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Abstract Destination prediction is an essential task for mangparsity problem. SubSyn first decomposes historical tra-
emerging location-based applications such as recommenpkctories into sub-trajectories comprising two adjacent |
ing sightseeing places and targeted advertising accotding cations, and then connects the sub-trajectories into hgynt
destinations. A common approach to destination predictiosised” trajectories. This process effectively expandsibe
is to derive the probability of a location being the desti-torical trajectory dataset to contain much more trajeetori
nation based on historical trajectories. However, almtist aExperiments based on real datasets show that SubSyn can
the existing techniques use various kinds of extra informapredict destinations for up to ten times more query trajec-
tion such as road network, proprietary travel plannerisstat tories than a baseline prediction algorithm. Furthermibie,
tics requested from government, and personal driving babitrunning time of the SubSyn training algorithm is almost neg-
Such extra information, in most circumstances, is unavailligible for a large set of 1.9 million trajectories, and thebS
able or very costly to obtain. Thereby we approach the taskyn prediction algorithm runs over two orders of magnitude
of destination prediction by using only historical traggt  faster than the baseline prediction algorithm constantly.
dgtaset. HO\{)/e.VGI’, this approach engounters the- data Spﬁl{'eywords Trajectory Mining- Destination Prediction
sity problem”, i.e., the available historical trajectargre far .

. " . . Markov Model- Bayes’ Rule
from enough to cover all possible query trajectories, which
considerably limits the number of query trajectories ttaat ¢

obtain predicted destinations. We propose a novel methog |htroduction
namedSub-Trajectory SynthegiSubSyn) to address the data

A.Y. Xue (x)
University of Melbourne, Victoria, Australia
E-mail: andy.xue@unimelb.edu.au

J. Qi
University of Melbourne, Victoria, Australia
E-mail: jianzhong.qi@unimelb.edu.au

X. Xie
Microsoft Research Asia, Beijing, P.R.China
E-mail: xingx@microsoft.com

R. Zhang
University of Melbourne, Victoria, Australia
E-mail: rui.zhang@unimelb.edu.au

J. Huang
University of Melbourne, Victoria, Australia
E-mail: jin.huang@unimelb.edu.au

Y. Li
University of Melbourne, Victoria, Australia
E-mail: yuanl4@student.unimelb.edu.au

As the usage of smart phones and in-car navigation sys-
tems becomes part of our daily lives, we benefit increas-
ingly from various types of location-based services (LBSs)
such as route finding and location-based social networking.
A number of new location-based applications requiesti-
nation prediction for example, to recommend sightseeing
places, to send targeted advertisements based on destina-
tion, and to automatically set destination in navigatiog-sy
tems. Fig. 1 provides a schematic with the lines represent-
ing roads and the circles representing locations of interes
which may be road intersections, sightseeing places, shop-
ping centres, etc. If one drives framto /4, an LBS provider
may predict the most probable destinations tébh& andig
based on past popular routes taken by other drivers. As a re-
sult, the LBS provider can push advertisements of products
currently on sale at those locations.

A common approach to destination prediction is to make
use of historical spatial trajectories [33] of the publicai
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a city), and currently the largest available real-life diaj
tory dataset covers only a tiny portion of it. Second, even
trips with the same origin-destination pair may vary onthei
routes, making it unlikely to have identical trajectories.

In this paper, we propose a novel method to address the
data sparsity problem. Following most studies, we patrtitio
the data space using a grid, and each grid cell represents
a location. Our method first decomposes all the trajectories
into sub-trajectories, each of which comprises only two ad-
jacent locations, i.e., two grid cells passed through by the

54//////////6////////////0 sub-trajectory. The sub-trajectories are connected heget
lz ls lo into “synthesised” trajectories. As long as a query trajec-
tory matches part of any synthesised trajectory, the destin
tion of the synthesised trajectory can be used for destinati
prediction. By this means, the coverage of query trajecto-
ries on which we can make destination predictions is ex-
ponentially increased. The underlying process is fornealat
by a Markov model quantifying the correlation between ad-
jacent locations/cells with transition probabilities. \&en

Fig. 1 An example of destination prediction

able from trajectory sharing websites [9, 23] or large séts 0
taxi trajectories [19]. If an ongoing trip partially matche

popular route derived from historical trajectories, thetde
nation of the popular route is very likely to be the destioati . .
of the ongoing trip (we refer to the ongoing trip as theery then compute the probability of reaching all the reachable

trajectory). Shown in Fig. 1 are five historical trajectories: locations from a given origin, and the top ranked ones are
Ty = {11, 1o, s, 6, Io }, To = {ls, s, I}, Ty = {la, I, ls} returned as predicted destinations. We call the above rdetho

Sub-TrajectorySynthesig(SubSyn). For the aforementioned
query trajectory{ly, 4,15, s}, the SubSyn algorithm will
be able to predict other destinations sucliggandly since
they can be synthesised using sub-trajectorids pf3, and
Ts. The outcome of the destination prediction process will

tory. In practice, each trajectory here may be associatdéd wi depznd on .the tranl;smon protzjabllltlehs andd thel nurr;ber of
a weight denoting the number of historical trajectorieg thatoP estl_natr:onfs to fe retulrane .I_\Ne_ ave deve oped a in-
exactly match this one, and the most popular trajectores afem [29]in the form of a web application to demonstrate the

used for destination prediction. The detail of this method i use of the above methéd . o L
presented in Section 2.3 as the baseline algorithm In summary, we make the following contributions in this

The above method has a significant drawback. A Ioca‘:"rt'de:

tion [ can be predicted as a destination only when there ex-— We identify the data sparsity problem in destination pre-
ists a historical trajectory that matches the query trajgct diction and propose a novel method calfgb-Trajectory
and the historical trajectory’s destinationlisin practice, SynthesigSubSyn) to address this problem. SubSyn de-
Is andly are also very likely to be the destination of the ~ composes historical trajectories into sub-trajectorreb a
query trajectory, but will not be recommended to the user ~connect them into “synthesised” trajectories for destina-

Ty = {lo,ls,l7}, andTs = {l1,l4,17}. Each trajectory is
represented by a different type of line. For instance, aisrip
taken from/; toly, and this query trajectorfi, I, } matches
part of the historical trajectory;. Therefore, the destination
of T; (i.e.,l7) is the predicted destination of the query trajec-

due to the limitation of the historical dataset. Moreover, i tion prediction. This process is formulated based on a
the query trajectory continues tg, the above method will Markov model.

not be able to predict any destination since no historieal tr — SubSynis highly efficient because it is designed to have
jectory contains the query trajectof¥i, L4, Is }. We refer to two phases, training and prediction. In the prediction

this phenomenon as tiata sparsity problem. One plausi- phase, most of the data required by the algorithm are di-
ble solution is to incorporate extra information such aslroa  rectly fetched from pre-computed matrices in the train-

network, proprietary travel planner, statistics requiftem ing phase. This is much faster than the baseline predic-

government, and personal driving habits (cf. Section 2.1). tion algorithm, which has to compare query trajectories
Such information, however, is unavailable or very costly to ~ against all the historical trajectories.

obtain in most circumstances. Thereby we approach the task- We propose a highly efficient training algorithm to sig-
of destination prediction by using only historical trajert nificantly reduce the running time of the SubSyn training
dataset. As a result, the data sparsity problem is inegtabl ~ Stage. This is achieved by optimising the matrix multi-
in practice due to the following reasons. First, the number Plications in the training stage.

of possible routes between all pairs of origin-destinaton 1 The demonstration system can be accessed following tHis lin
very large (exponential to the number of road segments iRttp: //spati al anal yti cs. ci s. uni nel b. edu. au/ subsyndeno/ .
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— We further improve the accuracy of our prediction algo-prediction accuracy in Section 6. Various grid partitianin
rithm by employing the second-order Markov model andtechniques are compared in Section 7. Section 8 provides a
investigating various space partitioning techniques.  detailed cost analysis of all the proposed algorithms. Expe

— We provide a detailed cost analysis on all the proposeimental results are reported in Section 9. Finally Section 1
algorithms. concludes the paper. Table 1 summarises the frequently used

— We conduct extensive experiments using a large real-lifsymbols.
taxi trajectory dataset to evaluate the prediction accu-
racy and runtime efficiency of the SubSyn algorithms.

The results show that, compared with the baseline pre2 Related Work and Preliminaries

diction algorithm, the SubSyn prediction algorithm can

predict destinations for up to ten times more query traWe first discuss existing work in destination predictiond an
jectories while running over two orders of magnitudecompare their similarities and differences with our work in
faster. The SubSyn training algorithm is also highly effi-this artiple. Theqwe build a soluti(?n framework and propose
cient. It trains a Markov model with multiple high-order @ Paseline algorithm based on existing work.

transition matrices on a dataset of 1.9 million trajectorie

ithin only several minutes.
withi y sev inu 2.1 Related Work

This article is an extension of our earlier conference pa-
per[28]. There we proposed the SubSyn method with its theMost existing destination prediction studies make use®f hi
oretical foundations. In this article, we extend our work bytorical trajectories, and their focuses have mainly fokdw
making the following additional contributions. First, wep  two streams: (i) using external information in addition to
pose an improved SubSyn training algorithm (Section 5) thahistorical trajectories to help improve the accuracy of-pre
reduces the training time by more than five orders of magnidicted destinations; (ii) personalised destination prioi
tude compared with the training algorithm proposed in thedfor individual users. We describe each stream in more de-
conference paper [28]. Second, in Section 6 we improvéails below.
the prediction accuracy of SubSyn by up to 20% by inte- Employing external information in addition to historical
grating the second-order Markov model. Fig. 2 summarisegajectories can often enhance the prediction accuraay. Fo
the relationship of the improved algorithm with the oridina example, distribution of different districts, trip timestfii-
SubSyn algorithm. Third, we propose two additional gridbution, trajectory length, fastest route travel plann@ [ii5,
partitioning strategies (Section 7), quantile-based ged  16], accident reports, road condition, and driving hal8¢ [
titioning andk-d tree based grid partitioning. Thed tree  have been incorporated into Bayesian inference to compute
based grid partitioning strategy yields better accuraeyth the probabilities of predicted destinations. Similartyntext
the uniform grid and quantile-based grid as it results inenor information such as time-of-day, day-of-week, and velocit
even number of GPS points in each cell. This conforms tdhas been incorporated as features in training the Bayesian
our theoretical analysis. The experimental results shat th network model for prediction [4, 8]. The intuition behind
a more balancing grid partitioning strategy is particylaft  these studies is that certain travelling pattern which ffits i
fective when computing power or the available data is lim-the acknowledged external settings shall bring higheriposs
ited. Fourth, we provide a detailed cost analysis on all théilities to locations corresponding to those externalisgst
proposed algorithms (Section 8). Finally, we conduct a morén the historical dataset. However, such extra informaiion
extensive experimental study on all the algorithms using anost circumstances, is unavailable or very costly to obtain
much larger real dataset (Section 9). Thereby we approach the task of destination prediction by
using only historical trajectory dataset. Our focus is thvao
the data sparsity problem which cannot be solved by adding
SubSyn [——3 SubSynE |— 3| SubSynEA external information. Therefore, the above studies are not
applicable to our problem.

Fig. 2 Improvements on SubSyn algorithms: We improve the runtime ~ Personalised destination prediction trains predictiodmo

efficiency of the training phrase of SubSyn to obt8ilbSynHE for  els using historical trajectories from an individual andrth

gf;g'fxgzuiggyt)he” enhance the prediction accuracy BthSYnEA e gicts destinations for this same individual. Thus, ¢hes
predictions for the same query trajectory from differergngs
may vary. Natalia and Chris [18] and Pattersziral. [21]

The remainder of the article is organised as follows: Secused a Bayesian method to predict destinations for specific
tion 2 presents related work and preliminaries. Our SubSymdividuals based on their historical transport modes.Kdar
method and its algorithms are described in Sections 3 and #odel has been widely applied in predicting destinations
We improve runtime efficiency of SubSyn in Section 5 andfor a specific individual as well [3, 5, 17, 22, 24]. Tiesyte
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certain distance in the real world, e.g., 600 m. The whole
grid is modelled as a graph where each cell corresponds to

Table 1 Frequently Used Symbols

Symbol Explanation a node in the graph. Thereby, we will use the termslg
D The historical trajectory dataset cell, andlocation interchangeably in the remainder of this
g Granularity of a grid paper. A trajectory can be represented as a sequence of cells
™ Number of cells in a gridm — g2 according to the sequence of GPS points in the trajectory.
ni(,ns,ne,ng) | it" (, starting, current, destination) cell An example of a3 x 3 grid is given in Fig. 3, where the
Pij Transition probability from; to adjacent; trajectoryl’ can be represented §81, n2, ns,n6, 19 }. BY
Dik Total transition probability from; to n representing the trajectories using cells in a grid repriase
Ti(.5) Trajectories i that contain{n, (,n;)} tion, similar trajectories are considered identical beeaa
TP Partial or query trajectory from to ne cell is the granularity of the graph. For example, in Fig. 3,
Lix ¢1 distance between; andn,, Ty, and T3 are identical, both of which are represented as
a Detour factora {n4,ns5,m8}. Itis easy to observe that when the area of each
le.ik Detour distance from; to ny. lye i = [odix | grid cell becomes smaller, the different trajectories neeo
M, M, Transition matrix and its entry more distinguishable from each other in the grid model.
MT ME Total transition matrix and its entry
n1 ng n3
and Jensen [26] proposed\earest-Neighbour Trajectory o ~ o

(NNT) method that utilised distance measures to identiéy th
historical trajectory which was the most similar to the cur-
rent query trajectory. Chesgt al.[7] used a tree structure to n4 ns ne

represent the historical movement patterns and then nthtche

the current query trajectory by stepping down the tree. All " . - T5
these studies focused on predicting the repeated destisati o Q : —T
of one or a group of specific individuals based on their own nr ng ng s T
habits and historical travelling records. Our work conssde C'>4 g S
query trajectory from an unknown individual (without avail vronrrss Ry 100020000 T

able personalised information). This is different from the -5
personalised destination prediction studies. Therefoegt _

solutions would be inapplicable to the data sparsity prob™'9-3 A 3 x 3 grid on the example

lem. Trajectory mining have also been studied in other con-

texts such as moving KNN query [10, 20], continuous mov-  gjnce query trajectories are incomplete trajectories whos
ing queries on moving objects [1, 2, 13, 32], and group NNyestinations should be predicted by prediction algorithms
query [11]. Reference [33] contains a comprehensive SurveYe genote them bpartial trajectories i.e., 7. With a grid

on computation with spatial trajectories. representation, two trajectoriés and7’ are arexact match
with each other if and only if their sequences of cells are
identical, denoted by, = T5; a partial/query trajectory
TP partially matchesa trajectoryT if and only if their se-

The most popular approach to the destination predictiobprduences start from the same cell and the cell sequence of

lem is to use a uniform grid to represent the map, and perl” iS fully contained by the cell sequence 6f denoted

form Bayesian inference to derive the probability of destin Py 7 C 7. In the example shown in Fig. 3} = {_”lv na}

tions based on historical trajectories [15, 16, 18, 21, @], 3 Partially matched’; = {ni, n4, n7}. A non-matching query

Our solution also follows this paradigm. trajectgryis a query trajectory that has no partial match in
In previous studies on destination prediction [15, 16,he training dataset.

18, 21, 31, 34], auniform grid is commonly used to help

represent the dataset. It abstracts the map of a city as a two

dimensional grid consisting ef. = g x g congruent square 2.3 A Baseline Prediction Algorithm

cells. The granularity of this representation is a cell, a4

the locations within a single cell are considered to be thé\s explained in Section 2.1, none of the methods described

same object. Without loss of generality, we consider thain existing work applies to our situation where the only &vai

each cell has the side length of 1 and adjacent cells hawble information is the GPS trajectory dataset. In what fol-

the distance of 1. This distance of 1 may correspond to fows, we adapt the ideas of grid representation and Bayes’

2.2 Preliminaries
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rule from existing methods , and obtain a baseline predictioversion that utilises the same approach (e.g., grid represe
algorithm described as follows. tation and Bayes'’ rule). Taking Ziebart et al [34] as an ex-
The probability of a celhy, being the destination can be ample, the authors use Markov decision process as the like-
computed as the probability thaj, is the destination loca- lihood function in Bayes’ rule whereas our baseline algo-
tion ng4, conditioning on the query trajectofy?. Formally,  rithm use trajectory matching techniques as the likelihood
the probability is computed using Bayes’ rule as function. The data used for the likelihood function in [34]

are generated from trajectories, surveys, and road network
P(Tp|nd = nk)P(nd = nk)

P(TP)
P(Tp|nd = nk)P(nd = nk)

P(nd = nk|Tp) =

1)

o B o 3 Destination Prediction Based on Sub-Trajectory

J; P(T?lna = n;)P(ng =n;) Synthesis
The prior probabilityP(nq = ) can be easily computed To overcome the data sparsity problem, we propose a novel
as the number of trajectories terminatingrgtdivided by  method name8ub-TrajectorySynthesis(SubSyn). The gen-

the number of trajectories in the dataset. Formally, eral idea is to first decompose each historical trajectdry in
i | segments of length 1 and then synthesise the segments in
P(ng =nyg) = %, (2)  all possible combinations. This process effectively exjzan

the historical trajectory dataset to cover a greater number
where|D| is the cardinality of the historical trajectory datasetOf query trajectories. Thereby it overcomes the data syarsi
and|T},,—n, | is the number of trajectories ib that termi- problem. This section lays the theoretical foundation ef th
nate at locatioms. Similarly, we can compute the prior SubSyn method, which will be implemented in Section 4 as
probability P(ny = n;) by replacingn; with n; in the the SubSyn training and prediction algorithms.

above equation. As indicated by Equation (2), only loca- Following previous studies based on Bayesian inference
tions that are the destinations of historical trajectovids ~ framework, the SubSyn method first represents the map with
have non-zero prior probabilities, reflecting the fact iy~ a grid. Then it uses a Markov model to model the trajec-
popular locations are of interest. Therefore, the crux ofgis  tories, where each state corresponds to a grid cell and the
Equation (1) is computing tHielihood functionP(77|n, = transition from one state to another corresponds to travel-
nx) (note thatP(T?|nq = n;) can be computed by letting ling from one cell to another. This way any trajectory can
ni, ben;). In order to solve this issue, we first count the be modelled as a series of state transitions in the Markov
number of trajectories satisfying two conditions: (i) ipar- ~ model.

tially matched by the query trajectofy?; (ii) it terminates We train the Markov model (i.e., learn the state transition
at locationn. The count is then divided by the number of probabilities) as follows. Given a set of historical tragec
trajectories that terminate at locatiop to serve as the like- ries, we first obtain the state transition series for each tra

lihood function. Formally, jectory. Then the number of historic trajectories that eont
a transition from state; to stater; divided by the num-
|{Tnd:nk |Tp C Tﬂd:ﬂkH i I I I i iti ¢
P(T?|ng = ny) = ) (3)  ber of historic trajectories that contain a transition tatar
Ta=ns from staten; yields the transition probability from; to n;
where|{T},,n, |T? C T,—n. }| denotes the number of tra- (Section 3.1). _ _ o N
jectories that satisfy both the aforementioned conditaors _We synt.he5|se trajectories (i.e., generate state transiti
T, —n, | denotes the number of trajectories that terminate ageries) of different lengths and compute tbel transition
a location inny,. probability of each pair of state§n;, ny }, which is the sum

The above method, which usésjectory matchingas ~ ©f the transition probabilities of all the synthesisedétaj
the likelihood function, will be used as th@seline predic-  tories that starts at; and ends at.. The total transition
tion algorithm As discussed in Section 1, this method suf-Probability will be used for computing the probabilities of
fers from the data sparsity problem. If the query trajectoryth€ destinations (Section 3.2).
TP cannot be partially matched by any trajectoryiin, then When a query trajectory arrives, we match the query tra-
the numerator in Equation (3)7},,—n, |T? C Tnh,—n,}| Jectorywiththe synthesised trajectories, and derive tbep
equal®), and the probability of any cell being the destinationability that the ending state of each matched trajectory be-
is 0 (i.e., P(TP?|nq = ni) = 0). Consequently, no predicted ing the predicted destination based on the precomputeld tota
destination can be found for this query trajectory. transition probabilities (Section 3.3).

It should be made clear that the baseline algorithnots We detail the theoretical foundation of the SubSyn method
directly borrowed from existing work, but rather an adaptedn the following subsections.
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3.1 Modelling Trajectories using Markov Model able to further investigate the second-order Markov model
and we will present how we tackle the difficulties in Sec-

We model the trajectories using a Markov model by assocition 6.

ating a state to each cel} in the grid. The transition proba-

bility of travelling from a locatiom; to an adjacent location

n; is denoted by, ;. We computey;; andp;; for every pair 0 piz2 0 p1g 0 0 0 0 0
of adjacent cells; andn;. Fig. 4 shows the Markov model P21 0 pas 0 ps O 0 0 O
state transition diagram for the example in Fig. 3. These 0 p2 0 0 0 pge 0 0 0
transition probabilities are conditional probabilitiesdacan par 00 0 pss 0 paz O 0
be computed as the number of trajectories that contain th&/ = | 0 P52 0 psa 0 pss 0 pss 0 ()

sequencgn;, n,; } divided by the number of trajectories that 0 0 pez 0 pes 0 0 0 peg
contain the celh,. Formally, 0 0 0 pga 0 0 O prg O

T . 0 0 0 0 pgs 0 psr O psg
Pij = P(n7|nl) = | 17J| 0O 0 0 0 O P96 0 Pos 0

T3] )
For each pair of adjacent cells in the grid, we precompute

the transition probabilities using Equation (4). Thesebpro 3.2 Computing the Total Transition Probability and the
abilities are stored as entries of a two-dimensionak m,m  Path Probability

matrix where one dimension corresponds to the cell of cur-

rent state and the other dimension corresponds to the neft Section 3.1, a Markov model based transition madrix
state. In the following sections, we denote the transitiaa m is constructed and filled with probabilities of travellimgin
trix and its entries by\/ andM;,, respectively. Matrix (5)is & cell to its adjacent cells. This process is effectivelyahee

the transition matrix of the example presented in Fig. 3 and?0Sing each trajectory iy into a set of sub-trajectories of
Fig. 4. length 1 (i.e, ordered pairs of adjacent cells). For inganc

the trajectoryT’ in Fig. 1 is decomposed intdY,, T3 5,
T¥ ¢, andTg o which in turn contribute to the transition prob-
abilities p12, pa2s, pse, andpgg, respectively. Using this set
of sub-trajectories, we can synthesise other trajectdiniats
also start at; and end atg but pass through other inter-
mediate cells, e.g7 = T7,, T} 5, T5 s, andTg 4. We syn-
thesise all possible trajectories for évery pair' of celland
ng. Then we can obtain thetal transition probabilityfrom
cell n; to cellng, which will be incorporated in Section 3.3
to formulate the posterior probabilify(ng = ng|T?).

The Total Transition Probability: The following ex-
ample demonstrates the concept of the total transition-prob
ability. By referring to Equation (5) and Fig. 4, the proba-
bility of travelling from n; to ng is found to be zero in/
(i.e., M16 = 0) becauseV/ stores the probability of travel-
ling from one cell to another in exactly one step, and there
is no way of travelling between these two cells within one

As indicated by Equation (4), since the first-order Markostep. Furthermore, wheh! is multiplied by itself to form
model is used here, only the current state determines th&/2, its entries are the probabilities of travelling from one
probability of transiting to the next state. Higher ordenktav  cell to another in two steps. In generdl,” (r € [0, 00))
models could be applied by involving previous states in adholds the probabilities of transition from one cell to aresth
dition to the current state in computing the probabilities.in exactlyr steps (i.e.M" holdsr-step transition probabili-
However, even the second-order Markov model will requirgies). Since thé; distance between; andng (i.e.,l15) is 3,

a large number of trajectories as training data and a mucthe probability of travelling fronn; to ng via all the short-
higher memory occupation as shown by previous studies [®st paths can be found in matrix ean’ﬁ. However, two

6]. Due to this reason, we first present our method usingroblems also remain: (i) thg distance does not necessar-
the first-order Markov model (which was published in theily correspond to the actual travelling distance framto
conference version [28]). As we have later substantially imng because sometimes a small detour is taken due to vari-
proved the efficiency and memory usage of the training aleus reasons. Hence we wish to find the sum-sfep tran-
gorithm, and we have obtained much more real data, we agtion probabilities of various steps; (ii) the number oftm=

Fig. 4 A 3 x 3 Markov model state transition diagram
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from one cell to another is infinitely large without restric- the definition of path probability is:

tions, i.e.,r € [l16,00). In order to solve these two prob-

lems, we introduce a detour facteras an additional condi-

- : P(T?) = P(T] Hp ()
tion that the length of all possible paths between two cells; 1,2, i(i+1)-

e.g.,n;, ng, will not exceed ;. + [al; |, wherel;, is thet;

distance between; andny. In a general case, we assume
1). By examining the dataset used in our ex-
periment, it is found that the median distances of all trips i

1.2 of the?;, distance between the starting and ending cell%p

thata € [0,

(cf. Section 6.1). Therefore, we use= 0.2 as a constant.
We denote]al; | by 4 ik, and define theotal transition
probability as follows.

Definition 1 Total Transition Probability The total transi-
tion probability of travelling from one ceft; to another cell
ng, denoted byp; .2, is the sum of the-step transition
probabilities of all possible paths (with the detour distan
restriction) betweem; andn. Formally:

lik+lde, ik

Pi—k = g

= l7k

_ lik lik+1
= Mik + Mik

(6)

. M lik+lde, ik

We discuss a special case of applying Equation (7), and
. use a3 x 3 grid as an example. If a query trajectory pro-
vided by user contains non-adjacent consecutive cells, (e.g
{n1,ns5,n6} where{n,, ns} are not adjacent cells),
the transition probability;5 would be zero. This situation
could occur when, for instance, the user’s GPS device failed
to report its position for several minutes. In such cases, we
uselinear interpolationto fill the gap between these two
cells before calculating the path probability. More specifi
cally, we first use dinear polynomial(i.e., straight line) to
connect the two GPS points locatedrin andn;. Suppose
that the linear polynomial passes. Then we will inserty
toT? to form TP = {ny, n4, ns, ng}-

3.3 Computing the Destination Probability

To predict the destination is to compute the posterior prob-
ability P(ny = ng|T?) as defined by Equation (1) in Sec-

In the equation above, the last term after expanding th#0n 2-2. The method is described below.

summation equation}/;;’ Livtlaeir gives the probability of

travelling fromn; to ny in exactly l;x + l4e i Steps. For
instance, suppose the detour factore= 0.2, then in Equa-
tion (5) and Fig. 4/16 = 3 andlge16 = [0.2 x 3] = 1,

so,p1—¢ = M} s+ M{ ;. The usage of Equation (6) will

We first transform the posterior probability such that it
can be computed using the probabilities defined in the Markov
model. We expand™ to be the series of cells contained in
T?, denoted by{ns, - - - ,n.}, wheren, andn. denote the
starting and ending cells af».

be revealed in the following subsection (Section 3.3) when

formulating the posterior probability equation.
Synthesis of Paths for Query TrajectoriesWe intro-
duce the definition opath probabilitywhich will be used
to compute the posterior probabilif(n, = ng|T?). The
path probability is the probability of a person travellimgrh

one location to another given a path. The path is the query
trajectory provided by a user. The value of the path probabil
ity can be obtained through multiplying the transition prob
abilities between all pairs of cells in this query trajegtor

TP. For example, given the transition matr{, the path
probability of moving from a location in; to another loca-

tion in ng via the pathly, 5 ; can be obtained as follows:

P(TY ; 5.6) = P14 - Pas - P56 Wherepua, pas, andps are the

transition probabilities in the matrix/ between consecutive

and adjacentcell pairs{ni,n4}, {n4,ns}, and{ns,ng},
respectively. In general, given any query trajectﬁf_’)i_“ o

2 Note the difference between_.; andp;;. The latter (without the
arrow) is the transition probability defined in Markov madahd its
definition was given in Equation (4).

P(ng|T?) =P ,Me)

M)

( |ns7 -
= P(
= P(ns, nq|T")
P(Tp|ns,nd) P(ns,nq)
P(TP)
P(ng|ns) - P(ns)
P(Tr)

Ng, N[N, - -

= P(T%|ns,ng) -

Since when we computB(ny|T?) for differentn, the
starting cell of the trajector§? does not change?(n;) is
a constant and it does not affect the comparative result of
P(nq|T?) for differentny. Therefore,P(nq|T?) is propor-

: P s
tional to P(T?|ng, ng) - %. Formally,

P(nans)

P(ng|T?) < P(T?|ng,nq) - PP

(8)

3 consecutivecells are two cells next to each other in a trajectory; WhereP (17 |ns, nq) andP(nq|ns) will be explained below,

adjacentcells are two cells next to each other in a grid.

andP(7T?) was described in Equation (7).
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We compute the conditional probabilit(7?|ns,ng) 4 Algorithms
by expandind?, and obtain
The algorithms comprise the training and prediction phases

P(T?|ng,ng) = P(T?, ng,na) in order to efficiently process destination prediction geger
P(ns, nq) The train phase computes and stores the components in Equa-
_ P(ns, -+ ,ne,na) tion (11) such that, in the prediction phase, one can sim-
N P(ng,nq) ply retrieve these components and compute the destination
P(ng, -+ ,ne) - P(ne,nq) probability P(n4|T?) using Equation (11) directly. We present
P(ng, ng) the SubSyn-Training algorithm in Section 4.1 and SubSyn-
P(T?) - P(c — d) Prediction ﬁn Sect_ion 4.2. Imp_rovements to SubSyn .wiII be
= PG —d) presgnted in Section 5 to achlgve reduced running time and
P(T?) - peg o Section 6 for enhanced prediction accuracy.
Ps—d ’

whereP(T*) is the path probability o'?, as given by Equa- 4-1 SubSyn-Training
tion (7); p.—q is the total transition probability of travelling
from the currentcell of?, n., to a predicted destinatiory;
andp,_.4 is the total transition probability of travelling from
the starting cell off ?, i.e.,n, to a predicted destinatio.
The other probability?(n4|n) that appeared in Equa-
tion (8) can be obtained by the following equation (for all COMPUtEPi—.

trajectories starting at;, the proportion that finish aty): ~ The total transition probability; . defined byDefini-
tion 1 will be stored in a matrix\/” and used in the predic-

/A ——— (10) tion phase. As the definition shows in Equation (6), the total
|Th.=n:| transition probabilities are extremely expensive to cotapu
For example, for &0 x 50 grid, M is a50% x 50% = 2500 x
2500 matrix. For a travel distance of ten cells,.,, = M0+
M} 4+ MJ? (since[10 x 1.2] = 12) which means that the

The SubSyn training stage is responsible for computing the
components in Equation (11), i.@y,.x andP(n4|ns). The
computation ofP(n4|n,) will be done simply by counting
satisfactory trajectories, so we will focus on the algaritio

P(ng = nglns =n;) =

Integrating Equation (9) into Equation (8), we obtain the
posterior probability equation that computes the destinat

probabilities: matrix multiplication operation needs to be performed on
) ) P(ng|ns) the large matrix\/™ more than 30 times where each ma-
P(na|T?) o< P(T"|ns,nq) - PRy trix multiplication requiresO(m?) (m = 2500) time (cf.
 P(T?) - pe— | P(nalny) Section 8.1 for a detailed discussion on complexities of ma-

= trix multiplication algorithms). While already inefficigrihe
DPs—d P(TP) . . .
De—d same operation needs to be carried out for all pairs of cells
= —— - P(nalns) {ni,ni} (25002 = 6.25 x 10° pairs). It is therefore infeasi-
Ps—d ble in terms of running time.
In the conference paper [28], we presented an algorithm
P(ng|T?) De—d P(nalns) (11) calledSubSyn-T_ralnmg:u solv_e this runt|_me efflglency prob-
Ds—d lem, as summarised in Algorithm 1. This algorithm works as

] ) . follows. Firstly, Equation (6) is reformed so that few redun
where the components are obtained by using Equations (§nt computations are carried out.

and (10). Given a query trajectory, we will apply this equa-
tion to compute the destination probabilities for each,cell

and rank them in order to retrieve the most probable desti- Lik+lae ik

nations. Note that when computing destination probability =~ Pi—k = Z M,

we do not need to obtain the exact value, but rather a relative r=li

probability for ranking purposes only. Therefore, a prepor Lae,ik

tional relationship would suffice. | pisr = | M Z M" (12)
In this section, we have established the theoretical model r=0 ik

for destination prediction. We still need efficient ways of
applying this model because the model involves expensive For the purpose of explanation, we usglax 50 grid as
computations such as repeated matrix multiplication. & th an example without any loss of generality. Since the longest
following section, we propose algorithms to tackle the run-distancemax (l;x) = l1,2500 IS 2 x (50 — 1) = 98, the
time efficiency issues. maximum possible value df. ;. = [0.20;;] is therefore
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[0.2 x 98] = [19.6] = 20. By taking advantage of the modated by a regular computer. Therefore, we need to seek
concept of dynamic programming, an array of size 21 cam scalable and robust solution. Fortunately, these matrice
be used to store all/", r € [0, 20] which are computed in do not have to be stored. Instead, we enumerate all pairs of
ascending exponent order (Algorithm 1: lines 5 to 6) suctcells in the grid, sort these pairs in ascending order of thei
that only 19 matrix multiplications are required sint€' is  distance between each other, and computsg, in this or-
already constructed an/® is the identity matrix/. After-  der (Algorithm 1: lines 9 to 17). Using Fig. 4 and Fig. 5 as
wards, we sequentially add each array element to the nean example, all pairs of cells and their distances are gener-
element to formy_'*:* M" (the second factor in Equa- ated to be{ni, na}(1), {n1,na}(1), -+, {n1,n3}(2), -+,
tion (12)) wherei is an array index (Algorithm 1: lines 7 {n2,n6}(2),---,{n1,n8}(3), - - {n1,n9}(4), {ng, n1}(4).
to 8). The benefit is evident because all possible values dfi order to compute the total transition probability of each
s-laeis \rrcan be directly retrieved from this array for fur- Pair, MU+ and 3> M" are retrieved from memory, and
ther computations. they are multiplied together to form a matrix containing, »
of distance 1 (Algorithm 1: lines 18 to 19). The total transi-
tion probabilities of all pairs of distance 1 can be obtained

Algorithm 1: SubSyn-TrainingD, g) directly from this matrix (/power in Algorithm 1). After all
pairs of distance 1 are obtainetl[? is computed by mul-

1 MT —0; // total transition matrix T . o . )
2 lgemax — [0.2x 2(g— 1)];  // maximum detour distance  tiplying M, and a matrix containing,_.,, of distance 2 is
3 A[0] — I I/ an array to stors [ arr obtained (Algorithm 1: lines 22 to 25). Utilising this algo-
4 All] = M —D; /] construct transition matrix "1thm, only less than 150 matrix multiplications are cadrie
5 for i — 210 1w do out (in the case of 40 x 50 grid) to compute all total tran-
6 | Ali] — Arfﬁ[i —1]; I AJi] now holdsM? sition probabilities, whereas the intuitive approach el
7 for i — 110l do millions of matrix multiplications. During the processcha
8 | A[i] — Ali]+A[i—1];  / A[s] now holdsy> _, M" foundp;_, is stored in a separate matdx” (Algorithm 1:
‘ o Jal i cell vai line 26). We call this matrix théotal transition matrix and
" %srteia_ch v in grid do alisttostore all cellpalrs it o) ds the same number of entries as the transition matrix
11 if M;,. contains only zero entriesen M.
12 |_ continue;
13 foreach ny in grid do
14 if M, contains only zero entrighen nl n2 n3 n4d n5 n6 n7 n8 n9
15 | continue; :
_ nlf -1 2 1 2 3 2 3 4
16 add cell pair(n;, ny) to list;
n2f1 - 1 2 1 2 38 2 3
17 sort list; /I increasing order of; distance
, , : 3|2 1 - 3 2 1 4 3 2
18 Mpower — M, /I matrix to store intermediate result i
19 ML, — Mpower - A[1]; /l matrix to store intermediate result ndf1 2 3 -1 2 1 2 3
20 lprev < 1; / record distance of previous iteration . , B . 5
21 foreach (n;,ny) € list do n5 | 2 g 1 K K
22 while 1,5, > lprev +1 do né| 3 2 1 2 1 _ 3 3 1
23 Mpower — M - Mpower |
24 ME,. — Mpower - Alldeir); n7l2 3 4 1 2 3 - 1 2
2 lprevt: g3 2 3 2 1 2 1 - 1
T T . ; )
26 M =M i e pi_p ol .0 -0 -0 : B8 -

27 P(ng|ns) «— D;

Fig. 5 ¢; Distance Matrix of all pairs of cellsina x 3 grid
return: M, MT, andP(ng4|ns) g>h P x°9

In the process of enumerating all pairs of cells, more

Regarding the first factav/!* in Equation (12), we could computational steps could be eliminated by pruning unpsemi
use the same strategy except that in order to store this terimg pairs of cells. For two cells; andny, if either the entire
for all pairs of cells, too much memory is required, espe+fow containingn;, M;. (Algorithm 1: lines 11 to 12), or the
cially in a grid with high granularity. For example, irb@ x  entire column containingy, M., comprises only zero en-
50 grid, eachM requiress0? x 502 x 8 Bytes~ 47.7 MB tries, the pair is discarded (Algorithm 1: lines 14 to 15). It
of storage space. Since the maximéndistance in such a indicates a lack of training data in these cells and the proba
grid is 98, the total amount of memory required will exceedbility is always confined to zero in such case. Hence there is
4.67 GB (i.e.,98 x 47.7 MB), which may not be accom- no need to compute their total transition probabilities.
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4.2 SubSyn-Prediction apply sparse matrix multiplication techniques to reduee th
time complexity.
The SubSyn-Predictiomlgorithm is responsible for com- In this section, we take advantage of the fact thais

puting the posterior probability’(nqg = nx|T?) in Equa-  a sparse matrix and propose improvements toShbSyn-
tion (11), which is the probability of,; being the destina- Training algorithm, which drastically reduces the training
tion given a query trajectory”®. time and confines memory occupation within acceptable range
We summarise th&ubSyn-Predictioalgorithm in Al-  We call the resultant algorithm theproved SubSyn-Training
gorithm 2. Given a total transition matri}/” in a grid, all  algorithm. With this improvement, we are able to run Sub-
pairs of P(ng4|ns), and a query trajectory”, the SubSyn-  Syn on much finer grid (e.gg, = 70) and design algorithm
Predictionalgorithm works as follows: accordingly to improve prediction accuracy (cf. Section 6)
This algorithm is based on the observation that, in our
transition matrix M (cf. Equation (5)), there are at most
four non-zero entries in each row, i.e, we can only travel
directly from one cell to its four adjacent cells (i.e., left,
right, top, and bottom cells). As a result, multiplying two
m x m transition matrices\/ and M’ only requiresdm?
multiplications, i.e., there an@? entries in the resultant ma-
trix M to be computed, and each enty/; is computed
by M}, = >77L, M;;Mj,, which takes only four multipli-

1. For each celhy, we compute the destination probabil-
ity P(ng = ni|T?) based orp;_.4, pc—q andP(ng =
ng|ns) using Equation (11);

2. We select the top-cells according to their destination
probabilities;

3. We return the topg:elements that have been selected.

Algorithm 2: SubSyn-Predictions”,P(na|n.),77) cations. Therefore, the computation complexity can be re-

1 list — 0; // a list to store the output duced td)(mQ)_

2 foreach ny in grid do To take full advantage of this observation, we rewrite

3 | retrievep._x andp,_ from M7 Equation (6) as follows so that the transition matfvix which

4 | computeP(ng =ng|T7) ; is sparse, is involved in as many matrix multiplications as

5 storeP(ng = ng|TP) in list ; . LT -
o possible. In other words, we minimise the number of matrix

6 selecttop-k elements irist;

multiplications that do not involvé/ since other matrices
are much denser.
We start by replacing. ;.. with [al;;] in Equation (6):

return : top-k elements

Discussion:We briefly discuss the performance of the Lik e, ik

baseline prediction and SubSyn-Prediction algorithms It i Pi—k = Z M,

clear that SubSyn-Prediction requires little time to rure du r=lik

to the already-completed training phrase. In the predictio birt [odik]

phrase, we simply retrieve probability values computed by = Z M),

SubSyn-Training and use Equation (11) to compute destina- r=lik

tion probability for each cell. The baseline predictionalg Lt Todir]

rithm, in contrast, needs to perform a sequential scan girou = Z M™| . (13)
the entire historical trajectory dataset for each query tra r=lix ik

jectory in order to find matching trajectories. As shown by e further introduce two ancillary arrays, where each el-
the cost analysis (Section 8) and experimental study (Segment is a matrix, to achieve the objective of reducing com-

tion 9), the running time of SubSyn-Prediction is redUCEdeexity and we name them arraylsand B. Let A[l] be the
from that of the baseline prediction algorithm by several or jth glement ofd. where

ders of magnitudes.
I4+[al]

A=Y M.
r=I

Then we can rewrite Equation (13) as

5 Improving Runtime Efficiency of SubSyn

Although theSubSyn-Traininglgorithm has avoided exces-

sive amount of matrix computation, it still requires notice i Ladin] .

able number of matrix multiplications. If we examine thePi—F = Z M = (Alli#])ir -

core equation irBubSyn-Traininglgorithm (Equation 12), r=tin ik

we observe that neither of the factors (i.e., matridé¥ Now the problem of computing, ., for all pairs of
or Sl<ix M) is sparse even though! itself is. There-  (n;,n;) becomes computing[1], A[2], - - -, A[lmax], Where

fore time complexity oD (m?) is still high since we cannot I,,,.x is the longest; distance between two cells in the grid.
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Next we derive a recurrence relationship dfif] and

All + 1] using the transition matri&{ to help computel[l].
By definition Al + 1] = S0+ VT A7 comparing it
with A[l], the main deference lies inx(l + 1)] and [al].
Let¢(1) be[a(l + 1)] — [ad]. Sinceal < [al] < al + 1,
We have

¢(l) = [a(l +1)] = [al]
<all+1)+1-al
=a+1.

Besides, the detour factorsatisfies thab < o < 1 as
discussed in Section 3.2. Thus, we ha\é) < 2. Further,
since both[a(l + 1)] and[al] are integersy must be an
integer. Thereforep(l) = 0 or 1. We will discuss the two
cases separately below:

(i) If ¢(1) =0, we have[a(l +1)] = [al], and

I+1+[a(l+1)]

Al+1]= > M
r=Il+1
I+ [ad]

:MZMT

r=l

=M - A[l].
(i) If ¢(I) =1, wehavela(l +1)] = [ad] + 1, and
1+ [a(i+1)]
> M
r=Il+1
I+[ad]+1

M > M
r=l

:Mz@m+MWMH)

All +1]

Apart from arrayA, we define arrayB whosel'" ele-
mentB[l] = M1+l Then we have:

B[l + 1] _ Ml+1+"(¥(l+lﬂ+l
M+ jf ¢(l) =0

= ppititladl42 g o(1) = 1

M- B[l], if¢(l)=0

C\M2-B[l), ife(l) =1

We compute the first elements of the two arraysnd
B as follows.
0+[ax0]

A= > M =M=1
r=0

B[O] — MO+]—()¢><O-\+1 — Ml - M

We have discussed the means to reduce the complexity
of the SubSyn-Training algorithm above. To summarise, we
rewrite Equation (6) as:

g ‘ pi—k = (Alli]) i | (14)
where
I, ifl=0
Alll =4 M- All — 1], if (1 —1)=0
M- (Al—-1]+B[l—-1]), if¢e(l—1)=1
M if L=0

BM::<MiBU—H, if (1 —1) =0
M?.Bll—1], if¢(l—1)=1

Now we can use Equation (14) to simplify the compu-
tation of the total transition probabilities, as summatibg
Algorithm 3. In this algorithm, we have avoided all the ma-
trix multiplications that do not involve the transition miat
M. Meanwhile, we just need to store one element for each of
the two arraysd and B, which reduces the space consump-
tion significantly as shown by the cost analysis provided in
Section 8.

Algorithm 3: SubSynE-Trainin@D, g)

1 MT —0; /1 total transition matrix

2 lmax = 2 X (g — 1); [/ the longest distance between two cells
3 A[0] « I /I an array that store&/! Zﬁiﬂ MT

4 B[0] « M < Dy /I 'an array used whep(l) = 1

5 for | « 110 lmax dO

6 if (1 — 1) = 0then

7 LA[l]:M-A[l—l];

8 Bll]=M - B[l -1];

9 elseif¢(l — 1) = 1 then

10 L All=M - (Al - 1]+ B[l -1]);
11 Blll]=M-(M-B[l-1]);

12 foreach (n;, n;) satisfied;, =1 do
13 | ML= Al Ni.e.,pi

14 P(nglns) < D;
return: M, MT, andP(ng|ns)

6 Improving Prediction Accuracy of SubSyn

The substantially improved runtime efficiency of SubSyn
enables us to investigate more computationally expensive
techniques such as finer grid partition and higher-ordekishar
models. These techniques help improve the prediction accu-
racy of the SubSyn algorithm by up to 20% as experiments
in Section 9 show.
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6.1 Methods for the Improvement Based on the above investigation, we decided tanset
to zero. This simplifies the SubSyn algorithm, reduces the

We improve the prediction accuracy of SubSyn from twospace usage and reduces the running time. Hence it is an
aspects: studying the effect of the detour fact@nd using important step before employing the second-order Markov
the second-order Markov model. model.

Detour Factor a: The detour factorv introduced in With « set to 0, the equation for total transition proba-
Section 3.2 quantifies unusual behaviour and models howility, Equation (6), can be simplified to
much detour people usually take. When we et 0, we
assume that people usually take a detour that is greater thgn M, (15)
the /¢, distance between their origin-destination pairs. Since

the/; distance between an origin-destination pair is usuall;we will use this equation in the second-order Markov model
much larger than the shortest path in Euclidean space, a dﬁ)— develop the new algorithm

tour factora. > 0 corresponds to a path much larger than the The Second-Order Markov Model: Because of the

shortest path and_ thereforg 1S L_musual behawogr._ improved training runtime efficiency and a larger trajegtor
_The effect ok IS more S|gn|f|cantyvhen the gridis COarse yataset gathered, we are able to investigae&econd-Order

This can be explamed as follows. First of all, we found thatl\/larkov Modefor its ability to improve prediction accuracy.

the unusual behaviour of detour mostly comes from the pro- A naive way to apply the second-order Markov model to

cess of grid partitioning rather than actual detour taken b)éubSyn is to use three-dimensional matrix for the transitio

drivers. In a coarse grid (e.qy, = when we allocate . . X . .
. 9 (e.gs, = 30), matrix M instead of a two-dimensional one, because in the
GPS points to cells, it generates larger detour because the o )
) L . “second-order Markov model the transition is defined to be
resolution of such grid is low. Consequently, the propartio ) . i .
.- . ; L amongst three states: the current state (i.e., currentigosi
of training trajectories that have a large detour is high an

. o .~ n,) and two previous states. However, this will significantly
a largera tends to yield better prediction accuracy. During increase both the time and space complexities exponegmntiall

an experiment conducted for the conference paper [28], w, . . ; i :
: . : e will describe how we confine the transition matrix to
discovered that setting = 0.2 for the SubSyn algorithm . . .
. remain in two-dimensional space.

gives the best prediction accuracy for a grid with grantjari
g = 30.

We have also learnt that a larger dataset reduces the ef-
fect of a because a larger dataset contains more samples,
which make our model more deterministic and less random.
Now we have obtained much more GPS trajectory data and D12
developed SubSynE, an algorithm enabling us to run on much
finer grid. According to the experimental result in Fig. 6, we
found that the effect of; in finer grids and on large datasets
does become very small. As a matter of fact, setting 0 es
in these cases yield better prediction accuracy. Even thoug pla
a = 0.2 still gives the best prediction accuracy in median-
size grids (e.g.g = 20 andg = 30), but the prediction
error across all values of andg become more stable due to
abundant data provision. The difference in the predictien e

ror for any grid we have tested is within a range of 2% when
varying the value of. Fig. 7 The second-order Markov model state transition diagram

€2

=20 g=40 g=60 In a first-order Markov model, we define a state to be a
9750 TR 970 v om0 T cell. However, in the second-order Markov model, we de-
' ' ' ' ' fine a state to be an edge. The transition probability now
O R T becomes the probability of travelling from an edgeo an
adjacent edge; (i.e., the end cell of; is the start cell ot;)
:W: and is denoted by;;. This effectively uses two-dimensional
. . . . . transition matrix in the second-order Markov model. Such
0 0.2 0.4 0.6 0.8 transition probabilities are conditional probabilitiesdecan
Detour Factor (a) be computed as the number of trajectories that contain the
Fig. 6 Choosing the Detour Factar sequencée;, e, } divided by the number of trajectories that

© © © ©

0 © N b~ O
T
1

Prediction Error (km
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contain the edge;. Formally, starting and current edges ©F. Formally, the destination
T probability P(e4|T?) is given by
_ _ Ty
pij = Plejle;) = T (16) P(eq|T?) = Plegles, - ,ec) = Pledlec) = pea.  (19)

The transition probabilities of adjacent edges can be pre- The above changes to the SubSynE algorithm are sum-
computed by the above equation and the rest will be conmarised below in Algorithms 4 and 5.
puted in Section 6.2. Matrix (17) is the transition matrix of
the example presented in Fig. 7.

Algorithm 4: SubSynEA-TrainindD, g)

0 pi2 0 pia 0 pig O pis 1 MT —0; // total transition matrix
0 0 ps3 O 0O O O O 2 lmax =2 X g; /l the longest distance between two edges
0 ps2 0 psa O p3s O Opss 3 A1 // a matrix that storea/™
0 0 0 0 pss O O O 4 for | «— 110 limax do
M = 17 _ .
0 ps2 0 psa O psg O Opss (7 5 | A=MxA;
0 00O O 0O 0wpgr O 6 foreach (e;, ey, ) satisfied;, = 1 do
T _ A . . _
0 pr2 0 pra 0 prs O prg ! L M = A I1.€..pi—r
ps1 0 0 O O O O O 8 Plegles) — D

. T
Fig. 7 shows & x 3 grid with four corner cells omitted return:: M, M, andP(nans)

for simplicity. If we include them, the matrix (17) would ex-
pand from8 x 8 to a24 x 24 square matrix since there are

a total of 24 directed edges in a grid wigh= 3. Therefore,

the runtime efficiency and space occupation in the second-
order Markov model is still much higher than the original Algorithm 5: SubSynEA-Predictiofh/”, P(eales), T?)
SubSyn algorithm even if their complexities are the same as1 list — 0; Il a list to store the output
presented in Section 8. Therefore the improvement in run-2 P(nalT?) < 0; Ilnitialize all profanities tc
time efficiency (i.e., the SubSynE-Training algorithm) and 3 foreache, in grid do

larger trajectory dataset are essential in using the second;‘ L retrievep.._.;. from M™;

P(ng = the end ofey|T?) +=p._ ;
order Markov model. (na 1d oy ) += Do
6 selecttop-k probabilities among all cells;

return : top-k elements

6.2 Computing the Destination Probability

We integrate the two aforementioned methods for improving

prediction accuracy into SubSynE, and obtain the algor,ithm7 Comparison of Various Grid Partitioning Strategies

which we callSubSynEAA for Accuracy. The main differ- P 9 9

ence_s between Su_bSy.nEA and Sg.bSynE a;re outlined beIOYyhtil now we have assumed a uniform grid to represent the
Since the destination probabiliti(nq|T”) uses node map, as what existing studies have done. In Section 7.1

ng instead of edge, , we convert the edge probability to ' '

the node probability by summing up the probabilities of an’e investigate other partitioning strategies, a quatidsed

- ) id partitioni d &-d tree based grid partitioning. Th
the edges that have the same destination as shown in eqﬁ'ﬂ partitioning and & ree based grid partitioning. Then
tion (18) we demonstrate mathematically in Section 7.2 that theatestr

gies that yield more balanced number of points in each cell
P(na|T?) = Z Plea|T?). (18) fa\chieve smaller informgtion loss than a uni_fgrm grid, anq
oy ends Ay it leads to better prediction accuracy as verified by experi-

ments in Section 9.5.

One exception occurs whéf¥ contains only one cell, i.e.,
TP = {n}. In this case, we simply let

7.1 Two Partitioning Strategies
P(nq|T?) = P(nalns),

Quantile-Based Partitioning Strategy: The quantile-based
whereP(n4|n;) can be calculated by Equation (10). In other strategy also represents the map withay grid, but the grid
cases, we exparitl® to be the series of edges contained incells have different sizes following the quantile disttibn
T?, denoted by{es, - ,e.}, wheree; ande. denote the of the trajectory data points. Specifically, we first paotiti
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the data space vertically and horizontally based on the dataf points. In other words, we pick the median point in one
densities in these two dimensions, respectively, as shown idimension and separate the space from its location. Then in
Figs. 8(a) and (b). A vertical (horizontal) partitioningnca each of the two partitions, we repeat the same process re-

be easily done by a sequential scan of the data points in asursively in a round-robin fashion for all dimensions uaatil

cending latitude (longitude) coordinate. During the scan w

desired grid granularity is reached.

count the number of data points met so far. Once this num- DiscussionCompared with a uniform grid as shown in

d :

ber reaches-, a new column (row) is produced, whede
g

denotes the total number of location points andenotes

Fig. 10, both quantile based akel tree based partitioning
strategies are able to achieve higher prediction accuracy a
the experiment result in Fig. 20 shows. This is because, in

the number of columns (rows) to be obtained. The procesg city, regions with dense trajectory coverage (e.g., CBD re

repeats fog times for each dimension. This way, we obtain

a grid that follows the data point density in linear time. The

resultant grid is shown in Fig. 10(b).

(a) Step One: Vertical partition{b) Step Two: Horizontal parti-
ing tioning

Fig. 8 Quantile-Based Grid Partitioning for a grid with 20 GPS data
points andy = 4. Each partition contains exactyGPS data points.

First Partition
Second Partition
Third Partition
Forth Partition

Fig. 9 K-d Tree Based Grid Partitioning for a grid with 20 GPS data
points. The space is partitioned four times (ige= 4). Each partition
contains eithet or 2 GPS data points.

K-d Tree Based Partitioning Strategy: K-d trees are
binary trees, in which each node is associated with a coo

gion) will be mapped to more cells with each cell having
smaller area. It improves the prediction accuracy of ggerie
that involve these regions. The best result is giventky
tree based partitioning strategy because it achieves tisé mo
even distribution of points. In what follows, we formally-in
vestigate the relationship between prediction accurady an
grid partitioning strategies using themtropyof grid repre-
sentations, which quantifies the information loss when the
trajectory data points are represented by the cells of a grid

7.2 Theoretical Analysis

In this subsection, we show analytically that both quantile
based and-d tree based partitioning strategies are superior
to uniform grid in terms of the amount of information loss
during the process of grid partitioning.

Let: be the index of a grid cell angl be the probability
that a data point locates in ti® grid cell. Then by defini-
tion, the entropy of a grid representation, denotedhyan
be computed as

H=-% php

’” 1
= Zpiln_a
i=1 pi

wherem denotes the number of cells of a grid.

We derive upper and lower bounds f&f, denoted by
Hyax and Hy,iy, respectively.

An Upper Bound of the Entropy: Sincef(z) = Inz
is a convex function, Jensen’s inequality [14] applies.§hu

H = f:pilml < lnipi
i=1 pi i=1

r_

(20)

1
Di

=Inm.

Hence,

dinate in dimensiot. Each non-leaf node divides the space

into two half-spaces. The points in each of the two half-Hy.x = Inm.

(21)

spaces are stored in the left and right branches of the durren _ _ _ _ _ _
node. In this section, we ignore the data indexing structure According to Jensen’s inequality [14], this maximum will

in k-d tree and focus on the space partitioning method. A§e reached whep is the same for any i.e.,vi € [1, m], p;
illustrated in Fig. 9, we divide the space using either hori-
zontal or vertical lines into two partitions of equal number

ﬁ —

1.
— is the average of a});.

1l
,Wherep:EZpi -
=1
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(a) Uniform Grid (b) Quantile-Based Grid (c) K-d Tree Based Grid

Fig. 10 A visual comparison amongst all grid partitioning stragsgfor a grid with 20 GPS data points and= 4. The k-d tree based grid has
the most even distribution of GPS points. Quantile-basetiaghieves less evenly distributed GPS points when cordpaith thek-d tree based
grid. Uniform grid has the worst GPS point distribution.

A Lower Bound of the Entropy: We use the first-order because, for these two partitioning strategies, the datdaspo

Taylor series to expand functigiiz) = In x: tend to distribute evenly in all grid cells, and hence haxe si
1 ilar p; values.
f(x) = f(zo) + f'(z0)(z — x0) + Ef”(g)(x — 20)? We use the variance to find the lower boundfby
1 1 ’ 1 expanding Equation (22) as follows:
=lnzg+ —(x —20) + = <——> (z — x0)?,
To 21\ &2 1 — _
o’ = — Z(pz -p)?
whereg; (— ¢ ) (z—0)” denotes the Lagrange remainder for mia
some real numbef between: andz. Since this remainder 1 ) o
is either zero or negative, we have ~m Z (pi —2pip+D )
i=1
1 m m m
f(ac) Slnl’o—f'—(w—l'o). o 1 2 1 ~ i ~2
0 —E;pi—gl;?pzpwtm;p

. . . 1
Replacinge with p; andxg with p = —, we have
m

m m 1 i=1
ZPilDPiSZPi (111}34— t(pi—ﬁ)> &, 1
i=1 i=1 p ~m sz T2
m =1
:Z—pilnm+mpf—pi 1
i=1 Thus, > | p? = mo? + —, and we have
m

m m m
=—InmY pi+m> pi— pi
i=0 i=1 i=1

% 1

g pilnp; < —lnm+m <m02—|— —) -1
m

i=1

:—1nm+m2p?—1. — —lam+m202+1—1
= = —Inm + m?s%
Further, we make use of the varianeg of the grid to
quantify the diversity of distribution of GPS points in adyri Therefore, a lower bound of the entroflyis
Let the variance be
o Hpin = Inm — m202. (23)
2 1 2
R Z(pi — D)%, (22) Conclusion: After giving the definitions of entropy and
=t diversity factor (Equations (20) and (22)), and the upper an
which indicates how diversely the trajectory data poinés ar lower bounds of the entropy (Equations (21) and (23)), we
distributed in the grid cells. The implication of the varian  show that both quantile based and tree based partitioning
o2 is as follows. Compared with a uniform grid, both quan-strategies have less information loss than that of the tmifo

tile based and-d tree based grids hawmaller variances grid.
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Applying the upper and lower bounds &f, we have Table 2 Time and Space Complexity of All the Algorithms
lnm —m?e6? < H < lnm. (24) Complexity | Time Space
Hence, SubSyn-Training O (m3%) O (m??)

SubSynE-Training
. o) 2.5 o) 2
(}%@OH =Inm = Hyax |- SubSynEA-Training (m™7) (m?)

Based on the equation above, the entropy of a grid rep-
resentation reaches its maximum valHe,... as the vari- Complexity | Time Space
ances? approaches zero. Also since the terrfo? in Equa-
tion (24) is directly proportional to the varianeg, we con-
clude that the variance is inversely proportionalHfoCom-
pared to the uniform grid partitioning strategy, the two-pro
posed strategies result in data points more evenly diségbu
in different cells, and hence a smaller variance, i.e., dlsma Table 3 Space Occupation for Various Grid Granularities
variation in the number of data points per cell. This leads to
alargerH, i.e., less information loss. Such analysis is veri-

fied in the experimental study in Section 9.5. O SubSyn-Training 410M 12G 28G 5.9G
SubSynE-Training 78M  191M 396M  733M
SubSynEA-Training | 937M  2.2G 4.6G 8.6G

Baseline-Prediction | O(|D]) O (s|DJ)
SubSyn-Prediction
SubSynEA-Prediction|

O(m)  O(m?)

Grid Granularity 40 50 60 70

8 Cost Analysis Baseline-Prediction typically 1-2G

SubSyn-Prediction 39M 95M  198M  366M

In this section, we analyse the time and space complexities
y P P SubSynEA-Prediction| 332M 810M 1.6G  3.0G

of all the algorithms described in this paper in both thentrai
ing and the prediction phases: (i) SubSyn, (ii) SubSyn§g, (i
SubSynEA, and (iv) the baseline prediction algorithm (cf.
Section 2.3).

and significantly more memory usage, which exceeds by far
the amount of memory in regular commodity computers.
Hence, we implemented SubSyn-Training using the naive
matrix multiplication algorithm with average time complex
ity O(m3).

In the following analysis, we let,., = 2(g — 1) be the In Algorithm 1, the matrix multiplications (lines 21-26)
longest distance in the grid angh ax = [almax | be the  Will be executed fol . times, i.e.2(g — 1) = 2y/m — 1
maximum detour distance, whereis the detour factor and times, wherem = g*. Therefore, the time complexity of

8.1 The Training Algorithms

satisfied) < o < 1. SubSyn-Training i©)(v/m x m3) = O(m3?).
Space Complexityfhe matrices that Algorithm 1 needs
The SubSyn-Training Algorithm: to store ared[0], A[1], . .. Allde.max)s M, Mpower, M7, and

Time ComplexityThe matrix multiplications are the most M., i.e., there are a total @f. max + 5 matrices (all ma-
time consuming steps. We first discuss the complexity ofrices aren x m = g*), which occupy(lge,max +5) - m? x 8
matrix multiplication before summarising the time complex Bytes, assuming the each element in the matrices is an 8-
ity of SubSyn-Training. Byte double precision floating point number. By rewriting

Sparse matrix multiplication does not apply to SubSyn-de,max to be afunction ofn, we get(laemax+5)-m?* x 8 =
Training becausa/” (e.g.,M9) is usually dense. As are- ([2a(y/m —1)] + 5)m? x 8 Bytes, which is inO(m??).
sult, the matrix multiplication step také¥(m?) for a naive
algorithm. Although more efficient algorithms do exist,yhe The SubSynE-Training Algorithm:
are deemed unsuitable due to specific reasons. The fastest Time Complexityin Algorithm 3, the fundamental in-
matrix multiplication algorithm currently known is the im- structionis still matrix multiplication. However, as dissed
proved version ofCoppersmith-Winograd algorithri27],  in Section 5, this algorithm only has matrix multiplicatgon
which has an asymptotic complexity 6f(m?23727). How-  that involve the transition matrix/, which runs inO(m?)
ever, this is merely a theoretical bound with no practicatime. In each iteration, we perform either two matrix mul-
usage. In practice, the most feasibly efficient algorithm idiplications (lines 7-8) or three matrix multiplicationings
the Strassen algorithnf25] with O(m?®) asymptotic com-  10-11). Thus, the total number of matrix multiplicationafs
plexity. This algorithm is not employed because of its re-most3i,, ., times, and the time complexity (3(/,,ax-m?) =
duced numerical stability (i.e., numerical rounding esjor O(y/m x m?) = O(m??%).
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Space Complexityin Algorithm 3, the matrices need to for comparing the query trajectory with the whole dataset,
be stored aré/, M7T, A, B, and a temporary matrix for the which runs inO(|D|) time. The selection operation is just
swapping operation, which contaim, m?, m?, m? andm?  the same as that of the SubSyn-Prediction algorithm which
elements, respectively. Therefore, the total space neisdedtakesO(m + klogm) time. Therefore, the time complex-

(4m? + 4m) x 8 Bytes, which is inO(m?). ity of the baseline prediction algorithm to process one guer
is O(|D| + m + klogm). Applying the aforementioned in-
The SubSynEA-Training Algorithm: equality, we simplify the time complexity 0 (/D).
Time ComplexityAlgorithm 4 is similar to Algorithm 3. Space ComplexityThis algorithm requires the whole

However, in each iteration, we only perform one matrix mul-datasef to be stored in the memory so that it can compare
tiplication (lines 5). The input size i@ ((number of cell3?),  the query trajectory with every trajectory . Therefore,
i.e.,0 (m?). Since the grid in this problem is planar, every the space complexity i9(s|D|).
node has at most adjacent cells, which corresponds to at
most4 edges. the number of edges is at mbst Thus, the
total number of matrix multiplications i,.x, and the time 8.3 Summary
complexity iSO (Imax - (4m)?) = O(y/mxm?) = O(m?). _ . .

Space Complexityin Algorithm 4, the matrices need to 1aPle 2 summaries the complexity of the algorithms, and
be stored arél/, M7, A, and a temporary matrix for the Tablg 3 provides an intuitive d!splay qf the space tha_t .the
swapping operation, which containx 4m, (4m)2, (4m)? algorithms may consume on grids of different granularities

and(4m)? elements, respectively. Therefore, the total spac&T0M these tables we can see that SubSynE-Training shows
needed ig48m? + 16m) x 8 Bytes, which is in0(m?). clear advantage over SubSyn-Training in terms of both time

and space complexities. Although the two training algontsh
SubSynE and SubSynEA have the same space complexity,
the latter has a higher space occupation since it utilises th
second-order Markov model. Meanwhile, SubSyn-Prediction
outperforms baseline prediction algorithm in terms of both
runtime efficiency and space occupation since practically
JP| > m > k all the time. SubSynEA-Prediction has simi-
lar time and space complexities as SubSyn-Predictiont but i
requires more memory space because it employs the second-
order Markov model. Still, we can run SubSynEA-Prediction
easily on a very fine grid (e.gg,= 70).

8.2 The Prediction Algorithms

In the following analysis, we |éb be the trajectory dataset,
k be the number of predicted destinations to be obtained f
each query, and be the average number of GPS points in
each trajectory.

The SubSyn-Prediction and SubSynEA-Prediction Al-
gorithms:

Time ComplexityA major operation in both Algorithm 2
and Algorithm 5 is the loop, which visits each cell in the
grid, and the time complexity i9(m). Another major oper- | his section, we evaluate both the runtime efficiency and
ation of the algorithms is the selection of téplements in o regiction accuracy of the proposed algorithms. We first@ne
the list. We implement this selection operation using @ MaXghe experiment setup in Section 9.1 including the dataset
heap, and the time complexity@(m+k logm). Therefore, ,5eq the baseline prediction algorithm, and our experimen
both algorithms process one queryMm-+m+klogm) = measurements. Then we compare the runtime efficiency of
O(m + klogm) time. Since it is almost always the case the o SubSyn training algorithms in Section 9.2. We com-
thatm > k in real datasets (e.gn = 70> = 4,900 and 316 the SubSyn-Prediction algorithms with the baseliae pr
k = 5), we simplify the time complexities of both algo- giction algorithm for both runtime efficiency in Section 9.3
rithms toO(m). and prediction accuracy in Section 9.4. Finally, we evalu-

Space Complexityin SubSyn-Prediction, Algorithm 2 ate the prediction accuracy of the proposed grid partitigni
only requires the total transition matrid” and P(ng|ns) strategies in Section 9.5.

for all pairs of cells, whose sizes sum up2@? x 8 Bytes.

Thus, the space complexity of SubSyn-Prediction g:?).

Similarly in SubSynEA-Prediction, the space occupation i1 Setup

((4m)? + m?) x 8 and the complexity is stilD(m?).
The Baseline Prediction Algorithm: Dataset: We use a real-world and large-scale taxi trajec-
Time ComplexitySimilar to the SubSyn-Prediction al- tory dataset from th@-drive project [30, 31] in our experi-

gorithm, the baseline prediction algorithm mainly corssist ments. It contains a total of 1.9 million taxi trajectoriagtie

of a loop and a selection operation. The loop is responsibleity of Beijing, 16 million kilometres of distance travetle

9 Experimental Study
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The coverage counts the number of query trajectories for
which at leastk suggested destinations are provided. The
parametek is determined by the number of predicted desti-
nations that we set. For instance, when we examine top three
predicted destinations, is set to three. In other words, due
to the problem of data sparsity presented, it is highly ikel
that insufficient predicted destinations will be sugges$ted
certain non-matching query trajectories. Hence we utilise
this property to demonstrate the difference in robustness b
tween the baseline prediction algorithm and SubSyn.

The prediction error for a single predicted destination of
a query trajectory is thé, distance between this predicted
destination and the true destination of the query trajgctor
The aggregated prediction error is the average of all digtan
deviations across each predicted destinations of all query
trajectories. It is used to indicate how far the predictien r
sults deviate from the true destinations. It should be made
clear that the prediction error does not indicate the best pr
diction accuracy that an algorithm can achieve. For inganc
Fig. 11 A visualisation of the training dataset (65 million taxi GPS a prediction error oRkm for the top three predicted des-
points) in Beijing within am0km x 40km region. tinations is the averaged distance deviation of all of these
three predicted destinations, and it is likely that the ttes-

and 65 million GPS data points. The GPS points are plot'E|nat|on is amongst these three predicted destinationss. Be

ted in Fig. 11. We randomly pick 10,000 trajectories fromter algorithms are the ones that have a higher coverage and

. . . .. a lower prediction error (i.e., lower average distance aevi
this dataset to be the query trajectories and the remalnlntcraon) P ( 9

trajectories are used as training data.

Baseline Prediction Algorithm: The baseline predic- The two aforementioned means of measurenm@aver-
tion algorithm described in Section 2.3 can only give pre-2geandPrediction Error) will be evaluated against varying
dicted destinations when a query trajectory has a partiedtmafour parameters one at a time: Firstly we vary ¢niel gran-
in the training dataset. Consequently it can not be comparegarity g (20-70 with 10 units increment) to select a best
with our algorithm when non-matching query trajectoriesdrid granularity for our training dataset. This chosen grid
are present. To still produce a result in these cases, we ugganularity will be used for the remainder of the experiment
the current celh, as the predicted destination for the base-The second and third parameters arettfpecompleted per-
line algorithm. centagg(10%-90% with 20% increment) and thap-k pre-

Measures of Runtime Efficiency:Runtime efficiency dicted destination§1-5 with 1 unit inc_remer_1t). Finally, in-
is essential for both the training and prediction algorisnm Stead of randomly selecting query trajectories from thie{ra
The training algorithm needs to be run as frequently as pod9 dataset, we manually mix the proportion of matching
sible to update the training dataset. The prediction aligori 2nd non-matching query trajectories and varyitetch Ra-
needs to be evoked to answer real-time queries. For ead? (denoted by) whichis the proportion of matching query
user supplied query, it must report a list of predicted destitrajectories in the test dataset (0-1 with 0.25 increment).

nations instantaneously. Otherwise the whole purposeofth  Discussion on the choice of measuremen®e have
solution is meaningless. To be consistent with the time comchosen the average prediction error rather than the maxi-
plexities derived in Section 8, results of runtime efficienc mum prediction error in the list of top-predicted destina-
experiments are presented with respect to varying the grifons because the average prediction error is much more rep-
granularityg. Itis worth mentioning that this part of the ex- resentative. Fig. 12 shows the distribution of the predicti
periment was programmed in Javal.7, used single threagyrors of 10,000 query trajectories. The average predictio
and run on a workstation computer with Intel Xeon-W3670error is3.4km. We observe that the first quartile (i.e., 25th
CPU (3.2GHz) and 24GB RAM. percentile) isl.9%m, the third quartile (i.e., 75th percentile)

Measures of Prediction Accuracy:To evaluate the per- is4.2km, and the prediction error hardly goes beydaém
formance of our system on various user queries, we use thehereas the maximum 27.4km with only one occurrence.
following two means of measuremer@overageandPre-  Therefore we decided to use the average as it is more infor-
diction Error. mative.
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— . . . . result of approximations in the fitting and the cost analysis

<
PR 4
e SubSyn-Training:y = 9.9 x 10~ ?m>7 + 390
e P -8, 2.6
0 10 % i SubSynE-Trainingy = 2.6 x 10~°m*°® — 0.7
s Moreover, the gap in thg-axis is a result of SubSyn-Training
g 5% T performing much more matrix multiplication operationsitha
§ SubSynE-Training as discussed in Section 4.1 and Section 5.
2 0w ; - o = " p o Hence its running time is much higher. Thirdly, the graph is
Prediction Error (km plotted againsy instead ofm, which means that the differ-
. . N 5
Fig. 12 Distribution of Prediction Errorsi(= 3, g — 70, and the rip  ©NC€ iN the exponents is more significayitversusy”.
completed percentage 70%) Even in a medium granularity grid representation with

g = 50, SubSyn-Training needs more than 17 hours to train
a Markov model (i.e., compute the total transition matrix
We did not employ thé@recisionor Precision@kas the /7)) using the aforementioned workstation computer. In com-
measure for prediction accuracy due to the following reaparison, SubSynE-Training only needs 26 seconds. SubSyn-
sons. Precision is defined as the proportion of correct numFraining cannot handle grids with granularities highemtha
ber of predictions in all the queries. The main purposes ango due to excessive training time. Therefore, the results of
applications of SubSyn are to recommend sightseeing placéise SubSyn-Training algorithm are censored for grid gran-
and send targeted advertisements. For these applicatiens, ularities greater than 50. When the grid granularity is set
are more interested in providing recommendations and ado ¢ = 70, SubSynE-Training only takes 170 seconds, and
vertisements at locations near the destination of a useseth SubSynEA-Training takes 550 seconds. This demonstrates
locations need not be precisely the user’s destinatiortéFhe the advantages of SubSynE and SubSynEA, where the cost
fore, when designing the algorithms, we focus on improv-of matrix multiplication has been significantly reduced.
ing the average prediction accuracy instead of precisiwgh,a  The training phase may be re-run when the distribution
we use the average distance deviation of theitgpedicted  of the data changes significantly as more data are collected.
destinations as the evaluation measure for prediction-accun practical applications, it takes much longer than 550 sec
racy. onds for the data distribution to change significantly, so th
training algorithm efficiency is not a problem. We can run
the training algorithm every few minutes if needed.

9.2 Efficiency: Training Algorithms

10° | R
Fig. 13 shows the running time of the three SubSyn training ;L E
algorithms, namely SubSyn-Training, SubSynE-Trainimgl, a _ 10°F -~ J subsyn-Training —v—

SubSynEA-Training, with respect to varying the grid gran- 10° E §ﬂE§§jE}§T’T?£{;LFﬁg —~
ularity. SubSynEA-Training utilises the same algorithm asr 10: 3 g E 8((;? SR E—
10° F A 1

SubSynE-Training for improved runtime efficiency. It runs s
slightly slower due to its employment of the second-order 122 i
Markov model for enhanced prediction accuracy. In the fol- 20 ;?d G‘:’nul aj"ty (:)0 70

lowing paragraphs, we will focus on comparing SubSynE-_ _ o o _
Training with the original SubSyn-Training algorithm be- Fi9- 13 Runtime Efficiency of Training Algorithms
cause they use the same mathematical model (i.e., first-orde

Markov model).

We can see that SubSynE-Training outperforms SubSyn-
Training by orders of magnitude constantly, and the advang.3 Efficiency: Prediction Algorithms
tage grows as the grid granularity increases. This observa-
tion is in consistence with the cost analysis in Section 8We compare the runtime efficiency of SubSyn-Prediction,
where the exponents in the time complexity (i:23° and  SubSynEA-Prediction, and the Baseline algorithm in terms
m?2-%) correspond to the differegradientsof the two linear  of online query response time in Fig. 14. The vertical axis
polynomials on the log-scale figure. We fit both curves usingepresents milliseconds per query in log scale. By taking ad
y = AmP + C, whereA, B, andC are coefficients / fitting vantage of the information obtained in the training stage,
parameters, and obtain the following results. A small disboth SubSyn-Prediction and SubSynEA-Prediction require
crepancy in the exponent (e.gn26 rather tharm?®) isthe  little extra computation when answering a user’s query. As
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Fig. 14 shows, the baseline prediction algorithm requives t Basel i ne (trip=30% v —— Basel ine (trip=70%
. .. . SubSyn  (trip=309% ---B3--- —H&— SubSyn  (trip=70%
much time to run, whereas the SubSyn-Prediction algorithm  subsynea (trip=30% --v--- —— SUbSynEA (trip=70%
(and SubSynEA-Prediction) is, in most cases, at least twg 2T
orders of magnitude better. SubSynEA-Prediction takes les'® ST A e S §
. _g 80 L _ B----- ﬁ@@@
than100us to answer a query. The reason is that the base- Sglv v ywyw
line prediction algorithm is forced to make a full sequehtia & 60 “Z 6 L i
scan of the entire training dataset in order to compute the 4o 2y _%
posterior probability, whereas the two SubSyn predictiona & 2 |- 1 2,0 i
gorithms can fetch most probability values directly frora th g ol v v v el
stored total transition matrid/”. It is worth mentioning 20 30 40 50 60 70 20 30 40 50 80 70
that varying grid granularity only has marginal influence on Grra aandtarity (9) ard gandartty (o)
(a) Coverage (b) Prediction Error

the performance of the baseline prediction algorithm since
its time complexity isO(|D|) (cf. Section 8), which is not

. . Fig. 15 Varying the grid granularit
correlated to the grid granularity g ryingthe g g Y

Fig. 15 shows the trends in both coverage and prediction
error with respect to grid granularity with tdp=3. Due to
limitations in memory occupation, we run the experiments

7 mseline eion 5 with grid granularity up tgy = 70. The coverage of the base-

3 WE J SubSynEA-Prediction —v— line prediction algorithm drops rapidly due to the data spar

sity problem caused by smaller cells in a fine grid, but the
drop in coverage of SubSyn-Prediction and its improved ver-
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20 30 40 50 60 70 sion is extremely small. The grid granularity for our traigi
Gid Ganularity (g) dataset is selected to be 70, for that the coverage and pre-
Fig. 14 Runtime Efficiency of Prediction Algorithms diction error are both fine, these values are relatively sta-

ble, and the amount of memory occupied is within limit. In
other words, a larger grid granularity will have little influ
ence on them. In the selected setting wheee 70 and trip
9.4 Accuracy: Prediction Algorithms completed percentage 8%, the coverage of the two Sub-
Syn algorithms achieves more than twice the coverage of the
As described in Section 2.3, the baseline prediction algobaseline prediction algorithm while SubSynEA-Prediction
rithm employs uniform grid partitioning. For fair compari- has a more than 2km reduction in prediction error. All fol-
son, we also use uniform grid partitioning for the SubSynlowing experiments are done using the grid granulayity
and SubSynEA prediction algorithms in this set of experi-70 (cf. Fig. 16).
ments. In the following experimental result figures, a con-  Varying the percentage of trip completed:Fig. 17 shows
vention is set that same line style (e.g., solid or dashgd) re the performance in prediction accuracy versus the percent-
resents a same group of results. age of trip completed for both topvaluesl and3. For the
Varying the grid granularity: First of all, a suitable baseline prediction algorithm, the amount of query traject
grid granularity needs to be decided for our training dataseries for which sufficient predicted destinations are predid
On one hand, a coarse grid (e.t),x 10) may have a very decreases as the length of the trip increases due to the fact
low prediction accuracy because the area covered by eathat longer query trajectories (i.e., higher trip compdqter-
grid cell is too large. On the other hand, it has the benefit thacentage) are less likely to have a partial match in the train-
the number of matching query trajectories is much highemg dataset. Specifically, when trip completed percentage i
since more trajectories in the training dataset may fadl int creases toward®%, the coverage of the baseline prediction
identical cells, hence increasing prediction accuracyna fi algorithm decreases to alm@t% for top-k = 3. Our two
grid (e.g.,100 x 100) has the advantage of higher prediction SubSyn prediction algorithms successfully coped with it as
accuracy that the small cell area brings, but training dataxpected with only an unnoticeable drop in coverage, and
become even sparser because less locations will lie in a sarnan constantly answer almost 100% of queries. It proves that
cell, making the task of destination prediction more difficu the baseline prediction algorithm cannot handle (relgtjve
Furthermore, a find grid requires much more time to trainlong trajectories since the chances of finding a matching tra
Therefore, we need to find a balanced and compromised grjdctory decrease when the length of a query trajectory grows
granularityg that is neither too small nor too large, and canThe coverage performance of the baseline prediction algo-
achieve the best prediction accuracy. rithm when topk = 3 is even worse then that of top= 1
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Fig. 16 Map of Beijing @0km x 40km region) with ar0 x 70 uniform
grid overlay. Each cell is roughly & 0m x 570m square.

because the metr@overagecounts the number of query tra-
jectories that gives predicted destinations.
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Fig. 17 Varying the percentage of trip completed

closer to the true destination means that there are fewer po-
tential destinations and intuitively the prediction egoe-
duce. It is observed that SubSynEA-Prediction outperforms
SubSyn-Prediction, which in turn outperforms the baseline
prediction algorithm throughout the progress of a trip.
Varying the number of predicted destinations:We also
investigate the effect of the number of predicted destina-
tions on the performance of both algorithms by examining
the top# (from 1 to 5) predicted destinations. We are inter-
ested in this metric since it reveals more vulnerabilityraf t
baseline prediction algorithm in that although it can make
prediction for matching trajectories, the number of prestic
destinations may still be insufficient (e.g., only one). e
fore in such circumstances where insufficient predicted des
tinations are returned, we consider them unsatisfactory in
the coverage test. The experimental results are shown in
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Fig. 18 Varying the value of

Fig.18. In this figure, the comparative performances of the
three prediction algorithms are similar to that of the exper
iment of varying the percentage of trip completed. Specif-
ically, observations that can be made from the figure are
as follows. The two SubSyn algorithms show a more stable
coverage and a more accurate prediction accuracy than the
baseline prediction algorithm. For the baseline predictie
gorithm, the number of query trajectories which have suffi-

Apart from the huge advantages of the two SubSyn precient suggestions (i.e., the coverage) drops due to the data

diction algorithms in coverage, their prediction errors ar

sparsity problem since, for certain query trajectoriesait-

comparable with that of the baseline prediction algorithmnot find adequate (i.e., no less thigrpredicted destinations.
For the baseline prediction algorithm, despite the negativThe same problem affects neither SubSyn-Prediction nore
influence of the coverage problem, its prediction error reSubSynEA-Prediction, and they remain an almost 100% sug-
duces as the trip completed percentage increases for a sigestion offer rate. In a common setting when= 3, the

ple reason. When the baseline prediction algorithm fails t¢overage of SubSyn (and SubSynEA) is more than twice the
find adequate predicted destinations, we use the currdnt cgoverage of the baseline prediction algorithm.

in the query trajectory as the predicted destination. Begau

Varying top+ has little correlation with the prediction

higher trip completed percentage yields a closer distaaee berror because we compute the prediction error (i.e., agerag
tween the current cell and the actual destination, the predi distance deviation) by averaging amongst all predicted des
tion error reduces accordingly. For SubSyn and SubSynEAijnations.
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Varying the ratio of matching and non-matching query maintaining a stable performance, whereas the baseline pre
trajectories: The query trajectories used in the above experdiction algorithm is unable to achieve this objective.
iments are drawn randomly from the training dataset. They In Fig. 19b, it is observed that the prediction errors of all
reflect the real distribution of matching and non-matchingalgorithms drop when more relevant training data are avail-
query trajectories in both the test dataset and the trainingble (i.e., — 1). Once again, it proves that the predic-
dataset. It is found that the real match ratio (denoted byion accuracy of SubSynEA-Prediction is the highest, and
7) decreases while the grid granularifyincreases because SubSyn-Prediction leads that of the baseline predictien al
finer grid yields sparser data. For@x 70 grid, the averaged gorithm.
real match ratio is found to be approximately 0.57 (indidate
by the vertical dashed line in Fig. 19). Itindicates thagin
erage, 57% of query trajectories will be able to find a partia®.5 Accuracy: Grid Partitioning Strategies
match in the training dataset. Such a match ratio seems to be
helpful to the baseline prediction algorithm. In this exper [N this experiment, we run the SubSyn prediction algorithm
ment, we elaborate further on the concept of match ratio byith different grid partitioning strategies including foim,
manually selecting a mixture of matching and non-matchingluantile, and:-d tree based grid partitioning strategies, and
query trajectories, and comparing the influence of differentheir performance of prediction accuracy are comparedagai
match ratios. For simplicity while maintaining an indicati €ach other. Both uniform grid and quantile grid are plotted
results, a trajectory is said to have a partial match if tha fir for grid granularityg € {20, 30, 40, 50, 60, 70}, andk-d tree
70% cells have an exact match in the training dataset. Th@rid is plotted withg € {32, 64} due to its constraints in par-
indicates that, whem = 0.57 and the trip completed per- titioning algorithm.
centis higher than 70%, the coverage is at n3@$t for the
baseline prediction algorithm.

Uniform (trip=30% ---v--- —v— Uniform (trip=70%
Quantile (trip=309% ---H5--- —HB— Quantile (trip=70%
k-d Tree (trip=30% ---¥--- —w— k-d Tree (trip=70%
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~ © 80 | 4 s8¢t B
k) e T T T T T = s
@100 g ; 7 3 60 |- 4 @6 .
s =~ L v .. ; . s c
< 80 ;510 Rty - CON S 40k ] 5.4 _%@:@:@?ﬁ_
860 LIJG_ ; -—,___V_ 22 | 4 s 2F -
8 s : s t
S 40 ©° _ﬁ\g\EH\B\E‘_ > oL 1 1 1 1 1 a gl 1 1 1 1 1
5] I3 4 - 7 8 20 30 40 50 60 70 20 30 40 50 60 70
° 50 - real 1=0.%97
© B2F \ b Gid Ganularity (g) Gid Ganularity (g)
@ —
> 0 1 1 1 1 ['% 0 1 1 | - 1 1 . .
8 o025 05 o075 1 0o o025 o5 078 1 (a) Coverage (b) Prediction Error
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(a) Coverage (b) Prediction Error Fig. 20 Prediction Accuracy of Grid Partitioning Strategies

Fig. 19 Varying the match rati - . .
9 arying the matcn rétlor As shown in Fig. 20, the coverages are identical for all

the three partitioning strategies because they use the same

As shown in Fig. 19, by varying the match ratipthe  prediction algorithm. Thus, we focus on the different per-
performance of the baseline prediction algorithm deterioformance in prediction error. We observe that the two new
rates rapidly when is tuned towards zero while little im- grid partitioning strategies (quantile aket tree based) out-
pactis observed for either SubSyn-Prediction or SubSynEAperform the uniform grid partitioning strategy constarntly
Prediction. The baseline prediction algorithm functiomdlw terms of prediction accuracy. Moreover, the advantage is
provided that abundant data are given (i.,—~ 1), but  more significant when the grid granularity is coarser. This
the performance starts to decrease to an unacceptablg statan be explained by the fact that more balancing grids (quan-
when there are insufficient training data. Particularlyewh tile andk-d tree based) represent the data distribution better
the match ratio is low (i.e5 — 0) and the trip completed than the uniform grid does, and that the difference in the
percentage is high (e.g., 70%), the baseline prediction akariances? is more significant when the grid granularity is
gorithm has a coverage towards 0%. From Fig. 19a, oucoarser. The experimental results show that a more balanc-
two SubSyn prediction algorithms provides adequate (i.eing grid partitioning strategy is particularly effectivehen
at least three since the default value of fojs 3) predicted computing power or the available data is limited. Actually
destinations for almost every query trajectory. It provegt such circumstances are quite common for small businesses
our algorithms can overcome the data sparsity problem whiler for medium sized cities. In these cases, only a coarse grid
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will provide meaningful results, and having a more balanc- 6.
ing grid partitioning strategy (such as thel tree based par-
titioning) is important.

10 Conclusion 8.

In this paper, we have identified the data sparsity problem in
destination prediction and proposed a novel method named"

Sub-Trajectory Synthes{SubSyn) to address this problem. 10.

SubSyn decomposes each trajectory in the historical datase

into smaller segments (i.e., sub-trajectories) and coeasbin L

them to generate “synthesised” trajectories. The undeglyi

process is formulated by the Markov model and the Bayesiarp.

inference framework. We proposed an algorithm to improve

the efficiency of the training phase substantially. We also®

investigated the use of the second-order Markov model to
further boost prediction accuracy.

Experiments based on real datasets have shown that thé

performances of the SubSyn algorithms (i.e., SubSyn, Sub-
SynE, and SubSynEA) exceed that of the baseline algorithm

in terms of both runtime efficiency and prediction accuracyis.

The two SubSyn-Prediction algorithms (i.e., SubSyn and Sub

SynEA) can predict destinations for up to ten times more®
17.

query trajectories than the baseline prediction algoritAtn
the same time, SubSynEA-Prediction maintains a competi-
tive prediction accuracy. In terms of runtime efficiency th

SubSynEA-Training algorithm requires only a few minutes®

to run for a fine granularity of grid partitioning, and Sub&ya 14

Prediction runs over two orders of magnitude faster than the
Baseline-Prediction algorithm.
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