
The VLDB Journal manuscript No.
(will be inserted by the editor)

Characterization of the Impact of Hardware Islands on OLTP

Danica Porobic · Ippokratis Pandis · Miguel Branco · Pınar Tözün · Anastasia
Ailamaki ·

Author pre-print, the final publication is available at http://link.springer.com

Abstract Modern hardware is abundantly parallel and in-
creasingly heterogeneous. The numerous processing cores
have non-uniform access latencies to the main memory and
processor caches, which causes variability in the commu-
nication costs. Unfortunately, database systems mostly as-
sume that all processing cores are the same and that microar-
chitecture differences are not significant enough to appear
in critical database execution paths. As we demonstrate in
this paper, however, non-uniform core topology does appear
in the critical path and conventional database architectures
achieve suboptimal and even worse, unpredictable perfor-
mance.

D. Porobic
School of Computer and Communication Sciences
École Polytechnique Fédérale de Lausanne
Lausanne, VD, Switzerland
E-mail: danica.porobic@epfl.ch

I. Pandis
Amazon Web Services
Palo Alto, CA, USA
E-mail: ippo@amazon.com
Work done while author was affiliated with IBM

M. Branco
RAW Labs
Lausanne, VD, Switzerland
E-mail: miguel@raw-labs.com
Work done while author was affiliated with EPFL

P. Tözün
IBM Almaden Research Center
San Jose, CA, USA
E-mail: ptozun@us.ibm.com
Work done while author was affiliated with EPFL

A. Ailamaki
School of Computer and Communication Sciences
École Polytechnique Fédérale de Lausanne and
RAW Labs
Lausanne, VD, Switzerland
E-mail: anastasia.ailamaki@epfl.ch

We perform a detailed performance analysis of OLTP
deployments in servers with multiple cores per CPU (multi-
core) and multiple CPUs per server (multisocket). We com-
pare different database deployment strategies where we vary
the number and size of independent database instances run-
ning on a single server, from a single shared-everything
instance to fine-grained shared-nothing configurations. We
quantify the impact of non-uniform hardware on various de-
ployments by (a) examining how efficiently each deploy-
ment uses the available hardware resources and (b) mea-
suring the impact of distributed transactions and skewed re-
quests on different workloads. We show that no strategy is
optimal for all cases and that the best choice depends on the
combination of hardware topology and workload character-
istics. Finally, we argue that transaction processing systems
must be aware of the hardware topology in order to achieve
predictably high performance.

Keywords Islands, Shared-everything, Shared-nothing,
OLTP, Multisocket multicores, Non-uniform hardware
topology

1 Introduction

Online Transaction Processing (OLTP) is a multi-billion
dollar industry [21] and one of the most important and de-
manding database applications. Innovations in OLTP con-
tinue to deserve significant attention, advocated by the re-
cent emergence of appliances [46], startups1, and research
projects (e.g. [15,28,32,33,39,47,58,67]). OLTP applica-
tions are mission-critical for many enterprises with little
margin for compromising either performance or scalability.
Thus, it is not surprising that all major OLTP vendors spend

1 Such as VoltDB, MongoDB, MemSQL, NuoDB, and others.



2 D. Porobic, I. Pandis, M. Branco, P. Tözün, A. Ailamaki

significant effort in developing highly-optimized software
releases, often with platform-specific optimizations.

Over the past decades, OLTP systems benefited greatly
from improvements in the underlying hardware. Innovations
in their software architecture have been plentiful but there
is a clear benefit from processor evolution. Uniprocessors
grew predictably faster with time, leading to better OLTP
performance. Around 2005, when processor vendors hit the
frequency-scaling wall, they started obtaining performance
improvements by adding multiple processing cores to the
same CPU chip, forming chip multiprocessors (multicore or
CMP); and building servers with multiple CPU sockets of
multicore processors (SMP of CMP).

Multisockets of multicores are highly parallel and char-
acterized by heterogeneity in the communication costs:
sets, or islands, of processing cores that communicate with
each other very efficiently through shared on-chip caches,
and less efficiently with cores from other islands through
bandwidth-limited and higher-latency links. Even though
multisocket multicore machines are prevalent in modern
data-centers, it is unclear how well software systems and in
particular OLTP systems exploit multisockets.

As recent studies argue and this paper corroborates,
traditional shared-everything OLTP systems underperform
on modern hardware because of (a) excessive communica-
tion among various threads [9,22] and (b) contention on
the shared data [48,58]. Practitioners report that even com-
mercial shared-everything systems with support for non-
uniform memory architectures (NUMA) are hard to tune
for modern servers [25,14,70]. On the other hand, shared-
nothing deployments [57] face the challenges of (a) higher
execution costs when distributed transactions are required
[12,16,24,50], even within a single node, particularly if the
communication occurs between slower links (e.g., across
CPU sockets); and (b) load imbalances due to skew [61].

The goal of this study is to characterize the impact of
non-uniformity of modern multisocket multicore servers on
transaction processing systems. We use both microbench-
marks and standard benchmarks (TPC-B, TPC-C), with and
without data skew. They are run on shared-nothing deploy-
ments of varying granularity as well as shared-everything
deployments. We place particular emphasis on the impact
of the percentage of multipartition transactions. The per-
centage of multipartition transactions depends both on the
workload properties and on the quality of the partitioning
scheme, however, finding a good partitioning scheme for
complex workloads remains an open problem [16,49,66].
In conjunction with the granularity of instances in a shared-
nothing deployment, the percentage of multipartition trans-
actions determines the ratio of distributed transactions.

In this study, we use a state-of-the-art storage man-
ager Shore-MT [28] for the majority of the experiments.
We strengthen our conclusions using a state-of-the-art main

memory optimized storage manager Silo [67]. Our exper-
iments show that perfectly partitionable workloads, which
require no distributed transactions, perform significantly
better on fine-grained shared-nothing configurations. On
the other hand, non-partitionable workloads favor coarse-
grained configurations, due to the overhead of distributed
transactions. None of the configurations, however, is optimal
for all combinations of workload properties and hardware
topologies. Additionally, we find that skewed accesses cause
performance to drop significantly when using fine-grained
shared-nothing configurations; this effect is less evident on
coarser configurations and when using shared-everything
deployments.

This paper extends our analysis of the impact of non-
uniform hardware topology on transaction processing sys-
tems [53]. We enrich our experiments by using additional
hardware and software platforms as well as more efficient
communication mechanisms. In addition, we include exper-
iments with standard benchmarks, TPC-B and TPC-C, and
discuss the impact of the contention for hot data on the per-
formance of different configurations. Our contributions are
as follows:

– We demonstrate the impact of non-uniform core topology
on the performance of transaction processing systems and
conclude that high performance software has to minimize
contention among cores and avoid frequent communica-
tion between cores located on different processor sockets.

– Our experiments show that fine-grained shared-nothing
deployments achieve significantly higher throughput than
a shared-everything system when the workload is per-
fectly partitionable. By contrast, when the workload is
not partitionable and/or exhibits skew, a shared-everything
system has higher performance than a shared-nothing one.
Therefore, there is no unique optimal deployment strategy
for all workloads.

– We provide and validate the Islands performance model
where we take the performance of an OLTP system as
a function of the deployment configuration and the per-
centage of multipartition transactions on a wide variety of
workloads and hardware topologies. The particular cross-
over points that make specific configuration optimal dif-
fer depending on the particular scenario, however, relative
performance trends remain the same in all cases.

The rest of the document is structured as follows. Sec-
tion 2 presents the background and related work, describing
the two main database deployment approaches. Section 3
details the experimental methodology used throughout this
study. Section 4 identifies modern hardware trends and dis-
cusses their implications on software design. Section 5 de-
scribes the impact of hardware topology and workload char-
acteristics such as the percentage of multipartition transac-
tions on the performance of the database systems and Sec-



Characterization of the Impact of Hardware Islands on OLTP 3

tion 6 quantifies that impact. Section 7 expands the analysis,
measuring the sensitivity to varying transaction size, num-
ber of processors, data access skew, and disk accesses. Sec-
tion 8 discusses the impact of distributed transactions in the
context of more complex workloads. Section 9 presents re-
sults in the context of Silo main-memory optimized system.
Finally, Section 10 summarizes the findings and Section 11
concludes and discusses future work.

2 Background and related work

Shared-everything and shared-nothing database designs, de-
scribed in the next two sections, are the most widely used
approaches for OLTP deployments. In addition to these two
extreme points of the design space, in this study we analyze
a range of deployments that fall in between. Legacy mul-
tisocket machines, which gained popularity in the 1990s as
symmetric multiprocessing (SMP) servers, had non-uniform
memory access (NUMA) latencies. We discuss NUMA-
specific optimizations to database and operating systems, as
well as recent work on optimizations for multisockets, in
Section 2.3.

2.1 Shared-everything Database Deployments

Within a database node, shared-everything is any deploy-
ment where a single database instance manages all the avail-
able resources. As database servers have long been designed
to operate on machines with multiple processors, shared-
everything deployments assume equally fast communication
between all processors, since each thread needs to exchange
data with all of its peers. Until recently, shared-everything
was the most popular deployment strategy on a single node.
All major commercial database systems adopt it.

OLTP has been studied extensively on shared-everything
databases. For instance, the workload characterization stud-
ies that analyze micro-architectural behavior of the OLTP
workloads demonstrate that transactions exhibit significant
stalls during execution [2,7,22,62]; a result we corrobo-
rate in Section 6.2. It has also been shown that shared-
everything systems have frequent shared read-write accesses
[9,22], which are difficult to predict [56]. Modern systems
enter numerous contentious critical sections even when ex-
ecuting simple transactions, affecting single-thread perfor-
mance, requiring frequent inter-core communication, and
causing contention among threads [27,28]. These character-
istics make distributed memories (as those of multisockets),
distributed caches (as those of multicores), and prefetch-
ers ineffective. A lot of recent techniques aim to improve
scalability of individual components of traditional systems,
including locking, latching and logging on multicores by

specializing synchronization primitives to a particular com-
ponent [26,29,31,34]. Recent work suggests a departure
from the traditional transaction-oriented execution model,
to adopt a data-oriented execution model, circumventing the
aforementioned properties - and flaws - of traditional shared-
everything OLTP [35,47,48].

The large main memories available in modern servers
have sparked a lot of interest in the main-memory optimized
transaction processing designs for multisockets. Such sys-
tems have been marketed by major vendors for many years,
including IBM solidDB [43] and Oracle TimesTen [37],
however, only now are they becoming mainstream. Modern
multicore optimized main-memory transaction processing
systems, such as Hekaton, Silo, and Foedus, use multiver-
sioned latch-free data structures and optimistic concurrency
control mechanisms to achieve good scalability by reducing
the number of critical sections and their duration [33,39,40,
67]. Yet, a recent study shows that none of the current con-
currency control mechanisms scales to 1000 cores and sug-
gests that extending hardware support is a promising way
for overcoming this obstacle [71].

2.2 Shared-nothing Database Deployments

Shared-nothing deployments [57], based on fully indepen-
dent (physically partitioned) database instances that collec-
tively process the workload, are an increasingly appealing
design even within a single node [32,55,58]. This is due
to the scalability limitations of shared-everything systems,
which suffer from contention when concurrent threads at-
tempt to access shared resources [27].

The main advantage of shared-nothing deployments is
the explicit control over the contention within each physi-
cal database instance. As a result, shared-nothing systems
exhibit high single-thread performance and low contention.
In addition, shared-nothing databases typically make better
use of the available hardware resources whenever the work-
load executes transactions touching data on a single database
instance. Systems such as H-Store [58] and HyPer [32] ap-
ply the shared-nothing design to the extreme, deploying one
single-threaded database instance per CPU core. This en-
ables simplifications or removal of expensive database com-
ponents such as locking and latching.

Shared-nothing systems appear ideal from the hardware
utilization perspective, but they are sensitive to the ability to
partition the workload. Unfortunately, many workloads are
not perfectly partitionable, i.e., it is hardly possible to dis-
tribute data such that every transaction touches a single in-
stance. Whenever multiple instances must collectively pro-
cess a request, shared-nothing databases require expensive
distributed consensus protocols, such as two-phase commit,
which many argue are inherently non-scalable [12,24]. Sim-
ilarly, handling data and access skew is problematic [61].



4 D. Porobic, I. Pandis, M. Branco, P. Tözün, A. Ailamaki

The overhead of distributed transactions urged system
designers to explore partitioning techniques that reduce the
frequency of distributed transactions [16,49,54], and to ex-
plore alternative concurrency control mechanisms, such as
speculative locking [30], multiversioning [10], optimistic
concurrency control [36,39], and deterministic execution
[60], to reduce the overheads when distributed transactions
cannot be avoided. Designers of large-scale systems have
circumvented problems with distributed transactions by us-
ing relaxed consistency models such as eventual consis-
tency [68]. Eventual consistency eliminates the need for syn-
chronous distributed transactions, but it makes programming
transactional applications harder, with consistency checks
left to the application layer. A promising approach for im-
proving efficiency of distributed transactions is using se-
mantic information about the workload to avoid unnecessary
coordination [5].

The emergence of multisocket multicore hardware adds
further complexity to the on-going debate between shared-
everything and shared-nothing OLTP designs. As Section 4
describes, multisocket multicores introduce an additional
level into the memory hierarchy. Communication between
processors is no longer uniform: cores that share caches
communicate differently from cores in the same socket and
other sockets.

2.3 Performance on Multisocket Multicores

Past work focuses on adapting databases for SMP systems.
For instance, commercial database systems provide config-
uration options to enable NUMA support, but this setting is
often optimized for legacy hardware where each individual
CPU is assumed to contain a single core. With newer multi-
socket servers, enabling NUMA support might lead to high
CPU usage and degraded performance [14,70]. Similarly,
modern operating systems offer better support for NUMA
arhitectures, however, they do not improve application per-
formance out-of-the-box. Tuning existing database systems
to multisocket multicores is still a very challenging task [25,
69].

An alternative approach is taken by the Multimed project,
which views the multisocket multicore system as a cluster of
machines [55]. Multimed uses replication techniques and a
middleware layer to split database instances into those that
process read-only requests and those that process updates.
The authors report higher performance than a single shared-
everything instance. However, Multimed does not explicitly
address NUMA-awareness and the work is motivated by the
fact that the shared-everything system being used has inher-
ent scalability limitations. In this paper, we use two scalable
open-source shared-everything systems, Shore-MT [28] and
Silo [67].

Table 1 Description of the machines used.

Machine Description
Dual-socket 2 x Intel Xeon E5-2640 v2 @ 2.00GHz

8 cores per CPU
Fully-connected with QPI
256 GB RAM
64 KB L1 and 256 KB L2 cache per core
20 MB L3 shared CPU cache

Quad-socket 4 x Intel Xeon E7530 @ 1.86 GHz
6 cores per CPU
Fully-connected with QPI
64 GB RAM
64 KB L1 and 256 KB L2 cache per core
12 MB L3 shared CPU cache

Octo-socket 8 x Intel Xeon E7-L8867 @ 2.13GHz
10 cores per CPU
Connected using 3 QPI links per CPU
192 GB RAM
64 KB L1 and 256 KB L2 cache per core
30 MB L3 shared CPU cache

Recent work that analyzes the impact of NUMA on data
management systems uses analytical workloads. Zhang and
Ré focus on statistical analytics and conclude that awareness
of the core topology can improve performance by an order
of magnitude compared to the state-of-the-art systems [72].
On the other hand, the majority of the proposals that target
building NUMA-aware data management systems focus on
removing memory bandwidth bottlenecks for analytical ap-
plications and specifically devising efficient join and sorting
algorithms that minimize data movement [3,6,42,51]. How-
ever, OLTP workloads cannot saturate memory bandwidths
and their main problem is ensuring efficient synchronization
among threads [52].

Moreover, exploiting NUMA effects at the operating
system level is an area of active research. Some operating
system kernels such as the Mach [1] and exokernel [19], or,
more recently, Barrelfish [8], employ the message-passing
paradigm. Message-passing potentially facilitates the devel-
opment of NUMA-aware systems since the communication
between threads is done explicitly through messages, which
the operating system can schedule in a NUMA-aware way.
Other proposals include the development of schedulers that
detect contention and react in a NUMA-aware manner [11,
17,59]. Such schedulers have recently been adapted to task-
oriented analytical database engines [20], however, they
likely require extensive changes to a traditional database en-
gine.

3 Experimental setup

In this study we quantify the impact of non-uniform hard-
ware topology using three modern multisocket multicore
machines, one with two sockets of 8-core CPUs, one with
four sockets of 6-core CPUs, and one with eight sockets of



Characterization of the Impact of Hardware Islands on OLTP 5

10-core

DRAM DRAM

10-core

10-core

10-core

8-core
20MB LLC

8-core
20MB LLC

DRAM DRAM
6-core

12MB LLC
6-core

12MB LLC

DRAM DRAM

6-core
12MB LLC

6-core
12MB LLC

DRAM DRAM

10-core

10-core

10-core

10-core

DRAM DRAM

DRAMDRAM

DRAM DRAM

Dual-socket Quad-socket Octo-socket

Fig. 1 Topology of the three machines used in the experiments.

10-core CPUs. The topology of these machines is depicted
in Figure 1: smaller machines are fully connected, while the
octo-socket one uses the twisted cube topology such that
each pair of sockets is at most two hops away 2. The two
socket machine is a typical representative of the multisock-
ets used by the major cloud service providers such as Ama-
zon Web Services [4]. The four socket machine, that is used
in an experiment unless otherwise noted, is an example of a
current mainstream high performance server, while the eight
socket one represents the type of servers used in high-end
appliances marketed by major vendors [45,46].
Hardware and tools. Table 1 describes in detail the hard-
ware used in the experiments. We disable HyperThreading
to reduce variability in the measurements. The operating
system is Red Hat Enterprise Linux 6.2 (kernel 2.6.32). In
the experiment of Section 7.4, we use two 146 GB 10kRPM
SAS 2,5” HDDs in RAID-0.

We use Intel VTune Amplifier XE 2013 to collect basic
micro-architectural and time-breakdown profiling results.
VTune does hardware counter sampling, which is both accu-
rate and light-weight. Shore-MT-based system is compiled
using GCC 4.4.7 with maximum optimizations, while ex-
periments with Silo use version 5.1.0 as it requires the sup-
port for c++11 language features. In most experiments with
Shore-MT, the database size fits in the aggregate buffer pool
size. As such, the only I/O is due to the flushing of log en-
tries. However, since the disks are not capable of sustaining
the I/O load, we use memory mapped disks for both data
and log files. Overall, we exercise all code paths in the sys-
tem and utilize all available hardware contexts. In the exper-
iments with Silo, we use only main memory storage and do
not generate any I/O requests.

2 For more details see http://www.supermicro.com/
manuals/motherboard/7500/X8OBN-F.pdf

 

0

10

20

30

40

50

60

70

FIFO POSIX

Message

Queues

Pipes TCP

sockets

UNIX

sockets

T
h

ro
u

g
h

p
u

t 
(K

M
sg

s/
s)

Same socket

Diff. socket

Fig. 2 Throughput of message exchanging (in thousands of messages
exchanged per second) for a set of inter-process communication mech-
anisms. Unix domain sockets are the highest performing.

IPC mechanisms. The performance of any shared-nothing
system heavily depends on the efficiency of its communi-
cation layer. Figure 2 shows the performance in the quad-
socket machine of various inter-process communication
(IPC) mechanisms provided by the operating systems using
a simple benchmark that exchanges 256 byte messages be-
tween two processes which are either located in the same
CPU socket or in different sockets using operating system
facilities. Unix domain sockets achieve the highest perfor-
mance and are used throughout the remaining evaluation.
In Section 6.4 and with Silo, we use more efficient shared
memory messaging implementation that bypasses the oper-
ating system, however, it does not change the trends in our
experiments.

http://www.supermicro.com/manuals/motherboard/7500/X8OBN-F.pdf
http://www.supermicro.com/manuals/motherboard/7500/X8OBN-F.pdf


6 D. Porobic, I. Pandis, M. Branco, P. Tözün, A. Ailamaki

3.1 Prototype Systems

In order to evaluate the performance of deployments of
different granularities, we prototype distributed transaction
processing systems on top of two storage managers: Shore-
MT [28] and Silo [67]. Most of our experiments use Shore-
MT and we use Silo to generalize our conclusions to the
main memory systems. We use the same distributed transac-
tion processing logic and communication mechanisms with
both storage managers and apply the same optimizations.

We opted for Shore-MT as a representative traditional
system since it is an open-source storage manager that scales
very well on servers with a single multicore processor [28].
Shore-MT is the improved version of the SHORE storage
manager, originally developed as an object-relational data
store [13]. Shore-MT is designed to remove scalability bot-
tlenecks, significantly improving Shore’s original single-
thread performance. Its performance and scalability are at
the highest end of open-source storage managers. Silo is
an open source scalable shared-everything storage manager
that is representative of the new wave of main-memory op-
timized transaction processing systems.

Both Shore-MT and Silo use shared-everything designs.
Therefore, we extended them with the ability to run in
shared-nothing deployments, by implementing a distributed
transaction coordinator using the standard two-phase com-
mit (2PC) protocol. Our 2PC protocol implementation in-
cludes an optimization for the execution of the read-only
parts of the distributed transactions: if the execution site has
decided that the transaction is read-only, it is committed at
the end of the first phase and the site is not involved in the
second round of communication.

Both systems used in this study are storage managers
that do not include some components found in a typical
commercial database system such as a query optimizer and
a client communication library. Instead, the benchmark ap-
plication directly accesses the storage manager through the
API calls. We use hardcoded transaction execution plans for
all benchmarks and implement distributed transactions in
one-shot fashion [58] with local and remote transaction parts
known apriori. This allows coordinator and subordinate in-
stances to exchange only one message in the first phase of
2PC. These techniques are commonly used in commercial
high performance deployments using stored procedures in
order to eliminate unnecessary overheads.

Shore-MT includes a number of state-of-the-art opti-
mizations for local transactions, such as speculative lock
inheritance [26] and Aether holistic logging [29]. Specu-
lative lock inheritance reduces the contention on the lock
manager by caching locks acquired in the shared mode and
reusing them for subsequent transactions. Aether reduces
log buffer contention using cooperative log buffer insertions
and flush pipelining to move system calls involved in writ-

Local transaction 

Multisite transaction 

Fig. 3 Examples of microbenchmark transactions with N = 5 where
the second partition is the local one.

ing log records to the durable storage off the critical path
of transaction execution. We extended these features for dis-
tributed transactions, providing a fair comparison between
the execution of local and distributed transactions.

3.2 Microbenchmark workload and experimental
methodology

In our experiments, we vary the number of instances of the
database system. Each instance runs as a separate process.
Within each experiment, we use the same input data size for
all deployment configurations and range-partition the data
into logical sites across all instances in the deployment. Sites
are disjoint subsets of the dataset with one or more sites lo-
cated in the same instance in the distributed deployment.
We assign one site to each processor core. For the major-
ity of microbenchmark experiments, we use a small dataset
with 10 000 rows per site (e.g., on a quad socket machine
it amounts to 240,000 rows ∼ 60 MB in Shore-MT), and
describe the specific larger datasets for other experiments.
We show results using different deployment configurations,
but we always use the same total amount of data, processor
cores, and memory resources for every deployment in the
experiment. Only the number of instances and the distribu-
tion of resources across instances change.

We ensure that each database instance is optimally de-
ployed. That is, each database process is bound to the cores
within a single socket (minimizing NUMA effects) when
possible, and its memory is allocated in the nearest mem-
ory bank. We made this decision as allowing the operating
system to schedule processes arbitrarily leads to suboptimal
placement and frequent thread migration, which degrades
performance, as explored in more detail in Section 4.

In the experiments, we typically compare a number of
deployment configurations of different granularities. The
configurations on the graphs are labeled with ”NISL” where
N represents the number of instances. For example, in the
experiments on a quad socket server with 24 cores, 8ISL
represents the configuration with 8 database instances, each
of which has 1/8th of the total data and uses 3 proces-
sor cores. The number of instances varies from 1 (i.e., a
shared-everything system) to 24 (i.e., a fine-grained shared-



Characterization of the Impact of Hardware Islands on OLTP 7

nothing system). We tune all configurations, by turning on
and off different optimizations when applicable and provide
details when describing a particular experiment. For exam-
ple, in Shore-MT experiments, fine-grained shared-nothing
instances that run single-threaded do not latch data pages.

We use microbenchmarks that come in two flavors: (1)
read-only where each transaction retrieves N rows, and (2)
update where each transaction updates N rows. For each mi-
crobenchmark, we run two types of transactions, local and
multisite. Intuitively, we assign a site (i.e., a subset of rows)
to the processor core and then place in the same instance all
rows assigned to the cores on which that instance runs. We
illustrate this scheme in Figure 3 and define the two transac-
tion types as follows:

– Local transactions perform their action (read or update)
on the N rows located in the local site;

– Multisite transactions perform their action (read or up-
date) on one row located in the local site while the re-
maining N −1 rows are chosen uniformly from the whole
data range. Transactions are distributed if some of the in-
put rows happen to be located in remote instances.

We chose these microbenchmarks because they allow us
to quantify the impact of different factors on the cost of exe-
cuting local and distributed transactions including the num-
ber of rows accessed in a transaction and the number of
instances involved. The flexibility of the microbenchmark
allows us to explore wide range of workload types from
the perfectly partitionable to the completely un-partitionable
ones that access rows from many partitions requiring dis-
tributed transactions. For completeness, we also include
well known industry standard TPC benchmarks, TPC-B and
TPC-C, that also feature remote (multisite) transactions.

3.3 Standard workloads

TPC-B [63] is a transaction processing benchmark that mod-
els debit and credit operations of a bank. It is designed as
a stress test for OLTP systems, particularly their concur-
rency control and logging components. The TPC-B schema
contains four tables: Branch, Teller, Account, and
History. The TPC-B workload consists of a single trans-
action type, AccountUpdate, that updates one record in
Branch, Teller, and Account tables and inserts one
record to the History table. It is easily partitionable on the
BranchID attribute of the Branch table. According to the
benchmark specification, 85% of the transactions are local,
i.e., they access data from the same branch, whereas the re-
maining remote transactions update one teller in the remote
branch.

The more complex TPC-C [64] benchmark models a
transactional database of the wholesale supplier. Its schema

 

Fig. 4 Block diagram of a commodity multisocket multicore machine.
Cores (C0 to C3) communicate either through a shared last-level cache
(LLC), an interconnect across sockets (QPI) or main memory.

contains nine tables and can be partitioned on the Warehou-
seID key of the Warehouse table that is part of the primary
key of six other tables [58]. The benchmark defines five dif-
ferent transactions, a mix of read-only and read-write ones,
that each access at least three tables. We will focus only on
the two read-write transactions, NewOrder and Payment,
because 1) they comprise 88% of the transactions in the
standard mix and 2) they are the only ones that potentially
require distributed transactions in a shared-nothing deploy-
ment. NewOrder is a medium length transaction that mod-
els placing a new order for 5-15 items, where an item is
selected from the remote warehouse with the probability of
1%. This leads around 10% of the transactions to be mul-
tisite. Payment, on the other hand, is a short transaction
that updates customer’s balance as well as the warehouse
and district sales statistics. In 85% of the cases, the chosen
warehouse represents home warehouse for the customer and
district. In the remaining 15% of the cases, the chosen ware-
house is a different one which causes this transaction to be
multisite, as it involves both logical sites associated with the
home and remote warehouses.

4 Hardware has Islands

Hardware has long departed from uniprocessors, which had
predictable and uniform performance. Due to thermal and
power limitations, vendors cannot improve the performance
of processors by clocking them to higher frequency or by us-
ing more advanced techniques such as increased instruction
width and extended out-of-order execution. Instead, ven-
dors rely on approaches that allow explicit parallelization
of tasks to increase the processing capability of a machine.
The first approach is to put together multiple processor chips
that communicate through shared main memory. For several
decades, such multisocket designs provided the only way to
scale performance within a single node and the majority of
OLTP systems have historically used such hardware. The
second approach places multiple processing cores on a sin-
gle chip, such that each core is capable of processing concur-
rently several independent instruction streams or hardware



8 D. Porobic, I. Pandis, M. Branco, P. Tözün, A. Ailamaki

 

0

100

200

300

400

"Spread"
threads

"Grouped"
threads

OS

Th
ro

u
gh

p
u

t 
(M

tp
s)

Fig. 5 Results of a counter benchmark where groups of 10 threads are
incrementing a shared counter. Allocating threads and memory in a
topology-aware manner provides the best performance and lower vari-
ability.

contexts. The communication between cores in these multi-
core processors happens through on-chip caches. In recent
years, multicore processors have become a commodity.

Multisocket multicore systems are the predominant con-
figuration for database servers and are expected to remain
popular in the future. Figure 4 shows a simplified block di-
agram of a typical machine that has two sockets with quad-
core CPUs (adapted from [41]). Communication between
the numerous cores happens through different mechanisms.
For example, cores in the same socket share a common
cache, while cores located in different sockets communi-
cate via the interconnect (called QPI for Intel processors).
Cores may also communicate through the main memory if
the data is not currently cached. The result is that the inter-
core communication is variable: communication in multi-
cores is more efficient than in multisockets, which commu-
nicate over a slower, power-hungry, and often bandwidth-
limited interconnect.

Hence, there are two main trends in modern hardware:
the variability in communication latencies and the abun-
dance of parallelism. In the following two subsections we
discuss how each trend affects the performance of software
systems.

4.1 Variable Communication Latencies

The impact of modern processor memory hierarchies on the
application performance is significant because it causes vari-
ability in access latency and bandwidth, making the over-
all software performance unpredictable. Furthermore, it is
difficult to implement synchronization mechanisms that are
globally optimal for different applications and multicores
and multisockets with different topologies [18].

We illustrate the impact of non-uniform topology on the
efficiency of synchronization among threads with a simple
microbenchmark. Figure 5 plots the throughput of a pro-
gram running on a machine that has 8 CPUs with 10 cores

 

0

2

4

6

8

10

Spread Group Mix OS

T
h

ro
u

g
h

p
u

t 
(K

T
p

s)

 ? ? 

? ? 

Fig. 6 Throughput of the system when varying placement of 4 worker
threads. Running the TPCC-Payment workload with all cores on the
same socket achieves 20-30% higher performance than other configu-
rations.

each (the “Octo-socket” machine of Table 1). There are 80
threads in the program, divided into groups of 10 threads,
where each group increments a counter protected by a lock
in a tight loop. There are 8 counters in total, matching the
number of sockets in the machine. We vary the allocation
of the worker threads and plot the total throughput (mil-
lion counter increments per second). The first bar (“Spread”
threads) spreads worker threads across all sockets. The sec-
ond bar (“Grouped” threads) allocates all threads in the
same socket as the counter. The third bar lets the operat-
ing system do the thread allocation. Allocating threads and
memory in a manner that maximizes locality results in the
best performance and lowest variability. Leaving the allo-
cation to the operating system leads to non-optimal results
and higher variability. Although this has been an area of
active research in recent years [8,17], general purpose ap-
proaches do not work well for database systems due to their
dynamic nature. Database-specific thread schedulers and in-
terfaces that enable the application to hint its requirements
to the operating system are very promising line of research
[20].

We obtain similar results when running OLTP work-
loads. To demonstrate the impact of non-uniform communi-
cation latencies on OLTP, we run TPC-C Payment trans-
actions on a machine that has 4 CPUs with 6 cores each
(“Quad-socket” in Table 1). Figure 6 plots the average
throughput and standard deviation across multiple execu-
tions on a database with 4 worker threads. In each config-
uration we vary the allocation of individual worker threads
to cores. The first configuration (“Spread”) assigns each
thread to a core in a different socket. The second config-
uration (“Group”) assigns all threads to the same socket.
The configuration “Mix” assigns two cores per socket. In
the “OS” configuration, we let the operating system do the
scheduling. This experiment corroborates the previous ob-



Characterization of the Impact of Hardware Islands on OLTP 9

 

1

10

100

1000

10000

Counter per
core

Counter per
socket

Single counter

Th
ro

u
gh

p
u

t 
(M

tp
s)

log scale

Fig. 7 Results of a counter benchmark where we always use 80 threads
and change the number of counters they increment. Improving locality
of communication improves the performance by an order of magnitude.

servations of Figure 5: the OS does not optimally allocate
work to cores, and a topology-aware configuration achieves
20-30% better performance and less variability. The abso-
lute difference in performance is much lower than in the case
of counter incrementing because executing a transaction has
significant start-up and finish costs, and during transaction
execution a large fraction of the time is spent on operations
other than accessing data. For instance, studies show that
around 20% of the total instructions executed during OLTP
are data loads or stores (e.g., [7,22]).

4.2 Abundant Hardware Parallelism

Another major trend is the abundant hardware parallelism
available in modern database servers. Higher hardware par-
allelism potentially causes additional contention in multi-
socket multicore systems, as a higher number of cores com-
pete for shared data accesses. Figure 7 plots the results ob-
tained on the octo-socket machine when varying the number
of worker threads accessing a set of counters, each protected
by a lock. An exclusive counter per core achieves lower vari-
ability and 18x higher throughput than a counter per socket,
and 517x higher throughput than a single counter for the
entire machine. In both cases, this is a super-linear speedup.
Shared-nothing deployments are better suited to handle con-
tention, since they provide explicit control by physically par-
titioning data, leading to higher performance.

Similarly, when the OLTP workload is perfectly parti-
tionable, the fine-grained shared-nothing configuration pro-
vides better performance. As an example, we compare the
performance of the shared-everything version of Shore-MT
with the fine-grained shared-nothing version with 24 in-
stances on the quad-socket machine. Both systems run a
modified version of the TPC-C benchmark [64] Payment
transaction, where all the requests are local and, hence, the
workload is perfectly partitionable on Warehouses. We
plot the results on Figure 8. The fine-grained shared-nothing
configuration outperforms shared-everything by 4.5x, due

 

0

50

100

150

Fine-grained

Shared Nothing

Shared Everything

T
h

ro
u

g
h

p
u

t 
(K

tp
s)

Fig. 8 Running the TPC-C benchmark with only local transactions.
Fine-grained shared-nothing is 4.5x faster than shared-everything.

 

      

    

      

    

      

    

      

    

      CPU 0         CPU 1 

      CPU 2         CPU 3 

      

    

      

    

      

    

      

    

      CPU 0         CPU 1 

      CPU 2         CPU 3 

      

    

      

    

      

    

      

    

      CPU 0         CPU 1 

      CPU 2         CPU 3 

2 Islands 4 Islands 4 Spread 

Fig. 9 Different shared-nothing configurations on a four-socket four-
core machine.

in large part to contention on the Warehouse table in the
shared-everything case.

In summary, modern hardware poses new challenges to
software systems. Contention and topology have a signifi-
cant impact on performance and predictability. Predictably
fast transaction processing systems have to take advantage
of the hardware islands in the system. They need to (a) avoid
frequent communication between “distant” cores in the pro-
cessor topology and (b) keep the contention among cores
low. The next section argues in favor of topology-aware
OLTP deployments that adapt to those hardware islands.

5 Islands: hardware topology-aware shared-nothing
OLTP deployments

Traditionally, database systems fall into one of two main cat-
egories: shared-everything or shared-nothing. The distinc-
tion into two strict categories, however, does not capture
the fact that there are many alternative shared-nothing de-
ployment configurations of different granularities, nor how
to map each shared-nothing instance to CPU cores.

Figure 9 illustrates three different shared-nothing con-
figurations. The two left-most configurations, labeled “2 Is-
lands” and “4 Islands”, dedicate different number of cores
per instance, but, for the given size, minimize the com-
munication cost as much as possible. Computation within
an instance is done in close cores. The third configuration,
”4 Spread” has the same size per instance as “4 Islands”.
However, it does not minimize the communication cost, as
it forces communication across sockets when it is strictly



10 D. Porobic, I. Pandis, M. Branco, P. Tözün, A. Ailamaki

not needed. The first two configurations are islands in our
terminology, where an island is a shared-nothing configu-
ration where each shared-nothing instance is placed on the
minimal number of sockets (in order to maximize locality).
The third configuration is simply a shared-nothing configu-
ration. As hardware becomes more parallel and more hetero-
geneous the design space over the possible shared-nothing
configurations increases, and it is harder to determine the
optimal deployment.

On top of the hardware complexity, we have to consider
that the cost of a transaction in a shared-nothing environ-
ment also depends on whether this transaction is local to a
database instance or distributed. A transaction is local when
all the required data for the transaction is stored in a single
database instance. A transaction is distributed when multi-
ple database instances need to be contacted and a distributed
consensus protocols (such as two-phase commit) need to
be employed. Thus, the throughput also heavily depends on
the workload, adding another dimension to the design space
and making the optimal deployment decision nearly “black
magic.” 3

An oversimplified estimation of the throughput of a
shared-nothing deployment as a function of the number of
distributed transactions is given by the following. If Tlocal

is the throughput of the shared-nothing system when each
instance executes only local transactions, and Tdistr is the
throughput of a shared-nothing deployment when every
transaction requires data from more than one database in-
stances, then the total throughput T is:

T = (1− p) ∗ Tlocal + p ∗ Tdistr

where p is the fraction of distributed transactions executed.
In a shared-everything configuration all the transactions

are local (pSE = 0). On the other hand, the percentage of
distributed transactions in a shared-nothing deployment de-
pends on the partitioning algorithm and the system config-
uration. Typically, shared-nothing configurations of larger
size execute fewer distributed transactions, as each database
instance contains more data. That is, a given workload has
a set of local transactions that access data in a single logi-
cal site, and multisite transactions that access data in multi-
ple logical sites. A single database instance may hold data
for multiple logical sites. In that case, multisite transactions
can actually be physically local transactions, since all the re-
quired data reside physically in the same database instance.
Distributed transactions are only required for multisite trans-
actions whose data reside across different physical database
instances. Assuming the same partitioning algorithm is used
(e.g., [16,49,54]), then the more data a database contains the
more likely for a transaction to be local.

3 Explaining, among other reasons, the high compensation for
skilled database administrators.

 

 

% multisite transactions  

in workload 

T
h

ro
u

g
h

p
u

t 

Shared-everything 

Fine-grained 

shared-nothing 

 

Islands 

Fig. 10 Performance of various deployment configurations as the per-
centage of multisite transactions increases.

Given the previous reasoning one could argue that an op-
timal shared-nothing configuration consists of a few coarse-
grained database instances. This would be a naive assump-
tion as it ignores the effects of hardware parallelism and
variable communication costs. For example, if we con-
sider the contention, then the cost of a (local) transaction
of a coarse-grained shared-nothing configuration Ccoarse is
higher than the cost of a (local) transaction of a very fine-
grained configuration Cfine, because the number of concur-
rent contenting threads is larger. That is, Tcoarse < Tfine,
since throughput is inversely proportional to the execution
cost of a single transaction, i.e., T = 1

C . If we consider
communication latency, then the cost of a topology-aware
islands configuration Cislands of a certain size is lower than
the cost of a topology-unaware shared-nothing configuration
Cnaive. That is, Tislands > Tnaive.

In this paper we characterize the behavior of OLTP Is-
lands, which are hardware topology-aware shared-nothing
deployments. Figure 10 illustrates the expected behavior of
Islands, shared-everything, and fine-grained shared-nothing
configurations as the percentage of multisite transactions
in the workload increases. Islands exploit the properties of
modern hardware by utilizing the sets of cores that commu-
nicate faster with each other. Islands are shared-nothing de-
signs, but partially combine the advantages of both shared-
everything and shared-nothing deployments. Similarly to
a shared-everything system, Islands provide robust perfor-
mance even when transactions in the workload vary slightly.
At the same time, performance on well-partitioned work-
loads should be high, due to less contention and avoidance
of higher-latency communication links. Their performance,
however, is not as high as a fine-grained shared-nothing sys-
tem, since each node has more worker threads operating on
the same data. At the other side of the spectrum, the perfor-
mance of Islands will not deteriorate as sharply as a fine-
grained shared-nothing under the presence of e.g. skew.



Characterization of the Impact of Hardware Islands on OLTP 11

Last Level Cache-resident dataset 

  
Memory-resident dataset 

  
 

0

50

100

150

200

250

300

0 20 40 60 80 100

Th
ro

u
gh

p
u

t 
(K

Tp
s)

% multisite transactions

Retrieving 10 rows

0

20

40

60

80

100

120

0 20 40 60 80 100

% multisite transactions

Updating 10 rows 24ISL

4ISL

1ISL

0

50

100

150

200

250

300

0 20 40 60 80 100

Th
ro

u
gh

p
u

t 
(K

Tp
s)

% multisite transactions

Retrieving 10 rows

0

20

40

60

80

100

120

0 20 40 60 80 100

% multisite transactions

Updating 10 rows 24ISL

4ISL

1ISL

Fig. 11 Performance as the number of distributed transactions increases on cache and memory resident datasets. While shared-everything remains
stable, performance of share-nothing configurations decreases. Smaller instances benefit a lot from cache-resident datasets, while smaller dataset
incurs more data movement than the larger one due to poorer locality.

6 Impact of multisite transactions

In this section we analyze in depth the impact of good parti-
tioning scheme on performance of different configurations.
If a good partitioning scheme exists for a particular work-
load, the resulting percentage of multisite transaction will
be low and vice versa. The impact of partitioning is different
for read-heavy, update-heavy and workloads whose transac-
tions contains both reads and writes. We simulate different
types of workloads by varying the percentage of multisite
transactions for the microbenchmarks that read or update 10
rows. This setting gives us good baseline observations about
the behavior of main configurations that we compare in this
study (illustrated using the quad socket server):

– Fine-grained shared-nothing (labeled 24ISL) is a de-
ployment configuration where data is divided to as many
partitions as there are cores in the system. Each partition is
assigned to a single database instance that serves all trans-
actions accessing data from that partition. These instances
are pinned to different cores of the machine with one in-
stance per core. Each instance uses a single worker thread
which eliminates the need to synchronize accesses to the
data.

– Island-sized shared-nothing (labeled 4ISL) is a deploy-
ment configuration where data is divided into as many par-
titions as there are sockets in the system. Each partition be-
longs to a single database instance that is pinned to a par-
ticular processor socket. We use as many worker threads
as there are cores on the processor and they collectively
serve transactions that access data belonging to a specific
instance. Memory is allocated in the local memory node.

– Shared-everything (labeled 1ISL) is a deployment con-
figuration with a single database instance that utilizes all
cores in the system and processes all transactions. In con-
trast to the shared-nothing configurations, in this case all
transactions are local and we never have to execute dis-
tributed transactions.

In the common case, we use a small dataset with 240,000
rows, unix domain sockets as communication mechanism
and run experiments using the system built on top of Shore-
MT. We chose the small dataset because it is almost cache-
resident which highlights the positive impact of data local-
ity in shared-nothing configurations. We quantify the ef-
fects of dataset sizes by examining performance trends as
well as microarchitectural behavior of different configura-
tions when dataset does not fit in the caches. We also re-



12 D. Porobic, I. Pandis, M. Branco, P. Tözün, A. Ailamaki

place sockets with shared memory communication mech-
anisms for inter-process communication and evaluate their
impact on performance by breaking down the costs of local
and multisite transactions into system components. Finally,
we expand our analysis to different hardware platforms with
varying numbers of sockets and cores per socket to quantify
the impact of hardware topology on the behavior of different
deployment configurations.

6.1 Distributed transactions

Distributed transactions are known to incur a significant
cost, and this problem has been the subject of previous re-
search, with e.g., proposals to reduce the overhead of the
distributed transaction coordination [30] or to determine an
initial optimal partitioning strategy [16,49,54]. Our exper-
iment, shown in Figure 11, corroborates these results. We
run two microbenchmarks whose transactions read and up-
date 10 rows respectively on the quad-socket machine. As
expected, the configuration 1ISL (i.e., shared-everything) is
not affected by varying the percentage of multisite transac-
tions. However, there is a drop in performance of the remain-
ing configurations, which is more significant in the case of
the fine-grained one.

Both fine-grained (24ISL) and coarse-grained (4ISL)
shared-nothing configurations have high performance for
the workloads that contain only local transactions. The
performance improvement compared to shared-everything
is especially high for the read-only transactions and fine-
grained configurations that run in single-threaded mode
without locking or latching. As the percentage of multisite
transactions in the workload increases, the performance of
24ISL configuration decreases mainly due to the messaging
overhead involved in the execution of distributed transac-
tions. The trends for the 4ISL configuration are similar with
progressively lower performance as the percentage of multi-
site transaction increases. However, the drop in performance
is smaller due to fewer instances that participate in the exe-
cution of a single distributed transactions and, consequently,
fewer messages that need to be exchanged. At the same time,
performance for local-only transaction is not as high as in
the 24ISL case because of multiple worker threads that ex-
ecute transactions in the same instance and thus have to use
locking and latching to ensure isolation.

While the trends for the update case (Figure 11, top
right) are similar to the read-only one, the shape of the lines
is different. As in the previous case, partitioned configura-
tions have higher performance than the shared-everything
one for local-only transactions, however, the difference is
smaller because updates require logging that is more expen-
sive that just accessing data. When the percentage of multi-
site transaction in the workload increases, distributed trans-
actions cause performance to drop faster than in the case

of read-only transactions. This is because distributed update
transactions are more expensive due to the two rounds of
messaging, additional logging after the first phase, and the
increased contention as exclusive locks are held until the end
of the second phase of the 2PC protocol.

In addition to lower synchronization costs compared to
the shared-everything system, partitioned configurations in
this experiment have a benefit of cache locality as the dataset
almost fits in the last level caches. To quantify the impact of
locality on the performance, we repeat this experiment with
a larger dataset of 2.4 million rows (∼ 600 MB) and plot
throughput on the lower half of Figure 11. We observe that
while the performance of the shared-everything system re-
mains almost the same, the performance of partitioned con-
figurations decreases by 5-25% with larger decrease for the
fine-grained configuration. The relative decrease is larger for
local-only transactions, since access to the data takes larger
portion of the execution time compared to multisite transac-
tions (as we show in more detail in Section 6.3).

6.2 Microarchitectural behavior

To better understand the impact of thread synchronization
and data locality for different types of configurations, we
profile their behavior for local-only transactions by ac-
cessing hardware performance counters using VTune. For
this experiment, we run read-only microbenchmark which
accesses 10 rows from the local site and use both last
level cache-resident (Figure 12 (top)) and memory-resident
datasets (Figure 12 (bottom)).

The leftmost graph of the top row in Figure 12, which
plots the number of instructions retired per cycle (IPC),
shows that the shared-nothing configurations, whose in-
stances have fewer threads, have better utilization of the
CPU. Single-threaded instances, apart from not communi-
cating with other instances, use simpler execution model
leading to shorter code paths, which decreases the number
of instruction misses. On the other hand, instances that span
across sockets have a much higher percentage of stalled cy-
cles (shown in the second graph from the left of Figure 12
(top)). This is due to the presence of—expensive—last-level
cache (LLC) misses (shown in the right-most graph in Fig-
ure 12 (top) as the percentage of all memory requests that
result in LLC data misses). In contrast, shared-nothing in-
stances have zero LLC misses as the data fits in the last level
cache of each processor and all transactions are local. Fi-
nally, within the same socket, smaller instances have higher
ratio of instructions per cycle due to fewer stalls while ac-
cessing shared data structures since fewer threads share the
same data. This effect is observed on the “data sharing”
graph in the Figure 12 (second from the right in the top row)
that plots the ratio of cycles the system is accessing shared
data to all cycles.



Characterization of the Impact of Hardware Islands on OLTP 13

Last Level Cache-resident dataset 

    

Memory-resident dataset 

    
 

0

0.2

0.4

0.6

0.8

1

1.2

24ISL 4ISL 1ISL

IPC

0.0%

20.0%

40.0%

60.0%

24ISL 4ISL 1ISL

Stalled cycles

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

24ISL 4ISL 1ISL

Data sharing

0.0%

0.1%

0.2%

0.3%

0.4%

24ISL 4ISL 1ISL

LLC miss rate

0

0.2

0.4

0.6

0.8

1

1.2

24ISL 4ISL 1ISL

IPC

0.0%

20.0%

40.0%

60.0%

24ISL 4ISL 1ISL

Stalled cycles

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

24ISL 4ISL 1ISL

Data sharing

0.0%

0.1%

0.2%

0.3%

0.4%

24ISL 4ISL 1ISL

LLC miss rate

Fig. 12 Microarchitectural data for different deployments and datasets: smaller instances benefit a lot from locality in the workload.

  
 

0

10

20

30

40

50

0% 50% 100%Ti
m

e 
p

er
 t

ra
n

sa
ct

io
n

s 
(µ

s)

Multisite transactions

Retrieving 10 rows

0

50

100

150

200

250

0% 50% 100%Ti
m

e 
p

er
 t

ra
n

sa
ct

io
n

s 
(µ

s)

Multisite transactions

Updating 10 rows

logging

locking

communication

xct execution

xct management

Fig. 13 Time breakdown for a transaction that retrieves (left) or updates (right) 10 rows and uses unix domain sockets for communication. The cost
of communication dominates in the cost of distributed transaction in the read-only case, while in the update case overheads are divided between
communication and additional logging.

The benefit of fewer threads per instance is reduced
when the data does not fit in processor caches, which is the
common case in real-life workloads, as shown in the bottom
row of Figure 12. In this case, fine-grained shared-nothing
instances still manage to retire more instructions per cycle
compared to the larger instances, however, their IPC rates
are lower than in the case with cache-resident data. This
is due to the long latency LLC misses that cannot be ef-
fectively overlapped by the modern superscalar processors.
LLC misses also increase for the coarse-grained shared-

nothing instances leading to higher percentage of stalled
cycles. Overall, the diminished locality in the workload,
due to data not fitting in the LLC, causes the smaller in-
stances to have more stalled cycles compared to the shared-
everything instance. Finally, the data sharing patterns do not
change compared to the case of cache-resident dataset, lead-
ing to the conclusion that the lower processor utilization for
shared-nothing configurations is due to the reduced cache
locality in the workload.



14 D. Porobic, I. Pandis, M. Branco, P. Tözün, A. Ailamaki
 

  
 

  
 

0

50

100

150

200

250

300

0 20 40 60 80 100

Th
ro

u
gh

p
u

t 
(K

Tp
s)

% multisite transactions

Retrieving 10 rows

0

20

40

60

80

100

120

0 20 40 60 80 100

% multisite transactions

Updating 10 rows 24ISL

4ISL

1ISL

Fig. 14 Performance as the percentage of multisite transactions increases using shared memory communication channel. Read-only distributed
transactions benefit from faster communication much more than the update ones.

6.3 Profiling

In order to characterize the overhead of inter-process com-
munication costs in relation to the remaining costs of a dis-
tributed transaction, we profile the execution of a set of read-
only and update transactions on the quad-socket machine,
using the 4ISL configuration. Figure 13 plots time break-
down for the microbenchmark transaction which reads or
updates 10 rows from the small dataset. The messaging over-
head is high in the read-only case, although it has a constant
cost per transaction. The relative cost of communication can
be seen by comparing the 0% multisite (i.e. local transac-
tions only) and the 100% multisite bars. Also, we observe
an increase in the cost of transaction management due to
bookkeeping overheads.

Even though messaging overhead is high for the dis-
tributed read-only transactions, they require a single round
of communication since we can use the following optimiza-
tion of the 2PC protocol: if the transaction fragment con-
tains only read-only operations, it sends a read-only vote at
the end of the prepare phase and does not participate in the
second phase. In contrast, update transactions have to vote
either commit or abort at the end of the first phase. If they
vote commit, i.e., the processing is successful, they have to
hold all exclusive locks until they get the decision message
from the coordinator in the second communication phase.
These factors make the distributed transaction significantly
more expensive than their read-only counterparts. Although
distributed transactions require exchange of twice as many
messages in the update case, this overhead is comparatively
smaller because of additional logging, as well as increased
contention which further increase the cost of a transaction.

6.4 Impact of the communication channel

Although unix domain sockets are the fastest messaging
mechanism provided by the operating system (Section 3),
they still cause large communication overheads when exe-

cuting distributed transactions. This is primarily due to the
fact that they involve expensive system calls. In order to re-
move the overhead of system calls, we implement a pro-
totype shared memory communication mechanism. While
shared memory communication is more complicated to use
and implement, it is used for inter-process communication
in all major commercial database systems.

We repeat the experiment from Section 6.1 with a small
dataset and plot the throughput in Figure 14. We observe
that the performance trends of various configurations are the
same as in the case of unix domain socket communication
channels (Figure 11 (top)). However, the relative decrease
in performance, as the percentage of the multisite transac-
tion in the workload increases, is lower. For example, the
throughput of 24ISL configuration for the read-only transac-
tions improves by 60% and 4ISL by 25% for the workload
consisting of 100% of multisite transactions. This improve-
ment is smaller for the update case, measuring 22% and 12%
respectively. Even though communication overhead repre-
sented significant part of the cost of distributed transactions
(Figure 13) for both types of transactions, improved com-
munication is more beneficial for the read-only ones.

To characterize the impact of faster communication
mechanism, we repeat the profiling experiment from the
Section 6.3 with the shared memory communication chan-
nel and show the results in Figure 15. Since in this case com-
munication bypasses the operating system and the instances
avoid making system calls, communication overhead di-
minishes significantly. The lower communication cost di-
rectly results in better throughput of read-only microbench-
mark transactions. In the update case, however, the bene-
fits are significantly smaller due to the other overheads of
the 2PC protocol that cannot be overlapped with communi-
cation anymore, including additional logging and increased
lock contention.



Characterization of the Impact of Hardware Islands on OLTP 15

  
 

0

10

20

30

40

50

0% 50% 100%Ti
m

e 
p

er
 t

ra
n

sa
ct

io
n

s 
(µ

s)

Multisite transactions

Retrieving 10 rows

0

50

100

150

200

250

0% 50% 100%Ti
m

e 
p

er
 t

ra
n

sa
ct

io
n

s 
(µ

s)

Multisite transactions

Updating 10 rows

logging

locking

communication

xct execution

xct management

Fig. 15 Time breakdown for a transaction that retrieves (left) or updates (right) 10 rows and uses shared memory channels for communication.
Lower cost of communication decrease significantly decrease the costs in the read-only case, while other costs increase in the update costs as they
cannot be overlapped with communication anymore.

Octo-socket server 

  
Dual-socket server 

  
 

0

200

400

600

800

1000

0 20 40 60 80 100

Th
ro

u
gh

p
u

t 
(K

Tp
s)

% multisite transactions

Retrieving 10 rows

0

100

200

300

400

0 20 40 60 80 100

% multisite transactions

Updating 10 rows 80ISL

8ISL

1ISL

0

50

100

150

200

250

0 20 40 60 80 100

Th
ro

u
gh

p
u

t 
(K

Tp
s)

% multisite transactions

Retrieving 10 rows

0

20

40

60

80

100

0 20 40 60 80 100

% multisite transactions

Updating 10 rows 16ISL

2ISL

1ISL

Fig. 16 Performance as the number of distributed transactions increases on dual and octo socket servers. Trends are common across machines,
however, hardware topology determines relative performance of different configurations.

6.5 Different topologies

The number of islands is one of the most important fac-
tors that determine their impact on the transaction process-
ing systems. In this experiment, we extend our analysis to
two very different multisocket machines with two and eight
processors (their configuration is outlined in Table 1). We
repeat the experiments with microbenchmark that reads and
updates 10 rows and compare shared-everything and fine-
and coarse-grained shared-nothing configurations.

Figure 16 (top) plots the throughput of the different con-
figurations as we increase the percentage of multisite trans-
actions on the octo-socket server. We use the cache-resident
dataset with 10,000 rows per core for the total of 800,000
rows. Each of the eight processors on this machines has ten
cores, hence we have 80 instances in the fine-grained (la-
beled 80ISL) and 8 instances in the coarse-grained shared-
nothing deployment (labeled 8ISL). Similarly to the smaller,
quad-socket, server used in the experiment in Section 6.1,
throughput of the shared-everything system is constant ir-
respective of the percentage of multisite transactions. How-



16 D. Porobic, I. Pandis, M. Branco, P. Tözün, A. Ailamaki

ever, it is much lower compared to the partitioned configura-
tions. We further examine the scalability of different config-
urations as the number of sockets increases in Section 7.2.
As the percentage of multisite transaction increases in the
read-only case, the performance of 80ISL configuration de-
creases more than the 8ISL one due to the higher communi-
cation overheads. In addition to more instances that are in-
volved in the execution of a single distributed transaction,
fine-grained deployment has higher static communication
overheads due to larger number of instances in the system.
The trends are similar for the update case with larger de-
crease in performance due to higher overheads of distributed
update transactions.

In contrast to the octo-socket server, the impact of is-
lands is much smaller on the dual-socket server. We plot the
results of the dual-socket server experiment on the bottom
part of Figure 16. This server has two eight core processors,
so we deploy fine-grained shared-nothing configuration with
16 instances and the coarse-grained one with 2 instances. In
this case, the cache-resident dataset contains 160,000 rows.
For the read-only microbenchmark, 16ISL configuration has
almost two times better performance compared to the other
configurations for the local-only transactions. The perfor-
mance drops with the increase in the percentage of multisite
transactions, however, this drop is smaller compared to fine-
grained instances on the larger servers due to fewer instances
in the system which lowers communication overheads. The
2ISL configuration has slightly better performance com-
pared to the 1ISL one for local transactions due to the fairly
large number of threads that need to synchronize their ac-
cesses to the shared data structures. At the same time, the
overhead of distributed transactions is small as the percent-
age of multisite transaction increases since each distributed
transaction requires exchange of a single pair of messages.
The situation is different for the update microbenchmark
where the overheads of distributed transactions cause sizable
performance drop for partitioned configurations as the per-
centage of distributed transaction increases. This is the case
even for 2ISL configuration as the main overheads related
to additional logging and bookkeeping are proportional to
the number of updated rows. The shared-everything system
benefits from optimized logging to offer consistently good
performance for update transactions.

7 Sensitivity analysis with microbenchmarks

In this section we perform sensitivity analysis using mi-
crobenchmark workloads by varying a number of parame-
ters. We start by expanding the range of configurations to
include the ones larger and smaller than an island and mea-
suring the cost of transactions as a function of the number of
rows accessed. Next, we project how the deployments will
scale with the increasing number of islands in the system

and evaluate the tolerance to skew. Finally, we investigate
the effects of dataset sizes that cannot entirely fit in the main
memory.

7.1 Impact of the size of transaction

In this experiment we use the quad-socket machine and all
reasonable configuration choices. We start with the config-
urations we introduced in the previous section: shared ev-
erything (1ISL), coarse-grained shared-nothing (4ISL), and
fine-grained shared-nothing (24ISL). Additionally we in-
troduce coarser-grained configuration whose instances span
across sockets (2ISL) and two smaller configuration with
multiple instances per socket (8ISL and 12ISL). We tune
each configuration for the optimal performance: disable
locking and latching for the single-threaded instances and
enable Aether logging optimizations for larger instances
where constructive sharing among threads decreases the
pressure on the logging subsystem. We focus on the costs
as opposed to throughput since we analyze trends separately
for the local and multisite transactions.

7.1.1 Read-only Case: Overhead Proportional to the
Number of Participating Instances

Figure 17 (left) represents the time it takes to execute a sin-
gle local read-only transaction in various database configu-
rations as the number of rows retrieved per transaction in-
creases. The 24ISL configuration runs with a single worker
thread per instance, so locking and latching are disabled,
which leads to roughly 40% lower costs than the next best
configuration, corroborating previous results [23].

The costs of multisite read-only transactions (Figure 17
right) show the opposite trend from the local read-only
transactions for shared-nothing configurations. First, for
small number of rows per transaction, we observe super lin-
ear increase in cost as more instances become involved in
the execution of a singe transaction. This trend flattens out
once all instances are involved in execution of every transac-
tion and the number of messages exchanged per transaction
becomes constant. However, for the shared-everything case,
the costs of accessing sharing data structures are so high
that for large transactions, it has worse performance than
all shared-nothing configurations which execute distributed
transactions.

7.1.2 Update Case: Additional Logging Overhead Is
Significant

The left graph of Figure 18 present the time it takes to ex-
ecute a single local transaction of the update microbench-
mark. The cost of a transaction increases with the number
of threads in the system, due to contention on shared data



Characterization of the Impact of Hardware Islands on OLTP 17

  
 

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e 
p

er
 t

ra
n

sa
ct

io
n

 (
μ

s)

Number of rows retrieved

Local

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

Number of rows retrieved

Multisite
24ISL

12ISL

8ISL

4ISL

2ISL

1ISL

Fig. 17 Cost of local and multisite transactions in the read-only microbenchmark. For multisite transactions, communication costs rise until all
instances are involved in every transaction.

  
 

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e 
p

er
 t

ra
n

sa
ct

io
n

 (
μ

s)

Number of rows updated

Local24ISL

12ISL

8ISL

4ISL

2ISL

1ISL

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

Number of rows updated

Multisite

Fig. 18 Cost of local and multisite transactions in the update microbenchmark. Shared-everything can take advantage of consolidated logging that
is especially significant for multisite transactions.

    20% multisite read-only workload 20 % multisite update workload 

 

0

50

100

150

200

6 12 18 24

T
h

ro
u

g
h

p
u

t 
(K

T
p

s)

# Cores

4 sockets

FG

CG

SE

0

100

200

300

400

500

600

20 40 60 80

# Cores

8 sockets

0

10

20

30

40

50

60

6 12 18 24

# Cores

4 sockets

0

50

100

150

200

20 40 60 80

# Cores

8 sockets

Fig. 19 Performance of alternative configurations as the hardware parallelism increases. Coarser-grained shared-nothing provides an adequate
compromise between performance and predictability.

structures. As in the read-only case, the 24ISL configuration
runs without locks or latches and hence, has lower costs.

In contrast to the read case, multisite shared-nothing
transactions (Figure 18, right) are significantly more ex-
pensive than their local counterparts. This is due to the
overhead associated with distributed transactions and to the
(mandatory) use of locking. Any configuration that requires
distributed transactions is more expensive than the shared-
everything configuration. We can observe the same trend as

in read-only case with super linear increase in costs as num-
ber of instances involved in the transaction rises which later
flattens out. In addition, we have another trend of increase
in costs of transaction that access the large number of rows
since holding locks for a longer period of time increases
contention. Finally, for the shared-everything configuration
costs rise linearly and quickly become smaller than all the
other configurations, primarily due to use of efficient log-
ging with Aether.



18 D. Porobic, I. Pandis, M. Branco, P. Tözün, A. Ailamaki

 Read-only Workload  

 Update Workload  

 

0

200

400

600

800

0 0.25 0.5 0.75 1

T
h

ro
u

g
h

p
u

t 
(K

T
p

s)

Skew factor

0% multisite

0

200

400

600

800

0 0.25 0.5 0.75 1

Skew factor

20% multisite

0

200

400

600

800

0 0.25 0.5 0.75 1

Skew factor

50% multisite

24ISL

4ISL

1ISL

0

50

100

150

200

250

300

0 0.25 0.5 0.75 1

T
h

ro
u

g
h

p
u

t 
(K

T
p

s)

Skew factor

0% multisite

24ISL

4ISL

1ISL
0

50

100

150

200

250

300

0 0.25 0.5 0.75 1

Skew factor

20% multisite

0

50

100

150

200

250

300

0 0.25 0.5 0.75 1

Skew factor

50% multisite

Fig. 20 Performance of read-only (top) and update (bottom) workloads with skewed accesses. As skew increases, shared-everything suffers from
increased contention, while fine-grained shared-nothing suffers from a highly-loaded instance that slows others. Coarse-grained shared-nothing
configuration cope better with a highly loaded instances, due to multiple internal threads.

7.2 Increasing Hardware Parallelism

Hardware parallelism as well as communication variability
will likely continue to increase in future processors. There-
fore, it is important to study the behavior of alternative
database configurations as hardware parallelism and com-
munication variability grow. In Figure 19, we run the mi-
crobenchmark which reads (left) or updates (right) 10 rows
with fixed percentage of multisite transactions to 20%, while
the number of cores active in the machine is increased grad-
ually. Results are shown for both the quad-socket and the
(more parallel and variable) octo-socket machines.

The shared-nothing configurations scale linearly, with
CG (coarse-grained shared-nothing) configuration being com-
petitive with the best case across different machines and
across different levels of hardware parallelism. The configu-
ration labeled SE (shared-everything) does not scale linearly,
particularly on the machine with 8 sockets. In the SE config-
uration, there is no locality when accessing the buffer pool,
locks, or latches. To verify the poor locality of SE, we mea-
sured the QPI/IMC ratio, i.e. the ratio of the inter-socket traf-
fic over memory controller traffic. A higher QPI/IMC ratio
means that the system does more inter-socket traffic while

reading (i.e. processing) less data overall: it is less NUMA-
friendly. The QPI/IMC ratio for the experiment with read-
only workload on octo-socket server using all 80 cores is
1.73 for SE, 1.54 for CG, and 1.52 for FG. The FG and
CG configurations still have a relatively high ratio due to
multisite transactions but, unlike SE, these consist of useful
work. When restricting all configurations to local transac-
tions only, we observe a steady data traffic of 100 Mb/s on
the inter-socket links for FG and CG (similar to the values
observed when the system is idle), while SE exceeds 2000
Mb/s.

Clearly, to scale the SE configuration to a larger num-
ber of cores, data locality has to be increased. Additionally,
one of the main reasons for poor performance of SE config-
uration is high contention on locks and latches. Using par-
titioned shared-everything designs with data-oriented exe-
cution can significantly improve locality of accesses and re-
move or minimize the overheads coming from lock and latch
managers [47,48]. ATraPos is a system that uses NUMA-
friendly data structures and data-oriented execution to min-
imize inter-socket synchronization in the critical path of
transaction execution [52]. It relies on dynamic workload
and hardware topology-aware partitioning and placement



Characterization of the Impact of Hardware Islands on OLTP 19

Read-only workload Update workload 

   
 

0

200

400

600

800

0.24 2.4 24 72 120

T
h

ro
u

g
h

p
u

t 
(K

T
p

s)

Data size (Million rows)

0% multisite

0

200

400

600

800

0.24 2.4 24 72 120

Data size (Million rows)

20% multisite

24ISL

4ISL

1ISL
0

100

200

300

0.24 2.4 24 72 120

Data size (Million rows)

0% multisite

0

100

200

300

0.24 2.4 24 72 120

Data size (Million rows)

20% multisite

Fig. 21 Performance of the various configurations on workloads, as we gradually increase the database size from almost cache-resident to I/O-
resident.

mechanisms to achieve balanced load and maximize locality
of accesses.

7.3 Tolerance to Skew

In many real workloads, skews on data and requests, as well
as dynamic changes are the norm rather than the exception.
For example, many workloads seem to follow the popular
80-20 distribution rule, where the 80% of requests accesses
only the 20% of the data. This subsection describes experi-
ments with workloads that exhibit skew.

The following microbenchmark reads or updates two
rows chosen with skew over the whole data range. We use
Zipfian distribution, with different skew factors s, shown on
the x-axis of Figure 20. The figures show the throughput
for varying percentages of multisite transactions. We em-
ploy similar optimizations as described in 7.1.1 and 7.1.2.

Skew has a dramatic effect on the performance of
the different configurations. For shared-everything, heavily
skewed workloads result in a significant performance drop
due to increased contention. This effect is apparent partic-
ularly in the update case. When requests are not strongly
skewed, shared-everything achieves fairly high performance
in the update microbenchmark, mainly due to optimized log-
ging, which significantly improves the performance of short
read-write transactions [29]. In coarser-grained islands, the
increased load due to skewed accesses is naturally dis-
tributed among all worker threads in the affected instance.
With fine-grained instances, which have a single worker
thread, the additional load cannot be divided and the most
loaded instance becomes a bottleneck. Furthermore, as the
skew increases to the point where all remote requests go to a
single instance, the throughput of other instances drops sig-
nificantly as they cannot complete transactions involving the
overloaded instance.

Overall, coarse-grained shared-nothing configurations
exhibit good performance in the presence of skewed re-

quests, as they suffer less from increased contention and are
more resistant to load imbalances.

7.4 Increasing Database Size

Although main memory sizes in modern servers continue to
grow, there are many workloads that are not main memory
resident and rely on disk-resident data. To evaluate various
database configurations on growing dataset sizes, we gradu-
ally increase the number of rows in the dataset from 240,000
to 120,000,000 (i.e., from 60 MB to 33 GB). Contrary to pre-
vious experiments, we place the database on two hard disks
configured as a RAID stripe. We use a 12 GB buffer pool, so
that the smaller datasets completely fit in the buffer pool. In
the shared-nothing configurations, the buffer pool is propor-
tionally partitioned among instances, e.g. in the 4ISL case
each instance has 3 GB buffer pool. We run read and update
microbenchmarks with two rows accessed and 0% and 20%
multisite transactions.

In Figure 21, we plot the performance of the read-
only microbenchmark on the left-hand side and the update
microbenchmark on the right-hand side as the number of
rows in the database grows. For the smaller dataset, shared-
nothing configurations exhibit very good performance as a
significant part of the dataset fits in last-level caches of the
processor. Since the instances do not span multiple sockets,
there is no inter-socket traffic for cache coherence. As data
sizes increase, the performance of shared-nothing configura-
tions decreases steadily, since smaller portions of the data fit
in the caches. Finally, when the dataset becomes larger than
the buffer pool, the performance drops sharply due to disk
I/O. These effects are less pronounced when the percentage
of multisite transaction is higher, since the longer latency
data accesses are overlapped with the communication.



20 D. Porobic, I. Pandis, M. Branco, P. Tözün, A. Ailamaki

   
 

0

100

200

300

24ISL 4ISL 1ISL

Th
ro

u
gh

p
u

t 
(K

Tp
s)

TPC-B

Local only Distributed

0

50

100

150

200

24ISL 4ISL 1ISL

TPC-C Payment

Local only Distributed

0

10

20

30

24ISL 4ISL 1ISL

TPC-C New Order

Local only Distributed

Fig. 22 Performance of different transactions in TPC-B and TPC-C benchmarks for their local only and standard-benchmark settings. Distributed
transactions are more expensive than their local counterparts and they have higher impact on the finer-grained configurations.

8 Standard workloads

In this section we expand our analysis of the impact of
hardware islands on transaction processing systems with
the characterization of the behavior of industry standard
benchmarks, TPC-B and TPC-C, and, in particular, their re-
mote transactions. The main difference compared to the mi-
crobenchmarks discussed in the previous sections lies in the
relative distribution of the work among different instances
involved in the execution of a distributed transactions.

In the case of microbenchmarks, the work in the dis-
tributed transactions is split roughly equally among the par-
ticipating instances. Also, when the microbenchmark set-
ting involved more than two instances or rows, there are
more than two such instances. On the other hand, distributed
transactions defined by the TPC-B and TPC-C specifica-
tions share the property that the local part of the transac-
tion contains many more operations compared to the remote
one. Also, the number of participating instance is two for
all TPC-B AccountUpdate and TPC-C Payment and
the vast majority of TPC-C NewOrder transactions.

In the majority of microbenchmark experiments pre-
sented in Section 6 and Section 7, rows were selected ran-
domly from a single table. In contrast, in the TPC bench-
marks, transactions involve multiple tables, including the
ones containing few rows. Furthermore, these transactions
typically update the hot rows. When the hot rows are in-
volved in a distributed transaction, they are locked until both
phases of the 2PC protocol are executed which prevents any
other transaction from accessing them. We run benchmarks
with only local transactions as well as varying percentage of
distributed transactions and analyze their behavior.

8.1 TPC-B

Figure 22 (left) compares the throughput of different con-
figurations when they run only local or a mix of local and
remote TPC-B transactions. We run the experiment on the
quad socket server and use the dataset with 24 branches

 

 

 
 

  
 

0

50

100

150

200

250

0 20 40 60 80 100

Th
ro

u
gh

p
u

t 
(K

tp
s)

% distributed transactions

TPC-B 24ISL

4ISL

1ISL

Fig. 23 Performance of different configurations as the percentage of
distributed transactions increases for the TPC-B workload. Distributed
transactions increase contention for hot data causing the drop in per-
formance for shared-nothing configurations.

equally partitioned among instances in the shared-nothing
configurations. In this experiment we compare shared-everything
(1ISL) and coarse (4ISL) and fine-grained shared-nothing
(24ISL) configurations. Shared-everything configuration ben-
efits from the Aether logging optimizations and 24ISL is
configured without latching. We use unix domain sockets as
the communication mechanism. The remote version of the
TPC-B AccountUpdate transaction updates one row in
the Teller table chosen randomly from a remote branch.
We use the mix that has 15% of the remote transactions as
this percentage is defined in the TPC-B specification.

AccountUpdate is a transaction that stresses the con-
currency control and logging components of the transaction
processing system. Thus, it is not surprising that the parti-
tioned configurations have higher performance for the lo-
cal only transactions due to less synchronization among the
threads in the same instance. However, their performance
drops by 22% when we introduce distributed transactions.
Even though the distributed version of the AccountUpdate
transaction involves only two instances, and hence, does not
have high communication and bookkeeping overhead, it in-
creases the time that the hot row in the Branch table is
locked, thus increasing contention.



Characterization of the Impact of Hardware Islands on OLTP 21

8.2 Impact of distributed transactions on TPC-B

We further examine the impact of distributed transactions on
the performance of TPC-B for different configurations by
running an experiment with varying percentage of remote
transactions in the workload. We use the same setting as in
the experiment in Section 8.1, but we gradually increase the
percentage of remote transactions from 0% to 100% and plot
the throughput in Figure 23.

The shared-everything system is not affected by the re-
mote transactions and its stable performance benefits from
optimized logging, similarly to the update version of the
microbenchmark. Also, we observe the trend of deterio-
rating performance of shared-nothing configurations as we
increase the percentage of distributed transactions. How-
ever, in contrast to the update microbenchmarks, here both
coarse-grained and fine-grained shared-nothing configura-
tions follow the same trend. This is due to the fact that the
number of participating instances in both cases is the same,
thus, making the relative cost of remote to local transactions
constant.

8.3 TPC-C

In this experiment, we quantify the impact of remote trans-
actions for TPC-C benchmark by separately looking at the
Payment and NewOrder transactions. We use the quad
socket server and the dataset with 24 warehouses. For
shared-nothing configurations, we partition the data with
one warehouse per core. We compare shared-everything
(1ISL), and coarse (4ISL) and fine-grained shared-nothing
(24ISL) system configurations. Since both of these transac-
tions are read-write, we enable Aether logging optimization
for the shared-everything configuration and disable latch-
ing for the fine-grained shared-nothing configuration. We
use unix domain sockets as the communication mechanism.
We compare the setting with only local transaction and the
mix of local and remote transactions using the percentages
of remote transactions defined in the benchmark specifica-
tion: 15% for the Payment transaction and 10% for the
NewOrder.

Figure 22 (middle) plots the throughput for different
configurations of the Payment workload, while Figure 22
(right) plots the throughput for the NewOrder case. Sim-
ilarly to the TPC-B workload, shared-everything system is
oblivious to the remote transactions, while the performance
of the shared-nothing configurations drops with distributed
transactions. The drop is higher for the Payment work-
load since it has higher percentage of distributed trans-
actions. Also, Payment workload is more sensitive to
the distributed transactions as it updates one row of the
Warehouse table. On the other hand, NewOrder transac-
tions update one row in the District table that contains

 

 

 
 

  
 

0

50

100

150

200

0 20 40 60 80 100

Th
ro

u
gh

p
u

t 
(K

tp
s)

% distributed transactions

TPC-C Payment 24ISL

4ISL

1ISL

Fig. 24 Performance of different configurations as the percentage of
distributed transactions increases for the TPC-C Payment transactions.
Shared-everything configuration offers robust performance in the pres-
ence of remote transactions which cause throughput drops for parti-
tioned systems.  

 

 

  
 

0

1

2

3

4

5

6

7

0 20 40 60 80 100

Th
ro

u
gh

p
u

t 
(M

Tp
s)

% multisite transactions

Retrieving 10 rows 24ISL

4ISL

1ISL

Fig. 25 Performance of different deployments of Silo as the number
of multisite transactions increases. It shows the same trends as the de-
ployments based on Shore-MT.

10 rows for each warehouse. In practice, this means that
we can have more concurrent transactions in the system for
the NewOrder workload (up to the number of District
rows) compared to the Payment one (up to the number of
Warehouse rows).

8.4 Impact of distributed transactions on TPC-C

Finally, we characterize the impact of distributed transac-
tions on the TPC-C Payment workload as we gradually
increase the percentage of distributed transactions in the
workload. We plot the throughput in Figure 24 and observe
the sharp drops in the performance of shared-nothing con-
figurations as the contention on the hot rows increases with
more distributed transactions. At the same time, the perfor-
mance of shared-everything configuration remains stable.

9 Main-memory optimized system

In this section we quantify the impact of hardware islands
on the performance of different deployments of a modern



22 D. Porobic, I. Pandis, M. Branco, P. Tözün, A. Ailamaki

  
 

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e 
p

er
 t

ra
n

sa
ct

io
n

 (
μ

s)

Number of rows retrieved

Local

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80 90 100

Number of rows retrieved

Multisite1ISL

4ISL

24ISL

Fig. 27 Cost of local and multisite transactions in the read-only microbenchmark. The cost of multisite transactions rises until all instances
participate in every transaction.

 

 

 

0

1

2

3

0% 50% 100%

Ti
m

e 
p

er
 t

ra
n

sa
ct

io
n

s 
(µ

s)

Multisite transactions

Retrieving 10 rows

xct management

xct execution

communication

Fig. 26 Time breakdown for a transaction that retrieves 10 rows in
4ISL deployment. Communication costs determine overall cost of a
transaction.

 

 

 

  
 

1

10

100

1000

10000

0 20 40 60 80 100

Th
ro

u
gh

p
u

t 
(K

Tp
s)

% multisite transactions

Updating 2 rows

24ISL

4ISL

1ISL

Fig. 28 Performance of different deployments of Silo as the percent-
age of multisite transactions increases. The trend is the same as with
read-only transaction, however, update transactions are much more ex-
pensive.

main-memory optimized system. We use Silo [67] which is
a multicore optimized system that utilizes cache-conscious
multiversioned Mass-tree design [44] as the data storage and
employs optimistic concurrency control protocol that scales
well on multicores.

We use the same distributed coordination layer as for
the Shore-MT experiments. Since Silo does not support dis-
tributed transaction out of the box, we split its commit pro-
cessing into a pre-commit and a post-commit phase. The
pre-commit phase, which performs all the validation checks
and locks rows that have been changed in a transaction, is
executed at the end of the first phase of the 2PC protocol,
while the post-commit phase, which applies the changes
on the Mass-tree, is executed in the second phase of 2PC.
As Silo is a main-memory optimized system that achieves
very high throughput, we only run experiments with shared
memory communication channels tuned with appropriately
sized buffers. We implement the same microbenchmark de-
scribed in Section 3 and use the same transaction execution
logic as in the Shore-MT experiments. We run all exper-
iments on a quad socket machine and use a dataset with
240 000 rows. As in the previous experiments, we com-
pare shared-everything (1ISL), and coarse (4ISL) and fine-
grained shared-nothing (24ISL) deployment configurations.

Figure 25 plots the results of the experiment with in-
creasing percentage of multisite transactions in the workload
for the microbenchmark that reads 10 rows. We observe that
the smaller instances have higher performance for local-only
transactions as data is accessed by fewer cores and hence,
the accessed have more locality. Even though Silo’s trans-
action execution protocol does not have any global synchro-
nization points, it does not use any partitioning and the data
is shared by all the threads in the instance. As the percentage
of multisite transactions in the workload increases, through-
put of partitioned configurations decreases sharply since dis-
tributed transactions are more expensive.

In order to characterize the impact of communication,
we profile the execution of a 4ISL deployment with differ-
ent percentages of multisite transactions for the microbench-
mark that reads 10 rows. Figure 26 breaks down the time
needed to execute one transaction into transaction execu-
tion, transaction management and communication. As we
increase the percentage of multisite transactions, the time
required for communication rises while the other two com-



Characterization of the Impact of Hardware Islands on OLTP 23

ponents remain the same. This trend shows that the com-
munication costs are the dominant factor in the cost of the
distributed transactions.

Next, we quantify the impact of transaction size on the
cost of local and multisite transactions by increasing the
number of rows read, using the same methodology as in
Section 7.1.1. The left hand side of Figure 27 shows the
time it takes to execute a single local transaction. All deploy-
ments show linear increases in costs as the number of rows
accessed per transactions increases with smaller instances
having lower costs. The relative performance trend for the
multisite case, presented on the right hand side of Figure 27,
is completely opposite. Smaller configurations have higher
costs that increase with larger number of rows accessed. The
increasing trend flattens after all instances in the configura-
tion become involved in every transaction.

Finally, we investigate the behavior of the update dis-
tributed transactions as we increase the percentage of mul-
tisite transactions. In contrast to the read-only case, in this
experiment we use the microbenchmark that updates 2 rows
and plot the throughput in Figure 28. We use fewer rows
because heavier transactions increase contention even fur-
ther resulting in a very low throughput. Figure 28 shows
the same trends as the update microbenchmarks that runs on
top of Shore-MT, however, the performance degradation is
much more severe. This is due to much bigger impact of the
communication delays which increase contention and cause
many aborts. In Silo, when distributed update transaction
successfully finishes the first phase of the 2PC protocol, it
locks the affected rows until it completes the second phase.
Any transaction attempting to access the locked rows will be
aborted.

Overall, different distributed deployments of Silo, a
main-memory optimized system, exhibit the same behav-
ior as Shore-MT, in line with the model described in Sec-
tion 5, even though the designs of these two systems are
very different. Furthermore, performance trends in the ex-
periments with increasing percentage of multisite transac-
tions in Silo are even more clear as it is a much leaner sys-
tem with fewer components that interact with each other.
For example, when we switched to shared memory com-
munication mechanism for Shore-MT prototype, the com-
munication overhead has diminished significantly. On the
other hand, even shared memory communication adds sig-
nificant overhead to the read-only distributed transactions
when many instances need to be involved in a transaction.
Additionally, since Silo relies on short critical sections to
achieve high performance, it is very sensitive to the increase
in their effective length caused by distributed update trans-
actions.

10 Summary and discussion

Modern multisocket multicore servers are characterized by
abundant hardware parallelism and variable communication
latencies. This non-uniformity has an important impact on
OLTP databases and neither shared-everything configura-
tions, nor shared-nothing designs, are an optimal choice for
every class of OLTP workloads on modern hardware. In fact,
our experiments show that no single optimal configuration
exists: the ideal configuration is dependent on the hardware
topology and workload, but the performance and variability
between alternative configurations can be very significant,
encouraging a careful choice. There is, however, a common
observation across all experiments: the topology of mod-
ern servers favors a configuration we call Islands, which
groups together cores that communicate quicker, minimiz-
ing access latencies and variability.

We show that topology-awareness improves OLTP
performance under a variety of scenarios. The OLTP
Islands design, being hardware topology-aware, provides
some of the performance gains of shared-nothing databases
while being more robust to changes in the workload than
shared-nothing. Their performance under heavy skews and
multisite transactions also suffers, but overall, Islands are
robust under the presence of moderate skews and multisite
transactions.

As for previous approaches, our experiments corrob-
orate previous results in that shared-everything OLTP
provides stable but non-optimal performance. Shared-
everything databases are robust to skew and/or updates in
their workloads. However, their performance is not optimal
and in many cases, significantly worse than the ideal config-
uration. In addition, shared-everything OLTP is likely to
suffer more on future hardware. As the hardware paral-
lelism continues to increase, it becomes increasingly impor-
tant to make shared-everything databases hardware-aware.
Also, extreme shared-nothing OLTP is fast but sensitive
to the workload. Extreme shared-nothing databases, as ad-
vocated by systems such as H-Store, provide nearly opti-
mal performance if the workload is perfectly partitionable.
Shared-nothing databases, however, are sensitive to skew
and multisite transactions, particularly in the presence of up-
dates.

The percentage of distributed transactions in the work-
load is one of the main factors that determine the perfor-
mance of any OLTP deployment. It directly depends on
the partitioning scheme of data into logical sites that deter-
mine which transactions are going to be multisite. Depend-
ing on the number of multisite transactions in the workload,
different hardware topologies favor different deployments.
For perfectly partitionable workloads, such as single row
reads or updates that are very common in web applications,
fine grained configurations are an ideal choice since they



24 D. Porobic, I. Pandis, M. Branco, P. Tözün, A. Ailamaki

incur no synchronization overheads. Many common work-
loads such as TPC-B and TPC-C we analyzed in Section 8
have few multisite transactions and favor partitioned deploy-
ments whose optimal granularity depends on the specifics of
the workload. In this case, socket-sized islands are a good
choice. Finally, many complex workloads, including TPC-E
benchmark [65], are not easily partitionable as they contain
multiple tree schemas and transactions that access data from
many different tables [62]. In this case, even a very good par-
titioning scheme will generate many multisite transactions
[16,49,66]. For such workloads that are not easily partition-
able, shared-everything deployments are the best choice.

11 Conclusions and future work

High-end servers, used for OLTP applications, are nowa-
days designed as multisocket multicores. In contrast to pre-
vious generations of such servers that had uniform core-
to-core latencies, multisockets have non-uniform topology.
In this paper, we conduct a detailed analysis of the im-
pact of hardware islands on the performance of different
transaction processing system configurations. We show that
the shared-nothing configuration is twice as fast as the
shared-everything one for perfectly partitionable workloads,
while situation is completely opposite for non-partitionable
workloads and workloads that exhibit heavy skew. Island-
sized shared-nothing configurations fall between the two ex-
tremes. Overall, there is no single optimal configuration: the
best configuration depends on the hardware topology and
the workload characteristics.

Future work will focus on determining the ideal size
of each island automatically for the given hardware and
workload. Moreover, in clustered databases, shared-cache
shared-disk designs [38] allow database instances to share
buffer pools, avoiding accesses to the shared-disk. Studying
the performance of shared-disk deployments within a single
multisocket multicore node is also part of our future plans.
Scaling-out OLTP across multiple machines is an orthogo-
nal problem, but the Islands concept would also be applica-
ble in a distributed setting. Finally, investigating the effect of
hardware Islands on more complex non-partitionable work-
loads (e.g., TPC-E) is still an open research problem.

Acknowledgements We would like to thank Eric Sedlar and Brian
Gold for many insightful discussions and the members of the DIAS
laboratory for their support throughout this work. This work is partially
funded by Oracle Labs and by the Swiss National Science Foundation
(Grant No. 200021-146407/1).

References

1. Accetta, M.J., Baron, R.V., Bolosky, W.J., Golub, D.B., Rashid,
R.F., Tevanian, A., Young, M.: Mach: A new kernel foundation
for UNIX development. In: USENIX Summer, pp. 93–112 (1986)

2. Ailamaki, A., DeWitt, D.J., Hill, M.D., Wood, D.A.: DBMSs on a
modern processor: Where does time go? In: VLDB, pp. 266–277
(1999)

3. Albutiu, M.C., Kemper, A., Neumann, T.: Massively Parallel
Sort-merge Joins in Main Memory Multi-core Database Systems.
PVLDB 5(10), 1064–1075 (2012)

4. Amazon: EC2 instance types (2015). Available at
https://aws.amazon.com/ec2/instance-types/

5. Bailis, P., Fekete, A., Franklin, M.J., Ghodsi, A., Hellerstein, J.M.,
Stoica, I.: Coordination avoidance in database systems. PVLDB
8(3), 185 – 196 (2015)

6. Balkesen, C., Alonso, G., Teubner, J., Ozsu, M.T.: Multi-Core,
Main-Memory Joins: Sort vs. Hash Revisited. PVLDB 7(1), 85–
96 (2014)

7. Barroso, L.A., Gharachorloo, K., Bugnion, E.: Memory system
characterization of commercial workloads. In: ISCA, pp. 3–14
(1998)

8. Baumann, A., Barham, P., Dagand, P.E., Harris, T., Isaacs, R., Pe-
ter, S., Roscoe, T., Schüpbach, A., Singhania, A.: The multikernel:
a new OS architecture for scalable multicore systems. In: SOSP,
pp. 29 – 44 (2009)

9. Beckmann, B.M., Wood, D.A.: Managing Wire Delay in Large
Chip-Multiprocessor Caches. In: MICRO, pp. 319–330 (2004)

10. Bernstein, P.A., Goodman, N.: Multiversion concurrency
control—theory and algorithms. ACM TODS 8(4), 465–483
(1983)

11. Blagodurov, S., Zhuravlev, S., Fedorova, A., Kamali, A.: A case
for NUMA-aware contention management on multicore systems.
In: PACT, pp. 557–558 (2010)

12. Brewer, E.A.: Towards robust distributed systems (abstract). In:
PODC, pp. 7–7 (2000)

13. Carey, M.J., DeWitt, D.J., Franklin, M.J., Hall, N.E., McAuliffe,
M.L., Naughton, J.F., Schuh, D.T., Solomon, M.H., Tan, C.K.,
Tsatalos, O.G., White, S.J., Zwilling, M.J.: Shoring up persistent
applications. In: SIGMOD, pp. 383–394 (1994)

14. Closson, K.: You buy a NUMA system, Oracle
says disable NUMA! What gives? (2009). See
http://kevinclosson.wordpress.com/2009/05/14/you-buy-a-
numa-system-oracle-says-disable-numa-what-gives-part-ii/

15. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman,
J., Ghemawat, S., Gubarev, A., Heiser, C., Hochschild, P., Hsieh,
W., Kanthak, S., Kogan, E., Li, H., Lloyd, A., Melnik, S., Mwaura,
D., Nagle, D., Quinlan, S., Rao, R., Rolig, L., Saito, Y., Szyma-
niak, M., Taylor, C., Wang, R., Woodford, D.: Spanner: Google’s
Globally-Distributed Database. In: OSDI, pp. 261–264 (2012)

16. Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a workload-
driven approach to database replication and partitioning. PVLDB
3, 48–57 (2010)

17. Dashti, M., Fedorova, A., Funston, J., Gaud, F., Lachaize, R., Lep-
ers, B., Quema, V., Roth, M.: Traffic Management: A Holistic Ap-
proach to Memory Placement on NUMA Systems. In: ASPLOS,
pp. 381–394 (2013)

18. David, T., Guerraoui, R., Trigonakis, V.: Everything You Always
Wanted to Know About Synchronization but Were Afraid to Ask.
In: SOSP, pp. 33–48 (2013)

19. Engler, D.R., Kaashoek, M.F., O’Toole Jr., J.: Exokernel: an op-
erating system architecture for application-level resource manage-
ment. In: SOSP, pp. 251–266 (1995)

20. Giceva, J., Alonso, G., Roscoe, T., Harris, T.: Deployment of
Query Plans on Multicores. PVLDB 8(3), 233 – 244 (2014)

21. Graham, C., Sood, B., Horiuchi, H., Sommer, D.: Market share:
Database management system software, worldwide (2009). See
http://www.gartner.com/DisplayDocument?id=1044912

22. Hardavellas, N., Ferdman, M., Falsafi, B., Ailamaki, A.: Reac-
tive NUCA: near-optimal block placement and replication in dis-
tributed caches. In: ISCA, pp. 184–195 (2009)



Characterization of the Impact of Hardware Islands on OLTP 25

23. Harizopoulos, S., Abadi, D.J., Madden, S., Stonebraker, M.: OLTP
through the looking glass, and what we found there. In: SIGMOD,
pp. 981–992 (2008)

24. Helland, P.: Life beyond distributed transactions: an apostate’s
opinion. In: CIDR, pp. 132–141 (2007)

25. HP: Running Microsoft SQL Server 2014 on HP Integrity
Superdome X - Reference Configuration Guide (2015). Avail-
able at http://h20195.www2.hp.com/V2/GetDocument.aspx?
docname=4AA5-8846ENW

26. Johnson, R., Pandis, I., Ailamaki, A.: Improving OLTP scalability
using speculative lock inheritance. PVLDB 2(1), 479–489 (2009)

27. Johnson, R., Pandis, I., Ailamaki, A.: Eliminating unscalable com-
munication in transaction processing. Vldb Journal 23(1), 1–23
(2014)

28. Johnson, R., Pandis, I., Hardavellas, N., Ailamaki, A., Falsafi, B.:
Shore-MT: a scalable storage manager for the multicore era. In:
EDBT, pp. 24–35 (2009)

29. Johnson, R., Pandis, I., Stoica, R., Athanassoulis, M., Ailamaki,
A.: Aether: a scalable approach to logging. PVLDB 3, 681–692
(2010)

30. Jones, E., Abadi, D.J., Madden, S.: Low overhead concurrency
control for partitioned main memory databases. In: SIGMOD, pp.
603–614 (2010)

31. Jung, H., Han, H., Fekete, A.D., Heiser, G., Yeom, H.Y.: A Scal-
able Lock Manager for Multicores. In: SIGMOD, pp. 73–84
(2013)

32. Kemper, A., Neumann, T.: HyPer – a hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots. In:
ICDE, pp. 195–206 (2011)

33. Kimura, H.: FOEDUS: OLTP Engine for a Thousand Cores and
NVRAM. In: SIGMOD, pp. 691–706 (2015)

34. Kimura, H., Graefe, G., Kuno, H.: Efficient Locking Techniques
for Databases on Modern Hardware. In: ADMS (2012)

35. Kissinger, T., Kiefer, T., Schlegel, B., Habich, D., Molka, D.,
Lehner, W.: ERIS: A NUMA-Aware In-Memory Storage Engine
for Analytical Workload. In: ADMS, pp. 74–85 (2014)

36. Kung, H.T., Robinson, J.T.: On optimistic methods for concur-
rency control. ACM TODS 6(2), 213–226 (1981)

37. Lahiri, T., Neimat, M.A., Folkman, S.: Oracle TimesTen: An In-
Memory Database for Enterprise Applications. IEEE Data Eng.
Bull. 36(2), 6–13 (2013)

38. Lahiri, T., Srihari, V., Chan, W., MacNaughton, N., Chan-
drasekaran, S.: Cache fusion: Extending shared-disk clusters with
shared caches. In: VLDB, pp. 683–686 (2001)

39. Larson, P.A., Blanas, S., Diaconu, C., Freedman, C., Patel, J.M.,
Zwilling, M.: High-performance concurrency control mechanisms
for main-memory databases. PVLDB 5(4), 298–309 (2011)

40. Levandoski, J.J., Lomet, D.B., Sengupta, S.: The Bw-Tree: A B-
tree for new hardware platforms. In: ICDE, pp. 302–313 (2013)

41. Levinthal, D.: Performance analysis guide for Intel Core
i7 and Intel Xeon 5500 processors (2009). Available at
http://software.intel.com/sites/products/collateral/hpc/vtune/ per-
formance analysis guide.pdf

42. Li, Y., Pandis, I., Mueller, R., Raman, V., Lohman, G.: NUMA-
aware Algorithms: The Case of Data Shuffling. In: CIDR (2013)

43. Lindström, J., Raatikka, V., Ruuth, J., Soini, P., Vakkila, K.: IBM
solidDB: In-Memory Database Optimized for Extreme Speed and
Availability. IEEE Data Eng. Bull. 36(2), 14–20 (2013)

44. Mao, Y., Kohler, E., Morris, R.T.: Cache craftiness for fast multi-
core key-value storage. In: Eurosys, pp. 183–196 (2012)

45. Microsoft: Analytics Platform System (2015). Available at
http://www.microsoft.com/en-us/server-cloud/products/analytics-
platform-system

46. Oracle Corp.: Exadata Database Machine (2015). Available
at https://www.oracle.com/engineered-systems/exadata/database-
machine-x4-8/features.html

47. Pandis, I., Johnson, R., Hardavellas, N., Ailamaki, A.: Data-
Oriented Transaction Execution. PVLDB 3(1), 928–939 (2010)

48. Pandis, I., Tözün, P., Johnson, R., Ailamaki, A.: PLP: page latch-
free shared-everything OLTP. PVLDB 4(10), 610–621 (2011)

49. Pavlo, A., Curino, C., Zdonik, S.: Skew-Aware Automatic
Database Partitioning in Shared-Nothing, Parallel OLTP Systems.
In: SIGMOD, pp. 61–72 (2012)

50. Pavlo, A., Jones, E.P.C., Zdonik, S.: On predictive modeling
for optimizing transaction execution in parallel OLTP systems.
PVLDB 5(2), 85–96 (2011)

51. Polychroniou, O., Ross, K.A.: A Comprehensive Study of
Main-memory Partitioning and Its Application to Large-scale
Comparison- and Radix-sort. In: SIGMOD, pp. 755–766 (2014)

52. Porobic, D., Liarou, E., Tözün, P., Ailamaki, A.: ATraPos: Adap-
tive Transaction Processing on Hardware Islands. In: ICDE (2014)

53. Porobic, D., Pandis, I., Branco, M., Tözün, P., Ailamaki, A.: OLTP
on Hardware Islands. PVLDB 5(11), 1447–1458 (2012)

54. Quamar, A., Kumar, K.A., Deshpande, A.: Sword: scalable
workload-aware data placement for transactional workloads. In:
EDBT, pp. 430–441 (2013)

55. Salomie, T.I., Subasu, I.E., Giceva, J., Alonso, G.: Database en-
gines on multicores, why parallelize when you can distribute? In:
EuroSys, pp. 17–30 (2011)

56. Somogyi, S., Wenisch, T.F., Hardavellas, N., Kim, J., Ailamaki,
A., Falsafi, B.: Memory coherence activity prediction in commer-
cial workloads. In: WMPI, pp. 37–45 (2004)

57. Stonebraker, M.: The case for shared nothing. IEEE Database Eng.
Bull. 9, 4–9 (1986)

58. Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S.,
Hachem, N., Helland, P.: The end of an architectural era: (it’s time
for a complete rewrite). In: VLDB, pp. 1150–1160 (2007)

59. Tang, L., Mars, J., Vachharajani, N., Hundt, R., Soffa, M.L.: The
impact of memory subsystem resource sharing on datacenter ap-
plications. In: ISCA, pp. 283–294 (2011)

60. Thomson, A., Diamond, T., Weng, S.C., Ren, K., Shao, P., Abadi,
D.J.: Calvin: Fast distributed transactions for partitioned database
systems. In: SIGMOD, pp. 1–12 (2012)

61. Tözün, P., Pandis, I., Johnson, R., Ailamaki, A.: Scalable and dy-
namically balanced shared-everything OLTP with physiological
partitioning. VLDB J. 22(2), 151–175 (2013)

62. Tözün, P., Pandis, I., Kaynak, C., Jevdjic, D., Ailamaki, A.: From
A to E: Analyzing TPC’s OLTP Benchmarks – The obsolete, the
ubiquitous, the unexplored. In: EDBT, pp. 17–28 (2013)

63. TPC: TPC benchmark B standard specification, revision 2.0
(1994). Available at http://www.tpc.org/tpcb

64. TPC: TPC benchmark C standard specification, revision 5.11
(2010). Available at http://www.tpc.org/tpcc

65. TPC: TPC benchmark E standard specification, revision 1.12.0
(2010). Available at http://www.tpc.org/tpce

66. Tran, K.Q., Naughton, J.F., Sundarmurthy, B., Tsirogiannis, D.:
JECB: A join-extension, code-based approach to OLTP data par-
titioning. In: SIGMOD, pp. 39–50 (2014)

67. Tu, S., Zheng, W., Kohler, E., Liskov, B., Madden, S.: Speedy
Transactions in Multicore In-memory Databases. In: SOSP, pp.
18–32 (2013)

68. Vogels, W.: Eventually consistent. Commun. ACM 52, 40–44
(2009)

69. Wagle, M., Booss, D., Schreter, I.: NUMA-Aware Memory Man-
agement with In-Memory Databases. In: TPCTC (2015)

70. Wilson, M.: Disabling NUMA parameter (2011).
Http://www.michaelwilsondba.info/2011/05/disabling-numa-
parameter.html

71. Yu, X., Bezerra, G., Pavlo, A., Devadas, S., Stonebraker, M.: Star-
ing into the Abyss: An Evaluation of Concurrency Control with
One Thousand Cores. PVLDB 8(3), 209–220 (2014)

72. Zhang, C., Ré, C.: DimmWitted: A Study of Main-Memory Sta-
tistical Analytics. PVLDB 7(12), 1283–1294 (2014)


	Introduction
	Background and related work
	Experimental setup
	Hardware has Islands
	Islands: hardware topology-aware shared-nothing OLTP deployments
	Impact of multisite transactions
	Sensitivity analysis with microbenchmarks
	Standard workloads
	Main-memory optimized system
	Summary and discussion
	Conclusions and future work

