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Abstract Enterprises today acquire vast volumes of

data from different sources and leverage this informa-

tion by means of data analysis to support effective

decision-making and provide new functionality and ser-

vices. The key requirement of data analytics is scalabil-

ity, simply due to the immense volume of data that need

to be extracted, processed, and analyzed in a timely

fashion. Arguably the most popular framework for con-

temporary large-scale data analytics is MapReduce,

mainly due to its salient features that include scala-

bility, fault-tolerance, ease of programming, and flexi-

bility. However, despite its merits, MapReduce has ev-

ident performance limitations in miscellaneous analyt-

ical tasks, and this has given rise to a significant body

of research that aim at improving its efficiency, while

maintaining its desirable properties.

This survey aims to review the state-of-the-art in

improving the performance of parallel query processing

using MapReduce. A set of the most significant weak-

nesses and limitations of MapReduce is discussed at a

high level, along with solving techniques. A taxonomy

is presented for categorizing existing research on Map-

Reduce improvements according to the specific problem

they target. Based on the proposed taxonomy, a clas-
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sification of existing research is provided focusing on

the optimization objective. Concluding, we outline in-

teresting directions for future parallel data processing

systems.

1 Introduction

In the era of “Big Data”, characterized by the un-

precedented volume of data, the velocity of data gen-

eration, and the variety of the structure of data, sup-

port for large-scale data analytics constitutes a partic-

ularly challenging task. To address the scalability re-

quirements of today’s data analytics, parallel shared-

nothing architectures of commodity machines (often con-

sisting of thousands of nodes) have been lately estab-

lished as the de-facto solution. Various systems have

been developed mainly by the industry to support Big

Data analysis, including Google’s MapReduce [32,33],

Yahoo’s PNUTS [31], Microsoft’s SCOPE [112], Twit-

ter’s Storm [70], LinkedIn’s Kafka [46] and Walmart-

Labs’ Muppet [66]. Also, several companies, including

Facebook [13], both use and have contributed to Apache

Hadoop (an open-source implementation of MapReduce)

and its ecosystem.

MapReduce has become the most popular frame-

work for large-scale processing and analysis of vast data

sets in clusters of machines, mainly because of its sim-

plicity. With MapReduce, the developer gets various

cumbersome tasks of distributed programming for free

without the need to write any code; indicative exam-

ples include machine to machine communication, task

scheduling to machines, scalability with cluster size, en-

suring availability, handling failures, and partitioning of

input data. Moreover, the open-source Apache Hadoop

implementation of MapReduce has contributed to its
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widespread usage both in industry and academia. As a

witness to this trend, we counted the number of papers

related to MapReduce and cloud computing published

yearly in major database conferences1. We report a sig-

nificant increase from 12 in 2008 to 69 papers in 2012.

Despite its popularity, MapReduce has also been the

object of severe criticism [87,98], mainly due to its per-

formance limitations, which arise in various complex

processing tasks. For completeness, it should be men-

tioned that MapReduce has been defended in [34]. Our

article analyzes the limitations of MapReduce and sur-

veys existing approaches that aim to address its short-

comings. We also describe common problems encoun-

tered in processing tasks in MapReduce and provide a

comprehensive classification of existing work based on

the problem they attempt to address.

Scope and Aim of this Survey. This survey fo-

cuses primarily on query processing aspects in the con-

text of data analytics over massive data sets in Map-

Reduce. A broad coverage of existing work in the area

of improving analytical query processing using Map-

Reduce is provided. In addition, this survey offers added

value by means of a comprehensive classification of ex-

isting approaches based on the problem they try to

solve. The topic is approached from a data-centric per-

spective, thus highlighting the importance of typical

data management problems related to efficient paral-

lel processing and analysis of large-scale data.

This survey aims to serve as a useful guidebook

of problems and solving techniques in processing data

with MapReduce, as well as a point of reference for

future work in improving the MapReduce execution

framework or introducing novel systems and frameworks

for large-scale data analytics. Given the already signifi-

cant number of research papers related to MapReduce-

based processing, this work also aims to provide a clear

overview of the research field to the new researcher

who is unfamiliar with the topic, as well as record and

summarize the already existing knowledge for the ex-

perienced researcher in a meaningful way. Last but not

least, this survey provides a comparison of the proposed

techniques and exposes their potential advantages and

disadvantages as much as possible.

Related Work. Probably the most relevant work

to this article is the recent survey on parallel data pro-

cessing with MapReduce [68]. However, our article pro-

vides a more in-depth analysis of limitations of Map-

Reduce and classifies existing approaches in a compre-

hensive way. Other related work includes the tutorials

on data layouts and storage in MapReduce [35], and on

1 The count is based on articles that appear in the pro-
ceedings of ICDE, SIGMOD, VLDB, thus includes research
papers, demos, keynotes and tutorials

programming techniques for MapReduce [93]. A com-

parison of parallel DBMSs versus MapReduce that crit-

icizes the performance of MapReduce is provided in [87,

98]. The work in [57] suggests five design factors that

improve the overall performance of Hadoop, thus mak-

ing it more comparable to parallel database systems.

Of separate interest is the survey on systems for

large-scale data management in the cloud [91], and Cat-

tell’s survey on NoSQL data stores [25]. Furthermore,

the tutorials on Big Data and cloud computing [10] and

on the I/O characteristics of NoSQL databases [92] as

well as the work of Abadi on limitations and opportu-

nities for cloud data management [1] are also related.

Organization of this Paper. The remainder of

this article is organized as follows: Sect. 2 provides an

overview of MapReduce focusing on its open source

implementation Hadoop. Then, in Sect. 3, an outline

of weaknesses and limitations of MapReduce are de-

scribed in detail. Sect. 4 organizes existing approaches

that improve the performance of query processing in

a taxonomy of categories related to the main problem

they solve, and classifies existing work according to op-

timization goal. Finally, Sect. 5 identifies opportunities

for future work in the field.

2 MapReduce Basics

2.1 Overview

MapReduce [32] is a framework for parallel process-

ing of massive data sets. A job to be performed us-

ing the MapReduce framework has to be specified as

two phases: the map phase as specified by a Map func-

tion (also called mapper) takes key/value pairs as input,

possibly performs some computation on this input, and

produces intermediate results in the form of key/value

pairs; and the reduce phase which processes these re-

sults as specified by a Reduce function (also called re-

ducer). The data from the map phase are shuffled, i.e.,

exchanged and merge-sorted, to the machines perform-

ing the reduce phase. It should be noted that the shuf-

fle phase can itself be more time-consuming than the

two others depending on network bandwidth availabil-

ity and other resources.

In more detail, the data are processed through the

following 6 steps [32] as illustrated in Figure 1:

1. Input reader: The input reader in the basic form

takes input from files (large blocks) and converts

them to key/value pairs. It is possible to add sup-

port for other input types, so that input data can be

retrieved from a database or even from main mem-

ory. The data are divided into splits, which are the
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Fig. 1 MapReduce dataflow.

unit of data processed by a map task. A typical split

size is the size of a block, which for example in HDFS

is 64 MB by default, but this is configurable.

2. Map function: A map task takes as input a key/value

pair from the input reader, performs the logic of the

Map function on it, and outputs the result as a new

key/value pair. The results from a map task are ini-

tially output to a main memory buffer, and when

almost full spill to disk. The spill files are in the end

merged into one sorted file.

3. Combiner function: This optional function is pro-

vided for the common case when there is (1) signif-

icant repetition in the intermediate keys produced

by each map task, and (2) the user-specified Re-

duce function is commutative and associative. In

this case, a Combiner function will perform partial

reduction so that pairs with same key will be pro-

cessed as one group by a reduce task.

4. Partition function: As default, a hashing function

is used to partition the intermediate keys output

from the map tasks to reduce tasks. While this in

general provides good balancing, in some cases it is

still useful to employ other partitioning functions,

and this can be done by providing a user-defined

Partition function.

5. Reduce function: The Reduce function is invoked

once for each distinct key and is applied on the set

of associated values for that key, i.e., the pairs with

same key will be processed as one group. The input

to each reduce task is guaranteed to be processed in

increasing key order. It is possible to provide a user-

specified comparison function to be used during the

sort process.

6. Output writer: The output writer is responsible

for writing the output to stable storage. In the ba-

sic case, this is to a file, however, the function can

be modified so that data can be stored in, e.g., a

database.

As can be noted, for a particular job, only a Map

function is strictly needed, although for most jobs a

Reduce function is also used. The need for providing

an Input reader and Output writer depends on data
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Fig. 2 Hadoop architecture.

source and destination, while the need for Combiner

and Partition functions depends on data distribution.

2.2 Hadoop

Hadoop [104] is an open-source implementation of Map-

Reduce, and without doubt, the most popular Map-

Reduce variant currently in use in an increasing number

of prominent companies with large user bases, including

companies such as Yahoo! and Facebook.

Hadoop consists of two main parts: the Hadoop dis-

tributed file system (HDFS) and MapReduce for dis-

tributed processing. As illustrated in Figure 2, Hadoop

consists of a number of different daemons/servers: Na-

meNode, DataNode, and Secondary NameNode for man-

aging HDFS, and JobTracker and TaskTracker for per-

forming MapReduce.

HDFS is designed and optimized for storing very

large files and with a streaming access pattern. Since

it is expected to run on commodity hardware, it is de-

signed to take into account and handle failures on in-

dividual machines. HDFS is normally not the primary

storage of the data. Rather, in a typical workflow, data

are copied over to HDFS for the purpose of perform-

ing MapReduce, and the results then copied out from

HDFS. Since HDFS is optimized for streaming access of

large files, random access to parts of files is significantly

more expensive than sequential access, and there is also

no support for updating files, only append is possible.

The typical scenario of applications using HDFS follows

a write-once read-many access model.

Files in HDFS are split into a number of large blocks

(usually a multiple of 64 MB) which are stored on Data-

Nodes. A file is typically distributed over a number of

DataNodes in order to facilitate high bandwidth and

parallel processing. In order to improve reliability, data

blocks in HDFS are replicated and stored on three ma-

chines, with one of the replicas in a different rack for

increasing availability further. The maintenance of file

metadata is handled by a separate NameNode. Such

metadata includes mapping from file to block, and loca-
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tion (DataNode) of block. The NameNode periodically

communicates its metadata to a Secondary NameNode

which can be configured to do the task of the NameN-

ode in case of the latter’s failure.

MapReduce Engine. In Hadoop, the JobTracker

is the access point for clients. The duty of the Job-

Tracker is to ensure fair and efficient scheduling of in-

coming MapReduce jobs, and assign the tasks to the

TaskTrackers which are responsible for execution. A

TaskTracker can run a number of tasks depending on

available resources (for example two map tasks and two

reduce tasks) and will be allocated a new task by the

JobTracker when ready. The relatively small size of each

task compared to the large number of tasks in total

helps to ensure load balancing among the machines. It

should be noted that while the number of map tasks

to be performed is based on the input size (number of

splits), the number of reduce tasks for a particular job

is user-specified.

In a large cluster, machine failures are expected to

occur frequently, and in order to handle this, regular

heartbeat messages are sent from TaskTrackers to the

JobTracker periodically and from the map and reduce

tasks to the TaskTracker. In this way, failures can be

detected, and the JobTracker can reschedule the failed

task to another TaskTracker. Hadoop follows a specu-

lative execution model for handling failures. Instead of

fixing a failed or slow-running task, it executes a new

equivalent task as backup. Failure of the JobTracker

itself cannot be handled automatically, but the proba-

bility of failure of one particular machine is low so that

this should not present a problem in general.

The Hadoop Ecosystem. In addition to the main

components of Hadoop, the Hadoop ecosystem also con-

tains other libraries and systems. The most important

in our context are HBase, Hive, and Pig. HBase [45] is a

distributed column-oriented store, inspired by Google’s

Bigtable [26] that runs on top of HDFS. Tables in HBase

can be used as input or output for MapReduce jobs,

which is especially useful for random read/write access.

Hive [99,100] is a data warehousing infrastructure built

on top of Hadoop. Queries are expressed in an SQL-like

language called HiveQL, and the queries are translated

and executed as MapReduce jobs. Pig [86] is a frame-

work consisting of the Pig Latin language and its exe-

cution environment. Pig Latin is a procedural scripting

language making it possible to express data workflows

on a higher level than a MapReduce job.

3 Weaknesses and Limitations

Despite its evident merits, MapReduce often fails to

exhibit acceptable performance for various processing

tasks. Quite often this is a result of weaknesses related

to the nature of MapReduce or the applications and

use-cases it was originally designed for. In other cases,

it is the product of limitations of the processing model

adopted in MapReduce. In particular, we have identi-

fied a list of issues related to large-scale data processing

in MapReduce/Hadoop that significantly impact its ef-

ficiency (for a quick overview, we refer to Table 1):

– Selective access to data: Currently, the input

data to a job is consumed in a brute-force man-

ner, in which the entire input is scanned in order to

perform the map-side processing. Moreover, given a

set of input data partitions stored on DataNodes,

the execution framework of MapReduce will initi-

ate map tasks on all input partitions. However, for

certain types of analytical queries, it would suffice

to access only a subset of the input data to produce

the result. Other types of queries may require fo-

cused access to a few tuples only that satisfy some

predicate, which cannot be provided without ac-

cessing and processing all the input data tuples.

In both cases, it is desirable to provide a selective

access mechanism to data, in order to prune local

non-useful data at a DataNode from processing as

well as prune entire DataNodes from processing. In

traditional data management systems, this problem

is solved by means of indexing. In addition, since

HDFS blocks are typically large, it is important to

optimize their internal organization (data layout)

according to the query workload to improve the per-

formance of data access. For example, queries that

involve only few attributes benefit from a columnar

layout that allows fetching of specific columns only,

while queries that involve most of the attributes per-

form better when row-wise storage is used.

– High communication cost: After the map tasks

have completed processing, some selected data are

sent to reduce tasks for further processing (shuf-

fling). Depending on the query at hand and on the

type of processing that takes place during the map

phase, the size of the output of the map phase can

be significant and its transmission may delay the

overall execution time of the job. A typical example

of such a query is a join, where it is not possible

for a map task to eliminate input data from being

sent to reduce tasks, since this data may be joined

with other data consumed by other map tasks. This

problem is also present in distributed data manage-

ment systems, which address it by careful data par-

titioning and placement of partitions that need to

be processed together at the same node.

– Redundant and wasteful processing: Quite of-

ten multiple MapReduce jobs are initiated at over-
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Weakness Technique

Access to input data Indexing and data layouts
High communication cost Partitioning and colocation
Redundant and wasteful processing Result sharing, batch processing of queries and incremental processing
Recomputation Materialization
Lack of early termination Sampling and sorting
Lack of iteration Loop-aware processing, caching, pipelining, recursion, incremental processing
Quick retrieval of approximate results Data summarization and sampling
Load balancing Pre-processing, approximation of the data distribution and repartitioning
Lack of interactive or real-time processing In-memory processing, pipelining, streaming and pre-computation
Lack of support for n-way operations Additional MR phase(s), re-distribution of keys and record duplication

Table 1 Weaknesses in MapReduce and solving techniques at a high level.

lapping time intervals and need to be processed over

the same set of data. In such cases, it is possible

that two or more jobs need to perform the same

processing over the same data. In MapReduce, such

jobs are processed independently, thus resulting in

redundant processing. As an example, consider two

jobs that need to scan the same query log, one trying

to identify frequently accessed pages and another

performing data mining on the activity of specific IP

addresses. To alleviate this shortcoming, jobs with

similar subtasks should be identified and processed

together in a batch. In addition to sharing common

processing, result sharing is a well-known technique

that can be employed to eliminate wasteful process-

ing over the same data.

– Recomputation: Jobs submitted to MapReduce

clusters produce output results that are stored on

disk to ensure fault-tolerance during the process-

ing of the job. This is essentially a check-pointing

mechanism that allows long-running jobs to com-

plete processing in the case of failures, without the

need to restart processing from scratch. However,

MapReduce lacks a mechanism for management and

future reuse of output results. Thus, there exists

no opportunity for reusing the results produced by

previous queries, which means that a future query

that requires the result of a previously posed query

will have to resolve in recomputing everything. In

database systems, query results that are expected

to be useful in the future are materialized on disk

and are available at any time for further consump-

tion, thus achieving significant performance bene-

fits. Such a materialization mechanism that can be

enabled by the user is missing from MapReduce and

would boost its query processing performance.

– Lack of early termination: By design, in the

MapReduce execution framework, map tasks must

access input data in its entirety before any reduce

task can start processing. Although this makes sense

for specific types of queries that need to examine the

complete input data in order to produce any result,

for many types of queries only a subset of input data

suffices to produce the complete and correct result.

A typical example arises in the context of rank-

aware processing, as in the case of top-k queries.

As another prominent example, consider sampling

of input data to produce a small and fixed-size set

of representative data. Such query types are ubiq-

uitous in data analytics over massive data sets and

cannot be efficiently processed in MapReduce. The

common conclusion is the lack of an early termi-

nation mechanism in MapReduce processing, which

would allow map tasks to cease processing, when a

specific condition holds.

– Lack of iteration: Iterative computation and re-

cursive queries arise naturally in data analysis tasks,

including PageRank or HITS computation, cluster-

ing, social network analysis, recursive SQL queries,

etc. However, in MapReduce, the programmer needs

to write a sequence of MapReduce jobs and coor-

dinate their execution, in order to implement sim-

ple iterative processing. More importantly, a non-

negligible performance penalty is paid, since data

must be reloaded and reprocessed in each iteration,

even though quite often a significant part of the data

remains unchanged. In consequence, iterative data

analysis tasks cannot be processed efficiently by the

MapReduce framework.

– Quick retrieval of approximate results: Ex-

ploratory queries are a typical requirement of appli-

cations that involve analysis of massive data sets,

as in the case of scientific data. Instead of issuing

exploratory queries to the complete data set that

would entail long waiting times and potentially non-

useful results, it would be extremely useful to test

such queries on small representative parts of the

data set and try to draw conclusions. Such queries

need to be processed fast and if necessary, return

approximate results, so that the scientist can re-

view the result and decide whether the query makes
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Fig. 3 Taxonomy of MapReduce improvements for efficient query processing.

sense and should be processed on the entire data set.

However, MapReduce does not provide an explicit

way to support quick retrieval of indicative results

by processing on representative input samples.

– Load balancing: Parallel data management sys-

tems try to minimize the runtime of a complex pro-

cessing task by carefully partitioning the input data

and distributing the processing load to available ma-

chines. Unless the data are distributed in a fair man-

ner, the runtime of the slowest machine will easily

dominate the total runtime. For a given machine,

its runtime is dependent on various parameters (in-

cluding the speed of the processor and the size of the

memory), however our main focus is on the effect

induced by data assignment. Part of the problem

is partitioning the data fairly, such that each ma-

chine is assigned an equi-sized data partition. For

real data sets, data skew is commonly encountered

in practice, thus plain partitioning schemes that are

not data-aware, such as those used by MapReduce,

easily fall short. More importantly, even when the

data is equally split to the available machines, equal

runtime may not always be guaranteed. The reason

for this is that some partitions may require complex

processing, while others may simply contain data

that need not be processed for the query at hand

(e.g., are excluded based on some predicate). Pro-

viding advanced load balancing mechanisms that

aim to increase the efficiency of query processing by

assigning equal shares of useful work to the avail-

able machines is a weakness of MapReduce that has

not been addressed yet.

– Lack of interactive or real-time processing:

MapReduce is designed as a highly fault-tolerant

system for batch processing of long-running jobs

on very large data sets. However, its very design

hinders efficient support for interactive or real-time

processing, which requires fast processing times. The

reason is that to guarantee fault-tolerance, Map-

Reduce introduces various overheads that negatively

impact its performance. Examples of such overheads

include frequent writing of output to disk (e.g., be-

tween multiple jobs), transferring big amounts of

data in the network, limited exploitation of main

memory, delays for job initiation and scheduling,

extensive communication between tasks for failure

detection. However, numerous applications require

fast response times, interactive analysis, online an-

alytics, and these requirements are hardly met by

the performance of MapReduce.

– Lack of support for n-way operations: Pro-

cessing n-way operations over data originating from

multiple sources is not naturally supported by Map-

Reduce. Such operations include (among others) join,

union, intersection, and can be binary operations

(n = 2) or multi-way operations (n > 2). Taking the

prominent example of a join, many analytical tasks

typically require accessing and processing data from

multiple relations. In contrast, the design of Map-

Reduce is not flexible enough to support n-way op-

erations with the same simplicity and intuitiveness

as data coming from a single source (e.g., single file).

4 MapReduce Improvements

In this section, an overview is provided of various meth-

ods and techniques present in the existing literature

for improving the performance of MapReduce. All ap-

proaches are categorized based on the introduced im-

provement. We organize the categories of MapReduce

improvements in a taxonomy, illustrated in Figure 3.

Table 2 classifies existing approaches for improved

processing based on their optimization objectives. We

determine the primary objective (marked with ♠ in the



A Survey of Large-Scale Analytical Query Processing in MapReduce 7

table) and then, we also identify secondary objectives

(marked with ♦).

4.1 Data Access

Efficient access to data is an essential step for achiev-

ing improved performance during query processing. We

identify three subcategories of data access, namely in-

dexing, intentional data placement, and data layouts.

4.1.1 Indexing

Hadoop++ [36] is a system that provides indexing func-

tionality for data stored in HDFS by means of User-

defined Functions (UDFs), i.e., without modifying the

Hadoop framework at all. The indexing information

(called Trojan Indexes) is injected into logical input

splits and serves as a cover index for the data inside the

split. Moreover, the index is created at load time, thus

imposing no overhead in query processing. Hadoop++

also supports joins by co-partitioning data and colo-

cating them at load time. Intuitively, this enables the

join to be processed at the map side, rather than at

the reduce side (which entails expensive data trans-

fer/shuffling in the network). Hadoop++ has been com-

pared against HadoopDB and shown to outperform

it [36].

HAIL [37] improves the long index creation times of

Hadoop++, by exploiting the n replicas (typically n=3)

maintained by default by Hadoop for fault-tolerance

and by building a different clustered index for each

replica. At query time, the most suitable index to the

query is selected, and the particular replica of the data

is scanned during the map phase. As a result, HAIL

improves substantially the performance of MapReduce

processing, since the probability of finding a suitable in-

dex for efficient data access is increased. In addition, the

creation of the indexes occurs during the data upload

phase to HDFS (which is I/O bound), by exploiting

“unused CPU ticks”, thus it does not affect the upload

time significantly. Given the availability of multiple in-

dexes, choosing the optimal execution plan for the map

phase is an interesting direction for future work. HAIL

is shown in [37] to improve index creation times and

the performance of Hadoop++. Both Hadoop++ and

HAIL support joins with improved efficiency.

4.1.2 Intentional Data Placement

CoHadoop [41] colocates and copartitions data on nodes

intentionally, so that related data are stored on the

same node. To achieve colocation, CoHadoop extends

HDFS with a file-level property (locator), and files with

NameNode DataNodes

File A: Block A1 

Block A2

File B: Block B1 

Block B2

Block B3

Locator Table

1 File A, File B

2 File C

File C: Block C1 

Block C2

C1 C2

A1 A2

B1 B2 B3

A1 A2

B1 B2 B3

C1 C2

A1 A2

B1 B2 B3

C1 C2

Fig. 4 The way files are colocated in CoHadoop [41].

the same locator are placed on the same set of DataN-

odes. In addition, a new data structure (locator table)

is added to the NameNode of HDFS. This is depicted

in the example of Figure 4 using a cluster of five nodes

(one NameNode and four DataNodes) where 3 replicas

per block are kept. All blocks (including replicas) of files

A and B are colocated on the same set of DataNodes,

and this is described by a locator present in the locator

table (shown in bold) of the NameNode. The contribu-

tions of CoHadoop include colocation and copartition-

ing, and it targets a specific class of queries that benefit

from these techniques. For example, joins can be effi-

ciently executed using a map-only join algorithm, thus

eliminating the overhead of data shuffling and the re-

duce phase of MapReduce. However, applications need

to provide hints to CoHadoop about related files, and

therefore one possible direction for improvement is to

automatically identify related files. CoHadoop is com-

pared against Hadoop++, which also supports coparti-

tioning and colocating data at load time, and demon-

strates superior performance for join processing.

4.1.3 Data Layouts

A nice detailed overview of the exploitation of different

data layouts in MapReduce is presented in [35]. We

provide a short overview in the following.

Llama [74] proposes the use of a columnar file (called

CFile) for data storage. The idea is that data are parti-

tioned in vertical groups, each group is sorted based on

a selected column and stored in column-wise format in

HDFS. This enables selective access only to the columns

used in the query. In consequence, more efficient access

to data than traditional row-wise storage is provided

for queries that involve a small number of attributes.

Cheetah [28] also employs data storage in colum-

nar format and also applies different compression tech-

niques for different types of values appropriately. In ad-

dition, each cell is further compressed after it is created
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Approach Data Avoidance of Early Iterative Query Fair Work Interactive,

Access Redundant Termi- Processing Optimiza- Allocation Real-time
Processing nation tion Processing

Hadoop++ [36] ♠ ♦ ♦ ♦
HAIL [37] ♠ ♦ ♦ ♦
CoHadoop [41] ♠ ♦
Llama [74] ♠ ♦
Cheetah [28] ♠ ♦
RCFile [50] ♠ ♦
CIF [44] ♠ ♦
Trojan layouts [59] ♠ ♦ ♦
MRShare [83] ♠ ♦
ReStore [40] ♠ ♦
Sharing scans [11] ♠ ♦
Silva et al. [95] ♠
Incoop [17] ♦ ♠ ♦ ♦
Li et al. [71,72] ♠
Grover et al. [47] ♦ ♠ ♦
EARL [67] ♦ ♠ ♦
Top-k queries [38] ♦ ♦ ♠ ♦
RanKloud [24] ♦ ♦ ♠ ♦
HaLoop [22,23] ♦ ♠
MapReduce online [30] ♦ ♠
NOVA [85] ♠ ♦
Twister [39] ♠
CBP [75,76] ♠
Pregel [78] ♠
PrIter [111] ♠
PACMan [14] ♠
REX [82] ♦ ♠ ♦
Differential dataflow [79] ♦ ♠
HadoopDB [2] ♦ ♦ ♦ ♠
SAMs [101] ♦ ♠ ♦
Clydesdale [60] ♦ ♦ ♠
Starfish [51] ♠
AQUA [105] ♦ ♠
YSmart [69] ♦ ♠
RoPE [8] ♠
SUDO [109] ♠
Manimal [56] ♦ ♠
HadoopToSQL [54] ♠
Stubby [73] ♠
Hueske et al. [52] ♠
Kolb et al. [62] ♠
Ramakrishnan et al. [88] ♠
Gufler et al. [48] ♠
SkewReduce [64] ♠
SkewTune [65] ♠
Sailfish [89] ♠
Themis [90] ♠
Dremel [80] ♦ ♦ ♠
Hyracks [19] ♠
Tenzing [27] ♦ ♦ ♠
PowerDrill [49] ♦ ♦ ♠
Shark [42,107] ♦ ♠
M3R [94] ♦ ♦ ♠
BlinkDB [7,9] ♠

Table 2 Classification of existing approaches based on optimization objective (♠ indicates primary objective, while ♦ indicates
secondary objectives).
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using GZIP. Cheetah employs the PAX layout [12] at

the block level, so each block contains the same set of

rows as in row-wise storage, only inside the block col-

umn layout is employed. Compared to Llama, the im-

portant benefit of Cheetah is that all data that belong

to a record are stored in the same block, thus avoiding

expensive network access (as in the case of CFile).

RCFile [50] combines horizontal with vertical parti-

tioning to avoid wasted processing in terms of decom-

pression of unnecessary data. Data are first partitioned

horizontally, and then, each horizontal partition is par-

titioned vertically. The benefits are that columns be-

longing to the same row are located together on the

same node thus avoiding network access, while com-

pression is also possible within each vertical partition

thus supporting access only to those columns that par-

ticipate in the query. Similarly to Cheetah, RCFile also

employs PAX, however, the main difference is that RC-

File does not use block-level compression. RCFile has

been proposed by Facebook and is extensively used in

popular systems, such as Hive and Pig.

CIF [44] proposed a column-oriented, binary stor-

age format for HDFS aiming to improve its perfor-

mance. The idea is that each file is first horizontally

partitioned in splits, and each split is stored in a sub-

directory. The columns of the records of each split are

stored in individual files within the respective subdi-

rectory, together with a file containing metadata about

the schema. When a query arrives that accesses some

columns, multiple files from different subdirectories are

assigned in one split and records are reconstructed fol-

lowing a lazy approach. CIF is compared against RC-

File and shown to outperform it. Moreover, it does not

require changes to the core of Hadoop.

Trojan data layouts [59] also follow the spirit of

PAX, however, data inside a block can have any data

layout. Exploiting the replicas created by Hadoop for

fault-tolerance, different Trojan layouts are created for

each replica, thus the most appropriate layout can be

used depending on the query at hand. It is shown that

queries that involve almost all attributes should use files

with row-level layout, while selective queries should use

column layout. Trojan data layouts have been shown to

outperform PAX-based layouts in Hadoop [59].

4.2 Avoiding Redundant Processing

MRShare [83] is a sharing framework that identifies

different queries (jobs) that share portions of identi-

cal work. Such queries do not need to be recomputed

each time from scratch. The main focus of this work

is to save I/O, and therefore, sharing opportunities are
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Fig. 5 System architecture of ReStore [40].

identified in terms of sharing scans and sharing map-

output. MRShare transforms sets of submitted jobs into

groups and treat each group as a single job, by solving

an optimization problem with objective to maximize

the total savings. To process a group of jobs as a single

job, MRShare modifies Hadoop to (a) tag map output

tuples with tags that indicate the tuple’s originating

jobs, and (b) write to multiple output files on the re-

duce side. Open problems include extending MRShare

to support jobs that use multiple inputs (e.g., joins) as

well as sharing parts of the Map function.

ReStore [40] is a system that manages the storage

and reuse of intermediate results produced by workflows

of MapReduce jobs. It is implemented as an extension

to the Pig dataflow system. ReStore maintains the out-

put results of MapReduce jobs in order to identify reuse

opportunities by future jobs. To achieve this, ReStore

maintains together with a file storing a job’s output the

physical execution plan of the query and some statis-

tics about the job that produced it, as well as how fre-

quently this output is used by other workflows. Figure 5

shows the main components of ReStore: (1) the plan

matcher and rewriter, (2) the sub-job enumerator, and

(3) the enumerated sub-job selector. The figure shows

how these components interact with MapReduce as well

as the usage of the repository of MapReduce job out-

puts. The plan matcher and rewriter identifies outputs

of past jobs in the repository that can be used to answer

the query and rewrites the input job to reuse the dis-

covered outputs. The sub-job enumerator identifies the

subsets of physical operators that can be materialized

and stored in the DFS. Then, the enumerated sub-job

selector chooses which outputs to keep in the repository

based on the collected statistics from the MapReduce

job execution. The main difference to MRShare is that

ReStore allows individual queries submitted at different

times to share results, while MRShare tries to optimize
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sharing for a batch of queries executed concurrently.

On the downside, ReStore introduces some overhead to

the job’s execution time and to the available storage

space, when it decides to store the results of sub-jobs,

especially for large-sized results.

Sharing scans from a common set of files in the Map-

Reduce context has been studied in [11]. The authors

study the problem of scheduling sharable jobs, where a

set of files needs to be accessed simultaneously by differ-

ent jobs. The aim is to maximize the rate of processing

these files by aggressively sharing scans, which is impor-

tant for jobs whose execution time is dominated by data

access, yet the input data cannot be cached in memory

due to its size. In MapReduce, such jobs have typically

long execution times, and therefore the proposed solu-

tion is to reorder their execution to amortize expensive

data access across multiple jobs. Traditional scheduling

algorithms (e.g., shortest job first) do not work well for

sharable jobs, and thus new techniques suited for the ef-

fective scheduling of sharable workloads are proposed.

Intuitively, the proposed scheduling policies prioritize

scheduling non-sharable scans ahead of ones that can

share I/O work with future jobs, if the arrival rate of

sharable future jobs is expected to be high.

The work by Silva et al. [95] targets cost-based opti-

mization of complex scripts that share common subex-

pressions and the approach is prototyped in Microsoft’s

SCOPE [112]. Such scripts, if processed naively, may

result in executing the same subquery multiple times,

leading to redundant processing. The main technical

contribution is dealing with competing physical require-

ments from different operators in a DAG, in a way that

leads to a globally optimal plan. An important differ-

ence to existing techniques is that locally optimizing

the cost of shared subexpressions does not necessarily

lead to an overall optimal plan, and thus the proposed

approach considers locally sub-optimal local plans that

can generate a globally optimal plan.

Many MapReduce workloads are incremental, re-

sulting in the need for MapReduce to run repeatedly

with small changes in the input. To process data incre-

mentally using MapReduce, users have to write their

own application-specific code. Incoop [17] allows exist-

ing MapReduce programs to execute transparently in

an incremental manner. Incoop detects changes to the

input and automatically updates the output. In order to

achieve this, a HDFS-like file system called Inc-HDFS

is proposed, and techniques for controlling granularity

are presented that make it possible to avoid redoing the

full task when only parts of it need to be processed. The

approach has a certain extra cost in the case where no

computations can be reused.

Support for incremental processing of new data is

also studied in [71,72]. The motivation is to support

one-pass analytics for applications that continuously

generate new data. An important observation of this

work is that support for incremental processing requires

non-blocking operations and avoidance of bottlenecks

in the processing flow, both computational and I/O-

specific. The authors’ main finding is to abandon the

sort-merge implementation for data partitioning and

parallel processing, for purely hash-based techniques

which are non-blocking. As a result, the sort cost of the

map phase is eliminated, and the use of hashing allows

fast in-memory processing of the Reduce function.

4.3 Early Termination

Sampling based on predicates raises the issue of lack

of early termination of map tasks [47], even when a

job has read enough input to produce the required out-

put. The problem addressed by [47] is how to produce

a fixed-size sample (that satisfies a given predicate) of

a massive data set using MapReduce. To achieve this

objective, some technical issues need to be addressed

on Hadoop, and thus two new concepts are defined. A

new type of job is introduced, called dynamic, which

is able to dynamically control its data access. In ad-

dition, the concept of Input Provider is introduced in

the execution model of Hadoop. The Input Provider is

provided by the job together with the Map and Re-

duce logic. Its role is to make dynamic decisions about

the access to data by the job. At regular intervals, the

JobClient provides statistics to the Input Provider, and

based on this information, the Input Provider can re-

spond in three different ways: (1) “end of input”, in

which case the running map tasks are allowed to com-

plete, but no new map tasks are invoked and the shuffle

phase is initiated, (2) “input available”, which means

that additional input needs to be accessed, and (3) “in-

put unavailable”, which indicates that no decision can

be made at this point and processing should continue

as normal until the next invocation of Input Provider.

EARL [67] aims to provide early results for analyti-

cal queries in MapReduce, without processing the entire

input data. EARL utilizes uniform sampling and works

iteratively to compute larger samples, until a given ac-

curacy level is reached, estimated by means of boot-

strapping. Its main contributions include incremental

computation of early results with reliable accuracy esti-

mates, which is increasingly important for applications

that handle vast amounts of data. Moreover, EARL em-

ploys delta maintenance to improve the performance of

re-executing a job on a larger sample size. At a tech-

nical level, EARL modifies Hadoop in three ways: (1)
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Fig. 6 Overview of the HaLoop framework [22,23].

reduce tasks can process input before the completion

of processing in the map tasks by means of pipelining,

(2) map tasks remain active until explicitly terminated,

and (3) an inter-communication channel between map

tasks and reduce tasks is established for checking the

satisfaction of the termination condition. In addition, a

modified reduce phase is employed, in which incremen-

tal processing of a job is supported. Compared to [47],

EARL provides an error estimation framework and fo-

cuses more on using truly uniform random samples.

The lack of early termination has been recognized in

the context of rank-aware processing in MapReduce [38],

which is also not supported efficiently. Various individ-

ual techniques are presented to support early termina-

tion for top-k processing, including the use of sorted ac-

cess to data, intelligent data placement using advanced

partitioning schemes tailored to top-k queries, and the

use of synopses for the data stored in HDFS that allow

efficient identification of blocks with promising tuples.

Most of these techniques can be combined to achieve

even greater performance gains.

RanKloud [24] has been proposed for top-k retrieval

in the cloud. RanKloud computes statistics (at run-

time) during scanning of records and uses these statis-

tics to compute a threshold (the lowest score for top-k

results) for early termination. In addition, a new par-

titioning method is proposed, termed uSplit, that aims

to repartition data in a utility-sensitive way, where util-

ity refers to the potential of a tuple to be part of the

top-k. The main difference to [38] is that RanKloud

cannot guarantee retrieval of k results, while [38] aims

at retrieval of the exact result.

4.4 Iterative Processing

The straightforward way of implementing iteration is

to use an outsider driver program to control the execu-

tion of loops and launch new MapReduce jobs in each

iteration. For example, this is the approach followed by

Mahout. In the following, we review iterative process-

ing using looping constructs, caching and pipelining,

recursive queries, and incremental iterations.

4.4.1 Loop-aware Processing, Caching and Pipelining

HaLoop [22,23] is a system designed for supporting iter-

ative data analysis in a MapReduce-style architecture.

Its main goals include avoidance of processing invariant

data at each iteration, support for termination check-

ing without the need for initiating an extra devoted

job for this task, maintaining the fault-tolerant fea-

tures of MapReduce, and seamless integration of exist-

ing MapReduce applications with minor code changes.

However, several modifications need to be applied at

various stages of MapReduce. First, an appropriate pro-

gramming interface is provided for expressing iteration.

Second, the scheduler is modified to ensure that tasks

are assigned to the same nodes in each iteration, and

thus enabling the use of local caches. Third, invariant

data is cached and does not need to be reloaded at each

iteration. Finally, by caching the reduce task’s local out-

put, it is possible to support comparisons of results of

successive iterations in an efficient way, and allow ter-

mination when convergence is identified. Figure 6 shows

how these modifications are reflected to specific compo-

nents in the architecture. It depicts the new loop control

module as well as the modules for local caching and in-

dexing in the HaLoop framework. The loop control is

responsible for initiating new MapReduce steps (loops)

until a user-specified termination condition is fulfilled.

HaLoop uses three types of caches: the map task and

reduce task input caches, as well as the reduce task out-

put cache. In addition, to improve performance, cached

data are indexed. The task scheduler is modified to be-

come loop-aware and exploits local caches. Also, failure

recovery is achieved by coordination between the task

scheduler and the task trackers.

MapReduce online [30] proposes to overcome the

built-in feature of materialization of output results of

map tasks and reduce tasks, by providing support for

pipelining of intermediate data from map tasks to re-

duce tasks. This is achieved by applying significant

changes to the MapReduce framework. In particular,

modification to the way data is transferred between

map task and reduce tasks as well as between reduce

tasks and new map tasks is necessary, and also the

TaskTracker and JobTracker have to be modified ac-

cordingly. An interesting observation is that pipelining

allows the execution framework to support continuous

queries, which is not possible in MapReduce. Compared

to HaLoop, it lacks the ability to cache data between

iterations for improving performance.
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NOVA [85] is a workflow manager developed by Ya-

hoo! for incremental processing of continuously arriv-

ing data. NOVA is implemented on top of Pig and

Hadoop, without changing their interior logic. How-

ever, NOVA contains modules that communicate with

Hadoop/HDFS, as in the case of the Data Manager

module that maintains the mapping from blocks to the

HDFS files and directories. In summary, NOVA intro-

duces a new layer of architecture on top of Hadoop to

support continuous processing of arriving data.

Twister [39] introduces an extended programming

model and a runtime for executing iterative MapReduce

computations. It relies on a publish/subscribe mecha-

nism to handle all communication and data transfer.

On each node, a daemon process is initiated that is

responsible for managing locally running map and re-

duce tasks, as well as for communication with other

nodes. The architecture of Twister differs substantially

from MapReduce, with indicative examples being the

assumption that input data in local disks are main-

tained as native files (differently than having a dis-

tributed file system), and that intermediate results from

map processes are maintained in memory, rather than

stored on disk. Some limitations include the need to

break large data sets to multiple files, the assumption

that map output fits in the distributed memory, and no

intra-iteration fault-tolerance.

CBP [75,76] (Continuous Bulk Processing) is an ar-

chitecture for maintaining state during bulk processing,

thus enabling the implementation of applications that

support incremental analytics. CBP introduces a new

processing operator, called translate, that has two dis-

tinguishing features: it takes state as an explicit input,

and supports group-based processing. In this way, CBP

achieves maintenance of persistent state, thus re-using

work that has been carried out already (incremental

processing), while at the same time it drastically re-

duces data movement in the system.

Pregel [78] is a scalable system for graph process-

ing where a program is a sequence of iterations (called

supersteps). In each superstep, a vertex sends and re-

ceives messages, updates its state as well as the state

of its outgoing edges, and modifies the graph topol-

ogy. The graph is partitioned, and the partitions are as-

signed to machines (workers), while this assignment can

be customized to improve locality. Each worker main-

tains in memory the state of its part of the graph. To

aggregate global state, tree-based aggregation is used

from workers to a master machine. However, to recover

from a failure during some iteration, Pregel needs to

re-execute all vertices in the iteration. Furthermore, it

is restricted to graph data representation, for exam-

ple it cannot directly support non-graph iterative data

mining algorithms, such as clustering (e.g., k-means) or

dimensionality reduction (e.g., multi-dimensional scal-

ing).

PrIter [111] is a distributed framework for faster

convergence of iterative tasks by support for priori-

tized iteration. In PrIter, users can specify the prior-

ity of each processing data point, and in each iteration,

only some data points with high priority values are pro-

cessed. The framework supports maintenance of previ-

ous states across iterations (not only the previous itera-

tion’s), prioritized execution, and termination check. A

StateTable, implemented as an in-memory hash table,

is kept at reduce-side to maintain state. Interestingly, a

disk-based extension of PrIter is also proposed for cases

that the maintained state does not fit in memory.

In many iterative applications, some data are used

in several iterations, thus caching this data can avoid

many disk accesses. PACMan [14] is a caching service

that increases the performance of parallel jobs in a

cluster. The motivation is that clusters have a large

amount of (aggregated) memory, and this is underuti-

lized. The memory can be used to cache input data,

however, if there are enough slots for all tasks to run

in parallel, caching will only help if all tasks have their

input data cached, otherwise those that have not will

be stragglers and caching is of no use. To facilitate this,

PACMan provides coordinated management of the dis-

tributed caches, using cache-replacement strategies de-

veloped particularly for this context. The improvements

depend on the amount of data re-use, and it is therefore

not beneficial for all application workloads.

4.4.2 Recursive Queries

Support for recursive queries in the context of Map-

Reduce is studied in [3]. Examples of recursive queries

that are meaningful to be implemented in MapReduce

include PageRank computation, transitive closure, and

graph processing. The authors explore ways to imple-

ment recursion. A significant observation is that recur-

sive tasks usually need to produce some output before

completion, so that it can be used as feedback to the

input. Hence, the blocking property of map and reduce

(a task must complete its work before delivering output

to other tasks) violates the requirements of recursion.

In [21], recursive queries for machine learning tasks

using Datalog are proposed over a data-parallel engine

(Hyracks [19]). The authors argue in favor of a global

declarative formulation of iterative tasks using Dat-

alog, which offers various optimization opportunities

for physical dataflow plans. Two programming models

(Pregel [78] and iterative MapReduce) are shown that
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they can be captured in Datalog, thus demonstrating

the generality of the proposed framework.

4.4.3 Incremental Processing

REX [82] is a parallel query processing platform that

also supports recursive queries expressed in extended

SQL, but focuses mainly on incremental refinement of

results. In REX, incremental updates (called program-

mable deltas) are used for state refinement of operators,

instead of accumulating the state produced by previous

iterations. Its main contribution is increased efficiency

of iterative processing, by only computing and prop-

agating deltas describing changes between iterations,

while maintaining state that has not changed. REX

is based on a different architecture than MapReduce,

and also uses cost-based optimization to improve per-

formance. REX is compared against HaLoop and shown

to outperform it in various setups.

An iterative data flow system is presented in [43],

where the key novelty is support for incremental itera-

tions. Such iterations are typically encountered in algo-

rithms that entail sparse computational dependencies

(e.g., graph algorithms), where the result of each itera-

tion differs only slightly from the previous result.

Differential dataflow [79] is a system proposed for

improving the performance of incremental processing

in a parallel dataflow context. It relies on differential

computation to update the state of computation when

its inputs change, but uses a partially ordered set of

versions, in contrast to a totally ordered sequence of

versions used by traditional incremental computation.

This results in maintaining the differences for multiple

iterations. However, the state of each version can be
reconstructed by indexing the related set of updates, in

contrast to consolidating updates and discarding them.

Thus, differential dataflow supports more effective re-

use of any previous state, both for changes due to an

updated input and due to iterative execution.

4.5 Query Optimization

4.5.1 Processing Optimizations

HadoopDB [2] is a hybrid system, aiming to exploit the

best features of MapReduce and parallel DBMSs. The

basic idea behind HadoopDB is to install a database

system on each node and connect these nodes by means

of Hadoop as the task coordinator and network com-

munication layer. Query processing on each node is im-

proved by assigning as much work as possible to the

local database. In this way, one can harvest all the ben-

efits of query optimization provided by the local DBMS.
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Particularly, in the case of joins, where Hadoop does not

support data colocation, a significant amount of data

needs to be repartitioned by the join key in order to be

processed by the same Reduce process. In HadoopDB,

when the join key matches the partitioning key, part

of the join can be processed locally by the DBMS,

thus reducing substantially the amount of data shuffled.

The architecture of HadoopDB is depicted in Figure 7,

where the newly introduced components are marked

with bold lines and text. The database connector is an

interface between database systems and TaskTrackers.
It connects to the database, executes a SQL query, and

returns the result in the form of key-value pairs. The

catalog maintains metadata about the databases, such

as connection parameters as well as metadata on data

sets stored, replica locations, data partitioning proper-

ties. The data loader globally repartitions data based on

a partition key during data upload, breaks apart single

node data into smaller partitions, and bulk loads the

databases with these small partitions. Finally, the SMS

planner extends Hive and produces query plans that

can exploit features provided by the available database

systems. For example, in the case of a join, some tables

may be colocated, thus the join can be pushed entirely

to the database engine (similar to a map-only job).

Situation-Aware Mappers (SAMs) [101] have been

recently proposed to improve the performance of query

processing in MapReduce in different ways. The crucial

idea behind this work is to allow map tasks (mappers)

to communicate and maintain global state by means of

a distributed meta-data store, implemented by the dis-
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tributed coordination service Apache ZooKeeper2, thus

making globally coordinated optimization decisions. In

this way, MapReduce is enhanced with dynamic and

adaptive features. Adaptive Mappers can avoid frequent

checkpointing by taking more input splits. Adaptive

Combiners can perform local aggregation by maintain-

ing a hash table in the map task and using it as a

cache. Adaptive Sampling creates local samples, aggre-

gates them, and produces a global histogram that can

be used for various purposes (e.g., determine the sat-

isfaction of a global condition). Adaptive Partitioning

can exploit the global histogram to produce equi-sized

partitions for better load balancing.

Clydesdale [60] is a system for structured data pro-

cessing, where the data fits a star schema, which is

built on top of MapReduce without any modifications.

Clydesdale improves the performance of MapReduce by

adopting the following optimization techniques: colum-

nar storage, replication of dimension tables on local

storage of each node which improves the performance of

joins, re-use of hash tables stored in memory by schedul-

ing map tasks to specific nodes intentionally, and block

iteration (instead of row iteration). However, Clydes-

dale is limited by the available memory on each indi-

vidual node, i.e., when the dimension tables do not fit

in memory.

4.5.2 Configuration Parameter Tuning

Starfish [51] introduces cost-based optimization of Map-

Reduce programs. The focus is on determining appro-

priate values for the configuration parameters of a Map-

Reduce job, such as number of map and reduce tasks,

amount of allocated memory. Determining these param-

eters is both cumbersome and unclear for the user, and

most importantly they significantly affect the perfor-

mance of MapReduce jobs, as indicated in [15]. To ad-

dress this problem, a Profiler is introduced that collects

estimates about the size of data processed, the usage of

resources, and the execution time of each job. Further,

a What-if Engine is employed to estimate the benefit

from varying a configuration parameter using simula-

tions and a model-based estimation method. Finally, a

cost-based optimizer is used to search for potential con-

figuration settings in an efficient way and determine a

setting that results in good performance.

4.5.3 Plan Refinement and Operator Reordering

AQUA [105] is a query optimizer for Hive. One signifi-

cant performance bottleneck in MapReduce is the cost

2 http://zookeeper.apache.org/

of storing intermediate results. In AQUA, this prob-

lem is addressed by a two-phase optimization where

join operators are organized into a number of groups

which each can be executed as one job, and then, the

intermediate results from the join groups are joined to-

gether. AQUA also provides two important query plan

refinements: sharing table scan in map phase, and con-

current jobs, where independent subqueries can be exe-

cuted concurrently if resources are available. One limi-

tation of AQUA is the use of pairwise joins as the basic

scheduling unit, which excludes the evaluation of multi-

way joins in one MapReduce job. As noted in [110], in

some cases, evaluating a multi-way join with one Map-

Reduce job can be much more efficient.

YSmart [69] is a correlation-aware SQL-to-Map-

Reduce translator, motivated by the slow speed for cer-

tain queries using Hive and other “one-operation-to-

one-job” translators. Correlations supported include

multiple nodes having input relation sets that are not

disjoint, multiple nodes having both non-disjoint input

relations sets and same partition key, and occurrences

of nodes having same partition key as child node. By

utilizing these correlations, the number of jobs can be

reduced thus reducing time-consuming generation and

reading of intermediate results. YSmart also has special

optimizations for self-join that require only one table

scan. One possible drawback of YSmart is the goal of

reducing the number of jobs, which does not necessarily

give the most reduction in terms of performance. The

approach has also limitations in handling theta-joins.

RoPE [8] collects statistics from running jobs and

use these for re-optimizing future invocations of the

same (or similar) job by feeding these statistics into

a cost-based optimizer. Changes that can be performed

during re-optimization include changing degree of par-

allelism, reordering operations, choosing appropriate im-

plementations and grouping operations that have lit-

tle work into a single physical task. One limitation of

RoPE is that it depends on the same jobs being ex-

ecuted several times and as such is not beneficial for

queries being executed the first time. This contrasts to

other approach like, e.g., Shark [107].

In MapReduce, user-defined functions like Map and

Reduce are treated like “black boxes”. The result is that

in the data-shuffling stage, we must assume conserva-

tively that all data-partition properties are lost after

applying the functions. In SUDO [109], it is proposed

that these functions expose data-partition properties,

so that this information can be used to avoid unneces-

sary reordering operations. Although this approach in

general works well, it should be noted that it can also

in some situations introduce serious data skew.

http://zookeeper.apache.org/
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4.5.4 Code Analysis and Query Optimization

The aim of HadoopToSQL [54] is to be able to utilize

SQL’s features for indexing, aggregation, and grouping

from MapReduce. HadoopToSQL uses static analysis to

analyze the Java code of a MapReduce query in order

to completely or partially transform it to SQL. This

makes it possible to access only parts of data sets when

indexes are available, instead of a full scan. Only certain

classes of MapReduce queries can be transformed, for

example there can be no loops in the Map function. The

approach is implemented on top of a standard database

system, and it is not immediately applicable in a stan-

dard MapReduce environment without efficient index-

ing. This potentially also limits the scalability of the

approach to the scalability of the database system.

Manimal [56] is a framework for automatic analysis

and optimization of data-centric MapReduce programs.

The aim of this framework is to improve substantially

the performance of MapReduce programs by exploiting

potential query optimizations as in the case of tradi-

tional RDBMSs. Exemplary optimizations that can be

automatically detected and be enforced by Manimal in-

clude the use of local indexes and the delta-compression

technique for efficient representation of numerical val-

ues. Manimal shares many similarities with Hadoop-

ToSQL, as they both rely on static analysis of code

to identify optimization opportunities. Also, both ap-

proaches are restricted to detecting certain types of

code. Some differences also exist, the most important

being that the actual execution in HadoopToSQL is

performed by a database system, while the execution

in Manimal is still performed on top of MapReduce.

4.5.5 Data Flow Optimization

An increasing number of complex analytical tasks are

represented as a workflow of MapReduce jobs. Efficient

processing of such workflows is an important problem,

since the performance of different execution plans of the

same workflow varies considerably. Stubby [73] is a cost-

based optimizer for MapReduce workflows that searches

the space of the full plan of the workflow to identify op-

timization opportunities. The input to Stubby is an an-

notated MapReduce workflow, called plan, and its out-

put is an equivalent, yet optimized plan. Stubby works

by transforming a plan to another equivalent plan, and

in this way, it searches the space of potential transfor-

mations in a selective way. The space is searched us-

ing two traversals of the workflow graph, where in each

traversal different types of transformations are applied.

The cost of a plan is derived by exploiting the What-If

engine proposed in previous work [51].

Hueske et al. [52] study optimization of data flows,

where the operators are User-defined Functions (UDFs)

with unknown semantics, similar to “black boxes”. The

aim is to support reorderings of operators (together

with parallelism) whose properties are not known in

advance. To this end, automatic static code analysis is

employed to identify a limited set of properties that

can guarantee safe reorderings. In this way, typical op-

timizations carried out on traditional RDBMSs, such

as selection and join reordering as well as limited forms

of aggregation push-down, are supported.

4.6 Fair Work Allocation

Since reduce tasks work in parallel, an overburdened

reduce task may stall the completion of a job. To assign

the work fairly, techniques such as pre-processing and

sampling, repartitioning, and batching are employed.

4.6.1 Pre-processing and Sampling

Kolb et al. [62] study the problem of load balancing in

MapReduce in the context of entity resolution, where

data skew may assign workload to reduce tasks un-

fairly. This problem naturally occurs in other applica-

tions that require pairwise computation of similarities

when data is skewed, and thus it is considered a built-

in vulnerability of MapReduce. Two techniques (Block-

Split and PairRange) are proposed, and both rely on

the existence of a pre-processing phase (a separate Map-

Reduce job) that builds information about the number

of entities present in each block.

Ramakrishnan et al. [88] aim at solving the prob-

lem of reduce keys with large loads. This is achieved

by splitting large reduce keys into several medium-load

reduce keys, and assigning medium-load keys to reduce

tasks using a bin-packing algorithm. Identifying such

keys is performed by sampling before the MapReduce

job starts, and information about reduce-key load size

(large and medium keys) is stored in a partition file.

4.6.2 Repartitioning

Gufler et al. [48] study the problem of handling data

skew by means of an adaptive load balancing strategy.

A cost estimation method is proposed to quantify the

cost of the work assigned to reduce tasks, in order to

ensure that this is performed fairly. By means of com-

puting local statistics in the map phase and aggregating

them to produce global statistics, the global data distri-

bution is approximated. This is then exploited to assign

the data output from the map phase to reduce tasks in

a way that achieves improved load balancing.
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In SkewReduce [64] mitigating skew is achieved by

an optimizer utilizing user-supplied cost functions. Re-

quiring users to supply this is a disadvantage and is

avoided in their follow-up approach SkewTune [65].

SkewTune handles both skew caused by an uneven dis-

tribution of input data to operator partitions (or tasks)

as well as skew caused by some input records (or key-

groups) taking much longer to process than others, with

no extra user-supplied information. When SkewTune

detects a straggler and its reason is skew, it reparti-

tions the straggler’s remaining unprocessed input data

to one or additional slots, including ones that it expects

to be available soon.

4.6.3 Batching at Reduce Side

Sailfish [89] aims at improving the performance of Map-

Reduce by reducing the number of disk accesses. In-

stead of writing to intermediate files at map side, data

is shuffled directly and then written to a file at reduce

side, one file per reduce task (batching). The result is

one intermediate file per reduce task, instead of one per

map task, giving a significant reduction in disk seeks for

the reduce task. This approach also has the advantage

of giving more opportunities for auto-tuning (number

of reduce tasks). Sailfish aims at applications where the

size of intermediate data is large, and as also noted

in [89], when this is not the case other approaches for

handling intermediate data might perform better.

Themis [90] considers medium-sized Hadoop-clusters

where failures will be less common. In case of failure,

jobs are re-executed. Task-level fault-tolerance is elim-

inated by aggressively pipelining records without un-

necessarily materializing intermediate results to disk.

At reduce side, batching is performed, similar to how it

is done in Sailfish [89]. Sampling is performed at each

node and is subsequently used to detect and mitigate

skew. One important limitation of Themis is its depen-

dence on controlling access to the host machine’s I/O

and memory. It is unclear how this will affect it in a set-

ting where machines are shared with other applications.

Themis also has problems handling stragglers since jobs

are not split into tasks.

4.7 Interactive and Real-time Processing

Support for interactive and real-time processing is pro-

vided by a mixture of techniques such as streaming,

pipelining, in-memory processing, and pre-computation.

4.7.1 Streaming and Pipelining

Dremel [80] is a system proposed by Google for inter-

active analysis of large-scale data sets. It complements

MapReduce by providing much faster query process-

ing and analysis of data, which is often the output

of sequences of MapReduce jobs. Dremel combines a

nested data model with columnar storage to improve

retrieval efficiency. To achieve this goal, Dremel intro-

duces a lossless representation of record structure in

columnar format, provides fast encoding and record as-

sembly algorithms, and postpones record assembly by

directly processing data in columnar format. Dremel

uses a multi-level tree architecture to execute queries,

which reduces processing time when more levels are

used. It also uses a query dispatcher that can be pa-

rameterized to return a result when a high percent-

age but not all (e.g., 99%) of the input data has been

processed. The combination of the above techniques is

responsible for Dremel’s fast execution times. On the

downside, for queries involving many fields of records,

Dremel may not work so well due to the overhead im-

posed by the underlying columnar storage. In addi-

tion, Dremel supports only tree-based aggregation and

not more complex DAGs required for machine learning

tasks. A query-processing framework sharing the aims

of Dremel, Impala [63], has recently been developed in

the context of Hadoop and extends Dremel in the sense

it can also support multi-table queries.

Hyracks [19] is a platform for data-intensive pro-

cessing that improves the performance of Hadoop. In

Hyracks, a job is a dataflow DAG that contains op-

erators and connectors, where operators represent the

computation steps while connectors represent the re-

distribution of data from one step to another. Hyracks

attains performance gains due to design and implemen-

tation choices such as the use of pipelining, support of

operators with multiple inputs, additional description

of operators that allow better planning and scheduling,

and a push-based model for incremental data move-

ment between producers and consumers. One weakness

of Hyracks is the lack of a mechanism for restarting only

the necessary part of a job in the case of failures, while

at the same time keeping the advantages of pipelining.

Tenzing [27] is a SQL query execution engine built

on top of MapReduce by Google. Compared to Hive [99,

100] or Pig [86], Tenzing additionally achieves low la-

tency and provides a SQL92 implementation with some

SQL99 extensions. At a higher level, the performance

gains of Tenzing are due to the exploitation of tradi-

tional database techniques, such as indexes as well as

rule-based and cost-based optimization. At the imple-

mentation level, Tenzing keeps processes (workers) run-
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ning constantly in a worker pool, instead of spawning

new processes, thus reducing query latency. Also, hash

table based aggregation is employed to avoid the sort-

ing overhead imposed in the reduce task. The perfor-

mance of sequences of MapReduce jobs is improved by

implementing streaming between the upstream reduce

task and the downstream map task as well as memory

chaining by colocating these tasks in the same process.

Another important improvement is a block-based shuf-

fle mechanism that avoids the overheads of row seri-

alization and deserialization encountered in row-based

shuffling. Finally, when the processed data are smaller

than a given threshold, local execution on the client is

used to avoid sending the query to the worker pool.

4.7.2 In-memory Processing

PowerDrill [49] uses a column-oriented datastore and

various engineering choices to improve the performance

of query processing even further. Compared to Dremel

that uses streaming from DFS, PowerDrill relies on hav-

ing as much data in memory as possible. Consequently,

PowerDrill is faster than Dremel, but it supports only a

limited set of selected data sources, while Dremel sup-

ports thousands of different data sets. PowerDrill uses

two dictionaries as basic data structures for represent-

ing a data column. Since it relies on memory storage,

several optimizations are proposed to keep the mem-

ory footprint of these structures small. Since it works

in-memory, PowerDrill is constrained by the available

memory for maintaining the necessary data structures.

Shark [42,107] (Hive on Spark [108]) is a system de-

veloped at UC Berkeley that improves the performance

of Hive by exploiting in-memory processing. Shark uses

a main-memory abstraction called resilient distributed

dataset (RDD) that is similar to shared memory in large

clusters. Compared to Hive, the improvement in perfor-

mance mainly stems from inter-query caching of data

in memory, thus eliminating the need to read/write re-

peatedly on disk. In addition, other improving tech-

niques are employed including hash-based aggregation

and dynamic partial DAG execution. Shark is restricted

by the size of available main memory, for example when

the map output does not fit in memory.

M3R [94] (Main Memory MapReduce) is a frame-

work that runs MapReduce jobs in memory much faster

than Hadoop. Key technical changes of M3R for im-

proving performance include sharing heap state between

jobs, elimination of communication overheads imposed

by the JobTracker and heartbeat mechanisms, caching

input and output data in memory, in-memory shuffling,

and always mapping the same partition to the same lo-

cation across all jobs in a sequence thus allowing re-use

of built memory structures. The limitations of M3R in-

clude lack of support for resilience and constraints on

the type of supported jobs imposed by memory size.

4.7.3 Pre-computation

BlinkDB [7,9] is a query processing framework for run-

ning interactive queries on large volumes of data. It

extends Hive and Shark [42] and focuses on quick re-

trieval of approximate results, based on pre-computed

samples. The performance and accuracy of BlinkDB de-

pends on the quality of the samples, and amount of

recurring query templates, i.e., set of columns used in

WHERE and GROUP-BY clauses.

4.8 Processing n-way Operations

By design, a typical MapReduce job is supposed to

consume input from one file, thereby complicating the

implementation of n-way operations. Various systems,

such as Hyracks [19], have identified this weakness and

support n-way operators by design, which naturally

take multiple sources as input. In this way, operations

such as joins of multiple data sets can be easily im-

plemented. In the sequel, we will use the join operator

as a typical example of n-way operation, and we will

examine how joins are supported in MapReduce.

Basic methods for processing joins in MapReduce

include (1) distributing the smallest operand(s) to all

nodes, and performing the join by the Map or Reduce

function, and (2) map-side and reduce-side join vari-

ants [104]. The first approach is only feasible for rela-

tively small operands, while the map-side join is only

possible in restricted cases when all records with a par-

ticular key end up at the same map task (for example,

this is satisfied if the operands are outputs of jobs that

had the same number of reduce task and same keys,

and the output files are smaller than one HDFS block).

The more general method is reduce-side join, which can

be seen as a variant of traditional parallel join where

input records are tagged with operands and then shuf-

fled so that all records with a particular key end up at

the same reduce task and can be joined there.

More advanced methods for join processing in Map-

Reduce are presented in the following, categorized ac-

cording to the type of join.

4.8.1 Equi-join

Map-Reduce-Merge [29] introduces a third phase to Map-

Reduce processing, besides map and reduce, namely

merge. The merge is invoked after reduce and receives
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as input two pairs of key/values that come from two dis-

tinguishable sources. The merge is able to join reduced

outputs, thus it can be effectively used to implement

join of data coming from heterogeneous sources. The

paper describes how traditional relational operators can

be implemented in this new system, and also focuses ex-

plicitly on joins, demonstrating the implementation of

three types of joins: sort-merge joins, hash joins, and

block nested-loop joins.

Map-Join-Reduce [58] also extends MapReduce by

introducing a third phase called join, between map and

reduce. The objective of this work is to address the lim-

itation of the MapReduce programming model that is

mainly designed for processing homogeneous data sets,

i.e., the same logic encoded in the Map function is

applied to all input records, which is clearly not the

case with joins. The main idea is that this intermediate

phase enables joining multiple data sets, since join is in-

voked by the runtime system to process joined records.

In more details, the Join function is run together with

Reduce in the same ReduceTask process. In this way,

it is possible to pipeline join results from join to re-

duce, without the need of checkpointing and shuffling

intermediate results, which results in significant per-

formance gains. In practice, two successive MapReduce

jobs are required to process a join. The first job per-

forms filtering, joins the qualified tuples, and pushes

the join results to reduce tasks for partial aggregation.

The second job assembles and combines the partial ag-

gregates to produce the final result.

The work in [5,6] on optimizing joins shares many

similarities in terms of objectives with Map-Join-Reduce.

The authors study algorithms that aim to minimize the

communication cost, under the assumption that this is

the dominant cost during query processing. The focus

is on processing multi-way joins as a single MapReduce

process and the results show that in certain cases this

works better than having a sequence of binary joins. In

particular, the proposed approach works better for (1)

analytical queries where a very large fact table is joined

with many small dimension tables and (2) queries in-

volving paths in graphs with high out-degree.

The work in [18] provides a comparison of join al-

gorithms for log processing in MapReduce. The main

focus of this work is on two-way equijoin processing of

relations L and R. The compared algorithms include

Repartition Join, Broadcast Join, Semi-Join and Per-

Split Semi-Join. Repartition Join is the most common

join strategy in which L and R are partitioned on join

key and the pairs of partitions with common key are

joined. Broadcast Join runs as a map-only job that re-

trieves the smaller relation, e.g., R (|R| << |L|), over

the network to join with local splits of L. Semi-Join op-

erates in three MapReduce jobs and the main idea is to

avoid sending records of R over the network that will

not join with L. Finally, Per-Split Semi-Join also has

three phases and tries to send only those records of R

that will join with a particular split Li of L. In addition,

various pre-processing techniques, such as partitioning,

replication and filtering, are studied that improve the

performance. The experimental study indicates that all

join strategies are within a factor of 3 in most cases in

terms of performance for a high available network band-

width (in more congested networking environments this

factor is expected to increase). Another reason that this

factor is relatively small is that MapReduce has inher-

ent overheads related to input record parsing, checksum

validation and task initialization.

Llama [74] proposes the concurrent join for process-

ing multi-way joins in a single MapReduce job. Dif-

ferently than the existing approaches, Llama relies on

columnar storage of data which allows processing as

many join operators as possible in the map phase. Ob-

viously, this approach significantly reduces the cost of

shuffling. To enable map-side join processing, when data

is loaded in HDFS, it is partitioned into vertical groups

and each group is stored sorted, thus enabling efficient

join processing of relations sorted on key. During query

processing, it is possible to scan and re-sort only some

columns of the underlying relation, thus improving sub-

stantially the cost of sorting.

4.8.2 Theta-join

Processing of theta-joins using a single MapReduce job

is first studied in [84]. The basic idea is to partition

the join space to reduce tasks in an intentional man-

ner that (1) balances input and output costs of reduce

tasks, while (2) minimizing the number of input tuples

that are duplicated at reduce tasks. The problem is ab-

stracted to finding a mapping of the cells of the join

matrix to reduce tasks that minimizes the job comple-

tion time. A cell M(i, j) of the join matrix M is set to

true if the i-th tuple from S and the j-th tuple from

R satisfy the join condition, and these cells need to

be assigned to reduce tasks. However, this knowledge

is not available to the algorithm before seeing the in-

put data. Therefore, the proposed algorithm (1-Bucket-

Theta) uses a matrix to regions mapping that relies only

on input cardinalities and guarantees fair balancing to

reduce tasks. The algorithm follows a randomized pro-

cess to assign an incoming tuple from S (R) to a random

row (column). Given the mapping, it then identifies a

set of intersecting regions of R (S), and outputs multi-

ple tuples having the corresponding regionsIDs as keys.

This is a conservative approach that assumes that all in-
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tersecting cells are true, however the reduce tasks can

then find the actual matches and ignore those tuples

that do not match. To improve the performance of this

algorithm, additional statistics about the input data

distribution are required. Approximate equi-depth his-

tograms of the inputs are constructed using two Map-

Reduce jobs, and can be exploited to identify empty

regions in the matrix. Thus, the resulting join algo-

rithms, termed M-Bucket, can improve the runtime of

any theta-join.

Multi-way theta-joins are studied in [110]. Similar

to [5,6], the authors consider processing a multi-way

join in a single MapReduce job, and identify when a

join should be processed by means of a single or multiple

MapReduce jobs. In more detail, the problem addressed

is given a limited number of available processing units,

how to map a multi-way theta-join to MapReduce jobs

and execute them in a scheduled order, such that the

total execution time is minimized. To this end, they pro-

pose rules to decompose a multi-way theta-join query

and a suitable cost model that estimates the minimum

cost of each decomposed query plan, and selecting the

most efficient one using one MapReduce job.

4.8.3 Similarity join

Set-similarity joins in MapReduce are first studied

in [102], where the PPJoin+ [106] algorithm is adapted

for MapReduce. The underlying data can be strings or

sets of values, and the aim is to identify pairs of records

with similarity above a certain user-defined threshold.

All proposed algorithms are based on the prefix filter-

ing technique. The proposed approach relies on three

stages, and each stage can be implemented by means of

one or two MapReduce jobs. Hence, the minimum num-

ber of MapReduce jobs to compute the join is three. In

a nutshell, the first stage produces a list of join to-

kens ordered by frequency count. In the second stage,

the record ID and its join tokens are extracted from

the data, distributed to reduce tasks, and the reduce

tasks produce record ID pairs of similar records. The

third stage performs duplicate elimination and joins the

records with IDs produced by the previous stage to gen-

erate actual pairs of joined records. The authors study

both the case of self-join as well as binary join.

V-SMART-Join [81] addresses the problem of com-

puting all-pair similarity joins for sets, multisets and

vector data. It follows a two stage approach consist-

ing of a joining phase and a similarity phase; in the

first phase, partial results are computed and joined,

while the second phase computes the exact similarities

of the candidate pairs. In more detail, the joining phase

uses two MapReduce jobs to transform the input tuples

to join tuples, which essentially are multiple tuples for

each multiset (one tuple for each element in the multi-

set) enhanced with some partial results. The similarity

phase also consists of two jobs. The first job builds an

inverted index and scans the index to produce candi-

date pairs, while the second job computes the similarity

between all candidate pairs. V-SMART-Join is shown

to outperform the algorithm of Vernica et al. [102] and

also demonstrates some applications where the amount

of data that need to be kept in memory is so high that

the algorithm in [102] cannot be applied.

SSJ-2R and SSJ-2 (proposed in [16]) are also based

on prefix filtering and use two MapReduce phases to

compute the similarity self-join in the case of document

collections. Document representations are characterized

by sparseness, since only a tiny subset of entries in the

lexicon occur in any given document. We focus on SSJ-

2R which is the most efficient of the two and introduces

novelty compared to existing work. SSJ-2R broadcasts a

remainder file that contains frequently occurring terms,

which is loaded in memory in order to avoid remote ac-

cess to this information from different reduce tasks. In

addition, to handle large remainder files, a partitioning

technique is used that splits the file in K almost equi-

sized parts. In this way, each reduce task is assigned

only with a part of the remainder file, at the expense of

replicating documents to multiple reduce tasks. Com-

pared to the algorithm in [102], the proposed algorithms

perform worse in the map phase, but better in the re-

duce phase, and outperform [102] in total.

MRSimJoin [96,97] studies the problem of distance

range join, which is probably the most common case of

similarity join. Given two relations R and S, the aim is

to retrieve pairs of objects r ∈ R and s ∈ S, such that

d(r, s) ≤ ε, where d() is a metric distance function and

ε is a user-specified similarity threshold. MRSimJoin

extends the centralized algorithm QuickJoin [55] to be-

come applicable in the context of MapReduce. From a

technical viewpoint, MRSimJoin iteratively partitions

the input data into smaller partitions (using a number

of pivot objects), until each partition fits in the main

memory of a single machine. To achieve this goal, mul-

tiple partitioning rounds (MapReduce jobs) are neces-

sary, and each round partitions the data in a previously

generated partition. The number of rounds decreases

for increased number of pivots, however this also in-

creases the processing cost of partitioning. MRSimJoin

is compared against [84] and shown to outperform it.

Parallel processing of top-k similarity joins is stud-

ied in [61], where the aim is to retrieve the k most

similar (i.e., closest) pairs of objects from a database

based on some distance function. Contrary to the other

approaches for similarity joins, it is not necessary to de-
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fine a similarity threshold, only k is user-specified. The

basic technique used is partitioning of the pairs of ob-

jects in such a way that every pair appears in a single

partition only, and then computing top-k closest pairs

in each partition, followed by identifying the global top-

k objects from all partitions. In addition, an improved

strategy is proposed in which only a smaller subset

of pairs (that includes the correct top-k pairs) is dis-

tributed to partitions. To identify this smaller subset,

sampling is performed to identify a similarity threshold

τ that bounds the distance of the k-th closest pair.

In [4] fuzzy joins are studied. Various algorithms

that rely on a single MapReduce job are proposed, which

compute all pairs of records with similarity above a

certain user-specified threshold, and produce the ex-

act result. The algorithms focus on three distance func-

tions: Hamming distance, Edit distance, and Jaccard

distance. The authors provide a theoretical investiga-

tion of algorithms whose cost is quantified by means of

three metrics; (1) the total map or preprocessing cost

(M), (2) the total communication cost (C), and (3) the

total computation cost of reduce tasks (R). The objec-

tive is to identify MapReduce procedures (correspond-

ing to algorithms) that are not dominated when the

cost space of (M,C,R) is considered. Based on a cost

analysis, the algorithm that performs best for a subset

of the aforementioned cost metrics can be selected.

4.8.4 k-NN and Top-k join

The goal of k-NN join is to produce the k nearest neigh-

bors of each point of a data set S from another data set

R and it has been recently studied in the MapReduce

context in [77]. After demonstrating two baseline algo-

rithms based on block nested loop join (H-BNLJ ) and

indexed block nested loop join (H-BRJ ), the authors

propose an algorithm termed H-zkNNJ that relies on

one-dimensional mapping (z-order) and works in three

MapReduce phases. In the first phase, randomly shifted

copies of the relations R and S are constructed and

the partitions Ri and Si are determined. In the second

phase, Ri and Si are partitioned in blocks and also a

candidate k nearest neighbor set for each object r ∈ Ri

is computed. The third phase simply derives the k near-

est neighbors from the candidate set.

A top-k join (also known as rank join) retrieves the k

join tuples from R and S with highest scores, where the

score of a join tuple is determined by a user-specified

function that operates on attributes of R and S. In

general, the join between R and S in many-to-many.

RanKloud [24] computes top-k joins in MapReduce

by employing a three stage approach. In the first stage,

the input data are repartitioned in a utility-aware bal-

anced manner. This is achieved by sampling and esti-

mating the join selectivity and threshold that serves as

a lower bound for the score of the top-k join tuple. In

the second stage, the actual join is performed between

the new partitions. Finally, in the third stage, the inter-

mediate results produced by the reduce tasks need to be

combined to produce the final top-k result. RanKloud

delivers the correct top-k result, however the retrieval

of k results cannot be guaranteed (i.e., fewer than k

tuples may be produced), thus it is classified as an ap-

proximate algorithm. In [38] the aim is to provide an

exact solution to the top-k join problem in MapReduce.

A set of techniques that are particularly suited for top-k

processing is proposed, including implementing sorted

access to data, applying angle-based partitioning, and

building synopses in the form of histograms for captur-

ing the score distribution.

4.8.5 Analysis

In the following, an analysis of join algorithms in Map-

Reduce is provided based on five important phases that

improve the performance of query processing.

First, improved performance can be achieved by pre-

processing. This includes techniques such as sampling,

which can give a fast overview of the underlying data

distribution or input statistics. Unfortunately, depend-

ing on the statistical information that needs to be gen-

erated, pre-processing may require one or multiple Map-

Reduce jobs (e.g., for producing an equi-depth histo-

gram), which entails extra costs and essentially pre-
vents workflow-style processing on the results of a pre-

vious MapReduce job. Second, pre-filtering is employed

in order to early discard input records that cannot con-

tribute to the join result. It should be noted that pre-

filtering is not applicable to every type of join, sim-

ply because there exist join types that need to exam-

ine all input tuples as they constitute potential join

results. Third, partitioning is probably the most im-

portant phase, in which input tuples are assigned to

partitions that are distributed to reduce tasks for join

processing. Quite often, the partitioning causes replica-

tion (also called duplication) of input tuples to multi-

ple reduce tasks, in order to produce the correct join

result in a parallel fashion. This is identified as the

fourth phase. Finally, load balancing of reduce tasks is

extremely important, since the slowest reduce task de-

termines the overall job completion time. In particular,

when the data distribution is skewed, a load balancing

mechanism is necessary to mitigate the effect of uneven

work allocation.
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Join type Approach Pre- Pre- Partitioning Replication Load

processing filtering balancing

Equi-join Map-Reduce-Merge [29] N/A N/A N/A N/A N/A
Map-Join-Reduce [58] N/A N/A N/A N/A N/A
Afrati et al. [5,6] No No Hash-based “share”-based No
Repartition join [18] Yes No Hash-based No No
Broadcast join [18] Yes No Broadcast Broadcast R No
Semi-join [18] Yes No Broadcast Broadcast No
Per-split semi-join [18] Yes No Broadcast Broadcast No
Llama [74] Yes No Vertical groups No No

Theta-join 1-Bucket-Theta [84] No No Cover join matrix Yes Bounds
M-Bucket [84] Yes No Cover join matrix Yes Bounds
Zhang et al. [110] No No Hilbert space- Minimize Yes

filling curve
Similarity Set-similarity join [102] Global token No Hash-based Grouping Frequency-
join ordering based

V-SMART-Join [81] Compute No Hash-based Yes Cardinality-
frequencies based

SSJ-2R [16] Similar to [102] No Remainder file Yes Yes
Silva et al. [97] No No Iterative Yes No
Top-k similarity join [61] Sampling Essential Bucket-based Yes No

pairs
Fuzzy join [4] No No Yes

k-NN join H-zkNNJ [77] No No Z-value based Shifted copies Quantile-
of R,S based

Top-k join RanKloud [24] Sampling No Utility-aware No Yes
Doulkeridis et al. [38] Sorting No Angle-based No Yes

Table 3 Analysis of join processing in MapReduce.

A summary of this analysis is presented in Table 3.

In the following, we comment on noteworthy individual

techniques employed at the different phases.

Pre-processing. Llama [74] uses columnar stor-

age of data and in particular uses vertical groups of

columns that are stored sorted in HDFS. This is essen-

tially a pre-processing step that greatly improves the

performance of join operations, by enabling map-side
join processing. In [102], the tokens are ordered based

on frequencies in a pre-processing step. This informa-

tion is exploited at different stages of the algorithm to

improve performance. V-SMART-Join [81] scans the in-

put data once to derive partial results and cardinalities

of items. The work in [61] uses sampling to compute an

upper bound on the distance of the k-th closest pair.

Pre-filtering. The work in [61] applies pre-filtering

by partitioning only those pairs necessary for produc-

ing the top-k most similar pairs. These are called essen-

tial pairs and their computation is based on the upper

bound of distance.

Partitioning. In the case of theta-joins [84], the

partitioning method focuses on mapping the join ma-

trix (i.e., representing the cross-product result space)

to the available reduce tasks, which entails “covering”

the populated cells by assignment to a reduce task. For

multi-way theta joins [110], the join space is multi-

dimensional and partitioning is performed using the

Hilbert space-filling curve, which is shown to minimize

the optimization objective of partitioning. The algo-

rithm proposed for k-NN joins [77] uses z-ordering to

map data to one-dimensional values and partition the

one-dimensional space into ranges. In the case of top-k

joins, both RanKloud [24] and the approach described

in [38] propose partitioning schemes tailored to top-

k processing. RanKloud employs a utility-aware parti-

tioning that splits the space in non-equal ranges, such

that the useful work produced by each partition is roughly

the same. In [38], angle-based partitioning is proposed,

which works better than traditional partitioning schemes

for parallel skyline queries [103].

Replication. To reduce replication, the approach

in [102] uses grouped tokens, i.e., maps multiple tokens

to one synthetic key and partitions based on the syn-

thetic key. This technique reduces the amount of record

replication to reduce tasks. In the case of multi-way

theta joins [110], a multi-dimensional space partition-

ing method is employed to assign partitions of the join

space to reduce tasks. Interestingly, the objective of par-

titioning is to minimize the duplication of records.

Load balancing. In [102], the authors use the pre-

processed token ordering to balance the workload more

evenly to reduce tasks by assigning tokens to reduce

tasks in a round-robin manner based on frequency. V-

SMART-Join [81] also exploits cardinalities of items
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in multisets to address skew in data distribution. For

theta-joins [84], the partitioning attempts to balance

the workload to reduce tasks, such that the job com-

pletion time is minimized, i.e., no reduce task is over-

loaded and delays the completion of the job. Theoretical

bounds on the number of times the “fair share” of any

reduce task is exceeded are also provided. In the case of

H-zkNNJ [77], load balancing is performed by partition-

ing the input relation in roughly equi-sized partitions,

which is accomplished by using approximate quantiles.

5 Conclusions and Outlook

MapReduce has brought new excitement in the parallel

data processing landscape. This is due to its salient fea-

tures that include scalability, fault-tolerance, simplicity,

and flexibility. Still, several of its shortcomings hint that

MapReduce is not perfect for every large-scale analyt-

ical task. It is therefore natural to ask ourselves about

lessons learned from the MapReduce experience and to

hypothesize about future frameworks and systems.

We believe that the next generation of parallel data

processing systems for massive data sets should com-

bine the merits of existing approaches. The strong fea-

tures of MapReduce clearly need to be retained; how-

ever, they should be coupled with efficiency and query

optimization techniques present in traditional data man-

agement systems. Hence, we expect that future systems

will not extend MapReduce, but instead redesign it

from scratch, in order to retain all desirable features

but also introduce additional capabilities.

In the era of “Big Data”, future systems for paral-

lel processing should also support efficient exploratory

query processing and analysis. It is vital to provide effi-

cient support for processing on subsets of the available

data only. At the same time, it is important to provide

fast retrieval of results that are indicative, approximate,

and guide the user to formulating the correct query.

Another important issue relates to support for declar-

ative languages and query specification. Decades of re-

search in data management systems have shown the

benefits of using declarative query languages. We ex-

pect that future systems will be designed with declar-

ative querying from the very beginning, rather than

adding it as a layer later.

Finally, support for real-time applications and

streaming data is expected to drive innovations in par-

allel large-scale data analysis. An approach for extend-

ing MapReduce for supporting real-time analysis is in-

troduced in [20] by Facebook. We expect to see more

frameworks targeting requirements for real-time pro-

cessing and analysis in the near future.
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Appendix

Approach Modification in MapReduce/Hadoop

Hadoop++ [36] No, based on using UDFs
HAIL [37] Yes, changes the RecordReader and a few UDFs
CoHadoop [41] Yes, extends HDFS and adds metadata to NameNode
Llama [74] No, runs on top of Hadoop
Cheetah [28] No, runs on top of Hadoop
RCFile [50] No changes to Hadoop, implements certain interfaces
CIF [44] No changes to Hadoop core, leverages extensibility features
Trojan layouts [59] Yes, introduces Trojan HDFS (among others)

MRShare [83] Yes, modifies map outputs with tags and writes to multiple output files on the reduce side
ReStore [40] Yes, extends the JobControlCompiler of Pig
Sharing scans [11] Independent of system
Silva et al. [95] No, integrated into SCOPE
Incoop [17] Yes, new file system, contraction phase, and memoization-aware scheduler
Li et al. [71,72] Yes, modifies the internals of Hadoop by replacing key components

Grover et al. [47] Yes, introduces dynamic job and Input Provider
EARL [67] Yes, RecordReader and Reduce classes are modified, and simple

extension to Hadoop to support dynamic input and efficient resampling
Top-k queries [38] Yes, changes data placement and builds statistics
RanKloud [24] Yes, integrates its execution engine into Hadoop and uses local B+Tree indexes

HaLoop [22,23] Yes, use of caching and changes to the scheduler
MapReduce online [30] Yes, communication between Map and Reduce, and to JobTracker and TaskTracker
NOVA [85] No, runs on top of Pig and Hadoop
Twister [39] Adopts an architecture with substantial differences
CBP [75,76] Yes, substantial changes in various phases of MapReduce
Pregel [78] Different system
PrIter [111] No, built on top of Hadoop
PACMan [14] No, coordinated caching independent of Hadoop
REX [82] Different system
Differential dataflow [79] Different system

HadoopDB [2] Yes (substantially), installs a local DBMS on each DataNode and extends Hive
SAMs [101] Yes, uses ZooKeeper for coordination between map tasks
Clydesdale [60] No, runs on top of Hadoop
Starfish [51] No, but uses dynamic instrumentation of the MapReduce framework
AQUA [105] No, query optimizer embedded into Hive
YSmart [69] No, runs on top of Hadoop
RoPE [8] On top of different system (SCOPE [112]/Dryad [53])
SUDO [109] No, integrated into SCOPE compiler
Manimal [56] Yes, local B+Tree indexes and delta-compression
HadoopToSQL [54] No, implemented on top of database system
Stubby [73] No, on top of MapReduce
Hueske et al. [52] Integrated into different system (Stratosphere)

Kolb et al. [62] Yes, changes the distribution of map output to reduce tasks, but uses a separate MapReduce
job for pre-processing

Ramakrishnan et al. [88] Yes, sampler to produce the partition file that is subsequently used by the partitioner
Gufler et al. [48] Yes, uses a monitoring component and changes the distribution of map output to reduce tasks
SkewReduce [64] No, on top of MapReduce
SkewTune [65] Yes, mostly on top of Hadoop, but some small changes to core classes in the map tasks
Sailfish [89] Yes, extending distributed file system and batching data from map tasks
Themis [90] Yes, significant changes to the way intermediate results are handled

Dremel [80] Different system
Hyracks [19] Different system
Tenzing [27] Yes, sort-avoidance, streaming, memory chaining, and block shuffle
PowerDrill [49] Different system
Shark [42,107] Relies on a different system (Spark [108])
M3R [94] Yes, in-memory caching and shuffling, re-use of structures, and minimize communication
BlinkDB [7,9] No, built on top of Hive/Hadoop

Table 4 Modifications induced by existing approaches to MapReduce.
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Join type Approach #Jobs in Exact/Approximate Self/Binary/Multiway

MapReduce Exact Approximate Self Binary Multiway

Equi-join Map-Reduce-Merge [29] 1 ∗ ∗
Map-Join-Reduce [58] 2 ∗ ∗
Afrati et al. [5,6] 1 ∗ ∗
Repartition join [18] 1 ∗ ∗
Broadcast join [18] 1 ∗ ∗
Semi-join [18] 3 ∗ ∗
Per-split semi-join [18] 3 ∗ ∗
Llama [74] 1 ∗ ∗

Theta-join 1-Bucket-Theta [84] 1 ∗ ∗
M-Bucket [84] 3 ∗ ∗
Zhang et al. [110] 1 or multiple ∗ ∗

Similarity join Set-similarity join [102] ≥ 3 ∗ ∗ ∗
V-SMART-Join (all-pair) [81] 4 ∗ ∗
SSJ-2R [16] 2 ∗ ∗
Silva et al. [97] multiple ∗ ∗
Top-k similarity join [61] 2 ∗ ∗
Fuzzy join [4] 1 ∗ ∗

k-NN join H-zkNNJ [77] 3 ∗ ∗
Top-k join RanKloud [24] 3 ∗ ∗

Doulkeridis et al. [38] 2 ∗ ∗

Table 5 Overview of join processing in MapReduce.
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