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Abstract Destination prediction is an essential task for many
emerging location-based applications such as recommend-
ing sightseeing places and targeted advertising accordingto
destinations. A common approach to destination prediction
is to derive the probability of a location being the desti-
nation based on historical trajectories. However, almost all
the existing techniques use various kinds of extra informa-
tion such as road network, proprietary travel planner, statis-
tics requested from government, and personal driving habits.
Such extra information, in most circumstances, is unavail-
able or very costly to obtain. Thereby we approach the task
of destination prediction by using only historical trajectory
dataset. However, this approach encounters the “data spar-
sity problem”, i.e., the available historical trajectories are far
from enough to cover all possible query trajectories, which
considerably limits the number of query trajectories that can
obtain predicted destinations. We propose a novel method
namedSub-Trajectory Synthesis(SubSyn) to address the data
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sparsity problem. SubSyn first decomposes historical tra-
jectories into sub-trajectories comprising two adjacent lo-
cations, and then connects the sub-trajectories into “synthe-
sised” trajectories. This process effectively expands thehis-
torical trajectory dataset to contain much more trajectories.
Experiments based on real datasets show that SubSyn can
predict destinations for up to ten times more query trajec-
tories than a baseline prediction algorithm. Furthermore,the
running time of the SubSyn training algorithm is almost neg-
ligible for a large set of 1.9 million trajectories, and the Sub-
Syn prediction algorithm runs over two orders of magnitude
faster than the baseline prediction algorithm constantly.

Keywords Trajectory Mining· Destination Prediction·
Markov Model· Bayes’ Rule

1 Introduction

As the usage of smart phones and in-car navigation sys-
tems becomes part of our daily lives, we benefit increas-
ingly from various types of location-based services (LBSs)
such as route finding and location-based social networking.
A number of new location-based applications requiredesti-
nation prediction, for example, to recommend sightseeing
places, to send targeted advertisements based on destina-
tion, and to automatically set destination in navigation sys-
tems. Fig. 1 provides a schematic with the lines represent-
ing roads and the circles representing locations of interests,
which may be road intersections, sightseeing places, shop-
ping centres, etc. If one drives froml1 to l4, an LBS provider
may predict the most probable destinations to bel7, l8 andl9
based on past popular routes taken by other drivers. As a re-
sult, the LBS provider can push advertisements of products
currently on sale at those locations.

A common approach to destination prediction is to make
use of historical spatial trajectories [33] of the public, avail-
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Fig. 1 An example of destination prediction

able from trajectory sharing websites [9, 23] or large sets of
taxi trajectories [19]. If an ongoing trip partially matches a
popular route derived from historical trajectories, the desti-
nation of the popular route is very likely to be the destination
of the ongoing trip (we refer to the ongoing trip as thequery
trajectory). Shown in Fig. 1 are five historical trajectories:
T1 = {l1, l2, l5, l6, l9}, T2 = {l6, l3, l2}, T3 = {l4, l5, l8},
T4 = {l9, l8, l7}, andT5 = {l1, l4, l7}. Each trajectory is
represented by a different type of line. For instance, a tripis
taken froml1 to l4, and this query trajectory{l1, l4} matches
part of the historical trajectoryT5. Therefore, the destination
of T5 (i.e.,l7) is the predicted destination of the query trajec-
tory. In practice, each trajectory here may be associated with
a weight denoting the number of historical trajectories that
exactly match this one, and the most popular trajectories are
used for destination prediction. The detail of this method is
presented in Section 2.3 as the baseline algorithm.

The above method has a significant drawback. A loca-
tion l can be predicted as a destination only when there ex-
ists a historical trajectory that matches the query trajectory
and the historical trajectory’s destination isl. In practice,
l8 and l9 are also very likely to be the destination of the
query trajectory, but will not be recommended to the user
due to the limitation of the historical dataset. Moreover, if
the query trajectory continues tol5, the above method will
not be able to predict any destination since no historical tra-
jectory contains the query trajectory{l1, l4, l5}. We refer to
this phenomenon as thedata sparsity problem. One plausi-
ble solution is to incorporate extra information such as road
network, proprietary travel planner, statistics requested from
government, and personal driving habits (cf. Section 2.1).
Such information, however, is unavailable or very costly to
obtain in most circumstances. Thereby we approach the task
of destination prediction by using only historical trajectory
dataset. As a result, the data sparsity problem is inevitable
in practice due to the following reasons. First, the number
of possible routes between all pairs of origin-destinationis
very large (exponential to the number of road segments in

a city), and currently the largest available real-life trajec-
tory dataset covers only a tiny portion of it. Second, even
trips with the same origin-destination pair may vary on their
routes, making it unlikely to have identical trajectories.

In this paper, we propose a novel method to address the
data sparsity problem. Following most studies, we partition
the data space using a grid, and each grid cell represents
a location. Our method first decomposes all the trajectories
into sub-trajectories, each of which comprises only two ad-
jacent locations, i.e., two grid cells passed through by the
sub-trajectory. The sub-trajectories are connected together
into “synthesised” trajectories. As long as a query trajec-
tory matches part of any synthesised trajectory, the destina-
tion of the synthesised trajectory can be used for destination
prediction. By this means, the coverage of query trajecto-
ries on which we can make destination predictions is ex-
ponentially increased. The underlying process is formulated
by a Markov model quantifying the correlation between ad-
jacent locations/cells with transition probabilities. Wecan
then compute the probability of reaching all the reachable
locations from a given origin, and the top ranked ones are
returned as predicted destinations. We call the above method
Sub-TrajectorySynthesis(SubSyn). For the aforementioned
query trajectory{l1, l4, l5, l6}, the SubSyn algorithm will
be able to predict other destinations such asl8 andl9 since
they can be synthesised using sub-trajectories ofT1, T3, and
T5. The outcome of the destination prediction process will
depend on the transition probabilities and the number of
top destinations to be returned. We have developed a sys-
tem [29] in the form of a web application to demonstrate the
use of the above method1.

In summary, we make the following contributions in this
article:

– We identify the data sparsity problem in destination pre-
diction and propose a novel method calledSub-Trajectory
Synthesis(SubSyn) to address this problem. SubSyn de-
composes historical trajectories into sub-trajectories and
connect them into “synthesised” trajectories for destina-
tion prediction. This process is formulated based on a
Markov model.

– SubSyn is highly efficient because it is designed to have
two phases, training and prediction. In the prediction
phase, most of the data required by the algorithm are di-
rectly fetched from pre-computed matrices in the train-
ing phase. This is much faster than the baseline predic-
tion algorithm, which has to compare query trajectories
against all the historical trajectories.

– We propose a highly efficient training algorithm to sig-
nificantly reduce the running time of the SubSyn training
stage. This is achieved by optimising the matrix multi-
plications in the training stage.

1 The demonstration system can be accessed following this link:
http://spatialanalytics.cis.unimelb.edu.au/subsyndemo/.



Solving the Data Sparsity Problem in Destination Prediction 3

– We further improve the accuracy of our prediction algo-
rithm by employing the second-order Markov model and
investigating various space partitioning techniques.

– We provide a detailed cost analysis on all the proposed
algorithms.

– We conduct extensive experiments using a large real-life
taxi trajectory dataset to evaluate the prediction accu-
racy and runtime efficiency of the SubSyn algorithms.
The results show that, compared with the baseline pre-
diction algorithm, the SubSyn prediction algorithm can
predict destinations for up to ten times more query tra-
jectories while running over two orders of magnitude
faster. The SubSyn training algorithm is also highly effi-
cient. It trains a Markov model with multiple high-order
transition matrices on a dataset of 1.9 million trajectories
within only several minutes.

This article is an extension of our earlier conference pa-
per [28]. There we proposed the SubSyn method with its the-
oretical foundations. In this article, we extend our work by
making the following additional contributions. First, we pro-
pose an improved SubSyn training algorithm (Section 5) that
reduces the training time by more than five orders of magni-
tude compared with the training algorithm proposed in the
conference paper [28]. Second, in Section 6 we improve
the prediction accuracy of SubSyn by up to 20% by inte-
grating the second-order Markov model. Fig. 2 summarises
the relationship of the improved algorithm with the original
SubSyn algorithm. Third, we propose two additional grid
partitioning strategies (Section 7), quantile-based gridpar-
titioning andk-d tree based grid partitioning. Thek-d tree
based grid partitioning strategy yields better accuracy than
the uniform grid and quantile-based grid as it results in more
even number of GPS points in each cell. This conforms to
our theoretical analysis. The experimental results show that
a more balancing grid partitioning strategy is particularly ef-
fective when computing power or the available data is lim-
ited. Fourth, we provide a detailed cost analysis on all the
proposed algorithms (Section 8). Finally, we conduct a more
extensive experimental study on all the algorithms using a
much larger real dataset (Section 9).

SubSyn SubSynE SubSynEA

Fig. 2 Improvements on SubSyn algorithms: We improve the runtime
efficiency of the training phrase of SubSyn to obtainSubSynE(E for
Efficiency) and then enhance the prediction accuracy withSubSynEA
(A for Accuracy).

The remainder of the article is organised as follows: Sec-
tion 2 presents related work and preliminaries. Our SubSyn
method and its algorithms are described in Sections 3 and 4.
We improve runtime efficiency of SubSyn in Section 5 and

prediction accuracy in Section 6. Various grid partitioning
techniques are compared in Section 7. Section 8 provides a
detailed cost analysis of all the proposed algorithms. Exper-
imental results are reported in Section 9. Finally Section 10
concludes the paper. Table 1 summarises the frequently used
symbols.

2 Related Work and Preliminaries

We first discuss existing work in destination prediction, and
compare their similarities and differences with our work in
this article. Then we build a solution framework and propose
a baseline algorithm based on existing work.

2.1 Related Work

Most existing destination prediction studies make use of his-
torical trajectories, and their focuses have mainly followed
two streams: (i) using external information in addition to
historical trajectories to help improve the accuracy of pre-
dicted destinations; (ii) personalised destination prediction
for individual users. We describe each stream in more de-
tails below.

Employing external information in addition to historical
trajectories can often enhance the prediction accuracy. For
example, distribution of different districts, trip time distri-
bution, trajectory length, fastest route travel planner [12, 15,
16], accident reports, road condition, and driving habits [34]
have been incorporated into Bayesian inference to compute
the probabilities of predicted destinations. Similarly, context
information such as time-of-day, day-of-week, and velocity
has been incorporated as features in training the Bayesian
network model for prediction [4, 8]. The intuition behind
these studies is that certain travelling pattern which fits into
the acknowledged external settings shall bring higher possi-
bilities to locations corresponding to those external settings
in the historical dataset. However, such extra information, in
most circumstances, is unavailable or very costly to obtain.
Thereby we approach the task of destination prediction by
using only historical trajectory dataset. Our focus is to solve
the data sparsity problem which cannot be solved by adding
external information. Therefore, the above studies are not
applicable to our problem.

Personalised destination prediction trains prediction mod-
els using historical trajectories from an individual and then
predicts destinations for this same individual. Thus, these
predictions for the same query trajectory from different users
may vary. Natalia and Chris [18] and Pattersonet al. [21]
used a Bayesian method to predict destinations for specific
individuals based on their historical transport modes. Markov
model has been widely applied in predicting destinations
for a specific individual as well [3, 5, 17, 22, 24]. Tiesyte
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Table 1 Frequently Used Symbols

Symbol Explanation

D The historical trajectory dataset

g Granularity of a grid

m Number of cells in a grid.m = g2

ni(, ns, nc, nd) ith (, starting, current, destination) cell

pij Transition probability fromni to adjacentnj

pi→k Total transition probability fromni to nk

Ti(,j) Trajectories inD that contain{ni(, nj)}

T p Partial or query trajectory fromns to nc

lik ℓ1 distance betweenni andnk

α Detour factorα

lde,ik Detour distance fromni to nk. lde,ik = ⌈αlik⌉

M, Mik Transition matrix and its entry

MT , MT
ik

Total transition matrix and its entry

and Jensen [26] proposed aNearest-Neighbour Trajectory
(NNT) method that utilised distance measures to identify the
historical trajectory which was the most similar to the cur-
rent query trajectory. Chenet al. [7] used a tree structure to
represent the historical movement patterns and then matched
the current query trajectory by stepping down the tree. All
these studies focused on predicting the repeated destinations
of one or a group of specific individuals based on their own
habits and historical travelling records. Our work considers a
query trajectory from an unknown individual (without avail-
able personalised information). This is different from the
personalised destination prediction studies. Therefore their
solutions would be inapplicable to the data sparsity prob-
lem. Trajectory mining have also been studied in other con-
texts such as moving KNN query [10, 20], continuous mov-
ing queries on moving objects [1, 2, 13, 32], and group NN
query [11]. Reference [33] contains a comprehensive survey
on computation with spatial trajectories.

2.2 Preliminaries

The most popular approach to the destination prediction prob-
lem is to use a uniform grid to represent the map, and per-
form Bayesian inference to derive the probability of destina-
tions based on historical trajectories [15, 16, 18, 21, 31, 34].
Our solution also follows this paradigm.

In previous studies on destination prediction [15, 16,
18, 21, 31, 34], auniform grid is commonly used to help
represent the dataset. It abstracts the map of a city as a two
dimensional grid consisting ofm = g × g congruent square
cells. The granularity of this representation is a cell, i.e., all
the locations within a single cell are considered to be the
same object. Without loss of generality, we consider that
each cell has the side length of 1 and adjacent cells have
the distance of 1. This distance of 1 may correspond to a

certain distance in the real world, e.g., 600 m. The whole
grid is modelled as a graph where each cell corresponds to
a node in the graph. Thereby, we will use the termsnode,
cell, and location interchangeably in the remainder of this
paper. A trajectory can be represented as a sequence of cells
according to the sequence of GPS points in the trajectory.
An example of a3 × 3 grid is given in Fig. 3, where the
trajectoryT1 can be represented as{n1, n2, n5, n6, n9}. By
representing the trajectories using cells in a grid representa-
tion, similar trajectories are considered identical because a
cell is the granularity of the graph. For example, in Fig. 3,
T0 andT3 are identical, both of which are represented as
{n4, n5, n8}. It is easy to observe that when the area of each
grid cell becomes smaller, the different trajectories become
more distinguishable from each other in the grid model.

n1 n2 n3

n4 n5 n6

n7 n8 n9

T0

T1

T2

T3

T4

T5

Fig. 3 A 3× 3 grid on the example

Since query trajectories are incomplete trajectories whose
destinations should be predicted by prediction algorithms,
we denote them bypartial trajectories, i.e.,T p. With a grid
representation, two trajectoriesT1 andT2 are anexact match
with each other if and only if their sequences of cells are
identical, denoted byT1 = T2; a partial/query trajectory
T p partially matchesa trajectoryT if and only if their se-
quences start from the same cell and the cell sequence of
T p is fully contained by the cell sequence ofT , denoted
by T p ⊂ T . In the example shown in Fig. 3,T p = {n1, n4}
partially matchesT5 = {n1, n4, n7}. A non-matching query
trajectory is a query trajectory that has no partial match in
the training dataset.

2.3 A Baseline Prediction Algorithm

As explained in Section 2.1, none of the methods described
in existing work applies to our situation where the only avail-
able information is the GPS trajectory dataset. In what fol-
lows, we adapt the ideas of grid representation and Bayes’
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rule from existing methods , and obtain a baseline prediction
algorithm described as follows.

The probability of a cellnk being the destination can be
computed as the probability thatnk is the destination loca-
tion nd, conditioning on the query trajectoryT p. Formally,
the probability is computed using Bayes’ rule as

P (nd = nk|T p) =
P (T p|nd = nk)P (nd = nk)

P (T p)

=
P (T p|nd = nk)P (nd = nk)

m
∑

j=1

P (T p|nd = nj)P (nd = nj)
. (1)

The prior probabilityP (nd = nk) can be easily computed
as the number of trajectories terminating atnk divided by
the number of trajectories in the dataset. Formally,

P (nd = nk) =
|Tnd=nk

|
|D| , (2)

where|D| is the cardinality of the historical trajectory dataset,
and|Tnd=nk

| is the number of trajectories inD that termi-
nate at locationnk. Similarly, we can compute the prior
probability P (nd = nj) by replacingnk with nj in the
above equation. As indicated by Equation (2), only loca-
tions that are the destinations of historical trajectorieswill
have non-zero prior probabilities, reflecting the fact thatonly
popular locations are of interest. Therefore, the crux of using
Equation (1) is computing thelikelihood functionP (T p|nd =

nk) (note thatP (T p|nd = nj) can be computed by letting
nk be nj). In order to solve this issue, we first count the
number of trajectories satisfying two conditions: (i) it ispar-
tially matched by the query trajectoryT p; (ii) it terminates
at locationnk. The count is then divided by the number of
trajectories that terminate at locationnk to serve as the like-
lihood function. Formally,

P (T p|nd = nk) =
|{Tnd=nk

|T p ⊂ Tnd=nk
}|

|Tnd=nk
| , (3)

where|{Tnd=nk
|T p ⊂ Tnd=nk

}| denotes the number of tra-
jectories that satisfy both the aforementioned conditionsand
|Tnd=nk

| denotes the number of trajectories that terminate at
a location innk.

The above method, which usestrajectory matchingas
the likelihood function, will be used as thebaseline predic-
tion algorithm. As discussed in Section 1, this method suf-
fers from the data sparsity problem. If the query trajectory
T p cannot be partially matched by any trajectory in|D|, then
the numerator in Equation (3)|{Tnd=nk

|T p ⊂ Tnd=nk
}|

equals0, and the probability of any cell being the destination
is 0 (i.e.,P (T p|nd = nk) = 0). Consequently, no predicted
destination can be found for this query trajectory.

It should be made clear that the baseline algorithm isnot
directly borrowed from existing work, but rather an adapted

version that utilises the same approach (e.g., grid represen-
tation and Bayes’ rule). Taking Ziebart et al [34] as an ex-
ample, the authors use Markov decision process as the like-
lihood function in Bayes’ rule whereas our baseline algo-
rithm use trajectory matching techniques as the likelihood
function. The data used for the likelihood function in [34]
are generated from trajectories, surveys, and road network.

3 Destination Prediction Based on Sub-Trajectory
Synthesis

To overcome the data sparsity problem, we propose a novel
method namedSub-TrajectorySynthesis(SubSyn). The gen-
eral idea is to first decompose each historical trajectory into
segments of length 1 and then synthesise the segments in
all possible combinations. This process effectively expands
the historical trajectory dataset to cover a greater number
of query trajectories. Thereby it overcomes the data sparsity
problem. This section lays the theoretical foundation of the
SubSyn method, which will be implemented in Section 4 as
the SubSyn training and prediction algorithms.

Following previous studies based on Bayesian inference
framework, the SubSyn method first represents the map with
a grid. Then it uses a Markov model to model the trajec-
tories, where each state corresponds to a grid cell and the
transition from one state to another corresponds to travel-
ling from one cell to another. This way any trajectory can
be modelled as a series of state transitions in the Markov
model.

We train the Markov model (i.e., learn the state transition
probabilities) as follows. Given a set of historical trajecto-
ries, we first obtain the state transition series for each tra-
jectory. Then the number of historic trajectories that contain
a transition from stateni to statenj divided by the num-
ber of historic trajectories that contain a transition starting
from stateni yields the transition probability fromni to nj

(Section 3.1).

We synthesise trajectories (i.e., generate state transition
series) of different lengths and compute thetotal transition
probabilityof each pair of states{ni, nk}, which is the sum
of the transition probabilities of all the synthesised trajec-
tories that starts atni and ends atnk. The total transition
probability will be used for computing the probabilities of
the destinations (Section 3.2).

When a query trajectory arrives, we match the query tra-
jectory with the synthesised trajectories, and derive the prob-
ability that the ending state of each matched trajectory be-
ing the predicted destination based on the precomputed total
transition probabilities (Section 3.3).

We detail the theoretical foundation of the SubSyn method
in the following subsections.
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3.1 Modelling Trajectories using Markov Model

We model the trajectories using a Markov model by associ-
ating a state to each cellni in the grid. The transition proba-
bility of travelling from a locationni to an adjacent location
nj is denoted bypij . We computepij andpji for every pair
of adjacent cellsni andnj . Fig. 4 shows the Markov model
state transition diagram for the example in Fig. 3. These
transition probabilities are conditional probabilities and can
be computed as the number of trajectories that contain the
sequence{ni, nj} divided by the number of trajectories that
contain the cellni. Formally,

pij = P (nj |ni) =
|Ti,j |
|Ti|

. (4)

For each pair of adjacent cells in the grid, we precompute
the transition probabilities using Equation (4). These prob-
abilities are stored as entries of a two-dimensionalm × m

matrix where one dimension corresponds to the cell of cur-
rent state and the other dimension corresponds to the next
state. In the following sections, we denote the transition ma-
trix and its entries byM andMik, respectively. Matrix (5) is
the transition matrix of the example presented in Fig. 3 and
Fig. 4.

n1 n2 n3

n4 n5 n6

n7 n8 n9

p14

p45 p56

Fig. 4 A 3 × 3 Markov model state transition diagram

As indicated by Equation (4), since the first-order Markov
model is used here, only the current state determines the
probability of transiting to the next state. Higher order Markov
models could be applied by involving previous states in ad-
dition to the current state in computing the probabilities.
However, even the second-order Markov model will require
a large number of trajectories as training data and a much
higher memory occupation as shown by previous studies [5,
6]. Due to this reason, we first present our method using
the first-order Markov model (which was published in the
conference version [28]). As we have later substantially im-
proved the efficiency and memory usage of the training al-
gorithm, and we have obtained much more real data, we are

able to further investigate the second-order Markov model
and we will present how we tackle the difficulties in Sec-
tion 6.

M =





























0 p12 0 p14 0 0 0 0 0

p21 0 p23 0 p25 0 0 0 0
0 p32 0 0 0 p36 0 0 0

p41 0 0 0 p45 0 p47 0 0

0 p52 0 p54 0 p56 0 p58 0

0 0 p63 0 p65 0 0 0 p69

0 0 0 p74 0 0 0 p78 0
0 0 0 0 p85 0 p87 0 p89

0 0 0 0 0 p96 0 p98 0





























(5)

3.2 Computing the Total Transition Probability and the
Path Probability

In Section 3.1, a Markov model based transition matrixM

is constructed and filled with probabilities of travelling from
a cell to its adjacent cells. This process is effectively decom-
posing each trajectory inD into a set of sub-trajectories of
length 1 (i.e, ordered pairs of adjacent cells). For instance,
the trajectoryT1 in Fig. 1 is decomposed intoT p

1,2, T
p
2,5,

T
p
5,6, andT

p
6,9 which in turn contribute to the transition prob-

abilities p12, p25, p56, andp69, respectively. Using this set
of sub-trajectories, we can synthesise other trajectoriesthat
also start atn1 and end atn9 but pass through other inter-
mediate cells, e.g.,T ′

1 = T
p
1,4, T

p
4,5, T

p
5,8, andT

p
8,9. We syn-

thesise all possible trajectories for every pair of cellsni and
nk. Then we can obtain thetotal transition probabilityfrom
cell ni to cellnk, which will be incorporated in Section 3.3
to formulate the posterior probabilityP (nd = nk|T p).

The Total Transition Probability: The following ex-
ample demonstrates the concept of the total transition prob-
ability. By referring to Equation (5) and Fig. 4, the proba-
bility of travelling from n1 to n6 is found to be zero inM
(i.e.,M16 = 0) becauseM stores the probability of travel-
ling from one cell to another in exactly one step, and there
is no way of travelling between these two cells within one
step. Furthermore, whenM is multiplied by itself to form
M2, its entries are the probabilities of travelling from one
cell to another in two steps. In general,M r (r ∈ [0, ∞))
holds the probabilities of transition from one cell to another
in exactlyr steps (i.e.,M r holdsr-step transition probabili-
ties). Since theℓ1 distance betweenn1 andn6 (i.e.,l16) is 3,
the probability of travelling fromn1 to n6 via all the short-
est paths can be found in matrix entryM3

1,6. However, two
problems also remain: (i) theℓ1 distance does not necessar-
ily correspond to the actual travelling distance fromn1 to
n6 because sometimes a small detour is taken due to vari-
ous reasons. Hence we wish to find the sum ofr-step tran-
sition probabilities of various steps; (ii) the number of paths
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from one cell to another is infinitely large without restric-
tions, i.e.,r ∈ [l16, ∞). In order to solve these two prob-
lems, we introduce a detour factorα as an additional condi-
tion that the length of all possible paths between two cells,
e.g.,ni, nk, will not exceedlik + ⌈αlik⌉, wherelik is theℓ1

distance betweenni andnk. In a general case, we assume
that α ∈ [0, 1). By examining the dataset used in our ex-
periment, it is found that the median distances of all trips is
1.2 of theℓ1 distance between the starting and ending cells
(cf. Section 6.1). Therefore, we useα = 0.2 as a constant.
We denote⌈αlik⌉ by lde,ik, and define thetotal transition
probabilityas follows.

Definition 1 Total Transition Probability The total transi-
tion probability of travelling from one cellni to another cell
nk, denoted bypi→k

2, is the sum of ther-step transition
probabilities of all possible paths (with the detour distance
restriction) betweenni andnk. Formally:

pi→k =

lik+lde,ik
∑

r=lik

M r
ik (6)

= M lik

ik + M lik+1
ik + · · · + M

lik+lde,ik

ik .

In the equation above, the last term after expanding the
summation equation,M lik+lde,ik

ik , gives the probability of
travelling from ni to nk in exactly lik + lde,ik steps. For
instance, suppose the detour factorα = 0.2, then in Equa-
tion (5) and Fig. 4,l16 = 3 and lde,16 = ⌈0.2 × 3⌉ = 1,
so,p1→6 = M3

1,6 + M4
1,6. The usage of Equation (6) will

be revealed in the following subsection (Section 3.3) when
formulating the posterior probability equation.

Synthesis of Paths for Query TrajectoriesWe intro-
duce the definition ofpath probabilitywhich will be used
to compute the posterior probabilityP (nd = nk|T p). The
path probability is the probability of a person travelling from
one location to another given a path. The path is the query
trajectory provided by a user. The value of the path probabil-
ity can be obtained through multiplying the transition prob-
abilities between all pairs of cells in this query trajectory
T p. For example, given the transition matrixM , the path
probability of moving from a location inn1 to another loca-
tion in n6 via the pathT p

1,4,5,6 can be obtained as follows:
P (T p

1,4,5,6) = p14 · p45 · p56 wherep14, p45, andp56 are the
transition probabilities in the matrixM between consecutive
and adjacent3 cell pairs{n1, n4}, {n4, n5}, and{n5, n6},
respectively. In general, given any query trajectoryT

p
1,2,··· ,k,

2 Note the difference betweenpi→j andpij . The latter (without the
arrow) is the transition probability defined in Markov model, and its
definition was given in Equation (4).

3 consecutivecells are two cells next to each other in a trajectory;
adjacentcells are two cells next to each other in a grid.

the definition of path probability is:

P (T p) = P (T p
1,2,··· ,k) =

k
∏

i=1

pi(i+1). (7)

We discuss a special case of applying Equation (7), and
use a3 × 3 grid as an example. If a query trajectory pro-
vided by user contains non-adjacent consecutive cells (e.g.,
T p = {n1, n5, n6} where{n1, n5} are not adjacent cells),
the transition probabilityp15 would be zero. This situation
could occur when, for instance, the user’s GPS device failed
to report its position for several minutes. In such cases, we
use linear interpolation to fill the gap between these two
cells before calculating the path probability. More specifi-
cally, we first use alinear polynomial(i.e., straight line) to
connect the two GPS points located inn1 andn5. Suppose
that the linear polynomial passesn4. Then we will insertn4

to T p to formT p = {n1, n4, n5, n6}.

3.3 Computing the Destination Probability

To predict the destination is to compute the posterior prob-
ability P (nd = nk|T p) as defined by Equation (1) in Sec-
tion 2.2. The method is described below.

We first transform the posterior probability such that it
can be computed using the probabilities defined in the Markov
model. We expandT p to be the series of cells contained in
T p, denoted by{ns, · · · , nc}, wherens andnc denote the
starting and ending cells ofT p.

P (nd|T p) = P (nd|ns, · · · , nc)

= P (ns, nd|ns, · · · , nc)

= P (ns, nd|T p)

=
P (T p|ns, nd) · P (ns, nd)

P (T p)

= P (T p|ns, nd) · P (nd|ns) · P (ns)

P (T p)
.

Since when we computeP (nd|T p) for differentnd the
starting cell of the trajectoryT p does not change,P (ns) is
a constant and it does not affect the comparative result of
P (nd|T p) for differentnd. Therefore,P (nd|T p) is propor-

tional toP (T p|ns, nd) · P (nd|ns)

P (T p)
. Formally,

P (nd|T p) ∝ P (T p|ns, nd) · P (nd|ns)

P (T p)
, (8)

whereP (T p|ns, nd) andP (nd|ns) will be explained below,
andP (T p) was described in Equation (7).
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We compute the conditional probabilityP (T p|ns, nd)

by expandingT p, and obtain

P (T p|ns, nd) =
P (T p, ns, nd)

P (ns, nd)

=
P (ns, · · · , nc, nd)

P (ns, nd)

=
P (ns, · · · , nc) · P (nc, nd)

P (ns, nd)

=
P (T p) · P (c → d)

P (s → d)

=
P (T p) · pc→d

ps→d

, (9)

whereP (T p) is the path probability ofT p, as given by Equa-
tion (7); pc→d is the total transition probability of travelling
from the current cell ofT p, nc, to a predicted destinationnd;
andps→d is the total transition probability of travelling from
the starting cell ofT p, i.e.,ns, to a predicted destinationnd.

The other probabilityP (nd|ns) that appeared in Equa-
tion (8) can be obtained by the following equation (for all
trajectories starting atni, the proportion that finish atnk):

P (nd = nk|ns = ni) =
|Tns=ni,nd=nk

|
|Tns=ni

| . (10)

Integrating Equation (9) into Equation (8), we obtain the
posterior probability equation that computes the destination
probabilities:

P (nd|T p) ∝ P (T p|ns, nd) · P (nd|ns)

P (T p)

=
P (T p) · pc→d

ps→d

· P (nd|ns)

P (T p)

=
pc→d

ps→d

· P (nd|ns)

∴ P (nd|T p) ∝ pc→d

ps→d

· P (nd|ns) , (11)

where the components are obtained by using Equations (6)
and (10). Given a query trajectory, we will apply this equa-
tion to compute the destination probabilities for each cell,
and rank them in order to retrieve the most probable desti-
nations. Note that when computing destination probability,
we do not need to obtain the exact value, but rather a relative
probability for ranking purposes only. Therefore, a propor-
tional relationship would suffice.

In this section, we have established the theoretical model
for destination prediction. We still need efficient ways of
applying this model because the model involves expensive
computations such as repeated matrix multiplication. In the
following section, we propose algorithms to tackle the run-
time efficiency issues.

4 Algorithms

The algorithms comprise the training and prediction phases
in order to efficiently process destination prediction queries.
The train phase computes and stores the components in Equa-
tion (11) such that, in the prediction phase, one can sim-
ply retrieve these components and compute the destination
probabilityP (nd|T p) using Equation (11) directly. We present
the SubSyn-Training algorithm in Section 4.1 and SubSyn-
Prediction in Section 4.2. Improvements to SubSyn will be
presented in Section 5 to achieve reduced running time and
Section 6 for enhanced prediction accuracy.

4.1 SubSyn-Training

The SubSyn training stage is responsible for computing the
components in Equation (11), i.e.,pi→k andP (nd|ns). The
computation ofP (nd|ns) will be done simply by counting
satisfactory trajectories, so we will focus on the algorithm to
computepi→k.

The total transition probabilitypi→k defined byDefini-
tion 1will be stored in a matrixMT and used in the predic-
tion phase. As the definition shows in Equation (6), the total
transition probabilities are extremely expensive to compute.
For example, for a50×50 grid,M is a502 ×502 = 2500×
2500 matrix. For a travel distance of ten cells,pi→k = M10

ik +
M11

ik + M12
ik (since⌈10 × 1.2⌉ = 12) which means that the

matrix multiplication operation needs to be performed on
the large matrixM r more than 30 times where each ma-
trix multiplication requiresO(m3) (m = 2500) time (cf.
Section 8.1 for a detailed discussion on complexities of ma-
trix multiplication algorithms). While already inefficient, the
same operation needs to be carried out for all pairs of cells
{ni, nk} (25002 = 6.25 × 106 pairs). It is therefore infeasi-
ble in terms of running time.

In the conference paper [28], we presented an algorithm
calledSubSyn-Trainingto solve this runtime efficiency prob-
lem, as summarised in Algorithm 1. This algorithm works as
follows. Firstly, Equation (6) is reformed so that few redun-
dant computations are carried out.

pi→k =

lik+lde,ik
∑

r=lik

M r
ik

∴ pi→k =



M lik

lde,ik
∑

r=0

M r





ik

(12)

For the purpose of explanation, we use a50 × 50 grid as
an example without any loss of generality. Since the longest
distancemax (lik) = l1,2500 is 2 × (50 − 1) = 98, the
maximum possible value oflde,ik = ⌈0.2lik⌉ is therefore
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⌈0.2 × 98⌉ = ⌈19.6⌉ = 20. By taking advantage of the
concept of dynamic programming, an array of size 21 can
be used to store allM r, r ∈ [0, 20] which are computed in
ascending exponent order (Algorithm 1: lines 5 to 6) such
that only 19 matrix multiplications are required sinceM1 is
already constructed andM0 is the identity matrixI. After-
wards, we sequentially add each array element to the next
element to form

∑lde,ik

r=0 M r (the second factor in Equa-
tion (12)) wherei is an array index (Algorithm 1: lines 7
to 8). The benefit is evident because all possible values of
∑lde,ik

r=0 M r
ik can be directly retrieved from this array for fur-

ther computations.

Algorithm 1: SubSyn-Training(D, g)

1 MT ← 0; // total transition matrix
2 lde,max ← ⌈0.2× 2(g − 1)⌉; // maximum detour distance

3 A[0]← I; // an array to store
∑⌈αl⌉

r=0 Mr

4 A[1]←M ← D; // construct transition matrix

5 for i← 2 to lmax do
6 A[i]← M ·A[i− 1]; // A[i] now holdsM i

7 for i← 1 to lmax do
8 A[i]← A[i] + A[i− 1]; // A[i] now holds

∑i
r=0 Mr

9 list← ∅; // a list to store all cell pairs
10 foreach ni in grid do
11 if Mi∗ contains only zero entriesthen
12 continue;

13 foreach nk in grid do
14 if M∗k contains only zero entriesthen
15 continue;

16 add cell pair(ni, nk) to list;

17 sort list; // increasing order ofℓ1 distance

18 Mpower ←M ; // matrix to store intermediate result
19 MT

temp ←Mpower ·A[1]; // matrix to store intermediate result
20 lprev ← 1 ; // record distance of previous iteration
21 foreach (ni, nk) ∈ list do
22 while lik ≥ lprev + 1 do
23 Mpower ←M ·Mpower ;
24 MT

temp ←Mpower · A[lde,ik];
25 lprev++;

26 MT
ik
←MT

temp,ik
; // i.e.,pi→k

27 P (nd|ns)← D ;

return : M , MT , andP (nd|ns)

Regarding the first factorM lik in Equation (12), we could
use the same strategy except that in order to store this term
for all pairs of cells, too much memory is required, espe-
cially in a grid with high granularity. For example, in a50×
50 grid, eachM requires502 × 502 × 8 Bytes≈ 47.7 MB
of storage space. Since the maximumℓ1 distance in such a
grid is 98, the total amount of memory required will exceed
4.67 GB (i.e., 98 × 47.7 MB), which may not be accom-

modated by a regular computer. Therefore, we need to seek
a scalable and robust solution. Fortunately, these matrices
do not have to be stored. Instead, we enumerate all pairs of
cells in the grid, sort these pairs in ascending order of their
distance between each other, and computepi→k in this or-
der (Algorithm 1: lines 9 to 17). Using Fig. 4 and Fig. 5 as
an example, all pairs of cells and their distances are gener-
ated to be{n1, n2}(1), {n1, n4}(1), · · · , {n1, n3}(2), · · · ,
{n2, n6}(2), · · · , {n1, n8}(3), · · · ,{n1, n9}(4), {n9, n1}(4).
In order to compute the total transition probability of each
pair, M lik and

∑lik

r=0 M r are retrieved from memory, and
they are multiplied together to form a matrix containingpi→k

of distance 1 (Algorithm 1: lines 18 to 19). The total transi-
tion probabilities of all pairs of distance 1 can be obtained
directly from this matrix (Mpower in Algorithm 1). After all
pairs of distance 1 are obtained,M2 is computed by mul-
tiplying M , and a matrix containingpi→k of distance 2 is
obtained (Algorithm 1: lines 22 to 25). Utilising this algo-
rithm, only less than 150 matrix multiplications are carried
out (in the case of a50 × 50 grid) to compute all total tran-
sition probabilities, whereas the intuitive approach requires
millions of matrix multiplications. During the process, each
foundpi→k is stored in a separate matrixMT (Algorithm 1:
line 26). We call this matrix thetotal transition matrix, and
it holds the same number of entries as the transition matrix
M .

�✁ �✂ �✄ �☎ �✆ �✝ �✞ �✟ �✠

�✁ ✡ ✁ ✂ ✁ ✂ ✄ ✂ ✄ ☎

�✂ ✁ ✡ ✁ ✂ ✁ ✂ ✄ ✂ ✄

�✄ ✂ ✁ ✡ ✄ ✂ ✁ ☎ ✄ ✂

�☎ ✁ ✂ ✄ ✡ ✁ ✂ ✁ ✂ ✄

�✆ ✂ ✁ ✂ ✁ ✡ ✁ ✂ ✁ ✂

�✝ ✄ ✂ ✁ ✂ ✁ ✡ ✄ ✂ ✁

�✞ ✂ ✄ ☎ ✁ ✂ ✄ ✡ ✁ ✂

�✟ ✄ ✂ ✄ ✂ ✁ ✂ ✁ ✡ ✁

�✠ ☎ ✄ ✂ ✄ ✂ ✁ ✂ ✁ ✡

Fig. 5 ℓ1 Distance Matrix of all pairs of cells in a3 × 3 grid

In the process of enumerating all pairs of cells, more
computational steps could be eliminated by pruning unpromis-
ing pairs of cells. For two cellsni andnk, if either the entire
row containingni, Mi∗ (Algorithm 1: lines 11 to 12), or the
entire column containingnk, M∗k comprises only zero en-
tries, the pair is discarded (Algorithm 1: lines 14 to 15). It
indicates a lack of training data in these cells and the proba-
bility is always confined to zero in such case. Hence there is
no need to compute their total transition probabilities.
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4.2 SubSyn-Prediction

The SubSyn-Predictionalgorithm is responsible for com-
puting the posterior probabilityP (nd = nk|T p) in Equa-
tion (11), which is the probability ofnk being the destina-
tion given a query trajectoryT p.

We summarise theSubSyn-Predictionalgorithm in Al-
gorithm 2. Given a total transition matrixMT in a grid, all
pairs ofP (nd|ns), and a query trajectoryT p, theSubSyn-
Predictionalgorithm works as follows:

1. For each cellnk, we compute the destination probabil-
ity P (nd = nk|T p) based onps→d, pc→d andP (nd =

nk|ns) using Equation (11);
2. We select the top-k cells according to their destination

probabilities;
3. We return the top-k elements that have been selected.

Algorithm 2: SubSyn-Prediction(MT ,P (nd|ns),T
p)

1 list← ∅; // a list to store the output

2 foreach nk in grid do
3 retrievepc→k andps→k from MT ;
4 computeP (nd = nk|T

p) ;
5 storeP (nd = nk|T

p) in list ;

6 selecttop-k elements inlist;

return : top-k elements

Discussion:We briefly discuss the performance of the
baseline prediction and SubSyn-Prediction algorithm. It is
clear that SubSyn-Prediction requires little time to run due
to the already-completed training phrase. In the prediction
phrase, we simply retrieve probability values computed by
SubSyn-Training and use Equation (11) to compute destina-
tion probability for each cell. The baseline prediction algo-
rithm, in contrast, needs to perform a sequential scan through
the entire historical trajectory dataset for each query tra-
jectory in order to find matching trajectories. As shown by
the cost analysis (Section 8) and experimental study (Sec-
tion 9), the running time of SubSyn-Prediction is reduced
from that of the baseline prediction algorithm by several or-
ders of magnitudes.

5 Improving Runtime Efficiency of SubSyn

Although theSubSyn-Trainingalgorithm has avoided exces-
sive amount of matrix computation, it still requires notice-
able number of matrix multiplications. If we examine the
core equation inSubSyn-Trainingalgorithm (Equation 12),
we observe that neither of the factors (i.e., matricesM ik

or
∑lde,ik

r=0 M r) is sparse even thoughM itself is. There-
fore time complexity ofO(m3) is still high since we cannot

apply sparse matrix multiplication techniques to reduce the
time complexity.

In this section, we take advantage of the fact thatM is
a sparse matrix and propose improvements to theSubSyn-
Training algorithm, which drastically reduces the training
time and confines memory occupation within acceptable range.
We call the resultant algorithm theImproved SubSyn-Training
algorithm. With this improvement, we are able to run Sub-
Syn on much finer grid (e.g.,g = 70) and design algorithm
accordingly to improve prediction accuracy (cf. Section 6).

This algorithm is based on the observation that, in our
transition matrixM (cf. Equation (5)), there are at most
four non-zero entries in each row, i.e, we can only travel
directly from one cell to its four adjacent cells (i.e., left,
right, top, and bottom cells). As a result, multiplying two
m × m transition matricesM andM ′ only requires4m2

multiplications, i.e., there arem2 entries in the resultant ma-
trix M ′′ to be computed, and each entryM ′′

ik is computed
by M ′′

ik =
∑m

j=1 MijM
′
jk, which takes only four multipli-

cations. Therefore, the computation complexity can be re-
duced toO(m2).

To take full advantage of this observation, we rewrite
Equation (6) as follows so that the transition matrixM , which
is sparse, is involved in as many matrix multiplications as
possible. In other words, we minimise the number of matrix
multiplications that do not involveM since other matrices
are much denser.

We start by replacinglde,ik with ⌈αlik⌉ in Equation (6):

pi→k =

lik+lde,ik
∑

r=lik

M r
ik

=

lik+⌈αlik⌉
∑

r=lik

M r
ik

=





lik+⌈αlik⌉
∑

r=lik

M r





ik

. (13)

We further introduce two ancillary arrays, where each el-
ement is a matrix, to achieve the objective of reducing com-
plexity, and we name them arraysA andB. Let A[l] be the
lth element ofA, where

A[l] =

l+⌈αl⌉
∑

r=l

M r.

Then we can rewrite Equation (13) as

pi→k =





lik+⌈αlik⌉
∑

r=lik

M r





ik

= (A[lik])ik .

Now the problem of computingpi→k for all pairs of
(ni, nk) becomes computingA[1], A[2], · · · , A[lmax], where
lmax is the longestℓ1 distance between two cells in the grid.
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Next we derive a recurrence relationship onA[l] and
A[l+1] using the transition matrixM to help computeA[l].

By definitionA[l + 1] =
∑l+1+⌈α(l+1)⌉

r=l+1 M r. Comparing it
with A[l], the main deference lies in⌈α(l + 1)⌉ and⌈αl⌉.
Let φ(l) be⌈α(l + 1)⌉ − ⌈αl⌉. Sinceαl < ⌈αl⌉ ≤ αl + 1,
We have

φ(l) = ⌈α(l + 1)⌉ − ⌈αl⌉
< α(l + 1) + 1 − αl

= α + 1.

Besides, the detour factorα satisfies that0 ≤ α < 1 as
discussed in Section 3.2. Thus, we haveφ(l) < 2. Further,
since both⌈α(l + 1)⌉ and⌈αl⌉ are integers,φ must be an
integer. Therefore,φ(l) = 0 or 1. We will discuss the two
cases separately below:

(i) If φ(l) = 0, we have⌈α(l + 1)⌉ = ⌈αl⌉, and

A[l + 1] =

l+1+⌈α(l+1)⌉
∑

r=l+1

M r

= M

l+⌈αl⌉
∑

r=l

M r

= M · A[l].

(ii) If φ(l) = 1, we have⌈α(l + 1)⌉ = ⌈αl⌉ + 1, and

A[l + 1] =

l+1+⌈α(l+1)⌉
∑

r=l+1

M r

= M

l+⌈αl⌉+1
∑

r=l

M r

= M ·
(

A[l] + M l+⌈αl⌉+1
)

.

Apart from arrayA, we define arrayB whoselth ele-
mentB[l] = M l+⌈αl⌉+1. Then we have:

B[l + 1] = M l+1+⌈α(l+1)⌉+1

=

{

M l+1+⌈αl⌉+1 if φ(l) = 0

M l+1+⌈αl⌉+2 if φ(l) = 1

=

{

M · B[l], if φ(l) = 0

M2 · B[l], if φ(l) = 1

We compute the first elements of the two arraysA and
B as follows.

A[0] =

0+⌈α×0⌉
∑

r=0

M r = M0 = I

B[0] = M0+⌈α×0⌉+1 = M1 = M

We have discussed the means to reduce the complexity
of the SubSyn-Training algorithm above. To summarise, we
rewrite Equation (6) as:

∴ pi→k = (A[lik])ik , (14)

where

A[l] =











I, if l = 0

M · A[l − 1], if φ(l − 1) = 0

M · (A[l − 1] + B[l − 1]) , if φ(l − 1) = 1

B[l] =











M, if L = 0

M · B[l − 1], if φ(l − 1) = 0

M2 · B[l − 1], if φ(l − 1) = 1

Now we can use Equation (14) to simplify the compu-
tation of the total transition probabilities, as summarised by
Algorithm 3. In this algorithm, we have avoided all the ma-
trix multiplications that do not involve the transition matrix
M . Meanwhile, we just need to store one element for each of
the two arraysA andB, which reduces the space consump-
tion significantly as shown by the cost analysis provided in
Section 8.

Algorithm 3: SubSynE-Training(D, g)

1 MT ← 0; // total transition matrix
2 lmax = 2× (g − 1); // the longest distance between two cells

3 A[0]← I; // an array that storesM l
∑⌈αl⌉

r=0 Mr

4 B[0]← M ← D; // an array used whenφ(l) = 1

5 for l← 1 to lmax do
6 if φ(l− 1) = 0 then
7 A[l] = M · A[l− 1] ;
8 B[l] = M ·B[l − 1] ;

9 else ifφ(l − 1) = 1 then
10 A[l] = M · (A[l− 1] + B[l − 1]) ;
11 B[l] = M · (M ·B[l − 1]) ;

12 foreach (ni, nk) satisfieslik = l do
13 MT

ik
= A[l]ik; // i.e.,pi→k

14 P (nd|ns)← D ;

return : M , MT , andP (nd|ns)

6 Improving Prediction Accuracy of SubSyn

The substantially improved runtime efficiency of SubSyn
enables us to investigate more computationally expensive
techniques such as finer grid partition and higher-order Markov
models. These techniques help improve the prediction accu-
racy of the SubSyn algorithm by up to 20% as experiments
in Section 9 show.
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6.1 Methods for the Improvement

We improve the prediction accuracy of SubSyn from two
aspects: studying the effect of the detour factorα and using
the second-order Markov model.

Detour Factor α: The detour factorα introduced in
Section 3.2 quantifies unusual behaviour and models how
much detour people usually take. When we setα > 0, we
assume that people usually take a detour that is greater than
theℓ1 distance between their origin-destination pairs. Since
theℓ1 distance between an origin-destination pair is usually
much larger than the shortest path in Euclidean space, a de-
tour factorα > 0 corresponds to a path much larger than the
shortest path and therefore is unusual behaviour.

The effect ofα is more significant when the grid is coarse.
This can be explained as follows. First of all, we found that
the unusual behaviour of detour mostly comes from the pro-
cess of grid partitioning rather than actual detour taken by
drivers. In a coarse grid (e.g.,g = 30), when we allocate
GPS points to cells, it generates larger detour because the
resolution of such grid is low. Consequently, the proportion
of training trajectories that have a large detour is high, and
a largerα tends to yield better prediction accuracy. During
an experiment conducted for the conference paper [28], we
discovered that settingα = 0.2 for the SubSyn algorithm
gives the best prediction accuracy for a grid with granularity
g = 30.

We have also learnt that a larger dataset reduces the ef-
fect of α because a larger dataset contains more samples,
which make our model more deterministic and less random.
Now we have obtained much more GPS trajectory data and
developed SubSynE, an algorithm enabling us to run on much
finer grid. According to the experimental result in Fig. 6, we
found that the effect ofα in finer grids and on large datasets
does become very small. As a matter of fact, settingα to 0

in these cases yield better prediction accuracy. Even though
α = 0.2 still gives the best prediction accuracy in median-
size grids (e.g.,g = 20 and g = 30), but the prediction
error across all values ofα andg become more stable due to
abundant data provision. The difference in the prediction er-
ror for any grid we have tested is within a range of 2% when
varying the value ofα.
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Fig. 6 Choosing the Detour Factorα

Based on the above investigation, we decided to setα

to zero. This simplifies the SubSyn algorithm, reduces the
space usage and reduces the running time. Hence it is an
important step before employing the second-order Markov
model.

With α set to 0, the equation for total transition proba-
bility, Equation (6), can be simplified to

pi→k = M lik

ik . (15)

We will use this equation in the second-order Markov model
to develop the new algorithm.

The Second-Order Markov Model: Because of the
improved training runtime efficiency and a larger trajectory
dataset gathered, we are able to investigatethe Second-Order
Markov Modelfor its ability to improve prediction accuracy.

A naive way to apply the second-order Markov model to
SubSyn is to use three-dimensional matrix for the transition
matrix M instead of a two-dimensional one, because in the
second-order Markov model the transition is defined to be
amongst three states: the current state (i.e., current position
nc) and two previous states. However, this will significantly
increase both the time and space complexities exponentially.
We will describe how we confine the transition matrix to
remain in two-dimensional space.

e1

e2

e3

e4 e5

e6

e7

e8p12

p14

Fig. 7 The second-order Markov model state transition diagram

In a first-order Markov model, we define a state to be a
cell. However, in the second-order Markov model, we de-
fine a state to be an edge. The transition probability now
becomes the probability of travelling from an edgeei to an
adjacent edgeej (i.e., the end cell ofei is the start cell ofej)
and is denoted bypij . This effectively uses two-dimensional
transition matrix in the second-order Markov model. Such
transition probabilities are conditional probabilities and can
be computed as the number of trajectories that contain the
sequence{ei, ej} divided by the number of trajectories that
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contain the edgeei. Formally,

pij = P (ej |ei) =
|Ti,j |
Ti

. (16)

The transition probabilities of adjacent edges can be pre-
computed by the above equation and the rest will be com-
puted in Section 6.2. Matrix (17) is the transition matrix of
the example presented in Fig. 7.

M =

























0 p12 0 p14 0 p16 0 p18

0 0 p23 0 0 0 0 0

0 p32 0 p34 0 p36 0 0p38

0 0 0 0 p45 0 0 0

0 p52 0 p54 0 p56 0 0p58

0 0 0 0 0 0 p67 0
0 p72 0 p74 0 p76 0 p78

p81 0 0 0 0 0 0 0

























(17)

Fig. 7 shows a3 × 3 grid with four corner cells omitted
for simplicity. If we include them, the matrix (17) would ex-
pand from8 × 8 to a24 × 24 square matrix since there are
a total of 24 directed edges in a grid withg = 3. Therefore,
the runtime efficiency and space occupation in the second-
order Markov model is still much higher than the original
SubSyn algorithm even if their complexities are the same as
presented in Section 8. Therefore the improvement in run-
time efficiency (i.e., the SubSynE-Training algorithm) and
larger trajectory dataset are essential in using the second-
order Markov model.

6.2 Computing the Destination Probability

We integrate the two aforementioned methods for improving
prediction accuracy into SubSynE, and obtain the algorithm,
which we callSubSynEA(A for Accuracy). The main differ-
ences between SubSynEA and SubSynE are outlined below.

Since the destination probabilityP (nd|T p) uses node
nd instead of edgeed , we convert the edge probability to
the node probability by summing up the probabilities of all
the edges that have the same destination as shown in Equa-
tion (18).

P (nd|T p) =
∑

ed ends atnd

P (ed|T p). (18)

One exception occurs whenT p contains only one cell, i.e.,
T p = {ns}. In this case, we simply let

P (nd|T p) = P (nd|ns),

whereP (nd|ns) can be calculated by Equation (10). In other
cases, we expandT p to be the series of edges contained in
T p, denoted by{es, · · · , ec}, wherees and ec denote the

starting and current edges ofT p. Formally, the destination
probabilityP (ed|T p) is given by

P (ed|T p) = P (ed|es, · · · , ec) = P (ed|ec) = pc→d. (19)

The above changes to the SubSynE algorithm are sum-
marised below in Algorithms 4 and 5.

Algorithm 4: SubSynEA-Training(D, g)

1 MT ← 0; // total transition matrix
2 lmax = 2× g; // the longest distance between two edges
3 A← I; // a matrix that storesMr

4 for l← 1 to lmax do
5 A = M ×A ;

6 foreach (ei, ek) satisfieslik = l do
7 MT

ik
= Aik ; // i.e.,pi→k

8 P (ed|es)← D ;

return : M , MT , andP (nd|ns)

Algorithm 5: SubSynEA-Prediction
(

MT , P (ed|es), T p
)

1 list← ∅; // a list to store the output
2 P (nd|T

p)← 0; // initialize all profanities to0

3 foreach ek in grid do
4 retrievepc→k from MT ;
5 P (nd = the end ofek|T

p) += pc→k ;

6 selecttop-k probabilities among all cells;

return : top-k elements

7 Comparison of Various Grid Partitioning Strategies

Until now we have assumed a uniform grid to represent the
map, as what existing studies have done. In Section 7.1,
we investigate other partitioning strategies, a quantile-based
grid partitioning and ak-d tree based grid partitioning. Then
we demonstrate mathematically in Section 7.2 that these strate-
gies that yield more balanced number of points in each cell
achieve smaller information loss than a uniform grid, and
it leads to better prediction accuracy as verified by experi-
ments in Section 9.5.

7.1 Two Partitioning Strategies

Quantile-Based Partitioning Strategy: The quantile-based
strategy also represents the map with ag×g grid, but the grid
cells have different sizes following the quantile distribution
of the trajectory data points. Specifically, we first partition
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the data space vertically and horizontally based on the data
densities in these two dimensions, respectively, as shown in
Figs. 8(a) and (b). A vertical (horizontal) partitioning can
be easily done by a sequential scan of the data points in as-
cending latitude (longitude) coordinate. During the scan we
count the number of data points met so far. Once this num-

ber reaches
d

g
, a new column (row) is produced, whered

denotes the total number of location points andg denotes
the number of columns (rows) to be obtained. The process
repeats forg times for each dimension. This way, we obtain
a grid that follows the data point density in linear time. The
resultant grid is shown in Fig. 10(b).

(a) Step One: Vertical partition-
ing

(b) Step Two: Horizontal parti-
tioning

Fig. 8 Quantile-Based Grid Partitioning for a grid with 20 GPS data
points andg = 4. Each partition contains exactly5 GPS data points.

First Partition

Second Partition

Third Partition

Forth Partition

Fig. 9 K-d Tree Based Grid Partitioning for a grid with 20 GPS data
points. The space is partitioned four times (i.e.,g = 4). Each partition
contains either1 or 2 GPS data points.

K-d Tree Based Partitioning Strategy: K-d trees are
binary trees, in which each node is associated with a coor-
dinate in dimensionk. Each non-leaf node divides the space
into two half-spaces. The points in each of the two half-
spaces are stored in the left and right branches of the current
node. In this section, we ignore the data indexing structure
in k-d tree and focus on the space partitioning method. As
illustrated in Fig. 9, we divide the space using either hori-
zontal or vertical lines into two partitions of equal number

of points. In other words, we pick the median point in one
dimension and separate the space from its location. Then in
each of the two partitions, we repeat the same process re-
cursively in a round-robin fashion for all dimensions untila
desired grid granularity is reached.

DiscussionCompared with a uniform grid as shown in
Fig. 10, both quantile based andk-d tree based partitioning
strategies are able to achieve higher prediction accuracy as
the experiment result in Fig. 20 shows. This is because, in
a city, regions with dense trajectory coverage (e.g., CBD re-
gion) will be mapped to more cells with each cell having
smaller area. It improves the prediction accuracy of queries
that involve these regions. The best result is given byk-d
tree based partitioning strategy because it achieves the most
even distribution of points. In what follows, we formally in-
vestigate the relationship between prediction accuracy and
grid partitioning strategies using theentropyof grid repre-
sentations, which quantifies the information loss when the
trajectory data points are represented by the cells of a grid.

7.2 Theoretical Analysis

In this subsection, we show analytically that both quantile
based andk-d tree based partitioning strategies are superior
to uniform grid in terms of the amount of information loss
during the process of grid partitioning.

Let i be the index of a grid cell andpi be the probability
that a data point locates in theith grid cell. Then by defini-
tion, the entropy of a grid representation, denoted byH , can
be computed as

H = −
∑

i

pi ln pi

=

m
∑

i=1

pi ln
1

pi

, (20)

wherem denotes the number of cells of a grid.
We derive upper and lower bounds forH , denoted by

Hmax andHmin, respectively.
An Upper Bound of the Entropy: Sincef(x) = lnx

is a convex function, Jensen’s inequality [14] applies. Thus,

H =

m
∑

i=1

pi ln
1

pi

≤ ln

m
∑

i=1

pi

1

pi

= lnm.

Hence,

Hmax = lnm. (21)

According to Jensen’s inequality [14], this maximum will
be reached whenpi is the same for anyi, i.e.,∀i ∈ [1, m], pi =

p̃, wherep̃ =
1

m

m
∑

i=1

pi =
1

m
is the average of allpi.
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(a) Uniform Grid (b) Quantile-Based Grid (c) K-d Tree Based Grid

Fig. 10 A visual comparison amongst all grid partitioning strategies for a grid with 20 GPS data points andg = 4. Thek-d tree based grid has
the most even distribution of GPS points. Quantile-based grid achieves less evenly distributed GPS points when compared with thek-d tree based
grid. Uniform grid has the worst GPS point distribution.

A Lower Bound of the Entropy: We use the first-order
Taylor series to expand functionf(x) = lnx:

f(x) = f(x0) + f ′(x0)(x − x0) +
1

2!
f ′′(ξ)(x − x0)

2

= lnx0 +
1

x0
(x − x0) +

1

2!

(

− 1

ξ2

)

(x − x0)
2,

where 1
2!(− 1

ξ2 )(x−x0)
2 denotes the Lagrange remainder for

some real numberξ betweenx andx0. Since this remainder
is either zero or negative, we have

f(x) ≤ lnx0 +
1

x0
(x − x0).

Replacingx with pi andx0 with p̃ =
1

m
, we have

m
∑

i=1

pi ln pi ≤
m

∑

i=1

pi

(

ln p̃ +
1

p̃
(pi − p̃)

)

=

m
∑

i=1

−pi lnm + mp2
i − pi

= − lnm

m
∑

i=0

pi + m

m
∑

i=1

p2
i −

m
∑

i=1

pi

= − lnm + m

m
∑

i=1

p2
i − 1.

Further, we make use of the varianceσ2 of the grid to
quantify the diversity of distribution of GPS points in a grid.
Let the variance be

σ2 =
1

m

m
∑

i=1

(pi − p̃)2, (22)

which indicates how diversely the trajectory data points are
distributed in the grid cells. The implication of the variance
σ2 is as follows. Compared with a uniform grid, both quan-
tile based andk-d tree based grids havesmaller variances

because, for these two partitioning strategies, the data points
tend to distribute evenly in all grid cells, and hence have sim-
ilar pi values.

We use the variance to find the lower bound ofH by
expanding Equation (22) as follows:

σ2 =
1

m

m
∑

i=1

(pi − p̃)2

=
1

m

m
∑

i=1

(

p2
i − 2pip̃ + p̃2

)

=
1

m

m
∑

i=1

p2
i − 1

m

m
∑

i=1

2pip̃ +
1

m

m
∑

i=1

p̃2

=
1

m

m
∑

i=1

p2
i − 2

m2
+

1

m2

=
1

m

m
∑

i=1

p2
i − 1

m2
.

Thus,
∑m

i=1 p2
i = mσ2 +

1

m
, and we have

m
∑

i=1

pi ln pi ≤ − lnm + m

(

mσ2 +
1

m

)

− 1

= − lnm + m2σ2 + 1 − 1

= − lnm + m2σ2.

Therefore, a lower bound of the entropyH is

Hmin = lnm − m2σ2. (23)

Conclusion: After giving the definitions of entropy and
diversity factor (Equations (20) and (22)), and the upper and
lower bounds of the entropy (Equations (21) and (23)), we
show that both quantile based andk-d tree based partitioning
strategies have less information loss than that of the uniform
grid.
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Applying the upper and lower bounds ofH , we have

lnm − m2σ2 ≤ H ≤ lnm. (24)

Hence,

lim
σ2→0

H = lnm = Hmax .

Based on the equation above, the entropy of a grid rep-
resentation reaches its maximum valueHmax as the vari-
anceσ2 approaches zero. Also since the termm2σ2 in Equa-
tion (24) is directly proportional to the varianceσ2, we con-
clude that the variance is inversely proportional toH . Com-
pared to the uniform grid partitioning strategy, the two pro-
posed strategies result in data points more evenly distributed
in different cells, and hence a smaller variance, i.e., a smaller
variation in the number of data points per cell. This leads to
a largerH , i.e., less information loss. Such analysis is veri-
fied in the experimental study in Section 9.5. ⊓⊔

8 Cost Analysis

In this section, we analyse the time and space complexities
of all the algorithms described in this paper in both the train-
ing and the prediction phases: (i) SubSyn, (ii) SubSynE, (iii)
SubSynEA, and (iv) the baseline prediction algorithm (cf.
Section 2.3).

8.1 The Training Algorithms

In the following analysis, we letlmax = 2(g − 1) be the
longest distance in the grid andlde,max = ⌈αlmax⌉ be the
maximum detour distance, whereα is the detour factor and
satisfies0 ≤ α < 1.

The SubSyn-Training Algorithm:
Time Complexity:The matrix multiplications are the most

time consuming steps. We first discuss the complexity of
matrix multiplication before summarising the time complex-
ity of SubSyn-Training.

Sparse matrix multiplication does not apply to SubSyn-
Training becauseM r (e.g.,M10) is usually dense. As a re-
sult, the matrix multiplication step takesO(m3) for a naive
algorithm. Although more efficient algorithms do exist, they
are deemed unsuitable due to specific reasons. The fastest
matrix multiplication algorithm currently known is the im-
proved version ofCoppersmith-Winograd algorithm[27],
which has an asymptotic complexity ofO(m2.3727). How-
ever, this is merely a theoretical bound with no practical
usage. In practice, the most feasibly efficient algorithm is
theStrassen algorithm[25] with O(m2.8) asymptotic com-
plexity. This algorithm is not employed because of its re-
duced numerical stability (i.e., numerical rounding errors)

Table 2 Time and Space Complexity of All the Algorithms

Complexity Time Space

SubSyn-Training O (m3.5) O (m2.5)

SubSynE-Training
O (m2.5) O (m2)

SubSynEA-Training

Complexity Time Space

Baseline-Prediction O (|D|) O (s|D|)

SubSyn-Prediction
O (m) O (m2)

SubSynEA-Prediction

Table 3 Space Occupation for Various Grid Granularities

Grid Granularity 40 50 60 70

SubSyn-Training 410M 1.2G 2.8G 5.9G

SubSynE-Training 78M 191M 396M 733M

SubSynEA-Training 937M 2.2G 4.6G 8.6G

Baseline-Prediction typically 1-2G

SubSyn-Prediction 39M 95M 198M 366M

SubSynEA-Prediction 332M 810M 1.6G 3.0G

and significantly more memory usage, which exceeds by far
the amount of memory in regular commodity computers.
Hence, we implemented SubSyn-Training using the naive
matrix multiplication algorithm with average time complex-
ity O(m3).

In Algorithm 1, the matrix multiplications (lines 21-26)
will be executed forlmax times, i.e.,2(g − 1) = 2

√
m − 1

times, wherem = g2. Therefore, the time complexity of
SubSyn-Training isO(

√
m × m3) = O(m3.5).

Space Complexity:The matrices that Algorithm 1 needs
to store areA[0], A[1], . . . A[lde,max], M , Mpower, MT , and
MT

temp, i.e., there are a total oflde,max + 5 matrices (all ma-
trices arem×m = g4), which occupy(lde,max +5) ·m2 ×8

Bytes, assuming the each element in the matrices is an 8-
Byte double precision floating point number. By rewriting
lde,max to be a function ofm, we get(lde,max+5)·m2×8 =
(⌈2α(

√
m − 1)⌉ + 5)m2 × 8 Bytes, which is inO(m2.5).

The SubSynE-Training Algorithm:
Time Complexity:In Algorithm 3, the fundamental in-

struction is still matrix multiplication. However, as discussed
in Section 5, this algorithm only has matrix multiplications
that involve the transition matrixM , which runs inO(m2)

time. In each iteration, we perform either two matrix mul-
tiplications (lines 7-8) or three matrix multiplications (lines
10-11). Thus, the total number of matrix multiplications isat
most3lmax times, and the time complexity isO(lmax·m2) =

O(
√

m × m2) = O(m2.5).
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Space Complexity:In Algorithm 3, the matrices need to
be stored areM , MT , A, B, and a temporary matrix for the
swapping operation, which contain4m, m2, m2, m2 andm2

elements, respectively. Therefore, the total space neededis
(4m2 + 4m) × 8 Bytes, which is inO(m2).

The SubSynEA-Training Algorithm:
Time Complexity:Algorithm 4 is similar to Algorithm 3.

However, in each iteration, we only perform one matrix mul-
tiplication (lines 5). The input size isO

(

(number of cells)2
)

,
i.e.,O

(

m2
)

. Since the grid in this problem is planar, every
node has at most4 adjacent cells, which corresponds to at
most4 edges. the number of edges is at most4m. Thus, the
total number of matrix multiplications islmax, and the time
complexity isO(lmax ·(4m)2) = O(

√
m×m2) = O(m2.5).

Space Complexity:In Algorithm 4, the matrices need to
be stored areM , MT , A, and a temporary matrix for the
swapping operation, which contain4 × 4m, (4m)2, (4m)2

and(4m)2 elements, respectively. Therefore, the total space
needed is(48m2 + 16m) × 8 Bytes, which is inO(m2).

8.2 The Prediction Algorithms

In the following analysis, we letD be the trajectory dataset,
k be the number of predicted destinations to be obtained for
each query, ands be the average number of GPS points in
each trajectory.

The SubSyn-Prediction and SubSynEA-Prediction Al-
gorithms:

Time Complexity:A major operation in both Algorithm 2
and Algorithm 5 is the loop, which visits each cell in the
grid, and the time complexity isO(m). Another major oper-
ation of the algorithms is the selection of top-k elements in
the list. We implement this selection operation using a max-
heap, and the time complexity isO(m+k log m). Therefore,
both algorithms process one query inO(m+m+k log m) =

O(m + k log m) time. Since it is almost always the case
thatm ≫ k in real datasets (e.g.,m = 702 = 4, 900 and
k = 5), we simplify the time complexities of both algo-
rithms toO(m).

Space Complexity:In SubSyn-Prediction, Algorithm 2
only requires the total transition matrixMT andP (nd|ns)

for all pairs of cells, whose sizes sum up to2m2 × 8 Bytes.
Thus, the space complexity of SubSyn-Prediction isO(m2).
Similarly in SubSynEA-Prediction, the space occupation is
((4m)2 + m2) × 8 and the complexity is stillO(m2).

The Baseline Prediction Algorithm:
Time Complexity:Similar to the SubSyn-Prediction al-

gorithm, the baseline prediction algorithm mainly consists
of a loop and a selection operation. The loop is responsible

for comparing the query trajectory with the whole dataset,
which runs inO(|D|) time. The selection operation is just
the same as that of the SubSyn-Prediction algorithm which
takesO(m + k log m) time. Therefore, the time complex-
ity of the baseline prediction algorithm to process one query
is O(|D| + m + k log m). Applying the aforementioned in-
equality, we simplify the time complexity toO(|D|).

Space Complexity:This algorithm requires the whole
datasetD to be stored in the memory so that it can compare
the query trajectory with every trajectory inD. Therefore,
the space complexity isO(s|D|).

8.3 Summary

Table 2 summaries the complexity of the algorithms, and
Table 3 provides an intuitive display of the space that the
algorithms may consume on grids of different granularities.
From these tables we can see that SubSynE-Training shows
clear advantage over SubSyn-Training in terms of both time
and space complexities. Although the two training algorithms
SubSynE and SubSynEA have the same space complexity,
the latter has a higher space occupation since it utilises the
second-order Markov model. Meanwhile, SubSyn-Prediction
outperforms baseline prediction algorithm in terms of both
runtime efficiency and space occupation since practically
|D| ≫ m ≫ k all the time. SubSynEA-Prediction has simi-
lar time and space complexities as SubSyn-Prediction, but it
requires more memory space because it employs the second-
order Markov model. Still, we can run SubSynEA-Prediction
easily on a very fine grid (e.g.,g = 70).

9 Experimental Study

In this section, we evaluate both the runtime efficiency and
prediction accuracy of the proposed algorithms. We first present
the experiment setup in Section 9.1 including the dataset
used, the baseline prediction algorithm, and our experiment
measurements. Then we compare the runtime efficiency of
the two SubSyn training algorithms in Section 9.2. We com-
pare the SubSyn-Prediction algorithms with the baseline pre-
diction algorithm for both runtime efficiency in Section 9.3
and prediction accuracy in Section 9.4. Finally, we evalu-
ate the prediction accuracy of the proposed grid partitioning
strategies in Section 9.5.

9.1 Setup

Dataset: We use a real-world and large-scale taxi trajec-
tory dataset from theT-driveproject [30, 31] in our experi-
ments. It contains a total of 1.9 million taxi trajectories in the
city of Beijing, 16 million kilometres of distance travelled,
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10 km

Fig. 11 A visualisation of the training dataset (65 million taxi GPS
points) in Beijing within an40km× 40km region.

and 65 million GPS data points. The GPS points are plot-
ted in Fig. 11. We randomly pick 10,000 trajectories from
this dataset to be the query trajectories and the remaining
trajectories are used as training data.

Baseline Prediction Algorithm: The baseline predic-
tion algorithm described in Section 2.3 can only give pre-
dicted destinations when a query trajectory has a partial match
in the training dataset. Consequently it can not be compared
with our algorithm when non-matching query trajectories
are present. To still produce a result in these cases, we use
the current cellnc as the predicted destination for the base-
line algorithm.

Measures of Runtime Efficiency:Runtime efficiency
is essential for both the training and prediction algorithms.
The training algorithm needs to be run as frequently as pos-
sible to update the training dataset. The prediction algorithm
needs to be evoked to answer real-time queries. For each
user supplied query, it must report a list of predicted desti-
nations instantaneously. Otherwise the whole purpose of the
solution is meaningless. To be consistent with the time com-
plexities derived in Section 8, results of runtime efficiency
experiments are presented with respect to varying the grid
granularityg. It is worth mentioning that this part of the ex-
periment was programmed in Java1.7, used single thread,
and run on a workstation computer with Intel Xeon-W3670
CPU (3.2GHz) and 24GB RAM.

Measures of Prediction Accuracy:To evaluate the per-
formance of our system on various user queries, we use the
following two means of measurement:CoverageandPre-
diction Error.

The coverage counts the number of query trajectories for
which at leastk suggested destinations are provided. The
parameterk is determined by the number of predicted desti-
nations that we set. For instance, when we examine top three
predicted destinations,k is set to three. In other words, due
to the problem of data sparsity presented, it is highly likely
that insufficient predicted destinations will be suggestedfor
certain non-matching query trajectories. Hence we utilise
this property to demonstrate the difference in robustness be-
tween the baseline prediction algorithm and SubSyn.

The prediction error for a single predicted destination of
a query trajectory is theℓ1 distance between this predicted
destination and the true destination of the query trajectory.
The aggregated prediction error is the average of all distance
deviations across each predicted destinations of all query
trajectories. It is used to indicate how far the prediction re-
sults deviate from the true destinations. It should be made
clear that the prediction error does not indicate the best pre-
diction accuracy that an algorithm can achieve. For instance,
a prediction error of2km for the top three predicted des-
tinations is the averaged distance deviation of all of these
three predicted destinations, and it is likely that the truedes-
tination is amongst these three predicted destinations. Bet-
ter algorithms are the ones that have a higher coverage and
a lower prediction error (i.e., lower average distance devia-
tion).

The two aforementioned means of measurement (Cover-
ageandPrediction Error) will be evaluated against varying
four parameters one at a time: Firstly we vary thegrid gran-
ularity g (20-70 with 10 units increment) to select a best
grid granularity for our training dataset. This chosen grid
granularity will be used for the remainder of the experiment.
The second and third parameters are thetrip completed per-
centage(10%-90% with 20% increment) and thetop-k pre-
dicted destinations(1-5 with 1 unit increment). Finally, in-
stead of randomly selecting query trajectories from the train-
ing dataset, we manually mix the proportion of matching
and non-matching query trajectories and vary theMatch Ra-
tio (denoted byτ ) which is the proportion of matching query
trajectories in the test dataset (0-1 with 0.25 increment).

Discussion on the choice of measurements:We have
chosen the average prediction error rather than the maxi-
mum prediction error in the list of top-k predicted destina-
tions because the average prediction error is much more rep-
resentative. Fig. 12 shows the distribution of the prediction
errors of 10,000 query trajectories. The average prediction
error is3.4km. We observe that the first quartile (i.e., 25th
percentile) is1.9km, the third quartile (i.e., 75th percentile)
is4.2km, and the prediction error hardly goes beyond10km

whereas the maximum is27.4km with only one occurrence.
Therefore we decided to use the average as it is more infor-
mative.
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Fig. 12 Distribution of Prediction Errors (k = 3, g = 70, and the trip
completed percentage= 70%)

We did not employ thePrecisionor Precision@kas the
measure for prediction accuracy due to the following rea-
sons. Precision is defined as the proportion of correct num-
ber of predictions in all the queries. The main purposes and
applications of SubSyn are to recommend sightseeing places
and send targeted advertisements. For these applications,we
are more interested in providing recommendations and ad-
vertisements at locations near the destination of a user: these
locations need not be precisely the user’s destination. There-
fore, when designing the algorithms, we focus on improv-
ing the average prediction accuracy instead of precision, and
we use the average distance deviation of the top-k predicted
destinations as the evaluation measure for prediction accu-
racy.

9.2 Efficiency: Training Algorithms

Fig. 13 shows the running time of the three SubSyn training
algorithms, namely SubSyn-Training,SubSynE-Training, and
SubSynEA-Training, with respect to varying the grid gran-
ularity. SubSynEA-Training utilises the same algorithm as
SubSynE-Training for improved runtime efficiency. It runs
slightly slower due to its employment of the second-order
Markov model for enhanced prediction accuracy. In the fol-
lowing paragraphs, we will focus on comparing SubSynE-
Training with the original SubSyn-Training algorithm be-
cause they use the same mathematical model (i.e., first-order
Markov model).

We can see that SubSynE-Trainingoutperforms SubSyn-
Training by orders of magnitude constantly, and the advan-
tage grows as the grid granularity increases. This observa-
tion is in consistence with the cost analysis in Section 8,
where the exponents in the time complexity (i.e.,m3.5 and
m2.5) correspond to the differentgradientsof the two linear
polynomials on the log-scale figure. We fit both curves using
y = AmB + C, whereA, B, andC are coefficients / fitting
parameters, and obtain the following results. A small dis-
crepancy in the exponent (e.g.,m2.6 rather thanm2.5) is the

result of approximations in the fitting and the cost analysis.

SubSyn-Training:y = 9.9 × 10−9m3.7 + 390

SubSynE-Training:y = 2.6 × 10−8m2.6 − 0.7

Moreover, the gap in they-axis is a result of SubSyn-Training
performing much more matrix multiplication operations than
SubSynE-Trainingas discussed in Section 4.1 and Section 5.
Hence its running time is much higher. Thirdly, the graph is
plotted againstg instead ofm, which means that the differ-
ence in the exponents is more significant:g7 versusg5.

Even in a medium granularity grid representation with
g = 50, SubSyn-Training needs more than 17 hours to train
a Markov model (i.e., compute the total transition matrix
MT ) using the aforementioned workstation computer. In com-
parison, SubSynE-Training only needs 26 seconds. SubSyn-
Training cannot handle grids with granularities higher than
50 due to excessive training time. Therefore, the results of
the SubSyn-Training algorithm are censored for grid gran-
ularities greater than 50. When the grid granularity is set
to g = 70, SubSynE-Training only takes 170 seconds, and
SubSynEA-Training takes 550 seconds. This demonstrates
the advantages of SubSynE and SubSynEA, where the cost
of matrix multiplication has been significantly reduced.

The training phase may be re-run when the distribution
of the data changes significantly as more data are collected.
In practical applications, it takes much longer than 550 sec-
onds for the data distribution to change significantly, so the
training algorithm efficiency is not a problem. We can run
the training algorithm every few minutes if needed.
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Fig. 13 Runtime Efficiency of Training Algorithms

9.3 Efficiency: Prediction Algorithms

We compare the runtime efficiency of SubSyn-Prediction,
SubSynEA-Prediction, and the Baseline algorithm in terms
of online query response time in Fig. 14. The vertical axis
represents milliseconds per query in log scale. By taking ad-
vantage of the information obtained in the training stage,
both SubSyn-Prediction and SubSynEA-Prediction require
little extra computation when answering a user’s query. As



20 Andy Yuan Xue et al.

Fig. 14 shows, the baseline prediction algorithm requires too
much time to run, whereas the SubSyn-Prediction algorithm
(and SubSynEA-Prediction) is, in most cases, at least two
orders of magnitude better. SubSynEA-Prediction takes less
than100µs to answer a query. The reason is that the base-
line prediction algorithm is forced to make a full sequential
scan of the entire training dataset in order to compute the
posterior probability, whereas the two SubSyn prediction al-
gorithms can fetch most probability values directly from the
stored total transition matrixMT . It is worth mentioning
that varying grid granularity only has marginal influence on
the performance of the baseline prediction algorithm since
its time complexity isO(|D|) (cf. Section 8), which is not
correlated to the grid granularityg.
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Fig. 14 Runtime Efficiency of Prediction Algorithms

9.4 Accuracy: Prediction Algorithms

As described in Section 2.3, the baseline prediction algo-
rithm employs uniform grid partitioning. For fair compari-
son, we also use uniform grid partitioning for the SubSyn
and SubSynEA prediction algorithms in this set of experi-
ments. In the following experimental result figures, a con-
vention is set that same line style (e.g., solid or dashed) rep-
resents a same group of results.

Varying the grid granularity: First of all, a suitable
grid granularity needs to be decided for our training dataset.
On one hand, a coarse grid (e.g.,10 × 10) may have a very
low prediction accuracy because the area covered by each
grid cell is too large. On the other hand, it has the benefit that
the number of matching query trajectories is much higher
since more trajectories in the training dataset may fall into
identical cells, hence increasing prediction accuracy. A fine
grid (e.g.,100×100) has the advantage of higher prediction
accuracy that the small cell area brings, but training data
become even sparser because less locations will lie in a same
cell, making the task of destination prediction more difficult.
Furthermore, a find grid requires much more time to train.
Therefore, we need to find a balanced and compromised grid
granularityg that is neither too small nor too large, and can
achieve the best prediction accuracy.
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Fig. 15 Varying the grid granularityg

Fig. 15 shows the trends in both coverage and prediction
error with respect to grid granularity with top-k=3. Due to
limitations in memory occupation, we run the experiments
with grid granularity up tog = 70. The coverage of the base-
line prediction algorithm drops rapidly due to the data spar-
sity problem caused by smaller cells in a fine grid, but the
drop in coverage of SubSyn-Prediction and its improved ver-
sion is extremely small. The grid granularity for our training
dataset is selected to be 70, for that the coverage and pre-
diction error are both fine, these values are relatively sta-
ble, and the amount of memory occupied is within limit. In
other words, a larger grid granularity will have little influ-
ence on them. In the selected setting whereg = 70 and trip
completed percentage is70%, the coverage of the two Sub-
Syn algorithms achieves more than twice the coverage of the
baseline prediction algorithm while SubSynEA-Prediction
has a more than 2km reduction in prediction error. All fol-
lowing experiments are done using the grid granularityg =

70 (cf. Fig. 16).

Varying the percentage of trip completed:Fig. 17 shows
the performance in prediction accuracy versus the percent-
age of trip completed for both top-k values1 and3. For the
baseline prediction algorithm, the amount of query trajecto-
ries for which sufficient predicted destinations are provided
decreases as the length of the trip increases due to the fact
that longer query trajectories (i.e., higher trip completed per-
centage) are less likely to have a partial match in the train-
ing dataset. Specifically, when trip completed percentage in-
creases towards90%, the coverage of the baseline prediction
algorithm decreases to almost20% for top-k = 3. Our two
SubSyn prediction algorithms successfully coped with it as
expected with only an unnoticeable drop in coverage, and
can constantly answer almost 100% of queries. It proves that
the baseline prediction algorithm cannot handle (relatively)
long trajectories since the chances of finding a matching tra-
jectory decrease when the length of a query trajectory grows.
The coverage performance of the baseline prediction algo-
rithm when top-k = 3 is even worse then that of top-k = 1
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Fig. 16 Map of Beijing (40km×40km region) with a70×70 uniform
grid overlay. Each cell is roughly a570m × 570m square.

because the metriccoveragecounts the number of query tra-
jectories that givesk predicted destinations.
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Fig. 17 Varying the percentage of trip completed

Apart from the huge advantages of the two SubSyn pre-
diction algorithms in coverage, their prediction errors are
comparable with that of the baseline prediction algorithm.
For the baseline prediction algorithm, despite the negative
influence of the coverage problem, its prediction error re-
duces as the trip completed percentage increases for a sim-
ple reason. When the baseline prediction algorithm fails to
find adequate predicted destinations, we use the current cell
in the query trajectory as the predicted destination. Because
higher trip completed percentage yields a closer distance be-
tween the current cell and the actual destination, the predic-
tion error reduces accordingly. For SubSyn and SubSynEA,

closer to the true destination means that there are fewer po-
tential destinations and intuitively the prediction errors re-
duce. It is observed that SubSynEA-Prediction outperforms
SubSyn-Prediction, which in turn outperforms the baseline
prediction algorithm throughout the progress of a trip.

Varying the number of predicted destinations:We also
investigate the effect of the number of predicted destina-
tions on the performance of both algorithms by examining
the top-k (from 1 to 5) predicted destinations. We are inter-
ested in this metric since it reveals more vulnerability of the
baseline prediction algorithm in that although it can make
prediction for matching trajectories, the number of predicted
destinations may still be insufficient (e.g., only one). There-
fore in such circumstances where insufficient predicted des-
tinations are returned, we consider them unsatisfactory in
the coverage test. The experimental results are shown in
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Fig. 18 Varying the value ofk

Fig.18. In this figure, the comparative performances of the
three prediction algorithms are similar to that of the exper-
iment of varying the percentage of trip completed. Specif-
ically, observations that can be made from the figure are
as follows. The two SubSyn algorithms show a more stable
coverage and a more accurate prediction accuracy than the
baseline prediction algorithm. For the baseline prediction al-
gorithm, the number of query trajectories which have suffi-
cient suggestions (i.e., the coverage) drops due to the data
sparsity problem since, for certain query trajectories, itcan-
not find adequate (i.e., no less thank) predicted destinations.
The same problem affects neither SubSyn-Prediction nore
SubSynEA-Prediction,and they remain an almost 100% sug-
gestion offer rate. In a common setting whenk = 3, the
coverage of SubSyn (and SubSynEA) is more than twice the
coverage of the baseline prediction algorithm.

Varying top-k has little correlation with the prediction
error because we compute the prediction error (i.e., average
distance deviation) by averaging amongst all predicted des-
tinations.
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Varying the ratio of matching and non-matching query
trajectories: The query trajectories used in the above exper-
iments are drawn randomly from the training dataset. They
reflect the real distribution of matching and non-matching
query trajectories in both the test dataset and the training
dataset. It is found that the real match ratio (denoted by
τ ) decreases while the grid granularityg increases because
finer grid yields sparser data. For a70×70 grid, the averaged
real match ratio is found to be approximately 0.57 (indicated
by the vertical dashed line in Fig. 19). It indicates that, inav-
erage, 57% of query trajectories will be able to find a partial
match in the training dataset. Such a match ratio seems to be
helpful to the baseline prediction algorithm. In this experi-
ment, we elaborate further on the concept of match ratio by
manually selecting a mixture of matching and non-matching
query trajectories, and comparing the influence of different
match ratios. For simplicity while maintaining an indicative
results, a trajectory is said to have a partial match if the first
70% cells have an exact match in the training dataset. This
indicates that, whenτ = 0.57 and the trip completed per-
cent is higher than 70%, the coverage is at most57% for the
baseline prediction algorithm.
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Fig. 19 Varying the match ratioτ

As shown in Fig. 19, by varying the match ratioτ , the
performance of the baseline prediction algorithm deterio-
rates rapidly whenτ is tuned towards zero while little im-
pact is observed for either SubSyn-Prediction or SubSynEA-
Prediction. The baseline prediction algorithm functions well
provided that abundant data are given (i.e.,τ → 1), but
the performance starts to decrease to an unacceptable status
when there are insufficient training data. Particularly, when
the match ratio is low (i.e.,τ → 0) and the trip completed
percentage is high (e.g., 70%), the baseline prediction al-
gorithm has a coverage towards 0%. From Fig. 19a, our
two SubSyn prediction algorithms provides adequate (i.e.,
at least three since the default value of top-k is 3) predicted
destinations for almost every query trajectory. It proves that
our algorithms can overcome the data sparsity problem while

maintaining a stable performance, whereas the baseline pre-
diction algorithm is unable to achieve this objective.

In Fig. 19b, it is observed that the prediction errors of all
algorithms drop when more relevant training data are avail-
able (i.e.,τ → 1). Once again, it proves that the predic-
tion accuracy of SubSynEA-Prediction is the highest, and
SubSyn-Prediction leads that of the baseline prediction al-
gorithm.

9.5 Accuracy: Grid Partitioning Strategies

In this experiment, we run the SubSyn prediction algorithm
with different grid partitioning strategies including uniform,
quantile, andk-d tree based grid partitioning strategies, and
their performance of prediction accuracy are compared against
each other. Both uniform grid and quantile grid are plotted
for grid granularityg ∈ {20, 30, 40, 50, 60, 70},andk-d tree
grid is plotted withg ∈ {32, 64} due to its constraints in par-
titioning algorithm.

 0

 20

 40

 60

 80

 100

 20  30  40  50  60  70C
o
v
e
r
a
g
e
 
(
%
 
t
e
s
t
 
d
a
t
a
s
e
t
)

Grid Granularity (g)

Uniform  (trip=30%)
Quantile (trip=30%)
k-d Tree (trip=30%)

(a) Coverage

 0

 2

 4

 6

 8

 10

 20  30  40  50  60  70

P
r
e
d
i
c
t
i
o
n
 
E
r
r
o
r
 
(
k
m
)

Grid Granularity (g)

Uniform  (trip=70%)
Quantile (trip=70%)
k-d Tree (trip=70%)

(b) Prediction Error

Fig. 20 Prediction Accuracy of Grid Partitioning Strategies

As shown in Fig. 20, the coverages are identical for all
the three partitioning strategies because they use the same
prediction algorithm. Thus, we focus on the different per-
formance in prediction error. We observe that the two new
grid partitioning strategies (quantile andk-d tree based) out-
perform the uniform grid partitioning strategy constantlyin
terms of prediction accuracy. Moreover, the advantage is
more significant when the grid granularity is coarser. This
can be explained by the fact that more balancing grids (quan-
tile andk-d tree based) represent the data distribution better
than the uniform grid does, and that the difference in the
varianceσ2 is more significant when the grid granularity is
coarser. The experimental results show that a more balanc-
ing grid partitioning strategy is particularly effective when
computing power or the available data is limited. Actually
such circumstances are quite common for small businesses
or for medium sized cities. In these cases, only a coarse grid
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will provide meaningful results, and having a more balanc-
ing grid partitioning strategy (such as thek-d tree based par-
titioning) is important.

10 Conclusion

In this paper, we have identified the data sparsity problem in
destination prediction and proposed a novel method named
Sub-Trajectory Synthesis(SubSyn) to address this problem.
SubSyn decomposes each trajectory in the historical dataset
into smaller segments (i.e., sub-trajectories) and combines
them to generate “synthesised” trajectories. The underlying
process is formulated by the Markov model and the Bayesian
inference framework. We proposed an algorithm to improve
the efficiency of the training phase substantially. We also
investigated the use of the second-order Markov model to
further boost prediction accuracy.

Experiments based on real datasets have shown that the
performances of the SubSyn algorithms (i.e., SubSyn, Sub-
SynE, and SubSynEA) exceed that of the baseline algorithm
in terms of both runtime efficiency and prediction accuracy.
The two SubSyn-Prediction algorithms (i.e., SubSyn and Sub-
SynEA) can predict destinations for up to ten times more
query trajectories than the baseline prediction algorithm. At
the same time, SubSynEA-Prediction maintains a competi-
tive prediction accuracy. In terms of runtime efficiency, the
SubSynEA-Training algorithm requires only a few minutes
to run for a fine granularity of grid partitioning, and SubSynEA-
Prediction runs over two orders of magnitude faster than the
Baseline-Prediction algorithm.
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