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Abstract Correctness of SQL queries is usually tested

by executing the queries on one or more datasets. Erro-

neous queries are often the results of small changes or

mutations of the correct query. A mutation Q’ of a query

Q is killed by a dataset D if Q(D) 6= Q’(D). Earlier work

on the XData system showed how to generate datasets

that kill all mutations in a class of mutations that in-
cluded join type and comparison operation mutations.

In this paper, we extend the XData data generation

techniques to handle a wider variety of SQL queries and

a much larger class of mutations. We have also built

a system for grading SQL queries using the datasets

generated by XData. We present a study of the effective-

ness of the datasets generated by the extended XData

approach, using a variety of queries including queries

submitted by students as part of a database course.

We show that the XData datasets outperform prede-

fined datasets as well as manual grading done earlier by

teaching assistants, while also avoiding the drudgery of

manual correction. Thus, we believe that our techniques

will be of great value to database course instructors and

TAs, particularly to those of MOOCs. It will also be

valuable to database application developers and testers

for testing SQL queries.

Keywords Mutation Testing, Test Data Generation

1 Introduction

Queries written in SQL are used in a variety of differ-

ent applications. An important part of testing these

applications is to test the correctness of SQL queries in

these applications. The queries are usually tested using

multiple ad hoc test cases provided by the programmer

or the tester. Queries are run against these test cases

and tested by comparing the results with the intended

one manually or by automated test cases. However, this

approach involves manual effort in terms of test case

generation and also does not ensure whether all the
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relevant test cases have been covered or not. Formal

verification techniques involve comparing a specification

with an implementation. However, since SQL queries

are themselves specifications and do not contain the

implementation, formal verification techniques cannot

be applied for testing SQL queries.

A closely related problem is grading SQL queries
written by students. Grading SQL queries is usually

done by executing the query on small datasets and/or

by reading the student query and comparing those with

the correct query. Manually created datasets, as well as

datasets created in a query independent manner, can

be incomplete and are likely to miss errors in queries.

Manual reading and comparing of queries is difficult,

since students may write queries in a variety of different

ways, and is prone to errors as graders are likely to miss

subtle mistakes. For example, when required to write

the query Q below:

SELECT course.id, department.dept name FROM course LEFT

OUTER JOIN (SELECT * from department

WHERE department.budget > 70000) d USING (dept name);

students often write the query Qs:

SELECT course.id, department.dept name FROM course LEFT

OUTER JOIN department USING (dept name)

WHERE department.budget > 70000;

which looks sufficiently similar for a grader to miss the

difference. These queries are not equivalent since they
give different results on departments with budget less

than 70000.

Mutation testing is a well-known approach for check-

ing the adequacy of test cases for a program [15]. Muta-

tion testing involves generating mutants of the original

program by modifying the program in a controlled man-

ner. For SQL queries, we consider that a mutation is

a single (syntactically correct) change of the original

query; a mutant is the result of one of more mutations

on the original query. A dataset kills a mutant if the orig-

inal query and the mutant give different results on the

dataset, allowing us to distinguish between the queries.

A test suite consisting of multiple datasets kills a mutant

if at least one of the datasets kills the mutant.
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Consider the query:

SELECT dept name, COUNT(DISTINCT id) FROM

course LEFT OUTER JOIN takes

USING(course_id) GROUP BY dept name

One of the mutants obtained by mutating the join con-

dition of the query is:

SELECT dept name, COUNT(DISTINCT id) FROM

course INNER JOIN takes

USING(course id) GROUP BY dept name

Similarly by mutating the aggregation we get the fol-

lowing mutation:

SELECT dept name, COUNT(id) FROM

course LEFT OUTER JOIN takes

USING(course_id) GROUP BY dept name

In this paper, we address the problem of generating

datasets that can catch commonly occurring errors in a

large class of SQL queries. Queries with common errors

can be thought of as mutants of the original query.

Our goal is to generate (a relatively small number of)

datasets so as to kill a wide variety of query mutations.

These datasets can be used in two distinct ways:

a) To check if a given query is what was intended, a

tester manually examines the result of the query on

each dataset, and checks if the result is what was

intended.

b) To check if a student query is correct, the results of

the student query and a given correct query are com-

pared on each dataset. A difference on any dataset

indicates that the student query is erroneous (We

note that checking query equivalence is possible in

limited special cases but is hard or undecidable in

general[18,20,14]).

There has been increased interest in the recent years

in test data generation for SQL queries including [30,26,

32,34]; [22] addresses a similar problem in the context

of data-flow programs. Our earlier work on the XData

system [12,28] showed how to generate datasets that

can distinguish the correct query from some class of

query mutations, including join and comparison operator

mutations. However, real life SQL queries have a variety

of features and mutations that were not handled in [12,

28]. (Related work is described in detail in Section 12.)

A few of the techniques described in this paper were

sketched in a short workshop paper [9], but details were

not presented there.

In Sections 4 to 8 we describe techniques to handle

different SQL query features. For each feature, we first

discuss techniques to handle data generation for that

feature, then describe mutations of these features, and

finally present techniques to kill these mutations. In

Section 9 we describe techniques for killing new classes

of mutations for query features that were handled in

our earlier work [12,28].

Each data generation technique is designed to handle

specific query constructs or specific mutations of the

query. We combine these techniques to generate datasets

for a complete query, with each dataset targeting a spe-

cific type of mutation. One dataset is capable of killing

one or more mutations. Specifically, we do not generate

any mutants at all. Our goal is to generate datasets to

kill mutations and not enumerate the possible mutants.
Although the number of mutations may be very large,

our approach generates a small number of datasets that

can kill a much larger number of mutations.

The contributions of this paper are as follows.

1. We discuss (in Section 4) how to generate test data

and kill mutations for queries involving string predi-

cates such as string comparison and the LIKE predi-

cate, using a string solver we have developed.

2. We support the NULL values and several mutations

that may arise because of the presence of NULLs

(Section 5).

3. For queries containing constraints on aggregated re-

sults, we describe (in Section 6) a new algorithm

to find the number of tuples that need to be gen-

erated for each relation to satisfy the aggregation

constraints.

4. We support test data generation and mutation killing

for a large class of nested subqueries (Section 7).

5. We also support data generation and mutation killing

for queries containing set operators (Section 8).

6. We extend the class of mutations considered to

include missing or additional join conditions (Sec-

tion 9.1), missing or additional group by attributes

(Section 9.2), and distinct clause mutations (Sec-

tion 9.3).

7. The data types supported include floating point num-

bers, time and date values. The class of queries is

extended to include insert, delete, update and param-

eterized queries as well as view creation statements

(Section 10).

8. We describe (in Section 11) techniques for grading

student queries based on the datasets generated by

XData. These techniques can be used for grading,

as well as in a learning mode where it can give

immediate feedback to students.

9. In Section 13 we present performance results of our

techniques. We generate test data for a number of

queries involving constrained aggregation and sub-

queries on the University database [29] as well as

queries of the TPC-H benchmark and show that

the datasets generated by XData are able to kill

most of the non-equivalent mutations. We also test
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the effectiveness of our grading tool by using as a

benchmark a set of assignments given as part of a

database course at IIT Bombay. We show that the

datasets generated using our techniques catch more

errors than the University datasets, provided with

[29], as well as manual grading by the TAs, on all

the queries.

We believe the techniques presented in this paper

will be of great value to database application developers

and testers for testing real life SQL queries. It will also

be valuable to database course instructors and TAs by

taking the drudgery out of grading and allow SQL query

assignments to be properly checked in MOOC setting,

where manual grading is not feasible.

2 Background

In our earlier work on XData [28], we presented tech-

niques for generating test data for killing SQL query
mutants; we briefly outline that work below.

2.1 Approach to Data Generation

Given an SQL query Q, XData[28] generates multiple

datasets. The first dataset is designed to generate non-

empty datasets for Q, wherever feasible, which itself

kills several mutations that would generate an empty

result on that dataset. Each of the remaining datasets

is targeted to kill one or more mutations of the query;

i.e. on each dataset the given query returns a result

that is different from those returned by each of the

mutations targeted by that dataset. The number of

possible mutations is very large, but the number of

datasets generated to kill these mutations is small.

To generate a particular dataset, XData does the

following:

1. It generates a set of constraint variables, where each

tuple in the target dataset is represented by a tuple

of constraint variables.

2. It generates a set of constraints between these vari-

ables. For example, selection conditions, join condi-

tions, primary key and foreign key conditions are all

mapped to constraints on these variables. Different

datasets are designed to catch different mutations;

the exact set of constraints generated (as also the set

of constraints variables) is different for each dataset,

as described shortly.

3. It then invokes a constraint (SMT) solver [4]1 to

solve the constraints; the solution given by the solver

assigns values to each constraint variable, thereby

defining a specific dataset.

1 A constraint solver takes as input a set of constraints and
produces a result that satisfies the constraints.

In order to kill mutations, the goal of XData is to

generate datasets that produce different results on the

query and its mutation. To produce different results,

constraints are added in a manner so as to ensure that

the mutation in a node of a query tree is reflected above

leading to different results for the query and its mutation.

For example consider the following query:

Example 1
SELECT course.course_id, COUNT(DISTINCT takes.id)

FROM course INNER JOIN takes USING(course_id)

WHERE course.credits >= 6

This query has two predicates course INNER JOIN

takes USING (course id) and course.credits >= 6.
When generating datasets to kill the mutations of join

predicates we need to ensure that course.credits >= 6

is satisfied for the tuple generated for the course table.

In case course.credits >= 6 is not satisfied, both the

query and the mutant could give empty results.

2.2 Mutation Space and Datasets

The mutation space considered consisted of the following

1. Join Type Mutations: A join type mutations in-

volves replacing one of { INNER, LEFT OUTER,

RIGHT OUTER } JOIN with another. Consider the

mutation from department INNER JOIN course to

department LEFT OUTER JOIN course. In order to

kill this mutation, we need to ensure that there is a

tuple in department relation that does not satisfy the

join condition with any tuple in course relation. The

INNER JOIN query would not output that tuple in

the department relation while the LEFT OUTER

JOIN would.

In SQL, a join query can be specified in a join order

independent fashion, with many equivalent join or-

ders for a given query. Hence, the number of join type

mutations across all these orders is exponential. From

the join conditions specified in the query, XData

forms equivalence classes of <relation, attribute>

pairs such that elements in the same equivalence

class need to be assigned the same value to meet

(one or more) join conditions. Using these equivalence

classes, XData generates a linear number of datasets

to kill join type mutations across all join orderings.

If a pair of relations involve multiple join conditions

XData nullifies each join condition separately.

2. Selection Predicate Mutations: For selection condi-

tions XData considers mutations of the relational

operator where any occurrence of one of {=, <>,<

,>,≤,≥} is replaced by another. For killing muta-

tions for the selection condition A1 relop A2, XData

generates 3 datasets (1) A1 > A2, (2) A1 < A2,

and (3) A1 = A2. These three datasets kill all non-

equivalent mutations from one relop to another relop.
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These datasets also kill mutations because of missing

selection conditions.

3. Unconstrained Aggregation Mutation: Aggregations

at the root of the query tree are not constrained to

satisfy any condition. The aggregation function can

be mutated among MAX, MIN, SUM, AVG, COUNT

and their DISTINCT versions. In order to kill these

mutations, a dataset with three tuples is generated;

two with the same value (non-zero) and another with

a different value in the aggregate column.

2.3 Constraint Generation

We now describe our techniques for constraint genera-

tion. Our current implementation uses the CVC3 con-

straint solver [5]. We are working on implementing the

constraints in the SMT-LIB format [1] so that we can po-

tentially use several constraint solvers compatible with

SMT-LIB.

In CVC3, text attributes are modeled as enumerated

types while numeric attributes are modeled as subtypes

of integers or rationals. The data type declarations in

CVC3 are as follows. For each attribute of each rela-

tion, we specify a set of acceptable values, taken from

an input database, as datatypes in CVC3. While the

input database is not necessary for data generation, its

use makes for improved readability and comprehension

of the query results. In case an input database is not

specified we get the range from the data type of the

corresponding column.

A tuple type is created for each relation, where each

element is a constraint variable of the specified type. A

relation is represented as an array of constraint variables;

the size of the array has to be determined before solving

the constraints, and constraints have to be specified for

each attribute of each tuple.

Consider an input database which has CS-101, BIO-301,

CS-312 and PHY-101 as course id, and credits is an in-

teger constrained to be between 2 and 10. Then, this

translates to the following the declarations in CVC3.

DATATYPE

course_id = CS-101 | BIO-301 | CS-312 | PHY-101 END;

credits:TYPE = SUBTYPE (LAMBDA (x: INT):

x > 1 AND x < 11);

course_tuple_type:TYPE = [course_id,credits];

course: ARRAY INT OF course_tuple_type;

Tuple attributes are referenced by position, not by

name; thus, course[2].0 refers to the value of the first

attribute, which is course id, of the second tuple in

course.

To ensure a non-empty result for the query in Ex-

ample 1, we need a tuple in course which matches a

tuple in takes on attribute course id and where the

course.credits >= 6. This is done by creating a tu-

ple for each of the relations and adding the following

constraints:

ASSERT course[1].0 = takes[1].1;

ASSERT course[1].1 >= 6;

Primary key constraints are enforced by constraints

that ensure that if two tuples match on the primary key,

then the values of the remaining attributes for those two

tuples should also match. Foreign key constraints are

enforced by adding extra tuples that satisfy the foreign

key condition. Foreign key constraints for the foreign
key from takes.course id to course.course id are

specified as:

ASSERT FORALL(i: takes_index):

EXISTS (j: course_index): takes[i].1 = course[j].0;

where takes index and course index give the index

range for the takes and course arrays; takes[i].1

stands for dept name of the ith tuple of course. In our

example an extra tuple would be generated for course

for each tuple in takes, although in this case the first

tuple of course itself ensures the foreign key constraint

is satisfied for the first tuple of takes.

The above constraints are given to CVC3 which

generates satisfying values (assuming the constraints

are satisfiable).

As explained earlier in this section, to kill a mutation

of the inner join to right outer join, we need a value

in course.course id which does not match any value

in takes.course id. To do so we replace the earlier

equality constraint

ASSERT course[1].0 = takes[1].1;

with:

ASSERT NOT EXISTS(i:course index):

(course[i].0 = takes[1].1);

and generate the required dataset using CVC3. Datasets

for killing other mutations are generated similarly.

2.4 Disjunctions

Tuya et al. in [26] presented techniques for killing muta-

tions in the presence of disjunctions.

For killing a where clause mutation of a query, the

mutation should be reflected as a change at the root

of the query tree. Consider the where clause P1 or P2 ,

where P1 and P2 are conjuncts of selection conditions. If

a condition in P1 is mutated, P2 should be false so that

the change in the condition of P1 affects the output of

the query. For example, let P1 be (a > 50 AND b = 40).

If we mutate the first condition in P1 to a < 50 we

need to ensure that b = 40 is satisfied while P2 is not

satisfied. If P2 is satisfied there would be no change in

the output of the query. Although not mentioned in [26],

the above technique not only kills mutations of atomic
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selection conditions (such as comparisons) but also kills

mutations of conjunction operations to disjunctions and

vice versa.

The XData system has been extended to implement

the above technique for killing selection predicate muta-

tions in the presence of disjunctions.

3 Queries and Mutations Considered

The class of queries considered by XData now includes

a) Single block queries with join/outer-join operations

and predicates in the where-clause, and optionally ag-

gregate operations, corresponding to select / project

/ join / outer-join queries in relational algebra, with

aggregation operations.

b) Multi-block queries. Our current implementation can

deal with subqueries up to a single level of nesting.

c) Compound queries with set operators UNION(ALL),

INTERSECT(ALL) and EXCEPT(ALL).

In this paper, we remove the following assumptions
made in [28]:

a) SQL queries do not contain string comparison or

string like operators such as like, ilike, etc.

b) Aggregations are only present at the top of the query

tree, and hence they are not constrained.

c) SQL queries are single block queries with no nested

subqueries.

d) NULL values are not allowed for attribute values.

e) Selection predicates are conjunctions of simple con-

ditions of the form expr relop expr.

XData now considers a large class of mutations -

join type mutations, comparison operator mutations,

aggregation mutations, string mutations, NULL muta-

tions, set operator mutations, join condition mutations,

group by attribute mutations and distinct mutations.

Of these only join type mutations, comparison operator

mutations and aggregation mutations were discussed

previously in [28].

We retain the following assumptions

a) The only database constraints are unique, primary

key and foreign key constraints.

b) Queries do not include numeric functions or expres-

sions other than simple arithmetic expressions.

c) Join predicates are conjunctions of simple conditions.

d) No user defined functions are used.

We only consider single mutations in a query when

generating test datasets, since the space of mutants

is much larger with multiple mutations. It is possible

that an erroneous query may contain multiple mistakes;

queries with multiple mutations are likely, but not al-

ways guaranteed, to be killed by the datasets we gener-

ate. Completeness guarantees for our data generation

techniques are described in Appendix D.

4 Data Generation for String
Constraints

SQL queries can have equality and inequality conditions

on strings, and pattern matching conditions using the

LIKE operator or its variants.

Consider the SQL query,

SELECT * from student WHERE name LIKE ‘Amol%’

AND name LIKE ‘%Pal’ AND tot_cred > 30

In order to generate the first dataset that produces a

non-empty result for this query or to kill mutations of the

condition tot cred > 30, we need to generate a tuple

for which attribute name satisfies the LIKE conditions

‘Amol%’ and ‘%Pal’. To generate such a value we need

to solve the corresponding string constraints. For killing

mutations of the LIKE operators also we need to solve

similar string constraints.

Since many constraint solvers, including CVC3, do

not support string constraints, we solve the string con-

straints outside of the solver. We describe the types

of string constraints considered in Section 4.1 and our

approach to solving string constraints in Section 4.2 We

then discuss test data generation for killing mutations in-

volving string operators in Section 4.3. Note that for this

to work; there should be no dependence between string

and other constraints so that the string constraints can

be solved independently of other constraints. For ex-

ample, for constraints like length(R.a) > R.b, where

R.a is a string attribute and R.b is an integer attribute,

the condition on R.a cannot be solved independently of

constraints on R.b if there are other constraints on R.a

and R.b. However, if an integrated constraint solver this

restriction does not apply.

4.1 Types of String Constraints Considered

For string comparisons, we consider the following class

of string constraints: S1 relop constant, and S1 relop S2,

where S1 and S2 are string variables, and relop opera-

tors are =, <,≤, >,≥, <> and case-insensitive equality

denoted by ∼=. We support LIKE constraints of the

form S likeop pattern, where likeop is one of LIKE,

ILIKE (case insensitive like), NOT LIKE and NOT

ILIKE. We also support strlen(S) relop constant where
relop is one of =, <,≤, >,≥ or <>. We do not support

constraints of the form S1 likeop S2, where both S1 and

S2 are variables.

We support the string functions upper and lower in

queries where these functions can be rewritten using one

of the operators described above; for example upper(S)

= ‘ABC’ can be rewritten as S ∼= ‘ABC’, and similarly

upper(S) LIKE pattern can be replaced by S ILIKE

pattern. We rewrite these conditions as a pre-processing
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step. Conditions like upper (S) = constant or upper (S)

LIKE pattern, where the constant or pattern contains at

least one lower case character, cannot be satisfied. Hence

for such conditions we do not change the operators but

return an empty dataset. If these functions are used

on a constant string, we convert the string to upper or

lower according to the function.

4.2 Solving String Constraints

There are several available string solvers that we consid-

ered, including Hampi [17], Kaluza [27], SUSHI [11] and
Rex [33]. However, we found that Hampi and Kaluza

were rather slow, and while they handled regular ex-

pressions and length constraints, they could not handle

constraints such as S1 < S2, where both S1 and S2 are

variables. Rex and SUSHI, though much faster, could

not handle constraints involving multiple string vari-

ables. Hence, we built our own solver which is described

in Appendix B. Subsequent to the implementation of

our string solver the latest version of CVC (CVC4) has

also provided some support for solving string constraints

[19], but it has some limitations currently2. Refer the

experimental section in Appendix B for details.

Once the values for string variables are obtained we

solve the non-string constraints using CVC3 and get an

overall solution as follows: enumeration types are created
in CVC3 for string variables, with the enumeration

names being the (suitably encoded) strings generated

by the string solver. For example, consider a query which

has a single string constraint: S1 like ‘Bio%′. Let the

string that satisfies the constraint be Biology, then the

constraint is specified as

ASSERT(table[index].pos = Biology)

in CVC3, where table[index].pos is the correspond-

ing CVC3 variable of S1. We then add constraints in

CVC3 equating each string variable to its corresponding

enumeration name, add other non-string constraints as

described in Section 2 and invoke CVC3 to get a suitable

dataset.

If there are disjunctions in the selection predicate,

it is not possible to separate the string constraints since

not all string constraints may need to be satisfied.

4.3 Killing String Constraint Mutations

There can be different types of string mutations depend-

ing on whether the string condition is a comparison

condition or a LIKE condition.

2 Although there are some limitations in CVC4 currently;
in future we may use CVC4 as an integrated solver for both
string constraints and other constraints.

Mutation to kill Dataset
LIKE vs. NOT LIKE 1, 2, 3
LIKE vs. ILIKE 2
LIKE vs. NOT ILIKE 1, 3
NOT LIKE vs. ILIKE 1, 3
NOT LIKE vs. NOT ILIKE 2
ILIKE vs. NOT ILIKE 1, 2, 3
Missing LIKE / ILIKE 3
Missing NOT LIKE / NOT ILIKE 1

Table 1: Dataset required to kill like operator mutations

String Comparison Mutation

Consider a string constraint of the form S1 relop S2,

where S1 is a variable (attribute name), S2 could be

another variable or a constant. We consider mutations
of relop where any occurrence of one of {=, <>,<,>,≤
,≥} is replaced by another. Three datasets are enough

to kill all the relop mutations. These are the datasets

generated for (1) S1 = S2 (2) S1 > S2 (3) S1 < S2.
These datasets will also kill the mutation because of

missing string selection mutations. In addition, to kill

mutations between = and ∼=, we generate an additional

dataset, where S1 <> S2, but S1 ∼= S2.

LIKE Predicate Mutation

We also consider the mutation of the likeop operators

where one of {LIKE, ILIKE, NOT LIKE, NOT ILIKE}
is mutated to another or the operator is missing. For
a condition S1 likeop pattern, where S1 is an attribute

name, the three datasets given below are sufficient to

kill all mutations among the LIKE operators:

Dataset 1 satisfying the condition S1 LIKE pattern.

Dataset 2 satisfying condition S1 ILIKE pattern, but

not S1 LIKE pattern.

Dataset 3 failing both the LIKE and ILIKE condi-

tions.

For example, for the condition S1 LIKE ‘bio ’, the

conditions in the three cases would be (1) S1 LIKE

‘bio ’, (2) S1 LIKE ‘BIO ’, and (3) S1 LIKE ‘CIO ’.

The targeted mutations and the datasets that kill

them are shown in Table 1.

LIKE Pattern Mutations

A common error while using the LIKE operator is the

specification of an incorrect pattern in the query, for ex-

ample, specifying S1 LIKE ‘Comp ’ or S1 LIKE ‘Com%’

in place of S1 LIKE ‘Comp%’. There could be a very

large number of such patterns to be considered. We

handle mutations that involve ‘ ’ in place of ‘%’ and

vice versa and also missing ‘ ’ or ‘%’. Consider the like
predicate to be S likeop P.

– For killing the mutation of ‘%’ to ‘ ’ or for missing

‘%’, we generate separate datasets for each occur-

rence of the ‘%’ replaced with “ ”(two underscores) .
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The pattern with ‘%’ gives a non-empty result while

the mutated patterns will give an empty result on

the corresponding datasets if the likeop is LIKE or

ILIKE. For NOT LIKE and NOT ILIKE the pattern

with ‘%’ gives an empty result while the mutated

patterns will give a non-empty result.

– For killing the mutation of ‘ ’ to ‘%’ or for missing ‘ ’,

we generate separate datasets for each occurrence of

‘ ’ with that occurrence of ‘ ’ removed. If the likeop is

LIKE or ILIKE the original pattern gives an empty

result while the mutated patterns give non-empty
results on the corresponding dataset. For NOT LIKE

and NOT ILIKE the pattern with ‘ ’ gives a non-

empty result while the mutated patterns will give

an empty result.

5 Handling NULLs

In our earlier work [28], we could not handle NULLs.

In this section, we discuss how we model NULLs using

regular non-NULL values; to the best of our knowledge,
none of the SMT solvers supports NULL values with

SQL NULL value semantics.

To model NULLs for string attributes, we enumerate

a few more values in the enumerated type and designate

them NULLs. For example, the domain of course id is

modeled in CVC3 as follows:

DATATYPE course_id = CS190 | CS632 | NULL_course_id_1

| NULL_course_id_2 END;

Here, the first two values are regular values from the

domain of course id, while the last two values are used

as NULLs. For numeric values, we model NULLs as any

integer in a range of negative values that are not part

of the given domain of that numeric value.

Next, we define a function which identifies which

values are NULL values and which are not. This function

is syntactic sugar for dealing with NULLs cleanly and

is defined per domain to identify the NULLs in that

particular domain. In addition to specifying which values

are NULLs, we also explicitly need to state that the

other values are NOT NULL. Otherwise, the solver may

choose to treat a NON-NULL value as a NULL value.

Following is an example of the function in CVC3:

ISNULL_COURSE_ID : COURSE_ID -> BOOLEAN;

ASSERT NOT ISNULL_COURSE_ID(CS190);

ASSERT NOT ISNULL_COURSE_ID(CS632);

ASSERT ISNULL_COURSE_ID(NULL_crse_id_1);

ASSERT ISNULL_COURSE_ID(NULL_crse_id_2);

We also need to enforce another property of nulls,

namely, that nulls are not comparable. To do so, we

choose different NULL values for different constraint

variables that may potentially be assigned a null value,

thus implicitly enforcing an inequality between them.

The capability to generate NULLs enables us to

handle nullable foreign keys, selection conditions involv-

ing IS NULL checks and kill mutations of COUNT to

COUNT(*).

5.1 Nullable Foreign Keys

If a foreign key attribute fk, is nullable then the foreign

key constraint is encoded in the SMT solver by forcing
values of fk to be either values from the corresponding

primary key values or NULL values; this allows the

SMT solver to assign NULLS to foreign keys if required.

Nullable foreign keys allow us to kill more mutants than

is possible if the foreign key attribute as not nullable.

(Our implementation handles multi-attribute foreign

and primary keys.)

5.2 IS NULL / NOT IS NULL Clause

If the query contains a condition R.a IS NULL, we

explicitly assign (a different) NULL to attribute a for

each tuple R[i] if the query contains only inner joins or

only a single relation (provided the attribute is nullable;

attributes declared as primary key or as not null cannot

be assigned a NULL value).

However in case the query contains an outer join

there may be multiple ways to ensure that an attribute

has NULL value. Let us consider the join condition E1
–
–1 E2. If the IS NULL condition is on an attribute of

E1 we need to ensure that the value of that attribute is
NULL. If the IS NULL condition is on an attribute on

E2 we need to ensure that either (a) that attribute is

NULL (which may not be possible if E1 is a relation and

the attribute is not nullable) or (b) for that tuple in E1

there does not exist any matching tuple in E2; this can

be done by a minor change in the algorithm to handle

NOT EXISTS subqueries as described in Section 7.1

(Algorithm 1). We omit details for brevity.

We consider mutation from IS NULL to NOT IS

NULL. The first dataset (the one that generates non-

empty results on the original query) kills the mutation

of IS NULL to NOT IS NULL if the IS NULL condi-

tion is present in the form of conjunctions with other

conditions. In the presence of disjunctions, we generate

a dataset such that the IS NULL condition is satisfied

while the conditions present in disjunction with the IS

NULL condition are not satisfied. If the query contains

an IS NULL then the dataset will give a non-empty

result whereas the NOT IS NULL mutant will generate

an empty result and vice versa. We also consider the

mutation where the mutant query does not contain the

IS NULL condition In order to kill this mutation we

generate a tuple with the IS NULL condition being re-

placed by NOT IS NULL (with the conditions present in
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disjunction with the IS NULL not being satisfied). The

original query gives an empty result while the mutant

gives a non-empty result.

If the query contains the condition NOT IS NULL

the corresponding mutations can be killed in a similar

manner.

5.3 NULLs and COUNT(*)

To kill the mutation from COUNT(attr) to COUNT(*),

where attr is a set of attributes, we create a dataset such

that all tuples in a group have attr as NULL (provided

all attributes in attr are nullable and none of them is

forced to be non-nullable by selection or join conditions).
COUNT(attr) gives a count of 0 while COUNT(*) gives

a count of equal to the total number of tuples.

In order to kill mutations of COUNT(*) to COUNT

(attr), for any set of attributes attr, we create a dataset

such that all nullable columns (columns that can be
assigned NULL values and do not have conditions that

force them to be not NULL) have NULL values. If

any attribute in attr is not nullable, COUNT(*) and

COUNT(attr) are equivalent mutations.

6 Constrained Aggregation

In [28] we considered aggregates which did not have

any constraints on the aggregation result e.g. via a

HAVING clause, or in an enclosing SQL query of a

subquery with aggregation. In this section, we discuss
techniques for data generation for queries which have

constrained aggregation. We assume that each aggregate

is on a single attribute, not on multiple attributes or

expressions. We also assume that aggregation constraints

do not involve disjunctions.

Consider the HAVING clause constraint, SUM(r.a)

> 20. In case the domain of r.a is restricted to [0,5] it

is not possible to generate a single tuple for r such that

the aggregation constraint is satisfied. Most constraint

solvers including CVC3 do not support a relation type

where the number of tuples may be left unspecified.

Some solvers like Alloy [13] do support a relation type.

However, there are other limitations to using Alloy since

it is very slow and supports only the integer datatype.

We model relations as arrays of tuples with a predefined

number of tuples in each relation; such aggregation

constraints cannot be translated into SMT solver con-

straints leaving the number of tuples unspecified. Hence,

before generating SMT solver constraints we must (a)

estimate the number of tuples n, required to satisfy the

aggregation constraints, and (b) in case the input to the

aggregate is a join of multiple base relations, translate

this number n to appropriate number of tuples for each

base relation so that the join result contains exactly n

tuples.

In Section 6.1 we discuss how to estimate the number

of tuples to satisfy an aggregation constraint. We discuss

data generation for constrained aggregation on a single

relation in Section 6.2 and for join results in Section 6.3.

6.1 Estimating Number of Tuples per Group

We now consider how to estimate the number of values

(tuples), n, needed to satisfy aggregation constraints.

For each attribute, A, on which there are aggregate

constraints we consider the following for estimating n.

1. Aggregation Properties: Constraint variables sumA,

minA, maxA, avgA, countA respectively correspond

to the results of aggregation operators SUM, MIN,

MAX, AVG and COUNT on attribute A. Note that

countA also indicates the number of tuples at the

input to the aggregation. We add the following con-

ditions

– Since the value of each tuple cannot be less than

minA and greater than maxA, it follows that

minA∗countA ≤ sumA ≤ maxA∗countA.

– If the domain of A is integer and A is unique,

minA + (minA + 1 ) + ... + (minA + countA -

1 ) ≤ sumA ≤ (maxA - countA + 1) + (maxA -
countA + 2 ) + ... + (maxA - countA + (countA
- 1)) +(maxA). We use the simplified form of the

above expression for constraint generation.

– (avgA∗countA) = sumA

2. Domain Constraints: Constraint variables dminA,

dmaxA correspond to the minimum and maximum
value in the domain of attribute A. We add the
following constraints

– dminA ≤ minA ≤ maxA ≤ dmaxA. This con-

straint states that minA cannot be less than the

domain minimum or greater than maxA.

3. Aggregation Constraints: Aggregation constraints

specified by the query (e.g. sumA ≤ 10).

4. Selection Conditions: If the query contains non-

aggregate constraints on any attribute A, we add

these to the tuple estimation constraints. For exam-

ple, consider the query,

SELECT dept_name,SUM(credits) FROM

course INNER JOIN dept USING (dept_name)

WHERE credits <= 4 GROUP BY dept_name

HAVING SUM(credits) < 13

Here, because credits column has a selection condi-

tion on it, its limit is constrained. Hence, max credits
≤ 4 is also added to the list of constraints above.

The solver returns a value for the count which satis-

fies all the constraints above, but the value may not be
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the minimum. Since we are interested in small datasets,

we want the count to be as small as possible. Hence, we

run CVC3 with the count fixed to different values, rang-

ing from 1 to MAX TUPLES and choose the smallest

value of the count for which CVC3 gives a valid answer.3

We borrow the idea of calculating the number of tuples,

using multiple tries, for the aggregation constraint from

RQP [7]. However, note that the problem is different

here, since, unlike RQP, we do not know the value of

the aggregation in the query result. Note that the above

procedure works even in case of multiple aggregates on
the same column or on different columns.

Heuristic Extensions

The value with which the aggregate is compared to may

be a column (i.e. a variable) e.g. HAVING SUM(R.a)

relop S.b. This can happen when S.b is a group by

attribute or when the constrained aggregation is in a

subquery and S.b is a correlation variable from an outer

query. For such cases, we replace the column name by a

CVC3 variable when estimating the number of tuples.
We also add the domain and selection conditions for

that column as constraints on the CVC3 variable. The

solver then chooses a value for the number of tuples

such that the aggregate is satisfied for some value of the

variable in its domain.

If the aggregation has a DISTINCT clause we add
constraints to make the corresponding aggregated at-

tribute unique.

Handling constraint aggregation in general for these

cases is an area of future work.

6.2 Data Generation for Aggregate on a Single

Relation

In case the aggregate is on a single relation the number

of tuples estimated is assigned to the only relation. For

each result tuple generated by an aggregation operator,

we create a tuple of constraint variables where group by

attributes are equated to the corresponding values in

the inputs and aggregation results are replaced by arith-

metic expressions. For example, sum(r.x) is replaced

by R[i].x + R[i + 1].x + . . . + R[i + k].x, where R[i] to

R[i+k] are the tuples assigned for a particular group.

We also add constraints to ensure that no two tuples in

R[i]...R[i+k] are the same if the relation has a primary

key.

The tuple variables created as above can be used

for other operations e.g. selection or join that use the

aggregation result as inputs.

3 Since we are interested in small datasets, we set
MAX TUPLES to 32 in our experiments.

In case data generation for multiple groups is re-

quired we add constraints to ensure that at least one of

the GROUP BY attributes is distinct across groups.

Consider the query,

SELECT id, COUNT(*) FROM takes

WHERE grade = ‘A+’ AND year = 2010

GROUP BY id HAVING COUNT(*) < 3

For this query the number of tuples in the group is
estimated to be 1. We assign a single tuple to the takes

relation and add constraints to ensure that grade for

this tuple is ‘A+’ and year is 2010.

Note that if the XData system generates additional

tuples for the takes relation (for example because this

query is part of a subquery and there may be other

instances of the takes relation outside the subquery

or takes is referenced by some other relation and we

need to generate additional tuples to satisfy foreign

key dependencies) the value of COUNT() in the having

clause may change and the constrained aggregation

may no longer be satisfied. In order to ensure that the

HAVING clause is not affected we need to ensure that

no other tuple in the takes relation belongs to the same

group.

In general, to ensure that the additional tuples gen-

erated do not cause problems we add constraints to

ensure that for any additional tuple either has a dif-

ferent value for the GROUP BY attribute and hence

belongs to a different group or fails at least one of the

selection conditions. In the above example, we assert

that either the id is different for the additional tuple or

year 6= 2010. In practice, the conditions are generated

by Algorithm 5 described in Appendix C, which handles

the general case of aggregation on join results, to assert

these constraints as described in Section 6.3.2.

6.3 Data Generation for Aggregation on JOIN

Results

In case the aggregate is on a join result we need to

assign tuples to each of the relations such that the join

results in the required number of tuples. In this section,

we address this issue.

6.3.1 Estimating Number of Tuples per Relation

We assume here that all join conditions are equijoins.

The required number of tuples is denoted by n. Consider

a query that involves Ri 1 Rj 1 Rk where we need n

tuples for a GROUP BY on A.a. Each of the relations

need be assigned a specific number of tuples such that

the result of the join produces n tuples.

A naive way is to assign n tuples to a relation, Ri
and assign the same value to all its joining attributes,

{Ri.a, Ri.b}. For relations joining with Ri only a single

9



tuple is assigned and the joining attribute(s) are assigned

the value to the corresponding join attribute of Ri. For

all other relations also single tuple is assigned and the

joining attributes are equated. It is easy to see that

this assignment will lead to n tuples in the output. The

assignment, however, does not work in case the joining

attribute(s) of Ri are unique (either due to primary keys

or by inference from other primary keys) or multiple

values are required for attributes of some other relations

(to satisfy the aggregate constraint).

We define the following types of attribute(s) that
are used for assigning cardinality to relations.

1. uniqueElements: Sets of attributes for which no

two tuples in a group can have the same value.

These sets of attributes are placed in uniqueEle-

ments, where uniqueElements[Ri] contains sets of

unique elements of relation Ri. If a relation Ri has

unique constraints for (a,b) and (a,c) then uniqueEle-

ments[Ri]={{a,b},{a,c}}.
2. singleValuedAttributes: The attribute(s) which have

the same value across all tuples in a group. These

attributes are placed in singleValuedAttributes.

Using the uniqueElements, singleValuedAttributes,

join conditions and foreign key conditions for each rela-

tion under conditions we estimate the number of tuples

for each relation. Details for this are provided in the

Appendix A.

6.3.2 Data Generation

After getting the tuple assignment for each relation we

add CVC3 constraints to fix the number of tuples in a

group to the estimated value. For each join condition,

constraints are generated depending on the number of

tuples assigned. For example, if both relations R and S

have n tuples, the constraint R[i].x = S[i].y is generated

for all 1 ≤ i ≤ n, while if R has n tuples and S has 1

tuple, the constraint R[i].x = S[1].y is generated for all

1 ≤ i ≤ n. Constraints variables for the output of the

aggregate operator are created as described earlier in

Section 6.2. One difference is in handling aggregation

for relations that have been assigned one tuple. For

example, sum(r.x) is replaced by R[i].x+R[i+1].x+. . .+

R[i + k].x, where R[i] to R[i+k] are the tuples assigned

for a particular group, if R has n tuples, otherwise it

is replaced by n ∗ R[i].x, where R[i] is the only tuple

assigned for a group. Unique constraints are added as

pairwise non-equality constraints to ensure that sets of

uniqueElements have distinct values.

Constraints to ensure that additional tuples do not

alter satisfaction of the aggregate conditions for the

group g are generated using Algorithm 5 described in

Appendix C. The inputs to the algorithm are (a) T

- query tree corresponding to block that contains the

constrained aggregate (b) AT - the tuples generated

to satisfy the constrained aggregation and (c) ASel -

conditions that evaluate each GROUP BY attributes to

the corresponding values in g.

Data generation for multiple groups is done by adding

constraints to ensure that at least one of the GROUP

BY attributes is distinct across groups.

The constraints are then given as input to CVC3,

and output of CVC3 gives us the required dataset.

Discussion:

Our tuple assignment techniques always assign either

1 tuple or n tuples to a relation. There could be cases

where such an assignment is not possible and a different

assignment is required to generate datasets. However,

in such an assignment it becomes difficult to assert con-

straints such that the join of the relations will generate

exactly the required number of tuples. Handling tuple

assignment for cases where either 1 or n tuples cannot

be assigned to all the relations to satisfy the aggregation

constraint is an area of future work.

6.4 Constraint Aggregation and Mutant Killing

Techniques for killing aggregation mutations were de-

scribed in [28] (summarized in Section 2.2). A dataset to

kill aggregation mutations is generated by creating mul-

tiple tuples per group using techniques of constrained

aggregation described above. Different mutations of the

aggregate operator will produce different values on this

dataset. To ensure that the value difference due to aggre-

gate mutation will cause a difference in the constraint

aggregate result, we need to ensure that only one of the

query or its mutation satisfies the aggregation constraint.

For some cases, we have implemented constraints to en-

sure that there is a difference in the constraint aggregate

result. Implementing this in general is an area of future

work.

Datasets for killing mutations of comparison opera-

tors in aggregation constraint (e.g. having clause) are
generated using existing techniques in XData for han-

dling comparison mutations. Killing mutations due to

additional and missing group by attributes is discussed

in Section 9.2.

7 Where Clause Subqueries

We now consider test data generation for SQL queries

involving subqueries. Data generation for subqueries

in the FROM clause is discussed in Section 10; in this

section we consider data generation and mutation killing

for subqueries in the where clause. We initially assume

in Section 7.1 that subqueries do not have aggregations.

Subqueries with aggregation are discussed in Section 7.2.
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7.1 Data Generation for Subqueries Without

Aggregation

EXISTS Connective

Consider a query Q with a nested subquery predicate

EXISTS(SQ). To generate a non-empty result for Q we

need to ensure that SQ gives a non-empty result. If

SQ does not have any correlation variables we treat

subquery SQ as a query in itself and add constraints to

generate a non-empty dataset for the subquery using our
data generation techniques. We then add constraints for

Q for predicates other than the subquery. The dataset

is then generated based on these constraints.

If SQ has correlation conditions, then for every tuple

that is generated for Q, we call a function to gener-

ate the constraints for data generation of the subquery,

with the correlation variables passed as parameters. The
correlation conditions are treated as selections in SQ

with the given constraint variables and appropriate con-

straints are generated for SQ. For example, consider the
query

SELECT course_id,title

FROM course INNER JOIN section USING(course_id)

WHERE year = 2010 AND EXISTS (SELECT * FROM prereq

WHERE prereq_id=‘CS-201’ AND

prereq.course_id = course.course_id)

To generate a dataset for the outer query, we gen-

erate a single tuple each for the course and section

relations. Let the tuples be course[1] and section[1].

We then add constraints to assert section[1].year=2010

and course[1].course id = section[1].course id. We pass

the correlation variable course[1].course id as a param-

eter to the function for generating constraints for the

subquery. For this tuple in the outer query block, we gen-

erate a tuple in prereq relation, say prereq[1], for which

we add constraints to ensure that prereq[1].prereq id =

‘CS-201’ and prereq[1].course id = course[1].course id.

NOT EXISTS Connective

Consider a query Q with a nested subquery predicate

NOT EXISTS(SQ). Here we need to ensure that the num-

ber of tuples from SQ is 0.

If SQ has only a single relation R, we add constraints

to ensure that every tuple in R fails at least one of the

selection conditions. In case, SQ has a join of two or

more relations we traverse the tree of SQ, and in a

recursive manner add constraints on selections and joins

to ensure that no tuple reaches the root of SQ. If the

join is an INNER JOIN we need to ensure that there

exists no pair of tuples for which the join conditions are

satisfied or that one of the inputs to the join is empty. In

case the join is LEFT OUTER JOIN, we need to ensure

that there is no tuple in the left subtree. Similarly, in

Algorithm 1 : genConstraintsForNotExists
Inputs: T = Query tree
Output: constraints to ensure no tuple is projected from the

subquery
1: constraints ← “ ”
2: R = T .ROOT
3: if R is a relation then
4: Let the selection conditions on R be S1 ∧ S2 ∧..Sc

5: Let the number of tuples in R be m
6: for i in 1 to m do
7: SC[i] ← NOT(S1) OR NOT(S2) .. OR NOT(Sc)
8: end for
9: constraints ← SC[1] AND .. SC[i] AND SC[m]

∀ i, 1 ≤ i ≤ m
10: else if R is an aggregate then
11: genConstraintsForNotExists(R.CHILD)
12: else if R is a LEFT OUTER JOIN then
13: constraints ← genConstraintsForNotExists(R.LEFT)
14: else if R is a RIGHT OUTER JOIN then
15: constraints ← genConstraintsForNotExists(R.RIGHT)
16: else if R is an INNER JOIN then
17: JC={}
18: Let the join conditions at R be J1, J2..Jc

19: for Each join condition Jk do
20: Let Jk involve relations R1 and R2

21: Let the number of tuples in R1 be m and in R2 be
n

22: Let Jk(i, j) denote the condition corresponding to
join of tuples R1[i] and R2[j]

23: for i in 1 to m, j in 1 to n do
24: JC[k] ← JC[k] AND NOT(Jk(i, j))
25: end for
26: end for
27: constraints← JC[1] OR.. JC[k] OR.. JC[c]

∀k, 1 ≤ k ≤ c
28: constraints ← constraints + “OR” +

(genConstraintsForNotExists(R.LEFT)) + “OR”
+ (genConstraintsForNotExists(R.RIGHT))

29: end if
30: return constraints

case of RIGHT OUTER JOIN we need to ensure that

no tuple is projected from the right subquery.

Constraints to ensure that there is no tuple from the

NOT EXISTS subquery are added using Algorithm 1.

If the subquery contains selections with disjunctions,

we may fail to get the selection conditions that involve

only R in Step 4 of our algorithm. Our algorithm is

currently restricted to NOT EXISTS queries that do

not contain any disjunction. At Step 5 we assert nega-

tions of the constraints corresponding to the particular

selection condition, Si. For example, if Si is a NOT

EXISTS subquery we assert constraints corresponding

to EXISTS(Si). Correlation variables in SQ, if present,

are treated in the same manner as EXISTS subquery

and passed as parameters. Correlation conditions are

then treated as selections in Algorithm 1.

IN/NOT IN Connective

We convert subqueries of the IN type to EXISTS type

subquery by adding the IN connective as a correlation
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condition in the WHERE clause of the EXISTS subquery.

The same techniques as that of EXISTS are then used.

Similarly. subqueries using a NOT IN connective are

converted to use the NOT EXISTS connective. For

example,

r.a IN (SELECT s.b FROM .. WHERE ..)

is converted to

EXISTS (SELECT s.b FROM .. WHERE .. AND r.a = s.b)

ALL/ANY Connective

Subqueries with ALL and ANY connectives, always ap-

pear with one of the comparison operators, for example

“< ALL” or “>= ANY”. We transform subqueries of the

form relop ANY to an EXISTS query with relop condi-

tion as a correlation condition in the WHERE clause.

Subqueries with relop ALL are transformed to a NOT

EXISTS query with a negation of the relop condition

as a correlation condition, or either of the correlation

variables in the correlation condition as NULL in the

WHERE clause. For example,

r.a >ALL (SELECT s.b FROM .. WHERE ..)

is converted to

NOT EXISTS

(SELECT s.b FROM .. WHERE .. AND r.a <= s.b

OR IS NULL(r.a) OR IS NULL(s.b))

Scalar Subqueries
Scalar subqueries are subqueries that return only a single

result. We consider scalar subqueries in the where clause

which are used in conditions on the form SSQ relop

attr/value, where SSQ is a scalar subquery, attr is an

attribute from the outer block of query and value is

a constant. For scalar subqueries, we generate only a

single tuple for the query and assert that the projected

attribute satisfies the comparison operator. Correlation
conditions, if any, are treated in the same manner as

subqueries with the EXISTS connective.

7.2 Data Generation for Subqueries With

Aggregation

In this section, we consider subqueries that have aggre-

gation. Constraints involving aggregation can be in the

inner query (e.g. HAVING clause) or in outer query (e.g.
r.s < (SELECT agg(s.b...)))

Non Scalar Subqueries

The techniques in Section 7.1 can be applied for EXISTS

subqueries without constrained aggregation, since we

only need to ensure empty / non-empty results for the

subquery. For NOT EXISTS Algorithm 1 covers the

case of aggregate operators as well.

In case of constrained aggregation in EXISTS sub-

query (e.g. HAVING clause), we use the techniques

described in Section 6 to generate tuples for the sub-

query; multiple tuples may be generated. In case there

is a constrained aggregation in the NOT EXISTS sub-

query, we assert constraints to ensure that either the

constraint aggregation is not satisfied or there is no

tuple input to the aggregation constraint.

Subqueries of the IN/NOT IN/ALL/ANY type hav-

ing an aggregate as the projected attribute can be trans-

formed into EXISTS/NOT EXISTS in a similar manner

as shown in Section 7.1. In this case, the projected

aggregate is added as a HAVING clause. For example,

r.a NOT IN (SELECT agg(s.b) FROM .. WHERE .. )

is converted to

NOT EXISTS (SELECT agg(s.b) FROM ..

WHERE .. HAVING agg(s.b) = r.a)

The techniques for constrained aggregation in EXISTS/

NOT EXISTS can then be applied.

Scalar Subqueries

Consider the following query involving the relation

takes(id, course id, sec id, semester, year, grades),

SELECT id FROM takes

WHERE grade < (SELECT MIN(grade)

FROM takes WHERE year = 2010)

To generate datasets for this query we add con-

straints to generate a tuple, takes[1] for the takes rela-

tion in the outer query. The tuple estimation technique

for the subquery estimates that one tuple is required to

satisfy the comparison operator (< MIN(grade)). We

add constraints to generate one more tuple, say takes[2]

for takes relation corresponding to the subquery and
add a constraint to ensure that takes[2].year = 2010 for

that tuple. We then add the constraint, takes[1].grade

< takes[2].grade to ensure that the grade of the outer

query tuple is greater than the grade of the subquery

tuple. Since takes[1] does not participate in aggregation

we need to ensure that it does not satisfy the conditions
of the subquery block. To ensure this, the constraint

takes[1].year <> 2010 is added.

In general, consider a query of the form

SELECT * FROM rel1 JOIN .. WHERE cond1 AND ...

AND attr1 relop (SELECT agg(sqrel1.attr2)

FROM sqrel1 JOIN ... WHERE sqcond1 AND ..)

For such subqueries we need to ensure that the aggre-

gate, agg(sqrel1.attr2) satisfies the condition attr1

relop agg(sqrel1.attr2). In order to do this, we may

need to project multiple tuples from the subquery. We

use the techniques described in Section 6 to estimate the

number of tuples, assign the desired number of tuples

to each relation and generate constraints for data gener-

ation. In order to ensure that no additional tuple affects

the aggregate value, we use the techniques described in
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Algorithm 5 in Appendix C. The input to the algorithm

is the same as described in Section 7.4 below.

Similar to EXISTS subquery, in the presence of cor-

relation conditions, we generate one group of tuples in

the subquery for every tuple in the outer query.

7.3 Killing Subquery Connective Mutations

EXISTS/NOT EXISTS, IN/NOT IN Mutation

The dataset generated for the original query will kill

the mutation between IN and NOT IN, and between

EXISTS and NOT EXISTS if the subquery condition

is present in the form of conjunctions with other con-

ditions. In the presence of disjunctions, we generate a

dataset such that the subquery condition is satisfied and

conditions in disjunction with it are not. The EXISTS

clause gives an empty result when NOT EXISTS gives

a non-empty result, and vice versa. Similar datasets are

generated to kill mutations of IN vs. NOT IN.

Comparison Operator Mutation

For conditions of the form “r.A relop (SSQ)” where

SSQ is a scalar subquery, as well as conditions of “r.A

relop [ALL/ANY] SQ”, we consider mutations among

the different relops. Similar to the approach shown in

Section 2.2 we generate data for three cases, with relop

replaced by >, = and <.

ANY/ALL Mutation
This mutation involves changing from ANY to ALL or

vice versa. Since the ANY subquery has been trans-

formed to EXISTS the mutation from ANY to ALL

becomes a double mutation - replacing EXISTS with

NOT EXISTS and negating the correlation condition

corresponding to the ANY comparison condition. The

case for ALL to ANY mutation is similar.

Let the correlation condition added because of trans-

formation of ALL/ANY to EXISTS/NOT EXISTS be

R1.a relop R2.b. We generate a dataset with two tuples

in the subquery for every tuple in the outer query. We

add constraints for relop for one tuple and the negation

of relop for the other tuple. The ANY query will produce

a non-empty result while the ALL query will produce

an empty result.

Missing Subquery Mutation

To kill the mutation of a query with missing EXISTS

condition connective we generate a dataset with the

EXISTS condition replaced by NOT EXISTS. If the

EXISTS condition is missing the mutant query will give

a non-empty answer while the original query will give

an empty answer. Similarly, for killing mutations with

missing subquery connectives in other cases we replace

NOT EXISTS with EXISTS, IN with NOT IN and NOT

IN with IN.

The datasets generated to kill comparison opera-

tor mutation will also kill mutations involving missing

scalar/ALL/ANY subqueries. If the subquery is present

the original query will give an empty result on at least

one of the three datasets while the mutant query will

produce a non-empty result on all the three datasets.

7.4 Killing Mutations in a Subquery

We also need to generate test data for killing mutations

in subquery blocks. For the EXISTS connective and for

scalar subqueries we treat a subquery block as a normal

query and generate sets of constraints to kill mutations

in the subquery block. For each constraint set, we also

add constraints to ensure a non-empty result on the

outer query block.

For killing selection (comparison mutations, string

mutations, NULL mutations), JOIN, and HAVING clause

mutations the techniques described in [28] and this pa-

per generate datasets that produce empty result on

either the query or the mutant but not both. Thus for

these mutations the subquery will satisfy the EXISTS

condition or the comparison operator (for scalar sub-

queries) for either the subquery or its mutation enabling

XData to kill the mutation.

Extra tuples may get generated for the subquery if
there are relations in the subquery that are repeated in

the query or are referenced by other relation through

foreign keys. Because of these extra tuples, an empty

result may turn into a non-empty result or vice versa.

To prevent this, we add constraints using Algorithm 5

described in Appendix C where (a)T - query tree of
the subquery (b)AT - tuples created for the subquery
(c)ASel - correlation conditions with correlation vari-

ables being passed as parameters. The constraints en-

sure that the extra tuples do not affect the result of the

subquery, preventing the extra tuples from turning an

empty result into a non-empty result or vice versa.

In case there are disjunctions with the subquery,

we add constraints to ensure that other conditions in

disjunction with the subquery (e.g. P or EXISTS(Q))

are not satisfied as described in Section 2.4.

Mutations like distinct or aggregation mutation in

the project clause of the subquery create equivalent

mutants of the query and hence need not be killed.

If the subquery uses the NOT EXISTS connective,

we generate the datasets for killing mutations in the

subquery treating the NOT EXISTS as an EXISTS

conditions. Out of the original query and the mutant,

the query that produces empty results on the subquery

satisfies the NOT EXISTS conditions and produces non-

empty results for the outer query. The query that does

not produce empty results does not satisfy the NOT
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EXISTS condition and produces an empty result in the

outer query. Thus, these mutations can be killed.

Subquery connectives IN, NOT IN, ANY and ALL

are converted to EXISTS and NOT EXISTS as described

earlier. Mutations in the subquery are killed after the

conversion.

8 Set Operators

In this section, we consider data generation and muta-

tion killing for queries that contain one of the following

set operators - UNION, UNION ALL, INTERSECT,

INTERSECT ALL, EXCEPT, EXCEPT ALL.

8.1 Data generation

Set queries are of the form, P SETOP Q where SETOP is

a set operator, and P and Q are queries that may be

simple or compound queries themselves.

In order to generate a dataset that produces a non-

empty result on this query if the SETOP is UNION(ALL)

we add constraints to ensure non-empty results for P or

Q or both (P and Q may have conflicting constraints so

for both to have non-empty results may not always be

possible).

Data generation for INTERSECT(ALL) is done in

a similar manner as the EXISTS subquery described in

Section 7.1. We treat the query as

SELECT * FROM (P) WHERE EXISTS

(SELECT * FROM Q WHERE pred)

where predicate pred equates each projected attribute

of P to the corresponding attribute of Q. For each tu-

ple in P, we generate a corresponding tuple in Q that

satisfies the correlation condition, pred, as described
in Section 7.1. Data generation for EXCEPT(ALL) is

done in a similar manner using NOT EXISTS instead

of EXISTS, using the techniques described earlier for

the NOT EXISTS operator.

8.2 Killing Set Operator Mutations

In order to kill the mutations among the different op-

erators (UNION(ALL), INTERSECT(ALL), EXCEPT

(ALL)) we generate datasets as described below (sum-

marized in Table 2 along with the results for various set

operators).

1. Generate a dataset that has exactly one tuple t1
for P. Add constraints to ensure that one matching

tuple exists in Q.

2. Generate a dataset that has one tuple t1 for P. Add

constraints to ensure that t1 does not exist in Q.

3. Generate a dataset which has at least two identical

tuples ∃>1t1 for Q. Add constraints to create one

matching tuple t1 for P.

4. Generate a dataset that has one tuple t1 for Q. Add

constraints to ensure that t1 does not exist in P.

5. Generate a dataset which has at least two identical

tuples ∃>1t1 for Q. Add constraints to ensure not

matching tuples for P.

6. Generate a dataset that has at least two identical

tuples, ∃>1t1 for P. Add constraints to ensure that

there is exactly one matching tuple t1 in Q.

7. Generate a dataset that has at least two identical

tuples, ∃>1t1 for P. Add constraints to ensure that

t1 does not exist in Q.

8. Generate a dataset that has at least two identical

tuples, ∃>1t1 for both P and Q.

We call kill a mutation between a pair of set opera-

tors if for a dataset the results of the query as shown
in Table 2 differ. Note that it may not be possible

to generate some datasets because of query/integrity

constraints; in particular primary key constraints may

prevent generation of datasets with duplicates. It may
not be necessary to generate all datasets to kill all mu-

tations. As an optimization we can stop generation of

datasets if we have successfully generated at least one

of the datasets for killing each of the mutations.

For both P and Q we have three options; either

generate no tuple, one tuple or more than one tuple.

Table 2 exhaustively covers all combinations (except for

the case where both P and Q are empty, since if both P

an Q are empty all operators would give an empty result

and no mutation would be killed). Hence, these datasets

are sufficient to kill all pairs mutations. For example

the mutation between INTERSECT and INTERSECT ALL can

only be killed if there is more than one matching tuple

between P and Q. Dataset 8 covers this case. The only

mutation that may be missed is the mutation between

EXCEPT ALL and other operators except UNION ALL since

for dataset 8, we cannot guarantee whether the result

would be ∃t1, @t1 or ∃>1t1. Dataset 8 would still be able

to kill the mutation between UNION ALL and EXCEPT ALL

since UNION ALL would produce more tuples in the result

than EXCEPT ALL. Hence, if it is possible to only generate

dataset 8, mutations of other operators with EXCEPT ALL

may not get killed. In order to provide completeness

guarantees for killing mutations involving EXCEPT ALL,

we need to generate specific number of tuples for P and

Q. This is an area of future work.

To ensure that a tuples of one relation does not exist

in the other, constraints are added using the NOT EX-

ISTS technique described in Algorithm 1 of Section 7.1.

To ensure that a tuple in one relation exists in the other,

we use the EXISTS technique described in Section 7.1.

To create at least two identical tuples in the result

of a subquery, we assert constraints to imply that the

number of tuples is more than one. Then using the tech-
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Dataset P Q UNION UNION INTERSECT INTERSECT EXCEPT EXCEPT
ALL ALL ALL

1 t1 t1 t1 t1, t1 t1 t1 @t1 @t1
2 t1 @t1 t1 t1 @t1 @t1 t1 t1
3 t1 ∃>1t1 t1 ∃>1t1 t1 t1 @t1 @t1
4 @t1 t1 t1 t1 @t1 @t1 @t1 @t1
5 @t1 ∃>1t1 t1 ∃>1t1 @t1 @t1 @t1 @t1
6 ∃>1t1 t1 t1 ∃>1t1 (sum) t1 t1 @t1 ∃t1 (diff)
7 ∃>1t1 @t1 t1 ∃>1t1 @t1 @t1 t1 ∃>1t1
8 ∃>1t1 ∃>1t1 t1 ∃>1t1 (sum) t1 ∃>1t1 (min) @t1 - (diff)

Table 2: Datasets to kill set operator mutations

niques described in Section 6 for constrained aggregation

we estimate the required number of tuples for each base

relation. We treat the projected attributes in the select

clause as the group by attributes in constrained aggre-

gation, which ensures that these have the same value

across tuples. Data generation is done using techniques

for constrained aggregation described in Section 6.2 and

Section 6.3.2.

8.3 Killing Mutations in Input to Set Operators

We also need to kill mutations in the input to the set

operator. For this, we need to ensure that the effect of

the mutation makes a difference in the result of the set

operator.

If the set operator is UNION/UNION ALL and the

mutation to the query is in P, we add constraints to

ensure that the mutation in P is killed. In addition to

ensure that there are no tuples from Q that mask the

changes in the result we add constraints similar to NOT

EXISTS subquery for Q. Similarly data generation can

be done for killing mutations in Q.

We treat INTERSECT and EXCEPT queries as

EXISTS and NOT EXISTS respectively as described

earlier. Mutations of P can be killed by datasets to kill
mutations of the outer query block while the mutations

in Q can be killing by killing mutations in the subquery

block as described in Section 7.4.

9 Handling Join Condition, Group By
Attribute and Distinct Clause
Mutations

In this section, we describe our techniques to kill missing

or additional joins conditions, group by attributes and

DISTINCT keyword. Although our previous work han-

dled joins, group by and distinct clause, these mutations

were not considered.

9.1 Missing or Extra Joins Conditions

Consider the tables student (id, name, dept name),

course (course id, course name and dept name) and

takes (id, course id, sec id, semester, year) from the

University schema in [29]. Consider the query,

SELECT course_id,course_name

FROM student INNER JOIN takes ON(id)

INNER JOIN course ON(course_id)

WHERE student.id = 1234

One of the mutations of the query could be because of

an additional join condition leading to a mutant query

like

SELECT course_id,course_name

FROM student INNER JOIN takes ON(id)

INNER JOIN course ON(course_id, dept_name)

WHERE student.id = 1234

Such errors are common when using natural joins.
For example, if natural join was used in place of ..

INNER JOIN course ON(course id) resulting in student.de-

pt name being equal to course.dept name.

In order to kill such mutations, we do the following.

Let the relations being joined be Ri and Rj . For every

attribute p ∈ Ri such that (a) there is an attribute

q ∈ Rj with identical names and (b) there is no join

condition involving p and q in the original query, we
assert that the values held by the two attributes are

not equal. The original query without the join condition

would give a non-empty result while the mutation would

give an empty result.

Similarly, there could be mutants such that the mu-

tant query contains some missing join conditions. Such

mutations can be killed by the datasets that kill join

type mutations (INNER / LEFT OUTER / RIGHT

OUTER) described in Section 2.2.

9.2 Group By Clause Mutations

In this section, we discuss the mutation of the query

due to the presence of additional attributes or absence

of some attributes in the group by clause.
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9.2.1 Additional Group By Attributes

Consider the following query, Q, to find the number of

students taking each course every time it is offered.

SELECT count(id), course id, semester, year

FROM takes GROUP BY course id, semester, year

Additional attributes included in the group by clause

such as section as shown in the query, Qs, below, could

result in an erroneous query.

SELECT count(id), course id, semester, year

FROM takes GROUP BY course id, semester, year, section

To catch such mutations, we generate a dataset for

each possible additional group by attribute, with more

than one tuple in the group, such that the additional

attribute (section in this case) has different values for
different tuples in the group. This ensures that the in-

correct query produces multiple groups while the correct

one produces only a single group, thereby killing the mu-

tation. Note that because of some selection conditions
resulting in attributes being single-valued, functional

dependencies on group by attributes and equality con-

ditions on group by attributes some of the mutations

with additional GROUP BY may be equivalent to the

original query. We do not consider such attributes.

There are situations where the above approach would

not work e.g. if the group by is in an EXISTS subquery.

The EXISTS condition is satisfied regardless of one

or two groups being present. In such a case if there

is no constrained aggregation the mutation would be

equivalent but if there are aggregation constraints the

mutation may not be equivalent and needs to be killed.

If the group has an aggregation that is constrained,

e.g., SUM(a) > 20 or SUM(b) ≤ 30 the number of

tuples is assigned based on the aggregation constraint.

We try to ensure that the data generated is such that

the aggregation constraints of one of the queries, i.e.,

either of the original query or of its mutant are satisfied,

resulting in a non-empty result on either the original

query or its mutation but not both, hence killing the

mutation.

Let the group by attributes be G. For each possible

additional group by attribute, gi, we generate up to

2 corresponding datasets. In our first attempt, we try

to generate two separate groups, which agree on G

but differ in gi, such that each group (when grouped by

G, gi) satisfies the aggregation constraints, but the group

containing the union of these tuples (i.e., group by G)

does not. Note that this may not be possible in case the

aggregate is of the form SUM(x) > number for values in

the positive range or COUNT(x) > number etc. Hence,

we also try to generate a dataset such that the combined

group satisfies the aggregate but the individual groups

do not. If either succeeds, the mutation will be killed.

9.2.2 Missing Group By Attributes

Another common error is to miss specifying some of

the group by attributes. For example, if one misses

specifying the attribute, semester in the GROUP BY

clause but query Q then the resultant query is clearly

erroneous. Such erroneous queries can be easily detected

if the number of attributes projected out is different.

However, that may not be the case for all queries

where a group by attribute has been missed. For in-

stance, in the above example, if semester was not in the

projection list, the missing group by mutation would

be harder to catch. Although rare, we have found such

cases when the group by is in a subquery whose result
is an aggregation tuple.

We generate datasets to kill such mutations as fol-

lows: Let g1, g2, ...gn be the group by attributes. For

missing group by attribute, gi, we treat the original

query as the one with the missing group by attribute

and its mutation with the additional group by attribute

as the original query. Datasets can be generated using

the techniques for killing mutations of additional group

by attributes.

9.3 Distinct Clause Mutations

Users may erroneously omit the DISTINCT keyword

in the projection list of a select clause. For example,

consider the following query from [29] that finds the

department names of all instructors.

SELECT DISTINCT dept_name FROM instructor

In this query, the absence of the DISTINCT keyword

would lead to the same department name being repeated

which is not desired. We term mutations that add or

delete the DISTINCT keyword to the select as distinct

mutations (DISTINCT of aggregates is covered in Sec-

tion 2.2). To kill such mutations we need a dataset which

results in at least two tuples in the output such that

these tuples are identical on the projected attributes.

We use the technique described in Section 8.2 for gen-

erating tuples with identical projected attributes. For

such a dataset, the query with the DISTINCT keyword

will give only a single tuple as output while the one

without, will give at least two tuples.

In case the constraints are not satisfiable, it is not

possible to have multiple tuples with the same value of

the projected attribute(s). This could happen if one of

the projected attributes is a primary key for the input

to the DISTINCT clause or if the projected attributes

are also used as GROUP BY attributes in the same

query block. For such cases, the DISTINCT mutation

is equivalent.
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10 Other Extensions

From clause subqueries: Our parser turns from clause

subqueries into a tree which can be handled using our

existing techniques. We do not handle from clause sub-
queries that project aggregates, if there are constraints

on the aggregation result in the enclosing query (other

than simple constraints which our techniques handle)

or if the query uses the lateral construct. Handling such

queries is an area of future work.

Handling Parameterized Queries: When generat-

ing datasets for a query with parameters, we assign a

variable to every parameter. The solution given by the

SMT solver also contains a value for each parameter.

It should be noted that since the solver assigns these

values, each dataset may potentially have its own values
for the parameters.

DATE and TIME: We handle SQL data types related

to date and time, namely DATE, TIME and TIMES-

TAMP by converting them to integers.

Floating and Fixed Point Numbers: CVC3 allows

real numbers to be represented as (arbitrary precision)

rationals and hence when populating a real type data

(floating or fixed precision) from the database or query,

we represent it as a fraction in CVC3. When converting

values to fixed precision values, supported by SQL, the

conversion can in theory cause problems in rare cases,

since two rationals generated by CVC3 which are very

close to each other may map to the same fixed precision

number. We have however not observed this in practice

so far.

BETWEEN operator: For queries that contain the

BETWEEN operator, say attr BETWEEN a AND b,

we convert the BETWEEN operator to attr > a AND

attr < b. The datasets for killing selection mutations

are also able to catch mutations where the user intended

the range to include a or b or both.

Insert/Delete/Update Queries: To handle INSERT

queries involving a subquery, and DELETE queries,

we convert them to SELECT queries by replacing “IN-

SERT INTO relation” or “DELETE” by “SELECT *”.

UPDATE queries are similarly converted by creating

a SELECT query whose projection list includes the

primary key of the updated table, and the new values

for each updated column; the WHERE clause remains

unchanged from the UPDATE query. Data generation is

then done to catch mutations of the resultant SELECT

queries.

When testing queries in an application for correct-

ness, we execute the original INSERT, DELETE or

UPDATE queries against the generated datasets. To

test student queries against a given correct query, we per-

form the transformation from INSERT, DELETE and

UPDATE queries to SELECT queries as above for both

the given student queries and the given correct queries,

before comparing them as described in Section 11.

Handling WITH Clause and Views: We syntacti-

cally convert a query using a WITH clause or views by

performing view expansion. The assumptions we make

about the query structure must be satisfied by the re-

sultant expanded query.

ORDER BY clause: ORDER BY clause mutations

include missing ORDER BY clause or attributes, addi-

tional ORDER BY clause or attributes, using ORDER

BY DESC instead of ORDER BY and vice versa. In the

absence of any ORDER BY clause, the order of tuples is

determined by the query plan. Hence, it is possible for a

query without an order by clause or with an incomplete

order by clause, to give a result in the same order as a

correct query, depending upon the chosen plan. Thus,

order by mutations, in general, cannot be caught by

comparing results on different datasets, although we can

use such comparison as a heuristic. Mutations between

ORDER BY and ORDER BY DESC can, however, be

caught by generating appropriate datasets. To kill such

a mutation we generate a dataset having two distinct

values for the order by attributes.

As an alternative to checking results on generated

datasets, mutations involving missing or additional OR-

DER BY clause or attributes can be detected by check-

ing the ORDER BY clauses in the query. However,

care should be taken to handle equivalent ORDER BY

clauses due to functional dependencies, equality pred-

icates between variables, and equality selection condi-

tions.

11 Grading Student SQL Queries

In [6] we describe the XDa-TA grading tool which

uses datasets generated by the techniques presented

in this paper for checking the correctness of student

SQL queries. Here we describe how to efficiently check

student queries against given correct queries. For each

query in an assignment, a correct SQL query is given

to the tool, for which it generates datasets for killing

mutants of that query. To check if a student query is

correct, the results of the student and correct query are

compared on each dataset.
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It is to be noted that we do not aim to prove query

equivalence of student query and correct query. Query

equivalence between two queries Q1 and Q2 can be

proven if we are able to prove that Q1 is contained in Q2

and vice versa4. Thus, query equivalence can be modeled

in terms of query containment. Under set-semantics, it

can be shown that the problem of query containment

is NP-complete for conjunctive queries [8], and
∏p

2-

complete for queries involving inequalities [18,20]. For

bag semantics, the complexity of query containment

is undecidable for conjunctive queries with inequalities
[14]. We tried a sufficient condition for query equivalence,

namely that both Qi and Qi,j generate the same optimal

query plan, but as results in Section 13.4 show, this

approach is often unable to establish equivalence of

correct queries.

Thus, we only aim to catch common errors and it

is possible that a non-equivalent student query may be

marked correct. However, in case we mark a student

query as incorrect we have a dataset on which the stu-
dent query and the correct query gives different results

and hence guarantee that the queries are not equivalent.

The instructor needs to upload the schema and op-

tionally small sample tables, by providing SQL script

files. The instructor can then add assignment questions

in text and correct queries for the same. For each correct

query, the tool then generates datasets, using the tech-

niques of the XData system. Each dataset is tagged with

a label indicating what kind of mutation the dataset was

designed to kill. Student queries are submitted directly

by the tool or can be uploaded in bulk.

For some assignments, it may be possible to write

correct queries using several very different approaches.

Datasets generated for a correct query are designed to be

used to kill mutations of that query, but may or may not

succeed in killing mutations of a different formulation

of the query. It could also happen that the question

in text set by the instructor was ambiguous and there

are multiple ways of interpreting it. For these cases,

the instructor mode allows multiple correct queries to

be uploaded. Datasets generated from all the correct

queries are used while evaluating student queries. The

instructor may set whether datasets of all the queries

need to be passed or only one query needs to be passed
depending on the need. Besides, additional datasets for

the query may also be added if desired.

Let Qi,j denote the jth student’s query submission

for question i. Let CQi,m denote the mth correct query

for question i and Di,m,k be the kth dataset for the

correct query CQi,m.

4 Query containment can be reduced to equivalence similarly
since Q1 ⊆ Q2 ≡ Q1 ∩Q2 = Q1

To evaluate student queries for a given correct query

CQi,m, for each corresponding dataset Di,m,k, the tool

first uploads the dataset to the database, creating ap-

propriate tables. The tables created for this purpose

are temporary tables whose view is limited for only a

session so that there are no conflicts in case multiple stu-

dent queries are being evaluated simultaneously. Next to

compare the result of each student query Qi,j with that

obtained by the correct query, CQi,m, the tool executes

an SQL query of the form

(Qi,j EXCEPT ALL CQi,m) UNION (CQi,m EXCEPT ALL Qi,j)

on the temporary tables.

If the result of the above query is non-empty for

any dataset Di,m,k, the student query Qi,j is marked as
incorrect. If the results of the above query are empty

for all datasets, query Qi,j is deemed correct for the

purpose of grading. The instructor can also decide that

the presence of duplicates does not matter and in this

case the tool uses EXCEPT instead of EXCEPT ALL

in the query above.

An assignment can be marked as a learning assign-

ment or a graded assignment. When the tool is used in

student mode, for graded assignments, the tool accepts

queries from the student and saves the queries for later

grading. Grading can be initiated from by the instruc-

tor. For learning assignments, the system executes the

queries and displays which datasets the query fails on
(this can be done incrementally, one failed dataset at a

time). Tagging datasets with the type of mutation that

the dataset was intended to kill, as mentioned earlier,

helps students understand what the mistake was.

Our approach for checking the correctness of query

relies on killing the mutations of the correct query and

not of the student query. As a result, we may not catch

erroneous student queries that have extra selection con-

ditions. We do catch extra join conditions if the column

names are identical but may miss other extra join con-

ditions also. Consider a query condition x > 3. We

generate datasets for satisfying x > 3, x = 3 and x < 3.

These datasets will catch the mutations involving a

change in the operator and in case the condition is miss-

ing. However, if the student query contains x > 3 AND

x <> 2674, it may be marked as correct since we may

not have any test case to test mutation of x <> 2674.

Since the additional condition could be any arbitrary

condition it is not feasible to generate datasets to catch

such errors. One way to deal with this is to generate

datasets based on mutations of the student query as

well and use these also in grading. These datasets would

catch such extra conditions. Since this requires a lot

of overhead including constraint generation, constraint

solving etc. for all the student queries, we do not imple-
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ment this currently. We did not find any such student

query in our experiment described in Section 13.4.

12 Related Work

The AGENDA toolset can generate test data for an

application, given as input the database schema, the

application source code and certain sample value files.

The data generated is however query agnostic, and may

not catch errors if the selection conditions are not satis-

fied, leading to empty results in all cases. Reverse Query

Processing (RQP) [7] takes as input a query Q and a re-
sult O, and generates input data I such that O = Q(I),

the result of Q on input I. Since the query result needs

to be provided as input, RQP cannot be used to test

correctness of SQL queries.

Qex [32,34] is a tool for generating a dataset and

parameter values for a given parameterized SQL query

using the SMT solver Z3. The goal is to generate data so

that the query has a non-empty result. This corresponds
to the generation of the first dataset in our case. How-

ever, Qex does not address killing of query mutations.

Datasets of Qex may not be able to catch errors in join

conditions, distinct, aggregate, missing or additional

group by attributes as well as missing selection or joins

conditions.

Tuya et al. [31] describe a number of possible muta-

tions for SQL queries. However, they do not handle test

data generation for killing these mutations. They divide

the mutations into four classes: mutations of the main

SQL clauses (SC), mutations of the operators that are
present in conditions and expressions (OR), mutations

related to the handling of NULL values (NL), and re-

placement of identifiers: column references, constants

and parameters (IR). We generate dataset for all of SC,

OR and NL mutations except for the following: muta-

tions related to arithmetic expressions, some mutations

of LIKE patterns, mutations between AND and OR, and

some mutations related to three-valued logic. Currently,

we do not consider IR mutations. Handling the above

mutations is an area of future work. However, we do

consider some mutations that are not covered in [31]

such as join type mutations on alternative join orders

and mutations of the LIKE operator.

Riva et al. [26] introduce rules which they call SQL

Full predicate coverage (SQLFpc) rules, which specify

conditions that must be satisfied by test cases in order

to kill each of a variety of SQL query mutations; further

rules to handle a larger class of SQL constructs and mu-

tations are described in their Web tool [2]. However, they

do not describe how to actually generate data. [30] ex-

tends [26] by generating constraints based on SQLFpc

and solving the constraints using a constraint solver

called Alloy [13]. However, it considers data generation

and mutation killing for only numeric selection condi-

tions and joins. Queries involving strings, aggregation,

subqueries, group by and updates are not handled.

Pan et al. [24] describe Mutagen which, given a

database application, first generates program code mu-

tants and SQL-query mutants by transforming con-

straints from SQL queries to program code, and then

uses PexMutator [35] to generate data to kill the mu-

tants. However, they only handle mutations of conditions

in the where clause; as far as we can tell from their brief

description, the class of mutations they consider is very

small, and in particular, they do not handle aggregation,

subqueries, join type mutations set operators, distinct

mutations and a number of other query features and

mutations that we consider.

The work in this paper extends our earlier work

on XData [28,9,6]; details of the differences and novel

contributions of this paper were described earlier in

Sections 1 and 2.

Olston et al. [22] take a dataflow program and a

database and generate an example dataset such that

the result of each operator (including intermediate op-

erators) in the program is non-empty. However, they

do not handle integrity constraints or check for query

correctness.

There have been a number of papers for testing

database applications. However, these do not address

the problem of testing queries in the applications. Emmi

et al. [10] and Pan et al. [23,25] describe approaches to

testing applications based on creating database states
and test inputs, which can ensure code coverage. Kapf-

hammer and Soffa [16] similarly consider test adequacy
of database driven applications.

13 Experimental Results

We implemented the techniques for data generation de-

scribed in this paper, as extensions to the XData system.

We show that our techniques for constrained aggrega-

tion (Section 13.1) and subqueries (Section 13.2) are

able to generate non-empty datasets and kill mutations

in a number of cases. In Section 13.3 we show that our

techniques are capable of generating datasets and killing

mutations for the queries in the TPC-H benchmark. In

Section 13.4 we evaluate our grading tool and show that

it is better at catching student query errors than fixed

datasets or correction by TAs.

Each of the techniques we describe targets a different

query construct or mutation and hence it does not make

sense to compare the different techniques that we have

proposed with each other.

19



13.1 Constrained Aggregation

In Section 6.3.1 we described our approach for esti-

mating the number of tuples for the purpose of data

generation for queries containing constrained aggrega-

tion. In this section, we provide experimental results

on the estimation of number of tuples per relation and

subsequent data generation for a number of queries con-

taining constrained aggregation. The objective is to see

if the tuple assignment technique (Section 6.3.1) assigns
tuples in a manner that (a) can produce datasets to

generate to non-empty result on the original query (this

is the first dataset as mentioned in Section 2) and (b)

kill mutations related to the HAVING clause (aggre-

gate mutation and comparison operator mutation of the

HAVING clause).

For this experiment, queries which involve constraints

on aggregate operators along with one or more GROUP

BY attributes were chosen. (The list of queries is pro-
vided in Appendix E.) Aggregates in both outer query

block and subqueries are considered. We also manually

generated non-equivalent mutations by mutating the

comparison operator (20 mutations) and aggregate op-

erator (16 mutations) for the chosen queries, to test if

the datasets could kill these mutations5.

The results are shown in Table 3. For each con-
strained aggregation, the Tuples column shows the num-

ber of tuples assigned to each base relation. The columns

Comparison Mutations and Aggregate Mutations show if

all the non-equivalent mutations of comparison operator

in HAVING clause and aggregate mutation respectively

were killed by the generated datasets or not. Query CA8
had two constrained aggregations, one in a subquery

and one in the outer query block which are labeled as

CA8a and CA8b respectively.

The datasets generated by XData was able to pro-

duce non-empty results on all queries. In terms of killing

mutations, 35 out of the 36 mutations were killed. The

mutation from MAX to MIN was not caught for Test

Case CA2. For killing mutation on MAX to MIN we need

two distinct tuples, one which satisfies the aggregate

constraint and one which does not. Our tuple assignment

method assigned only one tuple to the relation that had

the MAX aggregate value and hence this mutation was

not caught. Handling such cases is an area of future

work.

5 We do not use any automated tool to generate mutations.
The mutations generated by an automated tool may or may
not be equivalent to the original query. If our dataset fails
to kill some of the mutations we would not be sure if that
was because of the incompleteness of our tool or because of
equivalence of mutation and the original query.

Test Tuples Comparison Aggregate
Case Mutations Mutations
CA1 1,2

√ √

CA2 1,1,2
√

×
CA3 2,1,2

√ √

CA4 3,3,1,3
√ √

CA5 1,2,2
√ √

CA6 1,2,1,2,2
√ √

CA7 1,1,3
√ √

CA8a 1,2,2
√ √

CA8b 1,2,2
√ √

CA9 5,5
√ √

Table 3: Tuple estimation for constrained aggregation

13.2 Subqueries

In Section 7 we described various techniques for generat-

ing test data and killing mutations for queries containing

where clause subqueries. For this experiment, we chose

queries involving various subquery connectives both

with and without aggregates (The list of all queries is

provided in Appendix E) and check to see if XData
is able to generate a dataset that produces non-empty

result on the original query. We also manually gener-

ated non-equivalent mutants by mutating the subquery

connective (20 mutations) and the conditions in the

subquery (20 mutations) to test if the datasets could

kill these mutations5.

For all the queries considered XData could generate

a dataset that produced non-empty result on the original

query. The datasets generated by XData were able to

kill all of the 40 query mutations that we considered.

13.3 TPC-H queries

We also tried generating test data and killing mutations

for queries from the TPC-H benchmark. We asked a few

volunteers (who had not worked on the XData project)

to generate specific types of query mutants. We tested

to check if the datasets generated by XData could kill

these mutations or not. In case, XData was not able to

kill the mutations we examined to check if the mutant

was equivalent to the original query or not. We only used

non-equivalent mutants for measuring the performance

of XData.

Since our parser did not support certain query con-

structs we made minor changes (mainly syntactic) to

the queries so that it could be parsed and the datasets

could be generated. However, for checking whether the

datasets generated a non-empty result or not, and for

generation and killing of mutations we used the original

queries.

We were able to successfully generate datasets for

17 out of the 22 queries. Of the 5 queries for which our
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Mutation Mutants Mutants
Type Generated Killed

Selection (Comparison) 10 10
Join Type (INNER /
OUTER)

8 8

Aggregation (Distinct/
MIN vs. MAX)

9 9

String Selection (String
Comparison)

7 7

String Like 5 5
Missing Joins Conditions 13 13
Having Clause (Compari-
son Operator)

2 2

Subquery Connective 6 6
Changed Group By 21 20
AND vs. OR 16 16
Arithmetic Operator 13 12
Total 110 108

Table 4: Number of mutants caught on TPC-H queries

techniques failed to generate correct datasets, 4 queries

had query constructs which are not currently handled

(subqueries that have aggregates with expressions, ag-

gregate value compared to a subquery and aggregate

in a from clause subquery). One query failed because

the CVC3 solver crashed while generating datasets for

that query. Extending our system to handle these con-

struct and migrating to newer version of CVC or using

a different solver such as Z3 is an area of ongoing work.

The number of the different types of mutations killed

across all queries is shown in Table 4. In addition to the

mutations that our techniques explicitly target, we also

tested queries with mutations of arithmetic expressions

(replacing one arithmetic operator with another).

Overall XData was able to kill over 95% of the non-

equivalent mutants that we obtained. For TPCH query

4, XData could not generate a dataset for killing extra

group by attribute mutations and hence the correspond-

ing mutation was not caught. Of the 13 queries with

arithmetic operator mutations all but one were killed

even though we do not explicitly target these mutations;

explicitly targeting them is an area of future work.

13.4 Grading

We use the tool described in Section 11 to grade student

queries. In order to compare grading done by XData to

fixed datasets and the grading done by TAs, we used

14 SQL assignments, each of which was answered by
students of an undergraduate database course at IIT

Bombay. We omit questions which asked students to

create DDL statements.

For each question, a correct SQL query CQi was

used to generate datasets. The correct SQL queries are

shown in Appendix E. For the 9th assignment question,

the query could be written in 2 quite different ways

which we denote CQ9a and CQ9b; we generate datasets

for both query formulations, and the results for CQ9 are

using the combined sets of datasets. Query CQ3 was

assigned at a point in the course where students had not

been taught about the DISTINCT clause, and hence we

set the testing tool parameters to ignore duplicates in

the results of the correct query and the student query.

The time taken for generating all the datasets for

these queries (including the time taken by our code

and the CVC3 solver) ranged from 11 to 90 seconds,

on a computer with an Intel(R) Core(TM) i5-2500K

3.30GHz CPU, and 8 GB of memory, running Ubuntu.

The number of datasets generated ranged from 2 for

CQ1 to 25 for CQ9a. Each dataset had a very small

number of tuples, typically less than 5 per relation. The

maximum number of tuples for a relation was 16.

As comparison points, we also tested the queries

with two sample University databases provided with the

textbook by Silberschatz et al. [29], and with the result

of manual correction by course TAs. The first University

database, which we call USm is a small database which

was manually created by the authors of [29] to catch

common errors; the second larger database, which we call

ULg is a larger database. The TAs used a combination

of testing against sample databases they created, and

their own reading of the queries.

We also tried an alternate way to grade student

queries, by comparing the optimal query plans of the
correct query with the optimal query plans for the stu-

dent queries. If the plans match we flag the query as

correct. We use PostgreSQL with the VERBOSE flag

set to ensure that we get projected attributes of the

query as well. Note that equivalent queries may not

have identical plans. For example, a condition x > 3 is

equivalent to x >= 2 when x is an integer, but plans

using these alternatives would be considered different.

Also, the optimizer could find different plans for dif-

ferent ways of expressing the same query (especially

true with subqueries). In our experiments we found that

most of the student queries did not have the same plan

as the correct query, even if they were correct (verified

manually on sample cases). For CQ3 the optimizer chose

different join plans and hence most of the queries did

not match. Same was the case with CQ7, CQ8, CQ13

and CQ14. For these queries, less than 5% of the queries

were marked correct.

The result of the evaluations is shown in Figure 1.

Detailed evaluation is shown in Table 7 in Appendix E.

For XData, USm and ULg the query is marked as incor-

rect iff there is a dataset that produces different results

on the correct query and the student query. Hence for

these methods we can guarantee that a student query
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Fig. 1: Number of incorrect queries caught

is marked incorrect only when it is not equivalent to

the correct query. Consequently, the number of queries

marked incorrect can be used as a measure of the ef-

fectiveness of the technique. We also tried to use the
combination of USm and ULg grade queries. The num-

ber of incorrect queries caught turned out to be the

maximum of the number of incorrect queries caught by

USm and ULg.

These results indicate that, overall, the datasets
generated by XData were able to catch more incorrect

queries than both USm and ULg, the two University

datasets from [29]. For CQ5, CQ8 and CQ14, in partic-

ular, our tool was significantly more efficient than the

University datasets.

As compared to TAs, our datasets performed signif-

icantly better on many queries, including CQ3, CQ4,

CQ5, CQ6, CQ8 and CQ9. The actual effectiveness of

TAs is a little better than what the table indicates, since

there were some queries where students made minor er-

rors such as including extra attributes, which the TAs

decided to ignore as irrelevant, but which were caught

by all the datasets.6

For query CQ5 and CQ8, some students had per-

formed joins on the wrong tables, but these queries

gave a correct result on datasets created by the TAs for

checking the queries, and were marked as correct.

For CQ8, the University dataset did not have any

course taught by two different instructors in Spring 2010,

and hence a missing distinct keyword in the select clause

was not detected. The TAs too did not enforce the check

for distinct, which was required for this query.

In contrast, for CQ4, the University dataset USm

had a student who had taken CS-101 twice and hence

performed as well as XData. Again, the TAs had ignored

the absence of a distinct specification. For CQ5, again

6 If students had been told that their queries would be
graded by a tool, they would have probably taken more care
to avoid such errors.

the University datasets USm and ULg both had some

courses with two sections, which caught missing distinct

specifications; in this case the TAs did check for the

presence of the distinct specification.

For CQ9a a large number of incorrect queries were

caught by XData based on missing group by attributes

and missing distinct clause. For CQ14, the data genera-

tion and mutation killing technique for NOT EXISTS

was essential for catching a large number of student

query errors.

Discussion:

In order to get a measure of our accuracy or complete-

ness of our techniques on these queries we need an

oracle to identify which queries are correct and which

are not. This is very difficult for complex queries and

doing this for classes with many students is extremely

time-consuming. The closest option is human evaluation.

However, our tool in its current version outperforms TAs
(indicating TAs are not infallible). Hence, it is difficult

for us to provide any completeness results for our grad-

ing tool.

14 Conclusion

In this paper we have addressed the issue of testing

SQL queries and automated testing of SQL student

assignments. We used the XData system which we built

earlier, to generate test datasets for detecting errors,

and realized that there were several limitations that

needed to be addressed. We described several novel

extensions to address these limitations. We also tested

the efficacy of our test generation techniques for grading

SQL queries submitted by students, and showed that

our techniques outperform fixed (query independent)

datasets, as well as TAs in terms of catching errors,

while avoiding the drudgery of manual correction. Our

XData system has great potential for easing the life of

database application developers and testers and also
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to database course instructors particularly to those of

MOOCs.

We have successfully used the grading tool in a

UG database course at IIT Bombay to correct student

queries. The grading tool is available at http://www.

cse.iitb.ac.in/infolab/xdata and can be used by

course instructors for grading queries.

Areas of future work include handling some SQL

features which we do not currently support, or support

only partially, and handling further classes of mutations.

These features include handling subqueries within a sub-

query, arithmetic expressions and mutations involving
replacement of identifiers. Another area of future work is

to award partial marks to student queries in a way that

reflects how close the student query is to some correct

query.
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Appendix

A Cardinality Estimation for Join
Inputs

The tuple estimation for each relation for constrained

aggregation on join result is done in 3 steps. First we

construct a join graph. Then we infer attributes to be

added to uniqueElements and singleValuedAttributes. In

the third step, we assign cardinality to each relation

such that the resulting number of tuples is n.

Step 1: Construct Join Graph

We construct a join graph G = (R, E ), with each relation

in the query as a vertex. The join conditions from one

table to another are represented by a single edge between

the nodes. Figure 2 shows a join graph involving relations

A, B and C. There are join conditions between A and
B, and between B and C. However there are no join

conditions between A and C. Inferred join equalities are

also added to the graph. For example, the join conditions
A.a = B.b and B.b = C.c imply that A.a = C.c is also a

join condition and hence it would be added to the graph.

Note that this may introduce a cycle in the graph; our

algorithm can work with cyclic join graphs.

Step 2: Infer Attribute Properties

Next we apply the following sets of rules to infer prop-

erties of attributes

Rule 1: Every group by attribute is a single valued

attribute.

Rule 2: Every set of attributes declared as primary

key or unique key, is unique in the group.

Rule 3: Every attribute which appears in conjuncts

of the form A.a=constant is a single valued attribute.

Rule 4: If each attribute of any uniqueElements [Ri]

is a single valued attribute then all attributes of that

relation are single valued attributes.

Rule 5: If any attribute, Ri.x, is a single valued

attribute then every attribute of equivalence class (Sec-

tion 2.2) in which Ri.x is present becomes a single valued

attribute. For example, if the join condition is A.a =

B.a and A.a is single valued, B.a also becomes single

valued.

Rule 6: If an attribute of a unique element is sin-

gle valued then remaining attributes of unique element

become unique. We apply this rule recursively on the

unique element to get a minimal unique element. We

then drop all non-minimal sets from uniqueElements.

For example, if (A.a, A.b, A.c) is unique and A.a is

single valued then (A.b, A.c) is unique and is added

to uniqueElements[Ri]. In this case (A.a, A.b, A.c) is

dropped from uniqueElements[Ri].

The rules are applied according to Algorithm 2 to

infer which attributes are added to uniqueElements and
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Algorithm 2 : getAttributeInferences()

Inputs: joinConds[Ri, Rj ]
groupByAttributes
unique keys and primary keys of relations ∈ query

Output: Effective uniqueElements, singleValuedAttributes
for the query

1: Build equivalence classes using joinConds[Ri, Rj ],
∀Ri, Rj ∈ R

2: Apply Rule 2 and update uniqueElements
3: Apply Rule 1, Rule 3 and update singleValuedAttributes
4: while change in uniqueElements or singleValuedAt-

tributes do
5: Apply Rule 4, Rule 5 and update singleValuedAt-

tributes
6: Apply Rule 6 and update uniqueElements
7: end while
8: return uniqueElements, singleValuedAttributes

which to singleValuedAttributes.

Step 3: Assign Cardinality

We define some more terms

– joinAttributes[Ri, Rj ]: attributes of relation Ri that

are involved in join conditions with relation Rj .

– unique[Ri, Rj ]: {Sk | Sk ⊆ joinAttributes[Ri, Rj ] ∧
Sk ∈ uniqueElements[Ri]}.

– nRi
: number of tuples assigned to relation Ri.

In order to find the number of tuples for each relation
we use the attributes inferred using Algorithm 2 along

with the following rules.

Rule 7: If nRi=n, n > 1 and unique[Ri, Rj ] 6= ∅ then

nRj is set to n. We also infer further unique elements

as follows. For each Sk ∈ unique[Ri, Rj ], let S′k be the
attributes from Rj that are equated to Sk. Then add

S′k to uniqueElements[Rj ].

The intuition behind Rule 7 is as follows. Consider

the join of two relations A and B. Let the join condition
be A.a = B.a and suppose that {A.a} ∈ uniqueEle-

ments[A]. Here joinAttributes [A, B]={A.a}, joinAt-

tributes [B,A]={B.a}, unique [A, B]={A.a} and unique

[B, A]=∅. If the cardinality of A is n, since A.a is unique,

it must have n different values. The relation B has join

condition with A.a which belongs to uniqueElements[A].

So B must contain n tuples with distinct values for the

attribute B.a across n tuples and each value matches

with the value of A.a for one of the tuples in Ri. So the

cardinality of B become n and B.a becomes a unique

attribute.

Implementation Rule 1: If nRi
=n, n > 1 and Ri

has a multi attribute unique element, mu, such that

every attribute of mu participates in some join condi-

tions but joinAttributes [Ri, Rj ] ⊂ mu for all j, then

Fig. 2: Join Graph

for at least one relation Rk that joins with Ri joinAt-

tributes [Ri, Rk] is unique and nRk
= n. One such Rk is

picked and we add joinAttributes [Ri, Rk] to uniqueEle-

ments[Ri] and joinAttributes [Rk, Ri] to uniqueElemen-

ts[Rk].

The intuition is as follows. Consider the join graph

shown in Figure 2. Let joinConds[A, B]={A.a=B.a},
joinConds[B, C]={B.b=C.b}. Let (B.a, B.b) be unique.

Here, joinAttributes [A, B] = {A.a}, joinAttributes [B,

A] = {B.a}, joinAttributes [B, C]={B.b}, and joinAt-

tributes [C, B]={C.b}. Further, unique [A, B]=∅, unique

[B, A]=∅, unique [B, C]=∅, unique [C, B]=∅.
Suppose cardinality of B is n. Since unique[B, A] =

∅, is possible that nA =1 such that A.a matches with

all values of B.a across n tuples. Here B.a contains

same value across n tuples. Similarly, we can choose nC
= 1 and B.b will have the same across n tuples. Now

both B.a and B.b have same values across all n tuples.

But (B.a, B.b) must be unique across n tuples. So the

assignment of cardinalities is incorrect. Hence at least

one of B.a or B.b must be chosen to be unique, and this

will cause one nA or nB to be n.

Note that in this example had (B.a, B.b, B.c) been

unique, every attribute of mu does not participate in

any of the join conditions. In this case, the rule is not

applicable and both A and C may have a cardinality of

1. To generate n tuples for B such that the join results

in n tuples, B.c can have n distinct values while B.a

and B.b have same values corresponding to A.a, C.b
respectively.

We differentiate this rule from others since this rule

can have several possible outcomes as opposed to the

other rules for which the outcome is definite and unique.

One outcome is chosen. The choice of which of the

joining relations is assigned cardinality as n can be

made by the solver or as heuristic the choice can be

made arbitrarily; we describe these below.

Cardinality Inference Algorithm

Let the aggregated attribute be R.a. For getting the

cardinality of each relation, using the rules and the given

join conditions of the relations we can encode the tuple

assignment problem in the form of constraints in CVC3.

We add the following constraints in CVC3.

– constraints ascertaining singleValuedAttributes and

uniqueElements for each relation

25



– for each relation such that all attributes are single

valued (Rule 4) constraints to ensure that the number

of tuples is 1

– constraints for Rule 7 and the Implementation Rule

1 for all the relations in the query as applicable

– constraints to ensure that the final count after joining

the tables is n

– in case n values are required for some attribute R.a to

satisfy some aggregate condition we add constraints

to ensure that the relation R has n tuples. For exam-

ple, consider a case where SUM(R.a) = 17, where
a is an integer attribute and there is a constraint

R.a ≤ 5, we need at least 4 tuples for the given group

of R and they cannot all be the same. It is not possi-

ble to satisfy the aggregation condition if we assign

a single tuple to R, the join of R with other relations

produces 4 tuples for the group. Similar is the case

with SUM DISTINCT on an integer attribute.

On solving this set of constraints, we get the number

of tuples for each relation.

The constraint approach for tuple generation works

well if the number of attributes is not very large. In

practice, we use a simple and fast heuristic approach
described as follows. If any non-empty set of attributes of

a relation forms a unique element and every attribute of

that unique element is a single valued attribute then that

relation must contain a single tuple (explained in Rule 4).

For such relations, the only possible choice of cardinality

is 1. Of the remaining relations, the heuristic algorithm

chooses one relation and assigns to it a cardinality of n,

making it the root node. The count of all other nodes

of the join graph, nRi
is initialized as 1. The root node

(Rr) is then used as a starting relation to calculate
the actual cardinality for other relations using Rule 7

and Implementation Rule 1. The procedure for this is

described Algorithm 3. If the heuristic fails we use the

constraint approach.

B Solving String Constraints

In this section, we describe our techniques to solve

string constraints. We also show some more experimental

results comparing our string solver to other available

string solvers.

B.1 String Solver

In this section we describe the working of our string

solver. To illustrate our method we use the following set

of constraints as an example

Example 2

A > B

A like ‘%pqr%’

Algorithm 3 : getActualCardinalityHeuristic()

Inputs: G = (R, E): Join graph
singleValuedAttributes
uniqueElements
Rs: relation chosen as root node (cardinality can be n)

Output: assigned cardinality nRi
, ∀Ri ∈ R

1: ∀Ri ∈ R, initialize nRi
← 1

2: nQueue = ∅
3: nRs

= n.
4: nQueue.enqueue(Rs)
5: while nQueue 6= ∅ Ri ←nQueue.dequeue() do
6: for each edge Ek ∈ E from Ri to Rj do
7: prevCardinality ← nRj

8: Apply Rule 7 from Ri to Rj .
9: if change in uniqueElements[Rj ] or

(prevCardinality=1 and nRi
= n) then

10: nQueue.enqueue(Rj)
11: end if
12: end for
13: if Implementation Rule is applicable on Ri then
14: Apply Implementation Rule 1 on Ri, let Rk be the

relation for which cardinality if to be changed to n
15: prevCardinality ← nRk

16: nRk
← n

17: if change in uniqueElements[Rk] or
prevCardinality=1 then

18: nQueue.enqueue(Rk)
19: end if
20: if change in uniqueElements[Ri] on Rule 8 then
21: nQueue.enqueue(Ri)
22: end if
23: end if
24: end while
25: return nRi

, ∀Ri ∈ R

B ilike ‘_abc’

C >= B

C = ‘Biology’

A = E

E like ‘%abc%’

F >= B

G like ‘Bio%’

In this example for the purpose of simplicity of repre-

sentation we consider that the strings may take only

alphabetical values.

Our solver works as follows.

Step 1: Collect Conditions.

From all the constraints required for generating a dataset

for the query, in the first step, we separate and collect the

string constraints, i.e., selection conditions on strings,

like conditions, and string length conditions.

Step 2: Reduce Number of Conditions.

Next, we reduce the number of string constraints by

removing the conditions containing the equality operator

as follows:

a) For each condition of the kind Si = consti, where

Si is a string variable and consti is a constant, we
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replace all occurrences of Si with consti. This may lead

to constraints of the form consti relop constj or consti
likeop pattern. Using string operations, we then verify

if such constraints are satisfiable. If they are satisfiable

then we remove the equality conditions else we infer that

there is no possible solution to the given set of conditions.

For example, if the conditions are A =‘Comp’ and A

LIKE ‘Bio%’, replacing the value of A as ‘Comp’ in the

latter condition leads to an unsatisfiable constraint.

b) For constraints of the form Si = Sj , we replace all

occurrences of Si by Sj in all constraints and remove the
constraint Si = Sj from the set. When an instance of Sj
has been found, after solving the rest of the constraints,

we assign the same value to Si.

In Example 2 we assign C= ‘Biology’ and replace all

occurrences of C with this value. Replacing C, in C>=B

we get ‘Biology’>=B. We rewrite this as B<=‘Biology’.

Since A=E is a constraint we replace all occurrences of

A by E. After this step the constraints are

E > B

E like ‘%pqr%’

E ilike ‘_abc’

B <= ‘Biology’

E like ‘%abc%’

F >= B

G like ‘Bio%’

Step 3: Group Related Variables.
Next, we group variables that depend on each other,

i.e., if Si relop Sj or Si likeop Sj is present in the set of

constraints then Si and Sj are in the same group. Once

these groups are formed, we then solve the constraints

for one group at a time. This grouping of variables helps

in reducing the number of constraints that need to be

solved at a time. In the above example E, B and F

are dependent on one another and are hence grouped

together in a group while G is put in another group.

For each group, we construct a graph, where the

variables form the vertices. Let vertex Vi represent the

string variable Si. A constraint of the form Si < Sj or

Si ≤ Sj is represented by a directed edge from Vj to Vi
in the graph. Constraint Si <> Sj is represented by an

undirected edge between Vi and Vj .

The graph for our example case would look like the

one shown in Fig. 3 where the dotted edge between F

Fig. 3: Dependency among string variables

and B implies ≤ and the edge between E and B implies

<.

Additionally, for each string variable, Si, we store

the following information.

– MaxLength: The maximum allowable length of the

string. It is initially assigned a default value. This

value is modified based on string length constraints

on Si, if any.

– MinLength: The minimum allowable length of the

string. Similar to the MaxLength this also has a

default value and is modified based on length con-

straints.

– NotEqualLengths: This is a set of values of length

values not allowed for Si. This captures constraints

of the kind strlen(Si) <> constant.

– Less: list of variables with the value less than Si
– LessEqual : list of variables with the value is less than

or equal to Si.

– NotEqual : list of variables with the value not equal

to Si.

– OtherConstraints: This list contains constraints of

the form Si relop constant or Si likeop pattern.

Step 4: Choose the Variables to Solve.

We traverse the graph and first collect all vertices V1, .., Vk
whose outdegree is 0. These vertices represent the string

variables whose value is the lowest amongst all compa-

rable variables. In our example we choose the variable

B.

If we do not find any such variable, it implies that

there is a cyclic dependency among variables with each

variable being less than (equal) to that some other

variables. Essentially, this means that either all the

variables in that cycle are equal to each other, if all

edges are ≤, or that the given set of constraints is not

satisfiable, if at least one of the edges is <. We first solve

for these variables (with outdegree 0), one by one, using

the function SolveOneVariable (described below) which

finds the lexicographically smallest string possible.

After obtaining the solution for a vertex, say Vi (and

hence string variable Si), for each vertex Vj (string Sj)

that has an edge to Vi in the graph, we add appropriate

constraints, using the solution of Si to the list of con-

straints for Sj . We then remove Vi from the graph and

solve for the remaining vertices by repeating this step

on the modified graph.

We now describe the function SolveOneVariable for

finding the solution for vertex, Vi. This function consists

of two parts a) building an automaton and b) finding

the lexicographically smallest string on this automation

that satisfies all the constraints.

Step 4a: Building an automaton: We first convert the

constraints of the form Si relop constant and Si likeop
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Algorithm 4 getSmallestString (state, strBuilder, max,

min, notEqualLength, length)

1: if length>= min ∧ length<=max ∧ state ∈ finalState ∧
length /∈ notEqualLength then

2: Return strBuilder
3: end if
4: if length>max then
5: Return null
6: else
7: tran = state.getTransitionsSorted
8: for ∀ c ∈ tran do
9: append c to strBuilder {Each transition is on a char-

acter}
10: str= getSmallestString(c.to, strBuilder, max, min,

notEqualLength, length+1)
11: if str 6= null then
12: Return str
13: end if
14: remove last char from strBuilder
15: end for
16: end if
17: Return null

pattern to Si matches re where re is the corresponding

regular expression in Java. This conversion is made

by functions written specifically for each LIKE and

comparison operator, as illustrated by the following

examples of conversion:
S1 > ‘Bio’→ ‘[C-z]\w*|B[j-z]\w*|Bi[p-z]\w*|Bio\w+’

S1 LIKE ‘Bio%’ → ‘Bio\w*’

S1 LIKE ‘Bio ’ → ‘Bio\w’

S1 ILIKE ‘Bio%’ → ‘[B|b][I|i][O|o]\w*’

(\w denotes a wild character)

We build an automaton, A for the identity pattern

(‘\w*’). Then for every constraint that must be satisfied

by Si, we create another automaton, B and modify the

automaton A := A ∩ B. We use a slightly modified

version of the automaton package dk.bricks.automaton

[21] operation on automata. We use our own methods for

converting a given Java compatible regular expression

to an automaton. If the number of constraints on a

variable is above a certain threshold we minimize the

automaton resulting from A ∩B at each step so as to

improve the performance.

Step 4b: Finding the lexicographically smallest string

: Once we have the minimized automaton, A, for a vari-

able, Si, we find the lexicographically smallest possible

string within MaxLength and MinLength for that Si. To

find such a string, we use a backtracking approach which

traverses the automaton graph in a depth-first manner.

At each step we check if (a) the current depth >= Min-

Length and <=MaxLength, (b) the state is a final state,

(c) the current depth is not present in NotEqualLengths.

If these conditions are satisfied then we return the string

obtained by the traversal. If these conditions are not

satisfied then even after reaching the dept of MaxLength,

we backtrack. If after traversing the entire graph, we do

not find a string that satisfies the conditions then we

return a null value. Details are provided in Algorithm 4.

For our example, an automaton is created for B us-

ing the constraints on B i.e B<‘Biology’. The smallest

possible value for B is found to be ‘A’. We then add the

constraint E>‘A’ to E and F>=‘A’ to F and remove

B from E.Less and F.LessEqual. Now the remaining

variables E and F do not have any dependency on each

other and can be solved in any order. We create appro-

priate automata for both the variables and find suitable

values using Algorithm 4. Now in order to satisfy the

condition A=E after solving the variables B, E and F

we put the value of A the same as the one obtained for

E.

Constraints containing “<>” and “∼=” :

We handle conditions of the kind Si ∼= Sj and Si <>

Sj , where both Si and Sj are string variables, such that

one of Si and Sj is unconstrained, i.e., there are no

other string constraints constraining the value of one

of them. For such cases, we first find an assignment
to the constrained variable and then assign a value of

other variables that satisfies the <> or ∼= constraint

as applicable.

B.2 String Solver Performance

The experiment in this section focuses on the perfor-

mance of our string solver as compared to other solvers

in terms of the time taken to solve string constraints.

The experiments for HAMPI [17], Kaluza [27], CVC4

[3], SUSHI [11] and XData string solver were run on

a virtual machine with 4GB RAM and a dual core

CPU running Ubuntu Linux. For Rex [33] we used a

virtual machine with the same configuration running

Windows 7.

For the first experiment, we study the efficiency of

the string solvers in a variety of common cases. The test

cases for this experiment are listed in Table 5. We include

a mix of satisfiable and unsatisfiable cases. The last 3

test cases contain multiple string variables and can only

be solved with our string solver. We include these cases

to show that the performance does not drop much even

when solving for multiple variables. For solvers other

than the XData string solver the expressions in the form

of A likeop/relop expr etc. were manually converted

to regular expressions of the format recognized by the

solvers. The running time does not take into account the

conversion. For XData string solver we fed constraints

in the same form as in the SQL queries and let XData

convert these to regular expressions.

The time taken by different string solvers for this

experiment is shown in Table 6. The test cases that
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Test
Constraints

Case
S1 A like ‘Comp ’
S2 A like ‘Mr%’
S3 A ilike ‘%sr%’
S4 A like ‘Comp%’, A like ‘%Sc’
S5 A like ‘Comp%’, A like ‘ Sc’
S6 A > ‘Bio’
S7 A like ‘%Sc’, A like ‘Life%’,

A.length > 6
S8 A < B, B like ‘Bio%’,

A like ‘CSE%’
S9 A<B, B like ‘Bio%’, B.length>4,

A like ‘%101’
S10 A > B, A like ‘%pqr%’, B ilike

‘ abc’, C >= B, C = ‘Biology’,
A = E, E like ‘%abc%’, F >=
B, G like ‘Bio%’

Table 5: String solver test cases

Test
HAMPI Kaluza SUSHI CVC4 Rex

XData
Case solver
S1 150 706 22 6 124 4
S2 136 706 34 6 140 4
S3 139 708 39 9 140 4
S4 - 2444 175 17 168 15
S5 - 671 160 19 156 14
S6 137 380 54 * 256 4
S7 - 653 - 20 - 11
S8 - - - - - 23
S9 - - - - - 11
S10 - - - - - 30

Table 6: Time taken by string solvers (in ms)

cannot be solved by a particular solver7 is marked with

a “-” and cases that ran for a very long time (>20 min)

but still did not terminate are marked with a “*”. In

terms of time taken, CVC4 and the XData solver turn

out to the most efficient ones for these cases, but CVC4

cannot handle comparison among multiple variables. 8

We conducted two experiments to test the scalability

of the solvers. Scalability can be measured in terms of

length of string that can be successfully solved by the

solver or by the number of simultaneous constraints it

can handle.

For the second experiment, we use the experimental

benchmark from Rex [33] to measure the performance

as the length of the string required in the output varies.

The constraint to be satisfied by the string is that must

7 HAMPI currently has a known bug because of which it
cannot handle more than one constraints on the same variable
in some cases. Test cases 4, 5 and 7 failed because of this.
8 We tried to encode string comparison as user defined

functions in CVC4 but with these functions the execution did
not terminate even after 20 min.
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match intersection of regular expressions

\w ∗ [a− c] ∗ a[a− c]{n + 1}\w∗
and

\w ∗ [a− c] ∗ b[a− c]{n}\w∗
n is a parameter which we varied from 0 to 1000. The

results for this experiment are shown in Fig 4.

CVC4 and HAMPI failed to generate any result

for any value of n and hence could not be included.

KALUZA gave the result as UNSAT (cannot be satisfied)

for n > 6 while SUSHI ran out of memory for n > 13.

Rex and XData solver were able to successfully generate

string till n = 1000. In terms of time taken, the XData

string solver turned out to be the most efficient for most

cases.

For the third experiment, we measure the perfor-

mance in terms of time taken to solve varying number

of constraints. For each n the constraint to be satisfied

is that the string must match the intersection of regular

expressions \w ∗ [a− c] ∗ b[a− c]{i}\w∗, ∀i, 0 ≤ i ≤ n.

We varied n from 0 to 15. The results are shown in

Fig 5.

Here again CVC4 and HAMPI failed to generate

any result any value of n > 0 and hence could not

be included. KALUZA gave UNSAT result for n > 7.

SUSHI and Rex ran out of memory for n > 9 and n > 6

respectively. In this experiment also the XData solver

turned out to be the most efficient and did not run out
of memory even at n = 15.

C Algorithm To Ensure No Extra Tuples

The presence of additional tuples (created, for example,

due to repeated relations or foreign key dependencies)

may change the intended result of a query on the gen-

erated test dataset. For some cases like constrained

aggregation and subqueries the additional tuples may

prevent the generation of desired tuples, and the killing
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of mutations may be affected. To avoid the change in the

intended result we add constraints preventing additional
tuples from altering the result; details are described in

Algorithm 5. We assume for now that the query tree

has only joins and selections.

The algorithm takes as input (1) the query tree

for which we do not intend to generate any additional

tuples, (2) the tuples generated for the query tree and (3)

additional selection conditions for correlation conditions

or group by attributes equated to a particular value.

The first step of the algorithm is to create a list of
relations, along with the join and selection conditions for

the given query tree, which we call flattening. To flatten

the tree we recursively traverse the tree. For INNER

JOIN we add both its left and right children to the

flattened tree i.e. the function makes calls flatten(left)

and flatten(right) and returns the union of the lists along
with the join conditions. For the LEFT OUTER JOIN

‘no extra tuples’ can only be ensured if there is no extra

tuple from the left input. We consider only left input

for flattening i.e. the function calls flatten(left) and

returns the list returned by the function. Similarly for

RIGHT OUTER join we consider only the right input for

flattening. For a relation, flattening returns the relation

with its selection conditions. For example, we flatten

(R1
–
–1

θ1
R2) 1θ2 (R3 1θ3 R4) to 1θ2,θ3(R1, R3, R4).

In the subsequent steps we take the join conditions

present in the flattened tree and assert constraints to

ensure that for every combination of tuples such that at

least one tuple is not present in the allowed tuple range,

at least one of the selection, additional selection or join

conditions in the flattened query is not satisfied.

We implement the condition, ir1 ∈ AT [R1] by check-

ing that the primary key value is not equal to the pri-

mary key of any tuple in AT [Ri]. This is because if a

tuple outside the allowed tuples range has the same

Algorithm 5 : genConstraintsForNoExtraTuples
Inputs: T = Query tree

AT = Map of allowed tuples for each relation
ASel = Additional selection conditions

Output: constraints to ensure no tuple is projected from the
subquery

1: FT = flattenTree(T )
2: Let the join conditions for FT be J1, J2..Jc

3: Let the relations for the join be R1, R2, ..Rm

4: constraints ← NOT EXISTS ir1
∈ R1, ...irn

∈ Rn|
(ir1

/∈ AT [R1] ∨ ir2
/∈ AT [R2]... ∨ irm

/∈ AT [Rm])
∧(selCond(R1, ir1

) ∧ selCond(R2, ir2
)... ∧

selCond(Rm, irn
) ∧ J ′

1 ∧ J ′
2... ∧ J ′

c),
where J ′

k is join condition Jk applied to the tuples identi-
fied by ir1

..irn

5: return constraints

selCond(R,i)

1: Let the selection conditions on R be S1, S2, ...Sn

2: Let the additional selection conditions on R be ASelR1,
ASelR2 AND ...ASelRn

3: return S1[i] AND S2[i] ... AND Sn[i] AND ASelR1[i]
AND ASelR2[i] .. AND ASelRm[i], where S1[i] is the
constraint for the selection condition S1 on the ith tuple
of R

primary key as a tuple in the allowed tuple range, the

tuples are identical.

If the query tree contains GROUP BY attributes and

aggregations, we consider the input to these operators for

flattening. We currently do not handle flatting conditions

in subqueries in this algorithm.

In practice, we unfold the expression in Step 5, to

remove the NOT EXISTS quantifier and replace it by
conditions for each combination of tuples, in the tuple

range, for which we generate data. Such unfolding speeds

up constraint solving in CVC3 solver as noted earlier in

[28].

D Completeness

Shah et al. in [28] present completeness results for join,

comparison operator and aggregation mutations on a

limited space of queries. In this section, we consider the

completeness of our techniques for the wider class of

operators and mutations considered in this paper.

D.1 Types of Result Difference

Our techniques for killing mutations generate differ-

ences in the result of a mutated operator, which may

be classified into several types:

1. Tuple Existence: A dataset that results in some tu-

ples being present in the result of the original opera-

tor, but not in the result of the mutated operator,

or vice versa; the tuples in one result are a superset

of the tuples in the other.
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Tuple existence differences are easy to propagate and

relatively easy to generate and are thus the preferred

type of difference for our data generation techniques.

Empty Result Difference: This is a stronger version

of tuple existence, where one of the results is empty

while the other is non-empty. This is needed in case

of exists/not-exists subqueries and a few other cases.

2. Tuple Count : For some cases like DISTINCT clause it

is not feasible to kill mutations by tuple existence and

we generate datasets that produce different numbers

of tuples (which may be duplicates) for the correct
query and the mutation.

3. Value Difference: For some other cases like mutations

between different aggregate functions, the above dif-

ferences cannot be generated, but we instead gen-

erate datasets where the correct operator and the

mutated operator produce different values for one or

more attributes.

D.2 Approach to Showing Completeness

Our approach to showing completeness for a given class

of queries, for a given space of mutations, is as follows.

The operators we consider are selections, joins, aggre-

gates, projections, subquery, set and GROUP BY. Our

proof is in terms of relational algebra tree. For each

possible operator Oi, we need to show that:

1. For each non-equivalent mutation, o′i of an occur-

rence oi of Oi, we generate at least one set of con-

straints that would result in a difference in the result

of oi compared to o′i. We describe the possible dif-

ferences in the result shortly.

2. For each dataset that is not targeted at mutations of

an instance oi of Oi, the constraints generated for oi
“propagate” certain differences generated in an input

of oi to the result of oi. Note that the difference

in the output of oi may not be the same as the

difference in the input of oi. To ensure completeness

in general, every difference should get propagated,

but in several cases our techniques only propagate

some of the differences.

3. For each dataset, we should add only necessary con-

straints for data generation and mutation killing.

Removing some constraints could result in a dataset

that is not able to kill the intended mutations. Adding

constraints that are not necessary conditions could

make the constraints unsatisfiable, even if a solution

actually exists for the dataset. For most operators,

we only generate necessary conditions. In some cases,

we do not achieve this as discussed in Section D.3.

Our arguments for completeness are based on the

set of constraints we create for data generation. Note

that we use an SMT solver to solve the constraints and

generate a dataset, and SMT solvers are, in general, not

complete; however, they have been found to work well

in practice.

D.3 Completeness for Operators Considered

The operators we consider dataset generation and mu-

tation killing are as follows

1. Selection Operators

Killing Mutations: For mutations in the selection

predicates such as comparison operator mutations,

mutations between conjunctions and disjunctions,

string mutations, IS NULL mutations and where

clause subquery connective mutations, mutation killing

is ensured by tuple existence as described in Sec-

tions 2.2, 4, 5 and 7.
It can be seen that only necessary conditions are

added to kill the mutations.

Propagating Difference: The same values as input to

the selection will be propagated up since we assert
the selection condition to be true for the tuples that

are input to the selection as described in [28]. Hence

irrespective of the result difference technique used to

kill the mutation below the selection operator, the

result difference will be propagated up the selection

operator.

We assert only necessary constraints to propagate

the mutations.

2. Join Operators

Killing Mutations:

– Join Type Mutations: As discussed in [28] (sum-

marized in Section 2.2), mutation of INNER

JOIN vs. any outer join is killed using tuple

existence. Mutations of LEFT OUTER JOIN vs.

RIGHT OUTER JOIN are killed by value dif-

ference. Mutations to FULL OUTER JOIN are

killed by value difference.

It can be seen from [28] that only necessary condi-

tions are asserted to kill the join type mutations.

– Missing or Additional Join Conditions: As dis-

cussed in Section 9.1, mutations of missing or

additional join conditions are killed by tuple ex-

istence.

It can be seen from Section 9.1 that only neces-

sary conditions are asserted to kill these muta-

tions.

Propagating Difference: Data generation for joins is

done by creating matching tuples for input to the

join conditions. Hence, the same values as input to

the join will be propagated up. Hence, the result

difference below the join will be propagated up for

all types of result differences. It can be seen from

[28] that only necessary conditions are asserted to

propagate the differences.
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3. Aggregation Operators

Killing Mutations:

– Aggregation Operator Mutations: As discussed

in [28] (summarized in Section 2.2) aggregation

mutations are killed by value difference of result

of the aggregate as compared to its mutations.

Only necessary conditions are asserted to kill

unconstrained aggregation mutations. For con-

strained aggregation, as described in Section 6.3.2

we may add constraints that are not necessary

for aggregates on join results. For aggregation on
a single relation, we assert necessary constraints

only.

– GROUP BY attribute mutations: In case there

is no HAVING clause above the GROUP BY

attribute, the mutation of changes GROUP BY

attributes is killed by tuple count as described

in Section 9.2. In case there is a HAVING clause

above the GROUP BY, the mutation is killed us-

ing tuple existence at the HAVING clause which

is also described in Section 9.2.

Only necessary conditions are asserted for killing

these mutations.

Propagating Difference: Not all differences due to

mutations below are propagated by aggregation op-

erators.

– First consider the aggregates SUM (DISTINCT),

AVG (DISTINCT), MIN and MAX. If the muta-

tion below the aggregate is killed by tuple exis-

tence then the aggregate produces a zero result

for the case where the tuples exists and a non-

zero result for the cases where the tuple does not

exist (aggregated attributes are asserted to be

non-zero). Hence, a mutation that is killed by

tuple existence below will result in value differ-

ence at the aggregate. For mutations below that

are killed tuple count or by value difference, the

aggregate may produce the same result and the

mutation might not get killed. Mutations below

killed by value difference will produce a value

difference at the aggregate if the value difference

at the mutated node is a NULL vs. NOT NULL

difference.

– Now consider the aggregates COUNT and COUNT

DISTINCT. Mutations killed by tuple existence

will be killed by COUNT or COUNT DISTINCT.

Mutations killed by tuple count will produce a

value difference for COUNT and hence the differ-

ence will be propagated. For COUNT DISTINCT,

mutations killed by tuple count may produce the

same values and hence may not get propagated.

Mutations below killed by value difference will

produce a value difference in COUNT or COUNT

DISTINCT only if the value difference at the mu-

tated node is a NULL vs. NOT NULL difference.

For unconstrained aggregation, no constraints are

added for data generation. The constraints added for

mutation killing are necessary as described in Sec-

tion 2.2. For constrained aggregation, as described

in Section 6.3.2 we may add constraints that are

not necessary. For aggregation on a single relation,

we do not face this issue and hence only necessary

constraints are added.

4. Projection Operator (non-duplicate removing)

Killing Mutations: Currently we do not target mu-

tations in projections. Mutations due to adding or

removing attributes would get caught if present at

the top of the query tree. We currently do not gen-
erate any datasets to catch projection mutations.

Killing projection mutations could be done by as-

serting attributes in the projection list have different

values wherever possible, an area of future work.
Propagating Difference: A mutation below that is

killed by tuple existence or by tuple count will be

preserved after projection. A value difference will be

propagated up only if the attribute whose value is

different is present in the projected attributes.

We do not add any constraints for projection and

hence trivially only necessary constraints are added.

5. DISTINCT operator

Killing Mutations: DISTINCT clause mutation is

killed by tuple count as shown in Section 9.3.

Only necessary constraints are asserted to kill DIS-

TINCT clause mutations as shown in Section 9.3.

Propagating Difference: If a mutation below the dis-

tinct clause is killed by tuple existence or by value

difference, then the DISTINCT clause will also pre-

serve the respective property. However if the muta-

tion below the DISTINCT clause is killed by tuple

count the DISTINCT clause may not be able to

preserve the difference.

We do not add any constraints for the DISTINCT

clause and hence trivially only necessary constraints

are added.

6. Subquery Operator

Killing Mutations: Mutations of the subquery con-

nectives (EXISTS, NOT EXISTS, IN, NOT IN, ALL,

ANY and scalar subqueries) in the WHERE clause

comes under selection mutation and is discussed ear-

lier in the bullet on selection mutation. We currently

only handle scalar subqueries of the form SSQ relop

attr/value, where SSQ is a scalar subquery, attr

is an attribute from the outer block of query and

value is a constant.

For subqueries other than scalar subqueries with

aggregation, only necessary constraints for killing
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mutations are asserted. Scalar subqueries with aggre-

gation use constrained aggregation techniques and

hence constraints that are not necessary may also

be added if the subquery contains more than one

relation.

Propagating Difference: For mutations of operators

in the subquery, the subquery connective preserves

tuple existence by ensuring empty result difference.

Other types of mutation killing may not be propa-

gated up; these mutations are equivalent in many

but not all cases. Refer Section 7.4 for details.
Only necessary conditions for propagating differences

are asserted as can be seen from Section 7.4.

7. Set Operators

Killing Mutations: Mutations killing for UNION vs

UNION ALL, INTERSECT vs. INTERSECT ALL

and EXCEPT vs. EXCEPT ALL is done by tuple

count. Other mutations are killed by tuple existence

as shown in Section 8.2.

Only necessary constraints required for killing set

operator mutations are asserted as can be seen from

Section 8.2.

Propagating Difference: As explained in Section 8.3

mutations below the set operator are propagated up

for all mutations.

Only necessary conditions for propagating differences

are asserted as can be seen from Section 8.3.

D.4 Summary

Our data generation techniques are complete for killing

a given mutation on a given operator of a given query

tree if

1. The constraint generation technique creates a differ-

ence at the mutated operator

2. The difference at the mutated node is propagated

up the query tree to the root i.e. each ancestor node

propagates the difference type generated by its child

on the path from the mutated node.

3. Only necessary constraints are added for data gener-

ation.

If the above properties are satisfied for all operators in

the query and all mutations of the operator in a space

of mutations, then our data generation techniques are

complete for the query under the space of mutations

considered.

Although not complete, in practice our data gener-

ation techniques work well. Our experimental results

in Section 13 show that we are able to generate test

data and kill mutations for a large variety of common

queries.

QId
Que- XData USm ULg TA Plan
ries × × × ×

√
?

CQ1 55 2 2 2 2 51 4
CQ2 57 1 1 1 1 54 3
CQ3 71 13 12 1 1 3 68
CQ4 78 26 26 3 1 52 26
CQ5 72 23 11 16 13 43 29
CQ6 61 6 6 6 2 55 6
CQ7 77 25 23 3 24 3 74
CQ8 79 33 12 14 16 2 77
CQ9a 80 68 24 70 23 2 78
CQ9b 80 71 24 70 23 3 77
CQ9 80 72 24 70 23 5 75
CQ10 74 1 1 1 0 34 40
CQ11 69 16 16 16 16 51 18
CQ12 70 8 3 7 7 38 32
CQ13 72 9 9 9 7 3 69
CQ14 67 34 14 10 32 2 65

Table 7: Query grading results

E Test Cases and Results for
Experiments

In this section, we list results of the grading tool and the

test cases that were used for the experiments described

in Section 13.

E.1 Grading Tool Results

Result of the grading tool experiment is listed in Table 7.

The column labeled Queries lists the number of

student queries that were submitted. Columns labeled

XData, USm, ULg and TA show the number of incor-

rect queries caught by these techniques. Plan gives the

number of queries labeled as correct and ones for which
the plan is not able to determine correctness. Wherever

our technique and/or some of the datasets find more

incorrect queries than others, we have highlighted the

results in bold.

E.2 Test Queries for Constrained Aggregation

For the experiment involving constrained aggregation,

we used the following set of queries:

CA1: SELECT c.dept name, SUM(c.credits)

FROM course c INNER JOIN department d

ON (c.dept name = d.dept name)

GROUP BY c.dept name

HAVING SUM(c.credits)>10 AND COUNT(c.credits)>1

CA2: SELECT c.dept name, SUM(i.salary)

FROM course c INNER JOIN department d

ON (c.dept name = d.dept name)

INNER JOIN instructor i

ON (d.dept name = i.dept name)

GROUP BY c.dept name

HAVING SUM(i.salary)>100000

AND MAX(i.salary)<75000
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CA3: SELECT c.dept name, SUM(d.budget)

FROM course c INNER JOIN department d

ON (c.dept name = d.dept name)

INNER JOIN teaches t

ON (c.course id = t.course id)

GROUP BY c.dept name

HAVING SUM(d.budget)>100000 AND COUNT(d.budget)>1

CA4: SELECT c.dept name, AVG(i.salary)

FROM course c INNER JOIN department d

ON (c.dept name = d.dept name)

INNER JOIN teaches t

ON (c.course id = t.course id)

INNER JOIN instructor i

ON (d.dept name = i.dept name)

GROUP BY c.dept name

HAVING AVG(i.salary)>50000 AND COUNT(i.salary)=3

CA5: SELECT t.semester, SUM(c.credits)

FROM department d INNER JOIN teaches t

ON (d.budget = t.year + 4)

INNER JOIN course c

ON (c.dept name = d.dept name)

GROUP BY t.semester

HAVING AVG(c.credits)>2 AND COUNT(d.building)=2

CA6: SELECT id

FROM course NATURAL JOIN department

NATURAL JOIN student NATURAL JOIN takes

NATURAL JOIN section

GROUP BY id,dept name HAVING COUNT(dept name)>1

CA7: SELECT distinct dept name

FROM course WHERE credits =

(SELECT MAX(credits)

FROM course NATURAL JOIN department

WHERE title=‘CS’

GROUP BY dept name HAVING COUNT(course id)>2)

CA8: SELECT id,name FROM

(SELECT id,time slot id,year,semester

FROM takes NATURAL JOIN section

GROUP BY id,time slot id,year,semester

HAVING COUNT(time slot id)>1)

as s NATURAL JOIN student

GROUP BY id, name

HAVING COUNT(id)>1

CA9: SELECT SUM(T) as su FROM

(SELECT year as T

FROM teaches NATURAL JOIN instructor

GROUP BY year, course id HAVING COUNT(id)>4)

as temp GROUP BY T

E.3 Test Queries for Subquery

For the experiment involving subqueries, we used the

following set of queries:

SQ1: SELECT * FROM department d

WHERE d.dept name IN (SELECT c.dept name

FROM course c WHERE c.credits > 2)

SQ2: SELECT * FROM course c

WHERE EXISTS (SELECT * FROM department d

WHERE c.dept name = d.dept name)

SQ3: SELECT * FROM takes t

WHERE NOT EXISTS (SELECT * FROM section

WHERE t.year=section.year AND year = 2010)

SQ4: SELECT * FROM course c

WHERE credits > 3 AND

EXISTS (SELECT * FROM department d

WHERE d.dept name = c.dept name)

SQ5: SELECT course id, title

FROM course NATURAL JOIN section

WHERE SEMESTER = ‘Spring’ AND year = 2010 AND

course id IN (SELECT course id FROM prereq

WHERE prereq id = ‘CS-201’)

SQ6: SELECT course id, TITLE

FROM course NATURAL JOIN section

WHERE SEMESTER = ‘Spring’ AND year = 2010 AND

course id NOT IN (SELECT course id FROM prereq

WHERE prereq id = ‘CS-201’)

SQ7: SELECT name FROM instructor

WHERE salary >ALL (SELECT salary

FROM instructor WHERE dept name = ‘Biology’)

SQ8: SELECT name FROM instructor

WHERE salary > (SELECT AVG(salary)

FROM instructor WHERE dept name = ‘Physics’)

SQ9: SELECT * FROM student

WHERE tot cred > (SELECT SUM(credits)

FROM takes INNER JOIN course USING(course id)

WHERE student.id=takes.id)

SQ10: SELECT * FROM student

WHERE tot cred <ALL (SELECT SUM(credits)

FROM takes INNER JOIN course USING(course id)

WHERE dept name=‘History’)

E.4 Correct Queries for Grading Tool

Following are the correct queries that were used in the

experiment to grade student queries:

CQ1: SELECT course id, title FROM course

CQ2: SELECT course id, title FROM course

WHERE dept name= ‘Comp. Sci.’

CQ3: SELECT DISTINCT course id, title, id

FROM course NATURAL JOIN teaches

WHERE teaches.semester = ‘Spring’

AND teaches.year = ‘2010’

CQ4: SELECT DISTINCT student.id, student.name

FROM takes NATURAL JOIN student

WHERE course id =‘CS-101’

CQ5: SELECT DISTINCT course.dept name

FROM course NATURAL JOIN section

WHERE section.semester = ‘Spring’

AND section.year = ‘2010’

CQ6: SELECT course id, title FROM course

WHERE credits > 3

CQ7: SELECT course id, COUNT(DISTINCT id)

FROM course NATURAL LEFT OUTER JOIN takes

GROUP BY course id

CQ8: SELECT DISTINCT course id, title

FROM course NATURAL JOIN section

WHERE semester = ‘Spring’ AND year = 2010 AND

course id NOT IN (SELECT course id FROM prereq)

CQ9: a) WITH s as

(SELECT id, time slot id, year, semester
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FROM takes NATURAL JOIN section

GROUP BY id, time slot id, year, semester

HAVING COUNT(time slot id)>1)

SELECT DISTINCT id,name

FROM s NATURAL JOIN student

b) SELECT DISTINCT A.id, A.name FROM

(SELECT * FROM student NATURAL JOIN takes

NATURAL JOIN section) A,

(SELECT * from student NATURAL JOIN takes

NATURAL JOIN section) B

WHERE A.name = B.name AND A.year = B.year

AND A.course id <> B.course id

AND A.semester = B.semester

AND A.time slot id = B.time slot id

CQ10: SELECT DISTINCT dept name FROM course

WHERE credits=(SELECT MAX(credits) FROM course)

CQ11: SELECT DISTINCT instructor.id, name, course id

FROM instructor LEFT OUTER JOIN TEACHES

ON instructor.id = teaches.id

CQ12: SELECT student.id, student.name FROM student

WHERE lower(student.name) like ‘%sr%’

CQ13: SELECT id,name FROM student s WHERE

NOT EXISTS

(SELECT * FROM student t NATURAL JOIN takes

WHERE s.id=t.id AND takes.year=2010

AND takes.semester=‘Spring’)

CQ14: SELECT DISTINCT * FROM takes t

WHERE

(NOT EXISTS (SELECT id,course id

FROM takes s

WHERE grade ! = ‘F’ AND t.id = s.id

AND t.course id=s.course id)

AND t.grade IS NOT NULL)

OR (t.grade ! = ‘F’ AND t.grade IS NOT NULL)
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