Noname manuscript No.
(will be inserted by the editor)

A Highly Optimized Algorithm for Continuous Intersection Join Qu eries
over Moving Obijects

Rui Zhang - Jianzhong Qi - Dan Lin - Wei Wang - Raymond Chi-Wing Wong

the date of receipt and acceptance should be inserted later

Abstract Given two sets of moving objects with non-zero method to find the optimal value for an important parame-
extents, the continuous intersection join query reportsyev ter required in our technique, the maximum update interval.
pair of intersecting objects, one from each of the two movingAs a result, we achieve a highly optimized algorithm for
object sets, for every timestamp. This type of queries is improcessing continuous intersection join queries on moving
portant for a number of applications, e.g., inthe multlidai objects. With a thorough experimental study, we show that
dollar computer game industry, massively multiplayer on-our algorithm outperforms the best adapted existing smiuti
line games (MMOGS) lik&NVorld of Warcraftneed to moni- by several orders of magnitude. We also validate the accu-
tor the intersection among players’ attack ranges, anderendracy of our cost model and its effectiveness in optimizing
players’ interaction in real time. The computational cdst o the performance.
straightforward a'go”‘h”? oran algorithm aqlapted from ar_"Keywords Spatial databasesnoving objects continuous
other query type is prohibitive and answering the query in o
. . intersection join
real time poses a great challenge. Those algorithms com-
pute the query answer for either too long or too short a
t!me interval, which results in either a very large computa-| |ntroduction
tion cost per answer update or too frequent answer updates,

respectively. This observation motivates us to optimize th Management of moving objects has become an imperative
query processing in the time dimension. In this study, wegask recently due to the increasing need for real time infor-
achieve this optimization by introducing the new concept oimation in highly dynamic environments. In many previous
time-constrained (TC) processing. Further, TC processingiudies, moving objects such as mobile phone users or ve-
enables a set of effective improvement techniques on trajicles have been modeled as points. The reason is that the
ditional intersection join algorithms. Finally, we proeid opjects’ extents are negligible compared to the size of the
whole region of interest. For example, ignoring the extents
Rui Zhang of vehicles does not hurt much if we want to have an idea
University of Melbourne of how many cars are in the central business district by per-
E-mail: rui@csse.unimelb.edu.au forming a window query. However, there are also many sce-
Jianzhong Qi narios where the extents of objects cannot be neglected. For
Ef‘%’;f%%gigﬂ?ﬂilb. edu.au example, Fig. 1(a) describes a scenario where we monitor
the movements of vessels and storms on the sea, and notify
vessels of possible encounters with the storms. As shown in
the figure, every vessel has an alert zone (a dotted rectan-
gle) and there are two regions in the sea covered by storms.

Dan Lin
Missouri University of Science and Technology
E-mail: lindan@mst.edu

Wei Wang

University of New South Wales
E-mail: weiw@cse.unsw.edu.au

Raymond Chi-Wing Wong
Hong Kong University of Science and Technology
E-mail: raywong@cse.ust.hk

Navigation systems on vessels should continuously report
those vessels whose alert zones are intersected by the storm
regions, so that the vessels can be alerted to the possible im
pact. For another example shown in Fig. 1(b), in a massively
multiplayer online game (MMOG), two teams of players are

in a battle. Each player has a sector-shaped regionin ffont¢
her as her attack range. The MMOG server needs to contir
uously keep track of the intersection among players’ attack

real time. The high frequency of intersection result upslate
brings in a critical challenge to the server’s performanu a
niques [11,42]. The current systems only allow dozens of ————— ‘
players and can not handle hundreds of thousands players ——— /&5 <>storm [1TeamA W TeamB
in a battle. Military simulations have similar requiremgnt @ ()
as MMOGs do. In a military simulation, there can be up toFig. 1 Motivating examples
100,000 objects that are moving [25] and a primitive data To the best of our knowledge, no previous study has
management requirementiigerest managemenivhich is gpecifically addressed the continuous intersection joéryu
actually an intersection join of the interest ranges of obpyer moving objects with updates. The only available way to
jects [10,25]. support this query type is through extending a previous-tech

The above applications represent the executionoof nique which was designed for other types of queries such
tinuous intersection join query over moving objects (withas time-parameterized (TP) queries [39] (details are in Sec
nonzero extents) with updateshich monitors two sets of tion 4). Our experiments show that even with a small number
moving objects and reports every pair of intersecting ob{1,000) of objects, this extended algorithm is still toovslo
jects, one from each of the two sets, for every timestampto produce the result in real time. In this article, we adslres
Here, updates refer to changes in the spatial attributess-(po the problem of efficiently processing continuous intersec-
tion or velocity) of the moving objects. They cause changes$ion joins over moving objects with updates and make the
in the result of the query. To help understand the nature dbllowing contributions:
this query, we express it in a SQL style as follows (for the
MMOG example).

SELECT P1.id, P2.id, t

FROM Player AS P.1, Player AS P2

WHERE Intersect(Pl.rg, P2.rg, t)

AND P1.tid # P2.tid

UPDATE_RATE ur ;
In this query,Pl ayer is a table of MMOG playersi d,
tid andrg denote the ID, team ID and attack range of mension

gplayer;l ntersect () is.a boolean function that exam- _ We investigate a set of techniques to reduce the CPU
ines whether one player intersects another player's attack cost of traditional intersection join algorithms, enabled

range at timestamp, wheret is a parameter that tells the by TC processing. We also provide a few techniques to
timestamp when an answer update is triggered \#1ATE_ RATE o 4 \ce the I/O cost of the algorithms

ur gives the frequency that the query processor updates the We provide a model for estimating the cost of the con-
answer. The pa_lramet_eg and the function nt er sect (_) tinuous intersection join query. This model allows us to
are supported in spatial databases to represent a regien cov find the optimal value for an important parameter of the

er(—?-d by a spatial object and to determ_lne whether two spatial moving object monitoring system, tieaximum update
objects intersect each other, respectively. The parasieter interval

andur show that this is a continuous query, and they tell _ \ye nerformed an extensive experimental study, which
when the join results should be presented. These two para- shows that our algorithm outperforms the best adapted

meter; are not supported by the SQL Ianguage. However, In existing solution by several orders of magnitude. We also
a spatial-temporal databr':lse. where CONtiNUOUS qUEres Were o jiqate the accuracy of our cost model and its effective-
suppor'tedt would be an intrinsic parameter and would ness in optimizing the performance.

be an input parameter that tells the database system how

frequently the answer set should be updated. In a moving This article is an extended version of our earlier paper.[45]
object management system, the continuous intersection joiThere we presented the TC processing technique and some
result will update very frequently. It is this frequent amsw improvement techniques to reduce CPU cost of the join al-
update that differs continuous intersection join queryrfro gorithm. In this article, we present a few new techniques to
traditional spatial join queries. reduce the I/O cost of the algorithms. More importantly, we

— Based on the key insight that the join result between
any two objects only needs to be valid until the next
update on any of the two objects, we propose the time-
constrained (TC) processing technique for the continu-
ous intersection join query and show how to optimize
the technique. Unlike previous studies, which optimize
from the spatial aspects, this is the first attempt to opti-
mize continuous spatio-temporal queries in the time di-

model the cost of our join algorithm and thereby we can findKollios et al. [20] use the dual transform to map a lire (
the optimal value for the maximum update interval. As a re-dimensional trajectory) to a point and then exploit a spatia
sult, we obtain a highly optimized approach to the continpoint access method to process window queries. Agarwal et
uous intersection join query. We have performed additionaal. [1] address the problem in two and higher dimensions
experiments. The results show (i) the effectiveness of thand propose algorithms with good asymptotic performance.
techniques for reducing the 1/0 cost of our algorithms, andZhang et al. [44] introduce the Transformed Minkowski Sum
(i) the accuracy of our cost model and its effectiveness irto determine whether a moving bounding rectangle inter-
optimizing the performance. sects a moving circular query region, which enables tradi-
The rest of the article is organized as follows. Section Zional tree traversal algorithms to process window and kNN
reviews related work. Section 3 gives the problem defini-queries. While the above results are mainly theoreticagéroth
tion and a naive algorithm. In Section 4, we extend a prestudies aim at structures that yield good performance ic-pra
vious technique to support the continuous intersectiom joitice. For example, the TPR-tree [35] is an extension of the
query. Section 5 presents the TC processing technique aft-tree [4] to manage moving objects, and later, the TPR*-
the improvement techniques for reducing CPU cost of outree [40] enhances the TPR-tree through using a set of im-
algorithms. Section 6 presents some techniques to redugeoved construction algorithms. The®Bree [18] indexes
the 1/0 cost of our algorithms. In Section 7, we provide amoving objects by a B-tree using space-filling curve (Hilbert,
method for finding the optimal value of the maximum up-in particular) [6] values of the objects’ positions as ke¥s.
date interval. Section 8 reports the experimental study ande use the TPR/TPR*-tree as the basic structure, we will
finally, Section 9 concludes the article. have a closer look at them in Section 3.2. Besides predic-
tive queries, querying historical spatio-temporal datads
dressed in several studies [21,34,7]. There are also studie
on continuously querying the current states of moving ob-

ects. For example, Ali et al. [2] study continuously moni-

We discuss three categories of work below: work on moving{ . X) .
. . L) : oring the 3D objects around a moving object. Nutanong et
objects in general, work on spatial joins on static objects,

and work on other types of continuous spatial join queriesal' [28] study continuous detour gueries on objects moving
)) in spatial networks. A number of other studies [15, 26,29,
on moving objects.

Moving objects in general: A traditional way to rep- 30] address continuous KNN queries over moving objects.

. L2 : : A more relevant work is the time parameterized join algo-
resent a moving object is to use its sampled locations on its : . . . :
. . . rithm [39], details of which are given in Section 4.
trajectory. One of the earliest work that manages moving ob- e)) _ o
jects [27] samples object locations for each timestamp and SPatial joins on static objects:Early spatial join algo-
then indexes such location data with an R-tree. Following/thms transform objects to 1-dimensional values to avoid
this work, there are a few studies [34,38] proposing differthe difficulties in joining them because of their spatiaksut

ent index structures on sampled locations to support variol@nd dimensionality. For example, the first known spatial joi
queries on moving objects. _algonthm [31] |_ndexes the objec_ts with™Btrees using ob-
The sampling based approaches require frequent podgCtS’ space-filling curve (z-ordering) values as the keysi
tion updates, which impose a heavy workload on the systeni’®n performs the spatial join in a sort-merge join fashion.
Thus, instead of sampling and updating continuously,&istl Later, Brinkhoff et al. [8] propose the R-tree Join (RJ)
et al. [37] model moving objects using a linear function ofalgorithm and investigate techniques to improve both CPU
timet: P(O,t) = P(O,tref) + (t —tref)V (O, tres) Where and /O time of the R-tree matching based spatial intersec-
P(O,t,.;) andV (O, t,.) are an object’s position and tion join algorithm for objects indexed in R*-trees [4]. The
velocity at a reference timestamp ;. Under this represen- two relevant improvement techniques, the plane sweep and
tation, updates are only required when objects change thdittersection check techniques, will be discussed in Se&tié.
velocities. This reduces the number of updates since abjecthey were used for static object indexes like R*-trees by
tend to move in a linear fashion for short periods. CivilisBrinkhoff et al.; in this paper, we analyzed them and pro-
et al. [9] report that using such representation can rechee t Posed ways to take advantage of them on moving object in-
number of updates by a factor of three for some vehicle dat&lexes with the consideration of constrained processing.tim
Following Sistla et al.'s work [37], many studies [18,32,35 Studies after RJ focus on joining datasets where at least
43,40] on querying moving objects model them by linearone dataset is not indexed. Lo and Ravishankar [23] pro-
functions of time. In this study, our problem considers mov-pose Seeded Trees for cases where only one of the joining
ing objects with frequent updates. Thus, we model a movinglatasets is indexed by an R-tree apriori. A Seeded Tree is
object using a linear function of time. built using the existing R-tree as a skeleton, and then gbine
Other than modeling moving objects, many studies orwith the existing R-tree. Patel and DeWitt [33] propose the
moving objects have focused on processing predictive gsieriPartition Based Spatial-Merge Join (PBSM), which is a gen-

2 Related Work

eralization of the sort merge join algorithm. The algorithmresultant object pair set, any objectinor B will only ap-
uses a rectangular grid to partition the space, and hashes giear in at most one pair. Thus, ECP join can first compute
jects in both joining datasets into the partitions. It theing a set of nearest neighbors for every objectdinand then
objects in the same partitions using the sort merge join-alggick objects from the nearest neighbor sets one at a time to
rithm. Sevcik and Koudas [36] propose the Filter Trees andorm the result set. Further, ECP join assumes small dataset
subsequently they propose the Size Separation Spatial Joie.g., matching cars with parking slots). While the intersec
algorithm [22] for cases where no index is available. The altion join can be used to compute the nearest neighbor sets
gorithm organizes objects hierarchically based on theégssi for ECP join, it does not have the above assumptions. Thus,
and assigns an object into only one partition. In the joinECP join does not solve our intersection join problem.
phrase, objects in one partition are joined with objects in Iwerks et al. [17] consider continuous range joins, which
multiple partitions to form the join result. We assume ourcan be viewed as intersection joins on circles. This is proba
joining datasets are both indexed in TPR/TRRees. Thus, bly the closest work to ours. However, there are many cases
these techniques are not applicable. where ranges of objects are more tightly bounded by rectan-

Other types of continuous spatial join queries on mov- gles rather than circles such as the storms, vessels and at-
ing objects: Despite many efforts devoted into moving ob- tack ranges of MMOG players in Fig. 1. Therefore, we still
jects and spatial joins, there is little work specifically- ad need to study intersection joins on rectangular ranges. The
dressing continuous intersection joins over moving oljectalgorithms proposed by lwerks etal. [17] work as follows. A
with updates. Mokbel et al. [24] use shared computatiorfange joinis computed to get the initial result set. Evelmas t
to process multiple continuous queries on moving objectswill cause the query result to change (i.e., an object moves
They do not address spatial join queries, but use a join ofito or moves out of the join range of another object) are
queries to achieve shared computation. If we view the gseri€omputed and enqueued in an event queue prioritized by the
as a set of objects joining with the real data objects, thegvent time. These events are then processed to keep the join
their algorithm is very similar to NaiveJoin in our article result set updated. This approach resembles the ETP join al-
(Section 3.3). gorithm (Section 4) in that they both generate large amount

There are studies on other types of joins over movingf events; the difference is that this approach generatés mu
objects. Iwerks et al. [16] addresentinuous semijoinsver tiple events at a time, while the ETP join only generates the
moving points. The semijoin on two datasetandB is de- next event after one event is processed. As the discussion in
fined as all the pair&s, b),a € ANb € B, thatare in Carte- Section 4 will show, these event based approaches are in-
sian product4 x B, andb is one of thek nearest neighbors €fficient due to the huge number of events generated con-
of a. The k nearest neighbors af are bounded by a circle tinuously. It is difficult for them to provide real time query
that centers at, which is named théuzzy set circleof . ~ results to the continuous intersection join on large dasase
The points in thefuzzy set circleof a, and the points that With frequent object updates.
will enter the circle sometime in the near future, form the
fuzzy sebf a. Fuzzy sets provide answers to the continuous
semijoin. When there are updates in the datasets, the radiiPreliminaries
of the fuzzy set circles change, which in turn cause changes
of fuzzy sets. In the continuous intersection join over movn this section, we define the problem and then describe
ing objects with nonzero extents, we may use the fuzzy setPR/TPR*-trees [35,40] since we use them as the under-
circle of an object to bound all the objects intersectiny ~ Ying access methods. Subsequently, we provide a naive al-
However, this circle will have a large radius, since there iggorithm for solving the problem.
no limit on the sizes of objects. A lot of objects not inter-
sectingO will also be contained in this circle, which makes
it inefficient to maintain the circle. Therefore, the fuzats 3.1 Problem Formulation
circle based method does not apply.

Arumugam et al. [3] address closest-point-of-approactR€Presenting moving objects:We follow the most popular
joins over moving object histories. They find the closeshpoi @PProach of representing positions of moving objects, i.e.
pair between two historical trajectories, which is a tgtall by linear functpns of tlm_e._ An object O_f irregular shape is
different problem from the continuous intersection join. ~ '€Presented by itIBR (minimum bounding rectangldjhe

U et al. [41] propose the exclusive closest pairs (ECPf'deS of an MBR are parallel to the axes of the 2-dimensional

join on point data and further address the problem of con§paCé' The movementof an object is represented by B&

tinuous monitoring ECP pairs with updates on the dataseté\./eloc'ty bounding rectangleJhe VBR describes how each

ECP join tries to match up the objects in two dataséts 1 we focus on 2-dimensional spaces, although the proposed tech-
and B according to the distances between objects. In theiques are applicable to higher-dimensional spaces.

side of the object's MBR moves. At timestampthe MBR object pairs found in the filter step, check whether the dctua
of a moving objecD is denoted ad/br (O, t). shapes of the objects intersect. We focus on the filter step.
A formal definition of thecontinuous intersection join
Mbr(0,t) = Mbr(Ostres) + (¢ = trep)VOr(Ostres), geryis given as follows,

where Mbr(O,tresr) = (Ore—y Orzs, Ory—, O in o .)

the subscri(pt, wn J;)nd i ztand %rﬁowé?yboun]éy;:]d(up- Definition 1 Let A, B3 be moving object sets, be the cur-
per bound, respectively) is the MBR @f at a reference rent tlmestamp,_ anMQr(a t) bgafuncuon that returps the
timestampt,.«; andVor(O, tref) = (Ova_, Ovas, Ovy, MBR of a moving .objecto. at t|mestampt. The continu-
Ovy+) is the VBR ofO sincet,.. ;. We call this representa- 9“3 intersection join querfimds every paia, b) for e?’e,r y
tion of O a Time-Parameterized Bounding Rectangle (TPng(nestampt, a € Ab e Bt e [t,o00), that satisfies
of O. Such representations require less updates with positi br(a, t) 0 Mbr(b,t) # 0.

changes since an object’s VBR can usually stay unchanged Overview of the System: Our continuous join process-

fora_lshort while (e.g., a person walking on the street or ac%g system consists of two componentipia processoand
driving on the road). aresult presenteas shown in Fig. 2. The join processor is

Representing object updatesiThe joinis performed on o qhonsiple for producing intermediate results in the fofm
two moving object sets4 and B. Each object inA U B has (03,05, 1,,1.), where(0;,0;) is an intersecting pair and

a unique ID. A moving object management system main{ts,te] is the period when this intersecting pair is valid. The

tains thq mformatlor] of the objects aqd Process quernes Oghiarmediate results are passed to the result presenter and
them. With the consideration that the size of the data may bﬁaintained in an intermediate result list (denotedikl

large and also in line with previous studies [16,24,35,40]Sorted on,. A B*-tree can be used to implement it. When

we have implemented our techniques assuming the data &g, e js an updated obje6t, we need to remove intersect-
disk residentalthough our techniques are applicable even;, airs involvingO from irl. To facilitate finding pairs
if the data are held in main memariach set of objects is involving an object, a hash table (denoted /by is main-

indexed by a,TPRTtree (actually the variant TPR*-tree) dug,ine ysing the object ID as the key. Every entry of the hash
to TPR-trees’ efficient management of moving objects Withape contains an object IBid and a linked list of pointers,

nonzero extents. pointing to the intermediate results involving objedi. At

__An updateis sent to the management system when theyery timestamp, we check every entry from the begin-
difference between the object’s actual parameters (positi ning of irl to the last entry witht, equal tot (cf.Fig. 2). If

or velocity) and parameters maintained in the managementhas; < ¢ (this means: has expired), then is discarded.

system exceeds some threshold. Itis represented in the fo@therwiseﬁ is reported as an entry in the current join result.
of (oid, Mbr, Vbr,t,), whereoid, Mbr andVbr denote the

unique ID, the new MBR and the new VBR of the updating ;. 1.10 1.6

object, respectively, antj, denotes the timestamp when the Processor::> 10,20 2, o |

update is issued. 1,6,2,8|=— [100]200 Ko
Following many previous studies [18,20,32,35,40,43], 7 4.3.4 Teloe K,

if an object’s actual parameters do not change for a long the lastentry === — . K

time, the system still requires the object to update at least ~ With =4 4956 - o

once evenyT), timestamps. We call'y; the maximum up- 5 p 5 p 2ol kj

date interva) which is the longest time interval allowed be-

tween two consecutive updates of an object. The reason for hash tablefit)

the maximum update interval is as follows. Updates not only

keep the objects’ movement information up to date, but also intermediate Result Presenter

serve as heartbeat signals in practice. Without the maximum result list (rl)

update interval requirement, if an object does not commu-_ _
nicate with the management system for a long time, it id19: 2 System overview
impossible to know whether the object keeps moving in the Since the join result has to be presented all the time, we
same way or has disappeared accidentally without being abissume that it can always be held in main memory. Com-
to notify the management systeffy is a system parameter, pared with the result presenter, the join processor regjuire
which is the same for all objects. much more computation. Itis the focus of this paper and will
Problem definition: Orenstein [31] suggested that an be investigated in detail in following sections. Procegsin
intersection join on irregular shapes should be processed the continuous join consists of two phases: computing the
two steps: (1)Filter Step Find all the object pairs whose initial join pairs (nitial join) and then maintaining the join
MBRs intersect each other; (Refinement Stefor all the result continuously as objects are updatathifitenance

3
1
The initial join is performed only once, therefore the main- s =0 . i
tenance has significantly higher weight in the total cost. r A B —— The trapezoid
As our algorithms are based on TPR-trees, we describe 61 ;173" %Eé'z g b|s sweptbyN
. | ™ during [0, 2]
them before discussing the join processing algorithms. le 1. Lo .
. 1
Table 1 summarizes the frequently used symbols. araf9e |0 2 ¢
-
20 1 N ! \

Table 1 Frequently Used Symbols L N T ; s N

Symbol Explanation 0 ‘ : T - S

[0) A moving object 2 4 6 8 10 12 x

Mbr(O,t) The MBR of O at timestamp Fig. 3 A TPR-tree node

<ORz—xORz+:ORy—|ORy+> The MBR of O . . .

(Ove_.Ovas,Oyy_rOves) | The VBR ofO range[tl_, to], the region swept by an object in the TI_DR-

A B Two moving object datasets tree during[ty, to] is first computed (a trapezoid, cf. Fig. 3),

na The number of objects id and then compared with the query window to find the time

tra A TPR-tree onA range when they intersect each other.

N,e A tree node and an entry

The insertion, deletion and update procedures of the TPR-

zg ngr;t;éypt;?%ﬁispi:)ntig?g;;ycost tree are similar to those of the R*-tree. Details are in Sddte

I Average per update join cost etal.s paper [35]. The TPR*-tree [40] uses a set of improved

SR(N,qr), Asr(N,qr) The region and its area swept By algorithms to build the TPR-tree and achieves an almost op-
N during time intervalr timal tree.

te Current timestamp

tu Update timestamp

T Maximum update interval

3.3 Processing Continuous Intersection Joins Naively

Recall that processing a continuous join (we omit “inter-
3.2 The TPR/TPR*-tree section V_/h_en the context is clear) consists _of_ two phases:
the initial join and the maintenance. For the initial joirg w

The TPR-tree [35] extends the R*-tree [4] by attaching time®an use a ngiv_e algorithm described bglo_vv_ to _compute all
parameters to node regions so that the nodes can bound md{}¢ Possible join pairs from now to the infinite timestamp.
ing objects. Following the popular linear function of time For the maintenance, whenever there is an ob_Ject update, we
representation, in the TPR-tree, a moving obj@ds repre- need to perform aanswer updatas follows. First, we re-

sented by its MBR at reference timestatpy, Mbr(O, tref), move all the pairs containing the updated object from the
and its VBR since,.;, Vbr(O, t,.r). Moving data objects current result; then we join the object with the other datase

are indexed in the leaf nodes of the tree. A leaf node of &5t USing the naive algorithm) from the current timesfam

TPR-tree is a moving object whose MBR (VBR) bounds thelo the infinite ti_m_estamp and the new_lyfound pgirs are a_dded
MBRs (VBRS) of the data objects inside. A non-leaf nodet® the Curre_nt join res_ult. Next, we give the naive algorithm
of a TPR-tree is a moving object that bounds inside its chil-for computing join pairs.

dren, either leaf nodes or other non-leaf nodes. Fig. 3 gives Each dataset is indexed by a TPR-tréey(andtr 5 for
an example for a nod&’ in a TPR-tree. NodeV indexes A and B, respectively). The basic idea is to use the bound-

objectsa andb at timestamp 0. Its MBR bounds the two ing relationship between a node of the TPR-tree and the en-

objects’ MBRs, and its VBR is formed by finding the maxi- tries inside it'_"etNA (Np) be a node fromtr, (t_rB),' I
mum and minimum speeds of the two objects on each of thd4 does not intersecl, then none of the entries in the
dimensions (i.e z-dimension and-dimension). sub-tree rooted a¥ 4 could intersec any of the entries in

The TPR-tree supports time-slice queries as well as timet—he Sub-tree rooted &V, therefore we need not visit the

range queries, i.e., queries on the status of the indexed ofub-trees. Otherwise, there could be intersections betwee

jects at a given timestamp and during a given time rangetehnmes_l_'hn_ tr_]etsub-t?aes and \t/vehsh(lz_uld _Ched; the edntrles n
respectively. To illustrate how these two types of queries a _eT‘ 's The;rsec !on—(ir—n(()j checking 1S pertﬁrnl":e re(_:t;JI
processed, we use the window queries as the examples. Fiye'y on both lrees in a top-down mannetr, untitall possible

process a time-slice window query at timestaimnihe MBR g]ter:sectlon_ls_hgre lexpl.ol:ed.. Itis aea/n;:\]hrlonou(j traversal o
of an objecO in the TPR-tree is computed agbr(O,t) = oth trees. This algorithm is naméaiveJoin and summa-

MO, tyes) + (t—tref)Vr(O, trer), and then compared rized in Fig. 4. Throughout this article, we assume that the
with the query window to determine whether they intersect 2 actually the MBRs of the entries intersect each other. We omit
each other. To process a time-range window query with tim&vBR” when the context is clear.

y
two TPR-trees have the same height for brevity. If they do 101
not and the traversal reaches the leaf level of one tree first, r e "
sayir 4, then we only read the node on the next levelrgf 8r
and join this new node aofrp with the leaf node entry of r 4 b, 1
tra, i.e., we perform NaiveJoin,eg.ptr). 6 ‘
[T1

ab
Algorithm NaiveJoin (N4, Ng) ENEYES
1 for everye, in Ny ol b,
2 for everyep in Ng with |

([t%,t.] < intersect(ea,ep, tc,o0)) ZNULL ‘ ‘ ‘ ‘ ‘

3 if N4 is aleaf node 0 5 4 5 s 10 x
4 OUtpUt<6Aﬁ 8B7tf5'7 t;>l
5 else Fig. 6 Intersection time interval computation
6 ReadPage(y .ptr); ReadPage(s .ptr); . . .
7 NaiveJo%é(:.Zt:)eB.ptr)- gefs-ptr) ing that the current timestamp is timestamp 0, to compute

End NaiveJoin the intersection time interval faf; andb,, we first com-
pute the time interval whean, (b;)'s upper bound is larger
than or equal td (a1)’s lower bound for thec-dimension,
The functionintersect(ea, ep,tc,00) in line 2 deter- \yhich is[0, o0)([0, 7]). Similarly, we compute two time in-
mines whether two entries, ande (fromra andtrp, re- tervals for they-dimension, which arf9, 5] and|0, oc). Sub-
spectively) intersect each other during time inteféaloc), sequently, we compute the intersection time intervak of
wheret. denotes the current timestamp arddenotes the gndp, , which is[0, 00) M [0,7] N [0,5] N [0, 00) = [0, 5.
infinite timestamp. If yes, the time interval for the inter-

. ;o _ _) In NaiveJoin, the time interval., co) is input to the
section, [t t;], is retumed, otherwiseULL is returned. function intersect() so that we find all possible join pairs

The function is based on the observation that for two oby, the fyture in one (synchronous) tree traversal. We call th

jects to intersect, in every dimension, one object’s UPPefime interval for which the algorithm needs to compute the
bound must be larger than or equal to the other object'foin pairs theproc

i RPN essing time interval. Here, the process-
lower bound. Thus, to compute the intersection time inter

. _] - ing time interval iglt.., o). If e4 intersects:p and they are
val for objectsa andb, intersect() first compute a time 4t jeaf nodes, then the algorithm traverses to the next leve
interval whena(b)'s upper bound is larger than or equal

) : " of both trees synchronously, i.e., to retrieve both the page
to b(a)'s lower bound for every dimension. Then, the in-

)))) X " pointed to bye 4, andep (through pointers associated with
tersection of all the resultant time intervals is the time in them,e..ptr ande ptr, respectively).

]Eervatl! whe?a an(:b w:te:;go;. F'%‘ a shov:/jsbtge d?talls of NaiveJoin is also used for processing updates. When an
unction intersect(). In this function,a andb denote the .0+ 5 yndates, we first remove from the current answer

Fig. 4 Algorithm NaiveJoin

Functionintersect (a, b, ts, te) those join pairs that contail. Then,O is treated as a TPR-

1 [t1-,t14] < solutions ofar_ . (1) > br,_(1); tree of a single node with a single object and joined with the
2 [t tz4] solutions obp, i) 2 ag,_(); other dataset (the dataset tigais not in) by NaiveJoin; this

j Ei: :zj : 22:3::222 8;:}’:“((;) f s}’zrx;; is effectively awindow query[35] on the other dataset using

S [t te] — [ts,te] N (ﬁ?:l[tifmf); v O as the window andt,, oo] as the query time interval.

6 return[tl,t.];

End intersect

Fig. 5 Function intersect 4 Extending Time-Parameterized Joins for Continuous

two objects to be checked for intersectian,(t.) denotes Joins

the starting (ending) timestamp of the time interval to be

checked, and the subscrift,; (¢t)(R.—(¢)) denotes the up- In this section, we extend a previous technique, tthee-
per (lower) bound of the MBR in dimensianat timestamp parameterized joiralgorithm [39] to support the continu-
t, likewise for dimensiony. Lines 1 to 4 compute the time ous join query. To the best of our knowledge, this is the
interval when one MBR'’s upper bound is greater than thenly existing way to support the continuous intersection jo
other’s lower bound for each dimension. There is only onequery. However, since this previous technique is origjnall
interval in the solution of each of these four inequalitiesdesigned for some other type of queries, extending it does
since we assume VBRs of the objects do not change untiiot result in an efficient solution to our problem. Therefore
a new update is issued. Then the time interval for MBRsit is still important to design algorithms that can efficignt
intersection is the intersection of the time intervals ot#ed solve our problem, and this extended technique will only
from previous inequalities. Fig. 6 gives an example. Assumserve as a baseline technique.

Tao and Papadias presented [39] a set of spatio-temporahen leaf levels are reached for both trees. Fig. 8 summa-
queries called time-parameterized (TP) queries, inclydin _ _
the TP (intersection) join query. While the TP join query’:‘I%g:'t:\'/ngP"]?r:”]\gNA'NB'NE' TyiINF)
does not answer the continuous join query directly, itcanbg ¢, eyveeA}yeB iﬁ Np
extended to support the continuous join query. Next, we firsg if eq.mbr Neg.mbr # 0

show how a TP join query is processed, and then show ho# if N4 is aleaf node
it can be extended for the continuous join query. 5 else"““"“““’ es);
A TP query returns: (i) thebjectsthat satisfy a certain 7 ReadPage(, ptr); ReadPage(s.pir):
spatial query; (ii) theexpiry timeof the result given in (i); 8 TP-Joing 4.ptr.eg.ptr, NE, TarINF);
(iii) the eventthat changes the result. That is, the answers ar%O elseTIszNF(eA,TeB) (< TMHgF
; ; ; ; ; ; MINF < 1INF(€A,€B),
in the format of triples(objects, expiry time, eventyig. 7 11 if N, is a leaf node
12 NE «— (ea,eB);
13 else
y 14 ReadPage(; .ptr); ReadPage(s .ptr);
10F 15 TP'\]OinéA.ptT‘,eB.ptT, NE, TJWINF);
| N, ‘ End TP-Join
8+ a ‘Jrl%l s Fig. 8 Algorithm TP-Join
L A
ol i | Yoot rizes the algorithm, wherg,,; v » denotes the minimum in-
L & N,) fluence time of all object pairs seen so far aiid denotes
al BT the corresponding object pair (the everiat; x). The pa-
4 N rametersly;ryr and N E are gradually updated during the
2k, N, i} : b, execution of the algorithm (lines 10 and 12). When the al-
- gorithm stops, Iy nvr becomes the time of the next event
0 w] w T that changes the result addE becomes the next event. In
2 4 6 8 10 x

Fig. 7, at timestamp @ intersectss so nodesV,; and N
are accessed. Assuming a depth-first traversal here, #fter a
shows a TP intersection join query example. Moving objecentries inN; are compared to those iN3, the algorithm
set A consists of object§ay, as, a3, as} and moving ob- obtains (i) the current join paifa;,b,) and (i) the mini-
ject setB consists of object$by, b, b3, by }. The currentre- mum influence time of all object pairs visited so far, which
sult is {{a1, b1)}. Suppose the current timestamp is 0. Theis 1 caused byas, b2). None of the other entry pairs from
first result change happens at timestamp 1 whestarts rootA androot B has influence time less than 1, so the al-
to intersectas, so the expiry time of the current result is 1 gorithm terminates the tree traversals and returns thdtresu
and the event causing this changd {8, b2)}. Therefore, ({{a1,b1)},1,{{az2,b2)}).
the answer for the TP join query at the current timestamp In the same paper [39], Tao et al. suggested a way to
is the triple ({(a1,b1)},1,{(az,b2)}). At any timestamp, extend TP-Join to produce answers for the continuous join
there is a “next event” that will change the result and thequery. The extended algorithBT P-Join is described as fol-
corresponding timestamp is called tinfluence timeof the lows. First, TP-Join is run to obtain the current answer and
event. In this example, when intersectd, at timestamp 1, the next event. As time goes to the next event and the result
the next event i$; leavinga, at timestamp 3, denoted by changes, an answer update is performed by running TP-Join
({a1,b1),3) where 3 is the influence time. The subsequento get the new next event (no need to search for the new cur-
events aré(ag, b2),4), ({as,bs),6) and({as, bs), 8). rent answer since they can be computed from the previous
The TP join algorithmTP-Join) is described as follows. answer and the event). When there is an update on object
Each set of objects is indexed by a TPR-tree. A depth-firsD, an answer update is also performed by traversing the tree
(or best-first) traversal is performed on each tree synchrde find the object’s influence tim&; y r(O). If Trnr(O) is
nously starting from the root. Supposg andep are two before the current expiry time, théh v (O) becomes the
entries in non-leaf nodes, one from each TPR-tree. The traurrent expiry time and) becomes the next event; other-
versals go down the sub-trees pointed toehyandeg if wise, the update is simply ignored (the tree has already been
one of the following conditions hold: (i) the MBRs efs traversed). By this means, join pairs can be obtained for all
andep intersect; or (i)Y nr(ea,ep) is less than or equal the time. The ETP-Join algorithm is summarized in Fig. 9,
to the minimum influence time of all object pairs seen sowherewq() is a function that performs a window query on
far, whereT;nr(ea,ep) means the influence time of the the other joining tree using the updated objeds the query
pair (e4, ep). Condition (i) finds the current join pairs and window to compute the influence time 6, T; 5 (O), and
condition (ii) identifies the next event. The traversalgpsto the corresponding evenVE(O) (line 8). In Fig. 7, first

Fig. 7 A running example

Algorithm ETP-Join (root A, root B)
1 NE «— 0, TrmINF < 005

. time interval [0,5] (at timestamps 0, 1, 3, 4) for changes in
2 TP-Joirtroot A,root ByNE, T\INF);

3 whiletrue the result, while NaiveJoin does not perform any traversal
4 Wait until next answer update; since there is no object update. Therefore, ETP-Join has a
5 if the answer update is a change of the result much Iarger number of answer updates, ue. > u,.

6 TP-Joif{root A,root B,NE, TajINF);

7 else// the answer update is an object update)

8 (NE(O), Tinr(0)) — wq(O, the other joining tree); On the other hand, the per update computational cost of
9 if Tne(O) < TmINF NaiveJoin is much higher than that of ETP-Join. The reason
10 Tyuine — Tinp(0); NE — NE(O); is as follows. In NaiveJoin, the algorithm in Fig. 4 is exe-

End ETP-Join

cuted for each answer update, which is effectively a time-
Fig. 9 Algorithm ETP-Join range window query with the updated objétas the query
the answer{(a;,b;)} is obtained for continuous join for window and[t., cc) as the processing time interval. The al-
the period|[0,1) from the TP Join result at timestamp 0, gorithm needs to process all the nodes that interSeat
{{a1,b1),1, {az,bs)}. The continuous join answer becomes [t., o). In ETP-Join, algorithm TP-Join (a component of
{{a1,b1), (a2, by)} attimestamp 1. At this moment, TP-Join ETP-Join) is executed for each answer update, which per-
is run to get the next evetttas, b1), 3). Then we know the forms a time-range window query using the updated ob-
continuous join answer during the perifid 3) keeps to be ject as the query window if it is triggered by an object up-
{{a1,b1), {az,bs)} and it changes td(ao, b2) } attimestamp date, or joins two TPR-trees if it is triggered by a change in
3. Again, TP-join is run at timestamp 3 to find the next eventhe result. The processing time intervaltis Ty), where
and the influence time, which aféas, b2)) and 4, respec- 17y is the minimum influence time of all object pairs seen
tively. During period[3, 4), the continuous join answer stays so far in the algorithm. If TP-Join is triggered by an ob-
to be{(as,b2)}. At timestamp 4, TP-join is triggered again ject update, then it needs to process all the nodes that in-
by the event ob, leavinga,. The answers for subsequent tersect the updated object f, 77). If TP-Join is trig-
timestamps can be obtained similarly. gered by a change in the result, then it needs to process all
the nodes that intersect each othepinT;). Sincecc is
usually much larger thaii; y =, the processing time interval
5 Our Approach of NaiveJoin is much larger than that of ETP-Join. Unless

i i i i i the velocities of the objects are highly skewed (e.g., alimo
We first analyze the NaiveJoin and ETP-Join algorlthmsing in the same direction), an MBR will expand in all four

and then present our approach to the problem, namely tim%ﬁrections ¢—, =+, y—, y+), SO two MBRs must intersect

constrained query processing. sometime in the future. This causes all the tree nodes being
accessed per answer update for NaiveJoin {i,gis large).

5.1 Analysis Thereforep,, > Pe- For the example in Fig. 7, NaiveJoin
comparesoot A with root B, N1 with N3 and Ny with Ny,

Given a periodl’, the computational cost of any of the con- While ETP-Join only comparesot A with root B and Ny

tinuous intersection join algorithms described in thisegrap With NVs in its first TP-join run. For trees with more nodes,

is determined by the cost of processing an answer updatBis difference will be much more significant.

and the number of answer updatesiinHere, the cost of

processing an answer update is proportional to the num- To summarize, ETP-Join has to run TP-Join frequently

ber of nodes processed by the algorithms. hgtbe the because updates and changes of results are frequent. The

number of nodes processed for an answer update by algproblem of ETP-Join is computing the result foo shorta

rithm X andu, be the number of answer updates performedime interval in each run, i.e., having a too short procassin

in algorithm X. Then, the computational cost of algorithm time interval. NaiveJoin has a high computation cost per run

X is O(p,u.). Using this notation, the computational cost because it returns the answer up to the infinite timestamp.

of NaiveJoin and ETP-Join are denoted @&, u,) and The problem of NaiveJoin is computing the result foo

O(peu.), respectively. long atime interval in each run, i.e., having a too long process-
We first compare the number of answer updates of théng time interval. This motivates us to optimize query pssse

two algorithms. NaiveJoin needs an answer update upon evieny in the time domain. The crux of the problem is to choose

object update, while ETP-Join needs an answer update up@n“‘good” processing time interval for each join run. Next,

not only every object update but also evetyange in the we introduce the concept of time-constrained (TC) process-

result In highly dynamic environments, result changes haping, based on which we propose our MTB-Join algorithm

pen frequently. There usually are multiple result changes b to achieve a similar per update cost to that of the ETP-Join

tween two object updates. For the example in Fig. 7, ETPalgorithm while retain the same small number of answer up-

Join performs four (synchronous) tree traversals durieg thdates as that of the NaiveJoin algorithm.

10

5.2 Time-Constrained Processing they will not intersect in the time interval [0,5] by compar-
ing e2 andey). TC-Join is better than both ETP-Join, which

Our key insight is that the join result between any two ob-has four tree traversals, and NaiveJoin, which performs one

jects only needs to be valid until the next update on anyree traversal but with all nodes accessed. This clearlwsho

of the two objects. Actually, if an object issues an updatethe benefit of TC processing.

all the predictions about this object’s intersection withey

objects in the future may become invalid immediately. We

have to perform a join between the updated object with th&-3 Improving TC Processing with the MTB-tree

other dataset anyway. In other words, an update of an object))))

invalidates the objects join result starting from the uda SiNce€Ti is the maximum time interval between two up-

timestamp to the future. Therefore, an ideal time intervafit€s of an object, the actual time interval between two up-

for computing join pairs for an object is from the current d2t€S may be much shorter thly,. If we consider a uni-

timestamp to the object's next-update timestamp. This idedorm distribut.ion, the average update time interval betwe.e
case is impossible in reality because we could not know ifV0 updates 'Sszﬂ' Therefore, one may ask: can we obtain
advance an object's next-update timestamp. However fort,Petter processing time interval than + T),]? The answer
nately we have an upper bound of an object’s next-updatl$ 29@in positive based on Theorem 2 below. We reuse the
timestamp, i.e.73; from now. T}, is the maximum update notatlop for'Theorem 1. In addition, if there is an update on
interval described in Section 3.1. For an object, we onlyinee@1Y Object in seZ, we say that there is an update 4n

to find its join pairs with the other dataset during the periooLet lu(Z) denote the latest update Ghbefore the current

[te,t. + Thi]. Beforet. + Ty, this object will have to is- imestamp.

sue an update and we will then find its join pairs with theTheorem 2 For anyO, if we always process the join be-
other dataset again for anottigg, period. By this means, tweeno and all the objects intherset(O) for the time in-
we can obtain correct answers for this object continuouslyeryal [tu, t(lu(otherset(O))) + Tas] whenever there is an
One question remains: while doing this on one object seemgpqate (or insertion) ab, the union of all the produced join

correct, can we do this on 6.1|| objects and still geIICOWG'GIJ'O pairs is the correct answer for the continuous join query for
pairs between any two objects and for all the time? Theog)| the time.

rem 1 below gives a positive answer to the question. Proof Omitted due to space limit, -

Theorem 1 Let O be an object andtherset(O) be the set An example for Theorem 2 is as follows. Supp@%e =

O does not belong to. Let, be the update (or insertion) 5, the current timestamp is 7, and we know that all the ob-
timestamp ofO. For anyO, if we always process the join jects in B were updated before timestamp 4. Then for an
betweenO and all the objects intherset(O) for the time Update ord at the current timestamp, we only need to com-
interval [t,,, t, + Ths] whenever there is an update (or in- Pute its join pairs with33 until timestamp 9 (9=4+5), which
sertion) ofO, the union of all the produced join pairs is the means the processing time interval is [7,9]. This is even

correct answer for the continuous join query for all the time shorter than [7, 12] (12=7+5)(lu(otherset(0))) is thelat-
est update timestamut) of otherset(O) beforeO is up-

Proof Omitted due to space limit. O dated. The smaller tHat, the stricter the time constraint for
This theorem indicates that, whenever we process thprocessing the query.
join, either for the initial answer or for the updates, we can Theorem 1 is a special case of Theorem 2. If there is at
use the processing time intervgl,, ¢, + 7| instead of least one object update otherset(O) at every timestamp,
[t., 00]. It effectively imposes a constraint on the query process-gett(lu(otherset(0))) = t,. Therefore, in this case,
ing intime. Therefore, we call ttme-constrained (TC) query ¢, + T is the optimal upper bound of the time intervals for
processing. To apply it on the NaiveJoin algorithm, we simawhich the join betwee® and all the objects intherset(O)
ply changeintersect(ea, epg, t.,00) in line 2 of the algo- is processed whenever there is an update (or insertian) of
rithm tointersect(ea, ep, tu, tu + Tar). We call the resul- The problem now is how to reduce the for a set of
tant algorithmT C-Join. objects. Given a set of objects, we cannot changéuthef
TC-Join has the advantages of both ETP-Join and Naivat. However, part of the set could have smallgrand if we
Join, i.e., it has a small computation cost per object updatean separate them from those that have largeéhen we can
([tu, tw + Tas) is much smaller thaft,,, oo]) and only needs still achieve stricter time constraint for processing thatt
to update the answer when there is an object update. For tloé the set. We propose to group objects into time buckets
example in Fig. 7, supposk,, = 5. During the time inter- based on their latest updates; therefore the set of objects i
val [0,5], TC-Join only performs one tree traversal; foisthi each time bucket (except the last one) has a smali¢han
traversal, it only comparesot A with root B andN; with that of the whole dataset. To group objects into time buck-
N3 (TC-Join does not acced¢, and N, because it knows ets for TPR-trees, a similar idea as used in theti@e [18]

11

can be exploited. Particularly, we divide the time axis intoas the query window anft,,, t., + Tas] @s the query time
equi-length time buckets; for each time bucket, a TPR-treeange. Suppose the MTB-tree in Fig. 10 is #r then we
is used to index all the objects whose latest update time fajbin the updated object witlhry, ¢ro andtrs for the time
in the bucket. This results in a group of TPR-trees based omterval[t,,, 224], [t,, 2Ty] and[t,,, 222], respectively. We
multiple time buckets, which we call t#dTB-tree Updates call the above metholi TB-Join.
in the MTB-tree are handled as follows. When an object up- We usemn to denote the number of time buckets tiiaf
dates, we first identify which time bucket the object is cur-is divided into. Then there are at maest#1 TPR-trees in the
rently indexed from its last update timestaimpVe delete MTB-tree. The choice of the value af affects the perfor-
the object from the TPR-tree in that time bucket and insert imance of join operation, i.e., time-range window queries be
into the current TPR-tree. The cost of updating an object inween updated objects and TPR-trees. A largean reduce
the MTB-tree is almost the same as the cost of updating athe cost of a single time-range window query since it reduces
object in a regular TPR-tree, because even if the objects athe processing time interval. However, it also increases th
indexed by aregular TPR-tree, an object update still ire®lv number of time-range window queries to process an update
deleting an object from the tree first and then insert the upbecause it increases the number of TPR-trees in an MTB-
dated object. The only overhead of an MTB-tree object uptree. Also, more TPR-trees in an MTB-tree means less ob-
date compared to a TPR-tree object update is identifying thgects in a tree, which may lead to worse clustering of objects
time bucket in which the updated object is currently indexedand hence worse performance. Due to the various compli-
which is done by a simple modulus operation and hence theated factors affected by the valuerefand many of these
overhead is negligible. Typically the length of a time bucke factors being system dependent, it is difficulty to have an
can divideT’, exactly. Fig. 10 shows an example where theaccurate theoretical model to determine an optimal value of
length of a time bucket iépg—f and the current timestantp m. Following a previous study [18], we take an empirical ap-
is in the third time buckefls,, 3TTM]. Updates resultin dele- proach and find a suitable value af through experiments.

As shown by our experiments; = 2 gives the best perfor-

mance and this result accords with the result of the previous
MTB-tree study [18].

TPR-trees

5.4 Computational Improvements Enabled by TC

N Processing
try [tro |trs Besides cutting the workload in the time dimension, TC pssee
N ing enables a set of techniques that can help the traditional
0 | 3Tv | Tm| |3Tw 2Ty time intersection join algorithm perform better by reducing the
update upddte insert number of entry pairs to be checked for intersection when
inpert joining two nodes. We explore these improvement techniques
Fig. 10 The MTB-tree below. First, we adopt the plane sweep (PS) technique, which

tions from¢r; or tr, and insertions tors. Here,lut for the ~ sorts the entries with respect to their coordinates in awert
whole dataset is, (t, > Ths), while thelut for the objects dimension and can prune some of the entry pairs from be-
in tr; andtry are Téw and T, respectively. Thereby we ing checked for intersection according to the sorting ttesul
reducdut for many objects in the set. Then we provide a method to choose the dimension for entry
The continuous join is processed as follows. The initialsorting based on entry speed. Adding to the PS technique,
join is still performed on two single TPR-trees. After the another improvement technique called Intersection Check i
maintenance phase begins, we start to divide the time axRxplored to filter the non-intersecting entries from emgri
into time buckets and change the single TPR-tree into athe PS process, and hence fewer entry pairs are required to
MTB-tree. When there is an object update anit is first ~ be checked for intersection.
updated on the MTB-tree od; then it is joined with the
MTB-tree onB. Specifically, the object is joined with each 5-4.1 Plane Sweep

TPR-tree ofBB using the TC-Join algorithm, but for an even various studies [8, 33] have shown that the plane sweep (PS)
shorter periodt., tey + Th], wheret., denotes the end of technique provides a good order of accessing two sets of
the time bucket of the TPR-tree. Since the join is between afbctangles and hence saves computation for processing spa-
object and a TPR-tree, it is effectively a time-range windowjg) joins on static rectangles. However, no study has shown
query on the TPR-tree using the MBR of the updated objegtow to apply this technique to moving rectangles. The tra-

3 We assume that the last update timestamp is sent together with tiitional PS is not applicaple since the regtangles not-inter
update information. secting each other at a timestamp may intersect later due

12

to their movements. In what follows, we will first describe of moving objects using PS, calld®5I ntersection, is pre-
PS for static rectangles and then discuss how to adapt PS $ented in Fig. 11. In this algorithn$,, (S;) is the sequence
moving rectangles for a constrained time interval. of entriesa; (b;) from nodeA (B) sorted orib valuesty, t1]
First, the two sets of rectangles are sorted respectivelig the time interval the join is processed for, afdis a se-
based on their lower left corners in a dimension, sap ob- quence to keep the join results in the output order.
tain two sorted sequencSs=(a1, as, ...) andS,=(b1, ba, ...). Note that the constrained processing tifhgt; | is nec-
Then, all the rectangles in both sequences are processedéasary to enable the lower/upper bound property for PS. Oth-
increasing order of their-coordinates of the lower left cor- erwise, if[ty, oo] is the time interval for processing the in-
ner. Letc be the current rectangle to be processed.claet tersection, then we will not be able to useix(Og.+ (to),
(c.z+) denote the lower (upper) bound of rectangia di- Og. (1)) asub because of the infinite timestamp. Further,
mensionz. Supposé;.z— < ai.z+, theninitiallycis setto the time constrainfty, ¢1] greatly reduces the chance of in-
b1. The rectangles is, are scanned until a rectanglevith tersection and makes PS more effective than the static case.
e.x— > by.x+ is found. The scanned rectanglesSinmust
overlapb; in dimensionz, so they are further checked for 5.4.2 Dimension Selection Based on Speed
overlap withc in dimensiony. If any of them also overlaps
in dimensiony, it is added to the join answer set. Néwis We need to sort the entries (moving rectangles) before run-
done and marked as processed. Thenpves on to the next ning PSintersection. The choice of sorting dimension also
rectangle with the smallest--value inS,, U Sy, say,a;. At has an impact on the computation cost. Consider the two
this time, S, is scanned and compared witisimilarly as ~ €x@mples in Fig. 12. Lines 1, 2, 3 and 4 are the projec-
above. This process continues until a sequence is processéns of some entries on dimensionThe dashed lines show
completely. t t

Algorithm PSintersection(Sq, Ss, to, t1) ' NS i i

1i—1,j—1,8 <0 bo| 0 N t

2 while(i < |Sq| andj < [Sy]) 1: 2 3 4

3 if a;.lb < b;.lb : X : X

4 while(j < |S,| andb;.lb < a;.ub) @ (b)

5 if([t},t.] — intersect(a;, bj, to, t1) # NULL

6 Append(a;, b;, t,,) t0 S; Fig. 12 Selecting sorting dimension

g igi:fﬁ L their movements as time goes fragto ¢;. Line 1 corre-
9 else sponds to entryi; from nodeN4; Lines 2, 3 and 4 cor-
10 while(i < |Sq| anda;.lb < bj.ub) respond to entries,, b3 and by, respectively, from node
1 if(25, £ Hinterfec'f(aiabja_tovtl) 7 NULL Npg. For Fig. 12 (a),a;.ub > by.lb, aj.ub < bs.lb, by.lb,
g ; (_A?TT;CK““ bjstsste) 10 Se; therefore, we only check whethey intersects, during PS.
13 Je— i1 For Fig. 12(b),a;.ub > bs.lb, b3.1b, by.lb, thus, we need to
End PSintersection check whether, intersectsh,, b3 andb, during PS. Sup-
Fig. 11 Algorithm PSIntersection posea; intersects,, by andb, in dimensiony. Hence,a;

actually only intersects, in both cases. However, the en-

We find that essentially PS needs two parameters to Wories in Fig. 12(b) have an intersection test cost threegime
a lower boundb and an upper boundb. Lower boundbis that of Fig. 12(a). This cost difference is caused by the dif-
used to keep two sets of objects sorted in two sequencegsrence of their speeds. The larger the speed, the larger the
and then they are accessed in increasing ordés.aihile yagion the entry moves, and hence the greater the chance that
an object is accessed, ité is checked againsb of the ob- . 13, is smaller tham, .ub, and hence the more the intersec-
jects from the other sequence. Two obje@isandO, may tjon test costs. Based on this observation, we first compute
not intersect if0;.ub < O».Ib. This is the fundamental re- {he sum of the absolute values of the speed of all entries in

quiremept for chqosing the.tv.vo parameters. As seen fromach dimension. Then the dimension with the smallest sum
the previous sections, our join algorithm has a time conig selected as the sorting dimension.

straint(to, ¢1] as part of the input. This means we need to

consider the movements of the rectanglelggni;|. Suppose 5.4.3 Intersection Check

we decide to sortin dimension LetOr,— (t) (Or Ogy+ (1))

denoteO’s lower (or upper) bound at timestampWe can Only the entries ofV4 and Np that intersectN,.mbr N
usemin(Opry—(t0), Ore—(t1)) aslb andmaxz(Opg+(to), Np.mbr could intersect each other. Therefore, before com-
Onr.+(t1)) asub since they satisfy the requirement describeguting intersections of the entries from two nodes usingPSlI
above. The algorithm to compute intersections of two setsersection, we first test whether the entries interdégtn

13

Npg. We only run PSintersection on entries that pass this The number of nodes processed for an object update
test. This intersection check technique has been used by MTB-Join is similar to that by ETP-Join as explained
fore on static datasets [8]. Here, intersection is moreceffe below. On one hand, ETP-Join’s processing time interval
tive because of the constrained processing time. Note thdlt., 7y »]) is smaller than that of MTB-Joirjt(., t. + Ths])
N NNpg isarectangle that moves in the constrained time inbecausd 7y is the time for the next result change, which
terval[to, t1]. Suppose they intersect durifig, ¢.]. Interval is usually earlier than the time for the next object update.
[ts,tc] is actually an even stricter time constraint imposedThe shorter processing time interval of ETP-Join means ac-
on the intersection check. As we traverse the tree to a lowaressing fewer tree nodes. However, on the other hand, an
level, [ts,t.] here serves aBo,t1] to the lower level. Be- ETP-Join run needs to join two trees while an MTB-Join
causdts, t.] C [to, 1], the time constraint becomes stricter only performs a window query using the updated object as
and stricter. Therefore, the intersection check on moviig o the query window. Joining two trees obviously requires ac-
jects have a stronger pruning power than that on static olsessing much more nodes than window querying one tree.
jects. The above two aspects results in similar numbers of nodes
processed for an object by MTB-Join and by ETP-Join, so
s Pm = Pe. As discussed in Section 54, < p,,. Therefore,
Pm = Pe K Pn-
All the techniques discussed above are integrated into one M SUMMarym = u, andpy, < pn, SOO(Pmtim) <

join algorithm I mprovedJoin, shown in Fig. 13. Compared O(pnun); Pm ~ pe aNdur, < e, SOO_(?m“m) < O(peue).
The computational cost of MTB-Join is much smaller than

5.4.4 A Join Algorithm with the Improvement Technique

Algorithm ImprovedJoin (N4, N, to, t1) that of both NaiveJoin and ETP-Join. We will further vali-
1 for all entries inN4 andNg date the performance comparison in the experimental study.
2 Intersection checkntersect(N a, Ng, to, t1),
and letS, (S,) be the entries fronV 4 (Np);
3 Determine sorting dimension; 5.6 Applicability of TC processing
4 sort(S,); sort(Sy);
5 S¢ « PSIntersection(Sa, Sp,ts,te); . . .
6 for every entry(as, by, tor, tos) € Se The core idea of TC processing is that .the result of a con-
7 if V4 is a leaf node tinuous query on moving objects determined by an olject
8 output(a;, bi, tsi, tei); only needs to be valid untiD’s next update. AfteiO up-
?0 e'seReadPage(+): ReadPagsl pir): dates, the query result has to be updated anyway. We utilize
..ptr), ..ptr), . .
11 IMprovedJoing; ptr, bs ptr, toi. tes): this fo.rced result updating property and propose that,. when
End ImprovedJoin an object updates, we compute the result of a continuous

guery only to the object’s next-update timestamp instead of
to the infinite timestamp. Since we can not predict an ob-
with NaiveJoin, ImprovedJoin takes two additional parameject’s next-update timestamp, we use the maximum update
tersty andt;, which reflect the constrained processing time.interval Ty, which is the longest time period between an
First, we perform the intersection check. It retufist.] as object’s two consecutive updates. For an object that update
the time interval during whichV, intersectsNp. We can at timestamg., we compute whether it satisfies the query
compute the sum of the absolute values of the speed at tipgedicate during the peridd., t. + 7). Beforet, + Thy,
same time as the intersection check. Therefore, we can avoiHis object will have to issue an update and we will then up-
accessing the entries again for selecting the sorting dimenlate the query result for anoth€y,; period. By this means,
sion. After the sorting dimension is selected, we sort bottwe can obtain correct answers for the query continuously.
sequences of entries and perform PS to obtain join pairs. The above query processing procedure can be applied
to a wide range of continuous query types on moving ob-
jects such as continuous window queries and KNN queries.
5.5 Computational Cost Comparison between NaiveJoin, Take continuous window queries as an example. It is essen-
ETP-Join and MTB-Join tially computing the intersection between objects and guer
windows. Again, a naive algorithm would compute the in-
Following the discussion and notation in Section 5.1, theersection for the time intervad.., oc]. We can apply the TC
computational cost of MTB-Join is denoted@&p,, t,). processing technique and only compute the intersection for
The number of answer updates performed by MTB-Joir{t., t. + Tas]. Further, we can index the objects by a MTB-
is the same as that by NaiveJoin because both MTB-Join arttee and use even tighter time constraints for each TPR-tree
NaiveJoin only have an answer update upon every objecs we do in MTB-Join. Similarly, we can imagine applying
update, sau,, = u,. As discussed in Section 54, < u.. TC processing to other queries and may enable other algo-
Thereforeu,, = u,, < ue. rithmic improvements.

Fig. 13 Algorithm ImprovedJoin

14

TC processing can also be easily grafted onto many expairs, there is a node in common. We call this nodeass-
isting continuous query algorithms on moving objects. Thiger node For example, nodéV, is a master node for the
is because previous studies have focused on how to improvist two node pairs. Finding a master node can be easily
algorithms in the spatial aspects. Our work is the first atdone by comparing two adjacent node pairs. When joining
tempt to optimize the processing in anthogonal aspect, a pair of nodes, we always access the master node first. We
the time dimension. For example, the continuous KNN algoname such node accessing orderithproved accessing or-
rithm proposed by Benetis et al. [5] needs to compute kNNJer. This guarantees that the node accessed first within a
candidates for a time intervéd,, t.] as traversing a TPR- pair is in the buffer (the only exception is when joining the
tree. Ift, > ts + Ty, we can apply TC processing and re- first node pair generated by PS). By using this order in con-
duce the time interval tfi, t, + 7). The continuous kNN junction with the aforementioned pruning strategy, nodes i
and range join algorithms proposed by Iwerks et al. [17] pufFig. 14 are accessed in the order8f, Ny, N4 and Ny,
all events in a queue and process them one by one. We carhile without using these improvement techniques, the or-
apply TC processing here and only process events that hager isNy, Ny, No, Ny, N3 andNy.
penint.,t. + Ths).

Generally, TC processing can be applied to any continu- L
ous query algorithm as long as the data objects get updated N, | f N,
and we can find an upper bound for the update time. 2 & & "
b,
N, S
6 Improvements on Node Access Performance ¥
a | N,

In previous sections, we have focused on techniques which
improve computational efficiency of the intersection join a Fig. 14 Example for I0ImprovedJoin
orithm. In this section, we present two techniques to im-
9 P . que The above described improvement techniques are inte-
prove node access performance. The first one provides better . . i .
) . .) rated into ImprovedJoin algorithm and result in the algo-
pruning performance during Intersection Check; the secon . . .
. .) {|thm I Ol mprovedJoin (cf. Fig. 15), where the improved ac-
one achieves node access reduction by processing updates_ '
) . cessing order is achieved by putting a master node as the first
in a group fashion. . . ;
parameter of a function call (lines 16 to 19) and performing
Intersection Check on the first function parameter at the firs

. _) place (lines 2 to 3).
6.1 Improved Node Accessing Order in Intersection Check

During Intersection Check, even if nodé, intersectsVg, Algorithm I0ImprovedJoin (N4, N, to, t1)
it is still possible that no entry dN_A intersects any entry of 1 ReadPage(,):
Np. Forexample, in Fig. 14, entries of nodg do notinter- 2 for all entries inN 4
sectNy.mbr N Ny.mbr. Thus, we can discard this pair with- 3 Intersection check, lef, be the entries fron
out accessing; and hence save one node access. Howevey, SWE'(;h :gttﬁ:ffcw A-mbr O Np.mbr;
this pruning strategy dose not work |f we chelk first. . 5 ReadPage(p): '
The above pruning strategy motivates us to modify thes for all entries inN g
node accessing order as follows when joining two intersect? Intersection check, lef, be the entries fronV
ing nodes(N4, N5). Between4 and N, we always ac- SWE';h r'g:ﬁrri,ecmf"mbr N Np.mbr;
cess fjrst the one which is most repently acggssed. $ince_ thys De{;rmine sortiﬁg dimension:
node is most recently accessed, its probability of stilhgei 10 sort©.,); sort(S);
in buffer is high (we consider an LRU buffer due to its popu-115c « PSIntersection(Sa, S, ts, te);

larity). Thus, we can perform Intersection Check on it with- 1210 €Very entry(a;, bi, tsi, tei) € Se
if N4 is aleaf node

out any additional I/0O cost and find out whether it satisfies, 4 output(a;, bi, tsi, te:);
the pruning criterion. If it does, we then successfully dvoi 15 else
accessing the other node and hence save one node acces$6 if a;.ptr is a master node

To find out the node betweeN, and Ny that is most I0ImprovedJoifu; .pir, bi.ptr, tsi, tei);
elseify;.ptr is a master node

recently accessed, we consider the process of generating ify I0ImprovedJoith; .ptr, a;.ptr, e, tei);
tersecting node pairs by PS. Take Fig. 14 as an example. FESd 10ImprovedJoin

generates intersecting node pairs in the ordef/df, Ny),
(N3, Ny) and (N3, Ny). Between every two adjacent node

Fig. 15 Algorithm IOImprovedJoin

15

6.2 Group Processing of Updates 7 Choosing the Maximum Update Interval
In the phase of maintenance, we need to find new interse¢n previous sections, we have assumed that the maximum
tion pairs for updated objects, which is processed as windowpdate intervall’;, is a given parameter. In practice, a sys-
queries and requires traversals on the MTB-trees. To reduéem may allow to sef’, to any value within a reasonable
the number of traversals and hence improve node access peanige based on the application requirements. In this sectio
formance, we process updates in a group fashion as followse examine the problem of finding an optinig}, value

At every timestamp, we group all updated objects of dn the sense that it minimizes the average query processing
dataset into a sef and join it with the other joining tree. Ccost. Towards that end, we first model the cost of our contin-
During this joining process, we recursively construct a-subUous intersection join algorithm for a given valu€laf, and
setS,, of S for every nodeN in the other joining tree and then provide methods to find the optin¥al; value based on
join S,, with N, where the ses,, only contains all the ob- the cost analysis.
jects inS that intersectV. We describe the detailed process ~ We use the number of node accesses to estimate the cost
of constructingS,, in the algorithmGroupJoin as shown in of query processing due to two reasons: (i) the node ac-
Fig. 16, which is also used for the group processing of obcess cost is a significant part of the total cost; (ii) the CPU
ject updates. This algorithm is a modified version of I0Im-cost is roughly proportional to the number of node accesses,
provedJoin. While I0ImprovedJoin is used in the phrase ogince the same routine will be executed on similar number
initial join, GroupJoin is used in the phrase of maintenanceof entries for every accessed node. We focus on the main-
GroupJoin resembles I0ImprovedJoin in ti$atis viewed tenance phase of the continuous join since this part domi-
as a tree node and joined withi. The difference is that, nates the total cost. The maintenance phase essentially dea
instead of joining an entry; of N with every one of its in- with updates of objects (insertions and deletions can aso b
tersecting objects it$,, separately, GroupJoin constructs aviewed as updates). We aim at minimizing tneerage per
subsetS! of S,,, which contains all the objects ifi, inter- timestamp cosC, which is the average cost for processing
sectingb;, and then useS! as a new subset ¢fto joinwith all the updates per timestamp. In what follows, we will first
the child node pointed to by.ptr (lines 8 to 18). When con- show thatC' is a function ofT,. Then we discuss how to
structingS? for b;, we also progressively compute an MBR find the optimal value of,.
to bound all the objects i’ , denoted asbr; (line 15), and
an interval[min{t,;}, max{t.;}|, in which b;.mbr inter-
sects at least one objectj, (line 16). These are then used 7.1 Average per Timestamp Cost
to perform Intersection Check on the child node pointed to
by b;.ptr. We do not perform Intersection Check 8p since
its construction process guarantees that every objeatiti it
pass this check.

At each timestamp, an object may need to update itself due
to the change of speed or moving direction. We call this type
of updatewoluntary updatedt is reasonable to assume that
the probability of performing a voluntary update is constan
since we are modeling the average behavior of a large num-
ber of objects whose movements are random and indepen-
dent of each other. We denote the probability of a voluntary
update ap,.. On the other hand, if an object has not updated
voluntarily in the lasfl’,; timestamps, it is forced to perform
an update to satisfy the requirement of the maximum update
interval. We call this type of updatésrced updates

Let n4 be the number of objects in4 and f 4 the av-
erage cost of updating one objecttof,. Consider a period

Algorithm GroupJoin (S, N, to, t1, mbr)

1 ReadPage\);
2 for all entries inN
3 Intersection check, lef, be the entries fromv
which intersectsnbr
if S, = ¢ return;
Determine sorting dimension;

S¢ «— PSIntersection(Sn, Sp,ts,te);
for everyb; in entries ofS.

4
5
6 sort(Sy); sort(Sy);
7
8
8

find a subses’, of S., which includes all entries containirbg;

of Ty, timestamps. The amount of objects not updated vol-

io %; ;gr'y"g;]’;y ‘<_a ~(%¢0;€S? Ot)e; yes untarily afterT, consecutive timestampsis (1 — p,,) 7.

11 it Nisaleatnode ¢ In other words, there ane4 (1 — p,)™ forced updates dur-

12 output(a;, bi, tsj, te;); ing T);. Adding the number of voluntary updates iy,

ii else S Ufan) n.ap,Thr, we obtain the total amount of objects updated dur-
sy, — S U{a;}, . B T, f

15 Enlargembr; with a;.mbr N b;.mbr during [t te;]; INg Tar, napuTh an(l pv) . Itis reasonable toassume .

16 Updatemin{t,; }, maz{te;}; that, after a long time, the system will reach a stable state i

17 ifSL #0 _ which the number of forced updates is distributed uniformly

18 GroupJoin(sy,, b;.ptr, min{ts; }, maz{te;}, mbr;); in each timestamp. Thus, the average cost for processing alll

End GroupJoin

Fig. 16 Algorithm GroupJoin

the updated objects im 4 per timestamp, denoted I8y, is

16

given by the following equation. (which is a point) during the time interval [0,1]. Therefore
na(l— py)T thg probal?lhty ofO _mtersectmgWQ (which is the prqba-
Ca=nap, + — fa (1) bility of object O being accessed by the qudiyQ) during
M

the time interval [0,1] is the same as the probability(f

The average cost for processing all the updated objects iftersecting the center &7 Q) during the time interval [0,1],

trp per timestamp, denoted kY, follows a similar for- which equals the area of the sweeping regiorD6fin the

mula. Then we have the total average per timestamp co$me interval [0,1] (the gray region shown in Fig. 17(b)) as-

C = C4 + Cg. We focus on how to obtain the value®f, suming that the MBR o#¥ @ uniformly distributes in the

in the remainder of this section arit}; can be obtained in data space and the data space has a unit extent in each di-

the same way. mension. Adding up this probability for every node of the
In Equation (1)p, is determined by parameters in real tree, we obtain the expected number of node accesses for

applications such as the road network and traffic conditionghe window query/'@ as

which do not change dramatically in a short time. Thus, we

can derivep, from the statistics on updates in a recent time Z Asr(N',qr) (2

window. We also know 4. ThereforeC4 is a function of ~ ¢very nede N in the tree

Tas multiplied by fa. Next, we show how to deriv§a, \where N denotes a node in the TPR-tre¥ is the trans-
which is also a function of’y,. formed rectangle oV with respect tdV Q; ¢r is the query
time interval; Asr(N’, qr) is the area of the sweeping re-
gion of N’/ duringgy.

In the continuous join, when an objagtis updated, we
In order to estimate 1, we make use of the cost model for first remove from thc_a current answer those join pgirs that
window queries on the TPR-tree [40], which is explained inCONtaIN0. Second() is treated as a window query with the

Section 7.2.1. We use this cost model to estimate the Coglro_cessing .tir.ne in.tervaii()’tll].on the other joining Qataset
of an individual object update. Based on this, we then shodP find new join pairs contamm@ (reca!l Fhat[to’ t_l] IS the
how to derive the average cost for processing all the obje&rocessmg time interval used in the join algorithms). The

updates during a span %, timestamps in Section 7.2.2. st step, finding join pairs containin@, can be done very
efficiently by looking up the object in the hash tahlein the

7.2 Average per Update Cost

y sweeping

gonotwo MEWQO) Y sweeping result presenter (cf. Fig. 2)._ Morgover, all the join pa'rl_s i
107 eeping - 1o regionofo’ the answer are a_lways held in main mgmory. !n c_ompanson,
gLregion of O - o the second step is much more expensive, which involves ac-
| A3 cessing tree nodes and searching for all the new intersected
° 22? MorwQ.L) 9 , ‘ , Nbr(0'1) objects. Therefore, we focus on the cost of the second step.
T, 15 e At -+ As discussed above, the second step is essentially a window
T \bro0) 2 a Mbr(0'0) query, so we can use Equgtlon (2) to estimate the cost of an
= T individual update withyr being|to, t1].

(a) Moving objectD, W@ (b) Transformed rectangle’ .
7.2.2 Update Cost for All Objects ifiy;

Fig. 17 Sweeping region of moving rectangle
We have shown that Equation (2) can be used to estimate the
7.2.1 Cost Model cost of an individual update. However, there are still sgver
challenges if we want to estimate the average per update cost
Consider a moving objead and a moving window query for all object updates.
W@ for the time interval [0,1] as shown in Fig. 17(a). The First, the cost of an object update should be estimated us-
sweeping regionsf O and W@ are the regions swept by ing different parameters for Equation (2) at different tateanps
O andW @ during the time interval [0,1] (the gray regions due to the following reasons. Based on our MTB-tree scheme,
shown in Fig. 17(a)). To determine whether objécinter- the processing time interval- for joining the updated ob-
sectsV @, we first define théransformed rectangl®’ with ject with the other dataset is different at different tinaesps,
respect tdV Q as follows: the MBR oD’ in thei* dimen- and the other dataset may change over time due to its own
sionis(Opri— — [WQril|/2,0ri+ + |WQr:|/2), the VBR object updates at different timestamps. Therefore, we need
of O’ in the i'" dimension is(Oyv;— — WQv,Ov;. — totreat each timestamp differently. We will show later iisth
WQy ;). To check whether objed intersects’@ dur- subsection how to derive the processing time integyafior
ing the time interval [0,1] is equivalent to check whethera given timestamp andl,; value. To obtain the average per
the transformed rectangl@’ intersects the center /() timestamp update cost, we compute the total update cost at

17

each timestamp, sum it up for infinite timestampg4inand Next, we derivegr for the case where there are multi-
then divide it by the number of timestampsdgp. Since it ple TPR-trees in the MTB-trees for setsand B. Follow-
is infeasible to derive the update cost &frtimestamps, we ing the previous notation, suppose the length of each time
consider onlyT’,; timestamps assuming that when the sys-bucket isTTf‘j and the current time is in then + 1) time
tem reaches a stable state, the average update behavior viilicket as shown in Fig. 18. Suppose objedh ¢r 4 is up-
occur periodically every’,, timestamps. dated, at timestamfy,. Among the firstn TPR-trees of the

A second challenge lies in how to estimate the total cosMTB-tree, thei'" one indexes objects updated in the time
of all the updates occurring at a given timestamp. Note thanterval (=17, £T),]. Hencelut for the i'* TPR-tree is
to use Equation (2) to estimate the cost of an object update: 7, andgr on thei'™ sub-tree isft,,, =T + Th] ac-
we need to check whether the updated object intersects wigtording to Theorem 2. Then + 1)t" TPR-tree indexes ob-
each of the tree nodes and this requires a tree traversal. Tigets updated in time intervdll’y;, ¢,,]. Hence itslut is ¢,
cost of performing the check is too high if we do it on all andgr onitis[t.,t, + Ta]. More generally, at timestamp
the updated objects. To reduce this cost, we propose to e&r (tu € (kTa + 2 Tas, kTh + LTy, k,j = 1,..m),
timate the cost of a set @quivalent object updatewhich ~ we can deriveyr for the i TPR-tree among the firsk
has a small cardinality and approximates the average updaléR-trees otrp as[t,, “2=1T), + kT)], andgr for the
behavior of all the objects in terms of the number of node(m + 1)!* TPR-tree a$t,, t, + Ta]. For example, ther’s
accesses. We will explain how to construct the equivalenfor try, trs andtrs in Fig. 10 arelt,,, - + Tay], [tu, 2T
object updates later in this subsection. and([t,, t, + T, respectively.

With the above discussion, now we can give an overview Based on the above derivation, we can see that, given a
of our method of deriving the average update cost of all théimestampt.,, ¢r is a function ofZ’,.
objects inT}y,. At every timestamp; in Th;, we (i) derive Equivalent object updates: We construct a set of equiv-
the ¢ value givent; and Ty, (i) perform a tree traversal alent object updates to approximate the average behavior of
and compute the number of node accesses through Equ@l the object updates iy, in terms of the number of node
tion (2) for every update in the set of equivalent object up-2ccesses. Assume that the objects (and hence also the up-
dates, and (jii) record the average value as the average ﬁé@tes) are uniformly distributed in the data space and their
update cost at;, denoted ag;. After T, timestamps, the velocities are also uniformly distributed within a range. A
average value of these average per update costsf(&)e straightforward way of constructing the set of equivaldnt o
is used as an approximation gf,. The overhead of our Ject updates is to have just one object update which is posi-
approach is on|y one tree traversal at each timestamp, réDnEd at the average location (i.e., the center of the data
gardless how many updates there are. Next, we show ho@Pace), has the average MBR size of all the objects, and
to deriveg; and how the set of equivalent object updates idhas the VBR with the average velocity. Since the velocities
constructed. are uniformly distributed, the average is 0, so the VBR of

Deriving ¢r as a function of Ty;: First, we consider the above constructed object update{QsO, 0,0). We call
the case where the MTB-trees for setsand B are single this way of constructing the set of equwalent object upslate
TPR-trees. As Theorem 2 shows, at a given timestamp the Zerq—VBR method. However, th!s m_ethod has a prob-
the processing time interval for an update on obj@é [t,, €M as illustrated by the example in Fig. 19. Suppose
t(lu(otherset(0)))+T], i.€.,qr = [tu, t(lu(otherset(O)))
+ T]. We assume large datasets and there are updates on v
every timestamp. Therefore, the latest update timestamp of O @
otherset(O) is the update timestamp, i.&{{u(otherset(O))) I@,

= t, andqr = [ty, ty + Th]. region of N/ \An equivalent

sweeping
object update
= —\\— - == N with the Zero-VBR
| |
|
MTB-tree : AV \
TPR-trees
Nll N3’ NZI
|7
| V*
sweeping sweeping —+— !
try Jeoo| trm \ trmed region of N/ region of N, | :
0 %TM m;anM T mTﬂTM time Fig. 19 Problem of the Zero-VBR method
upd%le update insert and O, are two object updates with the same MBR size in
insgrt tr 4, and nodeV is intrg. The VBRs ofO, O, and N are

Fig. 18 An MTB-tree with n buckets

18

(0,0, —v, —v), (0,0,v,v) and{0, 0,0, 0), respectively. Ac- 7.3 Finding the Optimal Value fdF,

cording to the cost model, the transformed rectangle¥ of o))) o

with respect ta); (0») is N (IV3), which has the VBR of Reuvisiting Equa’qon (1)CA_|s a function QfTM mu_lt|pI|ed
(0,0,v,v) (0,0, —v, —v)). If we use the Zero-VBR method by f4. We then find thaf 4 is also a function of’; in Sec-

to construct an equivalent object updéte, thenOs has the 10N 7.2. Therefore(’, is a function ofT},. However, the
same MBR size a§; andO., and the zero VBR. The trans- method of obtaining the value gf; requires tree traversals
formed rectangle o with respect ta); is N/, which also and the result off4 depends on the actual updates over a

has the zero VBR. Recall that the area of the transformegP2n of time. Consequently, we do not have a simple closed-
rectangle corresponds to the probability of an object wpdat®m formula for 4 as a function off’,. Therefore, we
intersecting a node. We can see that the average a4 of adopt the following empirical approach to find the ppumal
and N} is much larger than the area dF,. This shows that value of 7. We compute the values @f4 (andC in a

the Zero-VBR method is not accurate. The reason is that veimilar way) for a set of candidatg,, values at the same
locities of opposite directions cancel out each other in thdMe. and the candidate value with the smaliést + C's

Zero-VBR method, but actually they both add to the area o¥@lu€ IS chosen as the optimi#l, value. These candidate
the transformed rectangles. values are chosen from a rangeTof; values allowable by

the real system. For example, the system may require¢o
be less than 3 minutes. Then we may hé&se, 60, 90, 120,

A lesson we learn here is that velocities in different di-150, 180} as the set of candidat&, values.
rections should be reflected (instead of cancelled out)dn th
set of equivalent set of object updates. Therefore, we may.4 Overhead
consider setting the VBR of the above described equiva-
lent object update td—v,, va, —va, va), Wherev, denotes Our scheme of finding the optimdl,; value involves esti-
the average speed of the objects in the dataset. We call tHRatingC4 (andCg) for a set of candidaté), values. At
way of constructing the set of equivalent object updates théVery timestamp, we need to traverse; (andir,) once
Expanding-MBR method. However, this method has the t0 compute the value of Equation (2) for the set of (eight)
following problem. The size of the updated object keeps in€duivalent object updates and perform this computation for
creasing, which is not a truthful reflection of the average?ll the candidaté’, values. Please note that evaluating Equa-
behavior of the object updates: actually some objectsssizelion (2) needs the MBRs and VBRs of all theee nodes

increase and some others’ sizes decrease, so the average ¥/#ich only requires traversing the non-leaf nodes of the. tre
of all the objects should stay almost unchanged. As the number of non-leaf nodes is much smaller than the

total number of the tree nodes and the non-leaf nodes usu-
ally reside in the buffer since they are frequently accessed
The reason the two previous methods fail is that they tryin the query processing, the overhead of the tree traversal

to capture the average behavior of a large number of updatés actually not large. The CPU cost involved in the above
by just one object, which is hard to reflect all characterisfrocess is constant for each visited node and therefore also
tics such as size and speed at the same time. To address théte limited. We have also performed experiments (see re-
problem, we propose to use eight object updates as the set®ilts in Section 8) which show that the cost estimation lsring
equivalent object updates. Each of these eight updatés sté negligible overhead compared to the cost of processing the
has the average MBR size and are positioned at the cefftersection join query, but it leads to a good choice of the
ter of the data space, but has a VBR different from otherslas, Which significantly reduces the overall query process-
The VBRs of these eight object updates arg, v,,0,0), ing cost.
(Va, Va, —Va, —Va)s (0,0, —Uq, —0a), {(—Va, —Va, —Va, —Va),
(—Vay —04,0,0), (—vq, —Vq, Va, Va), (0,0, v4,v,) @and(vg,
Va, Va, Va). We call this way of constructing the set of equiv-
alent object updates theight-VBR method. By using this
method, velocities of opposite directions all contribatéte .
sum area of the transformed rectangles. At the same timg,aCt the opﬁmal value C?FM' ,
their average size remains unchanged. Therefore, the-Eight Acco_rdmg to E_quatlon (1), the average per timestamp
VBR method addresses the problems of both of the previ(—:OSt QA is determined by the averag? nurrTlEer of updates
ous methods. At every timestamp, one tree traversal is pefil @ imestampu,,, uy, = (nap, + %) and the
formed to evaluate Equation (2) for these eight object up@verage per update cogi. With the increase of the value
dates concurrently and the average of their numbers of nodd 7, um Will decrease because a longer maximum up-

accesses is used as the estimate of the per update cost fite interval leads to fewer forced updates, wifilewill
that timestamp. increase because a longer processing time interval leads to

7.5 Impacts of System Parameters

In this subsection we discuss how the system parameters im-

19

larger processing cost per update. Thudja value can 8.1 Experimental Setup

not minimizew,, and f4 at the same time, and the opti-

mal T}, value is a balance between optimizing andf,. All the experiments were conducted on a desktop computer
The impact of a system parameter on the optimal value ofvith 3GB RAM and 2.66GHz CPU. The disk page size is
Ty is determined by whether this parameter makgsor 4KB. We use the TPR*-tree [40] to index moving objects,
fa the dominating factor in system optimization. For exam-and an LRU buffer with 50 pages is used (suggested by
ple, theobject update probability p, has a more significant Tao and Papadias [39] for TPR-trees). We measure both the
influence onu,,. If p, is small, then a largef,; value can number of node accesses and CPU time.

reduce the number of forced updates and thus redygce We conduct experiments on both synthetic datasets and
Consider an extreme case where objects never change thedal datasets. Synthetic datasets are generated with @ spac
moving directions or speed at all (e.g. all static objeéis), domain of1000 x 1000 using the data generator developed
py, = 0. Then, T, = oo is optimal because the join resultis by Saltenis et al. [35]. We perform joins on two datasets
not changing anyway. On the other hand, wherbecomes with the same cardinality ranging from 1K to 100K. Ob-
larger, the optimal value dfy, gets smaller. Also consider jects are of square shape. We use the following three types
an extreme case where objects update voluntarily at everyf datasets: (IYniform datasetwhere object positions and
timestamp, i.e.p, = 1. In this caseI); = 1 is optimal moving directions are generated randomly according to a
because there is no forced update. Any laffgrvalue can uniform distribution; the speed of the objects is randomly
only increasef 4 but not reducex,,,. The influence obbject distributed between 0 and a maximum object speed. Five
moving pattern is shown by its impact on the object update maximum speeds, 1, 2, 3, 4 and 5, are usedGéi)ssian
probability. In a moving pattern where the objects changelataset where object positions follow the Gaussian distrib-
their moving directions or speed very frequently, (e.g- parution. The speed of the objects are generated as in (i). (iii)
ticles in Brownian motion), there are a lot of voluntary up- Battlefield datasetwhere objects of two datasets are first
dates and thus the optinial, value goes smaller. In a mov- clustered on opposite sides of the space and then move to-
ing pattern where objects have unified moving routes (e.gward the opposing party, simulating the scenario of a battle
an army marching), objects do not update much, then thield. By default, we use the uniform dataset.

optimal T, goes larger. Unlike the above two factors, the For each dataset, we build a TPR*-tree at timestamp
influence ofthe number of moving objectsis more com- and then keep updating it as follows. At every timestamp, we
plex. Increasing the number of moving objects not only in-randomly change directions or speed of some objects to gen-
creases.,;, but also increasef, because the TPR-trees will erate updates. Every object is required to be updated at leas
have larger number of nodes and node sizes. Therefore, #hce during the maximum update inter#). The continu-
cases where changing the number of moving objects affegjus join processing starts from timestamp 0. The parameters
u,, more significantly than it affect¢,, a T); value that used in the experiments are summarized in Table 2, where
optimizesu,, more can optimize the system performancevalues in bold denote default values used.

better. On the other hand, if the change affettsnore sig-

. . . Table 2 Parameters for synthetic datasets and their settin
nificantly, then the optimal’,; value should optimizef 4 Y ! ses ' ngs

more. Parameter Setting
Node capacity 113
Maximum update interval | 30,60, 90, 120, 150, 180
Maximum object speed 1,2,3,4,5

Object size (% of space) 0.5%, 1%, 2%, 4%, 8%
Voluntary update probability 1%, 2%, 4%, 8%, 16%
Dataset size 1K, 10K, 50K, 100K

Dataset Uniform, Gaussian, Battlefield

8 Experimental Study

In this section, we report the results of our experimental We adopt two real-world trajectory datasets, a fleet of
study. First, in Section 8.2, we evaluate the impact of therucks and a fleet of school buses [13]. They consist of 276
number of time buckets i, m, on MTB-Join, and choose and 145 trajectories, respectively. Each trajectory i

a best value ofn for system implementation. Then, we eval- location information for a truck/bus within a day, colledte
uate the impact of TC processing, computational improveevery 30 seconds. Because the number of trajectories in each
ment techniques and node access improvement techniqueataset is small, following previous studies [12,14,19%, w
on join algorithms in Sections 8.3, 8.4 and 8.5, respegtivel generate more objects moving on these trajectories as fol-
After that, we compare the overall performance of MTB-lows. Two groups of datasets are generated. One is based
Join with NaiveJoin and ETP-Join in Section 8.6. We inves-on the truck trajectories (Truck datasets), and the other is
tigate the validity of our cost model, the choice of an optima based on the bus trajectories (Bus datasets). Each dataset
T value and the overhead it may incur in Section 8.7. generated contains 10K moving objects. To generate a mov-

20

ing object, we first randomly pick a trajectory from the realcomputes join pairs for only the time interval 60]. MTB-
dataset. Then, starting from a randomly picked location irJoin uses a single tree before getting the initial resulit so
the trajectory and with a randomly picked direction, a newcorresponds to the “TC” join in this figure.

object with the size of 0.5% (the default object size) of the

space is generated to move on the trajectory. Every time the

. 6 3
object reaches a location in the trajectory, it issues anvolu 1% - = I
. . . 5[] ~ 2
tary update, i.e., the object issues a voluntary updateyeverw; 10 TC = I B
30 seconds. When reaching one end of the trajectory, thg10* AT < 10"
. < o
object changes its direction and continues moving. e 10° b o 7 é 10°
212 F/ 1 'y
10t | | 102 o ! !
i 1k 10k 50k 100k 1k 10k 50k 100k
8.2 The Number of Time Buckets m]\/[! m Dataset Cardinality Dataset Cardinality
(a) Number of node accesses (b) Total response time

The choice of the number of time bucketsin T, affects Fig. 21 Effect of TC processing
the join performance. A large: can reduce the cost of a

sinale time-ranae window auery since it reduces the quer We observe that both the number of node accesses and
. 9 9 . q . y q_ ¥he total response time of NaiveJoin are much higher (up to
time range. However, it also increases the number of time

; . : 10 times) than those of MTB-Join, which clearly shows the
range window queries to process an object update becau

e . : . : .
o) ﬁu e benefit we gain from TC processing. NaiveJoin per-

it increases the number of TPR-trees in an MTB-tree. Also 9 9 - P ng . P
. ; . forms worse mainly because it returns join pairs from the
more TPR-trees in an MTB-tree means less objects in a tree . A .
. : . clurrent timestamp to the infinite timestamp. Every node in
which may lead to worse clustering of objects and hence = ") ; .
one index overlaps with almost all nodes in the other in-

worse performance. This experiment is to estimate a bes{
.) ; ex in some future time. For maintenance, the join process-
value ofm for the experimental setting considered. To ob-.” . R
) ing is almost the same as the initial join, but on a smaller
serve only the effect af: values, no proposed improvement) . .
number of objects (the updated objects), so the impact of

techniques or buffer pages is used in this experiment. o - .
q pag P TC processing is very similar. The experiments on other set-
13000 0.7 tings (such as different data distributions, the objecedpe

130 +— 90 -6 150 -+ > 30 +— 90 -o- 150 -+~ . . .
8 ﬁggg B0 o 120 4 180] e %‘?2 (50 o 120 180 . also give similar results, and hence we omit them here.
@ 10000 E 055
g 9000 = 05
< 8000 @ 045
$ 7000 S o4 .
S 6000 g o3y 8.4 Effect of Computational Improvements Enabled by TC
5000 g g Y X 03g—=3— ;
2000 1 11 0.5 Processing
1 2 3 4 5 6 1 2 3 4 5 6
(a) Number of nodie accosses (b) Total response time In this section, we examine the impact of the computational

improvement techniques on join algorithms independently
of the effect of TC processing. We use the same time inter-
Fig. 20 shows the average per timestamp cost for joiningal [0, 60] for all techniques so that the time constraint does
two 10K datasets withn ranging from 1 to 6 and’,; rang- not have an effect on the relative performance. Fig. 22 shows
ing from 30 to 180. From the figure, we can observe thathe join performance when we use different combinations
MTB-trees withm = 2 perform the best at most times (only of the three techniques: PS(Plane Sweeping), DS(dimension
at some points, the performance of MTB-treessior= 1 selection) and IC(Intersection Check). “DP” means the com-
andm = 2 is similar). Therefore;n = 2 is used as the bination of DS and PS, while “IP” means the combination
default setting in the following experiments. of IC and PS. “None” means using none of the techniques
and “All” means all techniques are used. The focus of this
section is not in buffer utilization efficiency and thus no
8.3 Effect of TC Processing buffer is used in these experiments. From Fig. 22(a), we
observe that no technique reduces the number of node ac-
To evaluate the impact of imposing time constraints on quergesses. From Fig. 22(b), we find that the total response time
processing, we do not use any join improvement techniquesecreases as more and more techniques are applied. There-
presented in Section 5.4 or Section 6. Fig. 21 shows the pefere, we can conclude that all these techniques only affect
formance for the initial join computation with and without the total response time. When all techniques are applied,
imposing time constraints. The one denoted as “Non-TC'the total response time is improved by the factor of about
computes all possible join pairs from timestamp 0 to the5. Such behavior can be explained as follows. Despite PS
infinite timestamp, which is NaiveJoin. The “TC” version provides a better order for comparing nodes in two trees,

Fig. 20 Performance for varying: andT,

21

3300

2 12 _ . . . :

g 2328 MTB-Join mm e 1 MTB-Join m===m probability for two intersecting nodes to have no entryiinte
n
g 3210 08 secting the intersection area of these two nodes is small.
< 3260 2 06
o 3250 S o4
S 3240 g
z 3230 2 02 _

3220 T 0 8.6 Overall Performance Comparison

None IC PS DP IP Al None IC PS DP IP Al
Techniques Techniques : i : i
(2) Number of node accesses (b) Total response time We now compare our technique, MTB-join (using all im

provement techniques) with NaiveJoin (Section 3.3) and-ETP
Join (Section 4) by evaluating two phases of the continuous
which saves CPU costs, it does not affect the number of injoin processing: initial join and maintenance.

tersection node pairs. Likewise, DS and IC can only reduce

the CPU time since both of them aim at reducing the numg g 1 |nitial Join

ber of entries to be compared in two nodes. Specifically, DS

chooses the dimension that needs less intersection comp&ye compare the initial join computation cost of the three
isons for entries in two nodes. IC provides both space angpproaches by varying the dataset size, data distribuion,
time constraints to prune entries to be compared. This ifect speed and object size, respectively. When we vary one
also the reason why “IP” improves the performance moreyarameter, the other parameters are set to default values.
than “DP” does. Again, the impact of these techniques on

maintenance cost follow similar behavior and is omitted.

Fig. 22 Effect of computational improvement techniques

10° 10°
Naive —&— D
§10° F ETP o 1 7
' g 4| MTB o 4 E
8.5 Effect of Improvement Techniques on Node Access ~ §1° S BN
3L Poc] a 0
Performance g10 o s 10
2102 -//‘/ 1 gw
The impact of the improvement techniques on node accessml1k o e o0k 10'21k o e o0k
performance is examined in this section. We join two 50K Dataset Cardinality Dataset Cardinality

datasets using@y; = 60 and maintain the join result for (&) Number of node accesses (b) Total response time
360 timestamps, during which updates are processed. MTB-g. 24 Initial join cost when varying dataset size

join algorithms with and without node access improvement
techniques are used independently to process the join a%%

their performance in both phase of initial join and malnte-to MTB-Join and ETP-Join, and the gap between their to-

nance are presented in Fig. 23, where "NA-Imp” and Non'tal response time increases as dataset size increases. When

Imp” means using and not using node access |mprovemette dataset size is 100K, the initial join time of NaiveJoin

techniques, respectively. From this figure, we observe tha}s about 6 minutes, which is intolerable. Due to such an un-

10° 10t competitive fact of NaiveJoin, we do not consider it in the
Non-Imp KXXX Non-Imp KXXX

Fig. 24 shows the effect of varying the dataset size. We
serve that NaiveJoin has extremely high cost compared

g o [NAImp Eeses] % remaining experiments of the phase of initial join on syn-
g E 1 thetic datasets. Compared to Fig. 21, here MTB-Join per-
§1°3 £ 1 & forms far better than NaiveJoin because of the use of all the
8102 | < 1 897 improvement techniques in MTB-Join.
10! 5 & 102 ! It is interesting to see that the total response time of
It Maint Init Maint MTB-Join is still much less (please note the logarithmic
(@) NuUmber of tate accesses b) Totaf?ggsgsr?se time scale) than that of ETP-Join even though MTB-Join may

need to compute join results for a longer time interval in
each tree traversal. In particular, MTB-Join outperforii®E
the number of node accesses and the total response time d@in by up to 4 times in total response time, which is mainly
creases as hode access improvement techniques are applidgde to the improvement techniques on join algorithms.

In the phase of maintenance, group update processing re- Fig. 25 shows the effect of the data distribution. “BF”,
sults in a significant decrease in both the number of nod8UF” and “GS” represent using the Battlefield datasets, Uni-
accesses and the response time. Compared to that of groiggm datasets and Gaussian datasets, respectively. We can
update processing, the effect of improvement on Intersecti see that MTB-Join is superior to ETP-Join for datasets of all
Check is relatively small (please note the logarithmicecal the three types of distribution in terms of total responseti
this technique still saves about 10% of initial join cost)iST The total response time saving is high (up to 90% for the bat-
is because in a dataset of uniformly distributed objects, thtlefield dataset). These improvements are again attrikioted

Fig. 23 Effect of node access performance improvement techniques

22

MTB kXXX MTB KXXX
ETP BE&X3H ETP 253X 103 -
100 100 o Naive KXXX —_
0SS o B 8 ETP Eowol O
Roied [
_ef i&i 1 _ eof _ Qg | e me— E
g e 1 § 6ot . - p
S 4t ; 1 % s} - E10° 5
: 20 : 20 2 ; g
- . - 1 B =
7 L
0 os 0 Truck
BF _UF_ X oo Dataset Group Dataset Group
Data Distribution Data Distribution (a) Number of node accesses (b) Total response time

(a) Number of node accesses (b) Total response time

Fig. 25 Initial join cost when varying data distribution Fig. 28 Initial join cost when using different real datasets

the improvement techniques on join algorithms. ETP-Join8'6'2 Maintenance

shows better performance in the number of node accesses) .)

for battlefield datasets. This is mainly because for bagfigsfi | '€ Maintenance costis amortized by the number of updates
datasets, experiment starts with objects of the two dataseft €ach timestamp. In all the subsequent experiments, we
clustering on opposite sides of the space, which means tfga’t measuring the average maintenance cost from timpstam
first condition for ETP-Join’s traversal to continue is nat-s £ @ssuming that the timestamp for the initial join is 0. The
isfied. Thus, the traversal ends quickly. Even in this e)(H(:Jrr]intension is to wait for the TPR-trees for the first few time
case, MTB-Join's node access efficiency is close to ETPRUCKets to be built up so that we are comparing a fully func-
Join and MTB-Join still has a much better total responsé'on'ng MTB-Join with NaiveJoin and ETP-Join.

time due to the computational improvement techniques. The first set of experiments evaluates the performance
with respect to dataset size. Fig. 29 shows the average main-

tenance cost per timestamp during [60, 360] (by default,
T),=60). NaiveJoin and ETP-Join have smaller numbers of
node accesses for 1K datasets because their tree nodds are al
buffered while MTB-Join keeps removing and creating tree
nodes so that the nodes can not be entirely buffered. Even so,
MTB-Join has a smaller response time. Other than this spe-
cial case, MTB-Join achieves significant improvement over
0 : : ; 0 : : ; NaiveJoin and ETP-Join in terms of both the number of node
Maximum Speed Maximum Speed accesses and the total response time. The gap among them
(&) Number of node accesses (b) Total response time increases with the increase of dataset size.

Fig. 26 Initial join cost when varying the maximum object speed Further, we observe that even for very small datasets
(1K objects), the per-timestamp response time of ETP-Join
is not small (0.23 seconds). Considering the capability of
human perception, 0.1 seconds may be a preferable choice
for atimestamp [25]. Then ETP-Joinis far inferior and is un-
able to produce the result in time. What's more, the response
time of ETP-Join grows so dramatically with the increase of
dataset size that it is unable to be measured accuratelg, Thu
there is no experimental result presented for ETP-Joirgusin
50K or 100K datasets. For NaiveJoin, though it can produce
05 12 A 8 2 the result at each timestamp for 1K datasets within about
(a) Number of node accesses (b) Total response time 0.07 second, its processing time also rises rapidly with the
increase of dataset size. It requires about 5 seconds for 10K
datasets, which is not acceptable. As for MTB-Join, it only
takes about 0.9 milliseconds to produce the join result at
: i i =~ “each timestamp for 1K datasets. Even for 100K datasets, the
mum object speed and the object size are shown in Fig.

d Fi Vel . ; _“processing time is only about 0.3 seconds. With some up-
an Fig. 27, respectively. MTB-Join outperforms ETP"]omgrade in hardware and slightly lond€y,, it is still realistic
in all cases for the same reasons as stated above.

for MTB-Join to produce the result in real time. Therefore,
We also conduct initial join experiments on real datasetsywe reach the following conclusion. While it is impossible to
and the results shown in Fig. 28 confirm that MTB-Joinobtain the continuous join result in real time using Naive-
shows better performance than NaiveJoin or ETP-Join doekin or ETP-Join, MTB-Join makes this difficult task real-
(please note the logarithmic scale). istic, even for large datasets. The reasons for MTB-Join’s

Node Accesses
Response Time (s)

1400 [
1200
1000
800
600 | -
400 &~ E
200 + g

Node Accesses

Response Time (s)

Fig. 27 Initial join cost when varying moving object sizes

The results of the experiments where we vary the maxi

23

10°
S ORI R
g {1 © 4] 10° 10*
a2 A 3 £ 10 b=g @ 108
g R e 3 8105 L ETP —o—] o ,of =~ EP -
< E RS & 3 @ Naive ---&--- g 10°F Naive ——&-—7
c 107 ¢ 3 £ 1
2 ETP ——71 S 02 e ETP —o—] 810 & MIB 2l g 10 g g MTBgtiig
S Naive —-&--1 @ 10 Naive --8--— L SR S L T A E
o) -3 c
MTB a4 ¢ 10°# MTB ---4--- g 5
! 4 A A ©10° k + 210" o
1 z O D ke Aaes Aeeeoe
50k 100k 1k 10k 50k 100k A PN PR PR @ 103 3 E
Dataset Cardinality Dataset Cardinality 10 I 2‘ “1 ;3 6 10° L 2‘ “1 é 6
(2) Number of node accesses (b) Total response time N -
Update Probability (%) Update Probability (%)
Fig. 29 Maintenance cost with the effect of dataset sizes (a) Number of node accesses (b) Total response time

huge performance gain are highly constrained processin':g- 33 Maintenance cost with the effect of voluntary update probabi
time (through grouping objects into different time buckets '

and the improvement techniques. Further, ETP-Join has to Recall that maintenance has significantly higher weight
perform a synchronous traversal on the trees whenever thefigthe total cost of a continuous join. Therefore, how MTB-
is a result change or an update, while MTB-Join only need3gpin compares to NaiveJoin and ETP-Join in maintenance

to perform constrained joins upon updates.

cost means more than their comparison in initial join. Based

We varied other parameters in the experiments such asy this rationale and the results above, we say that MTB-

data distribution, maximum object speed, object size angoin outperforms NaiveJoin and ETP-Join by several orders
voluntary update probability. We also conduct experimentsf magnitude.
on real datasets. The results of all these experiments show

. 7
very similar behavior, as shown in Fig. 30, 31, 32, 33,and 10 Naive ©o00a _ 1o
34 w1 b EXETP mmmom £ 10°F
. Q ECIMTE. m— g 10" F _—
s510°F B SRS
= O3 o 102 L Qo
B10% b i 2 ot 20
, s £ 10 ‘b@x@é § 100 F 255
10 10 e aQ 0 %
MTB KXXX - MTB EXXX g 10% b s o 100 F 2K
» 108 [Naive Eawss < 10, INaive E=wmoz Eggij £ 10t b KRR
%105 GE) 100 F ETP mssems 102 x| 102 o
8, [= Truck Bus Truck Bus
<10 § Dataset Group Dataset Group
% 10° <3 (a) Number of node accesses (b) Total response time
Z 102 3 . . -
101 12 Fig. 34 Maintenance cost with different real datasets
10
BF UF GS
Data Distribution Data Distribution
(a) Number of node accesses (b) Total response time

Fig. 30 Maintenance cost with the effect of data distribution

10’ 10°
w106 L] @ 104 F
g 10 ETP ——7 2 10° ETP —o—1
.51 Naive --—8-—] £ 2 b Naive ---8--—]
g10 MiB o] B0] MTB ---4---
PRI = — SR S g Wk ” ° E
8.0 210 3
L {4 ¢19 A P
,,,,,,,, et] @202 “ E
102 1 1 1 10-3]]]
1 2 3 4 5 1 2 3 4 5
Maximum Speed Maximum Speed
(a) Number of node accesses (b) Total response time

Fig. 31 Maintenance cost with the effect of maximum object speed

107 10°
2108 L 1T 2w ;//,_—e/-‘
0 ETP —o— 2 10° ETP —o—73
0105 [Naive —&—1 £ 10°} Naive --8--4
] MTB ---2--- o 10t MTB -2
$104 e Hmmeeef g4 2 10F - - 3
2,3 2 10t
z10° F L S -3
rrrrrrrr R S NS ’gf) :|.02 S » - E
102 1 1 1 10-3 1 1 1
0.5 1 2 4 8 05 1 2 4 8
Object Size (%) Object Size (%)
(a) Number of node accesses (b) Total response time

Fig. 32 Maintenance cost with the effect of object sizes

8.7 The Optimall’,; Value

In this subsection, we empirically verify our cost model for
the join process and evaluate its effectiveness for findieg t
optimal value ofl’y,.

8.7.1 Cost Model Validation

To validate the cost model presented in Section 7.2.1, we
measure the average value of per update cost estimated by
Equation (2). We denote this value Asind compare it with

the average value of actual per update cost, which is denoted
by af. This means, when an update is issued, we compute
a cost value with Equation (2). Meanwhile, we record the
number of actual node accesses for updating the intersectio
result set. We sum these cost values up during a maximum
update interval and then compute two average vafuasd

af. The percent error betweghanda f, which is denoted

by pe, pe = % is presented.

To observe the stable state of the system, we collect data
during time interval T, + 1, 27',]. Fig. 35(a) shows the ex-
perimental results for running the system under diffefipt
values. In the figure, “MOD” means the model estimated per

24

7500 7500 ———
“ " 7000 7000 £\ Exm o
update cost valuesf and “ACT” means the actual per up- § 6500 6500 -\ BTV x5
a ;

date cost valuesi(f). It shows that, with the same datasets, § 2200 L.

f andaf have very close values. They are both rising With§ iggg

the increase of th&), value. Fig. 35(b) is the values pt S 4000
3500

6000 | \ACT e,
5500 | .~ % el
5000
4500 N
4000 Laah -

3500

Node Accesses

VI SETETERY

T Y VR S N B

when varying the value df’y;. We can see thate is less 3000 S 2000
than 8%, which demonstrates the validity of the cost model. 30 60 90 120 150 180 30 60 90 120 150 180
Maximum Update Interval Maximum Update Interval
25 8 (@) C whenTy; = 60 (b) C whenT,; =90
—a— £ 7} ERR —o- = - . . . -
g 2 ps s ; [ERR S] Fig. 36 The optimalT’; value for uniformly distributed datasets
2 g st 7 g
g 15 3 4f / . We have further performed experiments on non-uniformly
2 oL 2 30] distributed datasets. Fig. 37, 38, 39 and 40 show the com-
= L § 1 ‘?m T parison between the actual numbers of node accesses and the
®0 60 90 120 150 180 %% 6 9 10 o o estimated numbers of node accesses using the Eight-VBR
Maximum Update Interval Maximum Update Interval method, for the battlefield datasets, Gaussian datasetk, Tu
(a) Model accuracy vel'y, (b) Percent error vy,

datasets and Bus datasets, respectively.
Fig. 35 Verification of the cost model

3000 3000

@ 2500 9 2500
8.7.2 Finding the Optimal’; Value 2 o000k 2 000k

i 1500 \ ‘3 1500 :
We implement the approach proposed in Section 7tofindag .| “ 1 2 ol T |
optimal Ty, value among a set of candidate valy8s, 60, N N
90, 120, 150, 180}. For each candidate valugy, we run our 30 60 90 120 150 180 30 60 90 120 150 180
test system once as follows. We initiate the test system by) gmﬂg‘];’ﬁa‘i”ﬁga' b) ga\;‘\‘lﬂ“e'g%i‘;ai'”fgga'

setting the current’,; value to bet,,;. While the system is
running, at every timestamgy, we compute the estimated
per update costj;, for each of the candidate values. To ob-
serve the stable state of the system, we start collectirgpthe
cost data at timestanify,; and continue foff; timestamps.

Fig. 37 The optimalT’,,; value for battlefield datasets

12000 B 12000 B

After that, we will have an average value of estimated perg 10000 |- AcT 1 8 o000} AcT o l
update cost for each candidate value. Since we also know 8000 | a8 8000 f e
. Q p N — - o B a7
the average number of updates per timestamp, we then cgn 60 - 1 < 6o00F -]
. . 4 L . A L _

compute an average value of estimated per timestamp cog, zggg e g] E zggg N
C, for every candidate value. The candidate value yielding 0 L 0 L
the minimum estimated per timestamp cost will be chosen 30 60 90 120 150 180 30 60 90 120 150 180

. Maximum Update Interval Maximum Update Interval
as the optimal’, value. (@) ¢ whenT)y; = 30 (b) C whenTy; =120

Experimental results for our test system running on dif-Fig. 38 The optimalTy, value for Gaussian datasets
ferentT’,; values are similar. Therefore, we only present two
typical ones here. Fig. 36(a) is the experimental result of We notice that in these results, the gaps between the ac-
running the system witi; value being 60, and Fig. 36(b) tual values and the estimated values are larger than those of
is that of settindl’,; value to be 90. In these figures, “ZRV”, experiments on uniform datasets. This is because theldistri
“EXM” and “ETV” stand for computing the estimated per ution and the moving pattern of the objects in these datasets
timestamp cost with equivalent object updates defined bglo not follow the assumption of the cost model. However,
the Zero-VBR method, the Expanding-MBR method and theve also observe that the trends of the curves ascendingfuigisg
Eight-VBR method, respectively. “ACT” means the averageare the same, and the optini&i; value chosen using our
values of actual per timestamp cost. These values are deest model still matches the actual optintal; values for
rived directly from the average values of actual per updatéhese datasets of different distributions due to the saeneltr
cost recorded in the experiments of the last subsection. Note that in the real dataset experiments, we Tige

Both figures show that the equivalent object updates desalues ranging from 10 to 60. This is because the real dataset
fined by the Eight-VBR method provide a best estimationobjects are issuing voluntary updates every 30 timestamps.
accuracy. They also show that under our experimental setf we only useT), values that are larger than 30, then there
tings, theT,; optimization approach will suggest,; to be will be no forced updates and thus a largéy value will
90, which is the actual optimdl,; value, as shown by the always result in larger per timestamp update cost. Theggfor
“ACT" curve. we need to test our system performance With values that

25

are smaller than 30 to see whether we can find a value thabmpare this overhead with the performance gain that a well
has better performance than 30 has. chosenT’, value can bring. From the experimental results
of the last subsection, we can see that for the 10K datasets
(cf. Fig. 36(a), the “ACT"curve), if the test system runslwit
arandomly chosem), value, say, 30, the average number of
node accesses per timestamp is about 54% larger than that of
running the system with the optim@},; value, 90. In terms

of response time, th&,,; value optimization process brings

20000 20000
18000 | ETV —8— 18000
16000 f; ACT ——=- 16000
14000 ° 14000
12000 12000
10000 10000
8000 8000
6000 6000
4000 L—! : 4000 L—

\
(T T B |

Node Accesses
Node Accesses

0 20 30 20 %0 6o 10 20 3 20 = & amuch larger performance gain compared to the overhead.
Maximum Update Interval Maximum Update Interval Therefore, optimizing th&’, value is worthwhile.
(@) C whenTy; = 20 (b) C whenT,; = 30

Fig. 39 The optimalT,, value for the Truck datasets

9 Conclusions
20000 20000
18000 18000
16000 16000
14000 b 14000 P
12000 R\ 12000
10000 10000

In this article, we addressed the problem of processing con-

tinuous intersection joins over moving objects by introduc
ing the time-constrained (TC) query processing technique.

2888 gggg - § Instead of processing the query for an overlong time, we

4000 L 4000 L1 only process it to a time point necessary to guarantee the
10 20 30 40 50 60 10 20 30 40 50 60

Node Accesses
Node Accesses

] . correctness of the result. TC processing can be further opti
Maximum Update Interval Maximum Update Interval . i K i .
(@) C whenT); =10 (b) C whenTy; = 20 mized by grouping objects into time buckets. We also showed
Fig. 40 The optimalT}y; value for Bus datasets a set of techniques enabled by TC processing to reduce the

CPU cost of traditional intersection join algorithms and a
few techniques to reduce the 1/O cost of the algorithms. All
these techniques are integrated together. Moreover, we de-

We measure the response time overhead of our approach fr(')\r/ed a cost model for the continuous intersection join ger

finding the optimall’y; value. In the following experiments and showed that it can accurately predict the cost of precess
M . y . . .

we record and compare the average per timestamp respon'gt% the query .and suggest optiiél, values for moving .

time of the test system with and without tiig, optimiza- 0 jeC'F monitoring systems. We also performed. an extensive

tion process. The comparison results are shown in Fig. 4Jx_experlmental study. The results show the effectivenes€of T

where “OPT” and “MTB” denote the response time of thep'rocessing and the various improvement techniques enabled

test system with and without tHE,; optimization process, by 't'. Our algorithm outperforms thg best adapted.emstl'n 9
respectively. solution by several orders of magnitude, making it realis-

Fig. 41(a) presents the overhead of e optimization tic to process continuous intersection join queries in real

process performed on datasets of different cardinaliies: time. The experiments also validates the accuracy of our

observe that this overhead is almost negligible compare tSOSt model and its usefulness in choosing the optifiygl

the cost of processing the join query. For example, the ove|Malue for our.algonthm, which may provide significant per-
formance gain compared to using a badly chosen value.

8.7.3 Overhead of Finding the Optimal Value By,

0.35 0.09
% 03 F vra % 0.085 &
g 025 OPT --&- 71 & o8
5 o /1 s oom
(] / Q
2 015} 7 4 g = Acknowledgments
S =] 0.07
=3 0.1 E =3 '
g 005} ’ 1 2 0065)) _ N

0 ‘ ‘ oos L~ This work is supported by the Australian Research Council’'s
1k 10k S0k 100k 30 60 90 120 150 180 Dijscovery funding scheme (project numbers DP0880250 and
Dataset Cardinality Maximum Update Interval
(a) Varying dataset cardinality (b) VaryingT),, value DP0880215).

Fig. 41 Total response time overhead

head for the 100K datasets is 0.016 seconds, which is aboReferences
5% of the time for processing the join query. Fig. 41(b)
presents the overhead for the 10K datasets while varying thé- P- K. Agarwal, L. Arge, and J. Erickson. Indexing moving psint
T value that the test system is running with. For allThe In PODS pages 175-186, 2000.

M .) . 2. M. E. Ali, R. Zhang, E. Tanin, and L. Kulik. A motion-aware
values used, the overhead is less than 0.004 seconds, Which approach to continuous retrieval of 3d objects. IQDE, pages

is less than 6% of the time for processing the join query. We 843-852, 2008.

26

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. T. Bially. Space-filling curves: Their generation and tregpli-

. V. Botea, D. Mallett, M. Nascimento, and J. Sander.

. S. Arumugam and C. Jermaine. Closest-point-of-approachgoin f 27.

moving object histories. IHCDE, page 86, 2006.

. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seegee Th28.

R*-tree: An efficient and robust access method for points and rec
tangles. INSIGMOD, 1990.

. R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis. Near@&

and reverse nearest neighbor queries for moving objeétHB
Journal 15(3):229-249, 2006.

30.
cation to bandwidth reductionlEEE Transactions on Information
Theory 15:658-664, 1969.

Pist: An31.
efficient and practical indexing technique for historical tapa

temporal point dataGeolnformatica12:143-168, 2008. 32.

. T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient pessing of

spatial joins using r-trees. IRIGMOD, pages 237-246, 1993. 33.

. A. Civilis, C. S. Jensen, J. Nenortaite, and S. Pakalnis. Hificie

tracking of moving objects with precision guaranteesMiobiQ- 34.
uitous pages 164-173, 2004.

J. S. Dahmann, R. Fujimoto, and R. M. Weatherly. The depattmers5.
of defense high level architecture. Winter Simulation Confer-

ence pages 142-149, 1997.

A. J. Demers, J. Gehrke, C. Koch, B. Sowell, and W. M. White.36.
Database research in computer gamesSIBMOD, pages 1011—
1014, 2009. 37.
H. Ding, G. Trajcevski, and P. Scheuermann. Omcat: optimal
maintenance of continuous queries’ answers for trajectorias. 13
SIGMOD, pages 748-750, 2006.

E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis. eé¢ar
neighbor search on moving object trajectories. SIBTD pages
328-345, 2005.

R. H. Giting, T. Behr, and J. Xu. Efficient k-nearest neighbor 40.
search on moving object trajectoriegLDB Journa) 19(5):687—

714, 2010.

G. S. lwerks, H. Samet, and K. P. Smith. Continuous k-nearet1-
neighbor queries for continuously moving points with updates.
VLDB, pages 512-523, 2003.

G. S. lwerks, H. Samet, and K. P. Smith. Maintenance of spatiaf'z'
semijoin queries on moving points. MLDB, pages 828-839,
2004.

G. S. lwerks, H. Samet, and K. P. Smith. Maintenance of k-n
and spatial join queries on continuously moving poinT®DS
31(2):485-536, 2006.

C. Jensen, D. Lin, and B.C.Ooi. Query and update efficient B 44.
tree based indexing of moving objects.MhDB, pages 768-779,
2004.

H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Dis-45'
covery of convoys in trajectory databaseRroc. VLDB Endow.
1(1):1068-1080, 2008.

G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile
objects. INPODS pages 261-272, 1999.

G. Kollios, V. J. Tsotras, D. G., A. Delis, and M. Hadjieleftioer
Indexing animated objects using spatiotemporal access methods.
TKDE, 13(5):758-777, 2001.

N. Koudas and K. C. Sevcik. Size separation spatial joirs|Gr
MOD, pages 324-335, 1997.

M.-L. Lo and C. V. Ravishankar. Spatial joins using seedeestr

In SIGMOD, pages 209-220, 1994.

M. F. Mokbel, X. Xiong, and W. G. Aref. Sina: Scalable iecren-

tal processing of continuous queries in spatio-temporal daésha

In SIGMOD, pages 623-634, 2004.

K. L. Morse. Interest management in large-scale distributed sim-
ulations. Technical Report ICS-TR-96-27, 1996.

K. Mouratidis, M. Hadjieleftheriou, and D. Papadias. Gzptoal
partitioning: An efficient method for continuous nearest hbigy
monitoring. INSIGMOD, pages 634—-645, 2005.

39.

3.

8. Y. Tao and D. Papadias.

M. A. Nascimento and J. R. O. Silva. Towards historical Rstree
In SAG pages 235-240, 1998.

S. Nutanong, E. Tanin, J. Shao, R. Zhang, and K. Ramamoha-
narao. Continuous detour queries in spatial netwoilksappear

in TKDE.

S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The V*-d&g:

a query-dependent approach to moving knn queikesc. VLDB
Endow, 1(1):1095-1106, 2008.

S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. Analysis eval-
uation of V*-kNN: an efficient algorithm for moving knn quesie
The VLDB Journal19:307-332, June 2010.

J. Orenstein. Spatial query processing in an object-odatdta-
base system. IBIGMOD, pages 326—336, 1986.

J. M. Patel, Y. Chen, and V. P. Chakka. STRIPES: An effidient
dex for predicted trajectories. BIGMOD, pages 637—646, 2004.

J. M. Patel and D. J. DeWitt. Partition based spatial-merge joi
In SIGMOD, pages 259-270, 1996.

D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel appro@ches
query processing for moving object trajectoriesVIrDB, 2000.

S. Saltenis, C. S.Jensen, S. T. Leutenegger, and M. A. Ldpez.
dexing the positions of continuously moving objectsSIGMOD,
pages 331-342, 2000.

K. C. Sevcik and N. Koudas. Filter trees for managing spdtd
over a range of size granularities. Ww.DB, pages 16-27, 1996.

A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modelin
and querying moving objects. ICDE, pages 422—-432, 1997.
Mv3r-tree: A spatio-temporal access
method for timestamp and interval queriesMnDB, pages 431—
440, 2001.

Y. Tao and D. Papadias. Time-parameterized queries in spatio
temporal databases. 8iGMOD, pages 334-345, 2002.

Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An optimized
spatio-temporal access method for predictive queriesvLIDB,
pages 790-801, 2003.

L. H. U, N. Mamoulis, and M. L. Yiu. Computation and moni-
toring of exclusive closest pairdKDE, 20(12):1641 —1654, dec.
2008.

W. M. White, C. Koch, N. G. 0003, J. Gehrke, and A. J. Demers.
Database research opportunities in computer gan®&MOD
Record 36(3):7-13, 2007.

M. Yiu, Y. Tao, and N. Mamoulis. The®*!-tree: indexing mov-

ing objects by space filling curves in the dual spagtée VLDB
Journal 17:379-400, 2008.

R. Zhang, H. V. Jagadish, B. T. Dai, and K. Ramamohanarao. Op-
timized algorithms for predictive range and knn queries on mgvi
objects.Inf. Syst, 35(8):911-932, 2010.

R. Zhang, D. Lin, R. Kotagiri, and E. Bertino. Continuooter-
section joins over moving objects. IBDE, pages 863-872, 2008.

University Library

* o A gateway to Melbourne's research publications

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Zhang, R;Qi, J;Lin, D;Wang, W;Wong, RC-W

Title:
A highly optimized algorithm for continuous intersection join queries over moving objects

Date:
2012-08

Citation:

Zhang, R., Qi, J., Lin, D., Wang, W. & Wong, R. C. -W. (2012). A highly optimized algorithm
for continuous intersection join queries over moving objects. VLDB JOURNAL, 21 (4),
pp.561-586. https://doi.org/10.1007/s00778-011-0259-1.

Persistent Link:
http://hdl.handle.net/11343/283312

http://hdl.handle.net/11343/283312

