
Parsimonious Temporal Aggregation

Juozas Gordevičius Johann Gamper Michael Böhlen

Free University of Bozen-Bolzano, Italy
{gordevicius,gamper,boehlen}@inf.unibz.it

ABSTRACT

Temporal aggregation is a crucial operator in temporal data-
bases and has been studied in various flavors, including in-
stant temporal aggregation (ITA) and span temporal ag-
gregation (STA), each having its strengths and weaknesses.
In this paper we define a new temporal aggregation opera-
tor, called parsimonious temporal aggregation (PTA), which
comprises two main steps: (i) it computes the ITA result
over the input relation and (ii) it compresses this interme-
diate result to a user-specified size c by merging adjacent
tuples and keeping the induced total error minimal; the
compressed ITA result is returned as the final result. By
considering the distribution of the input data and allowing
to control the result size, PTA combines the best features
of ITA and STA. We provide two evaluation algorithms for
PTA queries. First, the oPTA algorithm computes an ex-
act solution, by applying dynamic programming to explore
all possibilities to compress the ITA result and selecting the
compression with the minimal total error. It runs in O(n2pc)
time and O(n2) space, where n is the size of the input re-
lation and p is the number of aggregation functions in the
query. Second, the more efficient gPTA algorithm computes
an approximate solution by greedily merging the most simi-
lar ITA result tuples, which, however, does not guarantee a
compression with a minimal total error. gPTA intermingles
the two steps of PTA and avoids large intermediate results.
The compression step of gPTA runs in O(np log(c+δ)) time
and O(c+δ) space, where δ is a small buffer for“look ahead”.
An empirical evaluation shows good results: considerable re-
ductions of the result size introduce only small errors, and
gPTA scales to large data sets and is only slightly worse
than the exact solution of PTA.

1. INTRODUCTION
Temporal aggregation is a crucial operator in temporal

databases that aims to summarize large sets of time-varying
information. It has been studied in various flavors, most im-
portantly as instant temporal aggregation (ITA) [2, 7, 8, 12,

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its

date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.

Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

13, 16]. The value of ITA at time instant t is computed from
the set of tuples that hold at t. Consecutive time points with
identical aggregate values are then coalesced into so-called
constant intervals, i.e., tuples over maximal time intervals
during which the aggregate results are constant. Thus, ITA
works at the smallest time granularity and produces a result
tuple whenever an argument tuple starts or ends. Its main
drawback is that the result size depends on the argument re-
lation. Due to temporally overlapping argument tuples the
result relation is often larger than the argument relation,
and can get up to twice as large [2]. This behavior is in con-
flict with the very idea of aggregation, which is to provide a
summary of the data. Moreover, many applications do not
need the fine-grained result of ITA, but require a concise
overview of the data, i.e., a small set of result tuples that
represent the most significant changes over time.

Span temporal aggregation (STA) [2, 7] allows to control
the result size by permitting an application to specify the
time intervals for which to report a result tuple, e.g., for each
year from 2000 to 2005. For each of these intervals a result
tuple is produced by aggregating over all argument tuples
that overlap that interval. STA might not always provide
good summaries of the data, since the intervals are specified
a priori without considering the distribution of the data.

In this paper we define parsimonious temporal aggregation
(PTA), which comprises two main steps: (i) it computes the
ITA result over the input relation and (ii) it compresses this
intermediate result to a user-specified size c by merging adja-
cent tuples and keeping the induced total error minimal; the
compressed ITA result is returned as the final PTA result.
By considering the distribution of the input data and per-
mitting control over the result size, PTA combines the best
features of ITA and STA. We use the sum squared error over
all tuples and aggregate values between the ITA and PTA
result to compute the error that is induced by the merging
step. Only adjacent tuples, i.e., tuples that belong to the
same aggregation group and are not separated by a tempo-
ral gap, are considered for merging. This is a constraint that
many ITA results naturally satisfy.

Example 1. As a running example, we consider a tempo-
ral relation Projects that records the name of an employee
(E), the project he/she works for (P), the contracted hours
per week (H), the monthly salary (S), and a time period
(T) that represents the time interval (in months) during
which the project contract is effective. An instance of the
Projects relation is given in Figure 1 and graphically il-
lustrated in Figure 2(a), where the timestamps of the tuples
are drawn as horizontal lines.

1006

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1516360.1516475&domain=pdf&date_stamp=2009-03-24

1 5 9 1 3 1 7 2 1 tr 1 = (J o h n , A , 8 0 0 , 3 0) r 3 = (T o m , A , 9 0 0 , 4 0)r 2 = (A n n , A , 8 5 0 , 2 5) r 4 = (A n n , A , 1 2 0 0 , 4 0)r 5 = (T o m , A , 8 0 0 , 3 5)r 9 = (M a r y , B , 1 0 0 0 , 4 0)r 6 = (A n n , B , 9 0 0 , 2 0) r 7 = (J o h n , B , 6 0 0 , 2 5) r 8 = (M a r y , B , 1 0 0 0 , 4 0)
(a) Projects Relations 2 = (A , 8 2 5 , 2 7 . 5)s 1 = (A , 8 0 0 , 3 0) s 3 = (A , 8 5 0 , 2 5)s 4 = (A , 8 7 5 , 3 2 . 5) s 6 = (A , 1 0 5 0 , 4 0)s 7 = (A , 1 0 0 0 , 3 7 . 5) s 8 = (A , 8 0 0 , 3 5)s 5 = (A , 9 0 0 , 4 0) s 1 4 = (B , 1 0 0 0 , 4 0)s 1 0 = (B , 7 5 0 , 2 2 . 5) s 1 2 = (B , 8 0 0 , 3 2 . 5) s 1 3 = (B , 1 0 0 0 , 4 0)s 9 = (B , 9 0 0 , 2 0) s 1 1 = (B , 6 0 0 , 2 5)

(b) ITA Result for Query Q1z 2 = (A , 9 2 3 . 0 8 , 3 7 . 6 9)z 1 = (A , 8 4 0 , 2 9) z 6 = (B , 1 0 0 0 , 4 0)z 5 = (B , 8 8 5 . 7 1 , 3 5 . 7 1)z 4 = (B , 6 0 0 , 2 5)z 3 = (B , 8 2 5 . 0 , 2 1 . 2 5)
(c) PTA Result for Query Q1

Figure 2: Temporal Aggregation over the Projects Relation.

E P H S T
r1 John A 800 30 [1, 5]
r2 Ann A 850 25 [3, 10]
r3 Tom A 900 40 [8, 15]
r4 Ann A 1200 40 [14, 19]
r5 Tom A 800 35 [16, 23]
r6 Ann B 900 20 [1, 8]
r7 Tom B 600 25 [5, 17]
r8 Mary B 1000 40 [14, 20]
r9 Mary B 1000 40 [22, 23]

Figure 1: Temporal Relation Projects.

Consider the following ITA query Q1: “What are the aver-
age monthly salary and the average weekly working hours for
each project?”. The result of this query is graphically illus-
trated in Figure 2(b) and contains two aggregation groups
for the two projects. It has more tuples than the input re-
lation, but many tuples represent only small fluctuations in
the aggregate values, e.g., s1, . . . , s4.

To reduce the size of the ITA result we propose to itera-
tively merge pairs of adjacent tuples that belong to the same
aggregation group, have similar aggregation values, and are
not separated by a temporal gap. For example, the tuples s1

and s2 are good candidates for merging. In contrast, s1 and
s9 cannot be merged since they are about different projects,
and s13 and s14 cannot be merged since they are separated
by a temporal gap. Figure 2(c) shows a possible compres-
sion of the ITA result to six tuples, which is obtained by
applying eight consecutive merging steps. For instance, the
tuples s1, . . . , s4 are merged in three steps to produce the
PTA result tuple z1, stating that in the interval [1, 10] the
average salary and working hours for project A are 840 and
29, respectively.

The contributions of this paper can be summarized as
follows:

• We define a new, data-driven temporal aggregation op-
erator, termed PTA, that allows to control the result
size by computing ITA as an intermediate result and

compressing it to a user-specified size c such that the
induced total error is minimal.

• We provide oPTA, an exact evaluation algorithm for
PTA queries, which adopts dynamic programming to
investigate all possible compressions of the ITA result
to size c. With an input relation of size n and p aggre-
gation functions, the algorithm runs in O(n2pc) time
and O(n2) space.

• We provide gPTA, an evaluation algorithm that com-
putes an approximate solution to PTA queries by
greedily merging the most similar ITA result tuples.
By tightly integrating the two PTA steps, the algo-
rithm avoids large intermediate results. It runs in
O(c + δ) space and performs the merging step in
O(np log(c + δ)) time, where δ is a small buffer for
“look ahead”.

• An experimental evaluation of PTA on synthetic and
real-world data revealed the following results: consid-
erable reductions of the result size introduce only small
errors; gPTA is scalable for large data sets, it has an
error that is very close to the exact PTA solution, and
it is consistently better than the approximate temporal
coalescing approach in [1].

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss related work. In Section 3 we introduce
and formally define the parsimonious temporal aggregation
operator. Section 4 presents an exact evaluation algorithm
for PTA, and Section 5 presents an algorithm that computes
an approximate solution. Section 6 reports the results of an
experimental study, and Section 7 concludes the paper and
points to future work.

2. RELATEDWORK
Various forms of temporal aggregation have been studied

in the past, including instant temporal aggregation (ITA),
moving-window temporal aggregation (MWTA), and span

1007

temporal aggregation (STA) [2, 7, 8, 12, 13, 16]. They differ
mainly in how the time line is partitioned.

ITA [7, 8, 13] works at the smallest time granularity. The
time line is partitioned into time instants, and for each time
instant, t, the aggregate functions are evaluated over all tu-
ples that hold at t. Then, identical aggregate results for con-
secutive time instants are coalesced into tuples over maximal
time intervals. While ITA reports the most detailed result,
the main drawback is that the result relation is typically
larger than the argument relation and can be up to twice of
it’s size.

Moving-window temporal aggregation (MWTA) (first in-
troduced in TSQL [9] and later also termed cumulative tem-
poral aggregation [11, 16]), extends ITA aggregation by com-
puting for each time instant t the aggregate functions over
all tuples that hold in a window “around” t. Just like ITA
it is prone to returning large result relations.

Span temporal aggregation (STA) [11] allows to control
the result size by partitioning the time line into predefined
intervals. For each such interval, a single result tuple is pro-
duced by evaluating the aggregate functions over all argu-
ment tuples that overlap that interval. However, the time-
stamps of the result tuples are specified by the application
and are independent of the argument data. Most approaches
consider only regular time spans expressed in terms of gran-
ularities, e.g., years or months.

In [13] temporal aggregation is formalized in a uniform
framework that enables the analysis and comparison of the
different forms of temporal aggregation. In a similar vein,
the multi-dimensional temporal aggregation operator [2]
generalizes previous temporal aggregation operators. Two
different semantics are distinguished. Constant interval se-
mantics computes ITA with support for lineage information.
With fixed interval semantics, which covers span temporal
aggregation (STA), the user specifies the time intervals for
which to report result tuples.

All of the frameworks and approaches discussed above
address known forms of temporal aggregation (i.e., ITA,
MWTA, and STA) and hence suffer from the shortcomings
of these operators. A first approach to combine the best fea-
tures of ITA and STA was presented in [4] and was termed
greedy parsimonious temporal aggregation. The operator
greedily merges pairs of the most similar, adjacent tuples in
the ITA result until an application-specific size constraint is
met. The greedy strategy does not guarantee that the com-
pressed result relation is optimal with respect to the induced
total error. In this paper we proceed and extend the work
in [4] in several directions: we provide a more general defini-
tion of parsimonious temporal aggregation which minimizes
the total error; we provide a new evaluation algorithm based
on dynamic programming for an exact solution of PTA; we
provide an algorithm for an approximate solution of PTA,
which extends the evaluation algorithm presented in [4] and
tigthly integrates the computation of the ITA result with
the merging step.

The work of Berberich et al. [1] deals with the problem of
reducing a temporal relation, where each tuple is assigned a
real value and no temporal gaps or aggregation groups exist.
The authors propose a technique called approximate tem-
poral coalescing (ATC) which merges adjacent tuples if the
local merge error does not exceed a user-specified threshold.
The approach scales linearly with the size of the input rela-
tion and suits well for online processing of streaming data.

However, the overall error of this approximation tends to be
rather high. Similar approaches have been proposed in [10,
14].

Keogh et al. [6] investigate online summarization of large
time series data. They observe that only moving-window
approaches provide scalable solutions, however, being un-
able to “look ahead”, the approximations are poor. Offline
bottom-up approaches provide significantly better approxi-
mations as they consider the whole dataset at once. The au-
thors suggest to combine the two approaches and to process
with a bottom-up algorithm each intermediate result of the
moving-window algorithm, achieving errors and scalability
comparable to bottom-up and moving-window approaches,
respectively.

Our algorithm for computing an exact solution of PTA is
inspired by the work of Jagadish et al. [5]. They propose a
dynamic programming approach to compute a histogram of
c buckets from a set of n item frequencies. The algorithm
finds the optimal solution in O(n2c) time. We extend this
approach to consider temporal tuples instead of frequencies
where different aggregation groups and temporal gaps act as
predefined bucket boundaries.

3. PARSIMONIOUS TEMPORAL AGGRE-

GATION
In this section we introduce and provide a formal defini-

tion of the parsimonious temporal aggregation (PTA) oper-
ator, which is comprised of two main steps:

1. Compute ITA over the argument relation

2. Compress the ITA result to a user-specified size c by
merging adjacent tuples and keeping the induced total
error minimal.

After introducing a few preliminary notations we discuss the
two steps in detail.

3.1 Preliminaries
We assume a discrete time domain, ∆T , where the ele-

ments are termed chronons (or time points), equipped with
a total order, <T (e.g. calendar months with the order <).
A timestamp (or time interval) T is a convex set over the
time domain and is represented by two chronons, [TS ,TE],
denoting its inclusive starting and ending points, respec-
tively.

A relation schema is a three-tuple R = (Ω, ∆, dom), where
Ω is a non-empty, finite set of attributes, ∆ is a finite set
of domains, and dom : Ω → ∆ is a function that associates
a domain with each attribute. A temporal relation schema
is a relation schema with at least one timestamp valued at-
tribute, i.e., ∆T ∈ ∆. A tuple r over schema R is a finite
set that contains for every Ai ∈ Ω a pair Ai/vi such that
vi ∈ dom(Ai). A relation over schema R is a finite set of
tuples over R, denoted as r.

To simplify the notation we assume an ordering of the
attributes and represent a temporal relation schema as
R = (A1, . . . , Am,T) and a corresponding tuple as r =
(v1, . . . , vm,T). For a tuple r and an attribute A we
write r.A to denote the value of the attribute A in r.
For a set of attributes A1, . . . , Ak, k ≤ m, we define
r[A1, . . . , Ak] = (r.A1, . . . , r.Ak), and use as a shorthand
notation A = {A1, . . . , Ak} and r[A].

1008

3.2 Instant Temporal Aggregation
For each combination of grouping attribute values, ITA

computes an aggregation result at each time point, t, by
considering all argument tuples that hold at t and have the
same grouping attribute values.

Definition 1. (Instant Temporal Aggregation) Let r be a
temporal relation with schema R = (A1, . . . , Am,T), where
A = {A1, . . . , Ak} is a set of grouping attributes, and F =
{f1/B1, . . . , fp/Bp} is a set of aggregate functions. Further,
let rg,t = {r | r ∈ r∧ r[A] = g∧ t ∈ r.T} be the aggregation
group that contains all tuples of r with identical grouping
attribute values and whose timestamp contains t. Then the
result of instant temporal aggregation is defined as

GITA[F][A][T]r = {g ◦ f | t ∈ ∆T ∧ g ∈ π[A]r ∧ rg,t 6= ∅ ∧

f = (f1(rg,t), . . . , fp(rg,t), [t, t])}

and has the schema S = (A1, . . . , Ak, B1, . . . , Bp,T).

The variable t ranges over the temporal domain, and g
ranges over all combinations of grouping attribute values in
r. For each combination of g and t, the set rg,t collects the
argument tuples that are valid at time t and have the same
grouping attribute values as g. A result tuple, x, is then
produced by extending g with the result of the aggregate
functions fi that are computed over the non-empty aggre-
gation groups rg,t and a timestamp that represents the time
instant t. Each fi is some aggregation function (e.g., sum
or count) that takes a temporal relation as argument and
applies aggregation to one of the relation’s attributes. The
resulting value is stored as the value of an attribute named
Bi. For instance, the pair avg(S)/B1 computes the average
of the salary attribute, which is then stored as a value of
attribute B1.

To obtain the final result, value-equivalent tuples over con-
secutive time points are typically coalesced into tuples over
maximal time periods during which the aggregate values do
not change. Though this step is not included in the above
definition, we assume coalesced result tuples throughout the
rest of the paper.

Example 2. The ITA query Q1 over the Projects rela-
tion has a single grouping attribute, A = {P}. The aggre-
gate functions are F = {avg(S)/AS , avg(H)/AH }. Thus,
the schema of the result relation is (P ,AS ,AH ,T), where
AS and AH store the aggregation results. The ITA result
relation is graphically illustrated in Figure 2(b).

For the rest of the paper we denote an argument rela-
tion and its schema r and R, respectively. The result of
applying ITA aggregation on r is a relation s with schema
S = (A1, . . . , Ak, B1, . . . , Bp,T), where A = {A1, . . . , Ak}
are the grouping attributes and B = {B1, . . . , Bp} repre-
sent aggregate values. Applying PTA aggregation yields the
result relation z with the same schema S.

A fundamental property of ITA aggregation is that the
timestamps of the result tuples within a single aggregation
group do not intersect. We term such temporal relations
sequential.

Definition 2. (Sequential Relation) Let s be a temporal
relation with schema S = (A1, . . . , Ak, B1, . . . , Bp,T). The
relation s is termed sequential with respect to a set of at-
tributes A = {A1, . . . , Ak} if the following holds true:

∀si, sj ∈ s(si 6= sj ∧ si[A] = sj [A] =⇒ si.T ∩ sj .T = ∅)

Obviously, the ITA result in Figure 2(b) is sequential with
respect to the grouping attribute P , i.e., the timestamps of
all tuples with identical P -values are temporally disjoint.

3.3 Merging Adjacent Tuples
The second step of PTA is to merge adjacent tuples in

the ITA result relation, i.e., tuples that belong to the same
aggregation group and are not separated by another tuple
or by a temporal gap.

Definition 3. (Adjacent Tuples) Let s with schema S =
(A1, . . . , Ak, B1, . . . , Bp,T) be the result of ITA aggregation
with grouping attributes A = {A1, . . . , Ak}. Two tuples
si, sj ∈ s are termed adjacent, si ≺ sj , iff the following
conditions hold true:

(1) si[A] = sj [A]

(2) si.TE = sj .TS − 1

Example 3. Consider the ITA result in Figure 2(b) where
s1 ≺ s2 ≺ · · · ≺ s8 and s9 ≺ s10 ≺ · · · ≺ s13. Examples of
non adjacent tuples are s1 6≺ s3 and s13 6≺ s14 due to the
temporal gap between the two tuples and s5 6≺ s12 due to
different values for the grouping attribute P .

We merge pairs of adjacent tuples into a single tuple by
means of a merge operator that is defined next.

Definition 4. (Merge Operator) Let s with schema S =
(A1, . . . , Ak, B1, . . . , Bp,T) be the result of ITA over some
input relation r, where A = {A1, . . . , Ak} are the group-
ing attributes and B = {B1, . . . , Bp} store the aggregation
results. The merge operator, ⊕, of two adjacent tuples,
si, sj ∈ s, si ≺ sj , is defined as

si ⊕ sj = (si.A1, . . . , si.Ak, v1, . . . , vp, [si.TS , sj .TE])

where vl =
|si.T |si.Bl+|sj .T |sj .Bl

sj .TE−si.TS+1
for 1 ≤ l ≤ p.

The merge operator takes two adjacent tuples and pro-
duces their common representation, say tuple z. The group-
ing attributes of z equal to the ones of si and sj . The aggre-
gate values are computed as weighted average of the values
in si and sj where the weights are the respective lengths of
temporal intervals.

Example 4. Consider the ITA result in Figure 2(b) and as-
sume to merge the two adjacent tuples s1 and s2 which have
a timestamp of length 2 and 3, respectively. The average
salary is then computed as (2·800+3·825)/(5−1+1) = 815.
The final result of merging these two tuples is s1 ⊕ s2 =
(A, 815, 28.5, [1, 5]).

To reduce the ITA result to a specific size, the merge op-
erator needs to be applied iteratively. However, there is a
lower bound for the size of the PTA result, which is deter-
mined by the number of adjacent tuples. Each merge of
two tuples reduces the size of the relation by 1. For an ITA
result relation, s, the minimal size, cmin , of the reduced re-
sult relation is therefore given as the difference between the
cardinality of s and the number of adjacent tuples in s, i.e.

cmin = |s| − |{(si, sj)|si, sj ∈ s ∧ si ≺ sj}|.

In the running example the minimal size of any reduced
relation is cmin = 3, since the ITA contains 14 tuples with
11 tuples being adjacent.

1009

Finally, we define a non-deterministic function that takes
as input a sequential relation s and returns its reduction (or
compression) to size c.

Definition 5. (Reduction) Let s be the result of ITA over
an input relation r, si ≺ sj be two adjacent tuples of s, and
c with cmin ≤ c ≤ |s| be a size constraint. A reduction, ρ, of
s to size c is defined as follows:

ρ(s, c) =

(

s |s| = c

ρ(s \ {si, sj} ∪ {si ⊕ sj}, c) |s| > c

Example 5. There are many ways to reduce the ITA result
over the Projects relation depicted in Figure 2(b) to 6
tuples. One solution is depicted in Figure 2(c).

3.4 Error Measure
The merging step introduces an error with respect to the

ITA result (except for the trivial case that adjacent tuples
are value-equivalent). We use the following measure to quan-
tify this error.

Definition 6. (Error Measure) Let s be the result of ITA
with schema S = (A1, . . . , Ak, B1, . . . , Bp,T), where the
grouping attributes are A = {A1, . . . , Ak} and the aggre-
gation attributes are B = {B1, . . . , Bp}. Furthermore, let
z = ρ(s, ·) be a reduction of s and w1 > 0, . . . , wp > 0 be
a set of positive weights. The error, E(s, z), induced by
compressing s to z is defined as

E(s, z) =
X

z∈z

X

s∈s,
s[A]=z[A],
s.T⊆z.T

p
X

i=1

w2
i |s.T |(s.Bi − z.Bi)

2.

The above measure is the well-known sum squared error,
which is given as the total sum of the squared difference
between the tuples in the ITA result relation, s, and the
tuples in the compressed result, z. More specifically, for
each tuple z ∈ z the error measure computes the squared
distance over all aggregation results B1, . . . , Bp between z
and the ITA result tuples s ∈ s that have been merged to
produce z. The weights wi are necessary to leverage the
impact of different attributes.

Example 6. Consider to merge the tuples s1 ⊕ s2 =
(A, 815, 28.5, [1, 5]) in the ITA result in Figure 2(b). The
resulting relation is z = (s \ {s1, s2}) ∪ {s1 ⊕ s2}. The val-
ues of the H attribute in the ITA result range from 22.5
to 40, whereas the values of S attribute are between 600
and 1 050, making the latter overly influential. Thus, we
assign to the S and H attributes the weights wS = 1 and
wH = 1050/600 = 26.25, respectively. Then the error is
computed as follows:

E(s, z) =12 · 2 · (815− 800)2 + 26.252 · 2 · (28.5− 30)2 +

12 · 3 · (815− 825)2 + 26.252 · 3 · (28.5− 27.5)2

=5 918.

For comparison, the error of merging s4 with s5 would be
59 077.

Having introduced all building blocks that are required for
the PTA operator, we go on to provide its exact definition.

3.5 Defining PTA
Given a result of ITA over an argument relation, our aim is

to find its reduction to size c that would induce the minimal
error. The following definition introduces the parsimonious
temporal aggregation operator as an optimization problem.

Definition 7. (Parsimonious Temporal Aggregation) Let r

be a temporal relation with schema R = (A1, . . . , Am,T),
A = {A1, . . . , Ak} be the grouping attributes, and F =
{f1/B1, . . . , fp/Bp} be a set of aggregate functions. Fur-
thermore, let s = GITA[F][A][T]r be the result of ITA over
r, c with cmin ≤ c ≤ |s| be an application-specific size con-
straint, and Z = {z|z = ρ(s, c)} be the set of all possible
reductions of s to size c. The parsimonious temporal aggre-
gation operator is defined as

GPTA[F][A][T][c]r = arg min
z∈Z

{E(s, z)}.

PTA is a two-step process. First, the ITA over the input
relation r is computed. Then, all possible reductions of the
ITA result to size c are considered, choosing the one that
yields the smallest total error.

Example 7. Figure 2(c) shows the best possible reduction
of ITA relation in Figure 2(b) to c = 6 tuples.

4. EXACT PTA EVALUATION
In this section we provide an evaluation algorithm to com-

pute exact solutions for PTA queries, by using dynamic pro-
gramming to explore all possible compressions of the inter-
mediate ITA result.

4.1 Basic Dynamic Programming Scheme
We assume that the ITA result relation, s, is sorted first on

the aggregation groups and, within each aggregation group,
along the time line. This is how many ITA aggregation
algorithms return the result relation. We enumerate the
sorted ITA result tuples as s = {s1, . . . , sn}, and we use
si = {s1, . . . , si}, si ⊆ s to refer to the subset of the first i
tuples in s. A pair of non-adjacent tuples, si 6≺ si+1, in s

marks a temporal gap or group boundary and hence is not
allowed to be merged. Thus, we set the error of merging a
subset s′ ⊆ s, which contains a pair si 6≺ si+1, into one tuple
to be infinite. This avoids that a subset s′ is selected for
merging as long as other subsets which contain only adjacent
tuples exist.

The optimal compression of s to size c, ρ(s, c), is the one
that minimizes the error E(s, ρ(s, c)). This error equals to
the minimal error of compressing the first i tuples, si =
{s1, . . . , si} to c− 1 tuples plus the error of merging the re-
maining tuples s \ si = {si+1, . . . , sn} into a single one. The
choice of i must minimize the total error. This observation
leads to the following dynamic programming scheme:

E∗(si, c
′) =

8

<

:

min
1≤j<i

{E∗(sj , c
′−1) + E∗(si \ sj , 1)} c′ ≥ 2

E(si, ρ(si, 1)) c′ = 1

E∗(si, c
′) = min E(si, ρ(si, c

′)) represents the smallest error
of compressing si to c′ tuples, and E(si, ρ(si, 1)) =∞ if not
s1 ≺ . . . ≺ si. When i < c′, the error is not defined.

To find E∗(s, c) we compute E∗(si, c
′) in increasing order

of c′ for all 1 ≤ c′ ≤ c, and for any fixed c′ in increasing order
of i for all 1 ≤ i ≤ |s|. At each step the error E∗(sj , c

′ − 1)
is known from the previous step.

1010

Example 8. The evaluation of the dynamic programming
scheme can be illustrated in a matrix, where the number of
rows corresponds to the number of tuples in the STA result
and the number of columns corresponds to c. The cell (i, c′)
stores the minimum error of merging the subset si into c′

tuples. Table 1 shows the matrix for the running example,
where the ITA result has 14 tuples and shall be compressed
to 6 tuples. We start filling it by setting c′ = 1 and comput-
ing the first column. To fill the second column, c′ = 2, we
use the data from the first one, and so on. Eventually, the
cell (14, 6) contains the error of the optimal compression of
the ITA result to six tuples.

Table 1: Dynamic Programming Matrix.
i c′ = 1 c′ = 2 c′ = 3 c′ = 4 c′ = 5 c′ = 6

1 0 − − − − −
2 5 918 0 − − − −
3 19 727 5 918 0 − − −
4 61 152 19 727 5 918 0 − −
5 261 867 61 152 19 727 5 918 0 −
6 414 074 88 152 46 727 19 727 5 918 0
7 510 381 101 278 59 852 28 802 14 993 5 918
8 550 937 217 658 101 278 59 852 28 802 14 993
9 ∞ 550 937 217 658 101 278 59 852 28 802
10 ∞ 604 550 271 271 154 891 101 278 59 852
11 ∞ 790 134 456 855 271 271 154 891 101 278
12 ∞ 1 004 461 671 183 446 293 271 271 154 891
13 ∞ 1 555 458 925 151 591 872 406 287 271 271
14 ∞ ∞ 1 555 458 925 151 591 872 406 288

There are several ways to improve the performance of the
basic algorithm. First, we show that the error of merging
a set of tuples into one can be computed very efficiently.
Second, we show that many cells of the matrix do not have
to be computed to obtain the final result.

4.2 Computing the Error
To efficiently compute the error of merging a set of tuples

into a single tuple, we exploit the fact that the error measure
introduced in Definition 6 is decomposable. Consider an
ordered ITA result s and a subset of adjacent tuples s′ =
{si, . . . , sj}, s′ ⊆ s, which is merged into a single tuple z =
si ⊕ . . . ⊕ sj . The error of this compression, E(s′, {z}), is
equivalent to

p
X

l=1

"

X

s∈s′

|s.T |w2
l s.B2

l −
1

|z.T |
(wl

X

s∈s′

|s.T |s.Bl)
2

#

.

To speed up the computation of this expression, we precom-
pute the following arrays of length |s|:

Sl[i] =
i

X

j=1

|sj .T |wl sj .Bl

SSl[i] =
i

X

j=1

|sj .T |w
2
l sj .B

2
l

L[i] =

i
X

j=1

|sj .T |

The value at position i in each of these arrays is computed
over the subset si = {s1, . . . , si}. The arrays S and SS are
needed for each aggregate function in the query, l = 1, . . . , p.

Using the precomputed arrays, we can transform the above
error formula into

E(s′, {z}) =

p
X

l=1

»

SSl[j]− SSl[i− 1]−
(Sl[j]− Sl[i− 1])2

L[j]− L[i− 1]

–

which can be computed in O(p) time.

4.3 Limiting the Search Space
By limiting the range of the variables i and j in the dy-

namic programming algorithm, many unnecessary evalua-
tions of E∗(si, c

′) that would anyway return infinity can be
avoided. For that purpose we use an array G that stores
the positions of the non-adjacent tuple pairs. If sk 6≺ sk+1 is
the l-th pair of non-adjacent tuples in the sorted relation s,
then G[l] = k. In the running example we have G = {8, 13},
representing that s8 6≺ s9 and s13 6≺ s14. The array G helps
us to find tighter limits for i and j.

We consider first the range of the variable i. Given a
fixed c′ we compute E∗(si, c

′) for all values of i between 1
and |s|. For the lower bound of i we have that the error
is not defined if i < c′. For the upper bound we have that
the error is infinite if the number of non-adjacent pairs in
si is greater than c′, which is also the case for every si′

with i′ > i. Thus, when E∗(si, c
′) evaluates to infinity, we

can stop to loop over i and proceed by augmenting c′. The
range of i can therefore be limited to i = c′, . . . ,G[c′]. That
is, when computing E∗(si, c

′), for each fixed c′ we need to
consider only those subsets si ⊂ s that can be compressed
to c′ tuples. The smallest such subset is sc′ (i.e., the first
c′ tuples), and the largest contains all tuples up to the c′-th
pair of non-adjacent tuples.

Example 9. Evaluating the dynamic programming matrix
in the previous example we get E∗(s9, 1) =∞ since s8 6≺ s9.
Thus, the iteration over i can be stopped at this point as we
know that E∗(si, 1) will result in infinity for all i > 8.

Next, we consider the range of the variable j. To eval-
uate E∗(si, c

′), we loop over j = 1, . . . , i−1 and compute
E∗(si \sj , 1). When j is smaller than the index of the right-
most non-adjacent pair of tuples in si, the error evaluates
to infinity. Therefore, we use that index as the lower-bound
for j. More formally, let g be the index of the latest pair
of non-adjacent tuples in si, or 1 if all pairs are adjacent,
i.e., g = max{1,G[k] : G[k] < i, k = 1, . . . , |G|}. Then the
range of j is limited to j = g, . . . , i−1. The split of si is
done between the index, g, of the latest gap and the end of
the set. When G[c−1] = g, we have only one choice to split
si, namely at g. The index g can efficiently be determined
using binary search over G.

Example 10. To compute the value of cell (11, 2) in Ta-
ble 1 the dynamic programming algorithm computed the
error E∗(s11 \ sj , 1) for all j = 1, . . . , 10. However, the re-
sult is not infinite only for j = 8, since the tuples s8 and s9

are non-adjacent and cannot be merged.

In addition, it has been shown in [5] that j should be iter-
ated in decreasing order, i.e., from i− 1 towards g. The
minimum error will be achieved before E∗(si \ sj , 1) >
E∗(sj , c

′−1).

1011

4.4 The oPTA Algorithm
Figure 3 shows the algorithm oPTA which implements the

dynamic programming scheme and the optimizations dis-
cussed above. The first step is to run ITA over the input
relation, r. The result is stored in s which is sorted along
the grouping attributes and the timestamp start. The array
G is initialized to the positions of the pairs of non-adjacent
tuples in s, which provide boundaries for the merging pro-
cess. Similar, the arrays S,SS,L for computing the error
are initialized. The error E∗(si, c

′) is stored in a hash-map
structure, E∗. Another hash-map, J , is used to store the
value of the variable j which yields the minimal error for a
given i and c′. In other words, the value J(|s|, c) indicates
where the relation s has to be split to obtain the right-most
PTA result tuple. Lines 4 to 16 compute the optimal com-
pression of the relation s to size c, using the dynamic pro-
gramming scheme and the optimizations discussed above.
Finally, lines 17–23 produce the result relation z by merg-
ing subsets of tuples according to the splitting points stored
in J .

Algorithm: oPTA(r,A,F, c)1

s← GITA[F][A][T]r;2

Initialize G,S,SS,L as well as E∗ and J ;3

for c′ = 1, . . . , c do4

for i = c′, . . . , min{G[c′], |s|} do5

g = max{1,G[k] : G[k] < i, k = 1, . . . , |G|};6

E∗(si, c
′)←∞;7

if G[c− 1] = g then8

E∗(si, c
′)← E∗(sg, c′ − 1) + E∗(si \ sg, 1);9

J(i, c)← g;10

else11

for j = i− 1, . . . , g do12

E∗(si, c
′)← min{E∗(si, c

′),13

E∗(sj , c− 1) + E∗(si \ sj , 1)};
if E∗(si \ sj , 1) > E∗(sj , c

′ − 1) then14

break;15

J(i, c)← j;16

z← ∅; i← |s|;17

while c > 0 do18

j ← J(i, c);19

z← z ∪ {sj+1 ⊕ . . .⊕ sn};20

i← j;21

c← c− 1;22

return z;23

Figure 3: Algorithm oPTA.

Example 11. Consider the evaluation of oPTA over the
Projects relation. First, the ITA result is computed and
enumerated as s = {s1, . . . , s14}. Next, E∗(si, 1) is com-
puted for i = 1, . . . , 8. Similarly, we compute E∗(si, 2) for
i = 2, . . . , 13. When i is between 2 and 8, the value of g is 1
and j ranges between 1 and i. However, when i is between 9
and 13, the value of j equals g = 8. In a similar fashion we
compute the remaining errors until c′ = 6. The final result
is shown in Figure 2(c).

The worst case complexity of the merging step in the
oPTA algorithm is O(n2p c), since in each of c iterations

the error is computed n2 times. p is the number of aggre-
gate functions in the query and is usually very small.

5. APPROXIMATE PTA EVALUATION
In this section we introduce a greedy evaluation algorithm

(gPTA) that provides an approximate solution to PTA. In-
tuitively, gPTA tries to reduce an ITA result relation to size
c by choosing at each merging step the most similar pair of
adjacent tuples. This might result in a compression which
does not necessarily correspond to the compression with the
minimal total error as used in PTA. However, the experi-
ments show that gPTA provides results which are very close
to the results of oPTA.

5.1 Computing the Error
The greedy evaluation algorithm reduces the ITA result, s,

by choosing at each merging step the pair of the most similar
tuples. Hence, the reduction function, ρ, is deterministic,
and the tuples si, sj ∈ s that are chosen for merging are
determined as follows:

(si, sj) = arg min
si,sj∈s

si≺sj

E({si, sj}, {si ⊕ sj})

Example 12. In our running example the result of gPTA
coincides with the result of oPTA, which is shown in Fig-
ure 2(c). As it will be seen in the empirical evaluation, this
is often the case. Figure 4 shows a dendrogram which illus-
trates the first six merging steps. The most similar tuples
s1 and s2 are merged first, followed by s6 and s7, and so on.

The restriction of the error measure to the two tuples be-
ing merged yields the same result as if we would compute on
each iteration the error between all the tuples of the relation
and its compression. Intuitively, at any step of the gPTA
reduction process we deal with an intermediate relation s′,
whose most similar adjacent tuples, si ≺ sj , are chosen for
merging. Using the merged tuple we will reduce the relation
again to obtain a new intermediate result s′′ and proceed
recursively. Therefore, the tuples si, sj are the most sim-
ilar ones when the error E(s, s′′) is minimized. With the
following proposition we show that due to the properties of
the error function in Definition 6 only si and sj have to be
considered to calculate the error E(s, s′′) that merging them
would induce.

Proposition 1. Let s be an ITA result relation, s′ =
ρ̂(s, c+1) be its compression to size c+1 and z = ρ̂(s, c) is
compression to size c, where in the last iteration the tuples
si, sj ∈ s′ are merged to z ∈ z. Then the following holds:

(1) E(s′, z) = E({si, sj}, {z})

(2) E(s, z) = E(s, s′) + E(s′, z)

Proof. To prove the first statement it is enough to ob-
serve that the sets s\{si, sj} and z\{z} are identical, hence
only si and sj contribute to the total error.

For the second statement, recall that the error is cal-
culated as a the total sum over all tuples in s. There-
fore, E(s, z) can be expanded as E(s, s′) − E(s, {si, sj}) +
E(s, {z}). Inserting the latter into (2) and simplifying we
get

E(s, {z})− E(s, {si, sj}) = E(s′, z).

1012

s 2 = (A , 8 2 5 , 2 7 . 5)s 1 = (A , 8 0 0 , 3 0) s 3 = (A , 8 5 0 , 2 5)s 4 = (A , 8 7 5 , 3 2 . 5) s 6 = (A , 1 0 5 0 , 4 0)s 7 = (A , 1 0 0 0 , 3 7 . 5) s 8 = (A , 8 0 0 , 3 5)s 5 = (A , 9 0 0 , 4 0)1 23 45 6
Figure 4: Dendrogram of Merging Steps.

Furthermore, let s∗i ⊂ s be the tuples in s that make up si,
i.e., for all s ∈ s∗i , s[A] = si[A] ∧ s.T ⊆ si.T holds. Let
s∗j be defined for sj in a similar fashion. Then for si, and
similarly for sj , we have

E(s∗i , {z})− E(s∗i , {si}) = E({si}, {z}).

Expanding the errors, simplifying and recalling that si is

obtained by merging tuples in s∗i , i.e.
P

s∈s∗
i

|s.T |

|si.T |
s.B =

si.B, we see that the statement holds.

In the following we will first describe a baseline version of
the greedy evaluation algorithm for PTA, followed by a more
efficient greedy algorithm which additionally integrates the
computation of ITA and the merging step. We will show
that both approaches provide equivalent results.

5.2 A Baseline Algorithm
The baseline version of the greedy evaluation algorithm,

gPTAbasic, implements the greedy merging strategy by
employing a heap to efficiently determine the pair of most
similar tuples in each merging step. The heap supports the
standard operations Push, Pop, and Heapify in O(log n)
time [3]. Each tuple in the ITA result relation is rep-
resented by a heap node N , which is comprised of the
four fields. N.tuple refers to the tuple itself, N.prev and
N.next point to the two adjacent neighbors of N.tuple. The
key value of N is the error of merging the node’s tuple
with the tuple of the preceding neighbor, i.e., N.key =
E(s, {N.tuple, N.prev.tuple}). If N.tuple and N.prev.tuple
are non-adjacent, the key is set to infinity.

The procedure Insert constructs a new node for each tu-
ple, sets the links to the two neighbors, and pushes the node
into the heap. The procedure Merge takes the top node off
the heap and merges its tuple into the preceding neighbor.
Then it recomputes the key values and ensures that the heap
property is maintained.

Figure 5 shows the baseline version of the gPTA algo-
rithm. After running ITA, the obtained result tuples are in-
serted into the heap. Then the algorithm iteratively merges
pairs of the most similar tuples until the size constraint c is
satisfied.

Example 13. Figure 6(a) depicts the heap nodes after in-
serting the first six tuples of the ITA result in our running
example. The boxed node represents the top of the heap,
thus s2 and s1 are the most similar tuples. The dashed
lines show the predecessor-successor relationships between
the tuples/nodes. Figure 6(b) shows the heap after merging
the top element, i.e., the tuples s1 and s2. The old node is
shaded gray, whereas the updated nodes are marked in bold.

The ITA result over an input relation with n tuples can be
at most of size 2n−1. Thus, the merging step of the baseline

Algorithm: gPTAbasic(r, R,A,F, c)1

H ← new empty heap;2

H.last← Null;3

s← GITA[F][A][T]r ;4

for each tuple s in s ordered by A and T do5

Insert(H, s);6

while Heap size > c do7

Merge(H);8

return H;9

Figure 5: Algorithm gPTAbasic.s 1∞ s 25 4 3 7 . 5 s 35 4 3 7 . 5 s 44 2 9 3 7 . 5 s 55 3 6 7 1 . 8 8 s 62 7 0 0 0
(a) after inserting the first six tupless 2{ s 1 , s 2 }∞ s 31 2 6 8 7 . 5 s 44 2 9 3 7 . 5 s 55 3 6 7 1 . 8 8 s 62 7 0 0 0

(b) after the first merge

Figure 6: Heap of the gPTAbasic Algorithm.

algorithm, gPTAbasic, takes in the worst case O(np log n)
time, where p is the number of aggregation functions in the
query. The main drawback of this algorithm is the huge
memory consumption, since the entire ITA result is kept in
memory.

In the next section we tackle the problem of the huge
memory consumption and provide a space efficient evalu-
ation algorithm which tightly integrates the calculation of
ITA and the merging step.

5.3 The gPTA Algorithm
Temporal aggregation is likely to be used over huge ar-

gument relations storing historical data. The PTA operator
offers a way to obtain a compressed aggregation result of
c tuples. However, the baseline version of the greedy algo-
rithm, gPTAbasic, and the exact algorithm, oPTA, rely on
the entire intermediate ITA result being stored in memory,
which can be up to twice as large as the input relation.

Here we propose an improvement to space and time com-
plexity of the baseline gPTA algorithm that does not pe-
nalize its quality. The main idea of the new approach is to
tightly integrate the computation of ITA and the merging
step. When ITA result tuples arrive (in sorted order along
the aggregation groups and time line), they are added imme-
diately to the heap. Whenever the heap size exceeds c, we
try to merge the pair of most similar tuples to reduce it to

1013

size c. However, a merge might not be possible immediately,
but only after reading some more ITA result tuples. More
specifically, the merge is not possible if the node at the top
of the heap represents the most recently arrived ITA tuple.
This tuple cannot be deemed most similar with its preced-
ing neighbor when the succeeding neighbor is not yet known;
thus we have to wait for the next tuple. The size of the heap
structure is limited to c + δ, where δ is a small buffer space
for “look ahead”. The reduction of the heap size also leads
to a better performance. In the worst, yet unlikely, case the
algorithm reads the whole ITA result relation before any
merging can take place, i.e. c + δ = |s|.

Figure 7 shows the integrated gPTA algorithm. We
adapted the ITA algorithm in [2] to produce the ITA result
tuples one by one, which does not change its performance
and space requirements.

Algorithm: gPTA(r,A,F, c)1

H ← new empty heap ;2

Initialize ITA operator with F, A, and r;3

s← new ITA result tuple;4

while s 6= Null do5

Insert(H, s);6

while size(H) > c ∧ top(H) 6= s do7

Merge(H);8

s← new ITA result tuple;9

while size(H) > c do10

Merge(H);11

return H;12

Figure 7: Algorithm gPTA.

Example 14. We run gPTA over the Projects relation
with c = 5. Figure 8 depicts the contents of the heap each
time a new ITA result tuple is processed. When s6 is read
and inserted into the heap, the heap size exceeds c = 5, and
the algorithm executes one merge step. Inserting s7 into the
heap puts the pair s6, s7 as the most similar pair of tuples
on top of the heap. Even though the heap size exceeds 5,
merging cannot take place until the next insertion. When
s8 comes to the heap, two merging steps are necessary to
reduce it to 5. The algorithm proceeds in this way until the
entire ITA relation is read.

s1

s1 s2

. . .
s1, s2, s3, s4, s5 s6

s1 ⊕ s2, s3, s4, s5, s6 s7

s1 ⊕ s2, s3, s4, s5, s6, s7 s8

s1 ⊕ s2 ⊕ s3, s4, s5, s6 ⊕ s7, s8 s9

. . .

Figure 8: gPTA Heap while Inserting s1, . . . , s9.

The complexity of the gPTA algorithm depends on the
ITA algorithm. Assume that the latter takes T time and S
space. Then, gPTA requires O(T + np log(c + δ)) time and
O(S + c + δ) space.

5.4 Correctness of the gPTA Algorithm
We prove that gPTAbasic and gPTA provide equivalent

results. We begin by introducing the concept of a core pair.

Definition 8. (Core pair) A pair of adjacent tuples, si ≺
sj , in a sequential relation, s, is a core pair iff the following
two conditions hold:

(1) E({si, sj}, {si ⊕ sj} < E({si−1, si}, {si−1 ⊕ si}

(2) E({si, sj}, {si ⊕ sj} ≤ E({sj , sj+1}, {sj ⊕ sj+1}

Intuitively, if a set of tuples is merged to a single tuple, the
core pair of that set will be the one that is merged first, that
is, which is the most similar one. Clearly, each PTA result
tuple, z, that is produced by merging a subset of ITA tuples
has a core pair. Core pairs have the following properties:

1. there is at least one core pair in an ITA result relation;
2. all core pairs are disjoint;
3. the most similar of the core pairs is always at the top

of the heap in the gPTA algorithm.

Example 15. The core pairs are easy to spot in the den-
drogram of gPTA merging steps in Figure 4. The core pairs
are the tuples s1, s2 and s6, s7. The gPTA merges first the
most similar of the core pairs, namely s1, s2.

The following lemma shows that the final result does not
change if not the most similar core pair would have been
merged first.

Lemma 1. Let s be a sequential relation of size n that has
to be reduced to c tuples using ρ̂(s, c). Further, let a pair of
tuples si ≺ sj ∈ s be one of the c most similar core pairs.
Then, ρ̂(s, c) is equivalent to

ρ̂((s \ {si, sj}) ∪ {si ⊕ sj}, c).

Proof. The merging order changes only if the tuple si⊕
sj becomes more similar to si−1 or sj+1 than si or sj had
been. However, that is not possible due to monotonicity of
the error measure.

Theorem 1. The gPTA algorithm produces exactly the
same result as the gPTAbasic algorithm.

Proof. The gPTAbasic operates on a subset, sc+δ ⊂ s

of the ITA result relation, i.e., sc+δ = {s1, s2, . . . , sc+δ},
where δ ≥ 1. At least one pair of tuples in this subset has to
be merged to reduce s to c tuples. If the most similar pair of
tuples in sc+δ is also a core pair, it can be merged immedi-
ately according to the Lemma 1. However, it is not possible
to check if the pair sc+δ−1, sc+δ is a core pair without know-
ing sc+δ+1. That is why the last pair is never merged by the
algorithm.

6. EXPERIMENTAL EVALUATION
In this section we present the results of experimental eval-

uations of the two PTA evaluation algorithms, oPTA and
gPTA, and the approximate temporal coalescing (ATC) al-
gorithm presented in [1].

6.1 Data
We used two different temporal relations. First, the real

world “Incumbents” data from the University of Arizona,
which store employee salary records. With each record

1014

a project ID, department ID, salary, and time interval in
months are associated. The relation has 83 857 records in
total. The second relation, called employee temporal dataset
(ETDS), has been generated by F. Wang [15] and depicts the
evolution of employees in a company. There are 2 875 697
records in total. Each record stores employee number, sex,
department, title, salary, and the valid time interval of the
record in months.

Every ITA aggregation with different grouping attributes
and aggregation functions produces a new dataset where
the attribute value distribution, the number of aggregation
groups, and the temporal gaps differ. Table 2 summarizes
the features of the ITA results with various groupings. With
each grouping we used various combinations of aggregation
functions, eventually obtaining 19 datasets from the Incum-
bents and ETDS relations.

Table 2: Different Groupings of Datasets.
Source Grouping ITA tuples cmin

Incumbents None 2 658 0
Incumbents Dep. 5 552 14
Incumbents Project 11 643 40
Incumbents Proj., Dep. 16 144 131
ETDS None 6 394 0
ETDS Title 38 338 7
ETDS Dep. 57 424 0
ETDS Sex 12 787 2
ETDS Sex, Title 76 245 14
ETDS Dep., Title 188 138 0
ETDS Sex, Dep., Title 344 188 0
ETDS Emp. No 5 450 737 30024

6.2 Quality Experiments
For each dataset we compute the error of reducing the

data to every possible c, using the PTA and ATC algorithms.
Reducing a relation to c = cmin results in the maximum
possible error, which is the same for PTA and ATC. We use
the maximum error as a normalization factor corresponding
to 100% of the error.

The ATC approach takes as input the upper limit ǫ of
the local error that the algorithm is allowed to make when
merging the tuples. We map ǫ to c by simulating a set of
ǫ values in the range between 0 and 1. For each such value
the ATC result and the total error are computed. Whenever
two different errors for two ATC result relations of the same
size are obtained, the smaller one prevails.

Figure 9 shows the error induced by running oPTA, gPTA,
and ATC. The experiments revealed that a significant reduc-
tion of the ITA result is possible without introducing large
errors. In Figure 9(a) the Incumbents data is grouped by
Project and the AVG function. The reduction of 11 643 tu-
ples to 150 (2%) yielded approximately a 10% error. The
results are even better for the same data grouped by De-
partment in (b). In (c) the ITA aggregation over the ETDS
dataset was reduced from 344 188 tuples to 250 before the
error reached 10%.

The graphs in Figure 10 confirm the same observation and
summarize the gPTA result over all datasets derived from
Incumbents and ETDS data, using AVG as an aggregation
function. More specifically, the Incumbents datasets in Fig-
ure 10(a) can be reduced to less than 2% before the error
exceeds 10%. The ETDS datasets in Figure 10(b) do not
exceed the 10% threshold, even when compressed to 0.1% of

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

E
rr

o
r

%

Number of tuples in PTA result

oPTA
gPTA
ATC

(a) Incumbents by Project

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

E
rr

o
r

%

Number of tuples in PTA result

oPTA
gPTA
ATC

(b) Incumbents by Dept.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

E
rr

o
r

%

Number of tuples in PTA result

gPTA
ATC

(c) ETDS by Sex, Dept., Title

 0.001

 0.01

 0.1

 1

 10

 100

E
rr

o
r,

 %

Dataset

Average difference
Maximum difference

(d) gPTA vs. oPTA

Figure 9: Comparison of Errors introduced by

oPTA, gPTA and ATC.

the ITA result relation. Figure 10(c) depicts the two largest
datasets showing that a reduction to 15% is still below 10%
of the error.

In addition, we observe that the gPTA algorithm approx-
imates the optimal solution very well. Among the datasets
originating from Incumbents data, the gPTA induced on av-
erage an error 0.1% bigger than the exact PTA algorithm.
Figure 9(d) illustrates this observation in more detail. For
each dataset we computed the average and maximum dif-
ference between the optimal and the gPTA errors over all
values of c. Note, that the vertical axis scales logarithmi-
cally and the biggest difference between the two algorithms
is 13% of the maximal error.

 0

 10

 20

 30

 40

 50

 60

 70

E
rr

o
r,

 %

Dataset

gPTA
ATC

(a) Incumbent

 0

 5

 10

 15

 20

 25

 30

E
rr

o
r,

 %

Dataset

gPTA
ATC

(b) ETDS

Figure 11: Average Error of gPTA and ATC per

Dataset.

Finally we note that the average error of the gPTA algo-
rithm is consistently smaller than that of ATC. Figure 11
depicts the average error of the two algorithms per dataset,
confirming the observation. The figure also shows that for
some datasets the average errors of ATC, gPTA, and PTA
are very close. We have observed, that such situations hap-
pen for datasets that can be compressed extremely well, e.g.,
Figure 9(b). When the error of exact solution grows rapidly
with decreasing c, the error of ATC deviates away as for

1015

 0

 10

 20

 30

 40

 50

 60

.5%1%2%5%10%20%

E
rr

o
r,

 %

% of ITA relation

Proj., Dep.
Project
No group
Department

(a) Incumbents

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

.1%.2%.5%1%3%5%

E
rr

o
r,

 %

% of ITA relation

Sex, Dep., Title
Dep., Title
Sex, Title
No group

(b) ETDS

 0

 10

 20

 30

 40

 50

 60

 70

 80

7%8%9%10%15%20%

E
rr

o
r,

 %

% of ITA relation

Emp. no., Dep.
Emp. no., Dep., Title

(c) ETDS

Figure 10: gPTA Achieved Good Compression Introducing Only Small Errors.

example in Figure 9(a) and (c).

6.3 Performance Evaluation
All the algorithms have been implemented using the Java

programming language. The machine running the exper-
iments has 16GB of random access memory and 4 AMD
Opteron processors running at 2600MHz each.

In the following performance graphs the time taken to
produce ITA results is excluded as it is out of the scope of
this paper. We also exclude the time needed to fetch the
data and write the final result back to the database.

6.3.1 Performance of oPTA

We compare three different implementations of the ex-
act PTA algorithm. First, the plain dynamic program-
ming (DP) approach. Second DP that uses binary search
(DP+BS) to limit value range of variable j as described in
[5]. Third, the oPTA algorithm that implements the opti-
mizations developed in this paper.

Two datasets are used. The “No Gaps” dataset has no
aggregation groups nor temporal gaps and was obtained by
running ITA on the Incumbents data. On the contrary, the
“Gaps” dataset has multiple aggregation groups and gaps
and was obtained by running ITA on the Incumbents data
grouped by project and department.

We measure the time to compute the PTA result over
subsets of varying sizes. Figure 12(a) shows the execution
time of the algorithms on the “No Gaps” data with c = 80.
The DP algorithm takes a lot more time than DP+BS and
oPTA. As expected, the latter two perform very similarly,
since the heuristics of oPTA are not useful for data with no
gaps or aggregation groups. With c increased by a factor
of two in Figure 12(b), the algorithms take twice as much
time. That leads to the conclusion that the approaches scale
linearly with respect to c.

Next, we evaluate the performance of the algorithms on
subsets of the “Gaps” dataset. For the best results the value
of cmin should remain constant for each subset. We have
observed that by choosing subsets between 700 and 2000
tuples the value of cmin varied between 75 and 85. Such a
variation is not significant to the overall outcome.

As Figure 12(c) depicts, all of the algorithms perform
faster with the second dataset, as the presence of gaps re-
duces the amount of computations. In addition, the oPTA
algorithm significantly outperforms the other two.

To see how the change of c influences the performance, we

fixed the size of the“Gaps”subset to 1200 tuples (cmin = 85)
and ran the experiment by varying c from 0 to 400. The
result is plotted in Figure 12(d). All the algorithms take
constant time to complete for all c ≤ cmin. From that point
on, DP scales linearly as expected and the timings of the
other two approaches remain almost constant.

To conclude, the oPTA algorithm introduced in this paper
performs well for data with and without temporal gaps or
aggregation groups. Nevertheless, when the input dataset
is larger than a few thousands of tuples and c is big, the
required time is unacceptable.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500 3000

T
im

e
,
s

ITA result size

DP
DP+BS
oPTA

(a) “No Gaps”, c = 80

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500 3000
T

im
e
,
s

ITA result size

DP
DP+BS
oPTA

(b) “No Gaps”, c = 160

 0

 20

 40

 60

 80

 100

 120

 600 800 1000 1200 1400 1600 1800 2000

T
im

e
,
s

ITA result size

DP
DP+BS
oPTA

(c) “Gaps”, c = 160

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400

T
im

e
,
s

Size of PTA output, c

DP
DP+BS
oPTA

(d) “Gaps”, n = 1200

Figure 12: Performance of Exact Algorithms.

6.3.2 Performance of gPTA

We used three different groupings of the ETDS dataset to
compare the running times of gPTA and ATC. All groupings
yielded relations with more than 5 million tuples. Setting
c = 1 and ǫ = ∞ we ran the algorithms on various subsets
of the data. Figure 13(a) depicts the average running time
of each algorithm with respect to the size of the input. We
conclude that the ATC algorithm outperforms gPTA only
by a small margin.

1016

 0

 5

 10

 15

 20

 25

 0 2e+06 4e+06 6e+06

T
im

e
,

s

ITA result size

gPTA
ATC

(a) Computation Time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35 40

H
e

a
p

 e
x
c
e

s
s

Thousands of PTA result tuples

Title
Sex, Title

Dep., Title

(b) Heap Excess

Figure 13: Performance of gPTA Algorithm.

In addition, we evaluate the memory requirements of the
gPTA algorithm. Recall, that the algorithm operates with a
heap of size c+δ where δ varies throughout the aggregation,
depending on the distribution of the data and the value of c.
Intuitively, the worst case happens when c is small and the
tuples in the dataset are very similar. In such situations no
core pair can be found within c tuples and long look-aheads
are necessary.

Indeed we observed the highest values of δ when aggre-
gating datasets that can be reduced significantly without
big error, i.e., the ones of Figure 10(b). Figure 13(b) depicts
the relation between c and δ using these datasets. The hor-
izontal axis ranges over the values of c and the vertical over
δ. Even the highest values of δ are very small compared to
the datasets in the figure, which vary from 38 to 76 thou-
sands of tuples. In addition, δ tends to decrease with higher
values of c.

7. CONCLUSIONS
In this paper we introduced PTA, which is a new temporal

aggregation operator that combines the best features of ITA
and STA. The operator (i) computes the ITA result over the
input relation and (ii) compresses this intermediate result
to a user-specified size c, by merging adjacent tuples and
keeping the total error minimal.

We presented two evaluation algorithms for PTA queries.
First, the oPTA algorithm computes the exact PTA result.
It is based on dynamic programming and explores all pos-
sibilities to reduce the intermediate ITA result to size c.
We developed a number of improvements to further reduce
the search space. The algorithm runs in O(n2) space and
O(n2pc) time, where n is the size of the input relation and
p is the number of aggregate functions used. Second, the
gPTA algorithm computes an approximate solution of PTA
by greedily merging the pairs of most similar tuples. More-
over, it tightly integrates the computation of ITA result and
the merging step. While not guaranteeing an optimal solu-
tion, the algorithm significantly reduces the time and space
consumption. It runs in O(c + δ) space and O(np log(c + δ)
time, where δ is a small buffer for ”look ahead”.

An experimental evaluation of the algorithms revealed the
following results: considerable reductions of the result size
introduce only small errors; gPTA is scalable for large data
sets; the error of gPTA is very close to the optimal compres-
sion offered by oPTA, and it is consistently better than the
approximate temporal coalescing approach described in [1].

Future work will include the following two aspects. First,
the merging process shall be extended to allow merges across

different aggregation groups as well as bridging small tem-
poral gaps between tuples. Second, a careful investigation of
different similarity measures is worthwhile. Especially, when
merging across aggregation groups we have to compare cat-
egorical and numerical attribute values.

8. REFERENCES
[1] K. Berberich, S. J. Bedathur, T. Neumann, and

G. Weikum. A time machine for text search. In Proc.
of SIGIR, pages 519–526, 2007.

[2] M. H. Böhlen, J. Gamper, and C. S. Jensen.
Multi-dimensional aggregation for temporal data. In
Proc. of EDBT, volume 3896 of LNCS, pages 257–275.
Springer, 2006.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. McGraw-Hill, Inc., 1990.

[4] J. Gordevicius, J. Gamper, and M. Böhlen. A greedy
approach towards parsimonious temporal aggregation.
In Proc. of the 15th International Symposium on
Temporal Representation and Reasoning (TIME-08),
pages 88–92, June 2008.

[5] H. V. Jagadish, N. Koudas, S. Muthukrishnan,
V. Poosala, K. C. Sevcik, and T. Suel. Optimal
histograms with quality guarantees. In Proc. of
VLDB’98, pages 275–286, 1998.

[6] E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An
online algorithm for segmenting time series. In Proc.
of ICDM’01, pages 289–296, 2001.

[7] N. Kline and R. T. Snodgrass. Computing temporal
aggregates. In Proc. of ICDE’95, pages 222–231,
Taipei, Taiwan, March 1995.

[8] B. Moon, I. F. Vega Lopez, and V. Immanuel.
Efficient algorithms for large-scale temporal
aggregation. IEEE Transactions on Knowledge and
Data Engineering, 15(3):pp. 744–759, May/June 2003.

[9] S. B. Navathe and R. Ahmed. A temporal relational
model and a query language. Information Sciences,
49(1-3):147–175, 1989.

[10] Y. Qu, C. Wang, and S. Wang. Supporting fast search
in time series for movement patterns in multiple
scales. In Proc. of the 7th International Conference on
Information and Knowledge Management, 1998.

[11] R. T. Snodgrass, S. Gomez, and L. E. McKenzie.
Aggregates in the temporal query language TQuel.
IEEE Transaction on Knowledge and Data
Engineering, 5(5):826–842, 1993.

[12] P. Tuma. Implementing historical aggregates in
TempIS. Master’s thesis, Wayne State University,
Detroit, Michigan, 1992.

[13] I. F. Vega Lopez, R. T. Snodgrass, and B. Moon.
Spatiotemporal aggregate computation: A survey.
IEEE Transactions on Knowledge and Data
Engineering, 17(2):pp. 271–286, 2005.

[14] C. Wang and S. Wang. Supporting content-based
searches in time series via approximation. In Proc. of
the 12th International Conference on Scientific and
Statistical Database Management, 2000.

[15] F. Wang. Employee temporal data set.
http://timecenter.cs.aau.dk/.

[16] J. Yang and J. Widom. Incremental computation and
maintenance of temporal aggregates. The VLDB
Journal, 2003.

1017

