arXiv:1503.01707v2 [cs.DB] 12 Jan 2016

Mapping-equivalence and oid-equivalence of
single-function object-creating conjunctive queries

Angela Bonifati Werner Nutt Riccardo Torlone
Jan Van den Bussche

September 24, 2018

Abstract

Conjunctive database queries have been extended with a mechanism
for object creation to capture important applications such as data ex-
change, data integration, and ontology-based data access. Object creation
generates new object identifiers in the result, that do not belong to the
set of constants in the source database. The new object identifiers can be
also seen as Skolem terms. Hence, object-creating conjunctive queries can
also be regarded as restricted second-order tuple-generating dependencies
(SO tgds), considered in the data exchange literature.

In this paper, we focus on the class of single-function object-creating
conjunctive queries, or sifo CQs for short. The single function symbol can
be used only once in the head of the query. We give a new characterization
for oid-equivalence of sifo CQs that is simpler than the one given by Hull
and Yoshikawa and places the problem in the complexity class NP. Our
characterization is based on Cohen’s equivalence notions for conjunctive
queries with multiplicities. We also solve the logical entailment problem
for sifo CQs, showing that also this problem belongs to NP. Results
by Pichler et al. have shown that logical equivalence for more general
classes of SO tgds is either undecidable or decidable with as yet unknown
complexity upper bounds.

1 Introduction

Conjunctive queries form a natural class of database queries, which can be
defined by combinations of selection, renaming, natural join, and projection.
Much of the research on database query processing is focused on conjunctive
queries; moreover, these queries are amenable to advanced optimizations be-
cause containment of conjunctive queries is decidable (though NP-complete).
In this paper, we are interested in conjunctive queries extended with a facility
for object creation.

Object creation, also called oid generation or value invention, has been re-
peatedly proposed and investigated as a feature of query languages. This has
happened in several contexts: high expressiveness [4] [5, [I1]; object orientation

http://arxiv.org/abs/1503.01707v2

[3, 10} 22] 24] 29]; data integration [21]; semi-structured data and XML [I]; and
data exchange [8, 16 [I8]. In a logic-based approach, object creation is typically
achieved through the use of Skolem functions [22] 24] 29].

In the present paper, we consider conjunctive queries (CQs) extended with
object creation through the use of a single Skolem function, which can be used
only once in the head of the query. We refer to such a query as a ‘sifo CQ’
(for single-function object-creating). The following example of a sifo CQ uses a
Skolem function f:

Q : Family(c, f(z,y)) + Mother(c,), Father(c,y).

The query introduces a new oid f(z,y) for every pair (z,y) of a woman x
and a man y who have at least one child together; all children ¢ of x and y
are linked to the new oid in the result of the query (a relation called Family).
As an example, if Mother(beth, anne) and Father(beth, adam) are two facts
in the underlying database, then the result of the query includes the fact
Family(beth, f (anne, adam)), where f(anne, adam) is the newly created oid.
This oid will be shared by all the children having anne and adam as parents.

In this paper, we first revisit the problem of checking oid-equivalence of sifo
CQs. Oid-equivalence has its origins in the theory of object-creating queries
introduced by Abiteboul and Kanellakis [3]; it is the natural generalization of
query equivalence in the presence of object creation.

Consider for instance the following sifo CQ:

Q' : Family(c,g(x,y,x)) < Mother(c,x), Father(c,y).

It is not hard to see that the result of Q' has the same structure as the result of
the query @) above. The query @’ links all children c of the parents z and ¥ to
the oid g(z,y, x) that depends exactly on « and y. That is, two children in the
result of @ are connected to the same oid if and only if they are connected to
same oid in @', although the oids will be syntactically different. Therefore, we
can conclude that @ and Q' are oid-equivalent, which means that their results
are identical on any input up to a simple isomorphism mapping the oids in one
result to those in the other.

Hull and Yoshikawa [23] studied oid-equivalence (they called it ‘obscured
equivalence’) for nonrecursive ILOG programs; the decidability of this problem
is a long-standing open question. Nevertheless, for the case of ‘isolated oid
creation’, to which sifo CQs belong, they have given a decidable characterization.

We give a new result relating oid-equivalence to equivalence of classical con-
junctive queries under ‘combined’ bag-set semantics [14], which models the eval-
uation of CQs when query results and relations may contain duplicates of tuples.
As a corollary, we obtain that oid-equivalence for sifo CQs belongs to NP, which
does not follow from the Hull-Yoshikawa test. Obviously, then, oid-equivalence
for sifo CQs is NP-complete, since equivalence of classical CQs without object
creation is already NP-complete.

Object creation is receiving renewed interest in the context of schema map-
pings [8, 18], which are formalisms describing how data structured under a

source schema are to be transformed into data structured under a target schema.
Hence, it is instructive to view sifo CQs as schema mappings, simply by inter-
preting them as implicational statements. As an example, we may view query @
above as an implicational statement that relates a query over relations Mother
and Father in the source schema to the relation Family in the target schema.

For standard CQs without object creation, two queries are equivalent if and
only if they are logically equivalent as schema mappings [I7]. For sifo CQs, we
show that oid-equivalence implies logical equivalence, while the converse is not
true.

Sifo CQs viewed as schema mappings belong to the class of so-called ‘nested
dependencies’ [8], which belong in turn to the class of formulas called second-
order tuple-generating dependencies (SO-tgds [I8]). For instance, consider again
the sifo CQ @ above: it can be rewritten into the following SO-tgd:

AfVavyVe(Mother(c, x) A Father(c,y) — Family(c, f(z,y))),

which is of second order because the function f is existentially quantified.

Although logical equivalence of SO-tgds is undecidable [19], logical implica-
tion of nested dependencies has recently been shown to be decidable [26]. We
give a novel and elegant characterization of logical implication for sifo CQs which
is simpler than the general implication test for nested dependencies. It turns
out that the problem belongs to NP. Hence, logical implication for sifo CQs
has no worse complexity than containment for standard CQs without object
creation.

Summarizing, in this paper we provide the following contributions in the
area of query languages with object creation:

1. We clarify the relationship between sifo CQs and other formalisms in the
literature, notably, the language ILOG [22], second-order tuple-generating
dependencies [18], and nested tuple-generating dependencies [§].

2. We relate the problem of oid-equivalence for sifo CQs to the equivalence
of classical conjunctive queries under combined bag-set semantics, which
implies its NP-completeness.

3. We show that when sifo CQs are interpreted as schema mappings, oid-
equivalence implies logical equivalence but not vice versa.

4. We provide a new characterization of logical implication for sifo CQs as
object-creating queries showing that this problem has the same complexity
as deciding containment for classical CQs.

This paper is organized as follows. In Section 2 we review some practi-
cal applications of sifo CQs. In Section 3 we formally define object-creating
conjunctive queries. Section 4 is devoted to the results on oid equivalence. Sec-
tion 5 is devoted to the results on logical entailment. In Section 6 we conclude
by discussing related work and topics for further research.

2 Applications of sifo CQs

In this section, we discuss further applications of sifo CQs, which may consti-
tute important components of many advanced database systems, spanning from
information integration and schema mapping engines along with their bench-
marks, to several Semantic Web tools. We believe this shows that the results in
this article on equivalence and logical implication of sifo CQs are relevant and
contribute to our understanding of how solutions for these applications can be
optimized.

GAV (global-as-view) schema mappings [20] 27, B3] relate a query over the
source schema, represented by a body B of a CQ, to an atomic element of the
global schema, represented by a head atom H of a CQ. More precisely, a GAV
mapping can be written as follows:

T(z) + B

where we use a relation symbol T as the atomic head predicate.

GAV schema mappings have been used already in the 1990s in mediator
systems like Tsimmis [30, B3] or Information Manifold [28] for the integration
of heterogeneous data sources. In both systems, source facts are related to facts
over the global schema by means of queries.

Sifo CQs can naturally be seen as extensions of GAV mappings, when one
of the attributes of the global schema carries newly created identifiers. For
instance, the sifo CQ Q from Section [I] can express a mapping from a source
schema containing two relations Mother and Father to one relation Family of
a global schema, with created identifiers for families appearing in the tuples in
the result of the mapping. Thus, we can also interpret @@ as an extended GAV
schema mapping.

Another important application of sifo CQs are schema mapping benchmarks
allowing the users to compare and evaluate schema mapping systems. In par-
ticular, the flexibility of the arguments of the Skolem functions used for object
creation has been advocated as one of the desirable features in recent bench-
marks for schema mapping and information integration, such as STBenchmark
[6] and iBench [9].

More precisely, in the mapping primitives of iBench [9], an extension of
STBenchmark [6] that supports SO-tgds, the users can choose among two dif-
ferent skolemization strategies to fill the arguments of the Skolem functions:
fized, where the arguments of the function are pre-defined in a native mapping
primitive, or variable, where one can further choose among the options All, Key,
and Random, which generate mappings where all variables, the variables in the
positions of the primary key, or a random set of variables, respectively, are used
as arguments of the function.

These skolemization strategies can be captured by sifo CQs as follows. In
the query below:

T(z,y, f(z,y,2z,w)) + B(z,y, z,w)
we can observe that the Skolem term uses all the source variables in the body
B (option All). If the attribute in the position of x is a primary key for B, then

the application of the option Key generates a mapping that can be expressed
by the sifo CQ

T(z,y,f(x)) < B(z,y, z,w).
Alternatively, choosing the option Random may lead the iBench to randomly

select the attributes in the positions of x and z, and then to generate the map-
ping represented by

T(xz,y, f(x,2)) + B(z,y, z,w).

It is also worth highlighting that three out of the seven mapping primitives
in iBench that are novel with respect to STBenchmark, namely ADD (copy
a relation and ADD new attributes), ADL (copy a relation, Add and DeLete
attributes in tandem) and MA (Merge and Add new attributes) contain single
Skolem functions. They correspond to the following sifo CQs, respectively:

T(x,y, f(x,y)) < B(z,y)
T(z, f(x)) « B(z,y)
T(z,y,2, f(z,y,2)) + B(x,y), T(y, 2).

A third significant application of sifo CQs is the Semantic Web, where sifo
CQs can be envisioned in at least two scenarios, namely in systems for ontology-
based data access (OBDA) and in direct mappings from the relational to the
RDF data format, under development at wsc[l Indeed, newly created identi-
fiers in the head of a sifo CQ can serve as generated keys, or simply as newly
invented values needed to fill an attribute of a relation in the global schema.
As such, sifo CQs can be seen as examples of mapping assertions from source
schemas to a global ontology in OBDA [31]. Typically, OBDA mapping asser-
tions relate facts in relational source schemas to RDF triples in a global ontology.
The newly generated IRI{A in the RDF triples can be interpreted as skolemized
values in the global ontology.

A related application is the direct translation of a relational schema into
OWL, which uses as an important building block the creation of IRIs [32]. In
contrast to the previous application, this application handles relational schemas
that are not known in advance. For each relation r in a database schema,
Datalog-like rules can be used to generate an IRI for the relation » and an IRI
for each attribute a in r. We take an example of a translation from a relational
schema into OWL and we show that, actually, these Datalog-like rules can be
viewed as sifo CQs, since they employ a single concatenation function to obtain
such IRIs (exemplified as f). The corresponding sifo CQs are reported below:

T1(r, f(b,7r)) + Bi(r)
Ta(a,r, f(b,r,a)) « Ba(r,a),

Ihttp://www.w3.org/TR/rdb-direct-mapping/

21RIs stand for Internationalized Resource Identifiers and extend the syntax of URIs (Uni-
form Resource Identifiers) to a much wider repertoire of characters. They naturally embody
global identifiers that refer to the same resource on the Web and can be used across different
mapping assertions to refer to that resource.

http://www.w3.org/TR/rdb-direct-mapping/

where B; and Bs are conjunctive query bodies retrieving relation names r
and attribute names a from the data dictionary of an underlying relational
database, and where b is a string representing a given IRI base (e.g., the string
‘http://example.edu/db’) for the same database to be translated. Thus, the first
query creates a new IRI for the relation r, by concatenating b with the relation
symbol r, while the second query returns the set of IRIs of the attributes a of
r, by concatenating b with the relation symbol r and its attribute symbols a.

3 Preliminaries

In this section we introduce our formalism for dealing with conjunctive queries
and introduce the notion of object-creating conjunctive query, adapted from the
language ILOG [22].

3.1 Databases and conjunctive queries

From the outset we assume a supply of relation names, where each relation
name R has an associated arity ar(R). We also assume an infinite domain dom
of atomic data elements called constants. A fact is of the form R(ai,...,ax)
where a1, ..., a; are constants and R is a k-ary relation name. We call R the
predicate of the fact.

A database schema S is a finite set of relation names. An instance of S is a
finite set of facts with predicates from S. The set of all constants appearing in
an instance I is called the active domain of I and denoted by adom(I).

We further assume an infinite supply of variables, disjoint from dom. An
atom is of the form R(x1,...,x) where 1,. ..,z are variables and R is a k-ary
relation name. As with facts, we call R the predicate of the atom.

We can now recall the classical notion of conjunctive query (CQ) [2] [13].
Syntactically, a CQ over a database schema S is of the form

H + B,

where B is a finite set of atoms with predicates from S, and H is an atom with
a predicate not in S. The set B is called the body and H is called the head. It is
required that every variable occurring in the head also occurs in the body. We
denote the set of variables occurring in a set of atoms B (or a single atom A)
by var(B) (or var(A)).

The semantics of CQs is defined in terms of valuations. A waluation is a
mapping « : X — dom on some finite set of variables X. When A is an atom
with var(A) C X, we can apply « to A simply by applying « to every variable
in A. This results in a fact and is denoted by a(A). When B is a set of atoms
and « is a valuation on var(B), we can apply a to B by applying « to every
atom in B. Formally, «(B) is defined as the instance {«(4) | A € B}.

When [is an instance and « is a valuation on var(B) such that a(B) C T,
we say that « is a matching of B in I, and denote this by a : B — I. Now when

http://example.edu/db

Q is a CQ H < B and [is an instance, the result of Q) on I is defined as

Q) :={a(H)|a:B—I}.

3.2 Object-creating conjunctive queries

Assume a finite vocabulary of function symbols of various arities. As with
relation names, the arity of a function symbol f is denoted by ar(f).

Data terms are syntactical expressions built up from constants using function
symbols. Formally, data terms are inductively defined as follows:

1. Every constant is a data term;

2. If f is a k-ary function symbol and dj,...,d, are data terms, then the
expression f(dy,...,d) is also a data term

An extended fact is defined just like a fact, except that it may contain data
terms rather than only constants. Formally, an extended fact is of the form
R(dy,...,dy), where dy,...,d; are data terms and R is a k-ary relation name.
The active domain of an extended fact e = R(dy,...,dy) is defined as

adom(e) := {dy,...,dx}.

An extended instance is a finite set of extended facts. The active domain of an
extended instance J is defined as

adom(J) := U adom(e).
ecJ

Formula terms are defined in the same way as data terms, but are built up
from variables rather than constants. Fxtended atoms are defined like atoms,
but can contain formula terms in addition to variables. If ¢ is a formula term
and « is a valuation defined on all variables occurring in ¢, we can apply « to
every variable occurrence in ¢, obtaining a data term «(t). Likewise, we can
apply a valuation to an extended atom, resulting in an extended fact.

We are now ready to define the syntax and semantics of object-creating con-
Junctive queries (0CQ). Like a classical CQ, an oCQ is of the form H + B.
The only difference with a classical CQ is that H can be an extended atom;
in particular, B is still a finite set of “flat” atoms, not extended atoms. It is
still required that var(H) C var(B). The result of an oCQ Q = H < B on an
instance I is now an extended instance, defined as

Q) :={a(H)|a:B—I}.

3Since constants are atomic data elements, no constant is allowed to be of the form

flda, ... dg).

Mother Father Family

beth anne beth adam beth f(anne, adam)
ben anne ben adam ben f(anne, adam)
eric claire eric carl eric f (claire, carl)
emma diana emma carl emma f(diana, carl)
dave diana

Table 1: Instances used in Example .11

R T
a b ¢ a f(b)
a b d ¢ f(b)
c b d d f(e)
d ¢ a

Table 2: Instances used in Example [3.21

Example 3.1. Recall the oCQ @ from the Introduction:
Family(c, f(x,y)) + Mother(c, z), Father(c,y).

If I is the instance consisting of the Mother and Father facts listed in Table [I]
then Q(I) is the extended instance consisting of the extended Family facts listed
in the same table.

Example 3.2. For a more abstract example, consider the following oCQ Q:

T(z, f(y)) + R(x,y, 2).

If I is the instance consisting of the R-facts listed in Table2] then Q(I) consists
of the extended T-facts listed in the same table.

3.3 The single-function case

In this paper, we focus on single-function oCQs (sifo CQs), that have exactly
one occurrence of a function symbol in the head. Without loss of generality we
always place the function term in the last position of the head.

Definition 3.3. A sifo CQ over a database schema S is an oCQ over S of the
form

T(z,f(2)) < B,
where
e T is the head predicate;
e f is a function symbol;

e B is the body;

Family

beth g(anne,adam, anne)
ben g(anne, adam, anne)
eric g(claire, carl, claire)
emma g(diane, carl, diane)

Table 3: Instance used in Example 411

e T is a tuple of (not necessarily distinct) variables from var(B), called the
distinguished variables;

e Z is a tuple of (not necessarily distinct) variables from var(B), called the
creation variables; some creation variables may be distinguished;

e The elements of var(B) that are not distinguished are called the non-
distinguished variables.

Example 3.4. The queries in Examples B.1] and are both examples of sifo
CQs.

3.4 Comparison with ILOG

Object-creating CQs can be considered to be the conjunctive-query fragment
of nonrecursive ILOG [22]; our syntax exposes the Skolem functions, which are
normally obscured in the standard ILOG syntax, and our semantics corresponds
to what is called the ‘exposed semantics’ by Hull and Yoshikawa. Nevertheless,
in the following section, we will consider oid-equivalence of sifo CQs, which does
correspond to what has been called ‘obscured equivalence’ [23].

4 Characterization of oid-equivalence for sifo CQs

4.1 Oid-equivalence of 0CQs

The result Q(I) of an oCQ @ applied to an instance I is an extended instance.
The data terms in adom(Q(I)) that are not constants play the role of created
oids (also called invented values). Intuitively it is clear that the actual form of
the created oids does not matter.

Example 4.1. Recall the query) from Example 3.1}
Family(c, f(x,y)) < Mother(c, x), Father(c, y).

As mentioned in the Introduction, we could have used equivalently the following
query Q'
Family(e, g(z,y,z)) + Mother(c, z), Father(c,y).

Applying the above query to the Mother and Father facts from Table [l results
in the instance shown in Table[3l Intuitively, this instance has exactly the same

I Q) Q')
a b a f(b) a f(a,b)
d b e d f(b) d f(d,b)

Table 4: Instances used in Example 4.7

relevant properties as the Family-instance from Table[I} beth and ben are linked
to the same family-oid; eric is linked to another oid; and emma to still another
one. O

We formalize this intuition in the following definitions.
Definition 4.2. Let J be an extended instance.

e The set adom(J) — dom is denoted by oids(J);

e The set adom(J) N dom is denoted by consts(J).

Definition 4.3. Let J be an extended instance and let p be a mapping from
adom(J) to the set of data terms. For any extended fact e = R(dy,...,dj) in
J, we define p(e) to be the extended fact R(p(d1),...,p(dr)). We then define

p(7) = {ple) | e € J}.

Definition 4.4. Let J; and Jy be extended instances. Then J; and Jy are
called oid-isomorphic if there exists a bijection p : adom(J;) — adom(Js) such
that

e p is the identity on consts(J);
e p maps oids(Jy) to oids(Jz);
e p(Jh) = Jo.
Such a bijection p is called an oid-isomorphism from J; to Js.

The above definition implies that oid-isomorphic instances have the same
constants. Formally, if J; and Js are oid-isomorphic then consts(.J;) = consts(J3).

Definition 4.5. Let Q and Q' be two oCQs with the same head predicate, and
over the same database schema S. Then) and Q' are called oid-equivalent if
for every instance I over S, the results Q(I) and Q'(I) are oid-isomorphic.

Example 4.6. The queries in Example [£.] are oid-equivalent. For example, for
the instance I of Table[I] the oid-isomorphism from Q(I) to Q'(I) is as follows:

f(anne, adam) (anne, adam, anne)

=g
f(claire, carl) +— g(claire, carl, claire)
f(diane, carl) — g(diane, carl, diane).

10

I Q) Q')
a b ¢ a f(a) a f(a,b,c)
a d e a f(a7 d7 6)

Table 5: Instances used in Example 4.8

Example 4.7. Recall the query @ from Example

T(z, f(y)) < R(z,y,2)

Also consider the following variation Q' of Q:

Then @ and Q' are not oid-equivalent, as shown by the simple instances in
Table[l Indeed, there cannot be an oid-isomorphism from Q(I) to Q'(I) because
Q(I) contains only one distinct oid while Q’(I) contains two distinct oids.

Example 4.8. As a variant of Example [£.7] consider the following two 0CQs:

Q= T(xv f(x)) — R(Ia Y, Z)
QI = T(:c,f(x,y,z)) — R(:C,y,z)

Again these two 0CQs are not oid-equivalent, as shown by the counterexample
instances in Table

4.2 Homomorphisms and containment of conjunctive queries

The characterizations we will give for oid-equivalence of sifo CQs depend on
the classical notions of homomorphism and containment between conjunctive
queries. Let us briefly recall these notions now [13} 2].

A wvariable mapping is a mapping h from a finite set X of variables to another
finite set Y of variables. If A is an atom with variables in X, then we can apply
h to each variable occurrence in A to obtain an atom with variables in Y, which
we denote by h(A). If B is a set of atoms with var(B) C X, then we naturally
define h(B) := {h(A) | A € B}.

For two sets B and B’ of atoms, a variable mapping h : var(B) — var(B’)
is called a homomorphism from B to B’ if h(B) C B’. This is denoted by
h : B — B’. The notion of homomorphism is extended to conjunctive queries
Q =H <+ Band Q = H + B’ as follows. A homomorphism from @ to Q'
is a homomorphism h : B — B’ such that h(H) = H’. This is denoted by
h:Q— Q.

A classical result relates homomorphisms between conjunctive queries to
containment. Let @ and @’ be two conjunctive queries over a common database
schema S. We say that Q' is contained in Q if for every instance I of S, we

11

have Q'(I) C Q(I). The classical result states that @’ is contained in @ if and
only if there exists a homomorphism h: Q — @’.

Two queries Q and Q' are equivalent if for every instance I of S, we have
Q(I) = Q'(I). Since equivalence amounts to containment in both directions,
two conjunctive queries are equivalent if and only if there exist homomorphisms
between them in both directions.

4.3 A normal form for oid-equivalence problems

In this subsection we consider two arbitrary sifo CQs @, Q' with the same head
predicate:

Q=T f(z)« B
Q =T, f'(Z)) « B.

Then z and Z’ have equal length. Note that z and z as well as Z’ and Zz’ may
have variables in common.

Our aim is to show that oid-equivalence between arbitrary sifo CQs @ and
Q' can be reduced to the case where the heads

T(z,f(2)) and T(2',f'(z)

have identical arguments, that is, where £ = 7’ and z = Z’.
As a first lemma we state that rearranging the creation variables of a query
does not affect oid-equivalence.

Lemma 4.9 (Rearranging creation variables). Let Q be a sifo CQ written as
above. Let u be a tuple with exactly the same variables as z, but possibly with
different repetitions and a different ordering, and let g be a function symbol
whose arity is equal to the length of 4. Then the sifo CQ P = T(Z,g(u)) + B
18 oid-equivalent to Q.

Proof. Let I be an instance. We define an oid isomorphism from Q(I) to P(I) as
follows. Any oid o in Q([) is of the form f(a(z)) for some matching a: B — I;
we define p(0) := g(a(@)). This is well-defined, i.e., independent of the choice
of a. Indeed, if the data terms f(ay(Z)) and f(a2(Z)) are equal, then the tuples
a1(Z) and aq(Z) are equal, which implies that a; and as agree on every variable
appearing in Z. Since exactly the same variables appear in @, also the tuples
a1 (@) and ag(@) are equal, whence g(a1(a)) = g(as(@)).

That p : oids(Q(I)) — oids(P(I)) is injective is shown by an analogous
argument. The surjectivity of p, as well as the equality p(Q(I)) = P(I), are
clear. (|

By the above lemma, we can remove all duplicates from z and z’ in the heads
of @ and @', respectively. So, from now on we may assume z and z’ have no
duplicates.

In the following, let Z equal the set of variables occurring in z, let X equal
the set of variables occurring in Z, and let Z’ and X’ be defined similarly.

12

We next show that two sifo CQs can only be oid-equivalent if they have
identical patterns of distinguished variables, up to renaming.

Lemma 4.10 (Renaming distinguished variables). If Q and Q' are oid-equivalent,
then there exists a bijective variable mapping o : X — X' such that o(Z) = 7'.

Proof. Certainly, if @ and @’ are oid-equivalent, then the conjunctive queries
Qo = To(Z) + B and Q) = To(Z') < B’, where Ty is a new predicate symbol,
are equivalent. So, there are homomorphisms h: Qo — Q) and h': Qf — Qo.
In particular, h(Z) = ' and b/ (Z') = Z. We define o to be the restriction of h to
X. The claim o(Z) = ' and the surjectivity of o are then clear. So it remains
to show that o is injective. Thereto, consider h/(c(Z)) = b/ (Rh(Z)) = W (T') = .
We see that h' o o is the identity on X and thus injective. Hence, o must be
injective as well. O

By the above lemma, if there does not exist a renaming o as in the lemma,
certainly Q and @Q’ are not oid-equivalent. If there exists such a renaming, then
by renaming the variables in one of the two queries, we can now assume without
loss of generality that Z = Z’ and in particular that X = X’.

The next step is to show that oid-equivalent queries must have the same
distinguished variables among the creation variables, that is, X N Z =X N Z'.

Lemma 4.11 (Distinguished creation variables). If X N Z # X N Z’, then Q
and Q' are not oid-equivalent.

Proof. Either there exists some x € X N Z but not in Z’ or vice versa. By
symmetry we may assume the first possibility.

We construct an instance I from B’. In doing this, to keep our notation
simple, we consider the variables in B’ to be constants. The instance I is ob-
tained from B’ by duplicating = to some new element xs. Formally, consider the
mapping d on var(B’) that is the identity everywhere except that x is mapped
to x9; then I = B’ Ud(B’).

First, let us look at Q'(I). Using the identity matching that maps every
variable to itself, we obtain the extended fact T'(z, f'(Z')) € Q'(I). Using the
matching d defined above, we obtain the extended fact T'(Z2, f'(d(z'))) in Q'(I).
Here, T2 denotes d(Z), i.e., Tz is obtained from Z by replacing x with x2. Since
x does not belong to Z’, we have d(z') = Z/, so T'(Z2, f'(Z)) € Q'(I).

On the other hand, in Q([I) consider any two extended facts T'(«1(Z), f(a1(Z)))
and T'(a2(Z), f(a2(Z))), with matchings a1: B — I and as: B — I, such that
01(Z) = T and az(Z) = To. Then in particular a; () = x and az(x) = x2. Since
aq and ag differ on z, and z is in Z, also a1 (Z) and ag(z) are different. Hence,
the two last components f(«1(Z)) and f(az(Z)) are different. Thus, we see that
in Q(I) it is impossible to have two extended atoms T'(Z,0) and T(Z2,0) with
the same oid 0. But we have seen this is possible in Q'(I), so Q(I) and Q'(I)
are not oid-isomorphic and @ and @’ cannot be oid-equivalent. o

By the above Lemma we now assume X N Z = X N Z’. The last step is to
show that Z — X and Z' — X, the sets of non-distinguished creation variables,
need to have the same cardinality.

13

Lemma 4.12 (Non-distinguished creation variables). If Z—X and Z'— X have
different cardinality then Q and Q' are not oid-equivalent.

Proof. As in the proof of Lemma .11l we consider B as an instance, viewing
variables as constants.

Let k and k' be the cardinalities of Z — X and Z — X', respectively. By
symmetry we may assume that & > k’. Now, for any natural number n, let
I, be the instance obtained from B by independently multiplying each variable
z € Z — X into n fresh copies z(M, ..., 2(™ . Formally, for any function d :
Z—X —{1,...,n}, let d be the valuation on var(B) that maps each z € Z — X
to z(4*)) and that is the identity on all other variables. Then

There are n* different functions d : Z—X — {1,...,n}. Each corresponding
valuation d is a matching of B in I,; all these matchings are the identity on z
but are pairwise different on zZ. Thus there are at least n* different extended
facts in Q(I,,) of the form T'(z, o).

On the other hand, consider any set S of valuations from X UZ’ to adom(I,,)
that are pairwise different on Z’ — X but that all agree on X. The cardinality
of Z' — X is k¥’. The cardinality of adom(7,,) is O(n) (although the cardinality
of I, itself is larger). Hence, such a set S can be of cardinality at most O(n*").
Consequently, since k > k', for n large enough, Q'(I,,) cannot possibly contain
n* different extended facts of the form T'(Z,0). But we saw that this is possible
in Q(I,). So, Q(I,) and Q'(I,) are not oid-isomorphic and ¢ and @’ cannot be
oid-equivalent. O

By the above lemma, and after renaming the variables in Z’— X and reorder-
ing the variables in z’, we may now indeed assume that z and z’ are identical.

4.4 Characterization of oid-equivalence

According to the results of the preceding subsection, we are now given two sifo
CQs as follows:

Q =T(z f(2) < B (1)
Q' = T(z,f(2) « B (2)

Note that @ and Q' have identical tuples Z and z of distinguished and creation
variables; moreover, Z contains no variable more than once. As before, we denote
the sets of distinguished and creation variables as X and Z, respectively.

We will show that @ and @’ are oid-equivalent if and only if there are
homomorphisms between B and B’ in both directions that (i) keep Z fixed and
(i) possibly permute the variables in z. To make this formal, we associate to
each query a classical CQ without function symbols.

14

Definition 4.13. Fix a new relation symbolof” of arity the sum of the lengths
of Z and z. The flattening of Q is the query @ = T(Z,z) + B. The query Q' is
defined similarly.

Let m be a permutation of the set Z — X. We extend 7 to var(B) by defining
it to be the identity outside Z — X. We now define Q™ to be the conjunctive
query obtained from @ by permuting the variables in Z, that is

Q" = T(z,7(2)) + B.

This notion allows us to formulate the following natural sufficient condition
for oid-equivalence.

Proposition 4.14. If there exists a permutation © of Z — X such that C}” and
Q' are equivalent, then QQ and Q' are oid-equivalent.

Proof. Let I be an instance. We define an oid isomorphism p from Q(I) to
Q'(I) as follows. Any oid o in Q(I) is of the form f(«(z)) for some matching
a: B — I; we define p(o) := f'(a(w(2))). This is well-defined, i.e., independent
of the choice of a. Indeed, if the data terms f(ay(Z)) and f(az(Z)) are equal,
then the tuples o4 (Z) and as(Z) are equal, and consequently the permuted tuples
a1(m(2)) and ao(mw(Z)) are equal. Hence, /(a1 (7(2))) = f/(ae(7(2))).

The injectivity of p : oids(Q(I)) — oids(Q’(I)) is shown by an analogous
argument. The surjectivity of p, and the equality p(Q(I)) = Q'(I), follow
readily from the equality C}”(I) = 602'([). O

We next prove that the sufficient condition given by the above Proposition
is actually also necessary for oid-equivalence. The key idea for proving this is
to show that oid-equivalence of sifo CQs depends only on the number of oids
generated for any binding of the distinguished variables.

Formally, for any instance I and any tuple ¢ of elements from adom([), we
define

#e(Q, 1) :== #{ 0| T(¢,0) € Q) },

that is, #:(Q,I) denotes the number of distinct oids o that occur together
with ¢ in Q(I). We will show that @ and @’ are oid-equivalent if and only if
#:(Q,I) = #:(Q’', I) for all instances I and tuples ¢. The only-if direction of
this statement is obvious, but the if-direction is not so obvious.

For our proof, we rely on work by Cohen [14] who studied queries with multi-
set variables that are evaluated under so-called combined semantics, a semantics
that combines set and multiset semantics. Cohen characterized equivalence of
such queries in terms of homomorphisms.

Queries with multiset variables (MV queries) have the form Qo, M where Qg
is a standard CQ and M is some set of variables of Qg that do not appear in the
head of Qg. The elements of M are called the multiset variables. Evaluating
an MV query Qo, M on an instance I results in a multiset (bag) of facts, where
the number of times a fact occurs is related to the number of different possible
assignments of values to the multiset variables.

15

Let us define the combined semantics formally. Let Qg be of the form Hy +
By and let I be an input instance. Recall that Qo(I) according to the classical
semantics equals
{a(Hp) | : By — I}.

Let W be the set of variables appearing in Hy. Then the result of evaluating
the MV query Qg, M on instance I is defined to be the multiset with ground
set Qo(I), where for each fact e € Qo(I), the multiplicity of e in the multiset is
defined to be

#{v|m | v: Bo — I and v(Hyp) = e}.

That is, given a fact a(Hy) € Qo(I), there may be many different matchings
~ that agree with @ on Hy. The multiplicity of a(Hp) is defined to be not the
total number of different such matchings -y, but rather the number of different
restrictions one obtains when restricting these matchings v to M A

Two MV queries are equivalent if they evaluate to the same multiset on
every input instance. Equivalence of MV queries can be characterized using the
notion of multiset-homomorphism [I4]. A multiset-homomorphism from MV
query Qo, M to MV query Qj, M’ is a homomorphism h : Qg — Qj such that
h is injective on M and h(M) C M’'. Cohen showed the following:

Theorem 4.15 ([I4], Thm 5.3). Two MV queries are equivalent if and only if
there are multiset homomorphisms between them in both directions.

To leverage this result on MV equivalence, we associate two MV queries to
our given sifo CQs in the following way.

Definition 4.16. Fix a new relation symbol Tg of arity the length of z. The
MV queries @ and @’ are defined as Qq, (Z — X) and Qp, (Z — X) respectively,
where

Qo =To(z) < B
Qo =To(z) < B’

The following proposition now relates oid-equivalence to MV-equivalence:

Proposition 4.17. If Q and Q' are oid-equivalent, then the MV queries Q and
Q' are equivalent.

Proof. Let I be an instance. We must show that the multisets Q(I) and Q'(I)
are equal. Since @ and @’ are oid-equivalent, the ground sets Qo(I) and Q(I) of
Q(I) and Q'(I) are already equal. We must show that the element multiplicities
are the same as well.

4The motivation for MV queries was to model the semantics of positive SQL queries with
nested EXISTS subqueries. While queries under standard SQL semantics return multisets of
tuples, only the relations mentioned in the top level SQL block contribute to the multiplicities
of answers, whereas relations mentioned in the subquery do not.

16

Let Tp(¢) be an arbitrary element of Qo(I). By the semantics of 0CQs, we
have the following equalities:

#:(Q,I) = #{¥Ixuz | v: B — I and v(Z) = ¢}
#:(Q', T) = #{v|xuz | v: B' = I and (%) = ¢}

Since Q(I) and Q'(I) are oid-isomorphic, the left-hand sides of the above two
equalities are equal. Hence, the right-hand sides are equal as well. But these
are precisely the multiplicities of Ty (¢) in Q(I) and Q'(I) respectively. O

The following proposition further relates MV equivalence to equivalence of
the flattenings up to permutation:

Proposition 4.18. If the MV queries Q and Q’ are equivalent then there exists
a permutation m of Z — X such that Q’T and Q are equivalent.

Proof. By Theorem .15 there exist a multiset homomorphism A from Q to Q’ ,
and a multiset homomorphism A’ from Q’ to Q. Since Theorem FLIH also implies
that h is injective on Z — X and that h(Z — X) C Z — X, we can conclude that
h acts as a permutation on Z — X. Moreover, h is the identity on X. The same
two properties hold for A'.

Now put 7 = (h|z-x)"'. Then h : Q™ — Q. So it remains to find a
homomorphism A" : ' — Q™. Thereto, note that h'h acts as a permutation on
Z — X. Since Z — X is finite, there exists a nonzero natural number m such that
(R'h)™ is the identity on Z — X. Equivalently, (h’/h)™ h/ equals 7 on Z — X.
We conclude that (h'h)™ 1k’ is the desired homomorphism h”. O

We summarize the three preceding Propositions in the following.
Theorem 4.19. Consider two sifo CQs
Q = T(.f(2))
Q' = T(z f(2) <—B’

where QQ and Q' have identical tuples T and z of distinguished and creation
variables, and where Z contains no variable more than once. Denote the sets of
distinguished and creation variables by X and Z, respectively.

The following are equivalent:

1. The sifo CQs Q and Q' are oid-equivalent;
2. The MV queries Q and Q' are equivalent;

8. There is a permutation m of Z — X such that the classical CQs 602” and 602'
are equivalent.

17

4.5 Computational complexity

The results of this section imply the following:
Corollary 4.20. Testing oid-equivalence of sifo CQs is NP-complete.

Proof. Assume given sifo CQs @ and Q' with the same head predicate:

Q = T(@ f(2) « B
Q' = T f(z) « B

Let X, X', Z and Z’ denote the sets of variables occurring in z, ', z and Z/,
respectively.

To test oid-equivalence, we begin by removing duplicates in z and z’, as
justified by Lemma Note that Z and ' have the same length k, because
of the fixed arity of T. So we can write T = x1,...,z, and &’ = f,..., 2.
Consider the mapping o = {(z1,2)),..., (xr, z})}. We test if o is a bijection
from X to X'; if not, then @ and @’ are not oid-equivalent by Lemma 410
If o is a bijection, we can safely replace every variable 2’ in X’ by o~ 1(a2/),
which yields a sifo CQ that is oid-equivalent to @’. Hence, from now on we may
assume that Z = Z’ and in particular X = X’.

Next, we test whether X N Z = X N Z’ and whether Z — X and Z’ — X have
the same cardinality; if one of the two tests fails then @ and Q' are not oid-
equivalent by Lemmas [.11] and Otherwise, we can rename the variables
in Z' — X, so that we may assume that z = 7’

We are now left in the situation where @ and @’ are in the general forms
@ and @) from Subsection 4] to which Theorem applies. By the third
statement of this theorem we can test oid-equivalence of @ and @’ in NP by
guessing a permutation 7 and two homomorphisms between COQ’T and CD)’ in both
directions.

NP-hardness follows immediately because the problem has equivalence of
classical CQs as a special case, which is well known to be NP-hard. Indeed, oid
equivalence of sifo CQs @ and @’ in the special case where the creation functions
are nullary, amounts to classical equivalence when we ignore the function terms
in the heads. o

5 Logical entailment of sifo CQs interpreted as
schema mappings

Object-creating CQs, and sifo CQs in particular, can also be interpreted alter-
natively as schema mappings rather than as queries. Specifically, consider a sifo
CQ Q@ of the general form T'(z, f(z)) < B over the database schema S. Let v be
the sequence of all variables used in B. Then we may view () as a second-order
implicational statement over the augmented schema S U {T'}, as follows:

3fve(B — H)

18

Family Family

beth jones beth jones
ben jones ben jones
eric simpson eric jones
emma smith emma jones

Table 6: Instances J; and Jo from Example [5.1]

Family
beth jones
ben murphy

eric simpson
emma smith

Table 7: Instance J3 from Example 5.1}

Here, H is the head and B is conveniently used to stand for the conjunction
of its elements. Note that this formula is second-order because it existentially
quantifies a function f; we denote the above formula by sotgd(Q). This formula
belongs to the well-known class of second-order tuple-generating dependencies
(SO-tgds). More specifically, it is a plain SO-tgd [7].

Syntactically, the plain SO-tgds coming from sifo CQs in this manner form
a restricted class of SO-tgds, defined by the following restrictions:

e Plain SO-tgd may consist of multiple rules; sifo CQs consist of a single
rule.

e The head of a plain SO-tgd may consist of multiple atoms; the head of a
sifo CQ consists of a single atom. (This is similar to GAV mappings [27]
12], although the classical notion of GAV mapping does not use function
symbols.)

e There is only one function symbol, which moreover can be applied only
once in the head.

When interpreting a sifo CQ @ as an SO-tgd, the semantics becomes that of a
schema mapping. Specifically, let I be an instance over S, considered as a source
instance, and let J be an instance over {T'}, considered as a target instance.
Then (I,J) together form an instance over the augmented schema S U {T}.
Now we say that (I,J) satisfies @, denoted by (I,J) |E @, if the structure
(adom(I) U adom(J), I, J) satisfies sotgd(Q) under the standard semantics of
second-order logic, using adom(I') U adom(J) as the universe of the structure.

The following example and remark illustrate that the semantics of sifo CQs
as SO-tgds is quite different from their semantics as object-creating queries.

Example 5.1. Let us consider again our query from Example 1. As we have
mentioned in the Introduction, we can now write it as an SO-tgd as follows:

AfVavyVe(Mother(c, x) A Father(c,y) — Family(c, f(z,y)))

19

Take the instance I consisting of the Mother and Father facts listed in Ta-
ble 31l and take the instances J; and Jy consisting of the Family facts listed in
Table [f] left and right respectively. Then both pairs (I, J1) and (I, J2) satisfy
the SO-tgd. For J; this is witnessed by the following function f:

x y flz,y)
anne adam jones
claire carl simpson
diana carl smith

For J5 this is witnessed by the function that simply maps everything to jones.

In contrast, for J3 consisting of the Family facts listed in Table [the pair
(1, J3) does not satisfy the SO-tgd. Indeed, suppose there would exist a function
f witnessing the truth of the formula on (I, J3). Since beth has anne as mother
and adam as father, the fact

Family(beth, f(anne, adam))
must belong to Js3. The only Family-fact with beth in the first position is
Family(beth, jones),

so we conclude
f(anne, adam) = jones.

Furthermore, since ben also has anne as mother and adam as father, the fact
Family(ben, f(anne, adam))
must be in J3. The only Family-fact with ben in the first position is
Family(ben, murphy),
however, so we must conclude that
f(anne, adam) = murphy,
which is in contradiction with the previous conclusion.

Remark 5.2. Note that, by the purely implicational nature of SO-tgds, if (I, J)
satisfies an SO-tgd and J C J’, then also (I,J’) satisfies the SO-tgd. Hence,
continuing the previous example, for any instance J’ obtained by J; or .Js by
adding some more Family-facts, the pair (I, J") would still satisfy the SO-tgd
from the example. O

The above example and remark show that given a source instance I, there
are in general multiple possible target instances J such that (I, J) | Q. This is
in contrast to the semantics of @ as an 0CQ, where Q(I) is an extended instance
that is uniquely defined. Still, there is a connection between the oCQ semantics
and the SO-tgd semantics. Specifically, Q(I) can be viewed as a target instance
in a canonical manner, using oid-to-constant assignments (oc-assignments for
short) defined as follows.

20

Definition 5.3. Let I be a source instance and let J be an extended instance
over {T'} such that consts(J) C adom(I). An oc-assignment for J with respect
to I is an injective mapping p : oids(J) — dom so that the image of p is disjoint
from adom([).

Thus, p assigns to each non-constant data term from J a different constant
that is not in adom(I).

We now observe the following obvious property giving a connection between
the oCQ semantics and the SO-tgd semantics:

Proposition 5.4. Let I be a source instance and let p be an oc-assignment for
Q(I) with respect to I. Then (I, p(Q(I))) E Q.

In fact, Q(I) corresponds to what Fagin et al. [I§] call the chase of I with
sotgd(Q).

5.1 Nested dependencies

We have introduced sifo CQs as a restricted class of plain SO-tgds. But actually,
sifo CQs can also be considered as a restricted form of so-called nested tgds [8].
Thereto, consider again a sifo CQ of the general form T'(z, f(2)) < B. Let u
be the sequence of all variables from B, except for the creation variables (the
variables from z). Furthermore, let w be a fresh variable not occurring in B,
and let H' be the atom T'(Z,w). We can now associate to @ the following
implicational statement, denoted by ntgd(Q):

VzI3wViu(B — H')

Note that ntgd(Q) is now a first-order formula, but it is clear that ntgd(Q) is
logically equivalent to sotgd(Q). Hence, the schema mappings arising from sifo
CQs are not essentially second-order in nature.

5.2 Logical entailment

In Section Ml we have shown that equivalence of sifo CQs as object-creating
queries is decidable. Now that we have seen that sifo CQs can also be given a
semantics as schema mappings, we may again ask if equivalence under this al-
ternative semantics is decidable. The answer is affirmative; we have seen in the
previous subsection that sifo CQ mappings belong to the class of nested depen-
dencies, and logical implication of nested dependencies has recently been shown
to be decidable [26]. When this general implication test for nested dependencies
is applied specifically to sifo CQ schema mappings, it can be implemented in
non-deterministic polynomial time. Hence, logical entailment (and also logical
equivalence) of sifo CQ schema mappings is NP-complete.

In the present section, we present a specialized logical entailment test for sifo
CQ schema mappings which is much simpler and more elegant, and provides
more insight in the problem by relating it to testing implication of a join depen-
dency by a conjunctive query (Theorem [5.10). Interestingly, there is a striking

21

1 J
aq b ¢ aq d1
ag b ¢ ag d2

Table 8: Instances used in Example 0.6

correspondence between the general implication test when applied to sifo CQs,
and the strategy we use to prove our theorem. An in-depth comparison will be
given in Section [0l after we have stated the Theorem formally and have seen its
proof.

Formally, given two schema mappings M and M’ from a source schema S
to a target schema {T}, we say that M logically entails M’ if the following
implication holds for every instance I over S and every instance J over {T'}:

(I,J) satisfies M = (I, J) satisfies M'.

Referring to the view of sifo CQs as SO-tgds introduced above, we now
define:

Definition 5.5. Let @ and Q' be two sifo CQs with the same head predicate,
and over the same database schema. We say that Q logically entails Q' if
sotgd(Q) logically entails sotgd(Q’).

Example 5.6. Recall the sifo CQs Q and Q' from Example [£77}

Q= T(ZE, f(y)) — R(Ia Y, Z)
Q/ = T({E, f/(:Z?, y)) — R(Ia Y, Z)

It is clear that @ logically entails @)'. Indeed, if there exists a function f wit-
nessing the truth of sotgd(Q), then we can easily define a function f’ witnessing
the truth of sotgd(Q’) by defining f'(z,y) := f(y).

Conversely, however, Q" does not logically entail). Indeed, Table [§] shows
(I,J) where (I,J) E Q' but (I,J) £~ Q.

Example 5.7. Recall the sifo CQs Q and Q' from Example [£.8

Q= T(Ia f(I)) — R(Ia Y, Z)
Q/ = T(‘Tv f/($,y72)) — R(x,y,z)

Although @ and Q' are not oid-equivalent, they are logically equivalent: they
logical entail each other. The logical entailment of Q" by @ is again clear. To
see the converse direction, assume f’ witnesses the truth of sotgd(Q’). Then we
define f(z) for any x as follows: if there exists a pair (y, z) such that R(z,y, 2)
holds, we fix one such pair (y, z) arbitrarily and define f(z) := f'(z,y,). If no
such y and z exist, we may define f(z) arbitrarily. It is now clear that this f
witnesses the truth of sotgd(Q).

22

Example 5.8. Consider the sifo CQs:

Q=T(x, f(z1)) « R(z1,2), R(21, 22)
Q' =T(z, f'(21,22)) « R(z1,), R(21, 22)

Also here, @Q and Q' logically entail each other. The logical entailment of)" by
Q is again clear. To see the converse direction, we can use a reasoning similar
to that used in Example[5.71 Assume f’ witnesses the truth of sotgd(Q’). Then
we define f(z1) for any 27 as follows: if there exists z2 such that R(z1, 22) holds,
we fix one such z arbitrarily and define f(z1) := f/(z1,22). If no such 2z, exists,
we may define f(z1) arbitrarily. The function f thus defined witnesses the truth
of sotgd(Q).

Note that the kind of reasoning used here and in Example[5.7] does not work
in the case of Example In Theorem we will characterize formally when
this kind of reasoning is correct.

Example 5.7 shows that logical equivalence (logical entailment in both direc-
tions) does not imply oid-equivalence of sifo CQs. We will see in Theorem [5.12
that the other direction does hold.

5.3 Join dependencies and tableau queries

In our characterization of sifo CQ logical entailment we use a number of concepts
from classical relational database theory [2], which we recall here briefly.

Recall that a relation scheme is a finite set of elements called attributes. It
is customary to denote the union of two relation schemes X and Y by juxtapo-
sition, thus writing XY for X UY.

A tuple over a relation scheme U is a function from U to dom. A relation
over U is a finite set of tuples over U.

Let t be a tuple over U and let X C U. The restriction of ¢ to X is denoted
by t[X]. The projection wx (r) of a relation r over U equals {¢t[X] |t € r }.

We now turn to tableau queries, which are an alternative formalization of
conjunctive queries so that the result of a query is a set of tuples rather than a
set of facts. Let S be a database schema, and let B be a finite set of atoms with
predicates from S, as would be the body of a conjunctive query over S. Let
V = var(B). For any U C V, the pair (B,U) is called a tableau query over S.
When applied to an instance I over S, this tableau query returns a relation over
U in the following manner. Let Mat(B, I) be the set of all matchings of B in I.
Using variables for attributes, V' can be viewed as a relation scheme. Under this
view, every valuation on V is a tuple over V', and thus Mat(B, I) is a relation
over V. We now define the result of (B,U) on input I to be my(Mat(B,I)).
This result is denoted by (B,U)(I).

We finally recall join dependencies. Let t; and to be tuples over the relation
schemes U; and Us, respectively. If ¢; and ts agree on U; N Us, the union
t1 Uty (where we take the union of two functions, viewed as sets of pairs) is a
well-defined tuple over the relation scheme UyUs. The natural join r1 X rq, for

23

relations r1 and ro over Uy and Us, respectively, then equals
{tl Uts | tier &taery & tl[Ul n UQ] = tQ[Ul N UQ]}

Consider now any relation r over some relation scheme U. Let U; and
Us be subsets of U (not necessarily disjoint) such that U = U;U;. Then r
satisfies the join dependency (JD) Uy x Us if r = my, (1) % 7y, (r). Note that
the containment from left to right is trivial, so one only needs to verify the
containment 7y, () X 7y, (1) C 1.

The logical implication of JDs by tableau queries is well understood and
can be solved by the chase procedure with NP complexity [25] 2]. Formally,
a tableau query Q = (B,U) over S is said to imply a JD over U if for every
instance I over S, the relation Q(I) satisfies this JD.

5.4 Decidability of sifo CQ logical entailment
We consider two sifo CQs @) and @ with the same head predicate:

Q=T () « B
Q =T ['(z) « B’

Remark 5.9. We assume @ and @’ to have their function symbol in the same
position in the head (here taken to be the last position). This is justified because
otherwise @ could never logically entail @Q’. In proof, suppose the function
symbol in the head of Q" would not be in the last position. Then we have a
variable 2’ from B’ in the last position. Now consider an instance I such that
both Q(I) and Q’'(I) are nonempty. (Such an instance could be constructed by
taking the disjoint union of B and B’ and substituting constants for variables.)
Let p by an oc-assignment for Q(I) with respect to I. By Proposition 5.4l we
have (I, p(Q(I))) E Q. In p(Q(I)), none of the elements in the last position of
a T-fact belongs to adom(I). But then (I, p(Q(I))) cannot satisfy Q. Indeed,
since Q’'(I) is nonempty, there is a matching o : B’ — I. In any J’ such that
(I,J") E @, there needs to be a T-fact with o/(z') in the last position, and
o/ (2') € adom(I). We conclude that @ does not logically entail Q’. O

In what follows we use X, Z and Z’ to denote the sets of variables appearing
in the tuples 7, z and Z’, respectively.
We establish:

Theorem 5.10. Q logically entails Q' if and only if there exists a homomor-
phism h : B — B’ satisfying the following conditions:

1. h(z)=7;
2. MXNZ)CZ;

3. Let Yy, :=h=1(Z'), ie., Y, = {y € var(B) | h(y) € Z'}. Then the tableau
query (B, XY, Z) implies the join dependency XY, 1 Y3, Z.

24

Proof of sufficiency. Let (I,J) E Q, witnessed by the function f. We must
show (I,J) E Q’. This means finding a function f’ witnessing the truth of
sotgd(Q') in (I, J).

Call any two matchings a1, s € Mat(B,I) equivalent if they agree on Y,.
This is denoted by a3 = . Let p be any function from Mat(B, I) to Mat(B, I)
with the two properties, first, that p(«) = « and, second, that a3 = ao implies
plar) = p(az). Thus, p amounts to choosing a representative out of each
equivalence class. We denote the application of p by subscripting, writing p(«)
as pq.

Let us define f’ as follows. Take any matching 8 : B’ — I. Then we put
F'(B(Z") :== f(ppon(Z)). To see that this is well-defined, recall that h(Y3) C Z'.
Hence, $1(Z') = B2(z') implies that 81 o h = 2 0 h, S0 pg,oh = PBsoh.-

We now show that this interpretation of f’ satisfies the requirements. Specif-
ically, let 8 : B — I be a matching. We must show that T'(8(z'), f'(8(z"))) € J.
Consider the valuations 51 = foh and B2 = pgon, both belonging to Mat(B, I),
and viewed as tuples over the relation scheme var(B). Since these two tu-
ples agree on Yy, also the two restrictions 31[Y,X] and 52[Y,Z] agree on Yj.
Since X N Z C Yy, the union B;1[YX] U B2[YrZ] is a well-defined tuple over
XY,Z. Since mxy, z(Mat(B,I)) satisfies the JD Y3, X x Y3, Z, the union be-
longs to mxy, z(Mat(B,I)). Hence, there exists a valuation v € Mat(B,I)
that agrees with S o h on X, and with pgop, on Z. Since (I,J) = Q, we have
T(v(z), f(v(2))) € J. By the preceding, v(z) = B(h(z)) and v(Z) = pgon(2) =
9(B(z")). We conclude that T'(3(Z'), g(8(Z"))) € J as desired.

Proof of necessity. Let V' = var(B’), and let n be the arity of f. For each
1€{0,1,...,n} and each u € V' — Z' we introduce a fresh copy of u, denoted
by u!. We say that this fresh copy is “colored” with color I. For each variable
u € Z', we simply define u! to be u itself. We say that the variables in Z’ are
“colored white”.

For any tuple of variables 4 = (u1,...,up) in V', we denote the tuple
(ul, ... ,ué) by @'. In this tuple, all variables are colored [or white. We then
define B" = { R(@') | R(a) € B'} and view it as an instance, i.e., the variables
u! are considered to be constants.

Now define the instance I = |J;-, B", and construct the instance J = Q(I).
By Proposition 5.4, (I,J) = @, where we omit the oc-assignment for the sake
of clarity. Since @ logically entails Q’, also (I,J) = Q’. Hence, there exists a
function f’ such that for each color [, using the matching id’' : B’ — I, u — u!,
the fact T(z", f'(2"")) = T(z", f'(Z')) belongs to J.

Since J = Q(I), we have f'(z’) = f(w) for some tuple @ of colored variables
in V’. Since the arity of f is n and there are n + 1 distinct colors, some color
does not appear in w. Without loss of generality we may assume that this is
the color 0.

Let us now focus on the fact T'(z'°, f(w)) in J. Like any T-fact in J, this
fact has been produced by some matching k: B — I such that T'(z'°, f(w)) =

k(T(z, f(2))), so

25

Let s denote the mapping that removes colors, i.e., s(u!) = u for every
u € V' and every | € {0,1,...,n}. Since s(I) C B’, we have a homomorphism
sok: B — B’. We now define h := sok and show that it satisfies the conditions
required by the Theorem. The first condition is clear since h(z) = s(k(z)) =
s(z'%) = 7',

For the second condition, let € X N Z. By (a), k(x) is colored 0 or white.
By (b), k(x) is colored non-zero or white. Hence, k(x) is colored white, i.e.,
k(z) € Z', so h(z) = s(k(z)) = k(x) € Z' as desired.

Finally, to show that (B, XY};,Z) implies XY}, X Y;,Z we must establish the
query containment

(B,XY3) x (B, Y, Z) C (B, XY, Z).

Treating tableau queries as conjunctive queries, and using the well-known con-
tainment criterion for conjunctive queries, this amounts to showing the ex-
istence of a certain homomorphism. More specifically, we express the query
(B,XY,) X (B,Y,Z) by the conjunctive query with the body Bs = By U By
defined as follows. The body By is obtained from B by replacing each variable
u not in Y, by a fresh copy u’. For each u € Y, we define u° simply as u
itself. The body B is obtained from B by replacing each variable not in Y}
by a fresh copy u'. Again, for each u € Y}, we define u' simply as u itself. To
show the containment, we now must find a homomorphism m from B to Bs
such that each u € X — Y}, is mapped to u°; each u € Y}, is mapped to u; and
each u € Z — Y}, is mapped to u!.
Thereto, we define the following mapping m:

e if k(u) is colored 0, then m(u) := u’;

e if k(u) is colored [for some [> 0, then m(u) := ul;

e if k(u) is colored white, then m(u) := u.

Let us verify that m: B — Bs is a homomorphism. Consider an atom R(@) in
B; we must show R(m(u)) € By. Since k: B — I, we know that R(k(u)) € I.
By definition of I, this means that R(k(u)) = R(?') for some atom R(v) in B’
and some color [. So, for each variable u in @, the color of k(u) is either ! or
white. We now distinguish two cases.

o If k(u) is colored white, then h(u) = k(u) € Z’ so u € Y},. Hence, in this

case, m(u) = u = u® = ul.

e If k(u) is colored I, then by definition m(u) = u® when [= 0, and m(u) =
u! when [> 0.

26

We conclude that R(m(@)) = R(u’) € By when [= 0, and R(m(a)) = R(u') €
B; when [> 0. Hence, since By = By U By, we always have R(m(a)) € Bz as
desired.

It remains to verify that m maps the variables in XY}, Z correctly. If u € Y3,
then h(u) = k(u) € Z’ so k(u) is colored white and m(u) = w as desired. If
u € X — Y}, then by (a), k(u) is colored 0 so m(u) = u° as desired. Finally, if
u € Z — Yy, then by (b), k(u) is colored I > 0 so m(u) = u' as desired. O

As a corollary, we obtain that the complexity of deciding logical entailment
for sifo CQs is not worse than that of deciding containment for classical CQs:

Corollary 5.11. Testing logical entailment of sifo CQs is NP-complete.

Proof. Membership in NP follows from Theorem .10 as a witness for logical
entailment we can use a homomorphism h satisfying the first two conditions of
the theorem, together with a homomorphism hg from the query (B, XY,Z) to
the query (B, XY:) x (B, Y,Z) witnessing the third condition of the theorem.
NP-hardness follows because the problem has containment of classical CQs as a
special case, which is well known to be NP-hard. Indeed, logical entailment of
a sifo Q' by a sifo Q, in the special case where the creation functions of @ and
Q' are nullary, amounts to classical containment of () in Q' when we ignore the
function terms in the heads. O

5.5 From oid-equivalence to logical entailment

Let @ and @’ be sifo CQs of the general forms () and (@) from Subsection [L4]
From our main Theorems and [0.10) we can conclude the following.

Theorem 5.12. If Q and Q' are oid-equivalent, then Q logically entails Q’.

Proof. By Theorem 19| there exists a permutation 7 of Z — X such that Q"
and Q' are equivalent. Hence there is a homomorphism & : Q™ — Q. Clearly
h : B — B’. We verify that h satisfies the conditions of Theorem 510, thus
showing that () logically entails Q.

1. Since h maps the head of QT to the head of Q’, we have h(z) = z and
h(w(z)) = z. Since T’ = T, we have h(Z) = T’ as desired.

2. Since h is the identity on X, we have h(X NZ) = XNZ C Z = 7' as
desired.

3. Since h(n(z)) = z and 7(Z) = Z, we have h(Z) = Z = Z'. Hence Z C Y.
But then the join dependency XY, X YpZ becomes XY, x Y, which
trivially holds. o

27

6 Discussion

The results in this paper provide an understanding of the notions of oid-equivalence
and logical entailment for sifo CQs. Sifo CQs, however, form a very simple sub-
class of 0CQs. Moreover, oCQs themselves are rather limited, for example, they
consist of a single rule and the rule can have only one atom in the head. Thus
there are at least three natural directions for further research: (i) allowing more
than one function in the head; (ii) allowing more than one atom in the head;
(iii) allowing more than one rule.

Containment Furthermore, in addition to oid equivalence of 0oCQs, it would
be natural to also investigate a notion of oid-containment. There are actually
at least two reasonable ways to define such a notion. The situation is similar
to that in research on CQs with counting or bag semantics [I5], 14]. Most of
the known results are for equivalence only, with the extension to containment
typically an open problem. Indeed, our characterization of oid-equivalence for
sifo CQs relies on equivalence of CQs with bag semantics. An extension to oid-
containment will likely need a similar advance on containment of CQs with bag
semantics.

Sifo CQs and ILOG In the introduction we mentioned that sifo CQs, and
0oCQs in general, are a fragment of ILOG without recursion [22]. Sifo CQs
belong to the subclass of the class of recursion-free ILOG programs “with iso-
lated oid creation” [23]. For this class, oid-equivalence was already known to
be decidable. This was shown by checking all finite instances up to some ex-
ponential size. Hence, our NP-completeness result for oid-equivalence of sifo
CQs does not follow from the previous work. More generally, the decidability of
oid-equivalence for general recursion-free ILOG programs, or already of oCQs
for that matter, is a long-standing open question. Various interesting examples
showing the intricacies of this problem have already been given by Hull and
Yoshikawa [23].

Sifo CQs and nested dependencies In Section [5.0] we also presented sifo
CQs, now viewed as schema mappings, as a very simple subclass of nested tgds.
The implication problem for general nested tgds was shown to be decidable by
Kolaitis et al. [26] in work done independently from the present paper. Never-
theless our characterization of implication for sifo CQs, given by Theorem [5.10
does not follow from the general decision procedure for nested tgds. Instead,
the general procedure, when applied to two sifo CQs, is strikingly similar to
our proof of necessity of our Theorem. Using the notation from that proof, the
general procedure applied to test implication of sifo CQ @’ by sifo CQ @Q would
amount to testing for the existence of a homomorphism h from {T'(z", f'(z')) |
1 =0,....,n} to Q). Since Q(I) = {T(a(Z), f(a(2))) | « : B — I}, this
can be implemented by guessing h and n 4+ 1 matchings «; : B — I such that
(h(Z"), f'(M(Z"))) = (u(Z), f(ay(Z))) for I =0,...,n. In contrast, as explained

28

R S T
2 1 2 1 4 2 7 8
2 21 2 5 2 87
31 3 3 6 3 79
3 3 1 3 9 7

Table 9: Instances used to illustrate logical entailment in the presence of multiple
functions.

in Corollary B.11] our characterization involves guessing just two homomor-
phisms.

Sifo CQs and plain SO-tgds As described in Section [l sifo CQs are a very
simple subclass of plain SO-tgds. For plain SO-tgds, deciding logical equivalence
is again an open problem. Also, the notion of oid-equivalence, defined in this
paper for oCQs, can be readily extended to plain SO-tgds. We illustrate some
difficulties involved in allowing multiple functions in the head, which is indeed
allowed in plain SO-tgds. First, consider the oid-equivalence problem. For sifo
CQs we have shown in Section 4.4 of this paper that, as far as oid-equivalence
is concerned, only the counts of generated oids per tuple are important. Now
consider the following pair of 0CQs:

Q= T(xvf(y)ag(xvz)) — R(I,y),R(JE,Z)
Ql = T(x,f(y),g(w,y)) — R(:C,y),R(x,z)

Both queries create the same number of new f-oids and g-oids per z-value, but
now it also becomes important how these oids are paired. In () more pairs are
generated for each x, and the two queries are not oid-equivalent. So, in the case
of multiple functions, also the interaction between the multiple terms needs to
be taken into account in some way.

A similar comment applies to the problem of logical equivalence. It is not
immediately clear how the join dependency condition of Theorem [(.10] should
be generalized in the presence of multiple functions. Consider, for example, the
following:

Q =T(z, f1(21,91), f2(22,y2)) < R(z, 21, 22), S(21, 41), S (22, y2)
Q' =T(x,g1(u),ga(u)) < R(x,u,x), R(x,z,u),S(u,v1),S(z,v2)

The fi-part of @ (ignoring the third component in the head) logically entails
the g1-part of @, and likewise the fo-part of @ (ignoring the second component
in the head) logically entails the go-part of Q'. Globally, however, @ does not
logically entail @’; this can be seen by the instances shown in Table [which
satisfy @ but not Q’.

A related interesting question then is whether Theorem [E.I2] that oid-
equivalence implies logical entailment, still holds for plain SO-tgds. When we

29

allow nested function terms in the head (which goes beyond plain SO-tgds) the
implication breaks down, as shown by the following example [I7, Example 3.8]:

Q' =T(z, f(x),9(x)) < S(z)

Here Q and Q' are oid-equivalent, and @ logically entails @', but Q' does not
logically entail Q.

Acknowledgment

We thank the anonymous referees for their careful comments which helped im-
prove the presentation of the paper.

References

[1]

2]

[9]

[10]

Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From relations
to semistructured data and XML. Morgan Kaufmann (2000)

Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-
Wesley (1995)

Abiteboul, S., Kanellakis, P.: Object identity as a query language primitive.
J. ACM 45(5), 798-842 (1998)

Abiteboul, S., Vianu, V.: Procedural languages for database queries and
updates. J. Comput. Syst. Sci. 41(2), 181-229 (1990)

Abiteboul, S., Vianu, V.: Datalog extensions for database queries and up-
dates. J. Comput. Syst. Sci. 43(1), 62-124 (1991)

Alexe, B., Tan, W.C., Velegrakis, Y.: STBenchmark: Towards a benchmark
for mapping systems. PVLDB 1(1), 230244 (2008)

Arenas, M., Pérez, J., Reutter, J., Riveros, C.: The language of plain SO-
tgds: Composition, inversion and structural properties. J. Comput. Syst.
Sci. 79(6), 737-1002 (2013)

Arocena, P., Glavic, B., Miller, R.: Value invention in data exchange. In:
Proceedings 2013 SIGMOD Conference, pp. 157-168. ACM (2013)

Arocena, P.C., Ciucanu, R., Glavic, B., Miller, R.J.: Gain control over your
integration evaluations. PVLDB 8(12) (2015)

Van den Bussche, J., Paredaens, J.: The expressive power of complex values
in object-based data models. Information and Computation 120, 220-236
(1995)

30

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

Van den Bussche, J., Van Gucht, D., Andries, M., Gyssens, M.: On
the completeness of object-creating database transformation languages.
J. ACM 44(2), 272-319 (1997)

ten Cate, B., Kolaitis, P.: Structural characterizations of schema-mapping
languages. Commun. ACM 53(1), 101-110 (2010)

Chandra, A., Merlin, P.: Optimal implementation of conjunctive queries in
relational data bases. In: Proceedings 9th ACM Symposium on the Theory
of Computing, pp. 77-90. ACM (1977)

Cohen, S.: Equivalence of queries that are sensitive to multiplicities. The
VLDB Journal 18, 765-785 (2009)

Cohen, S., Nutt, W., Sagiv, Y.: Containment of aggregate queries. In:
D. Calvanese, M. Lenzerini, R. Motwani (eds.) Database Theory—ICDT
2003, Lecture Notes in Computer Science, vol. 2572, pp. 111-125. Springer
(2003)

Fagin, R., Haas, L., M. Hernandez, R.M., Popa, L., Velegrakis, Y.: Clio:
Schema mapping creation and data exchange. In: A. Borgida, V. Chaud-
huri, P. Giorgini, E. Yu (eds.) Conceptual Modeling: Foundations and
Applications, Lecture Notes in Computer Science, vol. 5600, pp. 198-236.
Springer (2009)

Fagin, R., Kolaitis, P., Nash, A., Popa, L.: Towards a theory of schema-
mapping optimization. In: Proceedings 27th ACM Symposium on Princi-
ples of Database Systems, pp. 33-42 (2008)

Fagin, R., Kolaitis, P., Popa, L.: Composing schema mappings: Second-
order dependencies to the rescue. ACM Trans. Database Syst. 30(4), 994—
1055 (2005)

Feinerer, 1., Pichler, R., Sallinger, E., Savenkov, V.: On the undecidability
of the equivalence of second-order tuple generating dependencies. Informa-
tion Systems 48, 113-129 (2015)

Friedman, M., Levy, A.Y., Millstein, T.D.: Navigational plans for data
integration. In: AAAT/TAAI pp. 67-73 (1999)

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sa-
giv, Y., Ulman, J., Vassalos, V., Widom, J.: The TSIMMIS approach to
mediation: data models and languages. Journal of Intelligent Information
Systems 8(2), 117-132 (1997)

Hull, R., Yoshikawa, M.: ILOG: Declarative creation and manipulation of
object identifiers. In: D. McLeod, R. Sacks-Davis, H. Schek (eds.) Pro-
ceedings of the 16th International Conference on Very Large Data Bases,
pp. 455-468. Morgan Kaufmann (1990)

31

[23] Hull, R., Yoshikawa, M.: On the equivalence of database restructurings
involving object identifiers. In: Proceedings of the Tenth ACM Symposium
on Principles of Database Systems, pp. 328-340. ACM Press (1991)

[24] Kifer, M., Wu, J.: A logic for programming with complex objects. J. Com-
put. Syst. Sci. 47(1), 77-120 (1993)

[25] Klug, A., Price, R.: Determining view dependencies using tableaux. ACM
Trans. Database Syst. 7, 361-380 (1982)

[26] Kolaitis, P., Pichler, R., Sallinger, E., Savenkov, V.: Nested dependen-
cies: Structure and reasoning. In: Proceedings 33rd ACM Symposium on
Principles of Database Systems (2014)

[27] Lenzerini, M.: Data integration: A theoretical perspective. In: Proceedings
21st ACM Symposium on Principles of Database Systems, pp. 233-246
(2002)

[28] Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogeneous informa-
tion sources using source descriptions. In: T. Vijayaraman, A. Buchmann,
C. Mohan, N. Sarda (eds.) Proceedings 22nd International Conference on
Very Large Data Bases, pp. 251-262. Morgan Kaufmann (1996)

[29] Maier, D.: A logic for objects. In: Workshop on Foundations of Deductive
Databases and Logic Programming, pp. 6—26 (1986)

[30] Papakonstantinou, Y., Garcia-Molina, H., Widom, J.: Object exchange
across heterogeneous information sources. In: ICDE, pp. 251-260 (1995)

[31] Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M.,
Rosati, R.: Linking data to ontologies. J. Data Semantics 10, 133-173
(2008)

[32] Sequeda, J.F., Arenas, M., Miranker, D.P.: On directly mapping relational
databases to RDF and OWL. In: International Conference on World Wide
Web (WWW), pp. 649-658 (2012).

[33] Ullman, J.D.: Information integration using logical views. Theor. Comput.
Sci. 239(2), 189-210 (2000)

32

	1 Introduction
	2 Applications of sifo CQs
	3 Preliminaries
	3.1 Databases and conjunctive queries
	3.2 Object-creating conjunctive queries
	3.3 The single-function case
	3.4 Comparison with ILOG

	4 Characterization of oid-equivalence for sifo CQs
	4.1 Oid-equivalence of oCQs
	4.2 Homomorphisms and containment of conjunctive queries
	4.3 A normal form for oid-equivalence problems
	4.4 Characterization of oid-equivalence
	4.5 Computational complexity

	5 Logical entailment of sifo CQs interpreted as schema mappings
	5.1 Nested dependencies
	5.2 Logical entailment
	5.3 Join dependencies and tableau queries
	5.4 Decidability of sifo CQ logical entailment
	5.5 From oid-equivalence to logical entailment

	6 Discussion

