph of the re-
sulting≻′ is shown in Figure 13. One can analyze the edges
going fromA4 in a similar fashion.

A1

A2

A3

A4

Fig. 13 Γ≻′ from Example 16

4.4.3 p-skyline elicitation

In this section, we show an algorithm for p-skyline relation
elicitation which exploits the ideas developed in the previous
sections.
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The functionelicit (Algorithm 1) is the main func-
tion of the algorithm. It takes four arguments: the set of su-
perior examplesG, the entire set of tuplesO, the set of at-
tribute preferencesH , and the set of all relevant attributesA .
It returns a normalized syntax tree of a maximal p-skyline
relation favoringG in O. Following Proposition 6, we re-
quireG to be a subset ofωskyH (O). First, we construct the
set of negative constraintsN for the superior tuplesG. We
start withskyH as the initial p-skyline relation favoringG
in O. After that, we take the setM consisting of a single at-
tribute. In every iteration, we enlarge it and construct a max-
imal M-favoring p-skyline relation. As a result, the function
returns a maximal p-skyline relation favoringG in O. The
construction of a maximal(M∪{A})-favoring relation from
a maximalM-favoring relation is performed in therepeat/
until loop (lines 5-8). Here we use the functionpush
which constructs a minimal(M∪{A})-favoring p-extension
of the relation represented by the syntax treeT. It returns
true if T has been (minimally) extended to a relation not vio-
lating N , and further p-extensions are feasible (though they
may still violateN ). Otherwise, it returnsf alse. The syntax
treeT passed topush has to be normalized. Hence, after
extending the relation, we normalize its syntax tree (line 7)
using the normalization procedure sketched in Section 3.1.
Therepeat/until loop terminates when all minimal ex-
tensions ofT violateN .

Algorithm 1 elicit(G, O, H , A)
Require: G⊆ ωskyH (O)
1: N = N (G,O)
2: T = a normalized syntax tree ofskyH

3: M = set containing an arbitrary attribute fromA
4: for each attributeA in A−M do
5: repeat
6: r = push(T , M, A, N );
7: normalizeTree(root of T);
8: until r is false
9: M = M∪{A}

10: end for
11: return T

Let us now take a closer look at the functionpush (Al-
gorithm 2). It takes four arguments: a setM of attributes,
a normalized syntax treeT of an M-favoring p-skyline re-
lation≻, the current attributeA, and a system of negative
constraintsN minimal w.r.t.≻. It returnstrue if a trans-
formation ruleq ∈ {Rule1,Rule2,Rule3} has been applied
to T without violatingN , and f alse if no transformation
rule can be applied toT without violatingN . Whenpush
returns true,N andT have been changed. NowN is mini-
mal w.r.t. the p-skyline relation represented by the modified
syntax tree, andT has been modified by the ruleq and is
normalized.

The goal ofpush is to find an appropriate transforma-
tion rule which adds to the current p-graph edges going from
M to A or vice versa. The function has two branches: the first
for the parent of the nodeA in the syntax treeT being a & -
node (i.e., we may applyRule1 whereN1 isA or Rule2 where
Nm is A), and the second for it being⊗ -node (i.e., we may
applyRule1 or Rule2 whereCi+1 is A, or Rule3 whereCi or
Ci+1 is A). In the first branch (line 2-14), we distinguish be-
tween applyingRule1 (line 3-8) andRule2 (line 9-14). It is
easy to notice that, with the parameters specified above, the
rules are exclusive, but the application patterns are similar.
First, we find an appropriate childCi+1 of R (lines 4 and 10).
(It is important forVar(Ci+1) to be a subset ofM because we
want to add edges going fromM to A or fromA to M.) Then
we check if the corresponding rule application does not vio-
lateN using the functioncheckConstr (lines 5 and 11),
as per Proposition 9. If the rule application does not violate
N , we apply the corresponding rule toT (lines 6 and 12)
and minimizeN w.r.t. the p-skyline relation which is the re-
sult of the transformation (Proposition 8) using the function
minimize.

The second branch ofpush is similar to the first one
and different only in the transformation rules applied. So it
is easy to notice thatpush checks every possible rule appli-
cation not violatingN , and adds to the p-graph only edges
going fromA to the elements ofM or vice versa.

In our implementation of the algorithm, all sets of at-
tributes are represented as bitmaps of fixed size|A |. Simi-
larly, every negative constraintτ is represented as a pair of
bitmaps corresponding toLτ andRτ. With every nodeCi of
the syntax tree, we associate a variable storingVar(Ci). Its
value is updated whenever the children list ofCi is changed.

Theorem 11 The functionelicit returns a syntax tree of
a maximal p-skyline relation favoring G inO. Its running
time is O(|N | · |A |3).

The order in which the attributes are selected and added
to M in elicit is arbitrary. Moreover, the order of rule
application inpush may be also changed. That is, we cur-
rently try to applyRule1 (line 21) first andRule2 (line 25)
afterwards. However, one can apply the rules in the opposite
order. The same observation applies toRule3(T,A,Ci) and
Rule3(T,Ci ,A) (lines 30 and 34, respectively). If the algo-
rithm is changed along those lines, the generated p-skyline
relation may be different. However, even if the p-skyline re-
lation is different, it will still be a maximal p-skyline relation
favoringG in O. Note also that due to the symmetry of⊗ ,
the order of children nodes of a⊗ -node may be different
in normalized p-skyline trees of equivalent p-skyline rela-
tions. Hence, the order in which the leaf nodes are stored in
the normalized syntax tree ofskyH (line 2 ofelicit) also
affects the resulting p-skyline relation.
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Algorithm 2 push(T, M, A, N )
Require: T is normalized
1: if the parent ofA in T is of type &
2: Ci := parent ofA in T; R := parent ofCi in T;
3: if R is defined, andA is the first child ofCi

4: for each childCi+1 of R s.t.Var(Ci+1)⊆M
5: if checkConstr(N , A, /0, Var(Ci+1))
6: applyRule1(T,Ci ,Ci+1)
7: N := minimize(N ,Var(A),Var(Ci+1))
8: return true
9: else ifR is defined, andA is the last child ofCi

10: for each childCi+1 of Rs.t.Var(Ci+1)⊆M
11: if checkConstr(N , A, Var(Ci+1), /0)
12: applyRule2(T,Ci ,Ci+1)
13: N := minimize(N ,Var(Ci+1),Var(A))
14: return true
15: else // the parent ofA in T is of type ⊗
16: R := parent ofA in T;
17: for each childCi of Rs.t.Var(Ci )⊆M
18: if Ci is of type &
19: N1 := first child ofCi , Nm := last child ofCi

20: if checkConstr(N , A, Var(N1), /0)
21: applyRule1(T,Ci ,A)
22: N :=minimize(N , Var(N1), Var(A))
23: return true
24: else ifcheckConstr(N , A, /0, Var(Nm))
25: applyRule2(T,Ci ,A)
26: N := minimize(N , Var(A), Var(Nm))
27: return true
28: else // Ci is a leaf node, sinceT is normalized
29: if checkConstr(N , A, Var(Ci ), /0)
30: applyRule3(T,Ci ,A)
31: N :=minimize(N , Var(Ci ), Var(A))
32: return true
33: else ifcheckConstr(N , A, /0, Var(Ci )
34: applyRule3(T,A,Ci)
35: N :=minimize(N , Var(A), Var(Ci ))
36: return true
37: return f alse

Algorithm 3 checkConstr(N , A, PA, CA)
for eachτ ∈N do

if Rτ = {A}∧PA∩Lτ 6= /0 or A∈ Lτ∧Rτ ⊆CA then
return f alse

end if
end for
return true

Algorithm 4 minimize(N , U , D)
1: for each constraintτ in N do
2: if U ∩Lτ 6= /0 then
3: Rτ← Rτ−D
4: end if
5: end for
6: return N

Example 17TakeO andH from Example 9, andG from
Example 11. Then the corresponding system of negative con-
straintsN = N (G,O) (Example 11) is shown in Figure
14(a). Consider the attributes in the following order:make,
price, year. Run elicit. The treeT (line 2) is shown

τ1 : t1 6≻ t3 ChΓ≻ ({make}) 6⊇ {price}
τ2 : t2 6≻ t3 ChΓ≻ ({make,year}) 6⊇ {price}
τ3 : t4 6≻ t3 ChΓ≻ ({make,year}) 6⊇ {price}
τ4 : t5 6≻ t3 ChΓ≻ ({make}) 6⊇ {price,year}
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in Figure 14(b). The initial value ofM is {make}. First,
call push(T, {make}, price,N ). The parent ofprice is a⊗-
node (Figure 14(b)), so we go to line 16 ofpush, where
R is set to the⊗-node (Figure 14(b)). AfterCi is set to
the nodemakein line 17, we go to line 29 because it is
a leaf node. ThecheckConstr test in line 29 fails be-
causeN prohibits the edge (make, price). Hence, we go to
line 33 where thecheckConstr test succeeds. We ap-
ply Rule3(T, price,Ci), push returnstrue, and the result-
ing syntax treeT is shown in Figure 14(c). Next time we
call push(T,{make}, price,N ) in the line 6 ofelicit,
we get to the line 4 ofpush. Sinceyear 6∈ M, we imme-
diately go to line 37 and returnf alse. In elicit M is
set to{make,price} andpush(T,{make,price},year,N ) is
called. There we go to line 16 (R is set to the⊗-node in
Figure 14(c)),Ci is set to the &-node (Figure 14(c)), we
apply Rule1(T,Ci ,year) (the resulting treeT is shown in
Figure 14(d)), andtrue is returned. Whenpush(T,{make,
price},year,N ) is called the next time, we first go to line
16,R is set to the⊗-node (Figure 14(d)), andCi to the node
make. ThenRule3(T,Ci ,year) is applied (line 30) resulting
in the treeT shown in Figure 14(e), andtrue is returned.
Nowpush(T,{make,price},year,N ) gets called once again
from elicit and returnsf alse; and thus the tree in Fig-
ure 14(e) is the final one. According to the corresponding
p-skyline relation,t3 dominates all other tuples inO.

The final p-skyline relation constructed in Example 17
is a prioritized accumulation of all the attribute preference
relations. This is becauseN effectively contained only one
constraint (all constraints are implied byτ2, as shown be-
low). When more constraints are involved, an elicited p-
skyline relation may also have occurrences of Pareto accu-
mulation.

4.5 Reducing the size of systems of negative constraints

As we showed in Theorem 11, the running time of the func-
tion elicit linearly depends on the size of the system of
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negative constraintsN . If N = N (G,O), thenN contains
(|O| − 1) · |G| constraints. A natural question which arises
here is whether we really need all the constraints inN to
elicit a maximal p-skyline relation satisfyingN . In particu-
lar, can we replaceN with an equivalent subset ofN ?

We define equivalence of systems of negative constraints
in a natural way.

Definition 13 Given two systems of negative constraintsN1

andN2, and two negative constraintsτ1, τ2:

– N1 (resp.τ1) impliesN2 (resp.τ2) iff every≻∈ FH sat-
isfying N1 (resp.τ1) also satisfiesN2 (resp.τ2);

– N1 (resp.τ1) strictly impliesN2 (resp.τ2) iff every≻∈
FH satisfyingN1 (resp.τ1) also satisfiesN2 (resp.τ2),
but N2 (resp.τ2) does not implyN1 (resp.τ1);

– N1 (resp.τ1) is equivalentto N2 (resp.τ2) iff N1 (resp.
τ1) impliesN2 (resp.τ2) and vice versa.

In particular, a subset ofN (G,O) from Example 17 that
is equivalent toN (G,O) is N ′ = {τ2}: first, N ′ clearly im-
plies N (G,O); second,{τ3} is trivially implied by {τ2},
{τ1} is implied by{τ2} (if price is not a child of eithermake
oryear, it is not a child ofmake), and{τ4} is implied by{τ2}

(if price is a child of neithermakenor year, then bothprice
andyearcannot be children ofmake).

Below we propose a number of methods for computing
an equivalent subset of a system of negative constraints.

4.5.1 UsingskyH (O) instead ofO

The first method of reducing the size of a system of negative
constraints is based on the following observation. Recall that
each negative constraint is used to show that a tuple should
not be preferred to a superior example. We also know that
the relationskyH is the least p-skyline relation. By definition
of the winnow operator, for everyo′ ∈ (O−ωskyH (O)) there
is a tupleo∈ ωskyH (O) s.t.o is preferred too′ according to
skyH . SinceskyH is the least p-skyline relation, the sameo is
preferred too′ according to every p-skyline relation. Thus,
to guarantee favoringG in O, the system of negative con-
straints needs to contain only the constraints showing that
the tuples inωskyH (O) are not preferred to the superior ex-
amples. Hence, the following proposition holds.

Proposition 10 Given G⊆ ωskyH
(O), N (G,O) is equiva-

lent to N (G,ωskyH
(O)).

Notice thatN (G,ωskyH (O)) contains(|ωskyH (O)|−1) ·
|G| negative constraints. Proposition 10 also imply an im-
portant result:if a user considers a tuple t superior based on
the comparison withωskyH

(O), comparing t with the tuples
in (O−ωskyH

(O)) does not add any new information.

4.5.2 Removing redundant constraints

The second method of reducing the size of a negative con-
straint system is based on determining the implication of dis-
tinct negative constraints in a system. Let twoτ1,τ2 ∈N be
such thatLτ2 ⊆ Lτ1, Rτ1 ⊆ Rτ2. It is easy to check thatτ1

impliesτ2. Thus, the constraintτ2 is redundantand may be
deleted fromN . This idea can also be expressed as follows:

τ impliesτ′ iff Lτ′ ⊆ Lτ∧ (A−Rτ′)⊆ (A−Rτ).

Let us representτ as a bitmap representing(A−Rτ) ap-
pended to a bitmap representingLτ. We assume that a bit is
set to 1 iff the corresponding attribute is in the correspond-
ing set. Denote such a representation asbitmap(τ).

Example 18Let Lτ = {A1,A3,A5}, Rτ = {A2}, Lτ′ = {A1,

A5}, Rτ′ = {A2,A4}. Let A = {A1, . . . ,A5}. As a result,bit-
map(τ) = 10101 10111 andbitmap(τ′) = 10001 10101.

Considerbitmap(τ) as a vector with 2· |A | dimensions.
From the negative constraint implication rule, it follows that
τ strictly impliesτ′ iff bitmap(τ) andbitmap(τ′) satisfy the
Pareto improvement principle, i.e., the value of every di-
mension ofbitmap(τ) is greater or equal to the correspond-
ing value inbitmap(τ), and there is at least one dimension
whose value inbitmap(τ) is greater than inbitmap(τ′). There-
fore, the set of all non-redundant constraints inN corre-
sponds to theskylineof the set of bitmap representations
of all constraints inN . Moreover,bitmap(τ) can have only
two values in every dimension: 0 or 1. Thus, algorithms
for computing skylines over low-cardinality domains (e.g.
[Morse et al(2007)]) can be used to compute the set of non-
redundant constraints.

4.5.3 Removing redundant sets of constraints

The method of determining redundant constraints in the pre-
vious section is based on distinct constraint implication.A
more powerful version of this method would compute and
discardredundant subsets ofN rather then redundant dis-
tinct constraints. However, as we show in this section, that
problem appears to be significantly harder.

Problem SUBSET-EQUIV. Given systems of negative
constraintsN1 andN2 s.t.N2 ⊆ N1, check ifN2 is equiva-
lent toN1.

To determine the complexity ofSUBSET-EQUIV, we
use a helper problem.

ProblemNEG-SYST-IMPL. Given two systems of neg-
ative constraintsN1 andN2, check ifN1 impliesN2.

It turns out that the problemsNEG-SYST-IMPL and
SUBSET-EQUIV are intractable in general.

Theorem 12 NEG-SYST-IMPL is co-NP complete
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Theorem 13 SUBSET-EQUIV is co-NP complete

We notice that even though the problem of minimizing
the size of a system of negative constraints is intractable in
general, the methods of reducing its size we proposed in sec-
tions 4.5.2 and 4.5.1 result in a significant decrease in the
size of the system. This is illustrated in Section 5.

5 Experiments

We have performed extensive experimental study of the pro-
posed framework. The algorithms were implemented in Java.
The experiments were run on Intel Core 2 Duo CPU 2.1 GHz
with 2.0GB RAM under Windows XP. We used four data
sets: one real-life and three synthetic.

5.1 Experiments with real-life data

In this subsection, we focus on experimenting with the accu-
racy of theelicit algorithm and the reduction of winnow
result size, achieved by modeling user preferences using p-
skyline relations. We use a data setNHL which stores statis-
tics of NHL players [nhl(2008)], containing 9395 tuples. We
consider three sets of relevant attributesA containing 12, 9,
and 6 attributes. The size of the corresponding skylines is
568, 114, and 33, respectively.

5.1.1 Precision and recall

The aim of the first experiment is to demonstrate that the
elicit algorithm has high accuracy. We use the following
scenario. We assume that the real, hidden preferences of the
user are modeled as a p-skyline relation≻hid. We also as-
sume that the user provides the set of relevant attributesA ,
the set of corresponding attribute preferencesH , and a set
Ghid of tuples which she likes most inNHL (i.e., Ghid are
superior examples andGhid ⊆ ω≻hid(NHL)). We useGhid

to construct a maximal p-skyline relation≻ favoringGhid in
NHL. To measure the accuracy ofelicit, we compare the
set of the best tuplesω≻(NHL) with the set of the best tu-
plesω≻hid(NHL). The latter is supposed to correctly reflect
user preferences.

To model user preferences, we randomly generate 100 p-
skyline relations≻hid. For eachω≻hid(NHL), we randomly
pick 5 tuples from it, and use the tuples as superior examples
Ghid to elicit three different maximal p-skyline relations≻
favoringGhid in NHL. Out of those three relations, we pick
the one resulting inω≻(NHL) of the smallest size. Then
we add 5 more tuples fromω≻hid(NHL) to Ghid and repeat
the same procedure. We keep adding tuples toGhid from
ω≻hid(NHL) until Ghid reachesω≻hid(NHL).

To measure the accuracy of theelicit algorithm, we
compute the following three values:

1. precisionof the p-skyline elicitation method:

precision=
|ω≻(NHL)∩ω≻hid(NHL)|

|ω≻(NHL)|
,

2. recall of the p-skyline elicitation method:

recall =
|ω≻(NHL)∩ω≻hid(NHL)|

|ω≻hid(NHL)|
,

3. F-measurewhich combinesprecisionandrecall:

F = 2 ·
precision· recall
precision+ recall

We plot the average values of those measures in Figures
15(a), 15(b), and 15(c). As can be observed,precisionof
theelicit algorithm is high in all experiments. In partic-
ular, it is greater than 0.9 in most cases, regardless of the
number of superior examples and the number of relevant at-
tributes. At the same time,recall starts from a low value
when the number of superior examples is low. This is justi-
fied by the fact thatelicit constructs amaximalrelation
favoringGhid in NHL. Thus, whenGhid contains few tuples,
it is not sufficient to capture the preference relation≻hid,
and thus the ratio of false negatives is rather high. However,
when we increase the number of superior examples,recall
consistently grows.
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Fig. 15 Accuracy of p-skyline elicitation

In Figure 15(d), we plot the values of theF-measure
with respect to the share of the skyline used as superior ex-
amples. As one can observe, the value ofF starts from a
comparatively low value of 0.7 but quickly reaches 0.9 via a
small increase of the size ofGhid. Another important obser-
vation is that the value ofF is generally inversely dependent
on the number of relevant attributes (given the same ratio of



20

superior examples used). This is justified by the following
observation. To construct a p-skyline relation favoringGhid

in NHL, the algorithm uses a set of negative constraintsN .
Intuitively, the constructed p-skyline relation≻ will match
the original relation≻hid better if the setN captures≻hid

sufficiently well. The number of constraints inN depends
not only on the number of superior examples but also on the
skyline size. Since skyline sizes are generally smaller for
smaller sets ofA , more superior examples are needed for
smallerA to capture≻hid.

5.1.2 Winnow result size

In Section 1, we discussed a well known deficiency of the
skyline framework: skylines are generally of large size for
large sets of relevant attributesA . The goal of the experi-
ments in this section is twofold. First, we demonstrate that
using p-skyline relations to model user preferences results in
smaller winnow query resultsin comparison to skyline rela-
tions. Second, we show that the reduction of query result
size is significant if thehiddenuser preference relation is a
p-skyline relation. In particular, we show that it is generally
hard to find a p-skyline relation favoringan arbitrarysubset
of the skyline.

In this experiment, sets of superior examples are gen-
erated using two methods. First, they are drawn randomly
from the set of the best objectsω≻hid(NHL) according to a
hidden p-skyline relation≻hid, as in the previous experiment
and denotedGhid. Second, they are drawn randomly from
the skylineωsky(NHL) and denotedGrand. Notice thatGrand

may not be favored by any p-skyline relation (besidesskyH ,
of course). We use these sets to elicit p-skyline relations≻
that favor them. In Figure 16, we plot

winnow-size-ratio =
|ω≻(NHL)|
|ωskyH (NHL)|

,

which shows the difference in the size of the results of p-
skyline and skyline queries.

Consider the graphs forGhid. As the figures suggest, us-
ing p-skyline relations to model user preferences results in
a significant reduction in the size of winnow query result,
in comparison to skyline relations. It can be observed that
using larger sets of relevant attributesA generally results
in smaller values ofwinnow-size-ratio. Moreover, for larger
relevant attribute sets,winnow-size-ratiogrows slowly. That
is due to larger skyline size for such sets.

Another important observation is thatwinnow-size-ratio
is always smaller for superior examples which correspond
to p-skyline relations (Ghid), in comparison to superior ex-
amples drawn randomly (Grand) from the skyline. The fact
that superior examples correspond to a real p-skyline rela-
tion implies that they share some similarity expressed using
the attribute importance relationships. For a set of random
skyline tuplesGrand, such similarity exists when it contains

only a few tuples. Increasing the size of such a set decreases
the similarity of the tuples, which results in a quick growth
of winnow-size-ratio.
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Fig. 16 p-skyline size reduction

5.2 Experiments with synthetic data

Here we present experiments with synthetic data. The main
goals of the experiments is to demonstrate that the proposed
p-skyline relation elicitation approach is scalable and allows
effective optimizations. We use three synthetic data sets here:
correlatedS1, anti-correlatedS2, and uniformS3. Each of
them contains 50000 tuples. We use three different setsA of
10, 15, and 20 relevant attributes. For each of those sets, we
pick a different set of superior examplesG. SetsG are con-
structed ofsimilar tuples, similarity being measured as Eu-
clidean distance. As before, given a setG, we useelicit
to construct maximal p-skyline relations≻ favoringG. This
setup is supposed to model an automated process of iden-
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tifying superior objectsG, in which a user is involved only
indirectly.

5.2.1 Scalability

In this section, we show that theelicit algorithm is scal-
able with respect to various parameters. In Figure 17, we
plot the dependence of the average running time ofdisco-

ver on the number of superior examples|G| used to elicit
a p-skyline relation (Figure 17(a),|Si | = 50000,|A | = 20),
the size ofSi for i = 1, . . . ,3 (Figure 17(b),|G|= 50, |A |=
20), and the number|A | of relevant attributes (Figure 17(c),
|Si |= 50000,|G|= 50). The measured time does not include
the time to construct the system of negative constraints and
find the non-redundant constraints in it. According to our
experiments, the preprocessing time predominantly depends
on the performance of the skyline computation algorithm.

According to Figure 17(a), the running time of the algo-
rithm increases until the size ofG reaches 30. After that, it
does not vary much. This is due to the fact that the algorithm
performance depends on the number of negative constraints
used. We use onlynon-redundantconstraints for elicitation.
As we show further (Figure 18(a)), the dependence of the
size of a system of non-redundant constraints on the number
of superior examples has a pattern similar to Figure 17(a).

The growth of the running time with the increase in the
data set size (Figure 17(b)) is justified by the fact that the
number of negative constraints depends on skyline size (Sec-
tion 4.5). For the data sets used in the experiment, the sky-
line size grows with the size of the data set. Similarly, the
running time of the algorithm grows with the number of rel-
evant attributes (Figure 17(c)), due to the increase in the sky-
line size.

We conclude that theelicit algorithm is efficient and
its running time scales well with respect to the number of
superior examples, the size of the data set, and the number
of relevant attributes used.

5.2.2 Reduction in the number of negative constraints

In this section, we demonstrate that the algorithmelicit
allows effective optimizations. Recall that the running time
of elicit depends linearly (Theorem 11) on the number
of negative constraints in the systemN . Here we show that
the techniques proposed in Section 4.5 result in a significant
reduction in the size ofN .

In Figure 18(a), we show how the number of negative
constraints depends on the number of superior examples used
to construct them. For every data set, we plot two values: the
number ofuniquenegative constraints inN (G,ωskyH (Si))

for i = 1, . . . ,3, and the number ofunique non-redundant
constraints in the corresponding system. We note that the
reduction in the number of constraints achieved using the
methods we proposed in Section 4.5 is significant. In par-
ticular, for the anti-correlated data set andG of size 150,
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Fig. 17 Performance of p-skyline elicitation

the total number of constraints inN (G,Si) is approximately
7.5 ·106. Among them, about 5.5 ·106 are unique inN (G,
ωskyH (Si)). However, less than 1% of them (about 12·103)
are non-redundant.

5.2.3 Winnow result size

In Section 5.1, we showed how the size of p-skyline query
result depends on the number of relevant attributes and the
size of the skyline. In this section, we show that another pa-
rameter which affects the size of winnow query result isdata
distribution. In Figure 18(b), we demonstrate how the size
of the p-skyline query result varies with the number of supe-
rior examples. We compare this size with the size of the cor-
responding skyline and plot the value ofwinnow-size-ratio
defined in the previous section. Here we use anti-correlated,
uniform, and correlated data sets of 50000 tuples each. The
number of relevant attributes is 20. The size of the corre-
sponding skylines is: 41716 (anti-correlated), 37019 (uni-
form), and 33888 (correlated). For anti-correlated and uni-
form data sets, the values ofwinnow-size-ratio quickly reach
a certain bound and then grow slowly with the number of
superior examples. This bound is approximately 1% of the
skyline size (i.e., about 350 tuples) for both data sets. At the
same time, the growth ofwinnow-size-ratio for correlated
data set is faster. Note that the values ofwinnow-size- ratio
are generally lower for synthetic data sets, in comparison
to the real-life data setNHL. This is due to the larger set
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of relevant attributes and larger skyline sizes in the current
experiment.
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Fig. 18 Synthetic data experiments

We conclude that the experiments that we have carried
out show that incorporating relative attribute importanceinto
skyline relations in the form of p-skyline relations results in
a significant reduction in query result size. The proposed al-
gorithmelicit for eliciting a maximal p-skyline relation
favoring a given set of superior examples has good scalabil-
ity in terms of the data set size and the number of relevant
attributes. The algorithm has high accuracy even for small
sets of superior examples.

6 Related work

In this section, we discuss related work that has been done
in the areas covered in the paper:modeling preferences as
skyline relationsandpreference elicitation.

6.1 Modeling preferences as skyline relations

The p-skyline framework is based on the preference con-
structor approach proposed in [Kießling(2002)]. That ap-
proach was extended in [Kießling (2005)] by relaxing def-
initions of the accumulation operators and by usingSV-rela-
tions, instead of equality, as indifference relations. [Kießling (2005)]
showed that such an extension preserves the SPO proper-
ties of the resulting preference relations. The resulting re-
lations were shown to belarger (in the set theoretic sense)

than the relations composed using the equality-based accu-
mulational operators. However, relative importance of at-
tributes implicit in such relations was addressed neither in
[Kießling(2002)] nor [Kießling (2005)]. Containment of pref-
erence relations and minimal extensions were also not con-
sidered in these works.

[Börzsönyi et al(2001)] proposed the original skyline
framework. That paper introduced an extension of SQL in
which the skyline queries can be formulated. The paper also
proposed a number of algorithms for computing skylines.
Since then, many algorithms for that task have been devel-
oped ( [Tan et al(2001),Kossmann et al(2002),Chomicki et al(2003),
Lee et al(2007),Godfrey et al(2007)] and others).

[Godfrey et al(2005)] showed that the number of sky-
line points in a dataset may be exponential in the number of
attributes. Since then, a number of approaches have been de-
veloped for reducing the size of skylines by computing only
the most representativeskyline objects.

[Chan et al(2006)] proposed to compute the set ofk-
dominantskyline points instead of the entire skyline. An-
other variant of the skyline operator was presented in [Lin et al(2007)].
That operator computesk most representativetuples of a
skyline. [Lin et al(2007)] showed that when the number of
attributes involved is greater than two, the problem isNP-
hard in general. For such cases, [Lin et al(2007)] proposed a
polynomial time approximation algorithm.

More recently, [Tao et al(2009)] proposed thedistance-
based representative skylineoperator. This approach is based
on the observation that if a skyline of a dataset consists of
clusters, then in many cases, a user is interested in seeing
only good representatives from each skyline cluster rather
than the entire skyline (which may be quite large). If inter-
ested, the user may drill down to each cluster further on. The
representativeness here is measured as the maximum of the
distance from the cluster center to each object of the cluster.
The authors studied the problem of computingk most repre-
sentative skyline objects and proposed an efficient approxi-
mation algorithm for datasets with arbitrary dimensionality.

Another recent work in the area of skyline-size reduc-
tion is [Zhao et al(2010)]. There, the authors proposed the
order-based representative skylineoperator. The approach is
based on a well-known fact that an object is in a skyline iff
it maximizes some monotone utility function. As a measure
of skyline object similarity, the authors used the similarity
between (possibly infinite) sets of orders which favor the
corresponding objects. The authors developed an algorithm
for computing representatives of clusters of similar objects.
They also proposed a method of eliciting user preferences
which allows to drill down to clusters in an iterative manner.

Another direction of research using the skyline frame-
work concernssubspace skyline computation[Pei et al(2005),
Yuan et al(2005)]. An interesting problem in this framework
is how to identify the subspaces to whose skylines a given
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tuple belongs. [Pei et al(2005)] showed an approach to that
problem, which uses the notion ofdecisive subspace. A sub-
space skyline can be computed using every skyline algo-
rithm. However, to computek subspace skylines (fork dif-
ferent attribute sets), an algorithm for efficient computing of
all subspace skylines at once [Pei et al(2005),Yuan et al(2005)]
may be more efficient. [Yuan et al(2005)] introduced the re-
lated notion ofskyline cube. The skyline cube approach was
used in [Lee et al(2009)] to find themost interestingsub-
spaces given an upper bound on the size of the correspond-
ing skyline and a total order of attributes, the latter repre-
senting the importance of the attributes to the user.

We notice that the framework based on subspace sky-
lines is, in a sense, orthogonal to the p-skyline framework
proposed here. Both of them extend the skyline framework.
In the subspace skyline framework, the relative importance
of attributes is fixed (i.e., all considered attributes are of
equal importance) while the sets of the relevant attributes
may vary. In the p-skyline approach, the set of relevant at-
tributes is fixed while the relative importance of them may
vary. However, given a set of attribute preference relations,
all subspace skylines and the results of all full p-skyline re-
lations are subsets of the (full-space) skyline (assuming the
distinct value property for subspace skylines).

[Zhang et al(2010)] studied the properties of skyline pref-
erence relations and showed that they are the only relations
satisfying the introduced properties ofrationality, transitiv-
ity, scaling robustness, andshifted robustness. The authors
analyzed these properties and the outcome of their relax-
ation in skyline preference relations. They also showed how
to adapt existing skyline computation algorithms to relaxed
skylines. This work is particular interesting in the context
of the current paper, since it gives some insights to possible
approaches for computingp-skylinewinnow queries.

6.2 Preference elicitation

An approach to elicit preferences aggregated using the accu-
mulation operators was proposed in [Holland et al(2003)].
Web server logs were used there to elicit preference rela-
tions. The approach was based on statistical properties of log
data – more preferable tuples appear more frequently. The
mining process was split into two parts: eliciting attribute
preferences and eliciting accumulation operators which ag-
gregate the attribute preferences. Attribute preferencesto be
elicited were in the form of predefined preference construc-
tors such as LOWEST, HIGHEST, POS, NEG etc. [Holland et al(2003)]
used a heuristic approach to elicit the way attribute pref-
erences are aggregated (usingParetoandprioritized accu-
mulation operators). The case when more than one different
combination of accumulation operators may be elicited in
the same data was not addressed. Moreover, no criteria of
optimality of elicited preference relations were defined.

A framework for preference elicitation which is com-
plementary to the approach we have developed here was
presented in [Jiang et al(2008)]. In that work, preferences
are modeled as skyline relations. Given a set of relevant at-
tributes and a set of attribute preferences over some of them,
the objective is to determine attribute preferences over the
remaining attributes. The elicitation process is based on user
feedback in terms of a set of superior and a set of inferior ex-
amples. The work is focused on eliciting minimal (in terms
of relation size) attribute preference relations. [Jiang et al(2008)]
showed that the problem of existence of such relations is
NP-complete, and the computation problem is NP-hard. Two
greedy heuristic algorithms were provided. The algorithms
are not sound, i.e., for some inputs, the computed prefer-
ences may fail to be minimal. That approach and the ap-
proach we presented here are different in the following sense.
First, [Jiang et al(2008)] dealt with skyline relations, and thus
all attribute preferences are considered to be equally impor-
tant. In contrast, the focus of our work is to elicit differences
in attribute importance. Second, [Jiang et al(2008)] focused
on eliciting minimal attribute preferences. In contrast, we
are interested in constructing maximal tuple preference re-
lations, since such relations guarantee a better fit to the pro-
vided set of superior examples. At the same time, our work
and [Jiang et al(2008)] complement each other. Namely, when
attribute preferences are not provided explicitly by the user,
the approach of [Jiang et al(2008)] may be used to elicit
them.

Another approach to preference relation elicitation in the
skyline framework was introduced in [Lee et al(2008)]. It
proposed to reduce skyline sizes by revising skyline pref-
erence relations by supplying additional tuple relationships:
preference and equivalence. Such relationships are obtained
from user answers to simple questions.

In quantitative preference frameworks [Fishburn(1970)],
preferences are represented asutility functions: a tuplet is
preferred to another tuplet ′ iff f (t) > f (t ′) for a utility
function f . Attribute priorities are often represented here as
weight coefficientsin polynomial utility functions. A num-
ber of methods have been proposed to elicit utility functions
– some of them are [Chajewska et al(2000),Boutilier(2002)].
Utility functions were shown to be effective for reasoning
with preferences and querying databases with preferences
(Top-K queries) [Fagin et al(2001),Das et al(2006),Bacchus and Grove(1996)].
Some work has been performed on eliciting utility functions
for preferences represented in other models [McGeachie andDoyle(2002)].

[Domshlak and Joachims(2007)] described another mod-
el of preference elicitation in the form of utility functions.
The authors proposed a framework for constructing a util-
ity function consistent with a set of comparative statements
about preferences (e.g., “A is better than B” or “A is as
good as B”). That approach does not rely on any structure of
preference relations. [Vu Ha(1999)] proposed an approach
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to composing binary preference relations andmulti-linear
utility functions. A quantitative framework for elicitingbi-
nary preference relations based on knowledge based artifi-
cial neural network (KBANN) was presented in [Haddawy et al(2003)].
[Viappiani et al(2006)] studied the problems of incremental
elicitation of user preference based on user providedexam-
ple critiques.

7 Conclusion and future work

In this work, we explored the p-skyline framework which
extends skylines with the notion of attribute importance cap-
tured by p-graphs. We studied the properties of p-skyline re-
lations – checking dominance, containment and equality of
such relations – and showed efficient methods for perform-
ing the checks using p-graphs. We proposed a complete set
of transformation rules for efficient computation of minimal
extensions of p-skyline relations.

The main problem studied here was theelicitation of
p-skyline relations based on user-provided feedback in the
form of superior and inferior examples.We showed that
the problems of existence and construction of a maximal
p-skyline relation favoring and disfavoring given sets of su-
perior and inferior examples are intractable in general. For
restricted versions of these problems – when the provided
inferior example sets are empty – we designed polynomial
time algorithms. We also identified some bottlenecks of con-
structing maximal p-skyline relations: the system of nega-
tive constraints used may be quite large in general, which
directly affects the algorithm performance. To tackle that
problem, we proposed several optimization techniques for
reducingthe size of such systems. We also showed that the
problem ofminimizationof such systems is unlikely to be
solvable in polynomial time in general. We conducted ex-
perimental studies of the proposed elicitation algorithm and
optimization techniques. The study shows that the algorithm
has good scalability in terms of the data set size and the num-
ber of relevant attributes, and high accuracy even for small
sets of superior examples.

At the same time, we note that the our framework has a
number of limitations that can be addressed in future work.
First, we focused onfull p-skyline relations. An interesting
direction of future work would be to study the properties of
partial p-skyline relations (i.e., defined on top of setsA and
H of variable size).

Second, attribute preference relations considered in this
work are limited tototal orders. There are several reasons
for this limitation:

– the limitation is natural in many contexts;
– attribute preferences in skyline relations are also typi-

cally total orders (although there are several papers, e.g.,
[Chan et al(2005), Balke et al(2006)], in which this lim-
itation is lifted);

– some of our results require the assumption that attribute
preferences are total orders, e.g., Theorem 5.

It would be interesting to see how our results can be general-
ized if the restriction of attribute preferences to total orders
is relaxed. (To avoid any possible confusion, we emphasize
that tuple preference relation considered in our work arenot
limited to total orders.)

Third, the DIFF attributes, discussed in the original sky-
line paper [Börzsönyi et al(2001)], were also not considered
in this paper. This is another possible generalization.

Fourth, the type of user feedback for p-skyline relation
elicitation – superior and inferior examples – may not fit
some real-life scenarios. So a potentially promising direc-
tion is to adapt the p-skyline elicitation approach to other
types of feedback. For that, one should study appropriate
classes of attribute set constraints.

Finally, the problem of computing winnow queries with
p-skyline relations is left for future work.
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Appendix: Proofs

Before going into the proofs, we introduce(W 0,A0)-struc-
tures. A (W 0,A0)-structure is based on the set of attributes
A0 and a functionW 0 = {WA : A ∈ A0} mappingA0 to
subsets ofA0.

Definition 14 ((W 0,A0)-structure) Let W 0 andA0 be as
discussed above and such that for everyA ∈ A0, A 6∈WA.
Then the(W 0,A0)-structureis a tuple(W 0,A0), and the
relation generated by(W 0,A0) is

≻(W 0,A0) ≡ TC

(
⋃

A∈A0

qA

)
,

where

qA≡ {(o1,o2) | o1.A>A o2.A}∩ ≈A−(WA∪{A}),

and>A is the attribute preference relation forA in H .

Let a tupleo dominate a tupleo′ according to the re-
lation≻(W 0,A0) generated by(W 0,A0). By Definition 14,
this is possible iff there exist a sequence of tuplesΣo,o′ =

(o1,o2, . . . ,om,om+1) such thato1 = o,om+1 = o′, and a se-
quence of attributesΨo,o′ = (Ai1, . . . ,Aim), all in A0, such
that

qAi1
(o1,o2), . . . ,qAim

(om,om+1)

Then the pair (Σo,o′ ,Ψo,o′) is called aderivation sequence
for o≻(W 0,A0) o′. Given a pair of tuples, the corresponding
derivation sequence is not unique in general.

We notice that the(W 0,A0)-structures are an efficient
tool used here to prove some theorems describing properties
of p-skyline relations. Now, Theorem 1 can be reformulated
as follows:

Theorem 1’ Every p-skyline relation≻ ∈ FH can be
represented as a relation≻(W ,A ) generated by a(W ,A )-
structure such that for everyA∈ A , WA =ChΓ≻(A).

Proof of Theorem 1’.We show here that for every≻∈ FH ,

≻ ≡ ≻(W ,A) ≡ TC


 ⋃

A∈Var(≻)

qA




qA≡ {(o1,o2) | o1.A≻A o2.A} ∩ ≈A−(WA∪{A})

whereWA = ChΓ≻(A) for A∈ Var(≻). We prove the theo-
rem by induction on the sizes ofH (andA).

Base step.Let H = {>A} andA = {A}. ThenFH con-
sists of a single atomic p-skyline relation≻ induced by>A.
LetWA =ChΓ≻(A) = /0. Then

≻ = ≻(W ,A ) ≡ TC(qA)

qA≡ {(o1,o2) | o1.A>A o2.A} ∩ ≈A−(WA∪{A}).

Inductive step.Now assume that the theorem holds forH

andA of size up ton. Prove that it holds forH andA of
sizen+1. Let≻ = ≻1 ⊗ ≻2 (the case of≻ = ≻1 & ≻2

is similar). By the definition of induced p-skyline relations,

≻ ≡ (≻1 ∩ ≈Var(≻2)) ∪ (≻2 ∩ ≈Var(≻1)) ∪ (≻1 ∩ ≻2).

Thus, for two p-skyline relations≻1 and≻2 the inductive
assumption implies that≻1 and≻2 can be represented by
the structures(W 1,A1) and(W 2,A2), for A1 = Var(≻1)
andA2 =Var(≻2). That is,

≻1 ≡ ≻(W 1,A1) ≡ TC(
⋃

A∈Var(≻1)

q1
A) (5)

≻2 ≡ ≻(W 2,A2) ≡ TC(
⋃

A∈Var(≻2)

q2
A) (6)

where

q1
A≡ {(o1,o2) | o1.A>A o2.A} ∩ ≈Var(≻1)−(W1

A∪{A})
(7)

q2
A≡ {(o1,o2) | o1.A>A o2.A} ∩ ≈Var(≻2)−(W2

A∪{A}).
(8)

Since≻ is a p-skyline relation,

Var(≻1)∩Var(≻2) = /0. (9)

(9), (5), and (6) imply

≻ ≡ TC


 ⋃

A∈Var(≻1)

q1
A


∩ ≈Var(≻2) ∪

TC


 ⋃

A∈Var(≻2)

q2
A


∩ ≈Var(≻1) ∪

TC


 ⋃

A∈Var(≻1)

q1
A


∩TC


 ⋃

A∈Var(≻2)

q2
A


 (10)

or equivalently

≻ ≡ TC


 ⋃

A∈Var(≻1)

q1
A∩≈Var(≻2)


 ∪

TC


 ⋃

A∈Var(≻2)

q2
A∩≈Var(≻1)


 ∪

TC


 ⋃

A∈Var(≻1)

q1
A


∩TC


 ⋃

A∈Var(≻2)

q2
A


 . (11)

Construct the functionW as follows

WA =

{
W1

A , if A∈Var(≻1)
W2

A , if A∈Var(≻2).

Let A =Var(≻1)∪Var(≻2) =Var(≻) and≻(W ,A ) be gen-
erated by such(W ,A )

≻(W ,A ) ≡ TC(
⋃

A∈A

q∗A) (12)
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for

q∗A≡ {(o1,o2) | o1.A>A o2.A} ∩ ≈A−(WA∪{A}). (13)

We prove that≻(W ,A ) is equal to≻. Before going into
the proof, notice that (11) can be rewritten as

≻ ≡ TC


 ⋃

A∈Var(≻1)

q∗A


∪TC


 ⋃

A∈Var(≻2)

q∗A


∪

TC


 ⋃

A∈Var(≻1)

q1
A


∩TC


 ⋃

A∈Var(≻2)

q2
A


 . (14)

1. Let o ≻(W ,A ) o′. Let (Σo,o′ ,Ψo,o′) be some derivation
sequence foro≻(W ,A )) o′. W.l.o.g. letΨo,o′ = (A1, . . . ,

Am), Σo,o′ = (o= o1,o2, . . . ,om,om+1 = o′), and

q∗A1
(o1,o2),q

∗
A2
(o2,o3), . . . ,q

∗
Am
(om,om+1). (15)

By construction, each attributeAi ∈ Ψo,o′ is either in
Var(≻1) orVar(≻2). For every suchAi , q∗Ai

(oi ,oi+1) im-
pliesoi ≻ oi+1 by (14). Therefore, (15) implies

o1≻ o2,o2≻ o3, ...,om≻ om+1. (16)

Transitivity of p-skyline relations implieso1≻ om+1, i.e.
o≻ o′.

2. Leto≻ o′. Then (14) leads to three cases

(a) (o,o′) ∈ TC
(⋃

A∈Var(≻1)
q∗A

)
. Theno≻(W ,A ) o′ by

(12).

(b) (o,o′) ∈ TC
(⋃

A∈Var(≻2)
q∗A

)
. Theno≻(W ,A ) o′ by

the same reasoning.

(c) (o,o′) ∈ TC
(⋃

A∈Var(≻1)
q1

A

)
∩TC

(⋃
A∈Var(≻2)

q2
A

)
.

In this case, (9) implies that there is an objecto′′

whose values ofVar(≻2) are equal to those ofo, and
the values ofVar(≻1) are equal to those ofo′. Then
we have

(o,o′′) ∈ TC


 ⋃

A∈Var(≻1)

q1
A


∩ ≈Var(≻2)

(o′′,o′) ∈ TC


 ⋃

A∈Var(≻2)

q1
A


∩ ≈Var(≻1)

or equivalently

(o,o′′) ∈ TC


 ⋃

A∈Var(≻1)

q1
A∩ ≈Var(≻2)




(o′′,o′) ∈ TC


 ⋃

A∈Var(≻2)

q1
A∩ ≈Var(≻1)




which implies by (13) and (12)

o≻(W ,A ) o′′,o′′ ≻(W ,A ) o′.

The transitivity of≻(W ,A ) implieso≻(W ,A ) o′.

A B

C A B

C A

B A

B

Fig. 19 Forks ofA andB

Recall that by Definition 10,

ChΓ≻(A) =

{
ChΓ≻1

, if A∈Var(≻1)

ChΓ≻2
if A∈Var(≻2).

.

Hence, given the inductive hypothesis, we proved that

WA =ChΓ≻(A) =

{
W1

A =ChΓ≻1
, if A∈Var(≻1)

W2
A =ChΓ≻2

if A∈Var(≻2).
.

⊓⊔

Theorem 2.A directed graphΓ with the set of nodesA is a
p-graph of some p-skyline relation iff

1. Γ is an SPO, and
2. Γ satisfies theEnvelope property:

∀A,B,C,D ∈ A ,all different

(A,B) ∈ Γ∧ (C,D) ∈ Γ∧ (C,B) ∈ Γ⇒
(C,A) ∈ Γ∨ (A,D) ∈ Γ∨ (D,B) ∈ Γ.

To prove the theorem, we introduce the notion of the
typed partitionof a directed graph.

Definition 15 Let Γ be a directed graph, andΓ1, Γ2 be two
nonempty subgraphs ofΓ such thatN(Γ1)∩N(Γ2) = /0 and
N(Γ1)∪N(Γ2)=N(Γ). Then the pair〈Γ1,Γ2〉 is a∼-partition
(respectively→-partition ) of Γ if Γ |= N(Γ1) ∼ N(Γ2), re-
spectively(N(Γ1),N(Γ2)) ∈ Γ.

The proof of Theorem 2 is based on Lemmas 1 and 2.
Lemma 1 establishes relationships between nodes in anSPO+

Envelope graph, while Lemma 2 establishes relationships
between typed partitions in such a graph.

Definition 16 Two nodesA and B of a directed graphΓ
form a fork if A is different fromB, and they conform to
one of the patterns in Figure 19. The nodeC of Γ has to be
different fromA andB.

Lemma 1 Let a directed graphΓ with at least two nodes
satisfySPO+Envelope. ThenΓ has a∼-partition, or ev-
ery pair of nodes ofΓ forms a fork.

Proof. For the sake of contradiction, assumeΓ has no∼-
partition, and some pair of different nodesA andB of Γ does
not form a fork, i.e.,

(A,B) 6∈ Γ∧ (B,A) 6∈ Γ ∧¬∃C∈N(Γ)
(A,C) ∈ Γ∧ (B,C) ∈ Γ∨ (C,A) ∈ Γ∧ (C,B) ∈ Γ.
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Let a subgraphΓ1 of Γ have the following set of nodes

N(Γ1) = {A}∪PaΓ({A}∪ChΓ(A))∪ChΓ({A}∪PaΓ(A)),

and the subgraphΓ2 of Γ have the nodesN(Γ2) = N(Γ)−
N(Γ1). Assuming thatB ∈ N(Γ1) leads to contradiction by
case analysis. SoB∈ N(Γ2). We conclude that bothΓ1 and
Γ2 are nonempty. Also, by case analysis we show thatΓ |=
N(Γ1)∼ N(Γ2). ⊓⊔

Lemma 2 A directed graphΓ satisfyingSPO+Envelope
with at least two nodes has a→-partition or a∼-partition
〈Γ≻1,Γ≻2〉 such thatΓ≻1 andΓ≻2 satisfySPO+Envelope.

Proof. We assume that no∼-partition ofΓ exists and show
that there exists a→-partition. SinceΓ is a finite SPO, there
exists a nonempty setTop⊆ N(Γ) of all the nodes which
have no incoming edges. IfTop is a singleton, thenTop
dominates every node inN(Γ)− Top, and we get the→-
partition〈Top,N(Γ)−Top〉. AssumeTop is not singleton.
Pick two nodesT1,T2 ∈ Top. T1 andT2 have no incoming
edges, and Lemma 1 implies that there exists a nodeZ1 such
that(T1,Z1)∈ Γ∧(T2,Z1)∈ Γ. If |Top|> 2, pick some node
Tk (Tk 6= T1,Tk 6= T2) from Top. SinceTk has no incoming
edges either, Lemma 1 implies that eitherTk is a parent of
Z1 or they have a common child (which is also a child ofT1

andT2 by the transitivity ofΓ). Therefore, by picking every
node ofTop, we can show that there exists at least one node
Z which is a child of all nodes inTop. Denote asM the set
of all the nodes dominated by every node inTop. Above we
showed thatM contains at least one node.

Now let us show that if a nodeX is not inM then(X,M)∈

Γ. Clearly, if X ∈ Top, then(X,M) ∈ Γ. So letX 6∈ Top.
By definition of Top, there is a nodeT1 ∈ Top such that
(T1,X)∈Γ. Assume there is a nodeZ∈M such that(X,Z) 6∈
Γ. By definition ofM, (T1,Z) ∈ Γ. Now pick some nodeT
(T 6=T1) of Top. By definition ofM, (T,Z)∈Γ. Let us apply
Envelope:

(T,Z) ∈ Γ ∧ (T1,Z) ∈ Γ ∧ (T1,X) ∈ Γ⇒
(T1,T) ∈ Γ ∨ (T,X) ∈ Γ ∨ (X,Z) ∈ Γ.

The first and the last disjuncts in the right-hand-side of the
expression contradict the assumptions(X,Z) 6∈ Γ andT ∈
Top. Therefore, the only choice is(T,X) ∈ Γ. However,T
is an arbitrary node inTop. Therefore,(Top,X)∈Γ and thus
X ∈M by definition ofM. We conclude that〈N(Γ)−M,M〉
is a→-partition ofΓ

Finally, it is easy to check that every subgraph of an
SPO+Envelope graph satisfiesSPO+Envelope. ⊓⊔

Proof of Theorem 2. By induction on the the structure of
the p-expression inducing a given p-skyline relation, it is
easy to show thatSPO+Envelope is satisfied by p-graphs.
Now we show that every directed graph satisfyingSPO+

Envelope is a p-graph of some p-skyline relation. Given
such a graphΓ, we construct the corresponding p-skyline
relation recursively. IfΓ contains a single node, then the
corresponding p-skyline relation is the atomic preference
relation induced by the attribute preference relation of the
corresponding attribute. IfΓ has more than one node, then
by Lemma 2,Γ has either a→-partition or a∼-partition
〈Γ1,Γ2〉 into nonempty subgraphs satisfyingSPO+Enve-
lope. If 〈Γ1,Γ2〉 is a→-partition (∼-partition), then the
corresponding p-skyline relation is a prioritized (Pareto, re-
spectively) accumulation of the p-skyline relations corre-
sponding toΓ1 andΓ2. This recursive construction exactly
corresponds to the construction ofW shown in Theorem 1.

⊓⊔

Proposition 4. Let A and B be leaf nodes in a normalized
syntax tree T≻ of a p-skyline relation≻∈ FH . Then(A,B)∈
Γ≻ iff the least common ancestor C of A and B in T≻ is la-
beled by& , and A precedes B in the left-to-right tree traver-
sal.

Proof of Proposition 4.
⇐ Let≻C be a p-skyline relation represented by the syntax

tree with the root nodeC. Definition 10 implies(A,B)∈ Γ≻C

andE(Γ≻C)⊆ E(Γ≻).
⇒ Let (A,B) ∈ Γ≻. If C is of type & but B precedes

A in left-to-right tree traversal, then Definition 10 implies
(B,A)∈Γ≻C and hence(B,A)∈Γ≻, which is a contradiction
to SPO of Γ≻. If C is of type ⊗ , then by Definition 10,
Γ≻C |= A∼ B and henceΓ≻ |= A∼ B, which contradicts the
initial assumption. ⊓⊔

Theorem 3.Two p-skyline relations≻1, ≻2∈ FH are equal
iff their p-graphs are identical.

To prove the theorem, we use the next lemma.

Lemma 3 Assume that≻1 (resp.≻2) are p-skyline relations
in FH , generated by(W 1,A) and(W 2,A), respectively. If
for some A∈ A , W1

A−W2
A 6= /0, then there is a pair o,o′ ∈U

such that

o≻1 o′ ando 6≻2 o′.

Proof. We construct two tupleso ando′ such thato≻(W 1,A)

o′ (and thuso≻1 o′), ando 6≻(W 2,A) o′ (and thuso 6≻2 o′).
For every attributeAi ∈A , pick two valuesvAi ,v

′
Ai
∈DAi

such thatvAi >Ai v′Ai
. Construct the tupleso ando′ as fol-

lows:

o.Ai =





vAi , if Ai = A,
vAi , if Ai ∈ A− ({A}∪W1

A),
v′Ai

, otherwise(Ai ∈W1
A)

o′.Ai =





v′Ai
, if Ai = A,

vAi , if Ai ∈ A− ({A}∪W1
A),

vAi , otherwise(Ai ∈W1
A)
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By construction, it is clear that

(o,o′) ∈ {(o1,o2) | o1≻A o2}∩ ≈A−({A}∪W1
A)

and thuso≻(W 1,A) o′ ando≻1 o′. Now assumeo≻(W 2,A) o′

(and thuso≻2 o′), i.e.

(o,o′) ∈ TC

(
⋃

Ai∈A

qAi

)
(17)

where

qAi ≡ {(o1,o2) | o1≻Ai o2}∩ ≈A−({Ai}∪W2
Ai
) . (18)

(17) implies that there should exist a derivation sequence
(Σo,o′ ,Ψo,o′ ) for o≻(W 2,A) o′. That is,Σo,o′ =(o1= o,o2, . . . ,

om,om+1 = o′) is a sequence of tuples, andΨo,o′ = (Ai1, . . . ,

Aim) is a sequence of attributes such that

qAi1
(o1,o2), . . . ,qAim

(om,om+1). (19)

Note that by (18),oik may be worse thanoik+1 in the
values ofWA2

ik
only.

First, we prove thatΨo,o′ ⊆W2
A ∪{A}. For the sake of

contradiction, assumeM = Ψo,o′− (W2
A ∪{A}) is nonempty.

Pick an elementAtop∈M which has no ancestors fromM in
Γ≻2 (such an element exists due to acyclicity ofΓ≻2). Since
qAtop is in the chain (19), we get

o.Atop >Atop o′.Atop.

By construction ofo, o′ that impliesAtop = A, which is a
contradiction. Thus,Ψo,o′ ⊆W2

A ∪{A}.
Second, we proveo 6≻(W 2,A) o′. For that, pickB∈W1

A−

W2
A . By construction ofo ando′, o′.B>B o.B. That implies

that there is a pair of tuplesok,ok+1 in Σo,o′ in which the
value ofB is changed from a less preferred to a more pre-
ferred one. That is possible only ifB∈W2

C for some attribute
C ∈ Ψo,o′ ⊆W2

A ∪ {A}. By Theorem 1,B ∈ ChΓ≻2
(C) and

C ∈ ChΓ≻2
(A)∪ {A}. By transitivity of Γ≻2 (Theorem 2),

B ∈ ChΓ≻2
(A) (i.e., B ∈W2

A), which contradicts the defini-
tion of B. Hence,o 6≻(W 2,A) o′. ⊓⊔

Now we go back to the proof of Theorem 3.Proof of

Theorem 3.
⇒ Every two p-skyline relations which have the same p-

graph are represented by the same structure(W ,A ), by the
definition of p-graph. Therefore, the p-skyline relations are
equal.
⇐ Pick two equal p-skyline relations≻1 and≻2. Let the

structures(W 1,A), (W 2,A) and the p-graphsΓ≻1, Γ≻2 rep-
resent≻1 and≻2, respectively. Clearly, the node sets of
Γ≻1 and Γ≻2 are equal toA . If their edge sets are differ-
ent, then the functionsW1 andW2 are different. PickA∈ A

such thatW1
A 6= W2

A . Without loss of generality, we can as-
sumeW1

A −W2
A 6= /0. Lemma 3 implies that≻1 and≻2 are

not equal, which is a contradiction. ⊓⊔

Theorem 4.For p-skyline relations≻1,≻2 ∈ FH ,≻1 ⊂ ≻2

⇔ E(Γ≻1)⊂ E(Γ≻2).

Proof.
⇐ Let the structures(W 1,A) and(W 2,A) generate re-

lations≻(W 1,A) and≻(W 2,A) equal to≻1 and≻2, corre-
spondingly.E(Γ≻1) ⊂ E(Γ≻2) implies that for allA ∈ A ,
W1

A ⊆W2
A . Hence,≻(W 1,A) ⊆ ≻(W 2,A) and≻1 ⊆ ≻2. The-

orem 3 implies≻1 ⊂ ≻2.
⇒ Let E(Γ≻1) 6⊂ E(Γ≻2). If E(Γ≻1) = E(Γ≻2), then by

Theorem 3,≻1 ≡ ≻2, which is a contradiction. Therefore,
E(Γ≻1) 6= E(Γ≻2), and for someA we haveW2

A −W1
A 6= /0.

Lemma 3 implies≻1 6⊂ ≻2, which is a contradiction. ⊓⊔

Theorem 5.Let o,o′ ∈U s.t. o 6= o′ and≻ ∈ FH . Then the
following conditions are equivalent:

1. o≻ o′;
2. BetIn(o,o′)⊇ Top≻(o,o′);
3. ChΓ≻(BetIn(o,o′))⊇ BetIn(o′,o).

Proof. Let the structure(W ,A ) generate a relation equal to
≻, i.e.

≻ ≡ ≻(W ,A ) ≡ TC

(
⋃

A∈A

qA

)

where

qA≡ {(o1,o2) | o1.A>A o2.A} ∩ ≈A−(WA∪{A}) .

1⇔ 3 LetChΓ≻(BetIn(o,o′))⊇ BetIn(o′,o). W.l.o.g., take
BetIn(o,o′) = {A1, . . . ,Ak}. It is easy to check that the se-
quence(Σo,o′ ,Ψo,o′) constructed as follows is a derivation
sequence foro≻(W ,A ) o′. Let Ψo,o′ = BetIn(o,o′) = {A1,

. . . ,Ak}. Let the values of all the attributesA−(BetIn(o,o′)∪
BetIn(o′,o)) in Σo,o′ be equal to those ino which are also
equal to those ino′. Seto1 to o. Now pick i from 2 tok con-
secutively and set the values of{Ai}∪ (WAi ∩BetIn(o′,o))
in oi to those ino′. SinceWAi =ChΓ≻)(Ai) (Theorem 1), the
value of every attribute inok will be equal to the correspond-
ing value ino′.

Now assumeChΓ≻(BetIn(o,o′)) 6⊇BetIn(o′,o). Thus, the
setBetIn(o′,o)−ChΓ≻(BetIn(o,o′)) is nonempty. Similarly
to the proof of Lemma 3, it can be shown that no derivation
sequence exists foro≻(W ,A ) o′.
2⇔ 3 2 implies 3 by definition ofTop≻(o,o′). Prove that

3 implies 2. Assume that 3 holds but∃A ∈ Top≻(o,o′)−
BetIn(o,o′). Since>A is a total order,A∈BetIn(o′,o). Then
3 implies thatA 6∈ Top≻(o,o′), which is a contradiction. ⊓⊔
Theorem 6.Let≻ be a p-skyline relation with the p-graph
Γ≻, and A,B,C,and D, disjoint node sets ofΓ≻. Let the
subgraphs ofΓ≻ induced by those node sets be singletons
or unions of at least two disjoint subgraphs. Then

(A,B) ∈ Γ≻ ∧(C,D) ∈ Γ≻∧ (C,B) ∈ Γ≻⇒
(C,A) ∈ Γ≻∨ (A,D) ∈ Γ≻∨ (D,B) ∈ Γ≻.



30

Proof. We prove the theorem by contradiction. Let

(A,B) ∈ Γ≻ ∧ (C,D) ∈ Γ≻∧ (C,B) ∈ Γ≻∧
(C,A) 6∈ Γ≻∧ (A,D) 6∈ Γ≻∧ (D,B) 6∈ Γ≻.

The second part is equivalent to the following:

∃C∈C,A1,A2 ∈ A,D1,D2 ∈ D,B∈ B

((C,A2) 6∈ Γ≻∧ (C-A2)

(A1,D1) 6∈ Γ≻∧ (A1-D1)

(D2,B) 6∈ Γ≻) (D2-B)

and from the first part

(A1,B) ∈ Γ≻ (A1-B)

(A2,B) ∈ Γ≻ (A2-B)

(C,D1) ∈ Γ≻ (C-D1)

(C,D2) ∈ Γ≻ (C-D2)

Note that the fact that the subgraphs ofΓ≻ induced by
A, B, C, D are singletons or unions of at least two disjoint
subgraphs implies the following four cases forA1 andA2:

Γ≻ |= A1∼ A2

(Case A1)

(A1,A2) ∈ Γ≻∧∃A3 ∈ A . Γ≻ |= A1∼ A3∧Γ≻ |= A2∼ A3

(Case A2)

(A2,A1) ∈ Γ≻∧∃A3 ∈ A . Γ≻ |= A1∼ A3∧Γ≻ |= A2∼ A3

(Case A3)

A1≡ A2

(Case A4)

Similarly, we have four cases forD1,D2:

Γ≻ |= D1∼ D2

(Case D1)

(D1,D2) ∈ Γ≻∧∃D3 ∈ D . Γ≻ |= D1∼ D3∧Γ≻ |= D2∼ D3

(Case D2)

(D2,D1) ∈ Γ≻∧∃D3 ∈ D . Γ≻ |= D1∼ D3∧Γ≻ |= D2∼ D3

(Case D3)

D1≡ D2

(Case D4)

Notice that by our initial assumption, there exist two at-
tributesA1,A2 ∈ A and two attributesD1,D2 ∈ D. CaseA4
andD4 are due to the fact thatA1,A2 andD1,D2 may corre-
sponding to the same attributes inA andD, respectively.

Totally we have sixteen different cases, and we need
to show that all of them lead to contradictions. One can

show that all of them contradict theEnvelope property.
We demonstrate it for the case (A3-D2), while the other
cases are handled similarly. In Figure 20, we show instances
of theEnvelope property. Recall that theEnvelope prop-
erty says that if a graph has certain three edges, it must
have at least one of the other three edges. The instances we
show below lead to only one possible edge while the other
two violate some conditions above. The violated condition
is shown below each corresponding edge. Finally, we show
that there is an unsatisfiable instance of theEnvelope prop-
erty.

We have exhaustively tested the other fifteen cases and
showed that similar contradictions can be derived for them,
too. ⊓⊔

Envelope first edge second edge third edge
condition
(A2,B), (C,D2), (D2,B) (A2,D2) (C,A2)
(C,B) (D2-B) (C-A2)
(A2,D2), (C,D3), (D3,D2) (C,A2) (A2,D3)
(C,D2) (D3∼ D2) (C-A2)
(A3,B), (A2,D2), (D2,B) (A2,A3) (A3,D2)
(A2,B) (D2-B) (A2 ∼ A3)
(A3,D2), (A2,D3), (A3,D3) (D3,D2) (A2,A3)
(A2,D2) (D3∼ D2) (A2-A3)
(A2,D3), (C,D1), (A2,D1) (C,A2) (D1,D3)
(C,D3) (C-A2) (D1∼ D3)
(D1,D2), (A3,D3), (D3,D2) (A3,D1) (D1,D3)
(A3,D2) (D3∼ D2) (D1∼ D3)
(A3,D1), (A2,A1), (A2,A3) (A1,D1) (A3,A1)
(A2,D1) (A2 ∼ A3) (A1-D1) (A3 ∼ A1)

Fig. 20 CaseA3-D2

Theorem 7. Let ≻ ∈ FH , and T≻ be a normalized syn-
tax tree of≻. Then≻ext is a minimal p-extensionof ≻ iff
the syntax tree T≻ext of≻ext is obtained from T≻ by a single
application of a rule from Rule1, . . . , Rule4, followed by a
single-child node elimination if necessary.

To prove Theorem 7 we introduce the notions offrontier
nodes, andtopandbottomcomponents in a syntax tree.

Definition 17 Thetopandbottomcomponents of a p-skyline
relation≻ are defined as follows:

1. if ≻ is the atomic preference relation induced by an at-
tribute preference relation, then top = bottom =≻;

2. if ≻ = ≻1 & . . . & ≻m, then top =≻1 and bottom =
≻m.

Note that the notions of top and bottom components are
undefined for p-skyline relations defined as Pareto accumu-
lations of p-skyline relations.

Definition 18 Let T≻ be a normalized syntax tree of a p-
skyline relation≻. Let alsoC1 andC2 be two different chil-
dren nodes of a⊗ -nodeC in T≻. Let≻ext be a p-extension
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of ≻. Moreover, let the subgraphs ofΓ≻ andΓ≻ext induced
by Var(C1) be equal, as well as those induced byVar(C2).
Let X ∈Var(C1), Y ∈Var(C2) be such that

(X,Y) ∈ Γ≻ext.

Then(C1,C2) is afrontier pair of T≻ w.r.t. T≻ext.

Given a frontier pair(C1,C2) of T≻ w.r.t. T≻ext, note that
Γ≻ |=Var(X)∼Var(Y) by Proposition 4. By definition, a p-
skyline relation is constructed in a recursive way: a higher-
level relation is defined in terms of lower-level relations.
Hence, the intuition behind the frontier pair is as follows.
When≻ and≻ext are constructed, the lower-level relations
≻C1 and≻C2 are present in both≻ and≻ext. However, the
next-level relations defined using≻C1 and≻C2 in ≻ and
≻ext are different sinceΓ≻ext has an edge from a member
of Var(≻C1) to a member ofVar(≻C2), which is not present
in Γ≻. The next lemma shows some properties of frontier
pairs.

Lemma 4 Let≻ext be a p-extension of≻ ∈ FH , and T≻ be
a normalized syntax tree of≻. Let also(C1,C2) (or (C2,C1))
be a frontier pair of T≻ w.r.t. T≻ext. Denote the top and the
bottom components of C1 as A1,B1, and the top and the bot-
tom components of C2 as A2,B2. Then

(Var(A1),Var(B2)) ∈ Γ≻ext∨ (Var(A2),Var(B1)) ∈ Γ≻ext

Proof. We consider the case of(C1,C2) being a frontier
pair of T≻ w.r.t. T≻ext. The case of(C2,C1) is symmetric.
Since(C1,C2) is a frontier pair ofT≻ w.r.t. T≻ext, there are
X ∈Var(C1) andY ∈Var(C2) such that

(X,Y) ∈ Γ≻ext

Note that we have the following cases forX ∈Var(C1)

φ1 Var(C1) = {X}, i.e. (C1 = A1 = B1)
φ2 C1 = (A1 & . . . & B1), X 6∈Var(A1)

φ3 C1 = (A1 & . . . & B1), Var(A1) = {X}
φ4 C1 = (A1 & . . . & B1),

A1 = A1
1 ⊗ A2

1 . . ., X ∈Var(A1
1)

and forY ∈Var(C2)

λ1 Var(C2) = {Y}, i.e. (C2 = A2 = B2)
λ2 C2 = (A2 & . . . & B2), Y 6∈Var(B2)

λ3 C2 = (A2 & . . . & B2), Var(B2) = {Y}
λ4 C2 = (A2 & . . . & B2)

B2 = B1
2 ⊗ B2

2 . . ., Y ∈Var(B1
2).

The casesφ1,φ2, and φ3 imply either (Var(A1),X) ∈
Γ≻ext orVar(A1) = {X} and as a result(Var(A1),Y) ∈ Γ≻ext

by transitivity of Γ≻ext. Similarly, the casesλ1,λ2, andλ3

imply eitherVar(B2) = {Y} or (Y,Var(B2)) ∈ Γ≻ext. Thus

every combination of these cases implies (Var(A1),Var(B2))
∈ Γ≻ext. Now consider the other combinations of the cases.
All of them are handled similar to the case (φ4, λ4), so we
consider it in detail.

Take the caseλ4. TakeY′ ∈ Var(B2)−Var(B1
2) and ap-

ply GeneralEnvelope to Γ≻ext:

(Var(A2),Y
′) ∈ Γ≻ext∧ (Var(A2),Y) ∈ Γ≻ext∧ (X,Y)∈ Γ≻ext

which implies

(Var(A2),X) ∈ Γ≻ext∨ (X,Y′) ∈ Γ≻ext∨ (Y
′,Y) ∈ Γ≻ext.

(Y′,Y) 6∈ Γ≻ext follows from Proposition 4 and the fact
that the subgraphs ofΓ≻ext andΓ≻ that are induced byVar(C2)

are the same. (Var(A2), X) ∈ Γ≻ext and (X, Var(B1)) ∈ Γ≻ext

(following fromφ4) imply (Var(A2),Var(B1))∈ Γ≻ext, which
is what we need. Hence, (Var(A2), Var(B1)) ∈ Γ≻ext or (X,
Y′)∈ Γ≻ext for allY′ ∈Var(B2)−Var(B1

2). Consider(X,Y′)∈
Γ≻ext and pickY′′ ∈Var(B1

2). For suchY′′ we have(Y′,Y′′) 6∈
Γ≻ext by Proposition 4. Therefore, we get a condition for
GeneralEnvelope similar to the one above:

(Var(A2),Y
′′)∈Γ≻ext∧(Var(A2),Y

′)∈Γ≻ext∧(X,Y′)∈Γ≻ext

implying

(Var(A2),X) ∈ Γ≻ext∨ (X,Y′′) ∈ Γ≻ext∨ (Y
′′,Y′) ∈ Γ≻ext.

(Y′′,Y′) 6∈ Γ≻ext by the same argument as above. Simi-
larly to the above,(Var(A2),X) ∈ Γ≻ext and (X, Var(B1)) ∈
Γ≻ext imply (Var(A2), Var(B1)) ∈ Γ≻ext, which is what we
need. As a result, we have (Var(A2), Var(B1)) ∈ Γ≻ext or
(X, Y′) ∈ Γ≻ext ∧ (X, Y′′) ∈ Γ≻ext for all Y′ ∈ Var(B2)−

Var(B1
2),Y

′′ ∈Var(B1
2), that is equivalent to

(Var(A2),Var(B1)) ∈ Γ≻ext∨ (X,Var(B2)) ∈ Γ≻ext.

Elaborating the caseφ4 as above gives that

(Var(A2),Var(B1)) ∈ Γ≻ext ∨ (Var(A1),Y) ∈ Γ≻ext.

After combining these two results and applyingGeneral-
Envelope to members ofA1 andB2, we get

(Var(A1),Var(B2)) ∈ Γ≻ext ∨ (Var(A2),Var(B1)) ∈ Γ≻ext.

⊓⊔
Now we go back to the proof of Theorem 7.

Proof of Theorem 7
⇒ Let≻ext be a minimal p-extension of≻. We show here

that there is≻′∈ FH obtained using a transformation rule
Rule1, . . . ,Rule4 such that

≻ ⊂ ≻′ ⊆ ≻ext . (20)

By the minimal p-extension property of≻ext that implies
≻′ = ≻ext.
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Theorem 4 implies that there areX andY such that(X,

Y) ∈ E(Γ≻ext)−E(Γ≻). Let (C1,C2) be a frontier pair ofT≻
w.r.t. T≻ext such thatX ∈Var(C1) andY ∈Var(C2). Lemma
4 implies that

(Var(A1),Var(B2)) ∈ Γ≻ext∨ (Var(A2),Var(B1)) ∈ Γ≻ext

(21)

for the topA1,A2 and the bottomB1,B2 components ofC1

andC2, correspondingly. Consider all possible types ofC1

and C2. (i) Let C1,C2 be leaf nodes. Then≻′ for which
(20) holds may be obtained by applyingRule3(T≻,C1,C2)

(if the first disjunct of (21) holds) orRule3(T≻,C2,C1) (if
the second disjunct of (21) holds). (ii) LetC1 be a & -node
andC2 be a leaf node. Then≻′ may be obtained by ap-
plying Rule1(T≻,C1,C2) (if the first disjunct of (21) holds)
or Rule2(T≻,C1,C2) (if the second disjunct of (21) holds).
Case (iii) whenC1 is a leaf node andC2 is a & -node is
similar to the previous case. Consider case (iv) whenC1

andC2 are & -nodes. Let the first disjunct of (21) hold.
The case of the second disjunct is analogous. We note that
(Var(A1),Var(B1)) ∈ Γ≻ext and(Var(A2),Var(B2)) ∈ Γ≻ext.
This with (21) is a condition forGeneralEnvelope:

(Var(A1),Var(A2)) ∈ Γ≻ext∨ (Var(A2),Var(B1)) ∈ Γ≻ext ∨

(Var(B1),Var(B2)) ∈ Γ≻ext

(22)

If the first disjunct of (22) holds, then≻′ can be obtained by
applyingRule1(T≻,C1,C2). If the last disjunct of (22) holds,
then≻′ can be obtained by applyingRule2(T≻,C2,C1). Let
the second disjunct of (22) hold, i.e.(Var(A2),Var(B1)) ∈

Γ≻ext. Let the child nodes ofC1 andC2 be the sequences
(A1 = N1, . . . ,Nm = B1) and (A2 = M1, . . . ,Mn = B2) corre-
spondingly. The fact thatC1 andC2 are & -nodes implies
(Var(Ni),Var(Nj)) ∈ Γ≻ and(Var(Mi),Var(M j )) ∈ Γ≻ for
all i < j. Since≻⊆≻ext, the same edges are present inΓ≻ext.
Note that(M1,Nm) ∈ Γ≻ext. Pick every child ofC2 in its list
of children from right to left and find the first indext such
that(Var(N1),Var(Mt)) 6∈Γ≻ext but(Var(N1),Var(Mt+1))∈

Γ≻ext. If no sucht exists, then(Var(N1),Var(M1)) ∈ Γ≻ext

and≻′ may be obtained by applyingRule1(T≻,C1,C2). As-
sumet ∈ [1,n]. Similarly, let s be the first index such that
(Var(M1),Var(Ns)) 6∈Γ≻ext but(Var(M1),Var(Ns+1))∈Γ≻ext.
If s does not exist, then≻′ may be obtained by applying
Rule2(T≻,C2,C1). So assumes∈ [1,m]. If both s andt are
equal to 1, then≻′may be obtained usingRule4(T≻,C1,C2,s,
t). In all other cases,GeneralEnvelope can be used to
show that for alli ∈ [1,s], j ∈ [t+1,n] (Var(Ni),Var(M j )) ∈

Γ≻ext and for alli ∈ [1, t], j ∈ [s+1,m] (Var(Mi),Var(Nj)) ∈

Γ≻ext. HenceRule4(T≻,C1,C2,s, t) may be used to construct
≻′ext.
⇐ Show that every valid application ofRule1, . . . ,Rule4

results in a minimal extension. We do it by case analysis.

TakeRule3, which results in adding the edge fromCi toCi+1

to the p-graph. This is clearly a minimal extension of the p-
graph and hence the resulting p-skyline relation is a mini-
mal extension of≻. The analysis pattern for the remaining
rules is as follows. We assume that some p-extension≻ext

obtained by an application ofRule1, Rule2, or Rule4 to≻ is
not minimal, i.e., there is≻′ s.t.≻⊂≻′⊂≻ext. After that, we
derive a contradiction thatΓ≻′ =Γ≻ext. TakeRule1. Since≻′

is an extension of≻ contained in≻ext, there must be an edge
from someA∈Var(N1) to someB in the bottom component
of Ci+1. Clearly, if Var(N1) = {A} andVar(Ci+1) = {B},
thenΓ≻′ = Γ≻ext and we get the contradiction we want. So
assumeVar(Ci+1) 6= {B}. Then applyingGeneralEnve-
lope to

(A,Var(N2)) ∈ Γ≻′ ∧ (A,Var(B)) ∈ Γ≻′∧
(Var(Ti+1),B) ∈ Γ≻′

(whereTi+1 is the top component ofCi+1) results in (A,
Var(Ti+1)) ∈ Γ≻′ (and hence(A,Var(Ci+1)) ∈ Γ≻′ by tran-
sitivity of Γ≻′). The other alternatives are impossible: the
corresponding edges are missing inΓ≻ext (and hence inΓ≻′ ,
too). Clearly, ifVar(N1) = {A}, then we get the contradic-
tion we need:Γ≻′ = Γ≻ext. So assumeVar(N1) 6= {A}. De-
noteS= Var(N1)−{A}. Then applyingGeneralEnve-
lope to

(S,Var(N2)) ∈ Γ≻′ ∧ (A,Var(N2)) ∈ Γ≻′∧
(A,Var(Ci+1)) ∈ Γ≻′

results in(S,Var(Ci+1)) ∈ Γ≻′ . The other alternatives are
prohibited because the corresponding p-graph edges are not
in Γ≻ext (and hence not inΓ≻′ ). That results in (Var(N1),
Var(Ci+1)) ∈ Γ≻′ and the contradiction thatΓ≻ext =Γ≻′ . The
case analysis forRule2 is similar.

Now let ≻ext be obtained from≻ by applyingRule4,
and consider a p-extension≻′ of ≻ s.t.≻′⊂≻ext. Because
of this assumption,Γ≻′ has an edge from someA∈Var(N1)

to someB ∈ Var(Mn) or from someC ∈ Var(M1) to some
D ∈ Var(Nm). Since these cases are completely symmetric,
take(A,B) ∈ Γ≻′ . ApplyingGeneralEnvelope to

(A,Var(Ns+1)) ∈ Γ≻′ ∧ (A,B) ∈ Γ≻′∧
(Var(Mt),Var(Mn)) ∈ Γ≻′

results in

(Var(Mt),Var(Ns+1)) ∈ Γ≻′ (23)

since all the other alternatives are impossible – the corre-
sponding p-graph edges are not inΓ≻ext – and hence not in
Γ≻′ . Now applyGeneralEnvelope to

(Var(Mt),Var(Mt+1)) ∈ Γ≻′ ∧ (Var(Mt),Var(Ns+1)) ∈ Γ≻′∧
(Var(Ns),Var(Ns+1)) ∈ Γ≻′ ,
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which results in

(Var(Ns),Var(Mt+1)) ∈ Γ≻′ (24)

since all the other alternatives are impossible – the corre-
sponding p-graph edges are not inΓ≻ext and hence not in
Γ≻′ . (23), (24), and the transitivity ofΓ≻′ implies thatΓ≻′ =
Γ≻ext, which is a contradiction. ⊓⊔

Theorem 8.DF-PSKYLINE is NP-complete.

Proof. The favoring/disfavoring p-skyline existence prob-
lem is in NP since checking if a p-skyline relation≻ favors
G and disfavorsW in O can be done in polynomial time by
evaluatingω≻(O), checkingG ⊆ ω≻(O), and checking if
for every member ofW there is a member ofW dominating
it.

To show the hardness result, we do a polynomial-time
reduction fromSAT. This is a two-step reduction. First, we
show that for every instanceφ of SAT there are correspond-
ing instances of positiveP and negativeN constraints, andφ
has a solution iffP andN are satisfiable. Second, we show
that for every suchP and N there are corresponding in-
stances ofG, W, andO.

Consider instances ofSAT in the following form

φ(x1, . . . ,xn) = ψ1(x1, . . . ,xn)∧ . . .∧ψm(x1, . . . ,xn)

where

ψt(x1, . . . ,xn) = x̂it ∨ . . .∨ x̂ jt

For every instance ofφ, constructA = {c,y1,y1,y′1, . . . ,
yn,yn,y′n}. The sets of positive and negative constraints are
constructed as follows. LetΓ be a graph. For every variable
xi ,

1. Create positive constraints

χi :(yi ,c) ∈ Γ∨ (yi,c) ∈ Γ
πi :(yi ,y

′
i) ∈ Γ

2. Create negative constraints

λ1
i :(yi ,yi) 6∈ Γ

λ2
i :(yi ,y

′
i) 6∈ Γ

λ3
i :(y′i ,c) 6∈ Γ

Now, for everyψt(x1, . . . ,xn) = x̂it ∨ . . .∨ x̂ jt of φ construct
the following positive constraint

µt : (ŷit ,c) ∈ Γ∨ . . .∨ (ŷit ,c) ∈ Γ

whereŷi =

{
yi if x̂i = xi

yi if x̂i = xi
.

We claim that there is a satisfying assignment(v1, . . . ,vn)

for φ iff there is a p-graph satisfying all the constraints above.

First, assume there is a p-graphΓ satisfying all the con-
straints above. Construct the assignmentv= (v1, . . . ,vn) as
follows:

vi =

{
0 if (yi ,c) ∈ Γ
1 if (yi ,c) ∈ Γ .

SinceΓ satisfies allχi , for every i we have(yi ,c) ∈ Γ
or (yi ,c) ∈ Γ. Thus, everyvi will be assigned to some value
according to the rule above. Now prove thatvi is assigned
to only one value, i.e., we cannot have both(yi ,c) ∈ Γ and
(yi ,c) ∈ Γ. SinceΓ satisfiesπi, we have(yi ,y′i) ∈ Γ. Thus
having both(yi ,c) ∈ Γ and(yi ,c) ∈ Γ andEnvelope im-
plies

(yi ,yi) ∈ Γ∨ (yi,y
′
i) ∈ Γ∨ (y′i ,c) ∈ Γ.

However, the expression above violates the constraintsλ1
i ,

λ2
i , λ3

i . Therefore, exactly one of(yi ,c)∈Γ, (yi ,c)∈Γ holds.
Take everyµt . Since it is satisfied byΓ, the correspond-

ingψi must be also satisfied by the construction ofµt . There-
fore,φ is also satisfied.

Now assume that there is an assignment(v1, . . . ,vn) sat-
isfying φ. Show that there is a p-graphΓ≻ satisfying all the
constraints above. Here we construct such a graph.

For everyi ∈ [1,n], draw the edge

(yi ,c) ∈ Γ≻ if vi = 1, and (P1)

(yi ,c) ∈ Γ≻, otherwise (P2)

This satisfies the constraintχi . Moreover, all the constraints
µt are satisfied by the construction. Now, for everyi ∈ [1,n],
draw the edge

(yi ,y
′
i) ∈ Γ≻ (P3)

which satisfies the constraintπi . As a result, all positive con-
straints are satisfied. Moreover, none of the edges above vio-
lates any negative constraints. Thus, all the constraints above
are satisfied.

In addition to the edges above, let us draw the following
edges

1. for everyi, j (i 6= j) such thatvi = 0,v j = 0, draw the
edge

(yi ,y
′
j) ∈ Γ≻ (P4)

It is clear that these edges do not violate any negative
constraints above.

2. for everyi, j such thatvi = 0,v j = 1, draw the edge

(yi ,y j) ∈ Γ≻ (P5)

Sincei 6= j, this edge does not violate any negative con-
straints above.
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Fig. 21 Example 19

It is easy to verify that the constructed graphΓ≻ satis-
fiesSPO+Envelope and all the negative and positive con-
straints above.

Now let us show that there exist sets of objectsO, G and
W which can be used to obtain the constraintsχi , πi , λ1

i ,

λ2
i , λ3

i , µt . Assume that for every attribute inA∈ A , its do-
main contains at least three numbers{−1,0,1}, and greater
values are to be preferred in the attribute preference relation
>A. Here we construct the setsG,W, M, andO =G∪W∪M
that generate the positive and negative constraints above.

1. LetG consist of a single objectg with all attributes val-
ues equal to 0.

2. LetW = {b1, . . . ,bn,u1, . . . ,un,w1, . . . ,wm} be construc-
ted as follows:

– for every i ∈ [1, . . . ,n], let all the attributes ofbi be
equal to 0, except for the value ofyi , which is−1,
and the value ofy′i , which is 1.

– for every i ∈ [1, . . . ,n], let all the attributes ofui be
equal to 0, except for the value ofyi ,yi , which is−1,
and the value ofc, which is 1.

– for every t ∈ [1, . . . ,m], let µt : (ŷit ,c) ∈ Γ ∨ . . . ∨

(ŷ jt ,c) ∈ Γ, whereŷi ∈ {yi,yi}. Let all attributes of
wt be equal to 0, except for the value ofc, which is
1, and the values of̂yit , . . . , ŷ jt (whatever they are),
which are−1.

3. Let M = {m1
1,m

2
1,m

3
1, . . . ,m

1
n,m

2
n,m

3
n} be constructed as

follows. For alli ∈ [1, . . . ,n],
– Let all attributes ofm1

i be 0, except for the valueyi ,
which is−1, and the value ofyi which is 1.

– Let all attributes ofm2
i be 0, except for the value of

yi , which is 1, and the value ofy′i , which is−1.
– Let all attributes ofm3

i are 0, except for the value of
y′i , which is 1, and the value ofc, which is−1.

It can be easily shown that these sets of objects induce
the set of constructed constraints (see Example 19). ⊓⊔

Example 19Taken= 3 and

φ(x1,x2,x3) = (x1∨x2∨x3)∧ (x1∨x2∨x3).

ThenA = {c,y1,y1,y′1,y2,y2,y′2,y3,y3,y′3}. The constraints
µ1,µ2 are

µ1 : (y1,c) ∈ Γ∨ (y2,c) ∈ Γ∨ (y3,c) ∈ Γ
µ2 : (y1,c) ∈ Γ∨ (y2,c) ∈ Γ∨ (y3,c) ∈ Γ

Take the assignmentv= (1,0,1) satisfyingφ. By construc-
tion above, we get the graphΓ as in Figure 21.Now let us
construct the setsG, W andM as above.

y1 y1 y′1 y2 y2 y′2 y3 y3 y′3 c
g 0 0 0 0 0 0 0 0 0 0
b1 0 -1 1 0 0 0 0 0 0 0
b2 0 0 0 0 -1 1 0 0 0 0
b3 0 0 0 0 0 0 0 -1 1 0
u1 -1 -1 0 0 0 0 0 0 0 1
u2 0 0 0 -1 -1 0 0 0 0 1
u3 0 0 0 0 0 0 -1 1 0 1
w1 -1 0 0 -1 0 0 0 -1 0 1
w2 0 -1 0 -1 0 0 -1 0 0 1
m1

1 -1 1 0 0 0 0 0 0 0 0
m2

1 1 0 -1 0 0 0 0 0 0 0
m3

1 0 0 1 0 0 0 0 0 0 1
m1

2 0 0 0 -1 1 0 0 0 0 0
m2

2 0 0 0 1 0 -1 0 0 0 0
m3

2 0 0 0 0 0 1 0 0 0 1
m1

3 0 0 0 0 0 0 -1 1 0 0
m2

3 0 0 0 0 0 0 1 0 -1 0
m3

3 0 0 0 0 0 0 0 0 1 1

ThenG= {g}, W = {b1,b2,b3,u1,u2,u3,w1,w2}, M =

{m1
1, . . . ,m

3
3}. ForW to be a set of inferior examples,g must

be preferred to each member ofW. Take for instance,g≻ b1.
By Theorem 5, that is equivalent to(y1,y′1)∈Γ≻, which cor-
responds toπ1. Similarly, g≻ u1 results in(y1,c) ∈ Γ≻ ∨
(y1,c) ∈ Γ≻, which corresponds toχ1. g ≻ w1 results in
(y1,c)∈ Γ≻∨(y2,c)∈Γ≻∨(y3,c)∈ Γ≻, which corresponds
to µ1. The other members ofW are handled similarly (result-
ing in the remaining positive constraints).

ForG to be superior, no member ofM∪W must be pre-
ferred tog according to≻. Clearly, for a p-skyline relation≻
(which is an SPO), this is equivalent to saying that no mem-
ber of onlyM must be preferred tog: above we already have
constraints thatg is preferred to every member ofW, and
≻ is irreflexive.m1

1 6≻ g results in(yi ,y1) 6∈ Γ≻, which corre-
sponds toλ1

1. The other members ofM are handled similarly,
resulting in the remaining negative constraints.

Proposition 5. Let≻ be a p-skyline relation,O a finite set
of tuples, and G and W, disjoint subsets ofO. Then the next
two operations can be done in polynomial time:

1. verifying if≻ is maximal favoring G and disfavoring W
in O;

2. constructing a maximal p-skyline relation≻ext that fa-
vors G, disfavors W inO and is a p-extension of≻ (un-
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der the assumption that≻ favors G and disfavors W in
O).

Proof. To check if≻ favorsG and disfavorsW in O, we
need to computeω≻(O), checkG⊆ ω≻(O), and verify that
for everyo∈W, there iso′ ∈ G such thato′ ≻ o. All those
tasks can clearly be performed in polynomial time. If some
of these conditions fails,≻ is obviously not maximal. Oth-
erwise, we need to check if each of its minimal p-extensions
favorsG and disfavorsW. Note that since≻ disfavorsW in
O, each of its p-extensions also disfavorsW in O. Hence,≻
is not maximal if at least one minimal p-extension favorsG
in O, and it is maximal otherwise. Corollaries 2 and 3 im-
ply that all minimal p-extensions of≻ can be constructed in
polynomial time.

To construct a maximal p-extension≻′ of ≻, we take
≻, construct all of its minimal p-extensions and verify if at
least one of them favorsG in O. If some of them does, we
select it and repeat for it the same procedure. We do it until
for some≻′ none of its minimal p-extensions favorsG in O.
This implies that≻′ is a maximal p-skyline relation favoring
G and disfavoringW in O. Moreover,≻′ is a superset of≻
by construction. Corollaries 2, 3, and 4 imply that such a
computation can be done in polynomial time. ⊓⊔

Theorem 9.FDF-PSKYLINE is FNP-complete

Proof.Given two disjoint subsetsGandW of O and≻∈FH ,
checking if≻ favorsG and disfavorsW in O can be done in
polynomial time (Lemma 5). Hence,FDF-PSKYLINE is in
FNP.

Now show thatFDF-PSKYLINE is FNP-hard. To do
that, we use a reduction fromFSAT. In particular, we find
functionsR and S, both computable in logarithmic space,
such that 1) for each instancex of FSAT, R(x) is an in-
stance ofFDF-PSKYLINE, and 2) for each correct outputz
of R(x), S(z) is a correct output ofx. For such a reduction,
we use the construction from the proof of Theorem 8. There
we showed how a relation (denote it as≻) satisfying all the
constraints (and thus favoring/disfavoring the constructedG
andW) may be obtained. In the current reduction, if there is
a p-skyline relation favoringG and disfavoringW in O, then
the relation≻ itself is returned. Otherwise, “no” is returned.

The functionR mentioned above has to convert an in-
stance ofFSAT to an instance ofFDF-PSKYLINE (i.e.,G,
W, andO). In the reduction shown in the proof of Theo-
rem 8, such a transformation is done via a set of constraints.
However, it is easy to observe that such a construction can
be performed using the corresponding instance ofFSAT. By
the construction, the setsG, M, and the subset{b1, . . . ,bn,u1,

. . . ,un} of W are common for every instance ofFSAT with
n variables. To construct the subset{w1, . . . ,wm} of W, one
can use the expressionψt instead of the corresponding con-
straintµt . It is clear that the functionR performing such a
transformation can be evaluated in logarithmic space.

We construct the functionSas follows. If the instance of
FDF-PSKYLINE returns “no”,S returns “no”. Otherwise,
it constructs the satisfying assignment(v1, . . . ,vn) in the fol-
lowing way: for everyi, vi is set to 1 if the p-graph contains
the edge(yi ,c) ∈ Γ≻, and 0 otherwise. It is clear that such a
computation may be done in logarithmic space. ⊓⊔

Theorem 10.OPT-FDF-PSKYLINE is FNP-complete

Proof. Given≻∈ FH , checking if it is maximal favoringG
and disfavoringW can be done in polynomial time (Propo-
sition 5). Hence,OPT-FDF-PSKYLINE is in FNP.

We reduce fromFDF-PSKYLINE to show that it isFNP-
hard. Here we construct the functionF that takes a p-skyline
relation or “no” and returns a p-skyline relation or “no”.F
returns “no” if its input is “no”. If its input is a p-skyline re-
lation≻, it returns a maximal p-extension of≻ as shown in
Proposition 5. As a result,F returns a maximal favoring/dis-
favoring p-skyline relation iff the corresponding favoring/dis-
favoring p-skyline relation exists. The functionsR and S
transforming inputs ofFDF-PSKYLINE to inputs ofOPT-
FDF-PSKYLINE and outputs ofOPT-FDF-PSKYLINE to
outputs ofFDF-PSKYLINE correspondingly are trivial and
hence are computable in logspace. Therefore, the problem
OPT-FDF-PSKYLINE is FNP-complete. ⊓⊔

Proposition 7. Let a relation≻ ∈ FH be a maximal M-
favoring relation, and a p-extension≻ext of≻ be(M∪{A})-
favoring. Then every edge in E(Γ≻ext)−E(Γ≻) starts or
ends in A.

Proof. TakeΓ≻ext and constructΓ′ from it by removing all
edges going from or toA. Clearly,Γ′ is an SPO. Now con-
sider theEnvelope property. Pick four nodes ofΓ≻ differ-
ent fromA. SinceΓ≻ext is a p-graph, theEnvelope prop-
erty holds for the graph induced by these four nodes inΓ≻ext.
Envelope also holds for the corresponding subgraph of
Γ′. Thus,Γ′ satisfies theEnvelope property as well, i.e.,
it’s a p-graph of a p-skyline relation≻′. Moreover,E(Γ≻)⊆
E(Γ≻′) sinceΓ≻ has no edges from/toA andE(Γ≻)⊆E(Γ≻ext).
Since≻ is maximalM-favoring,E(Γ≻) = E(Γ′). Therefore,
all edges inE(Γ≻ext)−E(Γ≻) go from or toA. ⊓⊔
Proposition 8. Let a relation≻ ∈ FH satisfy a system of
negative constraintsN . Construct the system of negative
constraintsN ′ from N in which every constraintτ′ ∈ N ′

is created from a constraintτ of N in the following way:

– Lτ′ = Lτ
– Rτ′ = Rτ−{B∈ Rτ | ∃A∈ Lτ . (A,B) ∈ Γ≻}.

Then every p-extension≻′ of ≻ satisfiesN iff ≻′ satisfies
N ′.

Proof.
⇐ Take τ′ from N ′ with the correspondingτ ∈ N . By

construction,Lτ = Lτ,Rτ′ ⊆Rτ. Now assume≻′ satisfiesτ′.
This means that

∃B∈ Rτ′ ∀A∈ Lτ′ : (A,B) 6∈ Γ≻′ (25)



36

Now recall thatRτ′ ⊆ Rτ. ThusB ∈ Rτ. This together with
Lτ = Lτ′ and (25) gives

∃B∈ Rτ ∀A∈ Lτ . (A,B) 6∈ Γ≻′ ,

i.e.,Γ≻′ satisfiesτ.
⇒ Now let≻′ satisfyτ. This means

∃B∈ Rτ ∀A∈ Lτ . (A,B) 6∈ Γ≻′ (26)

Since≻ ⊆ ≻′, E(Γ≻) ⊆ E(Γ≻′). Thus, if there is no edge
from Lτ to B in Γ≻′ , then there is no such edge in its subset
Γ≻. Recall thatτ′ is aminimizedversion ofτ w.r.t.≻. Thus,
the lack of edge fromLτ to B in Γ≻ implies B ∈ Rτ′ . This
together withLτ = Lτ′ and (26) gives

∃B∈ Rτ′ ∀A∈ Lτ′ . (A,B) 6∈ Γ≻′ ,

i.e.,Γ≻′ satisfiesτ′. ⊓⊔

Proposition 9. Let a relation≻ ∈ FH satisfy a system of
negative constraintsN , and N be minimal w.r.t.≻. Let
≻′ be a p-extension of≻ such that every edge in E(Γ≻′)−
E(Γ≻) starts or ends in A. Denote thenewparents and chil-
dren of A inΓ≻′ as PA and CA correspondingly. Then≻′

violatesN iff there is a constraintτ ∈N such that

1. Rτ = {A}∧PA∩Lτ 6= /0, or
2. A∈ Lτ∧Rτ ⊆CA

Proof.
⇐ Trivial since the two conditions above imply violation

of N ′ by≻.
⇒ Assume that there is no constraintτ for which the two

conditions hold, but someτ′ ∈N is violated, i.e.,

ChΓ≻(Lτ′)⊇ Rτ′ .

By Theorem 4,E(Γ≻) ⊂ E(Γ≻′). We also know that all the
new edges inΓ≻′ start or end inA. SinceΓ≻ satisfiesτ′ but
Γ≻′ does not, we get that eitherA∈ Lτ′ or A∈ Rτ′ . If A is in
Rτ′ then the fact thatτ′ is violated byΓ≻′ implies thatRτ′ =

{A}. Moreover, the fact thatτ′ is minimal w.r.t.≻ implies
PA∩Lτ′ 6= /0. If A ∈ Lτ′ , then the minimality ofτ′ implies
thatτ′ is violated because ofRτ′ ⊆CA. ⊓⊔

Theorem 11.The functionelicit returns a syntax tree of
a maximal p-skyline relation favoring G inO. Its running
time is O(|N | · |A |3).

Proof. First, we prove thatelicit always returns a max-
imal p-skyline relation satisfyingN . By construction, the
p-skyline relation returned byelicit satisfies the con-
structed system of negative constraintsN . Now prove that
≻ returned byelicit is a maximal p-skyline relation sat-
isfying N . A simple case analysis shows thatpush picks
every p-skyline relation

S⊗start

S3

Rule3 S&

Rule1,Rule2 Rule1,Rule2

Fig. 22 Using push for computation of a maximal(M ∪ {A})-
favoring p-skyline relation

1. which is a minimal p-extension of≻ represented by the
parameterT, and

2. whose p-graph has only edges going between the nodes
M∪{A},

until it finds one not violatingN (of course, given the fact
that the p-skyline relation, whose p-graph is obtained from
Γ≻ by removing edges going to/fromA, is maximalM-fa-
voring). Recall thatT constructed in line 2 ofelicit rep-
resents a maximalM-favoring p-skyline relation satisfying
N , for a singletonM. Now assume thatT≻ at the end of
some iteration of thefor -loop ofelicit represents a non-
maximal M1-favoring p-skyline relation≻. Take the first
such an iteration of thefor -loop. It implies that there is an
M1-favoring p-skyline relation≻∗ which strictly contains≻
and satisfiesN . By Theorem 4,E(Γ≻∗) also strictly contains
E(Γ≻). Take an edge(X,Y) ∈ Γ≻∗ which is not inE(Γ≻).
Let≻′ be the relation constructed in thefor -loop inelicit
whenA was equal toX orY, whatever was the last one. Take
the corresponding set of attributesM2. According to the ar-
gument above,≻′ is maximalM2-favoring. Since≻′ ⊆ ≻,
Γ≻′ does not contain the edge(X,Y). At the same time, if
we takeΓ≻∗ and leave in it only the edges going to and from
the elements ofM2, it will strictly containΓ≻′ and not vio-
late N . Hence,≻′ is not maximalM2-favoring, which is a
contradiction. That implies thatelicit returns a maximal
A-favoring (or simply favoring) p-skyline relation satisfying
N .

Now let us show that the running time of the algorithm
is O(|N | · |A |3). First, let us consider the running time of
the sub-procedures. The running time ofminimize and
checkConstr is O(|N | · |A |). The time needed to modify
the syntax tree using a transformation rule isO(|A |): ev-
ery rule creates, deletes, and modifies a constant number of
nodes of a syntax tree, but updating theirVar-variables is
done inO(|A |). Similarly, syntax tree normalization runs in
time TnormalizeTree= O(|A |) for such modified syntax trees.
As a result, the time needed to execute the bodies of the
loops (lines 5-8, 11-14, 18-36) ofpush is Trule = O(|N | ·

|A |).
Now let T be a syntax tree of a maximalM-favoring p-

skyline relation. Consider the waypush is used inelicit
to construct a maximal(M ∪ {A})-favoring p-skyline rela-
tion. The state diagram of this process is shown in Figure
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22. It has three states:S⊗ andS& which correspond toT in
which A is a child of a⊗- and &-node, respectively; andS3

which corresponds to the case when no transformation rule
can be applied toT, or every rule application violatesN .

The starting state isS⊗, because in the startingT, A is a
child of the topmost⊗-node. After applying the transforma-
tion rulesRule1 andRule2 in lines 21 and 25 respectively,A
becomes a child node of another⊗-node of the modifiedT.
After applyingRule3 (lines 30 and 34),A becomes a child
of a &-node in the modifiedT, and we go to the stateS& .
When inS& , we can only applyRule1 or Rule2 from lines 6
and 12 respectively. Note that after applying these rules,A is
still a child of the same &-node in the modifiedT. When no
rule can be applied toT at some state, we go to the accepting
stateS3 and returnf alse.

Consider the total number of nodes ofT enumerated in
the loops (lines 4-8, 10-14, and 17-36) ofpush to construct
a maximal(M∪{A})-favoring p-skyline relation. Note that
when we go fromS⊗ toS⊗ by applyingRule1 orRule2, A be-
comes a descendent of the⊗-node whose child it was origi-
nally. Hence, when inS⊗ we enumerate the nodesCi to apply
Rule1 or Rule2 to, we never pick anyCi which we picked in
the previous calls ofpush. In the process of going fromS&

to itself via an application ofRule1 or Rule2, we mayenu-
merate the same nodeCi+1 more than once becauseA does
not change its parent &-node as a result of these applica-
tions. To avoid checking these rules against the same nodes
Ci+1 more than once, one can keep track of the nodes which
have already been picked and tested.

The total number of nodes in a syntax tree isO(|A |),
hence the testsVar(Ci+1)⊆M (lines 4, 10) andVar(Ci)⊆M
(line 17) are performedO(|A |) times and the rules are ap-
plied to the treeO(|A |) times. Each of the containment tests
above requires timeO(|A |), given the bitmap representa-
tion of sets. Hence, to compute the syntax tree of a maxi-
mal (M ∪{A})-favoring from the syntax tree of a maximal
M-favoring p-skyline relation, we need timeO(|N | · |A |2).
Finally, the running time ofelicit is O(|N | · |A |3). ⊓⊔

Theorem 12.NEG-SYST-IMPL is co-NP complete

Proof. We show that checking the existence of≻∈ FH sat-
isfying N1 but not satisfyingN2 is NP-complete. Clearly,
this problem is in NP: we can guess≻∈ FH and in polyno-
mial time check if it satisfies everyτ ∈N1 (i.e., if there is a
member ofRτ which has no parent inLτ) but violates some
τ′ ∈N2. Now prove that checking if there’s≻ satisfyingN1

but violatingN2 is NP-hard.
Here we show the reduction from SAT. Consider instan-

ces of SAT in the following form

ϕ(x1, . . . ,xn) = φ1(x1, . . . ,xn)∧ . . .∧φm(x1, . . . ,xn)

where

φt(x1, . . . ,xn) = x̃it ∨ . . .∨ x̃ jt

andx̃i ∈ {xi,xi}. For every instanceϕ, we construct

A = {x1,x1, . . . ,xn,xn,T,F}.

ConstructN1 as follows:

1. for everyφt(x1, . . . ,xn)= x̃it ∨. . .∨ x̃ jt , create a constraint
τ1
t as follows:

Lτ1
t
= {F}

Rτ1
t
= {x̃it , . . . , x̃ jt}

2. for every variablexi of ϕ, create two constraintsτ2
i and

τ3
i :

Lτ2
i
= {T}

Rτ2
i
= {xi,xi}

and

Lτ3
i
= {F}

Rτ3
i
= {xi,xi}

Now we constructN2 consisting of a single constraintκ
as follows.

Lκ = {T,F}

Rκ = {xi,xi , . . . ,xn,xn}

We prove that there is a satisfying assignment toϕ iff
there is a p-graphΓ satisfyingN1 and not satisfyingN2.
First, assume that there is a satisfying assignmenty = (y1,

. . . , yn) to ϕ. We construct the graphΓ as follows. For every
i ∈ [1,n],

1. if yi = 1, then(T,xi) ∈ Γ and(F,xi) ∈ Γ;
2. if yi = 0, then(F,xi) ∈ Γ and(T,xi) ∈ Γ;
3. Γ has no other edges.

Clearly,Γ satisfiesSPO (every node has either an incom-
ing or outgoing edge, but not both) andEnvelope (every
node has at most one incoming edge) and hence is a p-graph.
We show thatΓ satisfiesN1.

1. Consider every constraintτ1
t for everyφt(x1, . . . ,xn) =

x̃it ∨ . . .∨ x̃ jt . Sincey satisfiesφt , at least one of the con-
juncts ofφt (say,x̃it ) is 1. If x̃it = xit , thenyit = 1, and
(F,xit ) 6∈ Γ by construction. Ifx̃it = xit , thenyit = 0 and
(F,xit ) 6∈ Γ. Hence,τ1

t is satisfied.
2. Considerτ2

i andτ3
i for everyxi . By construction ofΓ,

they are satisfied because it cannot be the case that (T,
xi) ∈ Γ and (T,xi) ∈ Γ or (F,xi) ∈ Γ and (F,xi) ∈ Γ.
Hence,τ2

i andτ3
i are satisfied.
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Now considerN2 and the constraintκ. By construction, for
everyi ∈ [1,n], the componentyi of y is set to 0 or 1. Hence,
(T,xi) ∈ Γ and (F,xi) ∈ Γ or (T,xi) ∈ Γ and (F,xi) ∈ Γ.
Therefore,κ is violated byΓ.

Now we show that ifN1 is satisfied by a p-graphΓ and
N2 is not, then there is a satisfying assignmenty to ϕ. Take
such a p-graphΓ. We constructy as follows:

yi =

{
1 if (T,xi) ∈ Γ
0 if (F,xi) ∈ Γ,

First, we show thatyi is well defined, i.e., exactly one
of the following holds for everyi ∈ [1,n]: (T,xi) ∈ Γ and
(F,xi) ∈ Γ. Sinceκ∈N2 is violated byΓ, for everyi ∈ [1,n]

∀i ∈ [1,n] . ((T,xi) ∈ Γ∨ (F,xi) ∈ Γ)∧
((T,xi) ∈ Γ∨ (F,xi) ∈ Γ) (27)

SinceN1 is satisfied,

∀i ∈ [1,n] . (T,xi) 6∈ Γ∨ (T,xi) 6∈ Γ, (28)

which follows from the satisfaction ofτ2
i , and

∀i ∈ [1,n] . (F,xi) 6∈ Γ∨ (F,xi) 6∈ Γ, (29)

which follows from the satisfaction ofτ3
i . Therefore, (27),

(28), and (29) imply

∀i ∈ [1,n] . (T,xi) ∈ Γ∧ (F,xi) 6∈ Γ∧ (F,xi) ∈ Γ∧
(T,xi) 6∈ Γ∨ (F,xi) ∈ Γ∧ (T,xi) 6∈ Γ∧
(T,xi) ∈ Γ∧ (F,xi) 6∈ Γ (30)

Now we show thaty satisfiesϕ. Since everyτ1
t is satis-

fied, at least one of conjuncts ofφt (say,x̃it ) does not have an
incoming edge fromF. If x̃it = xit (i.e.,(F,xit ) 6∈ Γ) then by
(30) (T,xit ) ∈ Γ and henceyit = 1. Thusφt is satisfied. Sim-
ilarly, if x̃it = xit then(F,xi) ∈ Γ and henceyit = 0. Thusφt

is satisfied. Finally,ϕ is satisfied. Hence, we proved coNP-
completeness ofNEG-SYST-IMPL. ⊓⊔

Theorem 13.SUBSET-EQUIV is co-NP complete

Proof. The co-NP-completeness ofSUBSET-EQUIV fol-
lows from the co-NP-completeness ofNEG-SYST-IMPL.
Namely, the membership test is the same as inNEG-SYST-

IMPL. To show co-NP-hardness ofSUBSET-EQUIV, we
reduce fromNEG-SYST-IMPL. We use the observation that
N1 impliesN2 iff N1∪N2 is equivalent toN1. ⊓⊔
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