
Noname manuscript No.
(will be inserted by the editor)

Approximate Similarity Search for Online Multimedia
Services on Distributed CPU–GPU Platforms

George Teodoro · Eduardo Valle · Nathan Mariano ·
Ricardo Torres · Wagner Meira Jr · Joel H. Saltz

Received: date / Accepted: date

Abstract Similarity search in high-
dimentional spaces is a pivotal operation
found a variety of database applications.
Recently, there has been an increase interest
in similarity search for online content-based
multimedia services. Those services, however,
introduce new challenges with respect to the
very large volumes of data that have to be
indexed/searched, and the need to minimize
response times observed by the end-users.
Additionally, those users dynamically interact
with the systems creating fluctuating query
request rates, requiring the search algorithm to
adapt in order to better utilize the underline
hardware to reduce response times. In order to
address these challenges, we introduce hyper-
curves, a flexible framework for answering
approximate k-nearest neighbor (kNN) queries
for very large multimedia databases, aiming

E. Valle and R. Torres thank FAPESP for the finan-
cial support to this work. Preprint — submitted for
peer review.

G. Teodoro(B) and J.H. Saltz
Center for Comprehensive Informatics, Emory Uni-
versity, GA, USA
E-mail: {gteodor,jhsaltz}@emory.edu

E. Valle
Recod Lab / DCA / FEEC, State University of
Campinas, SP, Brazil
E-mail: dovalle@dca.fee.unicamp.br

N. Mariano and W. Meira Jr
Department of Computer Science, Universidade Fed-
eral de Minas Gerais, MG, Brazil
E-mail: {nathanr,meira}@dcc.ufmg.br

R. Torres
Recod Lab / DSI / IC, State University of Camp-
inas, SP, Brazil
E-mail: rtorres@ic.unicamp.br

at online content-based multimedia services.
Hypercurves executes on hybrid CPU–GPU
environments, and is able to employ those
devices cooperatively to support massive
query request rates. In order to keep the
response times optimal as the request rates
vary, it employs a novel dynamic scheduler to
partition the work between CPU and GPU.
Hypercurves was throughly evaluated using
a large database of multimedia descriptors.
Its cooperative CPU–GPU execution achieved
performance improvements of up to 30× when
compared to the single CPU-core version. The
dynamic work partition mechanism reduces
the observed query response times in about
50% when compared to the best static CPU–
GPU task partition configuration. In addition,
Hypercurves achieves superlinear scalability
in distributed (multi-node) executions, while
keeping a high guarantee of equivalence with
its sequential version — thanks to the proof of
probabilistic equivalence, which supported its
aggressive parallelization design.

Keywords Descriptor indexing · Multi-
media databases · Information retrieval ·
Hypercurves · Filter-stream · GPU

1 Introduction

Similarity search is the process of finding
among objects stored in a reference database,
those nearest to a query object. In multimedia
processing, both the query and the database
objects are represented by a feature vector in
a high-dimensional space. Several choices are
available to establish the notion of distance,

ar
X

iv
:1

20
9.

04
10

v1
 [

cs
.M

M
]

 3
 S

ep
 2

01
2

2 George Teodoro et al.

Euclidean distance being the most common.
That operation is of fundamental importance
for several applications in content-based multi-
media retrieval services, which include not only
search engines for web images [42] but also im-
age recognition on mobile devices [27], real-time
song identification [10], photo tagging in social
networks [50], recognition of copyrighted ma-
terial [58] and many others. Nowadays, those
services instigate an exciting scientific frontier
and impel a multimillionaire consumer market.

Though those services may appear ex-
tremely diverse, they are all founded upon the
use of descriptors, which extract feature vec-
tors from multimedia documents, thus giving
them a perceptually meaningful geometry. The
descriptors allow us to bridge the so called “se-
mantic gap”: the disparity between the amor-
phous low-level coding of multimedia, e.g., im-
age pixels or audio samples, and the complex
high-level tasks, e.g. classification or document
retrieval, we need to perform. Looking for sim-
ilar documents becomes equivalent to looking
for similar vectors. The actual query processing
may be complex, consisting of several phases,
but similarity search will often be the first step
and, because of the (in-)famous “curse of di-
mensionality”, one of the most expensive.

The success of current content-based multi-
media retrieval services depends on their abil-
ity to handle extremely large and increasing
volumes of data, and keep the response times
observed by the end-user low. The databases
needed to process even a tiny fractions of
the images available in the Web are larger
than the storage capacity of most commod-
ity single-user machines. The great majority
of indexing methods for similarity search, how-
ever, were designed to execute sequentially, and
are not able to take advantage of the aggre-
gate power in distributed environments. More-
over, classical distributed algorithms tend to ig-
nore the response-time of processing each indi-
vidual query, and to concentrate in providing
maximum throughput for batches of queries.
That strategy clashes with the online nature of
content-based multimedia retrieval services, be-
cause just like on other search engines, the wait-
ing time observed by individual user requests is
critical. Moreover, online interaction between
user and services creates large variations in the
query rates submitted to the system, requiring
those systems to adapt continuously to better
exploit the available hardware and lower the
response times whenever possible.

In order to address these challenges, in this
work, we propose Hypercurves, a concurrent in-
dex built upon the sequential multidimensional
index Multicurves [59,60] and the concurrent
execution environment Anthill [51,53]. Multi-
curves addresses the challenges of approximate
similarity queries for multimedia services, in-
cluding an optimizing scheduler that adapts
the parallelization regimen online to minimize
query response-times under fluctuating request
loads. Hypercurves near-linear speedups and
super-linear scaleup on distributed environ-
ments rest upon the fact that Multicurves de-
sign fits extremely well into the filter–stream
execution model implemented in Anthill. Nev-
ertheless, the transition from sequential to par-
allel indexing remains very challenging, and
depends crucially on the ability of accessing
independently each partition of the data. We
demonstrate that this can be done efficiently,
while keeping the algorithms equivalent with
very high probability (Section 4.2).

Hypercurves was published in preliminary
form in [56], where we evaluated its perfor-
mance in CPU-only multi-core distributed ma-
chines. Though it performed extremely well as
compared to the sequential version, its perfor-
mance remained constrained by the compute-
intensive task of evaluating distances between
the query feature vector and hundreds of can-
didate vectors. In this paper, we address that
shortcoming by redesigning Hypercurves for ex-
ecution on heterogeneous environments, com-
prising both CPUs and GPUs (graphical pro-
cessing units). GPUs are massively parallel and
power-efficient processors, which have found
a niche as accelerators for regular compute-
intensive applications. The utilization of GPUs
with Hypercurves, however, is very challeng-
ing, since we are interested in providing low
response times under online workloads that
vary throughout execution. GPUs, on the other
hand, are fundamentally throughput-oriented,
because they are built as a large collection of
low-frequency computing cores, which are able
to process a very large number of simple oper-
ations in parallel.

In Hypercurves, therefore, queries dis-
patched for execution with a GPU may observe
higher average response times, as they are us-
ing a collection of less powerful GPU comput-
ing cores as compared to a CPU core. Thus, a
carefully scheduling is employed to decide the
best partition of queries between CPUs and
GPUs in order to minimize the average query

Approximate Similarity Search for Online Multimedia Services on CPU–GPU Platforms 3

response times during the execution. This prob-
lem is specially critical in Hypercurves as the
best partition is affected by the load of requests
submitted to the system throughout the execu-
tion.

In this paper, we address these challenges,
obtaining a dramatic improvement on top of
the former version of Hypercurves [56]. The
techniques we use to schedule tasks for Hyper-
curves are also generalizable to other online ap-
plications that benefit from GPU accelerations.
The key contributions include:

1. An improved Hypercurves, able to employ
GPUs concurrently to answer a massive
number of requests in very large databases;

2. A careful design and implementation of op-
timizations for the parallelization in hybrid
CPU–GPU environments, including coop-
eration CPU–GPU execution and asyn-
chronous execution between these devices,
as detailed in Section 5. This version
achieved speedups of about 30× as com-
pared to the CPU-only single core version
of the application;

3. A dynamic scheduler algorithm for hybrid
CPU–GPU environments, which employs
both devices cooperatively in order to mini-
mize response times, and is able to adapt
the application automatically under fluc-
tuating request loads to optimize response
times. When compare to the best static par-
tition, the scheduler obtained average query
response times up to 48% smaller.

All contributions are throughly evaluated in
a comprehensive set of experiments.

The remainder of the text is organized as
follows. In the next section, we discuss content-
based multimedia services, examining how the
problem of similarity search is critical to their
success. Section 3 summarizes the algorithmic
foundations of this work, by presenting the se-
quential index Multicurves, and the parallel
framework Anthill, which is used to build our
parallel index Hypercurves. Hypercurves par-
allelization strategy is detailed in Section 4
along with an analytical proof of the proba-
bilistic equivalence between Multi- and Hyper-
curves. Section 5 introduces progressively so-
phisticated execution plans for Hypercurves on
heterogeneous CPU–GPU environments. Sec-
tion 6 discusses scheduling considering hetero-
geneous CPU–GPU environments, under online
time constrained applications as Hypercurves.
In Section 7 we present an experimental eval-
uation of the proposed scheme in many stress

scenarios, proceeding to the conclusions in Sec-
tion 8.

2 Related work

In textual data, low-level representation is
strongly coupled with semantic meaning be-
cause the correlation between textual words
and high-level concepts is strong.

In multimedia, by contrast, the low-level
coding (pixels, samples, frames) is extremely
distant from the high-level semantic concepts
needed to answer the user queries, precipitat-
ing the much debated “semantic gap”. In order
to overcome that difficulty, it is necessary to
embed the multimedia documents in a space
where distances represent perceptual dissimi-
larities: that is the task of descriptors. The
descriptors are an essential first step towards
bridging the gap between the amorphous low-
level coding and the high-level semantic con-
cepts.

Multimedia descriptors are very diverse, in-
cluding a large choice of representations for per-
ceptual properties that may help to understand
the documents. Those properties include shape,
color and texture for visual documents; tone,
pitch and timbre for audio documents; flow and
rhythm of movement for moving pictures; and
many others. The descriptor gives these per-
ceptual properties a precise representation, by
encoding them into a feature vector. That
induces a geometric organization where percep-
tually similar documents are given vectors near
in the space, while perceptually distinct docu-
ments are given vectors further apart. To es-
tablish those distances, often a simple metric
is employed, like the Euclidean or the Manhat-
tan, but sometimes more complex metrics are
chosen [42].

Especially in what concerns images and
videos, the last decade witnessed the ascent of
descriptors inspired by Computer Vision, es-
pecially the so-called local descriptors [38,57],
with the remarkable success of SIFT [33]. As
their name suggests, local descriptors represent
the properties of small areas of the images or
videos (in opposition to the traditional global
descriptors, which attempt to represent the en-
tire document in a single feature vector). Their
success was followed by the idea of using com-
pact representations based on their quantiza-
tion using codebooks, in the so-called “bag of
visual words” model, which became one of the
main tools in the literature [7].

4 George Teodoro et al.

Regardless of the specific choice, the re-
trieval of similar feature vectors becomes a cor-
nerstone operation to almost all systems. That
operation can be used either directly (many
early CBIR systems were little more than a sim-
ilarity search engine attached to a descriptor
space [49]), either indirectly (similarity search
may be part of a kNN classifier, it can retrieve
a preliminary set of candidates to be refined
by a more computationally intensive classifier,
etc.). In one way or another, it remains a crit-
ical component, if the system is to be used in
real-world, large-scale databases [32].

We can formalize the problem of search
with multimedia descriptors in the framework
of feature-based processing of similarity queries
of Böhm et al. [6]. The multimedia description
algorithm corresponds to the feature vector ex-
traction, which, formally is a function F that
maps a space of multimedia objects Obj into
d-dimensional real vectors:

F : Obj → Rd (1)

Now, the dissimilarity between two objects
obji ∈ Obj can be determined by establishing
the distance (e.g., Euclidean) between their fea-
ture vectors:

∆(obj1, obj2) = ‖F (obj1), F (obj2)‖ (2)

Given that dissimilarity between objects,
we can establish several types of similarity
queries [6] (range, nearest neighbor, k nearest
neighbors, inverse k nearest neighbors, etc.). In
this work, we are especially interested in k near-
est neighbors queries (kNN, for short). Given a
database B ⊆ Obj and a query q ∈ Obj, the k
nearest neighbors to q in B are the indexed set
of the k objects in B closest to q:

kNN(B, q, k) =
{
b1, . . . , bk ∈ B

∣∣ ∀i ≤ k
∀b ∈ B\{b1 . . . , bi},∆(q, bi) ≤ ∆(q, b)

} (3)

That defines the exact version of kNN
search. As we will see, for large-scale multi-
media services, that definition will have to be
relaxed to account for approximate answers,
which allows for dramatic gains in speed.

2.1 Prior Art

Efficient query processing for multidimensional
data has been pursued for at least four decades,

with a myriad of applications that go far
beyond multimedia feature vector matching.
Those include satisfying multi-criteria searches,
and searches with spatial and spatiotemporal
constraints [16,19,41,62].

An exhaustive review would be overwhelm-
ing and beyond the scope of this article. The
most comprehensive reference to the subject is
the textbook of Samet [45]. The book chap-
ters of Castelli [9] and Faloutsos [21] provide
a less daunting introduction, more focused on
content-based based retrieval for images. An-
other comprehensive, if somewhat old, refer-
ence is the survey of Böhm et al. [6], which
also provides an excellent introduction to the
theme, with a good formalization of similarity
queries, the principles involved in their index-
ing and their cost models. The book edited by
Shakhnarovich et al. [47] focuses on computer
vision and machine applications. In what con-
cerns metric methods, which are able to process
non-vector features, as long as they are embed-
ded in a metric space, the essential reference
is the textbook of Zezula et al. [64]. Although
already decade-old, the survey of Chávez et
al. [11] is also an excellent, comprehensive in-
troduction to similarity search in metric spaces.

Despite the huge assortment of methods
available, those of practical interest in the
context of large-scale content-based multime-
dia services are surprisingly few. Because of
the “curse of dimensionality” (explained be-
low), methods that insist on exact solutions
are only adequate for low-dimensional spaces,
while multimedia feature vectors often have
hundreds of dimensions. Most methods assume
that the implementation uses shared main
memory (with cheap uniform random access),
which cannot be the case on the very large
databases we want to address. Other meth-
ods, such as the ones based on clustering, have
prohibitively high index building times (with
a forced rebuilding if the index changes too
much), being adequate only for moderate-size
static databases.

The focus of multimedia retrieval and classi-
fication on approximate techniques is not just a
result of the technical challenge of treating high
dimensionalities. Multimedia descriptors are al-
ways intrinsically approximate, due to the fact
the relationship between the visual properties
they encode and the high-level semantic con-
cepts remains limited. In addition, descriptors
almost always employ quantization and aver-
aging to various degrees, making them approx-

Approximate Similarity Search for Online Multimedia Services on CPU–GPU Platforms 5

imate also in a numerical and statistical sense.
Therefore, insisting on exact techniques makes
no sense. What is needed is a good trade-off
between precision and speed.

Approximation in kNN search may im-
ply different compromises: sometimes it means
finding elements not too far from the exact an-
swers, i.e., guaranteeing that the distance to the
elements returned will bet up to a factor from
the distance to the correct elements; sometimes
it means a bounded probability of missing the
correct elements. Sometimes, the guarantee of-
fered is more complex than that, for example,
a bounded probability of finding the correct
answer, provided it is sufficiently closer to the
query than the closest incorrect answer [28].

Approximation on a bounded factor is for-
malized as following: given a database B ⊆ Obj
and a query q ∈ Obj, the (1+ε) k nearest neigh-
bors to q in B are an indexed set of objects in
B whose distance to the true kNN is at most a
(1 + ε) factor higher:

ε-kNN(B, q, k) =
{
b1, . . . , bk ∈ B

∣∣∣
∀i ≤ k,

[
∀b ∈ B\{b1, . . . , bi},

∆(q, bi) ≤ (1 + ε) ∆(q, b)
]} (4)

Some methods might only guarantee such
results with a probability bounded by some
constant. More often than not, however, prac-
tical approximative methods offer no formal
guarantees, but just good empirical perfor-
mance.

If perfect accuracy can be excused, the
efficiency requirements remain very challeng-
ing: the method should perform well for high-
dimensional data (hundreds of dimensions)
in very large databases (at least millions of
records); it must adapt well to secondary-
memory storage, which in practice means that
few random accesses should be performed; it
should be dynamic, i.e., allow data insertion
and deletion without performance degradation.

A common pattern found in methods useful
for large-scale multimedia is a strategy of pro-
jecting the data onto different subspaces and
creating subindexes for each of those sub-
spaces. The subindexes can be queried more or
less independently, and the results aggregated
to find the final answer.

MEDRANK is one of those methods, which
projects the data into several random straight
lines. The one-dimensional position in the line
is used to index the data [18]. The method

has an interesting theoretical analysis, estab-
lishing that under certain hypotheses, rank
aggregation on straight line projections of-
fers some (lax) bounds on approximation er-
ror. The techniques employed by the algorithm
were extremely well succeeded in moderately-
dimensional multi-criteria databases, for which
it is still feasible to search for exact solutions.
In those cases, many of the choices are prov-
ably optimal [19]. For high-dimensional mul-
timedia information, however, the technique
fails, mainly due to the lack of correlation be-
tween the distance in the straight lines and the
distance in the high-dimensional space [58].

Locality-sensitive hashing (LSH) uses
locality-aware hashing functions to index the
data. The method uses several of those “hash
tables” at once, to improve reliability [28].
LSH is backed by an interesting theoretical
background, which allows predicting the ap-
proximation bounds for the index, for a given
set of parameters. The well-succeeded family
of pStable locality sensitive hash functions [13]
has allowed LSH to directly index Euclidean
spaces, and its geometric fundament is also
strongly based on the idea of projection onto
random straight lines. LSH works extremely
well when one wants to minimize the num-
ber of distances to be evaluated, and can
count on uniform cost random access to the
data. However, in situations where the cost
of accessing the data dominates the cost of
computation, its efficiency is compromised.
The parameterization of LSH tends to favor
the use of a large number of hash functions
(and thus subindexes), which also poses a
challenge for scalability.

An interesting family of solutions em-
ploys the fractal space-filling curves. Like
MEDRANK, those methods reduce multidi-
mensional indexing to one-dimensional index-
ing, but using more sophisticated projections.
The method upon which we build our work,
Multicurves, is one of those methods and it is
explained in more detail on Section 3.1. Since
that family of methods is particularly related
to our work, we focus our review on them.

2.2 Indexing with Space-filling Curves

Space-filling curves are maps from the unit
interval to a hypercube of any dimensional-
ity [44]. Most of those curves are constructed by
fractal, self-similar, recursive procedures. Al-
though the curves are fascinating in themselves,

6 George Teodoro et al.

here we are interested in their ability to induce
a “vicinity-sensitive” total order in the data.
With good probability, they preserve neighbor-
hood relations: if point A is closer to point B
than to point C in the space, that relationship
tends to remain in the curve (Figure 1).

Space-filling curves have been implicitly
used to perform similarity searches in multidi-
mensional spaces for a very long time. Indeed,
one of the first multidimensional indexes ever
proposed [39] employed them hidden in the idea
of “bit shuffling”, “bit interlacing” or “bit in-
terleaving”, which consisted in interleaving the
bits of the individual space coordinates to gen-
erate a search key. Interleaving the bits, in fact,
induces a type of space-filling curve called Z-
order curve, which explains why the method
works well. However, it was Faloutsos [20] the
first to explicitly refer to the concept of curves,
and were Faloutsos and Roseman [22] the first
to suggest the use of curves other than the Z-
order, first proposing the Gray-code curve and
then the Hilbert curve.

Those pioneering methods worked in a very
simple way, using the curve to map the multi-
dimensional vector onto a one-dimensional key
representing the position in the curve (which we
call here extended-key). That position was then
employed to perform the search by similarity.
For example, when performing kNN search, a
good heuristic is to take the nearest elements
in the curve as the nearest elements in the
space, because of the “vicinity-sensitiveness”
explained above.

Unfortunately, points near in the space are
not always near in the curve. In fact, the
biggest problem when employing the curves
is the existence of boundary regions where
the neighborhood-relation preserving proper-
ties are violated, and points closer in space are
placed further apart in the curve (Figure 1).
That issue worsens dramatically as dimension-
ality grows [30,48].

In order to conquer the boundary effects,
Megiddo and Shaft [37] suggested the use of
several curves at once. As is done for the mul-
tiple straight lines of MEDRANK, or for the
multiple hash-tables of LSH, we build an in-
dependent subindex for each curve. The query
is then sought on all subindexes, in the hope
that in at least one of them, it will not fall
close to a boundary region. Megiddo and Shaft
present the idea in very general terms, without
describing which types of space-filling curves
should be used and what had to be done to

A

B

C

D

Fig. 1 Space-filling curves provide a “vicinity-
sensitive” map: relative closeness in the space tends
to be preserved in the curve (points A, B and C).
However, in some boundary regions, those proper-
ties are violated (points A, B and D).

make them different. Therefore, Shepherd et
al. [48] developed that idea, specifically rec-
ommending the use of several identical Hilbert
curves, where different copies of the vectors are
transformed by random rotations and transla-
tions. Whether or not those transformations
could be optimized was left unanswered. Fi-
nally, Liao et al. [30] solved the problem of
choosing the transformations, by devising the
necessary number of curves and an optimal set
of translations to obtain (lax) bounds on the
approximation error in the case of kNN search.

A depart from those methods was suggested
by Mainar-Ruiz and Pérez-Cortés [35]. Instead
of using multiple curves, they propose using
multiple instances of the same element in only
one curve. Before inserting those instances in
the curve, the algorithm disturbs randomly
their position, to give them the opportunity
of falling into different regions of the curve. In
that way even if the query falls in a problem-
atic region, chances are it will be reasonably
near to at least one of the instances. Akune et
al. improved on that method, by proposing a
more careful placement of the instance copies
on the curve [1], obtaining thus a significant
improvement in precision.

Another depart was suggested by Valle et
al. in Multicurves [59,60], which also employed
several curves, but with the important dif-
ference that each curve maps a projection of

Approximate Similarity Search for Online Multimedia Services on CPU–GPU Platforms 7

1st
order

2nd
order

3rd
order

Fig. 2 Space-filling curves are usually obtained by a
recursive refinement procedure, resulting in a fractal,
self-similar curve. Each refinement step is called a
order of the curve. The curve fills the Continuum at
the infinite limit of that procedure, but for working
on digital data, it is not necessary to reach that limit.
The figure shows three successive steps of the Hilbert
curve (left) and the Z-order curve (right).

the vectors onto a moderate-dimensional sub-
space. That dimensionality reduction makes
for an efficient implementation, reducing the
effects of the “curse of dimensionality”. Be-
cause of the exponential nature of the “curse”
it is more efficient to process several low or
moderate-dimensional indexes than a single
high-dimensional one. That is explained by the
fact that we do not only gain the intrinsic ad-
vantages of using multiple curves (i.e., elements
that are incorrectly separated in one curve will
probably stay together in another), but also,
we lower the boundary effects inside each one
of the curves. Multicurves is explained in detail
in Section 3.1.

2.2.1 Technical Details

Space-filling curves are fractal curves intro-
duced by G. Peano and D. Hilbert [44], which
provide a continuous surjective map C :
[0, 1] → [0, 1]d from the unit interval to a hy-
percube of any dimensionality. Most of those
curves are constructed by recursive procedures,
where, in the limit, the curve fills the entire
space (Figure 2).

It was already known (due to a result of E.
Netto) that such a mapping C could not be
at once bijective and continuous. Dropping in-

jectivity, Peano was able to construct the first
known continuous surjective map from the line
to the space. Interestingly, in the recursive pro-
cedure to build the curve, all finite steps are
bijective, but the limiting (and thus, effectively
space-filling) curve becomes self-intersecting. In
our applications with digital data, we can al-
ways consider C bijective, because we never
reach the limit needed to deal with the true
Continuum.

When using the space-filling curve map in
indexing, we are interested in the pre-images
of the query and data points. Using the same
notation as before, for bi ∈ B and q ∈ Obj, we
are interested in those C−1(F (bi)) which are
close to C−1(F (q)) (remember that F is the
function that maps multimedia objects into fea-
ture vectors). We call the pre-image C−1(x) the
extended-key of feature vector x.

There is a direct relationship between the
number of refinements we need to go through
in the recursive curve (called the order of the
curve) and the precision of the data we want to
index. If we are employing dyadic curves (like
the Z-order, Gray-order or Hilbert curves), we
need mth order curves to index coordinates of
m bits. Remark that the bijective map C−1 pre-
serves the number of bits: from d coordinates of
m bits each to a single extended-key with d×m
bits.

It is important to emphasize that the curve
does not have a concrete representation in the
indexes. That is a common source of con-
fusion for those who get acquainted for the
first time with indexing based on space-filling
curves. The curve is an useful abstraction, em-
ployed to create the map C−1, which generates
“neighborhood-sensitive” extended-keys. Then,
the extended-keys are used in conventional,
one-dimensional, indexing structures (a hash-
table, a B-tree, etc.).

The actual computation of C−1 depends, of
course, on the type of space-filling curve be-
ing employed. For the Hilbert curve, several re-
cursive algorithms have been proposed, but the
most efficient scheme is an iterative one [8]. As
we have mentioned, for the Z-order curve, the
computation is extremely simple: it suffices to
intercalate the bits of the coordinates.

It is interesting to analyze which kind of
data can be indexed by the curves. The curves
are able to organize vectors of any fixed-length
ordinal data, provided that the order is the
“natural” one: the order of the data is the same
order of the numbers (binary codes) in which

8 George Teodoro et al.

they are encoded. Otherwise, a transformation
must be used to translate the vector of data
into a vector of orders.

In the case of multimedia descriptors, we are
mainly interested in vectors of numeric data.
When the coordinates are integer, it is easy to
see the scheme works, although the program-
mer must ensure to deal correctly with negative
numbers in C−1. Although less obvious to see,
the scheme works with almost no modification
for (IEEE 754) floating-point numbers. Indeed,
because in that encoding the bits of the expo-
nent are in more significant positions than the
bits of the mantissa, the order of the encoded
numbers is “natural”. Again, the only caveat is
to deal correctly with the most significant sign
bit, used for negative numbers.

3 Background

This section presents an introduction to Multi-
curves, the algorithmic foundation, upon which
our parallel solution is built; and details Ant-
hill, the dataflow-based framework employed in
the parallelization.

3.1 The Sequential Index Multicurves

Multicurves [59,60] is an index for accelerating
kNN queries based on space-filling curves. Its
properties make it especially adapted for large-
scale multimedia databases.

As we have seen in Section 2.2, the great-
est problem in using space-filling curves comes
from boundary effects brought by the exis-
tence of regions where their neighborhood-
relation preserving properties are violated. Dif-
ferent methods propose different solutions, usu-
ally through the simultaneous use of multi-
ple curves. As we have mentioned, Multicurves
is also based on the use of multiple curves,
but with the important improvement that each
curve is only responsible for a subset of the di-
mensions. Because of the exponential nature of
the “curse”, it is more efficient to process sev-
eral low-dimensional queries than a single high-
dimensional one.

Multicurves index construction is simple
(Algorithm 1). The feature vector for each
database element is obtained (almost always,
it will be computed beforehand, so the oper-
ation in line 3 just retrieves the corresponding
field). The dimensions of the feature vectors are
divided among a certain number of subindexes

Algorithm 1 Multicurves index construction
input:

B: the database elements to be indexed
curves: number of curves (and, thus, of

subindexes)
dims[i]: dimensionality of the ith curve
a: attribution of the feature vectors dimensions to

the subindexes — a[i, j] is the dimension in the
ith subindex to which the jth dimension of the
input data should be attributed (see line 7
below)

C−1(): the space-filling curve map, as explained in
Section 2.2.1

F (): the description function, returning a feature
vector, as explained in Section 2. Usually, that
will be already precomputed.

output: an array of curves sorted lists, which
composes the index (each element is a subindex)

1: subindexes[]← new array with curves empty
sorted lists;

2: for all b ∈ B do
3: v ← F (b);
4: for c← 1 to curves do
5: proj []← new array with dims[c] empty

elements;
6: for d← 1 to dims[c] do
7: proj [d]← v[a[c, d]];
8: key ← C−1(proj);
9: Insert < key, b > into subindexes[curve];

10: return subindexes[];

based on a space-filling curve. Geometrically,
that can be understood as projecting the fea-
ture vector onto a subspace and then mapping
it using a curve that fills the subspace. For di-
dactical reasons, the algorithm is presented as
a “batch” operation, but nothing prevents the
index from being built incrementally, as long
as the structure used to back the sorted lists
allows so.

The search is conceptually similar: the
query is decomposed into projections (whose
subspaces must be the same used during
the index construction) and each projection
has its extended-key computed. Then, from
each subindex, we obtain a certain number
of candidate elements (probe-depth), whose
extended-keys are the nearest to the extended-
key of the corresponding projection of the
query. In the end, we compute the actual dis-
tance from those elements to the query and
keep the k nearest (Algorithm 2).

The index creation and search processes are
illustrated in Figure 3.

It should be noted that in the scheme shown
above, for simplicity sake, we supposed that
both the query and the database elements are
associated with a single feature vector by the

Approximate Similarity Search for Online Multimedia Services on CPU–GPU Platforms 9

Map query on curves
(computation of
extended-key)

Map database on curves
(computation of
extended-keys)

Retrieve probe-depth
closest cadidates to query’s

key on each subindex

Compute distances
from query to each

candidate on the
original space

Return the k
nearest

candidates

Store base in
sorted lists

(subindexes)

Project query
onto same
subspaces

Project database
onto

subspaces

Start with
query

feature vector

Start with
database

feature vectore

candidates
candidates

Fig. 3 Multicurves in action. (In black:) The index is created by projecting the database feature vectors
(small dots) onto different subspaces and mapping each projection in a space-filling curve to obtain the
extended-keys. Each subspace induces an independent subindex, where the vectors are stored, sorted by
extended-keys. (In red:) Searching is performed by projecting the query feature vector (red star) onto the
same subspaces and computing the extended-keys of the projections. A number (probe-depth) of candidates
closest to the query’s extended-key is retrieved from each subindex. Finally, the true distance of the candidates
to the query is evaluated and the k closest are returned.

Algorithm 2 Multicurves search phase

input : (in addition to curves, dims[], a[], C−1()
and F () explained in Algorithm 1)

k: the number of desired nearest neighbors
depth: the probe-depth, i.e., the number of

elements to examine per subindex
q: the data element to be queried
subindexes[]: array of sorted lists composing the

index, generated in Algorithm 1)

output : a list with the k approximate nearest
neighbors

1: v ← F (q);
2: candidates ← ∅;
3: for c← 1 to curves do
4: proj []← new array with dims[c] empty

elements;
5: for d← 1 to dims[c] do
6: proj [d]← v[a[c, d]];
7: key ← C−1(proj);
8: candidates ← candidates ∪ {depth closest

vectors to key in subindex [c]};
9: knn ← {k closest vectors to q in candidates};

10: return knn ;

description function F (). The extension of the
algorithm is trivial for descriptors (like local
descriptors) that generate several vectors per
multimedia object, but bear in mind that the
each vector is indexed and queried indepen-
dently (for example, if a query object gener-
ates 10 feature vectors, the kNN search will
produce 10 sets of k nearest neighbors, one for

each query vector). The task of taking a final
decision (classification result, retrieval ranking)
from those multiple answers is very application-
dependent and beyond the scope of our arti-
cle, which is concerned with the basic infra-
structure. Here, we are concerned in achiev-
ing efficiently good results for each individual
query vector.

In an experimental evaluation [59,60] on
high-dimensional feature vectors, Multicurves
compared favorably to the state of the art, rep-
resented by the methods of Liao et al. [30]
and Mainar-Ruiz and Pérez-Cortes [35], pre-
senting a better compromise between precision
and speed. It also performed well [60], when
compared to LSH [13], presenting an equivalent
compromise between precision and number of
distances computed, but performing fewer ran-
dom accesses.

3.2 The Parallel Environment Anthill

Anthill [53,51,55,52,23] is a run-time sys-
tem based on the filter–stream programming
model [3] and, as such, applications are de-
composed into processing stages, called fil-
ters, which communicate with each other us-
ing unidirectional streams. At run time, Anthill
spawns, on the nodes of the cluster, instances of

10 George Teodoro et al.

Fig. 4 The architecture of an Anthill application.
Filters (columns) cooperate to process the data.
Their communication is mediated by unidirectional
streams (arrows). The filters are instantiated in
transparent copies (circles) automatically by Ant-
hill’s runtime. The non-blocking I/O flow and event
scheduling is also handled by Anthill.

each filter, which are called transparent copies,
and automatically handles communication and
state partitioning among those copies [51].

When developing an application using the
filter–stream model, both task and data par-
allelism are exploited. Task parallelism is
achieved as the application is broken up into
a set of filters, which perform independently,
accomplishing the application functionality in
a pipeline fashion. Data parallelism, on the
other hand, is obtained by creating transpar-
ently multiple copies of each filter and dis-
tributing the data to be processed among them
(Figure 4).

Anthill provides an event-oriented filter pro-
gramming abstraction, deriving heavily from
the message-oriented programming model [4,
40,61]. The streams that establish the commu-
nication between filters generate input events,
which must be handled. The programmer pro-
vides handling functions for those events. Ant-
hill runtime instantiates those functions and
controls the non-blocking I/O flow to keep
the system running. It is a dataflow model,
where event handling amounts to asynchronous
and independent tasks. Because the filters are
multithreaded, multiple tasks can be spawned
when there are enough pending events and
computational resources. That feature is es-
sential both in exploiting the full capability of
current multi-core architectures, and in spawn-
ing tasks on multiple devices in heterogeneous,
CPU–GPU equipped platforms. That flexibil-

Fig. 5 The architecture of a single filter. Input
streams (top blocks) generate events that must be
handled by the filter. Different handler functions
(dashed round boxes) can be provided by the pro-
grammer for each type of event and processing unit.
The event scheduler coordinates the filter operation,
dequeuing the input events and invoking the han-
dling functions according to the available processing
units (round boxes). As processing progresses, data
is sent to the output streams (bottom blocks), gen-
erating events on the next filter (not shown).

ity is accomplished by allowing the programmer
to provide, for the same event, handler func-
tions targeting different devices which can be
invoked by the scheduler to use the appropri-
ate processor.

Figure 5 illustrates the architecture of a typ-
ical filter (a single application will be composed
of several of those). It receives data from mul-
tiple input streams (In1, In2, and In3), each
generating its own event queue, with handler
functions associated to each of them. As shown,
those functions are implemented targeting dif-
ferent types of processors. The Event Scheduler,
depicted in the picture is responsible for con-
suming events from the queues, invoking ap-
propriate handlers according to the availability
of computational resources. As events are con-
sumed, eventually some data is generated on
the filter that will be forwarded to the next fil-
ter. As those data arrive in the next filter, they
will trigger input events there. All filters run
in parallel. Communication between filters, al-
though not shown in the figure, is also managed
by the run-time system.

When events are queued, they are not im-
mediately assigned to a processor. Rather, that
occurs on-demand, as devices become idle and
request new events to process. In the cur-
rent implementation, the demand-driven, first-
come, first-served (DDFCFS) task assignment
policy is used as default strategy of the Event
Scheduler.

Approximate Similarity Search for Online Multimedia Services on CPU–GPU Platforms 11

The first decision for the DDFCFS policy is
to select from which queue to execute events;
this decision is made in a round-robin fash-
ion, provided the event has a handling function
compatible with the available processor. The
oldest event on the selected queue is dispatched
for processing. That simple approach guaran-
tees assignment to different devices according
to their relative performance in a transparent
way, as processors will consume events in pro-
portion to their capacity to process them.

4 The Distributed Index Hypercurves

In this section, we discuss how Multicurves
(Section 3.1) has been redesigned for efficient
execution on distributed environments, focus-
ing on the CPU-only version of the application
(details of the GPU-based presented in Sec-
tion 5).

Further, we present a proof of the prob-
abilistic equivalence between Multicurves and
Hypercurves (Section 4.2). The proof is essen-
tial for the efficiency of the scheme, because in
Hypercurves, the database is partitioned with-
out overlapping among the nodes in the ex-
ecution environment. Search is performed lo-
cally in the subindexes managed by each node,
and a reduction stage merges the results. The
cost of the algorithm is dominated by the local
searches, which are further dependent on the
probe-depth used (the number of candidates to
retrieve from each subindex). When using the
same probe-depth of the sequential algorithm
for each local index of the distributed environ-
ment, the answer of Hypercurves is guaranteed
at least as good as the sequential algorithm.
However, that is an extremely pessimistic and
costly choice for the local indexes probe-depth:
we show that the quality of Hypercurves is
equivalent to that of Multicurves with very high
probability, when using a probe-depth slightly
higher than the original probe-depth divided by
the number of nodes.

The ability to avoid data replication im-
proves the scalability of the solution. The user
can further modify the probe-depth of the par-
allel algorithm according to Equation 5 (Sec-
tion 4.2), to guarantee that the quality of
Hypercurves is equivalent to that of Multi-
curves with any desired probability.

4.1 Hypercurves Parallelization Strategy

Hypercurves [56] is a concurrent index built
upon the sequential multidimensional index
Multicurves [60] and the concurrent execu-
tion environment Anthill [51], in order to pro-
vide approximate similarity search support for
large-scale online multimedia services. There-
fore, Hypercurves addresses both the need to
scale the database to sizes beyond the capabil-
ity of a single machine, and the need to keep
the answer times as short as possible.

Hypercurves strategy is to partition the
database among the nodes (filter copies in the
nomenclature of Anthill) of the distributed en-
vironment. The queries are broadcast to all fil-
ter copies, which find a local answer in their
database subsets. The local answers are then
reduced to a global answer in a later merge
step.

To better exploit Anthill execution environ-
ment, Hypercurves employs four types of filter,
organized in two parallel computation pipelines
(Figure 6).

The first pipeline is conceptually an in-
dex builder/updater, with the filters Input
Reader (IRR) and Index Holder/Local Searcher
(IHLS). IRR reads the feature vectors from
the input database and partitions them among
the copies of IHLS, which add the vectors re-
ceived to their local index, according to Algo-
rithm 1. The filters execute concurrently, and
after the input is exhausted, interact to update
the database.

The second pipeline, which is conceptually
the query processor, contains three filters: (i)
Query Receiver (QR); (ii) IHLS (shared with
the first pipeline); and (iii) Aggregator. QR is
the entry point to the search server, receiv-
ing and broadcasting the queries to all IHLS
copies. For each query, IHLS instances indepen-
dently perform the search on their local index
partition, retrieving k nearest local feature vec-
tors just like the sequential Multicurves (Algo-
rithm 2). The final answer is obtained by the
Aggregator filter, which reduces the local an-
swers into k global nearest vectors. Since several
Aggregator filter copies may exist, it is crucial
that the messages related to a particular query
(same query-id) be sent to the same Aggrega-
tor instance. That is guaranteed by making full
use of Anthill Labeled-Stream communication
policy, which computes the particular copy of
the Aggregator filters that will receive a given
message sent from IHLS based on a hash com-

12 George Teodoro et al.

Fig. 6 Hypercurves parallelization design. Four filter types are involved: IRR, which reads data from the
database and dispatches them to the IHLS to be indexed; QR, which reads queries from the user and
dispatches them to the IHLS to be processed; IHLS, which provides a “local” index and query processing,
for a subset of the data; Aggregator, which collects local kNN answers to the queries and aggregates them
into a global kNN answer. Transparent copies of those filters are instantiated as needed by Anthill’s runtime.
Several types of streams are used in the communication between those copies: for example, during search, a
query is broadcast from QR to all copies of IHLS; then all local answers relative to that query are sent to
the same Aggregator filter, using the “labeled stream” facility.

puted in the query-id. Therefore, in this con-
text, query-id corresponds to the label of the
message. The transaction between IHLS and
Aggregator is very similar to a generalized par-
allel data reduction [63], except that it outputs
a list of values for each output, and that an
arbitrary number of reductions are executed in
parallel.

Hypercurves exploits all four dimensions
of parallelism: task, data, pipeline, and intra-
filter. Task parallelism occurs as the two
pipelines are executed in parallel (e.g., in-
dex updates and searches). Data parallelism is
achieved as the database is partitioned among
the IHLS filters copies. Pipeline parallelism re-
sults from Anthill ability to execute in paral-
lel the filters of a single computational pipeline
(e.g., IRR and IHLS for updating the index).
Intra-filter parallelism refers to a single filter
copy being able to process events in parallel,
thus, efficiently exploiting modern multi- and
many-core computers.

The broadcast from QR to IHLS has lit-
tle impact on performance, because the cost is
dominated by the local searches. Therefore, the
communication latency is offset by the compu-
tation speedups. The disproportionate cost of

those searches has prompted a GPU-based im-
plementation (Section 5), which in turn raised
interesting challenges to the scheduling of the
pipelined events, leading to another important
contribution of this work (Sections 6).

The cost of local searches depends criti-
cally on the probe-depth used (the number
of candidates to retrieve from each subindex).
Hypercurves can be made assuredly equivalent
to Multicurves, by employing on each parallel
node a probe-depth at least as large as the one
used in the sequential algorithm. However, this
over-pessimistic choice is unnecessarily costly
and can be significantly improved, as we will
see in the next section.

4.2 Probabilistic Equivalence
Multicurves–Hypercurves

Multicurves is based upon the ability of space-
filling curves giving a total order to data. That
makes each subindex a sorted list where a num-
ber of candidates can be retrieved and then ver-
ified against the query in order to obtain the k
nearest (Algorithm 2).

Approximate Similarity Search for Online Multimedia Services on CPU–GPU Platforms 13

In Hypercurves, the index is fragmented,
with each IHLS filter copy having available only
a subset of the database: a single filter cannot
warrant the equivalent approximate k nearest
neighbors. That is the role of the Aggregator
filter: collecting the local best answers and re-
turning a final solution.

In terms of equivalence between Multi- and
Hypercurves it matters little how the can-
didates are distributed among the IHLS in-
stances, because the reduction steps performed
after the candidates are selected are conser-
vative: they will never discard one of the
“good” answers once it is retrieved. Either
Multi- or Hypercurves will only miss a cor-
rect answer if they fail to retrieve it from
the subindexes. Therefore, Hypercurves can be
made guaranteedly at least as good as Multi-
curves by employing on each IHLS filter copy
the same probe-depth used on the sequential
Multicurves. However, that is costly, and, as
we will shortly see, over-pessimistic.

Consider the same database, either in a
Multicurves’ subindex with probe-depth = 2Φ,
or partitioned among ` Hypercurves’ IHLS fil-
ter copies, each with probe-depth = 2ϕ (even
probe-depths make the analyses more symmet-
ric, although the argument is essentially the
same for odd values). For any query, the can-
didates that would be in a single sorted list in
Multicurves are now distributed among ` sorted
lists in Hypercurves. In more general terms,
we start with a single sorted list and retrieve
the 2Φ elements closest to a query vector. If
we distribute randomly that single sorted list
into ` sorted lists, how many elements must
we retrieve from each of those new lists (i.e.
which value for 2ϕ must we employ) to ensure
that none of the originally retrieved elements is
missed? Note that: (i) due to the sorted nature
of the list, the elements before the query cannot
exchange positions with the elements after the
query; (ii) no element of the original list can
be lost as long as all those 2` “half-lists” are
shorter than ϕ. Those observations, which are
essential to understand the equivalence proof,
are illustrated in Figure 7.

Due to (i), we can analyze each half of the
list independently. The distribution of the ele-
ments among the ` lists is given by a Multino-
mial distribution with Φ trials and all probabil-
ities equal to `−1. The exact probability of no
list being longer than ϕ involves computing a
truncated part of the distribution, but the ex-
act formulas are exceedingly complex and little

ℓ

Φ

φ

< query ≥ query

Fig. 7 The probabilistic equivalence between
Multi- and Hypercurves corresponds to the follow-
ing model. In a sorted list, for the query q, we re-
trieve Φ elements < q and Φ elements ≥ q. If we
distribute the elements of that list randomly into `
sorted lists, how many 2ϕ elements must we retrieve
in each of those new lists, in order to ensure miss-
ing none of the original ones. Because the elements
< q and ≥ q cannot exchange positions, each “half-
list” can be analyzed independently. In the example
shown, the equivalence is not guaranteed, because
some elements “spill over” the ϕ limit in two of the
half-lists.

elucidative. We can, however, bound it from be-
low [36] with:

P (Listmax ≤ ϕ) ≥ 1−(Φ× P (Listi > ϕ)) (5)

where Listi is an arbitrary single component of
the equiprobable Multinomial, which, by con-
struction has a Binomial distribution for Φ tri-
als and success rate of `−1. Thus, the proba-
bility of any miss on any of the 2` half-lists is
bounded from above by:

1−Max

0; 1− Φ
Φ∑

k=ϕ+1

(Φ
k

)(1

`

)k (
1−

1

`

)Φ−k
2

= 1−Max
[
0; 1− Φ

(
1− I1−`−1 (Φ− ϕ,ϕ+ 1)

)]2
(6)

where I() is the regularized incomplete Beta
function. That probability tends to zero for
very reasonable values of ϕ, still much lower
than Φ. That is more easily seen if we make
ϕ = (1 + ς) dΦ/`e, i.e., if we “distribute” the
probe-depth among the filters, adding a “slack
factor” of ς. For all reasonable scenarios, the

14 George Teodoro et al.

probability tends to zero very fast, even for
small ς (Figure 8).

Fig. 8 Equivalence between sequential Multicurves
with a probe-depth of 2Φ = 256 and parallel Hyper-
curves with distributed probe-depth of 2ϕ, with ϕ =
(1 + ς) dΦ/`e and `= the number of filter copies. The
probability of missing any of the candidate vectors
drops sharply to zero, for values of ς that are still
very small.

5 Hypercurves in Heterogeneous
CPU–GPU Environments

The use of GPUs as general computing pro-
cessors is a strong trend in high performance
computing, and represents a major paradigm
shift towards massively parallel and power ef-
ficient systems. GPus have an impressive com-
puting power, but taking advantage of them is
challenging, especially for online services like
Hypercurves.

In this section, we introduce the design and
implementation of Hypercurves for heteroge-
neous, CPU–GPU environments, with a set of
optimizations to maximize its performance. We
anticipate that the use of GPUs in this context
raises important challenges, especially in what
concerns the optimization of response times un-
der fluctuating request loads. Those dynamic
aspects are discussed in Section 6.

5.1 GPU-based IHLS Implementation

In the Hypercurves pipeline, the IHLS fil-
ter is responsible for performing the compute-
intensive operations of the application. Conse-
quently, it is the phase of Hypercurves to be
accelerated using GPUs. The computation per-
formed by IHLS has granularity per user re-
quest (query), and the query execution depends

on the probe-depth (the number of candidates
returned from the subindexes for further kNN
computation, explained on Section 3.1) as the
distances from the query to all candidates are
calculated.

However, a single query is insufficient to
fully utilize a GPU, because probe-depths as-
sume small values, around a few hundred ele-
ments. Therefore, the first step towards using
GPUs to accelerate this filter was to modify
IHLS to group an arbitrary number of queries
(group-size), which are then dispatched to-
gether for execution in a GPU. Our paralleliza-
tion uses the CPU to perform the operations
related to query grouping, while the GPU is
employed during the kNN search. The execu-
tion of the IHLS filter is divided into stages
(Figure 5.1–a), explained below:

Retrieve candidates: returns the probe-depth
vectors closest to the query from each
subindex (Lines 3 to 8 in Algorithm 2).
Those candidates are accumulated in a con-
tinuous block of memory (the CPU buffer).
That operation is repeated for each query in
the group. At the end, the buffer will con-
tain group-size sets of candidates, each set
with probe-depth vectors.

Copy to GPU buffer: copies the buffer from
the system memory (CPU buffer) to the
GPU memory (the GPU buffer);

Perform kNN search: computes the kNN
search for all group-size sets of candidates
in parallel, comparing each query to its
own candidate set. At the end, returns
the results in kNN results, which will have
group-size sets, each with k answers;

Send to aggregator: copies the results sets
from the GPU memory and sends them
downstream to the Aggregator filter, which
is the next stage in processing pipeline.

The operation performed in retrieve can-
didates is a binary search on each subindex,
with very irregular access patterns, dependent
on both the query and the database. Since it is
not realistic to assume that an entire subindex
would fit into the GPU memory, the imple-
mentation of that stage in the accelerator is
not worthwhile: it would require intensive data
transfer between CPU and GPU. Fortunately,
its computational cost is low, due to the log-
arithmic growth of the binary search with re-
spect to database size. It can be executed fairly
efficiently on CPU.

Perform kNN search is a special version of
the traditional kNN, which compares several

Approximate Similarity Search for Online Multimedia Services on CPU–GPU Platforms 15

!"#$
%&'()$

!"#$%&"%
'()%*+,-.%

/0%!()% /0%'()%

*&%+,-(.$

(-.1".2%
344%5-6.78%

!"#$
%&'()$

/"#$
%&'()$

9-0:%&"%
;<<.-<6&".%

011$
)(2&342$

=-&./->-%
760:/:6&-5%

+,$!"#$
5(56)7$

+,$2724(5$
5(56)7$

(."7-55-5?% 8949:$

!"#$%&"%
'()%*+,-.%

*&%+,-(.$

(-.1".2%
344%5-6.78%

9-0:%&"%
;<<.-<6&".%

011$
)(2&342$

=-&./->-%
760:/:6&-5%

$$
/"#$
-6&%3(;%&'()$

!"#$%&"%
'()%*+,-.%

*&%+,-(.$

(-.1".2%
344%5-6.78%

9-0:%&"%
;<<.-<6&".%

011$
)(2&342$

=-&./->-%
760:/:6&-5%

$$
/"#$
-6&%3(;%&'()$

(-.1".2%
344%5-6.78%

011$
)(2&342$

!"#$
%&'()$

<9+,$=)6>(22+,?$=94@:$

A34(),9BC($=)6>(22+,?$=94@:$

D9E$!)6&=;6,37$+5=3(5(,49B6,$$ D%E$86&%3(;%&'()+,?$+5=3(5(,49B6,$ D>E$/"#F!"#$>66=()9BC($2>@(-&3+,?$

Fig. 9 The three progressively sophisticated proposed schemes for implementing Hypercurves in CPU–GPU
heterogeneous environments. (a) Grouping queries to fully utilize the GPU. (b) Additionally, employing a
double-buffer to avoid idleness either on CPUs and GPU. (c) Additionally, using CPUs unutilized capacity
to perform kNN in an alternative processing path.

queries against the same database [24]. Here,
however, each query is independently compared
to a different subset of the data, which con-
sists of the candidates just retrieved from the
subindexes. In addition, the number of queries
available to execute (group-size) will vary be-
tween executions. The group-size can be opti-
mized according to a metric of interest, for in-
stance, average response time as is detailed in
the following sections.

The kNN search itself is implemented us-
ing two GPU computing kernels: (i) CalcDist,
which calculates the distance between each
query and its candidates; (ii) FindTopK, which
selects the k nearest vectors among the candi-
dates, and moves them to the top positions in
the list.

The other operations, copy to GPU buffer
and send to aggregator involve data transfers
between the system memory and the GPU
memory. The latter also involves dispatching
the results for further processing downstream,
in the Aggregator filter.

5.2 Overlapping CPU and GPU phases

In the design just discussed, the IHLS steps
are performed sequentially, resulting in no over-
lapping between CPU and GPU computations.
However, this approach creates idle periods in
both devices. The GPU has to wait until its
data buffers are filled by the CPU with the
candidates retrieved from the subindexes; and
the CPU has to wait until the kNN execution
is completed on the GPU to transfer the next
batch.

In order to reduce idleness, we propose to
overlap those operations by pipelining them
and using a double-buffer scheme for the com-
munication between operations composing the
IHLS filter (Figure 5.1–b). It then allows the
CPU to accumulate the sets of candidates from
incoming queries, while the GPU may be asyn-
chronously processing the kNN search for the
previous batch of queries. Additionally, this
design employs several CPU threads to re-
trieve candidates from the subindexes in paral-
lel. That strategy significantly reduces Hyper-
curves execution times, because it maximizes
the utilization of the GPU.

Similar double-buffer schemes [46] have be-
ing used in multi-core CPU architectures, for
instance, to overlap useful computation with
data transfers among different levels of the
memory hierarchy. Here, on the other hand,
it is employed to enable pipelining and, conse-
quently, to overlap execution of different code
sections on different devices of the hybrid envi-
ronment.

5.3 Cooperative execution on CPU and GPU

In the design of Hypercurves described so far,
the CPU cores perform only operations which
are not appropriate for GPUs: the retrieval of
candidates, the data transfers, and the task of
coordinating the GPU execution. However, as
discussed, the cost of those CPU computations
is low, and may not be sufficient to completely
occupy all CPU cores available, especially in
current multi-core architectures. To better uti-
lize the CPUs, we propose to employ them also

16 George Teodoro et al.

to perform the kNN computations. However
that must occur only when they would other-
wise be idle, meaning that the next buffer with
query candidates is ready for the GPU execu-
tion.

In our cooperative CPU/GPU scheduling
solution (Figure 5.1–c), the CPU execute both
its ordinary tasks (main processing path) and
the kNN search (alternative processing path),
giving the former higher priority. Thus, the
CPU will follow the first path until the buffers
used by the GPU are completely full, becom-
ing afterwards available to process queries on
the second path. The double-buffering scheme
employed reduces the possibility of the GPU be
kept waiting: even when the CPU is momentar-
ily held on kNN search tasks, as the CPU will
usually have enough time to fill the next buffer
before the GPU is done with the current one.

The use of hybrid CPU–GPU computa-
tion, as well as the task scheduling prob-
lem that arises of employing those processors,
has received increasing attention in the last
few years [15,34,26,31,53,54,25,43,14]. Those
works, however, assume that implementations
of all stages of the computation are available
for both devices, and try to minimize the ex-
ecution times by employing CPU–GPU tasks
partition using either static offline [26,15,34] or
online [53,43] strategies. Those strategies may
work well in several contexts, including ones
with divisible workloads, such as generalized
reductions or MapReduce computations. How-
ever, they are restricted to cases where both
CPU and GPU implementations are available
for each stage. That contrasts to Hypercurves,
where the CPU is used to assist the GPU in
tasks that are not appropriate for accelera-
tion, besides perform its own compute-intensive
tasks during periods of idleness. Therefore,
Hypercurves’ task partitioning has to assign
dynamically the priorities to types of tasks the
CPU performs.

The next sections will further elaborate on
that problem of task partition to minimize re-
sponse times in online applications. To the best
of our knowledge, ours is the first work to ad-
dress that problem on CPU–GPU computation
environments.

6 Response Time Aware Task Partition
in Heterogeneous CPU–GPU Platforms

As discussed, the online nature of Hypercurves
poses the interesting challenge of optimizing

the response time of the individual queries,
while using GPUs, which are throughput-
oriented devices. In order to reduce response
times, it is necessary to perform a dynamic
partition of the load among CPU and GPU
under a fluctuating user request load. That
partition in Hypercurves is directly related to
the group-size used by IHLS, which will deter-
mine the number of tasks queued for GPU ex-
ecution and, consequently, those remaining for
CPU computation. The optimal configuration
for each load intensity depends on complex fac-
tors, including the hardware architecture, ap-
plication parameters, and dataset properties.
Such complex optimization is beyond the abil-
ity of any static configuration.

Formally, the problem can be defined as
such: given a set of n tasks t1 . . . tn within a fil-
ter, m processors p1 . . . pm allocated to that fil-
ter, the execution time of each task in each pro-
cessor denoted by eij , and the wait time of each
task to be processed by each processor as wij ,
we want to determine the schedule xij where
1 ≤ i ≤ n and 1 ≤ j ≤ m. Each xij is a binary
variable indicating whether the tasks i is exe-
cuted by processor j. Notice that, for a given
task ti, there exists just one xij , 1 ≤ j ≤ m
that is nonzero. Since there is no task reorder-
ing within a processor, the wij is defined as the
sum of the processing time of tasks exj com-
puted by a given processor j before it gets to
execute x.

Our goal is to find a schedule that mini-
mize E, the average execution time of the tasks
within each application filter. For simplicity,
and since the filters execute independently, we
state the problem in terms of a single filter. In
general, the execution time takes the form:

E = avgi=0...n

m∑
i=1

xij × (eij + wij) (7)

The execution time eij varies according to
the processor used. For the GPU, it has two
components: a buffer-waiting time, in which the
task remains buffered in the CPU memory; and
the computation, which involves both the data
transfer between CPU and GPU, and the exe-
cution itself. The cost of both components fur-
ther depends on the task granularity (group-
size).

Scheduling in such environment is difficult
for various reasons: (i) the problem is NP-hard,
since the bin packing problem, widely known to

Approximate Similarity Search for Online Multimedia Services on CPU–GPU Platforms 17

be NP-hards, is a very simplified version of the
scheduling problem discussed (the equivalence
is true when waiting times are zero); (ii) the
tasks are created at run time, making static
scheduling impossible; (iii) estimating the ex-
ecution time (eij) of a task has been an open
challenge for decades [29].

The optimization is not only complex, but
also dynamic, varying instantaneously as the
request load changes. Thus, exact solutions
would be too costly to be practical. We propose
instead a light, greedy algorithm that calcu-
lates the scheduling throughout the execution,
optimizing the granularity of tasks assignment
to GPU (group-size), and the tasks assignment
between CPU and GPU.

The solution we propose is driven by the
idea that GPU use is advantageous only when
the aggregate throughput delivered by the
available CPU computing cores is insufficient
to promptly process the demand. That ap-
proach diverges from the usual parallelizations
for heterogeneous environments, where GPUs
are systematically preferred for their capac-
ity to achieve highest throughputs. However,
as discussed before, the use of GPUs improve
throughput at the cost of increasing the average
tasks processing time.

Therefore, it is not worthwhile using GPUs
in online application unless the tasks response
times are dominated by waiting time, which oc-
curs when the request rates submitted to the
system are above the CPU throughput. On the
other hand, under high request loads, it be-
comes beneficial using GPUs to increase the
system throughput: though the processing time
of a single task will be higher, due to the over-
heads of starting up a GPU computation, the
average response times of the system will be re-
duced, because the better throughput will lower
or even eliminate waiting times.

The solution we propose is called Dynamic
Task Assigner for Heterogeneous Environments
(DTAHE) and is presented in Algorithm 3. The
DTAHE is executed in parallel with the com-
puting threads in each filter copy, and loops
until the upstreams filters notify that execu-
tion has finished — the EndOfWorks message.
Line 2 of the algorithm will check the number
of events/requests queued in the filter (ready),
and further decide whether the thread should
follow the event processing using the CPU or
the GPU (line 3).

If the GPU buffer is full or if the CPU com-
puting cores available are enough to process all

Algorithm 3 Dynamic Task Assigner for Het-
erogeneous Environments — DTAHE.
Executes in parallel with the other threads, until
the filter has nothing else to process (EndOfWorks
becomes true). There is one independent instance
of this thread for each transparent copy of each
filter.

EndOfWorks: true if this filter copy has no more
processing to do, false otherwise

CC : number of CPU cores allocated to this filter
copy

NumEvents: the number of events waiting to be
processed

GetNextEvent(): pops from the waiting queues the
next event to be processed

CurrentBuffer : current GPU buffer, the one being
prepared

ProcessInCPU (e): dispatches the event e to be
processed in the CPU

BufferEvent(e, b): stores the event e to be
processed in the buffer b

IsGPUIdle: true if the GPU is idle, false otherwise
IsFull(b): returns true if the buffer b specified is

full, false otherwise
QueueInGPU (b): queue the buffer b to be

processed in the GPU

1: while not EndOfWork do
2: ready ← NumEvents
3: if ready ≤ CC or CurrentBuffer is full

then
4: ProcessInCPU (GetNextEvent())
5: else
6: event ← GetNextEvent()
7: BufferEvent(event ,CurrentBuffer)
8: ready ← NumEvents()
9: if (ready < CC and IsGPUIdle) or

IsFull(CurrentBuffer) then
10: QueueInGPU (CurrentBuffer)

queued events, an event is dequeued and dis-
patched to the CPU (line 4). Otherwise, an
event is dequeued, the items to be compared
to that query are retrieved from the subindexes
and stored in the GPU data buffer (Lines 6–7).
The scheduler decides, then, if the buffer should
be sent for the execution in the GPU, which
happens when it becomes full, when the GPU
becomes idle (which we want to avoid), or if the
number of ready events becomes low enough so
that the remaining ones can be processed in
the CPUs. Each GPU has one CPU comput-
ing core reserved for managing purposes (coor-
dination, buffer copying, etc.), but, when that
GPU has no buffers ready to be processed, its
dedicated CPU core become available to per-
form other tasks. The motivation, again, is to
get the GPU running as often and as early as
possible, avoiding as much as possible to keep
it waiting, while keeping the CPU available to
process some queries when the GPU is busy.

18 George Teodoro et al.

DTAHE solves at once the problem of dy-
namically distributing the tasks among CPUs
and GPUs and determining the optimal group-
size. The latter is done implicitly, as buffers are
dispatched for GPU computation either when
they are full (maximum group-size, correspond-
ing to situations of high loads and maximum
throughput) either when the GPU becomes
idle (smaller group-sizes, as the load becomes
lighter). When the load becomes light enough
to be dealt with just the CPU cores, the GPU
is not employed, again keeping response times
as short as possible. On the other hand, as the
load increases, processing migrates increasingly
to the GPU.

The problem of optimizing group-sizes is
similar to optimizing the parallelism granular-
ity in parallel loops or doall -like operations,
which have been extensively studied [12]. Most
works on that area, however, focus on apply-
ing loop transformations according to the avail-
able resources, in order to adjust the granu-
larity, reducing the synchronization overhead
and do not take into account load variability.
The best parallelism is often beyond any static
tuning. That has motived several recent works,
which focus on runtime transformations [2,5,
17]. Those interesting works aim at parallelism
tuning for a lower level and are only concerned
with CPU-based machines, thus being comple-
mentary to the strategy we propose.

7 Experimental results

In this section, we evaluate the impact of
our propositions on Hypercurves’ performance.
The experiments have been performed using
two setups of machines. The first setup con-
sisted of 2 PCs connected through a Giga-
bit Ethernet, each with two quad-core AMD
Opteron 2.0 GHz 2350, 16 GB of main memory,
and one NVidia GeForce GTX260 GPU. The
second setup was a 8-node cluster connected
with Gigabit Ethernet, each node being a PC
with two quad-core hyper-threaded Intel Xeon
E5520, 24 GB of main memory, and one NVidia
GeForce GTX470. All machines run Linux.

The main database used to evaluate our al-
gorithm contained 130,463,526 SIFT local fea-
ture vectors [33], with 128 dimensions each.
Those feature vectors have been computed
from 233,852 background images from the Web,
and 225 foreground images from our personal
collections. The foreground images have been
used to compute sets of feature vectors that

must be matched, while the background im-
ages have generated the feature vectors used
to confound the method. The foreground im-
ages, after strong transformations (rotations,
changes in scale, non-linear photometric trans-
formations, noise, etc.) have also been used to
create 187,839 query feature vectors. Due to
the number of evaluations performed, we have
also employed smaller partitions of that main
database, in order both to achieve feasible ex-
perimentation running times, and to emphasize
certain aspects (e.g., overhead) in specific ex-
periments.

The experiments concentrate on issues of ef-
ficiency, since, as demonstrated in Section 4.2,
Hypercurves, with very high probability, has
the same results of Multicurves. Thus, by con-
struction, it inherits the good trade-off between
precision and speed of Multicurves [60].

7.1 The Impact of Task Granularity

As discussed in Section 5.1, task granularity has
an important impact on the GPU acceleration
achieved. In Hypercurves, it is dictated by the
group-size: the number of queries aggregated
to be processed concurrently within each GPU
execution (Section 5.1).

This study has employed a subsample of
1,000,000 feature vectors randomly selected
from the main database, and 30,000 queries. A
smaller dataset has been used in order to pro-
vide shorter execution times, which are more
appropriate to highlight any potential over-
heads in our solution. The entire set of queries
has been dispatched to the filter QR at the be-
ginning of the execution, creating a high num-
ber of concurrent queries ready to execute in
the IHLS filter throughout execution (check the
filter enchainment in Figure 6). In addition,
in this initial evaluation, a single machine has
been employed.

Figure 10 presents Hypercurves throughput
(in queries per second), for 3 typical choices
of probe-depth, as group-size varies up to the
limit of queries that can be accommodated
within the GPU memory. Group-size is kept
fixed during each single execution. We focus
on the impact of task grouping, expressed on
the “Grouping only” curves in the graphs. The
other results presented in the same graphs are
discussed on the following sections.

As expected, a small number of queries
is insufficient to completely utilize the GPU,

Approximate Similarity Search for Online Multimedia Services on CPU–GPU Platforms 19

(a) 2-node AMD — Probe-depth=250 (b) 8-node Intel — Probe-depth=250

(c) 2-node AMD — Probe-depth=350 (d) 8-node Intel — Probe-depth=350

(e) 2-node AMD — Probe-depth=450 (f) 8-node Intel — Probe-depth=450

Fig. 10 Hypercurves performance as group-size varies, for multiple probe-depth values, in both machine
configurations (2 nodes of AMD/GTX260, and 8 nodes of Intel/GTX450). Dynamic scheduling is not em-
ployed in those experiments: the parameters are kept fixed on each execution (each data point). The speedup
brought by the use of the GPU is dramatic, and each successive improvement (from group-only to double-
buffering to cooperative CPU/GPU scheduling) is considerable.

but the GPU performance is consistently im-
proved as group-size increases. Also, when 50%
of the maximal group-size is employed, the
speedups achieved are about 90% of the best
acceleration. In addition, the best speedups are
similar for all probe-depths: 13.34× (probe-
depth=250), 13.52× (probe-depth=350), and
13.73× (probe-depth=450). The small impact
of the probe-depth over the speedup is an im-
portant, positive property of the method, since
it allows the user to calibrate that parame-
ter more or less freely, provided that there are
enough queries to group and process in parallel.

The gains attained by task grouping are
promising, enhancing a very efficient approx-
imate search algorithm — whose sequential
CPU implementation is already orders of mag-
nitude faster than the exact search. In the fol-
lowing sections, we will demonstrate increasing
performance gains, obtained by the optimiza-

tions proposed on top of that GPU paralleliza-
tion (See Section 5).

7.2 The Effect of Overlapping CPU and GPU

Figure 10 presents the performance of Hyper-
curves when using the double-buffering scheme
intended to maximize the GPU utilization by
reducing the waiting time between batches of
queries. That enhancement, discussed in Sec-
tion 5.2, is built on top of the grouping mecha-
nism demonstrated in the previous section. The
results are shown in the curve labeled “Double
buffer”.

Similarly to the “Grouping only” case, the
performance grows as the value of group-size in-
creases, nearly doubling the throughput of the
grouping-only version for most of the group-
size values. When compared to the single CPU

20 George Teodoro et al.

core execution, the maximum speedups of the
double-buffered GPU-accelerated version are
25.81, 26.02, and 26.75, for probe-depths 250,
350, and 450 respectively.

During the evaluation, a complete overlap-
ping of the CPU and the GPU was achieved,
except at the very beginning, during the prepa-
ration of the first batch of queries. We have also
observed that, in all experiments, the GPU was
always occupied processing queries, while the
CPU experienced idle periods for the threads
responsible for retrieving candidates from the
subindexes and copy them to the buffers. The
CPU underutilization motivated its use in the
kNN phase of the application, in addition to the
preparation of the buffers for the GPU. That
cooperative strategy is evaluated in the next
section.

7.3 Maximizing CPU–GPU Cooperation

Since the CPUs present in our systems pre-
pare the buffers faster than the GPU is able
to consume them, they experience idle peri-
ods. To maximize the system performance un-
der those circumstances, we also employed the
CPU cores in the compute-intensive kNN tasks
during that idleness, as discussed in Section 5.3.
In the remainder of this section, the benefits
of that strategy are evaluated in addition to
double-buffering and grouping. Figure 10 shows
the results, in the curves labeled “CPU/GPU
sched.”.

As shown, the gains with that technique are
very relevant, and speedups of 1.23×, 1.22×
and 1.22× for, respectively, probe-depths of
250, 350 and 450 were achieved on top of the
previous version of Hypercurves.

Fig. 11 Fraction of the tasks computed by each
type of device (CPU vs. GPU) as group-size varies,
illustrating how GPU utilization is favored by large
group-sizes. Those experiments were executed on an
AMD node using probe-depth of 350.

Interestingly, the speedup obtained here
slightly decreases as the group-size increases.
This behavior is consequence of the higher effi-
ciency of the GPU for large group-sizes, which
tends to reduce the idle time of the CPU
cores. Figure 11 illustrates that as the group-
size grows, more queries tend to be processed
by the GPU instead of the using CPU for
the kNN phase. Even so, the improvements
achieved were rewarding, with more than 1.2×
average speedup across the group-size configu-
rations used. As the number of available CPU
cores also tend to increase in new architectures,
the potential of using those devices in cooper-
ation with the GPU cannot be neglected.

7.4 Granularity vs. Response Times

So far, in the experimental evaluation, we have
analyzed Hypercurves performance in scenarios
where a very large number of queries is sub-
mitted at once, thus assessing the application
throughput capabilities. However, in real-world
operation, the query rate submitted to an on-
line application is generated by users, and is
subjected to variability throughout the execu-
tion. Moreover, under those circumstances, the
most important metric is the response time ob-
served by the users. Therefore, in this section,
we analyze how the grouping technique and co-
operative CPU–GPU execution impact the av-
erage query response time.

In this analysis, we vary both the number
of queries submitted per second and group-size
across experiments, but keep them fixed within
each run. The capacity of adjusting the group-
size dynamically is evaluated in the next sec-
tion.

We employ the same 1,000,000-vectors
database, and the 30,000 queries used in previ-
ous sections. First, in Figure 12(a), we present
the average response times of Hypercurves
when the GPU is used to compute all the tasks,
and the group-size is varied.

It is noticeable that a single, fixed, group-
size value is unable to deliver the best response
times for all request loads. The response-time
function we seek to optimize has a complex be-
havior and its minimum moves up the group-
size axis as the query rate increases. Hyper-
curves has been able to answer queries in
reasonably low response times until the load
reached about 80% of the maximum supported
by the configuration, but after that point re-
sponse times have grown steeply.

Approximate Similarity Search for Online Multimedia Services on CPU–GPU Platforms 21

(a) 2-node AMD — GPU-only

(b) 2-node AMD — CPU–GPU

(c) 8-node Intel — CPU–GPU

Fig. 12 Average query response times as query
rate (% of the maximum) and group-size vary, for
a probe-depth of 350. The parameters are kept fixed
on each execution (each data point). The graphs
demonstrate the complex task of optimizing group-
size as the load (query-rate) fluctuates.

The comparison of Hypercurves using only
the GPU for kNN, versus the cooperative
CPU–GPU configuration is possible contrast-
ing Figures 12(a) and 12(b). Visual inspection
of those figures show that the CPU–GPU co-
operation resulted in a systematic reduction of
the average response times. Moreover, across
all the experiments, the CPU–GPU version re-
duces the response times in 58%, on average.

Those gains are much more impacting that the
previous improvements in throughput achieved
with the same cooperation (Section 7.3). The
reason is that although the CPU has a lower
throughput, the response times of the queries
processed by this device are much smaller: the
queries routed to the GPU have a longer pro-
cessing path, having to be queued, copied to the
GPU, processed using lower frequency cores,
and copied back to the system main memory.

We also present the performance of Hyper-
curves using CPU–GPU collaboratively for the
Intel/GTX470 node in Figure 12(c). When
compared to the AMD/GTX260 machine, the
performance of the Intel node is superior,
and much better average response-times are
achieved. That is mainly a consequence of
the improvements in design achieved by the
GTX470 GPU as compared to the GTX260
GPU, as the first has more computing cores,
better bandwidth, etc.

7.5 Response times on variable request rates

In this section, we analyze the DTAHE dy-
namic scheduler (Section 6) capacity to adapt
Hypercurves’ work partition among CPU and
GPU under scenarios with stochastically vari-
able workloads. During this evaluation, the
load/request rate follows a Poisson distribu-
tion, with expected average rate (λ) varying
from 20 to 100% of the maximum throughput
of the application in each configuration. That
maximum throughput is computed in a prelim-
inary run, where all the queries are sent for
computation in the beginning of the execution.
This set of experiments employ the cooperative
CPU–GPU computation, and a probe-depth of
350.

The results are summarized in Table 1. The
best static configuration refers to the minimum
response times achieved from an exhaustive
search in the group-size space for each query
rate employed. It is noticeable that DTAHE
strongly outperform the best static configura-
tion for most of the cases. On average, its re-
sponse times are 52% (2-node AMD) and 81%
(8-node Intel) of the best static configuration.

The only configurations where DTAHE falls
slightly behind static scheduling have Poisson
rates λ equal to 100% of the maximum through-
put bearable by the machines. In that extreme
scenario not much can be accomplished by dy-
namic scheduling, since the goal of maximum
throughput coincides with the one of minimum

22 George Teodoro et al.

(a) First setup (2-node AMD)

Scheduling
Poisson λ (% of max. throughput)
20 40 60 80 100

Best static 0.11 0.4 0.42 0.61 0.98
DTAHE 0.06 0.13 0.14 0.22 1.02

(b) Second setup (8-node Intel)

Scheduling
Poisson λ (% of max. throughput)
20 40 60 80 100

Best static 0.054 0.098 0.12 0.25 0.65
DTAHE 0.034 0.089 0.1 0.16 0.68

Table 1 Average query response times (in s) for static and dynamically-tuned scheduling configurations,
under stochastic loads. Unless the system is completely saturated, the dynamic scheduling always wins,
usually by a considerable margin.

response times, and a simple static configura-
tion manages that with slightly less overhead.
The differences, however, are small, and dy-
namic scheduling is, of course, much more flex-
ible.

7.6 Evaluating Hypercurves’ scalability

The distributed memory analysis in this sec-
tion has focused on evaluating Hypercurves
scaleup. We consider the compromises between
performance of the parallelism and conserva-
tion of the results precision, as the database is
partitioned among the computing nodes. The
scaleup evaluation is appropriate in our appli-
cation scenario because we expect to have an
abundant volume of data for indexing, thus the
speedup evaluation starting with a single node
holding the entire database might not be re-
alistic. The experiments executed in this sec-
tion used the 8-node Intel cluster, employing all
CPU cores and GPUs available on the nodes.
The main database with 130,463,526 local fea-
ture vectors is used proportionally, with n/8
of the database being used for the experiment
with n nodes.

The query rate delivered by the algo-
rithm considers two parameterization scenar-
ios named Optimist and Pessimist (Table 2),
which differ in their guarantees of equivalence
(in terms of precision of the kNN search) to the
sequential Multicurves algorithm. The Opti-
mist parameterization divides the probe-depth
equally among the nodes, without any slack —
it will only be equivalent to Multicurves in the
unlikely case that all candidates of that query
are equally distributed on the nodes. The Pes-
simist parameterization uses a slack that guar-
antees a probability smaller than 2% that a

candidate vector selected by the sequential al-
gorithm will be missing from the distributed
version (see Section 4.2 for details). Note that
that choice is extremely conservative, because
in order to effectively affect the answer, the
missed feature vectors from the candidate set
have to be among the actual top-k set, and k
is much smaller than the probe-depth.

Table 2 presents Hypercurves query rates on
the scaleup evaluation. As shown, the scalabil-
ity of the algorithm is impressive for both Op-
timist and Pessimist configurations, achieving
superlinear scaleup in all setups. That strong
performance of Hypercurves is observed be-
cause the application is only affected by the size
of the database during the phase where can-
didates are retrieved from subindexes and the
cost of that stage grows only logarithmically
with the size of the database. The costly phase
of computing the distances from the query to
the retrieved candidates can, thanks to the
probabilistic equivalence (Section 4.2), be ef-
ficiently distributed among the nodes, with a
relatively small overhead.

Not only is the scalability of the algorithm
very good, but its raw response rates (queries
per s) are very high. For instance, number
of queries that the algorithm would be able
to answer a per day are: 646 and 443 mil-
lion, respectively, for the Optimist and the
Pessimist configurations. Those rates indicate
that by employing the technology proposed, a
large-scale image search system could be built
at reasonably low hardware and power costs
per request, since GPU accelerators are very
computational- and power-efficient platforms.

Approximate Similarity Search for Online Multimedia Services on CPU–GPU Platforms 23

Number of nodes 1 2 3 4 5 6 7 8
of cores / # of GPUs 16 / 1 32 / 2 48 / 3 64 / 4 70 / 5 86 / 6 102 / 7 118 / 8
Optimist — queries per s 964 1904 2649 3598 4490 5397 6297 7483
Pessimist — queries per s 964 1683 2197 2849 3416 3968 4498 5135

Table 2 Scaleup evaluation: query rate as database and number of nodes increase proportionally (probe-
depth=350).

8 Conclusions and future work

This work has proposed and evaluated Hyper-
curves, an online similarity search engine for
very large multimedia databases. Hypercurves
has been designed to fully exploit massively
parallel machines, with both CPUs and GPUs.
Its use in a CPU–GPU environment, along with
a set of optimizations, resulted in accelerations
of about 30× on top of the single-core CPU
version.

We have also studied the problem of
response-time aware (DTAHE) partition of
tasks between CPU and GPU, under request
load fluctuations, which occurs as a result of the
variating number of queries submitted by the
user to the application. DTAHE has been able
to reduce the average query response times in
about 50% and 80% (respectively for both ma-
chine configurations used in the experiments),
when compared to the best static partition in
each case. Furthermore, Hypercurves achieved
superlinear scaleups in all experiments, while
keeping a high guarantee of equivalence with
the sequential Multicurves algorithm, as as-
serted by the proof of probabilistic equivalence.

We are currently interested in the com-
plex interactions between algorithmic design
and parallel implementation for services such
as Hypercurves. We are also investigating how
a complete system for content-based image re-
trieval can be built upon our indexing ser-
vices, and optimized using our techniques
and scheduling algorithms. We consider it a
promising direction for future, as Hypercurves
subindexes implementation in heterogeneous
environments offers very good reply rate.

References

1. Akune, F., Valle, E., Torres, R.: Monorail:
A disk-friendly index for huge descriptor
databases. In: 2010 20th International Confer-
ence on Pattern Recognition (ICPR), pp. 4145
–4148 (2010). DOI 10.1109/ICPR.2010.1008

2. Aleen, F., Sharif, M., Pande, S.: Input-driven
dynamic execution prediction of streaming ap-
plications. In: Proc. of the 15th ACM SIGPLAN
symposium on Principles and practice of parallel
programming, PPoPP ’10. ACM (2010)

3. Beynon, M., Ferreira, R., Kurc, T.M., Sussman,
A., Saltz, J.H.: DataCutter: Middleware for fil-
tering very large scientific datasets on archival
storage systems. In: IEEE Symposium on Mass
Storage Systems, pp. 119–134 (2000)

4. Bhatti, N.T., Hiltunen, M.A., Schlichting, R.D.,
Chiu, W.: Coyote: a system for constructing
fine-grain configurable communication services.
ACM Trans. Comput. Syst. 16(4), 321–366
(1998). DOI 10.1145/292523.292524

5. Blagojevic, F., Nikolopoulos, D.S., Stamatakis,
A., Antonopoulos, C.D., Curtis-Maury, M.:
Runtime scheduling of dynamic parallelism on
accelerator-based multi-core systems. Parallel
Comput. 33, 700–719 (2007). DOI 10.1016/j.
parco.2007.09.004

6. Böhm, C., Berchtold, S., Keim, D.A.: Search-
ing in high-dimensional spaces: Index structures
for improving the performance of multimedia
databases. ACM Comput. Surv. 33, 322–373
(2001). DOI 10.1145/502807.502809

7. Boureau, Y.L., Bach, F., LeCun, Y., Ponce,
J.: Learning mid-level features for recogni-
tion. Computer Vision and Pattern Recognition,
IEEE Computer Society Conference on 0, 2559–
2566 (2010). DOI 10.1109/CVPR.2010.5539963

8. Butz, A.R.: Alternative algorithm for hilbert’s
space-filling curve. IEEE Trans. on Computers
C-20 (1971)

9. Castelli, V.: Multidimensional Indexing Struc-
tures for Content-Based Retrieval, pp. 373–433.
John Wiley & Sons, Inc. (2002). DOI 10.1002/
0471224634.ch14

10. Chandrasekhar, V., Sharifi, M., Ross, D.A.:
Survey and evaluation of audio fingerprinting
schemes for mobile query-by-example applica-
tions. In: A. Klapuri, C. Leider (eds.) ISMIR,
pp. 801–806. University of Miami (2011)

11. Chávez, E., Navarro, G., Baeza-Yates, R., Mar-
roqúın, J.L.: Searching in metric spaces. ACM
Comput. Surv. 33(3), 273–321 (2001). DOI
10.1145/502807.502808

12. Chen, D.K., Su, H.M., Yew, P.C.: The impact
of synchronization and granularity on parallel
systems. SIGARCH Comput. Archit. News 18,
239–248 (1990). DOI 10.1145/325096.325150

13. Datar, M., Immorlica, N., Indyk, P., Mirrokni,
V.S.: Locality-sensitive hashing scheme based
on p-stable distributions. In: Proceedings of the
twentieth annual symposium on Computational
geometry, SCG ’04, pp. 253–262. ACM, New
York, NY, USA (2004). DOI 10.1145/997817.
997857

14. Diamos, G.F., Yalamanchili, S.: Harmony: an
execution model and runtime for heterogeneous
many core systems. In: Proceedings of the 17th
international symposium on High performance
distributed computing, HPDC ’08, pp. 197–200.

24 George Teodoro et al.

ACM, New York, NY, USA (2008). DOI http:
//doi.acm.org/10.1145/1383422.1383447

15. Ding, S., He, J., Yan, H., Suel, T.: Using graph-
ics processors for high-performance ir query pro-
cessing. In: Proceeding of the 17th international
conference on World Wide Web, WWW ’08, pp.
1213–1214. ACM, New York, NY, USA (2008).
DOI 10.1145/1367497.1367732

16. Du Mouza, C., Litwin, W., Rigaux, P.: Large-
scale indexing of spatial data in distributed
repositories: the sd-rtree. The VLDB Jour-
nal 18, 933–958 (2009). DOI 10.1007/
s00778-009-0135-4

17. Duran, A., Silvera, R., Corbalán, J., Labarta, J.:
Runtime adjustment of parallel nested loops. In:
B.M. Chapman (ed.) Shared Memory Parallel
Programming with Open MP, Lecture Notes in
Computer Science, vol. 3349. Springer Berlin /
Heidelberg (2005)

18. Fagin, R., Kumar, R., Sivakumar, D.: Efficient
similarity search and classification via rank ag-
gregation. In: Proceedings of the 2003 ACM
SIGMOD international conference on Manage-
ment of data, SIGMOD ’03, pp. 301–312. ACM,
New York, NY, USA (2003). DOI 10.1145/
872757.872795

19. Fagin, R., Lotem, A., Naor, M.: Optimal ag-
gregation algorithms for middleware. In: Proc.
of the 20th ACM SIGMOD-SIGACT-SIGART
Symp. on Principles of database systems, PODS
’01, pp. 102–113. ACM (2001). DOI 10.1145/
375551.375567

20. Faloutsos, C.: Gray codes for partial match and
range queries. IEEE Trans. Softw. Eng. 14,
1381–1393 (1988). DOI 10.1109/32.6184

21. Faloutsos, C.: Multimedia Indexing, pp. 435–
464. John Wiley & Sons, Inc. (2002). DOI
10.1002/0471224634.ch15

22. Faloutsos, C., Roseman, S.: Fractals for sec-
ondary key retrieval. In: Proceedings of the
eighth ACM SIGACT-SIGMOD-SIGART sym-
posium on Principles of database systems,
PODS ’89, pp. 247–252. ACM, New York, NY,
USA (1989). DOI 10.1145/73721.73746

23. Ferreira, R., Jr., W.M., Guedes, D., Drum-
mond, L., Coutinho, B., Teodoro, G., Tavares,
T., Araujo, R., Ferreira, G.: Anthill:a scalable
run-time environment for data mining applica-
tions. In: Symposium on Computer Architec-
ture and High-Performance Computing (SBAC-
PAD) (2005)

24. Garcia, V., Debreuve, E., Barlaud, M.: Fast
k nearest neighbor search using GPU. In:
CVPR Workshop on Computer Vision on GPU
(CVGPU). Anchorage, Alaska, USA (2008)

25. Hartley, T.D., Catalyurek, U.V., Ruiz, A., Ujal-
don, M., Igual, F., Mayo, R.: Biomedical Image
Analysis on a Cooperative Cluster of GPUs and
Multicores. In: 22nd ACM Intl. Conference on
Supercomputing (2008)

26. He, B., Fang, W., Luo, Q., Govindaraju, N.K.,
Wang, T.: Mars: A mapreduce framework on
graphics processors. In: Parallel Architectures
and Compilation Techniques (2008)

27. Hua, G., Fu, Y., Turk, M., Pollefeys, M., Zhang,
Z.: Introduction to the special issue on mo-
bile vision. International Journal of Com-
puter Vision 96, 277–279 (2012). DOI 10.1007/
s11263-011-0506-3. 10.1007/s11263-011-0506-3

28. Indyk, P., Motwani, R.: Approximate nearest
neighbors: Towards removing the curse of di-
mensionality. In: STOC, pp. 604–613 (1998).
DOI 10.1145/276698.276876

29. Kerbyson, D.J., Alme, H.J., Hoisie, A., Petrini,
F., Wasserman, H.J., Gittings, M.: Predictive
performance and scalability modeling of a large-
scale application. In: Supercomputing ’01: Pro-
ceedings of the 2001 ACM/IEEE conference on
Supercomputing (CDROM), pp. 37–37 (2001).
DOI 10.1145/582034.582071

30. Liao, S., Lopez, M.A., Leutenegger, S.T.: High
dimensional similarity search with space filling
curves. In: Proc. of the 17th Int. Conf. on Data
Engineering, pp. 615–622 (2001)

31. Linderman, M.D., Collins, J.D., Wang, H.,
Meng, T.H.: Merge: a programming model for
heterogeneous multi-core systems. SIGPLAN
Not. 43(3), 287–296 (2008). DOI 10.1145/
1353536.1346318

32. Liu, Y., Zhang, D., Lu, G., Ma, W.Y.: A survey
of content-based image retrieval with high-level
semantics. Pattern Recognition 40(1), 262 – 282
(2007). DOI 10.1016/j.patcog.2006.04.045

33. Lowe, D.G.: Distinctive image features from
scale-invariant keypoints. Int. J. Comput. Vi-
sion 60, 91–110 (2004). DOI 10.1023/B:VISI.
0000029664.99615.94

34. Luk, C.K., Hong, S., Kim, H.: Qilin: Exploit-
ing parallelism on heterogeneous multiproces-
sors with adaptive mapping. In: 42nd Inter-
national Symposium on Microarchitecture (MI-
CRO) (2009)

35. Mainar-Ruiz, G., Perez-Cortes, J.C.: Approx-
imate nearest neighbor search using a single
space-filling curve and multiple representations
of the data points. In: Proceedings of the 18th
International Conference on Pattern Recogni-
tion - Volume 02, ICPR ’06, pp. 502–505.
IEEE Computer Society, Washington, DC, USA
(2006). DOI 10.1109/ICPR.2006.275

36. Mallows, C.L.: An inequality involving multino-
mial probabilities. Biometrika 55(2), pp. 422–
424 (1968)

37. Megiddo, N., Shaft, U.: Efficient nearest neigh-
bor indexing based on a collection of space fill-
ing curves. Tech. Rep. IBM Research Report RJ
10093 (91909), IBM Almaden Research Center,
San Jose California (1997)

38. Mikolajczyk, K., Schmid, C.: A performance
evaluation of local descriptors. IEEE Transac-
tions on Pattern Analysis and Machine Intel-
ligence 27, 1615–1630 (2005). DOI 10.1109/
TPAMI.2005.188

39. Morton, G.M.: A computer oriented geodetic
data base and a new technique in file sequenc-
ing. Tech. Rep. Technical Report, IBM Ltd.,
Ottawa, Ontario, Canada (1966)

40. O’Malley, S.W., Peterson, L.L.: A dynamic net-
work architecture. ACM Trans. Comput. Syst.
10(2) (1992). DOI 10.1145/128899.128901

41. Pang, H., Ding, X., Zheng, B.: Efficient pro-
cessing of exact top-k queries over disk-resident
sorted lists. The VLDB Journal 19, 437–456
(2010). DOI 10.1007/s00778-009-0174-x

42. Penatti, O.A.B., Valle, E., Torres, R.d.S.: Com-
parative study of global color and texture de-
scriptors for web image retrieval. J. Vis. Co-
mun. Image Represent. 23(2), 359–380 (2012).
DOI 10.1016/j.jvcir.2011.11.002

Approximate Similarity Search for Online Multimedia Services on CPU–GPU Platforms 25

43. Ravi, V., Ma, W., Chiu, D., Agrawal, G.: Com-
piler and runtime support for enabling general-
ized reduction computations on heterogeneous
parallel configurations. In: Proceedings of the
24th ACM International Conference on Super-
computing, pp. 137–146. ACM (2010)

44. Sagan, H.: Space-Filling Curves. Springer-
Verlag, New York, NY, USA (1994)

45. Samet, H.: Foundations of Multidimensional
and Metric Data Structures (The Morgan Kauf-
mann Series in Computer Graphics and Geo-
metric Modeling). Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA (2005)

46. Sancho, J.C., Kerbyson, D.J.: Analysis of Dou-
ble Buffering on two Different Multicore Archi-
tectures: Quad-core Opteron and the Cell-BE.
In: International Parallel and Distributed Pro-
cessing Symposium (IPDPS) (2008)

47. Shakhnarovich, G., Darrell, T., Indyk, P.:
Nearest-Neighbor Methods in Learning and Vi-
sion: Theory and Practice (Neural Information
Processing). The MIT Press (2006)

48. Shepherd, J., Zhu, X., Megiddo, N.: A fast
indexing method for multidimensional near-
est neighbor search. In: SPIE Conference on
Storage and Retrieval for Im-age and Video
Databases VII, pp. 350–355 (1999)

49. Smeulders, A., Worring, M., Santini, S., Gupta,
A., Jain, R.: Content-based image retrieval at
the end of the early years. Pattern Analysis and
Machine Intelligence, IEEE Trans. on 22(12),
1349 –1380 (2000). DOI 10.1109/34.895972

50. Stone, Z., Zickler, T., Darrell, T.: Autotag-
ging facebook: Social network context improves
photo annotation. In: Computer Vision and
Pattern Recognition Workshops, 2008. CVPRW
’08. IEEE Computer Society Conference on,
pp. 1 –8 (2008). DOI 10.1109/CVPRW.2008.
4562956

51. Teodoro, G., Fireman, D., Guedes, D., Jr.,
W.M., Ferreira, R.: Achieving multi-level par-
allelism in filter-labeled stream programming
model. In: The 37th International Conference
on Parallel Processing (ICPP) (2008)

52. Teodoro, G., Hartley, T., Catalyurek, U.,
Ferreira, R.: Optimizing dataflow applica-
tions on heterogeneous environments. Cluster
Computing 15, 125–144 (2012). URL http:
//dx.doi.org/10.1007/s10586-010-0151-6.
10.1007/s10586-010-0151-6

53. Teodoro, G., Hartley, T.D.R., Catalyurek, U.,
Ferreira, R.: Run-time optimizations for repli-
cated dataflows on heterogeneous environments.
In: Proc. of the 19th ACM International Sym-
posium on High Performance Distributed Com-
puting (HPDC) (2010)

54. Teodoro, G., Kurc, T.M., Pan, T., Cooper, L.A.,
Kong, J., Widener, P., Saltz, J.H.: Accelerating

Large Scale Image Analyses on Parallel, CPU-
GPU Equipped Systems. In: 26th IEEE Interna-
tional Parallel and Distributed Processing Sym-
posium (IPDPS) (2012)

55. Teodoro, G., Sachetto, R., Sertel, O., Gurcan,
M., Jr., W.M., Catalyurek, U., Ferreira, R.: Co-
ordinating the use of GPU and CPU for improv-
ing performance of compute intensive applica-
tions. In: IEEE Cluster (2009)

56. Teodoro, G., Valle, E., Mariano, N., Torres,
R., Meira Jr., W.: Adaptive parallel approx-
imate similarity search for responsive multi-
media retrieval. In: Proceedings of the 20th
ACM international conference on Information
and knowledge management, CIKM ’11, pp.
495–504. ACM, New York, NY, USA (2011).
DOI 10.1145/2063576.2063651

57. Tuytelaars, T., Mikolajczyk, K.: Local invari-
ant feature detectors: a survey. Found. Trends.
Comput. Graph. Vis. 3, 177–280 (2008). DOI
10.1561/0600000017

58. Valle, E., Cord, M., Philipp-Foliguet, S.: Fast
identification of visual documents using local
descriptors. In: Proceeding of the eighth ACM
symposium on Document engineering, DocEng
’08, pp. 173–176. ACM (2008). DOI 10.1145/
1410140.1410175

59. Valle, E., Cord, M., Philipp-Foliguet, S.: High-
dimensional descriptor indexing for large mul-
timedia databases. In: Proceeding of the 17th
ACM conference on Information and knowledge
management, CIKM ’08, pp. 739–748. ACM,
New York, NY, USA (2008). DOI 10.1145/
1458082.1458181

60. Valle, E., Cord, M., Phillip-Folliguet, S.,
Gorisse, D.: Indexing personal image collec-
tions: A flexible, scalable solution. IEEE Trans.
Consumer Elect. 56, 1167–1175 (2010). DOI
10.1109/TCE.2010.5606242

61. Welsh, M., Culler, D., Brewer, E.: Seda: an ar-
chitecture for well-conditioned, scalable internet
services. SIGOPS Oper. Syst. Rev. 35(5), 230–
243 (2001). DOI 10.1145/502059.502057

62. Yiu, M.L., Mamoulis, N.: Multi-dimensional
top-k dominating queries. The VLDB Jour-
nal 18, 695–718 (2009). DOI 10.1007/
s00778-008-0117-y

63. Yu, H., Rauchwerger, L.: Adaptive reduction
parallelization techniques. In: Proc. of the 14th
Int. Conf. on Supercomputing, ICS ’00, pp. 66–
77. ACM, New York, NY, USA (2000). DOI
10.1145/335231.335238

64. Zezula, P., Amato, G., Dohnal, V., Batko, M.:
Similarity Search: The Metric Space Approach,
1st edn. Springer Publishing Company, Incor-
porated (2010)

http://dx.doi.org/10.1007/s10586-010-0151-6
http://dx.doi.org/10.1007/s10586-010-0151-6

	1 Introduction
	2 Related work
	3 Background
	4 The Distributed Index Hypercurves
	5 Hypercurves in Heterogeneous CPU–GPU Environments
	6 Response Time Aware Task Partition in Heterogeneous CPU–GPU Platforms
	7 Experimental results
	8 Conclusions and future work

