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Abstract Probabilistic inference over large data sets is a
challenging data management problem since exact infer-
ence is generally #P-hard and is most often solved approxi-
mately with sampling-based methods today. This paper pro-
poses an alternative approach for approximate evaluation of
conjunctive queries with standard relational databases: In
our approach, every query is evaluated entirely in the data-
base engine by evaluating a fixed number of query plans,
each providing an upper bound on the true probability, then
taking their minimum. We provide an algorithm that takes
into account important schema information to enumerate
only the minimal necessary plans among all possible plans.
Importantly, this algorithm is a strict generalization of all
known PTIME self-join-free conjunctive queries: A query
is in PTIME if and only if our algorithm returns one sin-
gle plan. Furthermore, our approach is a generalization of a
family of efficient ranking methods from graphs to hyper-
graphs. We also adapt three relational query optimization
techniques to evaluate all necessary plans very fast. We give
a detailed experimental evaluation of our approach and, in
the process, provide a new way of thinking about the value
of probabilistic methods over non-probabilistic methods for
ranking query answers. We also note that the techniques
developed in this paper apply immediately to lifted infer-
ence from statistical relational models since lifted inference
corresponds to PTIME plans in probabilistic databases.
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1 Introduction

Probabilistic inference over large data sets is becoming a
central data management problem. Recent large knowl-
edge bases, such as Yago [40], Nell [7], DeepDive [16],
or Google’s Knowledge Vault [19], have millions to bil-
lions of uncertain tuples. Data sets with missing values are
often “completed” using inference in graphical models [8,
61,71] or sophisticated low rank matrix factorization tech-
niques [21,70] that ultimately result in a large probabilistic
database. Data sets that result from crowdsourcing [1] or
that are inferred from unstructured information [9] are also
uncertain, and probabilistic databases have been applied to
bootstrapping over samples of data [80].

However, probabilistic inference is known to be #P-
hard in the size of the database, even for some very sim-
ple queries [13]. Today’s state of the art inference engines
use either sampling-based methods or are based on some
variant of the DPLL algorithm for Weighted Model Count-
ing [15]. For example, Tuffy [51], a popular implementation
of Markov Logic Networks (MLN) over relational data-
bases, uses Markov Chain Monte Carlo methods (MCMC).
Gibbs sampling can be significantly improved by adapting
some classical relational optimization techniques [81]. For
another example, MayBMS [3] and its successor Sprout [55]
use query plans to guide a DPLL-based algorithm for Weigh-
ted Model Counting [35]. While both approaches deploy
some advanced relational optimization techniques, at their
core they are based on general purpose probabilistic in-
ference techniques, which either run in exponential time
(DPLL-based algorithms have been proven recently to take
exponential time even for queries computable in polynomial
time [4]), or require many iterations until convergence.

In this paper, we propose a different approach to query
evaluation with probabilistic databases (PDBs). In our ap-
proach, every query is evaluated entirely in the database en-
gine. Probability computation is done at query time, using
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Fig. 1 Example 1. The propagation score p(t) in graph (a) corre-
sponds to the reliability score r(t) in graph (c) with node a dissociated
into two. (b,d): Corresponding chain queries with respective databases.

simple arithmetic operations and aggregates. Thus, proba-
bilistic inference is entirely reduced to a standard query eval-
uation problem with aggregates. There are no iterations and
no exponential blowups. All benefits of relational engines
(such as cost-based optimizations, multi-core query process-
ing, shared-nothing parallelization) are directly available to
queries over probabilistic databases.

To achieve this, we compute approximate rather than ex-
act probabilities, with a one-sided guarantee: The probabili-
ties are guaranteed to be upper bounds to the true probabil-
ities, which we show is sufficient to rank the top query an-
swers with high precision. Our approach consists of approx-
imating the true #P-hard query probability by evaluating a
fixed number of PTIME queries (the number depends on the
query), each providing an upper bound on the true probabil-
ity, then taking their minimum. Another way to put this is
that we replace the standard semantics based on reliability,
with a related but much more efficient semantics based on
propagation, and which is guaranteed to be an upper bound
on reliability. We explain this alternative semantics next.

The semantics of a query over a PDB is based on the
possible world semantics, which is equivalent to “query re-
liability” [37]. Among its roots are network reliability [10]
which is defined as the probability that a source node s re-
mains connected to a target node ¢ in a directed graph if
edges fail independently with known probabilities. How-
ever, computing network reliability is #P-hard. Hence, many
applications where an exact probabilistic semantics is not
critical (especially for ranking alternative answers) have re-
placed network reliability with another semantics based on
a “propagation scheme.” We illustrate with an example.

Example 1 (Propagation in k-partite digraphs) Consider
the 4-partite graph in Fig. 1a. Intuitively, let’s call a node
x “active” if there exists a directed path from the source
node to x. Then, the “reliability score” r(x) of a node x
is the probability that x is active if every edge e is in-
cluded in the graph independently with probability p,.. The

score of interest is the reliability of a target node ¢: r(z) =
p1(p2ps+® p3ps) = p1(1—(1—paps)(1—p3ps)) where “®”
stands for the “independent-or” in infix or prefix notation,
which combines probabilities as if calculating the disjunc-
tion between independent events: @), p; = 1 —[[;(1 — p;)-
While reliability can be computed efficiently for series-
parallel graphs as the one in Fig. 1a, it is #P-hard in gen-
eral, even on 4-partite networks [10]. The probability of a
query over a PDB corresponds precisely to network reli-
ability. For example, in the case of a 4-partite graph, re-
liability is given by the probability of the 3-chain query
q:—R(s,x),S(x,y),T (y,t) over the PDB shown in Fig. 1b
(here s and ¢ stand for constants). Notice that the reliability
of a node is a combinatorial or “global property” of the
entire graph: it is defined as a weighted average over all
possible worlds and can generally not be calculated easily.

In contrast, the propagation score p(x) of a node x is a
value that recursively depends on the scores of its neighbors
and the probabilities of the connecting edges:

P(x) < @ pe-plue) (1

where e ranges over all incoming edges (u,,x). By defini-
tion, p(s) = 1. In Fig. 1 a, the propagation score of the target
node ¢ is p(t) = pap(b) @ psp(c) = p1p2p4 @ p1p3ps =
1— (1— p1papa)(1— p1p3ps). Notice that the propagation
score of a node is a recursive or “local property” since it
can be calculated from the scores of its neighbors. |

With “propagation”, we refer to a family of techniques
for calculating the relative importance of nodes in networks
with iterative models of computation: “relevance” is prop-
agated across edges from node to node while ignoring past
dependencies (see Fig. 2). Thus, unlike reliability, propa-
gation scores can always be computed efficiently, even on
very large graphs. Variants of propagation have been suc-
cessfully used in a range of applications for calculating
relevance where exact probabilities are not necessary. Ex-
amples include similarity ranking of proteins [78], inte-
grating and ranking uncertain scientific data [17], models
of human comprehension [60], activation in feedforward
networks [66], search in associative networks [12], trust
propagation [39] and influence propagation [36] in social
networks, keyword search in databases [5], the noisy-or
gate [57, Sect. 4.3.2], computing web page reputation with
PageRank [6], belief propagation in graphical models [57],
linearized belief propagation for node labeling [27], or find-
ing true facts from a large amount of conflicting informa-
tion [79].) Note that the resulting relevance scores com-
monly do not have an exact probabilistic semantics, and may
be used as a heuristics instead. For example, the PageRank

I Also see [56] for a related discussion of fact finding algorithms,
in which the approach of [79] and its use of the iterative propagation
Equation 1 is referred to as “pseudoprobabilistic”.
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Fig. 2 “Relevance propagation” in graphs works by iteratively cal-
culating messages m(e) across edges e and relevance scores p(n) of
nodes n. The propagation method we consider is pseudoprobabilis-
tic in that the two operators are “independent-and” or product (-),
and “independent-or” (®). PageRank and related methods from semi-
supervised learning replace the probability p, of an edge with a weight
(here d, stands for the out-degree of node n) and the independent-or
with addition or sum (}.). Belief Propagation propagates not just one
message across an edge but a vector m(e) of messages, scales this
message vector with a matrix 1, (also called “edge potential”), and
replaces the independent-or with a component-wise product (®), fol-
lowed by a normalization (here Z stands for a normalizer). Linearized
Belief Propagation uses again addition as second operator and requires
no normalization. Intuitively, the method developed in this paper gen-
eralizes pseudoprobabilistic relevance propagation to hypergraphs.

of a web page does not have to be smaller than 1 (see Fig.2
for a comparison of the update equations). However, these
variants have in common that the score of a node is recur-
sively defined only in terms of the scores of its neighbors,
and not in terms of the entire topology of the graph.

While Example 1 shows how the propagation score can
be defined on graphs, queries are not represented by graphs
but hypergraphs, in general. To the best of our knowledge,
no definition of a propagation score on hypergraphs exists,
and it is not obvious how to define such a score. Also, the
propagation score between two nodes depends on the direc-
tionality of the graph, which can be best illustrated with our
example of k-partite graphs: In Fig. 1a the propagation score
from s to ¢ is different from the one from ¢ to s (in fact,
the latter coincides with the reliability score). It is not im-
mediately clear what this directionality corresponds to for a
relational query whose lineage defines a hypergraph.

With this paper, we introduce a propagation score for
queries over PDBs, describe the connection to the reliabil-
ity score, and give a method to efficiently compute the prop-
agation score for any self-join-free conjunctive query with
a standard relational database engine. While the propaga-
tion score differs from the reliability score, we prove sev-
eral properties showing that it is a reasonable substitute:

(i) propagation and reliability are guaranteed to coincide for
all known PTIME queries: our score are thus strict general-
ization of efficient evaluation methods from PTIME to #P-
hard queries; (ii) propagation is in PTIME and can be evalu-
ated with a standard relational DBMS without any changes
to the underlying relational query engine; (iii) propagation
is inspired by the above listed number of successful rank-
ing schemes on graphs: yet our score extends the underly-
ing idea of propagation on graphs to propagation on hyper-
graphs; (iv) the propagation score is always an upper bound
to the reliability score: it can thus be applied as efficient fil-
ter; and (v) the ranking given by the propagation score is
very close to the ranking given by the reliability score in our
experimental validation.

Example 2 (Example I cont.) We have seen that the prop-
agation score differs from the reliability score on the DAG
(Directed Acyclic Graph) in Fig. 1a. By inspecting the ex-
pressions of the two scores, one can see that they differ in
the way they treat p;: reliability treats it as a single event,
while propagation treats it as two independent events. In
fact, the propagation score is precisely the reliability score
of the DAG in Fig. 1c, which has two copies of p;. We
call this DAG the “dissociation” of the DAG in Fig. 1a. At
the level of the database, dissociation can be obtained by
adding a new attribute B to the first relation R (Fig. 1d).
The dissociated query is ¢*':—R”(s,x,y),S(x,y),T (1),
where the exponent ” in R” indicates the new attribute,
and its probability is indeed the same as the propagation
score for the graph in Fig. la. The important observation
here is that, while the evaluation problem for ¢ is #P-hard
in general, the query ¢! is “hierarchical” [13] and can
therefore be computed efficiently. A query g usually has
more than one dissociation: g has a second dissociation
g :— R(s,x),S(x,y),T*(x,y,t) obtained by adding the at-
tribute A to T (not shown in the figure). Its probability cor-
responds to the propagation score from ¢ to s, i.e. from right
to left. And ¢ :— R”(s,x,y), S(x,y), T*(x,y,¢) is a third dis-
sociation. We prove that each dissociation step can only
increase the probability (e.g., r(q) < r(g?1) < r(g*)). We
define the propagation score of g as the smallest probabil-
ity of these three dissociations. The database system has to
compute (1) and r(¢g*?) and return the smallest score: on
the graph in Fig. 1a, this is r(¢*2), since r(q) = r(¢*2). W

Contributions and outline. (1) We derive “query disso-
ciation” as a generalization of relevance propagation from
graphs to hypergraphs and define the propagation score for
any self-join-free conjunctive query in terms of dissocia-
tions (Section 3). A query dissociation is a rewriting of both
the data and the query. On the data, a dissociation is ob-
tained by making multiple, independent copies of some of
the tuples in the database. Technically, this is achieved by
extending the relational schema with additional attributes.
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On a query, a dissociation extends atoms with additional
variables. We prove that a dissociation can only increase the
probability of a query, and define the propagation score of
a query as the minimum reliability of all dissociated queries
that are “hierarchical”. This is justified by the fact that, in a
k-partite graph, the propagation score is precisely the prob-
ability of one dissociated hierarchical query. Thus, in our
definition, choosing a direction for the network in order to
define the propagation score corresponds to choosing a par-
ticular dissociation that makes the query hierarchical.

(2) We show how the propagation score can be evalu-
ated with the help of a query-dependent number of query
plans (Section 4). We achieve this by establishing a one-to-
one correspondence between hierarchical dissociations and
traditional query plans and showing that every query plan
computes a probability that is an upper bound of query reli-
ability. Moreover, we describe a natural partial order on the
probabilities of query plans Thus every self-join-free con-
Jjunctive query can be approximated by a fixed number of
query plans, and it suffices to iterate over all minimal plans,
compute their probabilities, then take the minimum. We give
an intuitive system R-style algorithm [67] that enumerates
all minimal plans for a given query q.

(3) We generalize the algorithm to take into considera-
tion schema knowledge on deterministic relations and func-
tional dependencies (Section 5). In particular, we give a uni-
fied treatment and generalization of all previously known
PTIME self-join free conjunctive queries, i.e. those that can
be evaluated with a query plan in polynomial time in the size
of the database, and show that our approach naturally gen-
eralizes all known PTIME queries: for every query that is
PTIME (whether due to key constraints, or the presence of
deterministic tables), reliability and propagation scores al-
ways coincide; for every query that is #P-hard, our approach
still returns a unique, well-defined score in polynomial time.

(4) We give a set of targeted multi-query optimization
techniques that considerably speed up the time needed to
evaluate the propagation score (Section 6). Evaluating some
queries may require a large number of plans (e.g., an 8-
chain query requires 429 plans). Evaluating all plans se-
quentially would still be prohibitively expensive. Instead,
we tailor three relational query optimization techniques to
dissociation: (i) combining all minimal plans into one single
query, (i) reusing common subexpressions with views, and
(iii) performing deterministic semi-join reductions.

(5) We conduct a set of very extensive experiments in
which we compare the quality of ranking and scalability of
various alternative methods (probabilistic and not) against
exact probabilistic inference on TPC-H data [72]. We devise
a setup that measures the additional benefit of probabilistic
inference for ranking over alternative methods, showing that
our technique has high precision for ranking query answers
based on their output probabilities. We also show that, with

all our optimizations enabled, computing hard queries over
probabilistic databases incurs only a modest penalty over
computing the same query on a deterministic database: For
example, the 8-chain query (with 429 query plans) runs only
a factor of < 10 slower than on a deterministic database.
Prior publications. In recent work [30], we apply the
idea of dissociation to both upper and lower bound the prob-
ability of Boolean functions, but discuss the connection to
query evaluation only in passing. Parts of Section 3 and Sec-
tion 4 are based on a workshop paper [28]. The remainder
is based upon [31]. We added the connection to propaga-
tion on graphs, more detailed experiments, slightly changed
the formalisms, and included extensive illustrating examples
throughout. Due to space restrictions, some of our proofs
had to be included in an online appendix on ArXiv [29].

2 Technical background

2.1 Probabilistic databases and self-join-free conjunctive
queries

A tuple-independent probabilistic database (TI-PDB) is a
database D plus a function p(¢) € [0,1] associating an in-
dependent probability to each tuple t € D. We fix a rela-
tional vocabulary o = (Ry,...,R,,) and denote with D the
database, i.e. the collection of tuples and their probabili-
ties. A possible world is then a subset of D generated by
independently including each tuple 7 in the world with prob-
ability p(¢). We use bold notation (e.g., X) to denote both
sets or tuples. A self-join-free conjunctive query (sj-free
CQ) is a first-order formula ¢(z) = 3x; ... Ixx. (a1 A.. . Aay)
where each atom q; represents a relation R;(x;), the variables
X1,...,X; are called existential variables, and z are called the
head variables (or free variables).?

The term “self-join-free” means that the atoms refer to
distinct relational symbols. We assume therefore w.l.o.g.
that every relational symbol Ry,...,R,, occurs exactly once
in the query. Unless otherwise stated, a “query” in this
paper always denotes a sj-free CQ. As usual, we abbrevi-
ate a query by ¢(z):—ay,...,ay, and write HVar(q) = z,
EVar(gq) = {x1,...,x} and Var(g) = HVar(gq) UEVar(q)
for the set of head variables, existential variables, and all
variables of ¢. If HVar(q) = 0, then g is called a Boolean
query and EVar(g) = Var(q). We also write Var(q;) for
the variables in atom a; and at(x;) for the set of atoms
that contain variable x;. The active domain of a variable
x; is denoted ADomxj,3 and the active domain of the entire
database is ADom = |J;ADomy;. The focus of probabilistic

2 W.lo.g. we assume X; to be a tuple of only variables and don’t
write the constants. Selections can always be directly pushed into the
database before executing the query.

3 Defined formally as ADom, 5 = Ui evar(r) T, (R))-
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query evaluation is to compute P[g], i.e. the probability that
the query is true in a randomly chosen world. We will refer
to this probability as the “query reliability” r(q) [37].

It is known that the data complexity [77] of any query g
is either in PTIME or #P-hard [14]. The PTIME queries are
also called “safe queries” and, for the case of sj-free CQs,
are characterized precisely by a syntactic property called hi-
erarchical queries [13]. We briefly review these results:

Definition 3 (Hierarchical query) A query g is called hier-
archical iff for any two existential variables x,y € EVar(q),
one of the following three conditions holds: at(x) C at(y),
at(x) D at(y), or at(x)Nat(y) =0.

For example, the query g1 :— R(x,y),S(»,2), T (y,z,u) is hier-
archical, while g2 :—R(x,y),S(y,z), T (z,u) is not as neither
of the three conditions holds for the variables y and z.

Theorem 4 (Hierarchy dichotomy [13]) If g is hierarchi-
cal, then P[q] can be computed in PTIME in the size of D.
Otherwise, computing P[q is #P-hard in the size of D.

We next give an equivalent, recursive characterization of
hierarchical queries, for which we need a few definitions.
We write SepVar(g) for the set of existential variables that
appear in every atom (called “separator variables™). A con-
nected component of g (or short, “query component”) is a
subset of atoms that are connected via existential variables.
A query q is disconnected if its atoms can be partitioned into
two non-empty sets that do not share any existential vari-
ables (e.g., ¢:—R(x,y),S(z,u), T (u,v) is disconnected and
has two query components: “R(x,y)” and “S(z,u), T (u,v)”).
For every set of variables x, denote ¢ — x the query obtained
by removing all variables x and decreasing the arities of the
relational symbols that contain variables from x. Any query
can become disconnected by removing a set of variables.

Lemma 5 (Hierarchical queries) A query q is “hierarchi-
cal” iff either: (1) q has a single atom; (2) q has k > 2 query
components all of which are hierarchical; or (3) q has a sep-
arator variable x, and q — {x} is hierarchical.

Every hierarchical query can be computed in PTIME, but
non-hierarchical queries are #P-hard, in general.4

2.2 Probabilistic query plans

Unless otherwise stated, a “query plan” in this paper always
denotes a probabilistic query plan.

Definition 6 (Query plans) A query plan P is given by the
grammar P ::= R;(x) | ifP | x”[Py,..., ] where R;(x) is

4 Non-hierarchical queries can be in PTIME when considering func-
tional dependencies or deterministic tables [13,54] (see Section 5).

a relational atom containing the variables x, 7% is the proba-
bilistic project operator with duplicate elimination (or short
“projection”), and x” [ . ] is the probabilistic natural join
(or short “join”) in prefix notation, which we allow to be k-
ary (k > 2). We require that joins and projections alternate
in a plan and do not distinguish between join orders. |

We write Var (P) for all variables in a plan P and HVar(P)
for its head variables, which are recursively defined as
follows: (1) if P = R;(x), then HVar(P) = x; (2) if P =
¢ (P'), then HVar = x; and (3) if P =x” [Py,...,F], then
HVar(P) = J*_, HVar(P,). The existential variables EVar (P)
are then defined as Var(P) —HVar(P).

Every plan P represents a query gp defined by taking all
atoms mentioned in P as the body and setting HVar(gp) =
HVar(P). A plan is called Boolean if HVar(P) = 0. We as-
sume the usual sanity conditions on plans to be satisfied: for
a projection 7r; P we assume x C HVar(P), and each variable
y is projected away at most once in a plan, i.e. there exists at
most one operator 7y P s.t. y € HVar(P) — x. For notational
convenience, we also use the “project-away operator” n?, vP
instead of m¥P, where y are the variables being projected
away, i.e. X = HVar (7’ P) = HVar(P) —y.

Each subplan P returns an intermediate relation of ar-
ity |HVar(P)|+ 1. The extra probability attribute stores a
score(t) for each output tuple ¢ € P(D). Given a probabilistic
database D and a plan P, score(t) is defined inductively on
the structure of P as follows: (1) If # € R;(x), then score(t) =
P[t], i.e. its probability in D; (2) if 1 € xP [P (D), ..., P(D)]
where t =x”[t1,...,#], then score(t) = [T-_, score(t;); and
(3)ift € ©{ P(D), and t1,...,t, € P(D) are all the tuples that
project onto ¢, then score(t) = @', score(t;), where “®”
stands for the independent-or. In other words, score com-
putes a probability by assuming that all tuples joined by x”
and all duplicates eliminated by 7? are independent. Only if
these conditions hold, then score is the correct query prob-
ability (also called “query reliability” [37]), but in general
it is not. Therefore, score is also called an extensional se-
mantics [26,57,62] and is, in general, not equal to the query
probability, which is defined in terms of possible worlds:
score(P) # P[g,).° For a Boolean plan P, we get one single
score, which we denote score(P).

The requirement that joins and projections alternate is
w.L.o.g. because nested joins, such as x”[ x”[Ry,R], R3]
or x” [Rl , )P [RZ,R3H , can be rewritten into x” [Rl ,Rz,Rg]
while keeping the same score, e.g., (p1p2)p3 = p1(p2p3)-
For the same reason we do not distinguish between different
permutations in the joins, called join orders [50]. We do not
focus on query optimization in this paper until Section 6.

3> Extensional approaches compute the probability of any formula
as a function of the probabilities of its subformulas according to syntac-
tic rules, regardless of how those were derived. Intensional approaches
reason in terms of possible worlds and keep track of dependencies [57].
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Definition 7 (Safe plan) A plan P is called “safe” iff, for
each join x7” [P] yeen ,Pk], the head variables of each sub-
plan P, contain the same existential variables of plan P:
HVar(P;) NEVar(P) = HVar(P;) NEVar(P),V1 <i,j <k.

The recursive definition of Lemma 5 gives us immedi-
ately a safe plan for a hierarchical query. Conversely, every
safe plan defines a hierarchical query. We next illustrate this.

Example 8 (Hierarchical queries and safe plans) Consider
q(x):—R(x,y),S(x,y,2), T (y,z,u), depicted in Figure 3b
with its “augmented incidence matrix”.° The incidence ma-
trix I(g) of a Boolean sj-free CQ g with m atoms and k vari-
ables is a m x k-dimensional 01-matrix with 1(i, j) = 1 iff
xj € Var(q;). We “augment” it in three ways: (1) We replace
1-entries with circles (o) and ignore O-entries: this merely
cosmetic change makes it is easier to recognize patterns; (2)
We separate columns for HVar(g) to the left and EVar(q)
to the right: recall that query components and safety are
only determined by EVar(g). For our example we have
HVar(q) = {x} and EVar(q) = {y,z,u}; (3) If the query
is hierarchical, then we emphasize the hierarchy between
EVar(g) with gray background. For our example we have
at(u) C at(z) C at(y). Figure 3¢ shows the corresponding
safe plan of ¢ where the hierarchy is reflected in the order
in which variables are projected away: first u, then z, finally
the separator variable y. Figure 3d shows the translation into
SQL assuming R(A,B),S(A,B,C),T(B,C,D) as schema
and each table having one additional attribute P for the
probability of a tuple. Here IOR(X) is a user-defined aggre-
gate (UDA) that calculates the independent-or for the prob-
abilities of grouped tuples, i.e. IOR(py,...,pn) = Q' pi-
See [30] for the complete UDA definition in PostgreSQL.
Next consider ¢’ :— R(x,y),S(x,,z), T (y,z,u), i.e. a vari-
ant of g where x € EVar(q’). Now ¢’ is not hierarchical
anymore since at(x) Z at(z), at(x) 2 at(z), and at(x) N
at(z) # 0. Starting with P from Fig.3c and replacing the fi-
nal projection 7” with 7”, |, the plan P’ is now unsafe: the
join xP [S(x,y,2), 7, T (y,z,u)], has (i) HVar(S(x,y,z)) =
{x,y,z}, but (ii) HVar (x”, T (y,z,u)) = {y,z}: their intersec-
tions with EVar(P') = {x,y,z,u} are now different. [ |

The following proposition summarizes our discussion:

Proposition 9 (Safety [13]) (1) Let P be a plan for query q.
Then score(P) = P[q| for any probabilistic database iff P is
safe. (2) Assuming #P£PTIME, a query q is safe (i.e. Plq]
has PTIME data complexity) iff it has a safe plan P; in that

6 Incidence matrices allow us to compactly reason about two types
of relationships between variables and relations of sf-free CQs simulta-
neously: (7) in a column: a variable that is shared across relations, and
(if) in a row: relations that are joined by a variable. They thus allow
us to reason about both the “query hypergraph” and the “dual query
hypergraph” at the same time, which is helpful also for other types of
problems involving sf-free CQs (see, e.g. [25]).

q(x) :—R(x,y),S(x,y,z), T(yvz7u)

(a) Datalog notation (b) Augmented incidence matrix

P =P, x?[R(x,y), 7’ X [S(x,y,2), 7", T (y,2,u)] ]

(c) Unique safe plan

select X4.A, IOR(P) as P
from (select R.A, R.B, R.P * X3.P as P
from (select X2.A, X2.B, IOR(P) as P
from (select S.A, S.B, S.C, S.P * X1.P as P
from (select T.B, T.C, IOR(P) as P
from T
group by B, C) as X1, S
where S.B=X1.B and S.C=X1.C) as X2
group by X2.A, X2.B) as X3, R
where R.A=X3.A and R.B=X3.B) as X4
group by X4.A

(d) Safe plan in SQL

Fig. 3 Example 8. A query ¢ in Datalog (a), its augmented incidence
matrix (b), its unique safe plan in our plan notation (c), and in SQL (d).

case the safe plan is unique (up to permutation in the join
orders), and Plq| = score(P).

2.3 Boolean Formulas

Consider a set of Boolean variables X = {X;,X5,...} and a
probability function p : X — [0, 1]. Given a Boolean formula
F, denote P[F] the probability that F is true if each variable
X; is independently true with probability p(X;). In general,
computing P[F] is #P-hard in the number of variables X.

If D is a probabilistic database then we interpret every
tuple t € D as a Boolean variable and denote the lineage of
a Boolean query g:—ay,...,a, on D as the Boolean DNF
formula F; p = \g.g1—, 0(a1) A+ -+ A O(an), where 6 ranges
over all assignments of EVar(g) to constants in the active
domain that satisfy ¢ on D. It is well known that P[g] =
IP[F, p]. In other words the probability of a Boolean query is
the same as the probability of its lineage formula.

Example 10 (Lineage) If F = XY,Z, V XY»Z,, then P[F] =
p(X)(p("1)p(Z1) @ p(Y2)p(Z>)). Next consider a query
q:—R(x),S(x,y),T(y) over the database D from Fig. 4c.
Then the lineage formula is F, p = (R(a) AS(a,b) AT (b)) V
(R(a) AS(a,c) AT (c)), i.e. the same as F up to variable re-
naming. It is now easy to see that P[¢] = P[F, p|.

A key technique that we use in this paper is the follow-
ing result from [30]: Let F and F’ be two Boolean func-
tions with sets of variables X and X', respectively. We say
that F’ is a “dissociation” of F if there exists a substitution
6 : X' — X such that F'[8] = F. If 0~ 1(X) = {X',X",...}
then we say that the variable X dissociates into X', X", .. ;
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if [6~'(X)| =1 then we assume w.l.o.g. that 67 (X) = X
(up to variable renaming) and we say that X does not dis-
sociate. Given a probability function p : X — [0, 1], we ex-
tend it to a probability function p’ : X’ — [0,1] by setting
p'(X") = p(6(X’)). Then, we have previously shown:

Theorem 11 (Oblivious DNF bounds [30]) Let F' be a
monotone DNF formula that is a dissociation of F through
the substitution 0. Assume that for any variable X, no two
distinct dissociations X', X" of X occur in the same prime
implicant of F'. Then: (1) P[F] < P[F'], and (2) if every dis-
sociated variable X € X is deterministic (i.e. p(X) =0 or
p(X) =1), then P[F] =P[F’].

Intuitively, a dissociation F’ is obtained from a formula
F by replacing different occurrences of a variable X with
fresh variables X', X”....; by doing this, P[F’] gives us an
upper bound for P[F] and may be easier to compute.

Example 12 (Dissociation) F' = X'Y V X"Z is a disso-
ciation of F = XY V XZ, and its probability is P[F'] =
p(X)p(Y)® p(X)p(Z). Here, only the variable X disso-
ciates into X', X"”. It is easy to see that P[F| < P[F']. More-
over, if p =0 or 1, then P[F] = IP[F’]. The condition that no
two dissociations of the same variable occur in a common
prime implicant is necessary: for example, F/ = X'X" is a
dissociation of F = X as X = XX. However, P[F] = p(X),
P[F’] = p(X)?, and thus P[F] £ P[F’].

3 Dissociation and propagation for unsafe queries

This section defines our technique of “query dissociation”
and defines the “propagation score” of a query. Our moti-
vation comes from Theorem 4: hierarchical queries are safe
(i.e. in PTIME), while non-hierarchical queries are unsafe
(i.e. #P-hard). At its very core, our approach will approxi-
mate the probability of a non-hierarchical query with a set
of related hierarchical queries. We first define our approach
(Section 3.1), then draw the connection to propagation in
graphs (Section 3.2), and finally derive a partial order be-
tween a set of hierarchical queries (Section 3.3).

3.1 Query dissociation

Definition 13 (Query dissociation) Given a probabilistic
database D and a query ¢(z):—R;(x1),...,Rn(X;). Let A =
(¥1,---,Y,n) be a collection of sets of variables with y; C
EVar(q) —x; for every relation R;. The “query dissociation”
defined by A has then two components:

(1) the “dissociated query”:

¢ (2):— R (X1,¥1)s - R (Xons V)

where each RY(x;,y;) is a new relation of arity |x;| +|y;|-

Xy Xy

R|o R|o e

Slo o Slo o

T o T o

@q () ¢*
R|A S|AB T|B R|AB S|AB T|B
pila p2la b pslb pila b pxlab ps|b
p3la ¢ ps|c pirja ¢ p3jac ps|c

©D (@ DA

Fig. 4 Example 14: Incidence matrices of ¢:—R(x),S(x,y),T (y) and
dissociation ¢ :—R”(x,y),8(x,y), T (). Original database D and new
database D? with table R dissociated on variable y.

(2) the “dissociated database” DA consisting of the tables
over the vocabulary 64 = (R}',...,R);") obtained by re-
placing each table R; with the k;-fold Cartesian product
R; x ADomy, X --- x ADomy, wherey; = (i1, ..., Yik)-
For each new tuple ¢’ € R)', its probability is p/(¢') =
p(my, '), i.e. the probability of 7 in the database D. W

Thus, conceptually, we define the semantics of “query
dissociation” as follows: Add some existential variables to
some atoms in the query; this results in a dissociated query
over a new schema. Transform the probabilistic database by
replicating some of their tuples and by adding new attributes
to match the new schema; this is the dissociated database.
Finally, compute the probability of the dissociated query on
the dissociated database. Recall that each tuple in the origi-
nal table represents an independent probabilistic event. The
dissociated table now contains multiple copies of each tu-
ple, all with the same probability, yet considered to represent
independent events. Thus, the dissociated table has a differ-
ent probabilistic interpretation than the original table. Notice
that this is the semantics of a dissociated query, and not the
way we actually evaluate queries (in later sections we de-
scribe methods that evaluate the dissociated query without
modifying the tables in the database).

Example 14 (Example 10 cont.) We illustrate with the query
q:—R(x),S(x,y),T(y) and the database shown in Fig. 4c
where a variable p; stands for the independent probability
of a tuple with index i. Then A = ({y},0,0) defines the
following dissociation: ¢* :—R”(x,y),S(x,y), T (y). Notice
we write here and later R” instead of RV} to simplify our
notation. The active domain ADom,, is {b,c}, and Fig. 4d
shows the new database with table R” as the original table R
dissociated on variable y. Notice that the original tuple R(a)
got dissociated into two tuples R (a, b) and R¥(a, c) with the
same probability p. Figure 4b shows ¢ with the help of an
incidence matrix that is augmented in a 4th way: while an
empty circle (o) still indicates that the original relation con-
tains a variable, a full circle () now indicates that a relation
is dissociated on a variable. Notice that the lineage of the
dissociated query ¢? is Faps = R'(a,b),S(a,b),T(b) V
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RY(a,c),S(a,c),T(c) and is the same (up to variable re-
naming) as the dissociation of the lineage of query ¢: F' =
X'Y1Z, vV X"Y»Z,. Also notice the deliberate similarity with
Example 1 and Fig. 1 from the introduction. |

This example generalizes and allows us to prove our first
major technical result that query dissociation can only in-
crease the probability:

Theorem 15 (Upper query bounds) For every database D
and every dissociation A of a query q: P[q*] > P|q].

Proof (Theorem 15) This follows immediately from Theo-
rem 11 by noting that the lineage Fa 4 is a dissociation of
the lineage F, p through the substitution 0 : D? — D defined
as follows: for every tuple ' € RY', (') = my, (1').

By Theorem 4, the probability of a dissociation can be
evaluated in PTIME iff qA is hierarchical. Hence, amongst
all dissociations, we are interested in those that are easy to
evaluate and use them as a technique to approximate the
probabilities of queries that are hard to compute:

Definition 16 (Hierarchical dissociation) A dissociation
A of a query g is called “hierarchical” if the dissociated
query g is hierarchical.

The idea now is simple: Find a hierarchical dissociation A,
compute P[¢*], and thereby obtain an upper bound on P[g].
In fact, we will consider all hierarchical dissociations and
take the minimum of their probabilities, since this gives an
even better upper bound on P[g] than that by a single disso-
ciation. We call this quantity the “propagation score” of the
query g because of similarities with efficient relevance prop-
agation algorithms on graphs. Figure 5 and the next subsec-
tion explain in more detail how query dissociation general-
izes “relevance propagation” from graphs to hypergraphs.

Definition 17 (Propagation) The “propagation score” p(q)
for a query ¢ is the minimum probability of all hierarchical
dissociations, i.e. p(q) = miny P[¢*] with A ranging over
all hierarchical dissociations.

We propose to adopt the propagation score as an alter-
native semantics for ranking query results over probabilistic
databases. While the data complexity of computing the reli-
ability r(q) is #P-hard in general, computing the propagation
score p(g) is always in PTIME in the size of the database.
Furthermore, p(q) > r(g) and, if g is safe, then p(g) = r(q).
Both claims follow immediately from Theorem 15. Hence,
the propagation score is a natural generalization of reliabil-
ity from safe queries to all queries: If the query is safe, both
scores coincide; if the query is unsafe, propagation still al-
lows to evaluate the query in PTIME (in addition, the next
two sections will show how to evaluate the propagation very
efficiently without first dissociating the tables).

Networks
(Graphs)

Conjunctive queries
(Hypergraphs)

Network reliability: Probability
that two nodes are connected.
Independent of edge direction.

Query reliability: Probability
that query is true in a random
world. Independent of query plan.

(+) undirected (+) undirected
(—) #P-hard (—) #P-hard
Propagation score: ‘Related-|Dissociation score: A query

ness’ propagates from source to
target. Dependent on edge direc-
tion. Upper bound to reliability.

(—) directed
(+) PTIME

plan evaluates from leafs to root.
Dependent on choice of dissocia-
tion. Upper bound to reliability.

(—) directed
(+) PTIME

Propagation score: Minimum

over all hierarchical dissocia-

tions. Unique for given query.
(+) undirected

(+) PTIME

Fig. 5 Connection between reliability and propagation in networks
and conjunctive queries (CQs): In contrast to networks, the propaga-
tion score for CQs is the minimum over all possible hierarchical disso-
ciations, and is therefore unique for every query and database. (+) and
(—) denote positive or negative properties (best seen in color).

3.2 Dissociation and the relation to propagation on graphs

Recall that our original motivation was to develop for queries
a concept that is analogous to propagation on directed net-
works. Queries have no concept of direction, and we suggest
that the choice of direction in a graph corresponds to a par-
ticular choice of hierarchical dissociation of a query. We
now justify our definitions of query dissociation and propa-
gation by drawing the connection to network reliability and
propagation: When a digraph is k+1-partite, then its two ter-
minal reliability can be expressed by a conjunctive k-chain
query.” Further, the propagation score over this network
corresponds to one of several possible dissociations of this
query ¢, some of which khave no natural correspondence to
propagation on graphs. Thus, query dissociation is a strict
generalization of network propagation on k-partite graphs,
and we define query propagation as the minimum reliability
of a set of query dissociations (see Fig.5). Notice, however,
that dissociation admits a natural interpretation as network
propagation only on k-partite graphs, and says nothing about
graphs that are not k-partite.

7 A conjunctive k-chain query is a query g without self-joins in
which each relation is binary, all relations are joined together, and
there is no single variable common to more than two relations. Further-
more, the first and last variable are head variables and can be replaced
by constants: g(x1,xg41):—Ri(x1,x2),R2(x2,%3),. .., Ri(Xk, Xg+1). The
fact that relations are binary entails that the query hypergraph is actu-
ally a standard graph. Similarly, the fact that a variable is not common
to more than two relations also entails the “dual hypergraph” to be a
graph as well. The expression chain query derives from the observation
that both its hypergraph and dual hypergraph resemble a simple chain.
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In the following, we use [k] to denote the set {1,...,k},
and x(; ;) as short form for (x;, Xiy1,...,X;).

Proposition 18 (Connection to networks) Let G = (V,E)
be a k-+1-partite digraph with a source node s and a target
node t, where each edge has a probability. The nodes are
partitioned into V = {s} UV, U...UV, U{t}, and the edges
are E = J; R, where R; denotes the set of edges from V; to
Vig1 with i € [k]. Then:

(a) The (s,t)-network reliability of G is P|q| with:

q:*Rl(Sax2)7R2(x27x3)a' . 'aRk(xkvt)

(b) The directed propagation score from s to t (as defined in
Example 1) is P[g*] with:

X[4 .k

X
qA3*R1[3‘k](SaX[27k])aRz[ ](X[ZAk])v“'aRg(xkat)

3.3 Partial dissociation order

The difficulty in computing p(g) is that the total number of
dissociations is large even for relatively small queries: the
number corresponds to the cardinality of the power set of
variables that can be added to atoms. Thus, if g has k exis-
tential variables and m atoms, then ¢ has 2/K| possible dis-
sociations with K = Y| (k— [Var(a;)|) forming a partial
order in the shape of a power set lattice:

Definition 19 (Partial dissociation order) We define the
partial order on the dissociations of a query as:

A=A & Vity Cy;

Whenever A < A’, then ¢%’,D4" is a dissociation of
g, D? (given by A” = A’ — A). Therefore, we obtain im-
mediately: If A < A’ then P[g?] < P[¢4']. However, the
statement holds in both directions:

Theorem 20 (Partial dissociation order) For every two
dissociations A and A’ of a query q, the following holds
over every database:

A=A & Plg*] <P[g"]

Example 21 (Partial dissociation order) Consider the query
q:—R(x),S(x),T(x,y),U(y). It is unsafe and allows 2° = 8
dissociations which are shown in Fig. 6a with the help of
augmented incidence matrices. Among the 8 dissociations,
5 are hierarchical, and 2 among those 5 are minimal:

qA3 :_R(x)’S(x)’T(xay)’Ux(xay)
qA4 :_Ry(xvy)vsy(xvy)vT(xvy)vU(y)

The propagation score is the minimum score of all min-
imal hierarchical dissociations: p(q) = min g 43 Plg™].
To illustrate that these dissociations are upper bounds,

7?% 7 m—)x,y 6 T

Slo e

T|o o XP P

uje o / \
Pl TN < R(x) 7P,
The) Cuy) b R@) S() Texy) U(y)
Rlo e Rlo e R|o XP
Sloe Slo Sloe |
T|o o T|o o Tfo o
ul o ule o ule o S(x) T(x,y) U(y)
P Tl ! f
Klow| |Rlor| |®fo 4 ey 5 G2 3
S|o S|o e S|o |
T|o o T|o o T|o o [)(]P\ /MP\ TP\
ujp o ul o uje o

v T Uy) T S(x) < R(@)S(x) T,

e | |

1; ° X P P

T|o o | | /

ul o R@) S@Txy)) (RE)TCy)U(y) T(xy) Uy)

(a) (b)

Fig. 6 Example 21 and Example 23: (a): Partial dissociation order for
q:—R(x),S(x), T(x,y),U(y). “Hierarchical dissociations” are green
and have the hierarchies between variables shown in their augmented
incidence matrices (3 to 7), “minimal hierarchical dissociations” are
dark green and double-lined (3 and 4). (b): All 5 query plans, their cor-
respondence to hierarchical dissociations, and their partial dissociation
order (best viewed in color).

consider a database with R=T =U = {(1),(2)}, S =
{(1,1), (1,2),(2,2)}, and the probability of all tuples be-
ing . Then P[g] = % ~0.161, while P[¢*] = 19 ~ 0.165
and P[g*] = 33} ~ 0.172. Both dissociations give up-
per bounds, and the propagation score is their minimum
(= 0.165). Figure 6b is explained later in Example 23. W

The smallest element in the lattice of dissociations is
A = (0,...,0) with ¢*+ = g, and the largest element is
At = (Var(q) — Var(ay),...,Var(q) — Var(a,)). ¢*7 is
always hierarchical as every atom contains all variables.
As we move up in the lattice the probability increases, but
the hierarchy status may toggle arbitrarily from hierarchi-
cal to non-hierarchical and back. For example, the query
q:—R(x),S(y), T (x,y,z) is non-hierarchical, its dissociation
q :—R(x),8(x,y),T(x,y,z) is hierarchical, its dissociation
q":—R¥(x,z),8(x,y), T (x,y,z) is non-hierarchical again.

This suggests the following naive algorithm for comput-
ing p(g): Enumerate all dissociations A, Ay, ... by travers-
ing the lattice breadth-first, bottom up (i.e. whenever A; < A;
then i < j). For each dissociation A;, check if qu is safe. If
so, then first update p + min(p,P[¢*))], then remove from
the list all dissociations A; = A;. However, this algorithm
is inefficient for practical purposes for two reasons: (i) we
need to iterate over many dissociations in order to discover
those that are safe; and (ii) computing P[¢*/] requires com-
puting a new database D? for each hierarchical dissociation
A;. In the next two sections we show how to evaluate the
propagation score very efficiently.
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4 Dissociations and minimal query plans

So far, in order to compute the propagation score of a query
g, we need to dissociate its tables and compute several dis-
sociated hierarchical queries g4 . In practice, we will not ap-
ply naively query dissociation (Definition 13) because cre-
ating the dissociated database is very inefficient. We next
show a 1-to-1 correspondence between hierarchical dissoci-
ations and query plans which allows us to calculate P[g*]
on the original database (Section 4.1), and then present an
efficient algorithm for enumerating a minimum number of
query plans we need to evaluate (Section 4.2).

4.1 Hierarchical dissociations and query plans

We next show (i) how to efficiently find hierarchical disso-
ciations (by iterating over query plans instead of all disso-
ciations), and (ii) how to compute P[g4] without having to
materialize the dissociated database D4.

Theorem 22 (Hierarchical dissociation) For every sf-free
CQ, there is an isomorphism between the set of query plans
and the set of hierarchical dissociations. Moreover, the
probability of a hierarchical dissociated query ¢* is equal
to the score of the corresponding plan: P[q*] = score(Py).

We next describe the mappings: (1) A — P4: Consider
a hierarchical query dissociation ¢g® and denote its corre-
sponding unique safe plan P,. This plan uses dissociated
relations, hence each relation R} (x;,y;) has extraneous vari-
ables y;. Drop all variables y; from the relations and all oper-
ators using them. Since we only remove existential variables
from subgoals, the usual sanity conditions for projections
are satisfied and each variable is still projected away in at
most one project operator. This transforms P, into a regular,
generally unsafe plan P for g. For a trivial example, the plan
corresponding to the top dissociation At of a query g (i.e.
the dissociation at the top of the partial dissociation order
with y; = EVar(q) — x;) is 7’ L evar(g) X’ [Pr,...,P]: It first
joins all tables, then projects away all existential variables.

(2) P — Ap: Conversely, consider any plan P for g. We
define its corresponding hierarchical dissociation Ap as fol-
lows: For each join operation x7” [Pl yeon ,Pk} , let its join vari-
ables JVar be the union of the head variables of all sub-
plans: JVar = (J;HVar(P;). We go from a plan P to a hi-
erarchical dissociation A = g(P) by recursively dissociat-
ing each relation R; occurring in a subplan P; of a join op-
eration X7 [Py,..., P on the missing existential variables
(JVar —HVar(P;)) NEVar(P). Then, recursively and for ev-
ery relation R; occurring in P;, add those variables to yi.g

8 Notice that dissociating a table on any head variable has no im-
plication on the probability of a query result as it does not change its
lineage. We therefore only focus on dissociating existential variables.

Example 23 (Example 21 continued) We saw in Exam-
ple 21 that the query g:—R(x),S(x),T(x,y),U(y) has 8
dissociations depicted in Fig. 6a. Among those, 5 are hi-
erarchical, and Fig.6b shows their query plans:

6y = 0 )P [R(x),S(x), 8 M”[ 2),U)]]

, =70, P [U(y),n” MP[R( 7T(x,y)]]

*ﬂ.'p xP [S(x), w0, P [R(x), T (x,y),U(y)]]

6y = Ty M"[Rx,nyMP[S 2),Um)]]
Py, fnfm ? [R(x), $(3), T, >u<y>]

As every plan corresponds to one hierarchical dissocia-
tion, the partial dissociation order carries over to a par-
tial order on all query plans. The propagation score is
thus the minimum of the scores of the two minimal plans:
p(g) = minjc(3 41 [score(Py,)]. Next consider the subplan
x? [R(x),T(x,y),U(y)] in Py,. Here, JVar NEVar(q) =
{x,y} and the corresponding hierarchical dissociation of
this subplan is ¢* (x,y):— R¥(x,y),T(x,y),U*(x,y). [ |

Notice that a hierarchical dissociation is different from
and does not imply a safe plan for the original query. It
merely states that the dissociated query ¢? allowed a safe
plan P assuming all tuples in its relations were independent.
Further notice that while there is a 1-to-1 mapping between
hierarchical dissociations and query plans, non-hierarchical
dissociations do not correspond to plans and are still hard
(e.g., dissociations 0, 1, and 2 in Example 21 and Fig.6a).

Recall from Section 2 that the extensional semantics
of an unsafe plan P differs from the query probability:
score(P) # P[q], in general. Since we have previously shown
that score(P) = P[¢”] for some dissociation A, we derive the
following rather surprising result:

Corollary 24 (Query plans are upper bounds) Let P be
any plan for a Boolean query q. Then Plq| < score(P).

The proof follows immediately from P[g] < P[¢*?] (The-
orem 15) and P[g*?] = score(P) (Theorem 22). In other
words, any query plan for ¢ as defined in Definition 6 com-
putes a probability score that is guaranteed to be an upper
bound on the correct probability P[g].

4.2 Enumerating minimal query plans

Theorem 22 suggests the following improved algorithm for
computing the propagation score p(g) of a query: Iterate
over all plans P, compute their scores, and retain the min-
imum score minp[score(P)]. Each plan P is evaluated di-
rectly on the original probabilistic database, and there is no
need to materialize the dissociated database. However, this
approach is still inefficient because it computes several plans
that correspond to non-minimal dissociations (e.g., plans 5,
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6, 7 in Example 23 are “dominated” by plan 3 since plan 3
is lower in the partial dissociation order). It thus suffices to
evaluate only the minimal query plans, i.e. those for which
the corresponding dissociation is minimal (i.e., not domi-
nated) among all hierarchical dissociations: in our Exam-
ple 21, these are plans 3 and 4. We next describe our third
technical result, the recursive Algorithm 1 that enumerates
only the “minimal query plans” (i.e. those that correspond to
minimal hierarchical dissociations) and thus the minimum
necessary number of query plans to evaluate p(g).

We require some additional notation: Call a plan P min-
imal if Ap is minimal in the set of hierarchical dissociations.
For example, in Example 21, the minimal plans are Py,
and P,,. The propagation score is thus the minimum of the
scores of these two plans: p(g) = minje3 43 [score(Py,)].
Our improved algorithm will iterate only over minimal plans,
by relying on a connection between plans and sets of vari-
ables that disconnect a query: A “cut” is a set of existential
variables x € EVar(q) s.t. ¢ —x is disconnected.” A “min-
cut” (for minimal cut) is a cut for which no strict subset is
a cut, i.e. no proper subset y’ C y € MinCuts(g) can dis-
connect the query where MinCuts(g) denotes the set of all
min-cuts. Note that MinCuts(g) = 0 iff g is disconnected.

The connection between MinCuts(q) and query plans is
given by two observations: (1) Let P be any plan for g. If ¢
is connected, then the last operator in P is a projection, i.e.
P=nl wP [Pl b ,Pk], and the variables x projected away
are the intersection of the join variables JVar = | J;HVar(F)
with existential variables, as we must project away all ex-
istential variables. We claim that x is a cut for ¢ and that
g — x has k query components corresponding to Py,...,P.
Indeed, if P;, P; share any common variable y, then they must
join on y, hence y € JVar. Thus, cuts are in 1-to-1 cor-
respondence with the top-most project-away operator of a
plan. (2) Next suppose that P corresponds to a hierarchi-
cal dissociation Ap, and let P’ = x”, x? [P{, . ,P,é] be its
unique safe plan. Then x = SepVar(g*”); i.e. the top-most
project operator removes all separator variables.'? Further-
more, if A > Ap is a larger hierarchical dissociation, then
SepVar(g”) D SepVar(g?”) (because any separator vari-
able of a query continues to be a separator variable in any
dissociation of that query). Thus, minimal plans correspond
to min-cuts; in other words, MinCuts(q) is in 1-to-1 corre-

9 Recall that we say a query is connected if all subgoals are con-
nected by considering only existential variables EVar(g). In other
words, when computing query components we remove head variables
from the query: ¢ — HVar(g). An alternative way to write this is to first
substitute all head variables by constants ¢’ = g[a/x] (here g[a/x| de-
notes the query obtained by substituting each head variable x; € x with
the constant a; € a), then to let gy, . . ., gy be the components of ¢’ con-
nected by any variable. The query is connected if k = 1, otherwise it is
disconnected, and Vi # j : Var(g;) NVar(q;) C HVar(q).

10 This follows from the recursive definition of the unique safe plan
of a query in Lemma 5: the top-most projection consists precisely of
its separator variables.

Recursive algorithm: MP (EnumerateMinimalPlans)
Input: Query g(z):—Ri(X1),...,Rn(Xm)

Output: Set of all minimal query plans &

if m=1then &« {n/R|(x))} else

Set Z «+ 0

if g is disconnected then

Let g =qi,...,qx be the query components of ¢
foreach ¢; do Let HVar(g;) <— zNVar(q;) foreach
(P1y...,P) €MP(q1) X --- X MP(gqy) do

6 Ly(—WU{NP[Ph...,P]J}

(S S R R

7| | else

8 foreach y € MinCuts(q) do

9 Let ¢’ + g with HVar(q') < zUy

10 Lforeach PeMp(q)do P« 2 U{rn" P}

Algorithm 1 enumerates all minimal query plans for a query q.

[v][x y z u [v|z y u x vy u x z
R o o o R e 0 0 O R o 0o o
S|o o o o S|olo o o S|lolo o o
T|o o olo Tlo|le e el

@4q (b) g™ © g™

Fig. 7 Example 26. Query ¢ and its two minimal hierarchical dissoci-
ations. Notice the hierarchies between EVar(g) for both dissociations.

spondence with the top-most projection operator of minimal
plans.

Our discussion leads immediately to Algorithm 1 for
computing the propagation score p(g). The algorithm pro-
ceeds recursively: If g is a single atom (line 1), then it is safe
and we only need to project on the head variables.!! If the
query has more than one atom, then we consider two cases
depending on whether the query is connected. If the query
is disconnected (line 3), then the algorithm recursively com-
putes the minimal subplans for each query component, then
creates a query plan for each combination of those subplans.
If the query is connected (line 7), the algorithm creates a
separate plan for each min-cut y € MinCurs(q) by moving y
from the existential variables EVar(g) to the head variables
HVar(q), thereby disconnecting the query. Notice that recur-
sive calls of the algorithm will alternate between these two
cases, until they reach a single atom.

Theorem 25 (Algorithm 1) Algorithm I returns a sound
and complete enumeration of minimal query plans.

Algorithm 1 is sound in that only plans are generated which
are not dominated by any other plan. It is complete in that
the minimum score of all generated plans is equal to the
propagation score of the query.

T Note that if there are no existential variables (z = x;), then there is
no need for the projection operator and one could instead simplify to
P + {Ri(z)}, instead of & + {n}Ri(x;)}.
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Fig. 8 Example 28: Comparing P = P[g] = P[ri#; V ri#,] and p = P[g*] = P[ri#; V ¥ 2] for varying input probabilities p = P[r{] and g = P[t;].

Example 26 (Enumerate minimal query plans) Consider
the non-Boolean query g(v) :— R(x,y,u),S(y,z,u,v), T (z,v).
Figure 7a shows its incidence matrix with its head vari-
ables HVar(g) = {v} and existential variables EVar(g) =
{x,y,z,u} shown separately. The query is connected, and
among 2* different subsets of EVar(g), there are 2 “min-
cuts”, i.e. minimum sets of variables for which removing
them disconnects the query: MinCuts(q) = {{z},{y,u}}.
Projecting away the first min-cut {z} separates the query
into q1(Z,V) :fR(x,y,u), S(y,z,u,v) and qz(z,V) = T(Zav)'
Notice that g; and g, share no existential variables (they
only share head variables z and v). Projecting away the
second min-cut {y,u} separates g into g3 (y,u):— R(x,y,u)
and g4(y,u,v):— S(y,z,u,v),T(z,v). Recursive evaluation
of g to g4 shows that they are all hierarchical, from which
follows that g has 2 minimal query plans:

Py, =7, Np[ﬂfy’u x? [P R(x,y,u),S(y,z,u,v)], T (z,)]
Py, =78, )P [P R(x,y,u), 2", P [S(y,z,u,v),T(z,v)]]

Figure 7b and Fig.7c show their respective hierarchical dis-
sociations, with existential variables re-ordered as to show
the hierarchy implied by the query plans. |

4.3 Other observations

(1) Conservation. Some probabilistic database systems first
check if a query ¢ is safe, and in that case compute the exact
probability using the safe plan, otherwise use some approx-
imation technique. We show that Algorithm 1 is conserva-
tive, in the sense that, if ¢ is safe, then p(g) = P[g]. Indeed,
in that case MP(g) returns a single plan, namely the safe P for
g, because the empty dissociation, A; = (0,...,0), is safe,
and it is the bottom of the dissociation lattice, making it the
unique minimal hierarchical dissociation.

(2) Approximation quality. We next show that the relative er-
ror of approximating query reliability with dissociation im-
proves when the input probabilities decrease. As a conse-

quence, the quality of the ranking also increases. As a prac-
tical consequence, the rankings returned by dissociation are
better if the input probabilities are small.

Proposition 27 (Small probabilities) Given a query q and
database D. Consider the operation of scaling down the
probabilities of all tuples in D with a positive factor f < 1.
Then the relative error of approximation of the query prob-

ability P[q] by the propagation score p(q) decreases as f

-1 p(a)—Plq]
goes to 0: limy_,q+ W 0.

In the following analytic example, we illustrate Prop. 27
by calculating the relative ratio between propagation and re-
liability for changing input probabilities.

Example 28 (Small probabilities) We consider the Boolean
query g:—R(x),S%(x,y),T(y,z) and the dissociation g% :—
R (x,y),5%(x,y),T(y,z) over the database r| = R(a), s; =
S4(a,b), s =S5%a,c),t; = T(b),and t, = T (c). With deter-
ministic relation S¢, the lineages of ¢ and ¢* are Lin(q) =
rit V rita and Lin(g?) = rit; V {2, respectively. Assum-
ing P[ri] = r and P[t;] = P[t,] =1, the respective probabili-
ties become P[g] = r(t ®t) = rt(2—1) and p(q) :=Plg?] =
rt @rt = rt(2 — rt) with r; dissociated.

There are four reasonable metrics to measure the ap-
proximation quality of dissociation p with regard to a prob-
ability P: (1) their absolute difference p — P, which is not
meaningful when both are too close to either O or 1; (2) their
relative ratio p /P, which is not meaningful close to 1;
(3) their relative not-ratio IP’/ p with ¥ := 1 —x, which is not
meaningful close to 0; and (4) the odds ratio (p/p)/(P/P),
which is the product of the former two ratios and which is
meaningful everywhere in [0, 1]. Notice that all four metrics
are defined so they are > 1. Figure 8a shows the original
probabilities P (full lines) and those of their dissociations
p (border of shaded areas) for various values of r and ¢.
The horizontal axis varies the probability of the dissociated
tuple x within [0, 1], and the different lines keep the non-
dissociated tuples y;, y» at the same probability either 0.2,
0.5, or 0.9. Fig.8b, Fig.8c, and Fig.8d show the approxima-
tion quality in terms of our three previously defined ratios.
Notice that the red line varies both r and ¢ at the same time
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Fig. 9 Number of minimal plans, total plans, and total dissociations
for star and chain queries (A are OEIS sequence numbers [52]).

by keeping r = ¢t. We see that the approximation is good
when both input probabilities are small, but get increas-
ingly worse when the probability of the non-dissociated
variables t;,#, gets close to 1.

Finally notice that the relative error (p —P) /P=p /P—

_t(l=r)
1= thr >

which clearly tends towards 0 as ;¢ — 0. |

(3) Number of minimal query plans. We end this section
by commenting on the number of minimal hierarchical dis-
sociations. Not surprisingly, this number is exponential in
the size of the query. To see this, consider a Boolean k-star
query'® q:—Ry(x1),...,Re(x),U(x1,...,x;). There are ex-
actly k! minimal hierarchical dissociations: Take any con-
sistent preorder < on the variables. It must be a total pre-
order, i.e. for any i, j, either x; < x; or x; < x;, because x;,x;
occur together in U. Since it is minimal, < must be an or-
der, i.e. we can’t have both x; < x; and x; = x; for i # j.
Therefore, < is a total order, and there are k! such. Note that
while the number of hierarchical dissociations is exponential
in the size of the query, the number of query plans is inde-
pendent of the size of the database, and hence our approach
has PTIME data complexity [77] for all queries. Figure 9
gives an overview of the number of minimal query plans, to-
tal query plans, and dissociations for star and chain queries.
Recall that in our definition of query plans, we do not con-
sider permutations in the joins (called join orderings [50]).
Also, our problem differs from the standard problem of opti-
mal join enumeration in relational database engines. For ex-
ample, every safe query has only one single minimal query
plan, whereas any relational database engine compares sev-
eral query plans. Later Section 6 gives optimizations that
allow us to evaluate a large number of plans efficiently.

12" A Boolean conjunctive k-star query is a query with k unary rela-
tions and one k-ary relation: g:— Ry (x1),...,Rg(x¢),U(x1,...,x¢). The
fact that each variable appears in exactly two relations implies that the
dual query hypergraph is actually a standard graph (the dual hyper-
graph of a query is defined by the relations as vertices and variables as
the hyperedges). The expression star query derives from the observa-
tion that the query’s dual (hyper)graph resembles a star with the table
U connected to all other relations.

In summary, our approach allows to rank answers to both
safe and unsafe queries in polynomial time in the size of
the database, and is conservative w.r.t. the ranking accord-
ing to exact probabilistic inference for both safe queries and
for data-safe queries [43]. The latter follows easily from the
point that if a query over a particular database allows one
single safe plan, then this plan must be among the minimal
plans in the partial dissociation order.

5 Optimizations with schema knowledge

In this section, we show how deterministic relations (i.e.
all tuples in a relation have probability 1), and functional
dependencies (e.g., keys) can reduce the number of plans
needed to calculate the propagation score.

5.1 Deterministic relations (DRs)

In the following, we denote deterministic relations (DRs)
with an exponent “d”, i.e. a relation R is probabilistic, and
a relation R is deterministic. First notice that we can treat
DRs just like probabilistic relations, and Corollary 24 with
Plg] < score(P) still holds for any plan P. Just as before,
our goal is to find a minimum number of plans that com-
pute the minimal score of all plans: p(q) = minp score(P).
It is known that a non-hierarchical query g can become safe
(i.e., P[g] can be calculated in PTIME with one single plan)
if we consider DRs. Thus, we would still like an improved
algorithm that returns one single plan if a query with DRs is
safe. The following lemma will help us achieve this goal:

Lemma 29 (Dissociation and DRs) Dissociating a deter-
ministic relation does not change the probability.

We thus define a new probabilistic dissociation preorder
=? that only focuses on probabilistic relations:

A =P A’ & Vi with R; probabilistic : y; C ¥,

In other words, A <P A’ still implies P[¢?] < P[¢*'], but
=P is defined on probabilistic relations only. Notice, that
for queries without DRs, the relations <” and =< coincide.
However, for queries with DRs, <7 is a preorder, not an or-
der. Therefore, there exist distinct dissociations A, A’ that
are equivalent under <” (written as A =P A’), and thus have
the same probability: P[g3] = P[¢2]. As a consequence, us-
ing <? instead of =, allows us to further reduce the number
of minimal hierarchical dissociations we need to evaluate.

Example 30 (RST query with DRs) Consider the query g:—
R(x),S(x,y),T%(y). This query is known to be safe. We thus
expect our definition of p(g) to find that p (q) = P[g]. Ignor-
ing that T4 is deterministic, < has two minimal plans cor-
responding to dissociations ¢ :— R} (x,y), S(x,y), T%(y),
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(a) No DRs

(¢) RY and T¢

Fig. 10 Example 30: The presence of DRs R? or T changes the prob-
abilistic dissociation preorder for q:— R(x),S(x,y), T (y): Several dis-
sociations now have the same probability (shown with shaded areas
instead of arrows). Our modified algorithm now returns, for each mini-
mal safe equivalence class, the query plan for the top most hierarchical
dissociation (shown in dark green and double-lined).

and ¢®:—R(x), S(x,y), T} (x,y). Since A, dissociates
only 79, we now know from Lemma 29 that P[g] = P[¢*2].
Thus, by using < as before, and ignoring information about
DRs, we still get the correct answer. However, evaluating
the plan Py, is always unnecessary since A, =P A;. In con-
trast, without information about DRs, Ay AP Aj, and we
would thus have to evaluate both plans.

Figure 10 illustrates these ideas with incidence matrices
that are augmented in a Sth way: dissociated variables in
DRs do not affect the probability and are now marked with
dotted circles (o) instead of full circles (o). Thus, the pre-
order <? is determined entirely by full circles (representing
dissociated variables in probabilistic relations). However,
as before, the correspondence to plans (as implied by the
hierarchy between all variables) is still determined by all
circles. Figure 10b shows that p(g) = P[¢*?] = P[q] since
Ag =P Ay <P A| = A3 (equivalence under <7 is shown with
former arrows being replaced by broad connectors). Thus,
the query is safe, and it suffices to evaluate only P,,. Notice
that g is not hierarchical, but still safe since it is in an equiv-
alence class with a query that is hierarchical: Ag =P A;.

Figure 10c shows that for R? and 7 being determinis-
tic, all three possible query plans (corresponding to Aj, Ay,
and A3) form an equivalence class in <” with A°, and thus
give the exact probability. In other words, the number of hi-
erarchical dissociations “minimal in <P” has increased to
3, but all of them are now in the same equivalence class and
thus have the same probability. We, therefore, want to mod-
ify our algorithm to return just one plan from each “minimal
safe equivalence class”. 1deally, we prefer the plan corre-
sponding to A3 (or more generally, the plan for the top hi-
erarchical dissociation in < for each minimum safe equiv-
alence class) since Py, least constrains the join order be-
tween tables: compare Pa, = 7, @7 [R(x),S(x,y), T%(y)]
with Py, = nil, x” [R(x),n'fy P [S(x,), T4(y)]]. [ |

We now explain two simple modifications to Algorithm 1
that achieve our desired optimizations described above:

(1) Leta “p-cut” be a set of existential variables x € EVar(q)
s.t. ¢ —x has at least two query components, each of
which has at least one probabilistic table. Denote by
MinPCuts(q) the set of all “minimal p-cuts” and replace
MinCuts(g) with MinPCuts(g) in line 8.

(2) Denote with m,, the number of probabilistic relations in
a query, and w.l.o.g. order the relations in a query ¢ as
to first list the probabilistic relations, followed by DRs.
Replace the stopping condition in line 1 with: if m?” <
1 then &2 « {nf x”[Ri(x1),R4(x2),...R%(xn)]}. In
other words, if a query has maximal one probabilistic
relation, then first join all relations, then project on the
head variables.

Theorem 31 (Algorithm 1 with DRs) Above two modifica-
tions to Algorithm I return one plan for each minimal safe
equivalence class in <P, i.e. it returns a minimum number
of plans to calculate p(q) given schema knowledge about
deterministic relations.

Example 32 (Example 30 continued) For our simple query
q:=R(x),S(x,y),T*(y), MinCuts(q) = {{x},{y}}, while
MinPCuts(g) = {{x}}. Therefore, the modified algorithm
returns Py, as single plan. For g:—R?(x),S(x,y), T4 (y), the
stopping condition is reached (also, MinPCuts(g) = @) and
the algorithm returns Py, as single plan (Fig.10c). |

Note that as before, if the query is safe, then the al-
gorithm produces one single query plan. Furthermore, if
all relations are deterministic, then the returned query plan
consists of one multi-join between all relations followed by
a single projection: 7 ®7” [R(X;),...,R(Xy)]. The transla-
tion into SQL is thus one single standard deterministic SQL
query and the query optimizer is unconstrained to deter-
mine the optimal join order between the relations. There-
fore, our algorithm conservatively extends deterministic
SQOL queries to probabilistic SQL queries in that fully deter-
ministic queries are evaluated exactly as deterministic SQL.

Example 33 (Example 23 continued) First consider relation
U to be deterministic: g1 :— R(x),S(x), T (x,y),U%(y). Fig-
ure 11a shows that p(g) = P[¢*3] = IP[g] and thus the query
is safe. Put differently, there is only one minimal safe equiv-
alence class Ag =P A3z, and our modified algorithm returns
Py, as single minimal plan. Next consider S to be deter-
ministic: g2 :— R(x),8%(x), T (x,y),U(y). The query is now
in an equivalence class with A; (Fig.11b). However, neither
Ap nor A; is hierarchical and thus the query is hard. Also,
Aj is in a minimal safe equivalence class with Ag, the latter
of which has fewer constraints on the joins. Thus, the algo-
rithm returns Py, and Py, as the least constrained plans, one
from each minimum safe equivalence class. |
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Fig. 11 Example 33 (Example 23 continued): The presence of DRs
(either U? or §%) changes the probabilistic dissociation preorder and
thus the minimal plans returned by our algorithm: Py, or Py, and Py;.

We end with a short commend on actual implemen-
tation in SQL: In practice, deterministic relations do not
have a probabilistic attribute, which simplifies the calcula-
tions. Consider a plan P =x”[T9(z),R%(x,z), M(x,y,z,u)].
This query is specified as join with standard semantics
T(xvyvza u,p) . T(Z),R(X, Z),M(X,y,z, M,p) over the input
relations with p as the probability attribute.

5.2 Functional dependencies (FDs)

Knowledge of functional dependencies (FDs), such as keys,
can also restrict the number of necessary minimal plans.
A well known example is the query g:—R(x),S(x,y), T (y)
from Example 30: It becomes safe if we know that § satis-
fies the FD I" : x — y and has a unique safe plan that corre-
sponds to dissociation A,. In other words, we would like our
modified algorithm to take I" into account and to not return
the plan corresponding to dissociation Aj.

Let I" be the set of FDs on Var(g) consisting of the union
of FDs on every atom R; in g. As usual, denote xf the “clo-
sure” of a set of attributes x; under I, i.e. xi+ is the smallest
set of variables that contains X;, and contains z whenever it
contains y and y <— z is a FD in I".!3 Then we show:

Lemma 34 (Dissociation and FDs) Dissociating an atom
Ri(x;) on any variable y € (x;" — x;) does not change the
probability of the query.

In other words, dissociating a table on a variable that is func-
tionally dependent on the existing variables does not change
the probability. This lemma is similar to Lemma 29 for DRs.

B Eg.,ifx={y}and = {x—y,y = z,z = u}, thenx™ = {y,z,u}.

Next, for any query ¢, denote g the query where each atom
Ri(x;) is replaced with R;(x;"), and call g* the closure of g.
Call a query “closed” if ¢* = ¢, and call a dissociation A
closed if g2 is closed, i.e. (x;Uy;)" = (x;Uy;). We can then
further refine our probabilistic dissociation preorder <P by:

A=PA’ & Vi with R; probabilistic : (x;Uy,;)" C (x;Uy})"

In other words, we only need to consider closed dissoci-
ations. As a consequence, using our refined definition of
=P allows us to further reduce the number of minimal safe
equivalence classes. We next state a result by [54] in our
notation:

Proposition 35 (Safety and FDs [54, Prop. IV.5]) A query
q is safe under FDs U iff q* is hierarchical.

This justifies our third modification to Algorithm 1 for
enumerating the minimum number of plans for computing
p(g) over a database that satisfies FDs I" and has DRs:

(3) Ateach recursive call of Algorithm 1, just before line 1,
replace ¢ with its closure ¢*.

Theorem 36 (Algorithm 1 with DRs and FDs) Above
three modifications to Algorithm I return one plan for each
minimal safe equivalence class in <P, i.e. it returns a min-
imum number of plans to calculate p(q) in the presence of
deterministic relations and functional dependencies.

It is easy to see that our modified algorithm returns
one single plan iff the query is safe (taking into account
its structure, DRs and FDs). It is thus a strict generaliza-
tion of all known safe self-join-free conjunctive queries [13,
54]. In particular, we can reformulate the known safe query
dichotomy [13] in our notation very succinctly:

Corollary 37 (Dichotomy) Plq| is in PTIME iff there exists
a dissociation of " that is hierarchical and that dissociates
only deterministic relations. In particular, if all relations are
probabilistic then Pq] is in PTIME iff q* is hierarchical.

Corollary 38 (Dichotomy in plans) Plqg| can be calculated
in PTIME iff our modified algorithm returns one single plan.

To see what Corollary 37 says, assume first that there are
no FDs: Then ¢ is in PTIME iff there exists a hierarchical
dissociation A that dissociates only DRs. If there are FDs,
then we first compute the closure g™ (called “full chase” in
[54]), then apply the same criterion to g*.

Example 39 (Example 33 continued) We illustrate here
how FDs can change the “probabilistic dissociation pre-
order”. Analogously to DRs, we mark variables in the in-
cidence matrix that are dissociated as result of an FD and
do not affect the probability with a dotted circle (o) instead
of a bullet (o). As before, the preorder =” is determined
entirely by full circles (representing dissociated variables
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Fig. 12 Example 39: (Example 33 continued): The presence of FDs
also changes the probabilistic dissociation preorder and thus the mini-
mal plans returned by our algorithm: either P, (as in Fig.11a) or Py,.

in probabilistic relations that are not implied by FDs on the
other variables). However, as before, the correspondence to
plans (as implied by the hierarchy between all variables) is
still determined by all circles.

First consider I" : y — x: Figure 12a shows that this FD
leads to the same preorder as for DR U¢ from Fig. 11a.
Thus, the minimal plan is also Py,. Next consider I" : x — y:
Figure 12b shows that there are now only two equivalence
classes, both of which are safe, and one of which is mini-
mal: Ag =P A| =P Ay =P A4. Among those, only Ay is hier-
archical and is thus the one returned by the algorithm. M

6 Multi-query Optimizations

So far, we enumerate all minimal query plans, then take the
minimum score of those plans in order to calculate the prop-
agation score p(g). In this section, we develop three opti-
mizations that can considerably reduce the necessary calcu-
lations for evaluating all minimal query plans. Notice that
these three optimizations and the previous optimizations us-
ing schema knowledge are orthogonal and can be arbitrarily
combined in the obvious way. We use the following example
to illustrate the first two optimizations:

Example 40 (Multi-query optimizations) Consider the query
q:—R(x,2),S(y,u), T(z),U(u),M(x,y,z,u). Our default is
to evaluate all 6 minimal plans returned by Algorithm 1,
then take the minimum score (shown in Fig. 13a). Fig-
ure 13b and Fig. 13c illustrate the optimized evaluations
after applying Opt. 1, or Opt. 1 and Opt. 2, respectively. W

Recursive algorithm: SP (SinglePlan)

Input: Query ¢(z):—Ri(X1),- -, Run,(Xim,, ), - -- R3, (%)

Output: Single query plan P

if mP <1then 2 « {n{ xP[Ri(x1),R2(x2),...,R% (x,)]} else
if ¢ is disconnected then

Letg=gqi,...,qx be the query components of ¢

foreach g; do HVar(q;) + HVar(q) NVar(g;)

Pxr {Sp(ql)a s 7SP(qk)}

5| | else

6 Let MinPCuts(q) = {yy,-.-,¥,}

7 foreach y; do g} < g; with HVar(g}) < HVar(q)Uy;
?P < min [nﬁ’yl SP(q}),- - ﬂfy/SP(q;-)]

B W 0 =

Algorithm 2 Optimization 1 recursively pushes the min operator
into the leaves and generates one single query plan.

6.1 Opt. 1: One single query plan

Our first optimization creates one single query plan by push-
ing the min-operator down into the leaves. It thus avoids cal-
culations when it is clear that other calculations must have
lower bounds. The idea is simple: Instead of creating one
query subplan for each min-cut y € MinCuts(g) in line 10
of Algorithm 1, the adapted Algorithm 2 takes the minimum
score over those min-cuts, for each tuple of the head vari-
ables in line 7. It thus creates one single query plan. Fig-
ure 13b shows this single plan for our running example.

6.2 Opt. 2: Re-using common subplans

Our second optimization calculates only once, then re-uses
common subplans shared between the minimal plans. Thus,
whereas our first optimization reduces computation by com-
bining plans at their roots, the second optimization stores
and re-uses common results in the branches by re-using
views. The adapted algorithm works as follows: It first tra-
verses the whole single query plan and remembers each
subplan by the atoms used and its head variables in a Hash-
Set. If it sees a subplan twice, it creates a new view for this
subplan, mapping the subplan to a new view definition. The
actual plan then uses these views whenever possible. The or-
der in which the views are created assures that the algorithm
also discovers and exploits nested common subexpressions.
Figure 13c shows the generated views and plans for our run-
ning example: Notice that the main plan and the view V3
both re-use views V; and V>.

6.3 Opt. 3: Deterministic semi-join reduction
The most expensive operations in probabilistic query plans

are the group-bys for the probabilistic project operations.
These are often applied early in the plans to tuples which
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(c) Result from Algorithm 2 plus Opt. 2: re-using common subplans

Fig. 13 Example 40 before and after applying optimizations 1 and 2.

are later pruned and do not contribute to the final query re-
sult. Our third optimization is to first apply a full semi-join
reduction on the input relations before starting the proba-
bilistic evaluation from these reduced input relations.

We like to draw here an important connection to [54],
which introduces the idea of “lazy plans” and shows orders
of magnitude performance improvements for safe plans by
computing confidences not after each join and projection,
but rather at the very end of the plan. We note that our semi-
join reduction serves the same purpose with similar perfor-
mance improvements and also apply for safe queries. The
advantage of semi-join reductions, however, is that we do
not require any modifications to the query engine.

7 Experiments

We are interested in the efficiency (“how fast?”’) and the
quality (“how good?”) of ranking by dissociation as com-
pared to exact probabilistic inference, Monte Carlo simu-
lation (MC), and standard deterministic query evaluation
(“deterministic SQL”). Our experiments, thus, investigate
the following questions: How much can our three opti-
mizations improve dissociation? How fast is dissociation as
compared to exact probabilistic inference, MC, and deter-
ministic query evaluation? How good is the ranking from
dissociation as compared to MC and ranking by lineage
size? What are the most important parameters determining
the ranking quality for each of the three methods?

]

]

la|s p n la|s p n la|s p n
Slo|o Slofo e Slolo
PS o o PS o o PS o o
P o o P o o P e 0 O
() Q(a) (b) Q%(a) (©) Q% (a)

Fig. 14 Parameterized Deterministic SQL query Q(a) over TPC-H.
Incidence matrices for TPC-H query Q(a) and its two minimal hierar-
chical dissociations from either dissociating table S or table P.

Ranking quality. We use mean average precision (MAP)
to evaluate the quality of a ranking by comparing it against
the ranking from exact probabilistic inference as ground
truth (GT). MAP rewards rankings that place relevant items
earlier; the best possible value is 1, and the worst possible
0. We use a variant of “Average Precision at 10” defined as

AP@10 := W Here, P@k is the precision at the kth
answer, i.e., the fraction of top k answers according to GT
that are also in the top k answers returned. Averaging over
several experiments yields MAP [47]. We use a variant of
the analytic method proposed in [48] to calculate AP in the
presence of ties. As baseline for no ranking, we use “ran-
dom average precision” [17], i.e. we assume all tuples have

the same score and are thus tied for the same position.

Exact probabilistic inference. Whenever possible, we
calculate GT rankings with a tool called SampleSearch [32,
33], which also serves to evaluate the cost of exact proba-
bilistic inference. We describe the method of evaluating the
lineage DNF with SampleSearch in [30].

Monte Carlo (MC). We evaluate the MC simulations for
different numbers of samples and write MC(x) for x sam-
ples. For example, AP for MC(10k) is the result of sampling
the individual tuple scores 10000 times from their lineages
and then evaluating AP once over the sampled scores. The
MAP scores together with the standard deviations are then
the average over several repetitions.

Ranking by lineage size. To evaluate the potential of non-
probabilistic methods for ranking answers, we also rank the
answer tuples by decreasing size of their lineages; i.e. num-
ber of clauses in their DNFs. Intuitively, a larger lineage size
indicates that an answer has more “support” and should thus
be more important. Notice that, in contrast to other methods,
we ignore here the weight of support and correlations.

Setup 1. We use the TPC-H DBGEN data generator [72]
to generate a 1GB database to which we add a column P for
each table and store it in PostgreSQL 9.2 [59]. We assign to
each input tuple i a random probability p; uniformly chosen
from the interval [0, p;max], resulting in an expected average
input probability avg[p;] = pimax/2. By using databases with
avg[p;] < 0.5, we can avoid output probabilities close to 1
for queries with very large lineages. We use the following
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intuitive parameterized hard query:
O(a):—S(s,a),PS(s,u),P(u,n),s < $1,n like $2

select distinct s_nationkey from Supplier, Partsupp, Part

where s_suppkey = ps_suppkey and ps_partkey = p_partkey

and s_suppkey <= $1 and p_name like $2
Relations S, PS and P represent tables Supplier, PartSupp and
Part, respectively. Variable a stands for attribute nationkey
(“answer tuple”), s for suppkey, u for partkey (“unit”), and n
for name. The probabilistic version of this query is: “Which
nations (as determined by the attribute nationkey) are most
likely to have suppliers with suppkey < $1 that supply parts
with a name like $2?7” Parameters $1 and $2 allow us to
change the lineage size. Tables Supplier, Partsupp and Part
have 10k, 800k and 200k tuples, respectively. There are 25
different numeric attributes for nationkey and our goal is to
efficiently rank these 25 nations. As baseline for not rank-
ing, we use random average precision for 25 answers, which
leads to MAP@10 ~ 0.220. This query has the following
two minimal query plans (Fig.14):

Ps(a) =n? "“p[ﬂg,u xP [S(g,a),PS(s,u),s < $1],P(g,n),n like $2}
Pp(a) = il P [S(s,a), 7’ xP[PS(s,u),s < $1,P(u,n),n like $2]|

Here, Ps and Pp stand for the plans that dissociate tables Sup-
plier or Part, respectively. We take the minimum of the two
bounds to determine the propagation score for each answer
tuple a. We will also evaluate the speed-up from applying
the following deterministic semi-join reduction (Optimiza-
tion 3) on the input tables and then reusing intermediate
query results across both query plans:

PS*(s,u):—PS(s,u),S(s,a),P(u,n),s < $1,n like $2
P*(u,n):—P(u,n),PS*(s,u)

Setup 2. We compare the runtimes for our three opti-
mizations against evaluation of all plans for k-chain queries
and k-star queries over varying database sizes (data com-
plexities) and varying query sizes (query complexities).
The k-chain queries return many results, whereas the k-star
queries return one tuple, thus representing a Boolean query:

k-chain: q(xo,x¢) :— Ry (x0,x1), Ro (x1,%2), . .., Re (X1, %)
k-star: g(a):—Ry(a,x1),Ra(x2),...,Re(xx),Ro(x1,- .., x%)

We denote the length of the query with k, the number of
tuples per table with n, and the domain size with N. We
use integer values which we uniformly draw from the range
{1,2,...N}. Thus, the parameter N determines the selectiv-
ity and is varied as to keep the answer cardinality constant
around 20-50 for chain queries, or the answer probability
between 0.90 and 0.95 for star queries. For the data com-
plexity experiments, we vary the number of tuples n per ta-
ble between 100 and 10°. For the query complexity exper-
iments, we vary k between 2 and 8 for chain queries. For

these experiments, the optimized (and often extremely long)
SQL statements are “calculated” in JAVA and then sent to
Microsoft SQL server 2012 [49]. To illustrate with numbers,
we have to issue 429 query plans in order to evaluate the 8-
chain query (see Fig.9). Each of these plans joins 8 tables
in a different order. Optimization 1 then merges those plans
together into one truly gigantic single query plan.

7.1 Runtime experiments

Question I When and how much do our three query opti-
mizations speed up query evaluation?

Result 1 Combining plans (Opt. 1) and using intermediate
views (Opt. 2) almost always speeds up query times. The
semi-join reduction (Opt. 3) slows down queries with high
selectivities, but considerably speeds up queries with small
selectivities, bringing probabilistic query evaluation close
to deterministic evaluation.

Setup 2. Figure 15a to Fig. 15d show the results for in-
creasing database sizes, and Fig. 16 for increasing query
sizes. For example, Fig. 15b shows the performance of com-
puting a 7-chain query which has 132 hierarchical dissoci-
ations. Evaluating each of these queries separately takes a
long time, while our optimization techniques bring evalua-
tion time close to deterministic query evaluation. Especially
on larger databases, where the running time is I/O bound, the
penalty of the probabilistic inference is only a factor of 2-3
in this example. Notice here the trade-off between optimiza-
tion 1,2 and optimization 1,2,3: Optimization 3 applies a full
semi-join reduction on the input relations before starting the
probabilistic plan evaluation from these reduced input rela-
tions. This operation imposes a rather large constant over-
head, both at the query optimizer and at query execution.
For larger databases (but constant selectivity), this overhead
is amortized. Without self-join reductions, opimization 1,2
would not execute on the 6-star query with 720 minimal
query plans at all (“The query processor ran out of internal
resources and could not produce a query plan”). In practice,
this suggests that dissociation allows us a large space of op-
timizations depending on the query and particular database
that can conservatively extend the space of optimizations
performed today in deterministic query optimizers.

Setup 1. Figure 15e to Fig. 15g compare the running
times for dissociation with two minimal query plans (“Diss”),
dissociation with semi-join reduction (“Diss + Opt3”), ex-
act probabilistic inference (“SampleSearch”), Monte Carlo
with 1000 samples (“MC(1k)”), retrieving the lineage only
(“Lineage query”), and deterministic query evaluation with-
out ranking (“Standard SQL”). As experimental platform,
we use PostgreSQL 9.2 on a 2.5 Ghz Intel Core i5 with
16G of main memory. We run each query 5 times and take
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Fig. 15 Timing results: (a)-(d) For increasing database sizes and constant cardinalities, our optimizations approach deterministic SQL performance.
(e)-(h) For the TPC-H query, the best evaluation for dissociation is within a factor of 6 of that for deterministic query evaluation.
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Fig. 16 While the query complexity is exponential (number of min-
imal plans are shown on the right side), our optimizations can even
evaluate a very large number of minimal plans (here shown up to 429
for a 8-chain query and 5040 (!) for a 7-star query).

the average execution time. We fixed $2 to '%red%green%’,
"%red%' or ‘%' and varied $1 € {500, 1000, ...10k}. Fig-
ure 15h combines all three previous plots and shows the
times as function of the maximum lineage size (i.e. the size
of the lineage for the tuple with the maximum lineage) of a
query. We see here again that the semi-join reduction speeds
up evaluation considerably for small lineage sizes (Fig. 15¢
shows speedups of up to 36). For large lineages, however,
the semi-join reduction is an unnecessary overhead, as most
tuples are participating in the join anyway (Fig. 15f shows
overhead of up to 2).

Question 2 How does dissociation compare against other
probabilistic methods and standard query evaluation?

Result 2 The best evaluation strategy for dissociation takes
only a small overhead over standard SQL evaluation and
is considerably faster than other probabilistic methods for
large lineages.

Figure 15e to Fig. 15h show that SampleSearch does not
scale to larger lineages as the performance of exact proba-
bilistic inference depends on the tree-width of the Boolean
lineage formula, which generally increases with the size
of the data. In contrast, dissociation is independent of the
treewidth. For example, SampleSearch needed 780 sec for
calculating the ground truth for a query with max[lin] = 5.9k
for which dissociation took 3.0 sec, and MC(1k) took 42
sec for a query with max|[lin] = 4.2k for which dissociation
took 2.4 sec. Dissociation takes only 10.5 sec for our largest
query $2 =%’ and $1 = 10k with max[lin] = 35k. Retrieving
the lineage for that query alone takes 5.8 sec, which implies
that any probabilistic method that evaluates the probabilities
outside of the database engine needs to issue this query to
retrieve the DNF for each answer and would thus have to
evaluate lineages of sizes around 35k in only 4.7 (= 10.5 -
5.8) sec to be faster than dissociation.'*

14 The time needed for the lineage query thus serves as minimum
benchmark for any probabilistic approximation. The reported times for
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$2 | %red%green% %red% Yored% % %
$1 | 500 10000 500 10000 500 10000
max|[lineage size] 5 48 131 1,941 2320 35040
total lineage size 42 1004 2218 44152 40000 800000
SampleSearch [sec] | 0.43 0.66 123 100.71 75.47 —
MC(K) [sec] | 0.13 0.29 0.86 26.87 22.75

Dissociation & SJ [sec] | 0.14 0.16  0.88 2.11 2.11 19.14

Dissociation [sec] | 1.10 5.76 1.39 6.83 2.00 10.52
Lineage SQL [sec] | 0.12 0.11 0.43 1.19 0.86 5.80
Deterministic SQL [sec] | 0.12 0.13 042 0.73 0.61 1.93

Fig. 17 Overview timing results TPC-H.

Further optimizations.: We found that materialized views
performed better than just views. For example, the query
$1 = 500 and $2 = '%red%green%’ takes over 3 sec with
common views instead of our reported 0.88 sec for materi-
alized views. We also found that using standard database-
provided aggregates (which requires us to use the logarithm
for products) instead of user-defined aggregates notably
speeds up query evaluation for large lineages. Concretely,
instead of every occurrence of 'ior(T.P) as P’ in our queries,
we used the following nested PostgreSQL expression: 'case
when (sum(case T.P when 1 then -746 else In(1-T.P) end)) < -745
then 1 else l-exp(sum(case T.P when 1 then -746 else In(1-T.P)
end)) end as P'. The outer case statement prevents errors for
deterministic tuples (i.e. with p; = 1), and the inner case
statement prevents errors due to underflows. As illustration
of the improvements, the query $1 = 10k and $2 ='%’ would
take 42.2 sec instead of 20.7 with semi-join reduction, and
32.5 sec instead of 11.3 for the two individual query plans
when using a UDF instead of the above expression. We also
found that removing the outer case statement would reduce
the time by 5% (which could be used if there were no de-
terministic tuples in a table), and removing the inner case
by another 1% (which could be used if there was no risk
of underflows). An important by-product of using standard
database-defined aggregates is that dissociated queries (and
their optimized versions) can be executed with the help of
any standard relational database, even cloud-based data-
bases that commonly do not allow users to define their own
UDAs, e.g. Microsoft SQL Azure. To our best knowledge,
this is the currently only technique to approximate rank-
ings of probabilistic queries without any modifications to
the database engine nor performing any calculations out-
side the database.

7.2 Ranking experiments

For the following experiments, we are limited to those query
parameters $1 and $2 for which we can get the ground truth
(and results from MC) in acceptable time. We systematically
vary pimax between 0.1 and 1 (and thus avg[p;] between

SampleSearch and MC are the sum of time for retrieving the lineage
plus the actual calculations, without the time for reading and writing
the input and output files for SampleSearch.

0.05 and 0.5) and evaluate the rankings several times over
randomly assigned input tuple probabilities. We only keep
data points (i.e. results of individual ranking experiments)
for which the output probabilities are not too close to 1 to be
meaningful (max[p,] < 0.999999).

Question 3 How does ranking quality compare for our
three ranking methods and which are the most important
factors that determine the quality for each method?

Result 3 Dissociation performs better than MC which per-
forms better than ranking by lineage size.

Figure 18a shows averaged results of our probabilistic
methods for $2 = '%red%green%’.!> Shaded areas indicate
standard deviations and the x-axis shows varying numbers
of MC samples. We only used those data points for which
avg[p,| of the top 10 ranked tuples is between 0.1 and 0.9
according to ground truth (= 6k data points for dissociation
and lineage, ~ 60k data points for MC, as we repeated each
MC simulation 10 times), as this is the best regime for MC,
according to Result 4. Figure 19 gives an overview of the
performance of each method, depending on the most impor-
tant parameters which we will explain next.

We also evaluated quality for dissociation and ranking
by lineage for more queries by choosing parameter values
for $2 from a set of 28 strings, such as '%r%g%r%a%n%d%’
and '%re%re%'. The average MAP over all 28 choices for pa-
rameters $2 is 0.997 for ranking by dissociation and 0.520
for ranking by lineage size (= 100k data points). Most of
those queries have too large of a lineage to evaluate MC.
Note that ranking by lineage always returns the same rank-
ing for given parameters $1 and $2, but the GT ranking
would change with different input probabilities.

Result 4 Ranking quality of MC increases with the number
of samples and decreases when the average probability of
the answer tuples avg[p,| is close 10 0 or 1.

Figure 18b shows the AP as a function of avg[p,] of
the top 10 ranked tuples according to ground truth by log-
arithmic scaling of the x-axis (each point in the plot aver-
ages AP over ~ 450 experiments for dissociation and lin-
eage and over ~ 4.5k experiments for MC). We see that MC
performs increasingly poor for ranking answer tuples with
probabilities close to 0 or 1 and even approach the quality
of random ranking (MAP@10 = 0.22). This is so because,
for these parameters, the probabilities of the top 10 answers
are very close, and MC needs many iterations to distinguish
them. Therefore, MC performs increasingly poorly for in-
creasing size of lineage but fixed average input probability
avg[p;] &~ 0.5, as the average answer probabilities avg[p,]
will be close to 1. In order not to “bias against our com-

15 Results for MC with other parameters of $2 are similar. However,
the evaluation time for the experiments becomes quickly infeasible.
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Fig. 18 Ranking experiments on TPC-H: Assumptions for from each plot and conclusions are described below each respective result in the text.

petitor,” we compared against MC in its best regime with
0.1 < avg[p,] < 0.9 in Fig. 18a.

Result 5 Ranking by lineage size has good quality only
when all input tuples have the same probability.

Figure 18c shows that ranking by lineage is good only
when all tuples in the database have the same probability (la-
beled by p; = const as compared to avg[p;] = const). This is
a consequence of the output probabilities depending mostly
on the size of the lineages if all probabilities are equal. De-
pendence on other parameters, such as overall lineage size
and magnitude of input probabilities (here shown for p;
0.1 and p; = 0.5), seem to matter only slightly.

Result 6 The quality of dissociation decreases with the av-
erage number of dissociations per tuple avg[d] and with the
average input probabilities avg|p;]. Dissociation performs
very well and notably better then MC(10k) if either avg|d|
or avg[p;] are small.

Each answer tuple a gets its score p, from one of two
query plans Ps and Pp that dissociate tuples in tables S and
P, respectively. For example, if the lineage size for tuple a is
100 and the lineage contains 20 unique suppliers from table
S and 50 unique parts from table P, then Ps dissociates each
tuple from S into 5 tuples and Pp each tuple from P into 2
tuples, on average. Most often, Pp will then give the better
bounds as it has fewer average dissociations. Let avg[d] be

the mean number of dissociations for each tuple in the dis-
sociated table of its respective optimal query plan, averaged
across all top 10 ranked answer tuples. For all our queries
(even those with $1 = 10k and $2 = '%’), avg|d] stays be-
low 1.1 as, for each tuple, there is usually one plan that
dissociates few variables. In order to understand the impact
of higher numbers of dissociations (increasing avg[d]), we
also measured AP for the ranking for each query plan in-
dividually. Hence, for each choice of random parameters,
we record two new data points — one for ranking all an-
swer tuples by using only Ps and one for using only Pp —
together with the values of avg[d] in the respective table
that gets dissociated. This allows us to draw conclusions
for a larger set of parameters. Figure 18d plots MAP val-
ues as a function of avg[d] of the top 10 ranked tuples on
the horizontal axis, and various values of avg[p;] (avg[p;]
0.05,0.10,...,0.5). Each plotted point averages over at least
10 data points (some have 10, other several 1000s). Dashed
lines show a fitted parameterized curve to the data points on
avg[p;] and avg|d]. The figure also shows the standard devia-
tions as shaded areas for avg[p;] = 0.5. We see that the qual-
ity is very dependent on avg[p;], as predicted by Prop. 27.

Figure 18e maps the trade-off between dissociation and
MC for the two important parameters for the quality of dis-
sociation (avg|d] and avg[p;]) and the number of samples
for MC. For example, MC(1k) gives a better expected rank-
ing than dissociation only for the small area above the thick
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Dissociation avg[p;] avgld] | MAP@10  stdv
0.05 5 0.997 0.011

0.25 2 0.967 0.036

0.50 1.1 0.968 0.035

0.50 2 0.894 0.061

0.50 5 0.833 0.074

MC avg[p,) trials | MAP@10  stdv
0.1-0.9 10k 0.964 0.040

0.1-0.9 3k 0.936 0.055

0.1-0.9 1k 0.894 0.074

~0.99 10k 0.945 0.046

~0.99 3k 0.897 0.059

~0.99 1k 0.827 0.076

Lineage size Di MAP@10  stdv
random 0.520 0.130

all equal 0.949 0.033

Random ranking MAP@10  stdv
0.220 0.112

Fig. 19 Quality results TPC-H: Our three methods, their respectively
most important parameters, and their average ranking qualities.

red curve marked MC(1k). For MC, we used the test results
from Fig. 18a; i.e. assuming 0.1 < avg[p,] < 0.9 for MC.
Also recall that for large lineages, having an input proba-
bility with avg[p;] = 0.5 will often lead to answer probabil-
ities close to 1 for which ranking is not possible anymore
(recall Fig. 18c). Thus, for large lineages, we need small in-
put probabilities to have meaningful interpretations. And for
small input probabilities, dissociation considerably outper-
forms any other method.

Notice that one should not confuse (i) the AP score of
each of the two plans taken separately with (ii) the AP score
of the min between the two plans; the ranking produced by
the latter can be much better. For example, one experiment
($1 = 10k, and $2 = "%re%bl%re%’) with maximal lineage
size 106 has avg[d] equal 1.053 and 1.099 for Pp and P,
respectively. None of the two plans gets perfect AP@10.
However, using the minimum score of both plans for each
tuple individually has avg[d] = 1.049 and perfect AP@10 =
1. We also evaluated MAP for ranking all tuples by the plan
that has the minimal mean avg[d] as compared to ranking by
the minimum scores for each tuple individually. MAP over
all 100k data points would then drop from 0.997 (Fig. 18g)
to only 0.995, which shows the value of taking the minimum
score for each tuple individually.

Question 4 How much would the ranking change accord-
ing to exact probabilistic inference if we scale down all in-
put tuples?

Result 7 If the probabilities of all input tuples are already
small, then scaling them further down does not affect the
ranking much.

This result is a more general statement about the applica-
bility of ranking over probabilistic databases, and motivated
by the observation that dissociation works surprisingly well
for small input probabilities. Here, we repeatedly evaluated
the exact ranking for 7 different parameterized queries over
randomly generated databases with one query plan that has

avg[d] = 3, for two conditions: first on a probabilistic data-
base with avg[p;] input probabilities (we defined the result-
ing ranking as GT); then again on a scaled version, where
all input probabilities in the database are multiplied by the
same scaling factor f € (0,1). We then compared the new
ranking against GT. Figure 18f shows that if all input prob-
abilities are already small (and dissociation already works
well), then scaling has little effect on the ranking. However,
for avg[p;] = 0.5 (and thus many tuples with p; close to 1),
we have a few tuples with p; close to 1. These tuples are very
influential for the final ranking, but their relative influence
decreases if scaled down even slightly. Also note that even
for avg[p;] = 0.5, scaling a database by a factor f = 0.01
instead of f = (0.2 does not make a big difference. However,
the quality remains well above ranking by lineage size (!).
This suggests that the difference between ranking by lineage
size (MAP =~ 0.529) and the ranking on a scaled database
for f — 0 (MAP ~ 0.879) can be attributed to the relative
weights of the input tuples (we thus refer to this as “rank-
ing by relative input weights”). The remaining difference in
quality then comes from the actual probabilities assigned
to each tuple. Using MAP ~ 0.220 as baseline for random
ranking, 38% of the ranking quality can be found by the lin-
eage size alone vs. 85% by the lineage size plus the relative
weights of input tuples. The remaining 15% come from the
actual probabilities (Fig. 18g). While these exact numbers
only hold for this particular choice of queries and while the
implicit assumption that the quality of ranking were a linear
scale of MA is debatable, we think that this “thought experi-
ment” provides an interesting way to think about “the value”
of exact probabilistic inference.

Question 5 Does the expected ranking quality of dissocia-
tion decrease to random ranking for increasing fractions of
dissociation (just like MC does for decreasing number of
samples)?

Result 8 The expected performance of dissociation for in-
creasing avg[d| for a particular query is lower bounded by
the quality of ranking by relative input weights.

Here, we use a similar setup as before and now com-
pare various rankings against each other: SampleSearch on
the original database (“GT”); SampleSearch on the scaled
database (“Scaled GT”); dissociation on the scaled database
(“Scaled Diss”); and ranking by lineage size (which is un-
affected by scaling). From Fig. 18h, we see that the qual-
ity of Scaled Diss w.r.t. Scaled GT — 1 for f — 0 since
dissociation works increasingly well for small avg[p;] (re-
call Prop. 27). We also see that Scaled Diss w.r.t. GT de-
creases towards Scaled GT w.r.t. GT for f — 0. Since disso-
ciation can always reproduce the ranking quality of ranking
by relative input weights by first downscaling the database
(though losing information about the actual probabilities)
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the expected quality of dissociation for smaller scales does
not decrease to random ranking, but rather to ranking by rel-
ative weights. Note this result only holds for the expected
MAP; any particular ranking can still be very much off.

8 Related Work

Probabilistic databases. Query evaluation over probabilistic
databases corresponds to solving the weighted model count-
ing problem, and current approaches can be classified into
three categories (Fig.20): (1) incomplete approaches iden-
tify tractable cases either at the query-level [13,14,24,54]
or the data-level [53,65,69] and ignore the rest; (2) exact
approaches [2,43,68] are based on variants and extensions
of a complete search based on the DPLL procedure [35] and
work well for queries over databases with simple lineage
expressions, but perform poorly on complex lineage expres-
sions; and (3) approximate approaches usually first com-
pute the lineage of the query on the given database to ob-
tain a Boolean formula, then either apply variants of Monte
Carlo sampling methods [42,45,46,63], or approximate the
number of models of the Boolean lineage expression [23,
55,64]. A recent approach combines safe plans with Monte
Carlo simulation [38]. An approximate “anytime method”
based on DPLL search is developed in [22] that stops the full
search whenever a given confidence bound can be guaran-
teed. This approach allows evaluating a query to a precision
determined by a given computational budget. A variant of
this method with confidence bounds over first-order lineage
formulas is developed in [20]. Our work can be seen as a
generalization of some of of these techniques: our algorithm
returns the exact probability if the query is safe [13,55] or
data-safe [43] and gives a unique and well-defined value
for every query. This property can be useful when learning
the probabilities from queries. In addition, our method can
be used together with any existing relational database with-
out any modifications to the engine. On the other side, our
query-centric approach currently works only for self-join-
free conjunctive queries and does not allow an iterative re-
finement or a trade-off between computational complexity
and precision for applications where the exact probability
scores are required.

Lifted and approximate inference. Lifted inference was
introduced in the Al literature as an approach to probabilistic
inference that uses the first-order formula to exploit symme-
tries at the grounded level [58]. This research evolved in-
dependently of that on probabilistic databases, and the two
have many analogies: A formula is called domain liftable iff
its data complexity is in polynomial time [41], which is the
same as a safe query in probabilistic databases, and the FO-
d-DNNF circuits described in [76] correspond to the safe
plans discussed in this paper. See [75] for a recent discus-
sion on the similarities and differences.

O Q
& L&
SFE L
S &

Safe query plans [13,14] o o ° }(1) incomplete

Read-once formulas [53,54,69] | e .
Exact prob. inference [43] | @ o } () slow

Monte Carlo [42,46,63] | e }(3) spproximate

Approx. mod. count. [20,22,55] | e e

Fig. 20 Current techniques for evaluating probabilistic queries are ei-
ther (1) incomplete and work only on a subset of queries and data in-
stances, or (2) always work but may become arbitrarily slow on general
data instances, or (3) only approximate the actual score.

Representing correlations. The most popular approach
to represent correlations between tuples in a probabilistic
database is by a Markov Logic network (MLN) which is a
set of soft constraints [18]. Quite remarkably, all complex
correlations introduced by an MLN can be rewritten into a
query over a tuple-independent probabilistic database [34,
74,44]. In combination with such rewritings, our techniques
can be also applied to MLNs if their rewritings results in
conjunctive queries without self-joins.

Dissociation. In a graph-based scenario [17] that basi-
cally corresponds to our abstracted Example 1, we observed
that propagation-based methods often perform as well as
reliability-based methods for predicting protein functions
from integrated uncertain biological databases. We then first
introduced dissociation in the workshop paper [28] as an
attempt to generalize the success of propagation methods
from graphs to hypergraphs. [30] provides a general frame-
work for approximating the probability of Boolean func-
tions with both upper and lower bounds. We also illustrate
how upper bounds to hard queries can be complemented by
lower bounds (those lower bounds, however are not as tight,
which is why we only use upper bounds for ranking in this
paper). Dissociation is closely related to a number of recent
approaches in the graphical model and constraint satisfac-
tion literature which approximate an intractable problem
with a tractable relaxed version after treating multiple oc-
currences of variables or nodes as independent or ignoring
some equivalence constraints. Those approaches are usu-
ally referred to as relaxation [73] (see [30] for a detailed
discussion on similarities and differences).

9 Conclusions and Outlook

This paper developed a new scoring function called propa-
gation for ranking query results over probabilistic databases.
Our semantics is based on a sound and principled theory of
query dissociation, and can be evaluated efficiently in an off-
the-shelf relational database engine for any type of self-join-
[free conjunctive query. We proved that the propagation score
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is an upper bound to query reliability, that both scores coin-
cide for safe queries, and that propagation naturally extends
the case of safe queries to unsafe queries. We further showed
that the scores for chain queries before and after dissociation
correspond to two well-known scoring functions on graphs,
namely network reliability (which is #P-hard) and propaga-
tion (which is related to PageRank and in PTIME), and that
our dissociation scores are thus generalizations of the prop-
agation score from graphs to hypergraphs. We calculated
the propagation score by evaluating a fixed number of safe
queries, each providing an upper bound on the true probabil-
ity, then taking their minimum. We provided algorithms that
takes into account schema information to enumerate only
the minimal necessary plans among all possible plans, and
prove our method to be a strict generalization of all known
results of PTIME self-join free conjunctive queries. We de-
scribed relational query optimization techniques that allow
us to evaluate all minimal queries in a single query and very
fast. Our evaluations show that the optimizations of our ap-
proach bring probabilistic query evaluation close to standard
query evaluation while providing high ranking quality. In
future work, we plan to generalize the approach to full first-
order queries.
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A Nomenclature

R,S,T,.U relational tables

iy Siyti, Ui tuple identifiers

A,B,C attribute names

a,...,f,s,t constants

st source and target nodes

t a tuple

X, 9,2 variables

q query

a; atom

at(x;) set of atoms that contain variable x;

Var(a;) set of variables of a query g or atom a;
HVar(P) set of head variables of a query g or a plan P
EVar(q) set of existential variables: EVar(q) =Var(q) —HVar(q)

MinCuts(g) set of minimal subsets of EVar(g) that disconnects ¢
MinPCuts(q) set of minimal p-cuts

SepVar(g) existential variables that appear in all atoms
PSepVar(g) separator variables that appear in all probabilistic atoms
p probability function

r(q) reliability score of g

p(q) propagation score of g

o,y Boolean expression

P[] probability of a Boolean expression

m number of subgoals

D database

ADom, active domain of variable x

A collection of sets of variables A = (y,...,¥,,)

Ry dissociated relation R;(x;) on variables y;: R;(X;,y;)
7 dissociated query

P query plan

& set of plans

xP[...] probabilistic join operator in prefix notation

ng, 7wt y probabilistic project operators: onto X, or project y away
score(P) score of a query plan

JVar join variables for a join operator

X unordered set or ordered tuple

[a/x] substitute value a for variable x

B Section 2.1: Proof Safety

Proof (Prop. 9: Safety) (1) is proven in [13]; we prove here only (2):
(a): Hierarchical query = unique safe plan: We prove the follow-
ing statement by induction: Let x = SepVar(q) be the set of separator
variables for a query g(x), i.e. every variable in X occurs in every atom
in ¢; then g(x) admits a unique safe plan either as x” [Pl e ,Pk] or as
©f P: Define a graph where the nodes are the atoms of ¢ and any two
nodes are connected by an edge iff they share an existential variable,
i.e. a variable not occurring in x. If the graph has k query components
represented by the queries g, ..., gk, then g = x? [ql e ,qk} , and we
apply induction hypothesis to each g;(x). If the graph has a single query
component with additional variables y # 0, then g = 7t{ g(x,y), and we
apply induction hypothesis to ¢(x,y). Finally, if the graph has a single
component and only the variables x, then g has a single atom, hence
q = R(x).
(b): Safe plan = hierarchical query: We construct inductively
q from its derivation by noting that x?” [Pl,...,Pk] =q1 N... \gqy,
where q1,...,q are the hierarchical queries obtained inductively from
Pi,...,P, and if P = 3x.q, where g is obtained inductively from P. Tt
is easy to check inductively that all resulting queries are hierarchical.
0

C Section 3.2: Proof Proposition 18: Connection to
networks

Proof (Prop. 18: connection to networks) Notice that we use digraphs
to enforce that each path from s to 7 has exactly k edges.

(a) We first establish the connection between graph reliability and
query reliability r(q) = P[g]. The first claim is obvious: a possible
world contains a path from s to ¢ iff the query is true on that world: The
chain query is true exactly if, in a randomly chosen world, there is a
set of tuples of each relation that forms at least one output tuple. This
corresponds exactly to the graph reliability, i.e. the probability that the
nodes s and ¢ are connected in a randomly chosen subgraph.

(b) We next establish the connection between propagation in net-
works and dissociation in databases. Consider the unique safe query
plan for the dissociated query g*:

P=n" w?[R)(xi,t), 70 %P [RE (K1) -
X ] X
al e, %P (R (5,%0.0), R (xp.)] -]

This plan is evaluated from the inside out. The table R; is dissoci-
ated on all variables except x», i.e. each consequent project on pre-
vious join results from R; will treat each tuple as independent. The
independent project corresponds exactly to the way propagation is cal-
culated at each node iteratively from the probabilities of its parents and
incoming edges. We prove this by induction on k: When k = 1 then
R contains a single edge (s,#), whose probability is equal to r(g), to
r(g#), and to the network propagation score. To prove for k > 1, let
Vi ={ai,...,a,} be the nodes in the before-last partition (the last par-
tition is Vi1 = {t}).

Vi Vit

We defined in Example 1 the network propagation score to be:
p(1)=Q@p(a):pi
i

where p; is the probability of the edge (a;,7). On the other hand, the
reliability of the dissociated query is given by the following formula
which represents a probabilistic join with Ry (x,7), followed by a prob-
abilistic projection on the variable x;, and where an expression [a/x]
stands for substitution of a variable x by a constant a:

r(q®) = @Qr(q" [ai/x])

i

= ®F(R1 (8, X2 k1] @) -+ 5 Rt (a1, 1)) - r(Re(ai,1))

:®P(ﬂi)'17i O

Example 41 (Propagation in 5-partite digraphs) We illustrate here
with a concrete example a number of correspondences (see Fig.22),
in particular the correspondences between (1) the reliability of a k+ 1-
partite digraph and the probability of a conjunctive k-chain query, and
between (2) the propagation score of a k+ 1-partite digraph as defined
in Example 1 and the reliability of a dissociated k + 1-partite digraph.

For correspondence (1), consider the graph G in Fig.21a: The re-
liability score r(t) (i.e. the two-terminal network reliability between
source node s and target node ¢) corresponds to the query reliabil-
ity of 4-chain query q:—R;(s,x),R2(x,y),R3(y,z),Ra(z,t) (shown in



Dissociation and Propagation for Approximate Lifted Inference with Standard Relational Database Management Systems 27

b d
(e) G2

RI|EA Ry

AB R3BC R4CE
pils a p3la

a

b

B

c pelce polet
d pilde puol|ft
d df

p2|s b )21
pPs

RUINEABC RVIABC RyJBC RCE
pilsace pilace pglce polet
pilsade palade pilde prolft
p2lsbde ps|bde pgld
plsbdf psibdf

(h) DA
RY|EAB RPJABC RyjBC RV BCE
pils ac p3lace pglce polcet
pils ad palade prjlde poldet
pals bd df poldft

ps |bde pg
ps|bdf
(i) D*

Fig. 21 Example 41. The propagation score p(t) of graph G is identi-
cal to both the reliability score r(t) and the propagation score p(t) of
graph G1, that has nodes a, b, and d dissociated. The remaining corre-
spondences are explained in the text.

Fig.21a by its incidence matrix) over the database D of Fig.21g. No-
tice how each tuple in D corresponds to one edge in G and has the
same probability.

For correspondence (2), consider the graph G in Fig. 21c, that
results from G after dissociating nodes a, b, and d. It is a serial-
parallel graph and its reliability score can easily be calculated as
r(t) = (p1p3ps ® (p1pa @ p2ps)p7)p9 ® papspspio- This score is
also identical to the propagation score p(¢) in both G and G;.

For other correspondences, notice that the reliability score of
graph G corresponds to the probability of the dissociated query ¢!
from Fig.21d over the database D41 from Fig.21h.

Further notice that ¢ from Fig. 21f is yet another dissociated
query for which the probability over database D42 from from Fig.21i
corresponds to the reliability score r(¢) of graph G,. Yet there is no
intuitive interpretation of a propagation score over the same graph G.

Graphs Queries
1
G:r(t) @O Plq]
ﬂ choice of
dissociation
choice of choice of
direction G,:r( P[qu] query plan
(2
G:p(1) score(PAY)

Fig. 22 Example 41. Various correspondences between graphs and
queries, and between reliability and propagation scores.

D Section 3.3: Proof Partial dissociation order

Proof (Theorem 20: Partial dissociation order) We already know that
the following direction holds:

A=A = VD:Plg*] > Plg”]

i.e. whenever two dissociations are comparable, then we know which
has a higher reliability scores on every database D. This follows from
Theorem 11 and the observation that there is a one-to-one correspon-
dence between a query dissociations and a positive DNF dissociation.
Concretely, at the level of its lineage expression, a query dissociation
is a dissociation of a k-partite DNF.

We next prove the other direction:

A=A < VD: Pl > Pl

i.e. whenever P[¢2] > P[¢4"] holds for two dissociations over any data-
base D, then A = A’ in the partial dissociation order. In other words,
for any two dissociations A and A’ of a query ¢ that are incomparable,
ie. A ¥ A’ and A £ A’, there exist two databases so that the dissoci-
ated probability of either dissociation becomes bigger. We prove this
by showing the contrapositive

A# A = 3D: Pl < Plg*]

i.e. for any two dissociations A and A’ of g, with A # A’, there exists
a database so that P[g%] < P[¢2']. We will achieve this by constructing
a database D so that P[g2] = P[g], but P[g] > P[g]: Since A # A/,
there must exist one variable x; € y; that is dissociated in relation R;
of A’ which is not dissociated in A. W.lo.g. let x; € Var(g) be this
variable, and R; be the relation. W.1.0.g. consider the active domain A
of the database to be {a,b}. Then construct the following database D:
1. For each relation R; # R; with x| ¢ Var(R;), insert one determin-
istic tuple (p = 1) with "a’ as value for each attribute x; € Var(R;):
Ri(a,a,...,a),p=1
2. For each relation R; # R; with x; € Var(R;), insert two determin-
istic tuples (p = 1) with *a’ as value for each attribute x; # x;, and
either ’a’ or ’b’ as value for attribute x;:

c,a),p=1
c,a),p=1

3. For relation Ry with x; & Var(R;), insert one uncertain tuple (p =
0.5) with ’a’ as value for each attribute:

Rl(a7a7"'7a)7p:0'5

Then for every dissociation A for which x; ¢ y,: P[g*] = P[q] =
0.5. This follows from two facts: (i) certain tuples that get dissociated
do not change the query probability; (ii) the only probabilistic tuple in
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R, only gets dissociated if the dissociation includes x| since all other
variables only include one single value in the active domain. On the
other hand, for every dissociation A’ for which x; € y,: PlgA'] =0.75 >
PP[g]. Hence, we have shown that for D: P[¢?] < IP[qA/]. O

E Section 4.1: Proof Hierarchical dissociation

Proof (Theorem 22: Hierarchical dissociation) Let P = f(A) be the
plan corresponding to a hierarchical dissociation A, and let A = g(P)
be the hierarchical dissociation corresponding to a plan P. To prove the
isomorphism, we have to show both directions:

(a) g(f(A)) = A: Consider a hierarchical dissociation ¢* and de-
note its corresponding unique safe plan P4. This plan uses dissociated
relations, hence each relation R (x;,y;) has extraneous variables y;. If
we drop all variables y; from the relations, then this transforms P, into
a regular (unsafe) plan P for ¢. If we now consider all those variables
y; that we have thus dropped from a relation R;, then these are exactly
those variables that are added by recursively adding all existential vari-
ables JVar — HVar(P;) for each join operator.

(b) f(g(P)) = P: Consider a possibly unsafe plan P for ¢ and
recursively dissociate each relation R; occurring in a subplan P; of
a join operation x” [Pl,,..,Pk] on the missing existential variables
JVar —EVar(P;). Then this defines a unique hierarchical dissociation
A of q. Now consider the unique safe plan for g2. Since the safe plan
Py is the only plan for which all subplans share the same head vari-
ables, it must be the same plan as the original unsafe plan for g. O

F Section 4.2: Proof Algorithm 1

Proof (Theorem 25: Algorithm 1) First, recall from the proof of The-
orem 22 that we go from a plan P to a hierarchical dissociation by
recursively dissociating each relation R; occurring in a subplan P; of
a join operation x” [Pl,...,Pk] on the missing existential variables
JVar —HVar(P;). Hence, in a project plan P = 7, ', all relations oc-
curring in P’ either already contain or are dissociated on each variable
in x. This is since x are the join variables if P’ is a join plan, and it
holds trivially if P’ is a single relation.

(1) Soundness: We show that every plan produced by Algorithm 1
corresponds to a minimal hierarchical dissociation, i.e. it is not “dom-
inated” by (that means has always bigger or equal probably than) any
other plan. We show this by induction on the set of relations in a plan.
At each step, any query must either project or join. Joins are only pos-
sible if the join variables are identical to the head variables of the plan,
hence if the subplans share no existential variables. If at a step, there are
disconnected components, then all minimal plans need to join on those
components (as any project on a set of variables is clearly dominated
by a join), then project on those variables only in the component that
contains this set. If the relations are connected, then each plan needs to
project on variables so that the query becomes disconnected. We need
to show that projecting on a minimal set of variables that disconnects
the query cannot be dominated by any other hierarchical dissociation.
This follows immediately, as any projection on a subset does not dis-
connect the query, and every projection on a superset is dominated, and
any overlapping set of variables cannot dominate this dissociation.

(2) Completeness: We show that Algorithm 1 returns a plan for
each minimal hierarchical dissociation. We again show this by induc-
tion on the set of relations in a plan. Recall from before that if a query
is disconnected, then the minimal query plan needs to join all com-
ponents and we only need to focus on the case when the query is not
disconnected. We need to consider all possible subsets of the variables
that disconnect the query. We have shown that only those can be mini-
mal that are not supersets of variables that alone disconnect. Since the

algorithm iterates over all minimal subsets that disconnect the query, it
is complete. ]

G Section 4.3: Proof Small probabilities

In the following, we write &~ ([n]) for the set of subsets of the pow-
erset & ([n]) of cardinality bigger or equal to k.

Lemma 42 (DNF polynomial) Let ¢(x) be a positive minimal k-
uniform DNF of size m containing n total variables. Then the multilin-
ear polynomial for ¢ (X) is

Eo@ =Y [[rt ¥ «®]]n

jSiice;  sedn () ies

In other words, all of the terms of the multilinear polynomial for
¢ are of order bigger or equal to k. Furthermore, most are of order
> k except for Z;-”:iniecj pi, which corresponds to summing up the
probabilities of each conjunct.

Proof (Lemma 42) Applying the inclusion-exclusion principle to the
event probability for a positive DNF leads to:

k
P[Acjl 2)

1<ji<..<jg<m - j=1

Lemma 42 then follows immediately by noting that any conjunction of
terms c¢;, Acj, needs to consist of at least k+ 1 factors. This follows
from the fact that any two terms c;, # cj, need to have at least one
different variable. For example, x| x2x3 AX1X2X4 = X X2X3X4. 0O

Proof (Prop. 27: Small probabilities) The lineage for a self-join-free
conjunctive query ¢ is a positive k-uniform DNF of size m. Also, the
lineage of any dissociation ¢’ of this query (in particular the one with
the minimal score) is a positive k-uniform DNF of size m. It follows
that

P =Y [Ir+ ¥ «&[]n

j=iice;  Sepoi(l])  ies
m

Plg1=Y[Iri+ X JO]]m
j=iiee; SeZ-([n]) i€s

Next consider the operation of scaling down all probabilities by f,
pi = fpi, and the implication on € := %}PM, Observe that in the
nominator, the terms of order k cancel out and it becomes a sum of
terms with minimum order k + 1. In contrast, the denominator still has
minimum order of k. After dividing both nominator and denominator
by f¥, we have the each term in the denominator is multiplied with at
least f, whereas the denominator has some terms without f. We thus
have lim;_,g+ € =0. O

Finally, notice that the proof here was closely inspired by the proof
for [27, Theorem 19] and v.v.

H Section 4.3 (3): Number of minimal query plans

Star queries. Consider the k-star query q:—Ry(x1),...,Ri(xx), U(x)
and the k! permutations on the order on x. To simplify notation and
w.l.o.g., we consider the permutation ¢ = (xi,...,x;). We show the
following query plan is minimal:

P=rl xP[Ry(x1), 7l wP ...l P [Ry(x), U (x)]]]
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P has k projections and corresponds to a dissociation A, where relation
R; is dissociated on i — 1 variables x(; ; ;. Each query plan according
to Definition 6 must have either one projection and a single relation, or
a join between more relations at the end of its branches. No query plan
for g can have a projection at the leaf since each variable appears in at
least 2 relations. Since there is only one relation U that joins with other
relations, there can only be one leaf with a join between U and at least
one other relation R; and there cannot be several branches. Further any
query plan for ¢ can have at maximum k projections for each of the k
variables. As a consequence, each plan with k projections is isomorph
to a total order on x. Next consider a query plan that has less then k
projections while keeping the order of ¢. This plan must have at least
one R; that is dissociated on at least i variables and is, hence, dominated
by P. Hence, P is minimal. Since there are k! possible permutations,
there are k! such minimal plans.

The total number of plans (or hierarchical dissociations) is equal
to the number of weak orderings definable on k alternatives. This is a
consequence of the relation U (x) which contains all variables. Hence,
each query plan must define a hierarchy between the variables in which
all variables are comparable, and in which ties are allowed. This is
exactly the definition of a weak ordering (or total preorder), and the
number of such is given by the OEIS sequence A000670'6: 1, 3, 13,
75,541, 4683,47293, 545835, ....

Chain queries. Next consider the Boolean k+1-chain query g:—
Ri(x1),R2(x1,%2),...,Ri1 (xx ). Note that each variable is shared only
by two subsequent relations. The leaves of each query plan must thus
have exactly two relations. Furthermore, every minimal query plan
must have exactly k joins between subplan corresponding to combin-
ing one variable at a time. Hence, the number of minimal query plans
for a k+1-chain query is equal to the number of ways to insert k pairs
of parentheses in a word of k+1 letters. This corresponds to OEIS se-
quence A000108'7: 1,2, 5, 14, 42, 132, 429, 1430, ...

The number of total query plans corresponds to OEIS sequence
A001003'8:1,3,11,45,197,903,4279,20793, .. .. This is the number
of ways to insert parentheses in a string of k symbols. The parentheses
must be balanced but there is no restriction on the number of pairs of
parentheses. The number of letters inside a pair of parentheses must be
at least 2. Parentheses enclosing the whole string are ignored.

The total number of dissociations for both, k-star query and k+1-
chain query, is given by 2%, where K = k(k — 1) is the number of undis-
sociated variables. Figure 9 summarizes these numbers in one table.

I Section 5.1: Proof Dissociation and DRs

Proof (Lemma 29: Dissociation and DRs) This lemma follows imme-
diately from Theorem 11 (2) and noting that dissociating tuples in DRs
corresponds exactly to dissociating variables with probabilities equal
to 1 in the lineage formula. ]

J Section 5.1: Proof Algorithm 1 with DRs

In order to prove Theorem 31, we need to add two more lemmas and
to extend the definition of separator variables:

Lemma 43 (Deleting variables from safe queries) If g is safe and
X € EVar(q), then deleting x from q leads to a query q' that is still safe.

Proof (Lemma 43) q is safe iff for any two existential variables y, z, one
of the following three conditions hold: at(y) C at(z), at(y) Nat(z) =

16 http://oeis.org/classic/A000670
17 http://oeis.org/classic/A000108
18 http://oeis.org/classic/A001003

0, or at(y) D at(z). Deleting another variable x from the query does
not change the hierarchy between the other variables. ]

Definition 44 (p-separator) A “p-separator variable” is an existen-
tial variable that appears in every probabilistic atom of a connected
query. We write PSepVar(q) for the set of all p-separators of g.

Lemma 45 (Separators and minimal plans) Let x be a p-separator
variable of q, then all query plans minimal in <P have x as “root vari-
able”, i.e. a variable that is projected away in the last projection.

Proof (Lemma 45) Let g be connected by its existential variables and
x € PSepVar(q). If x is contained in all atoms, then x is a root variable
in all plans produced by Algorithm 1. If x is not contained in all atoms
(i.e. there is a deterministic relation that does not contain x), then there
exists a min-cut y considered by the original Algorithm 1 that does not
contain x. We need to show that, for any hierarchical dissociation Ay
with y as root variables, there is another hierarchical dissociation A,
with x as root variable and P[g%] < P[¢%].

For that, consider the dissociation Ay, obtained by further dissoci-
ating Ay on x. According to Lemma 29, P[g*] = P[¢%], and according
to Lemma 43, Ay, must be safe. As a consequence, Ay, is a hierarchi-
cal dissociation that has y Ux as root variables. Therefore, there exists
a minimal hierarchical dissociation A, (which may or may not be the
same as Ayy) with x as root variable and P[g%] < P[¢v] = P[¢?]. As
a consequence, query plans with x as root variable will always have
an equal or lower score than plans with y as root variables. Hence, all
plans minimal in <” have x as root variable. O

Proof (Theorem 31: Algorithm 1 with DRs) Our proof shows that the
modified algorithm correctly enumerates the minimal query plans in
the presence of deterministic relations, i.e. it returns one plan for each
minimum safe equivalence class of <”.

(1) Soundness: We show that every plan produced by the modified
algorithm corresponds to a minimal safe equivalence class, i.e. it pro-
duces no two plans where one plan dominates the other. Note that the
algorithm can only create two different plans whenever we need to iter-
ate over at least 2 different minimal p-cuts in line 8 after modification
of the algorithm. This happens whenever we don’t have a p-separator
set that alone disconnects the query ({PSepVar(g)} = MinPCuts(q)).
Thus, for each two different min-cuts, the algorithm needs to dissociate
at least one non-deterministic relation on a variable that the other one
does not dissociate on. Hence no query plan produced can dominate
another one.

(2) Completeness: We show that the modified algorithm returns a
plan for each minimal hierarchical dissociation in <7, i.e. for every
plan P’ from the original Algorithm 1, there is a plan P from Algo-
rithm 1 after modification with lower or equal score. If g is discon-
nected, then nothing changes from Algorithm 1, and we only need to
focus on the case when the query is not disconnected. If ¢ is connected,
then completeness follows immediately from Lemma 45: all minimal
plans need to have all p-separator variables as root variables. O

K Section 5.2: Proof Dissociation and FDs

Proof (Lemma 34: Dissociation and FDs) Let I" be the set of FDs
on Var(q) consisting of the union of FDs on every atom in g. First
notice that I" also holds for the natural join between all tables in the
query. Next consider a relation relation R(x;) and let XIT" be the closure
of x; under I'. Then any join result with the same values a for x; has
exactly one tuple from R; in its lineage, which does not change after
dissociating R; on x;” — x;. Therefore, also the lineage and the query
reliability remain the same. O


http://oeis.org/classic/A000670
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L Section 5.2: Proof Algorithm 1 with DRs and FDs

Before we prove the correctness of Theorem 36, we introduce a helpful
Lemma 46 for FDs, which has no analogy for DRs. With DRs, eagerly
dissociating all deterministic tables in a hierarchical dissociation ¢*
can lead to a non-hierarchical dissociation (see Appendix M for an
example). With a functional dependency I" : x — y, however, we can
first eagerly dissociate the dependent variable y in all relations that
include x among their variables, then apply our previous algorithm In
other words, we can replace a query ¢ with its closure ¢™. In particular,
if ¢ is hierarchical, then the closed query ¢ is still hierarchical. Note
the emphasis on all relations as applying a FD only selectively (i.e.
only to a subset of all relations) can turn a hierarchical query into a
non-hierarchical one (see Appendix N for an example).

Lemma 46 (FD dissociation and hierarchies) Given a hierarchical
query q and a FD I' : x — y. Dissociating all relations R; with x C
Var(R;) on the dependent variable y leads to a query that is still hier-
archical.

Proof (Lemma 46: FD dissociation and hierarchies) Assume that the
FD I' : x — y holds and that query ¢ is hierarchical. We show that ap-
plying I eagerly to all atoms in g results in a query g2 that is still
hierarchical. Let at(x) denote the atoms containing all variables of x,
at(y) the atoms containing y in ¢, and at?(y) the atoms containing y
in ¢#. First notice that at(x) Nat(y) # @ since we have one relation
that enforces I'. If at(x) D at(y), then at(x) = at?(y) and ¢* is still
hierarchical, as removing y from the original hierarchy cannot inval-
idate the hierarchy. If, however, at(x) C at(y), then at(y) = at?(y)
and thus the hierarchy remains unchanged. O

Our third modification applies Lemma 46 to dissociate eagerly on
all functional dependencies (i.e. by replacing a query g by its closed
query g*) at the beginning of each recursive call of our previously
modified Algorithm 1. We next prove that the resulting algorithm re-
turns a sound and complete enumeration of query plans minimal in <”
in the presence of FDs and DRy, i.e. it returns exactly one from each
minimal safe equivalence class in <”.

Proof (Theorem 36: Algorithm 1 with DRs and FDs) In the following,
let g™ stand for a query g that is closed after applying FDs I, “ALG”
for our previously modified Algorithm 1, and “ALG™” for ALG after
our additional modification that replaces a query g with its closure g™
at the start of each recursive call. We start from the observation that
ALG will return a superset of the plans we need (we need one plan from
each minimal safe dissociation). In other words, ALG may return two
plans P, P’ such that P dominates P’ under functional dependencies.
ALG™ returns a subset of the plans returned by ALG. We will prove
two directions:

(1) Completeness: We prove that every plan P’ returned by ALG is
dominated (under functional dependencies) by some plan P returned by
ALGI ™ (recall that “dominating” means having smaller or equal scores
over every database). Suppose the contrary and let P’ be a plan that
strongly dominates all plans produced by ALG™ (i.e. P’ has a smaller
score over some database). Then let ¢’ be the dissociated hierarchical
query corresponding to P’ and let ¢” be the query after closing ¢’ under
FDs I'. Then we know from Lemma 34 that P[¢”] = P[¢']. Furthermore,
since ¢’ is hierarchical, we know from Lemma 46 that ¢ must be hi-
erarchical as well. Furthermore, we know that ¢” = g* in the partial
dissociation order of g*. As a consequence, ALG™ will enumerate a
query plan P” with score(P") = P[q"] = IP[¢] in one of the produced
query plans, which violates our assumption.

(2) Soundness: We prove that no two plans P;, P> returned by
ALG™ can dominate each other under functional dependencies. We
already know that none dominates the other in the absence of FDs, by
the soundness of ALG. Our claim now follows from the correctness of
the previously modified algorithm and an additional induction step: (i)

|x y z |x y z Xy z
R |o R o e R [o
S |oo S |loo S |oo
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U o U e O U I
@4q (b) g™ ©q*
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Fig. 23 Example 47. (a): Chain query g:— R(x),S(x,y), T¢(y,2),U (z).
(b): Minimal hierarchical dissociation ¢! for which p(¢*') = P[q]
happens to hold on database D shown in (d). (c): Dissociation qA2 re-
places T4y, z) with T4t} (x,y, z), and thus P[g%2] = P[q]. However, g2
is not yet hierarchical, and any further minimal hierarchical dissocia-
tion increases the probability, and thus p(¢%2) > p(¢*!) on D.

If g is hierarchical, then there is just one query plan. (ii) If g™ is not
hierarchical, then there are at least two different minimal p-cuts, either
of which dissociates at least one probabilistic relation on a variable that
the other one does not. Hence no query plan resulting from one min-
imal p-cut can dominate a query plan resulting from another minimal
p-cut. Since repeated calls to our recursive algorithm always end up
at a hierarchical query, soundness now follows by induction from the
leaves of the query plans. O

M Section 5.1: Remarks on deterministic relations

At a quick glance, Lemma 29 seems to suggest that we can first disso-
ciate all deterministic relations and then apply our standard algorithm
to find the set of minimal plans of a query. However, this is not correct
as we illustrate next with a counter-example:

Example 47 (Incorrect deterministic dissociation 1) Consider the
query g:—R(x),S(x,y),T%(y,2),U(z) with deterministic relation T¢
over the database D from Fig. 23d. Here, indexed small letters re-
fer to tuples in the respective relations, e.g., r; for tuple R(a). The
lineage of ¢ is Lin(q) = ris1tiuy V risithuy V rasctiug V rascthuy. Re-
placing #; and 7, with 1, the lineage can be factored into Lin(g) =
(r1s1V ras2)(u1 V up), which is a read-once formula. Assuming all
non-deterministic tuples to have the same probability 0.5, the query
reliability is Plg] = 21/64 ~ 0.328. Query g has three min-cuts
MinCuts(q) = {{x},{y},{z}}, as easily seen from its incidence ma-
trix (Fig. 23a). Dissociating ¢ on y (Fig. 23b) results in a hierarchi-
cal dissociation g4 that turns out to have, on the particular data-
base D, exactly the same lineage expression as the original query:
Lin(¢?1) = Lin(g). Since it is a hierarchical dissociation, there is
a plan P; that calculates the probability of ¢3! and its score is ex-
actly the probability of the original query: score(P;) = P[q] ~ 0.328.
However, if we had first dissociated the deterministic relation 7¢ into
7943 (x, y,7), we would have a dissociated query g2 (Fig. 23c) that,
despite having the same probability as the original query, P[g*2] =
P[g], cannot be made hierarchical by only dissociating variable y;
any minimum hierarchical dissociations of g2 requires dissociating
at least x or z. This turns out to increase the propagation score to
p(g*2) = 87/256 ~ 0.340 > 0.328 ~ p(¢*!) = P[q]. ]

We give another example to illustrate that the sound and complete
enumeration in the presence of deterministic relations is non-trivial: A
reasonable idea seems be to first join all deterministic relations, thereby
eagerly reducing variables that appear only in deterministic relations.
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Fig. 24 Example 48: (a): We again use the chain query and database
from Example 47 and Fig.23 but now have also relation S¢ determin-
istic. (b): Minimal hierarchical dissociation ¢! that calculates P[q] ex-
actly on database D. (c,d): First joining both deterministic tables into
N¢ = [Sd, T4 ] and projecting y away does not change the query relia-
bility. However, there is no minimal hierarchical dissociation anymore
that allows to calculate the original probability exactly: p(¢”) > p(q).
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Fig. 25 Example 49: 9 dissociations forming the 5 minimal safe equiv-
alence classes in the probabilistic dissociation preorder among all 64
dissociations of chain query ¢:—R(x),S(x,y),T%(y,2),U(2).

However, by doing so, we may miss some minimal plans, as we will
illustrate next:

Example 48 (Incorrect deterministic dissociation 2) We again con-
sider the chain query q:—R(x),S%(x,y),T¢(y,z),U(z) over the data-
base from Example 47, but now with two deterministic relations S¢
and T¢. Then lineage of ¢ is again Lin(g) = risitiuy V risitus V
rasatiuy V rasatrur. Replacing s1,s2,7 and 7, with 1, the lineage can
be simplified and factored into Lin(g) = (r; V r2)(u1 V uz), which is
a read-once formula. Assuming all non-deterministic tuples to have
the same probability 0.5, the query reliability can easily be calculated
as Plg] = 9/16 ~ 0.563. Dissociating ¢ on y (Fig. 24b) results in a
hierarchical dissociation g4! that turns out to have, on the particular
database D, exactly the same lineage expression as the original query:
Lin(g41) = Lin(g). Since it is a hierarchical dissociation, there is a
unique plan P, that calculates the reliability of ¢!, and its score is ex-
actly the reliability of the original query: p(q) = score(Py,) = Plg] =
0.563. However, if we had first joined the two deterministic relation
§¢ and T¢ into N%(x,y,z) = [Sd(x7y)7Td (y,z)} (Fig.24c), and then
projected the variable y away into N4 = 7LyNd (x,¥,2), then the prop-
agation score of ¢ turns out to be bigger then the one of the original
query: p(g") =39/64 ~ 0.609 > r(q") = p(q). |

Example 49 (Enumerating minimal plans) We illustrate here how the
probabilistic dissociation preorder changes in the presence of DRs
for a slightly more complicated example: Consider again the chain
query g:—R(x),S(x,y),T4(y,z),U(z) from Example 48. The query
has 2% = 64 dissociations among which 5 are minimal and safe in
the partial dissociation order (thus ignoring DRs). Those 5 dissocia-
tions are returned by Algorithm 1 and shown in Fig.25 with numbers
1,...,5 inside the dashed outline (the vertical height corresponds to

|x y z |y z B
R|lo oo Rio o o R|io o o
S|o Slo e Slo e
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Fig. 26 Example 50. Applying an FD x — y only to a subset of rela-
tions can turn the previously safe query ¢ into an unsafe ¢'. However,
g cannot become unsafe when applying I to all relation (here ¢”).

the number of dissociated variables: 2, 3, or 4). With 7¢ deterministic,
the probabilistic dissociation preorder has following equivalences for
those 5 dissociations: A] =P Ay, A3 =P Agr, Ay =P Ay, and AL =P As.
The modified enumeration algorithm will thus return 4” instead of 4
(it has fewer constraints on the join order). Also notice from Fig. 25
that Az is safe (because of A3 =P Ay) despite not being hierarchi-
cal. |

N Section 5.2: Remark on completeness for functional
dependencies

With a FD I' : x — y, we can first eagerly dissociate the dependent
variable y in all relations that include x as variables, then apply our
modified algorithm for enumerating all minimal plans. Note the em-
phasis on all (!) relations, as this property does not hold for arbitrary
subsets as we illustrate with a small example:

Example 50 (Incorrect functional dependency dissociation) Consider
the query ¢:—R(x,y,z),S(x), T (x,z) with FD I" : x — y holding in re-
lation R. The query is safe (the hierarchy is shown in gray in Fig.26a)
and has one single plan P = i, 7 [S(x), 7’ x?[2” R(x,y,2),U (x,2)]].
Dissociating relation S on y does not change the reliability, how-
ever it makes the query unsafe (¢’ in Fig. 26b) with now two min-
imal plans. If we instead dissociate y in both S and U, the result-
ing query ¢” is safe as well (Fig. 26¢) with one single minimal plan

P =gl wP [S(x), 7", X7 [R(x,y,2),U(x,z)]]. Note that P” has one
projection less than P’. |

O Section 5: A detailed example for schema knowledge

We will re-use our Example 40 from Section 6 to illustrate changes in
the minimal query plans in the presence of deterministic relations and
functional dependencies.

Example 51 (Optimization running example cont.) We consider again
the query from Example 40: g:— R(x,z),S(y,u), T (2),U (1), M(x,y,z,u).
Its incidence matrix (Fig.27a) has 10 variables in relations that can
be dissociated; the query thus has 2! = 1024 possible dissociations,
among which 6 are minimal hierarchical dissociations. One of those
hierarchical dissociations is is shown in Fig.27b. Algorithm 1 returns
6 minimal query plans (Fig. 27c) corresponding to these 6 minimal
hierarchical dissociations.

Next assume relations R and 7' to be deterministic (Fig.27d): Our
modified algorithm then returns one single minimal plan (Fig. 27f),
which implies that the query is safe and our plan returns the exact
probabilities. The plan corresponds to the hierarchical dissociation
from Fig.27e which also shows that no probabilistic table needed to
be dissociated, and thus Plg,] = P[g4].

Next assume keys R(x,z) and S(y, u), and hence the FDs z — x and
u — y hold. Dissociating all dependent variables leads to a new query
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Fig. 27 Example 51: (a): Incidence matrix for our example q:— R(x,z),S(y,u), T (z),U (u),M(x,y,z,u) from Example 40. (b): one minimal hierar-
chical dissociation ¢+. (c): All 6 minimal query plans generated by algorithm 1 with the plan corresponding to g%+ underlined. The propagation
score is the minimum of the scores of those plans. (d): Knowing that relations R? and T¢ are deterministic makes the query g, safe and our
algorithm returns one minimal plan (f) corresponding to qﬁ (e) and p(qq) = Plq4] = ]P’[qﬁ]. (g): Knowing two FDs z — x and # — y results in two
minimal hierarchical dissociations, one of which is shown in (h). The two corresponding minimal query plans are shown in (j). If we know that R¢
and T are deterministic and the previous FDs hold, then the query becomes safe (i) and has one single minimal query plan (k).

qy (Fig.27g) that has only two minimal hierarchical dissociations (one
of which is shown in Fig.27h). Fig.27j shows the two minimal plans.

Next assume that relations R and 7' are deterministic and above
FDs hold at the same time. Then the query becomes g4 which is safe
(the hierarchy is shown in Fig.27i) and has thus only one single plan
(Fig.27K).

We encourage the reader to take a moment and compare the in-
cidence matrices Fig. 27b, Fig. 27e, Fig. 27h, and Fig. 27i and their
corresponding underlined plans in Fig. 27c, Fig. 27f, Fig. 27j, and
Fig.27k. |

P Section 3: Alternative proof for Theorem 15

We give here an alternative, self-contained proof of Theorem 15. This
is our original proof and has now been superseded with our more gen-
eral results from [30]. We list this original proof here in the online
appendix as it is still interesting in its own right, self-contained and
possibly more accessible. We start by developing some notions and
lemmas for Boolean functions and their probabilistic interpretation.

Boolean notions [11]. Let x = {x1,...,x,} be a set of n Boolean vari-
ables. We use the bar sign (e.g. x) to denote an ordered or unordered
set, depending on the context. A truth assignment or valuation 6 for
x is an n-vector in {0,1}", i.e. it is a function 6 : x — {0,1}" where
6; = 0(x;) denotes the value assigned to x; by 6. A positive term or
conjunct is ¢ = A;ccxi, where ¢ C x. Note that variable ¢ represents
a conjunct, whereas the set ¢ represents the variables of c. A positive
DNF (Disjunctive Normal Form) of size m is an expression of the form

e =Vin (/\iecj x,-), where each ¢ (j € {1,...,m}) is a positive
term of the DNF. A positive k-uniform DNF is one where each term
contains exactly k variables. A positive k-partite k-uniform DNF is one
where the set of variables x can be partitioned into & sets (Xj,...,Xk) SO
that each term consists of exactly & variables with each variable coming
from a different partition.

Event expressions. We assign to each Boolean variable x; a primitive
event (we do not formally distinguish between the independent random
variable x; and the event x; that it is true) which is true with probabil-
ity P[x;] = p;. All primitive events are assumed to be independent, i.e.
Pl Axj] =Plx] - Plxj] = pi- pj, Vi, j € {1,...,n} with i # j. We are
interested in the computation of probabilities of composed events [26]
and write ¢(x) to indicate that x = Var(¢) is the set of variables ap-
pearing in the expression ¢. Our focus is on calculating the probability
of positive DNF event expressions. Given independence of primitive
events, the probability of a conjunct c is

Bl = [ T8l = [
icc icc
Using the inclusion-exclusion principle, the event probability for a pos-
itive DNF is then

I

B[

J

3

k
P[A ;] 3)

i=1

¢j]= f‘,(—l)k*1
1 k=1

1<ji<..<jg<m

Correlations and positive DNF dissociation. Two events ¢; and ¢, are
positively correlated iff

Pg1 A ¢a2] > Plg1]-Plgo],
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By application of the inclusion-exclusion principle, it follows

Plg1V ¢o] < 1—P[~¢1]-P[~¢1]

Lemma 52 (Positive correlations of terms) Two positive terms c|
and ¢ over the random variables x are positively correlated if and
only if neither of them has probability 0, and they have at least one
variable x; in common with p; # 1.

Proof (Lemma 52) Assume c; and ¢, have a possibly empty set
Cim2 = ¢] N ¢y of variables in common. We use C1\2 for ¢; \ ¢z and
can write Plc1] = [Tiee, i = I'[,-Ecl\2 pi - Tlice,, Pi- Hence,

Plet] - Pleal = [ piv T1 piv T1 27
icep\y icey | i€cimn
whereas
Pleshedl= [T pi- IT pi- T1 pi
iecl\z iecz\l i€ci2
Therefore,
Plei]-Plea] =Pler Aca]- ] pi
i€c|mn
from which the proposition follows. O

Corollary 53 (Positive correlations of terms) For any two positive
terms c| and ¢y over the random variables X, the following hold:

P[C] /\(,‘2] > IP)[(,‘]] . ]P’[Cz]
Pler Vea] < 1=Pl=eq] - Ploes]

Definition 54 (Expression dissociation) Assume a Boolean expres-
sion ¢ over variables x. A dissociation of ¢ is a new expression ¢’ over
variables X’ so that there exists a substitution 6 : X' — x that transforms
the new into the original expression: ¢’(6(x’)) = ¢ (x). The probability
of the new event expression P[¢'] is evaluated by assigning each new
variable independently the probability corresponding to its substitution
in its event expression: P[x'] = P[0(x')],Vx' € X.

Example 55 (Expression dissociation) Take the two DNF expres-
sions:

O (x1,x2,%3,X4) = X1X3 VX1 X4 V X2X4

! ! !
O’ (x1,%2,X3,%4,X4) = X1X3 V X1 X4 V X2

Then ¢’(x') is a dissociation of ¢(x) because ¢(x) = ¢'(6(x’)) for
the substitution 6 = {(x1,x1), (x2,%2), (x3,%3), (x4,%4), (x4, %4)}. Fur-
ther, IP)[(P] = p1p3 + p1P4+ papas — p1p3pas — P1P3P2P4 — P1pap2 +
P1P3pap2, whereas P[9'] = pi ps+ p1pa-+papa—p1p3pa—pip3paps—
PIP%PZ +p1p3pﬁp2. Note that

P[¢'] —P[¢] = (p1p2p3ps — p1p2ps)(ps—1)
= (p1p2p4)(1—p3)(1—pg) >0.

The following lemma is now comparable to Theorem 11:

Lemma 56 (Positive DNF dissociation) For every dissociation ¢’ (x')
of a positive DNF ¢ (x), the following holds: P[¢'] > P[¢].

Proof (Lemma 56) We will proceed in two steps. We first show that
(a) the proposition holds for any single-step dissociations. We then (b)
infer by induction for multi-step dissociations.

(a) Single-step dissociation: A single step dissociation is one
where [x'| = |x| +1, i.e. there is exactly one more variable appear-
ing in the dissociation ¢’ then ¢. We know that the substitution 8 must
be surjective, i.e. each variable € x must be mapped to at least once,
since all variables must appear at least once in ¢'(6(x')) = ¢(x). It
follows that the size |x'| > |x|. It follows that a single-step dissociation

is the simplest dissociation for which ¢ and ¢’ are not trivially isomor-
phic. From the pigeonhole principle, it also follows that there must be
exactly two variables in x’ that are mapped to the same variable in x. It
also follows that the dissociation ¢’ must have the same structure, i.e.
that there must be a one-to-one mapping between conjuncts in ¢ and
¢’ with corresponding conjuncts containing the same number of vari-
ables, and that two variables that & maps to the same variable cannot
appear in the same conjunct.

We assume w.l.o.g. that 6(x;) = 6(x]) = x; and 6(x;) = x;,Vi €
{2,...,n}. W.lo.g., we further assume that x; appears in the terms
¢ly...,cx (k < m) of the DNF ¢, but not in c¢giq,...,cn. W.lo.g.,
we further consider a dissociation ¢’ where x| appears in the terms
ci,...,¢ (1 <1 <k)andx] in the terms ¢;1,...,c. We write c; for
cj=x1c},(j€{l,...,k}),i.e.aconjunctcy,. .., ¢ without the variable
x1. We can then write ¢(x) and ¢’(x'), respectively, as

m

Ve

j=k+1

00 = (n AV &)V (a6 (
j=1

j=l+1

o' (x') = (x1 A \I/lc;> \Y (x’l A \k/ C;‘) \Y% ( \’"/ c_;)
=

j=l+1 j=k+1

with (1 <7 < k <m). Substituting the disjunctive expressions with D;,
we can write more compactly

¢(x) =x1D1Vx1D2V D3
(]),(X,) =x1D; \/x/lDz V D3

Using the inclusion-exclusion principle, we can write the event proba-
bilities as

P[¢] = p1P[D1] + p1P[D>] + P[Ds]

— p1P[D1D,] — piP[D1 D3] — p1P[D> D3] + p1 P[D1 D2 Ds]
P[¢] = piP[D1] + p1P[D2] +P[D;]

— piP[D1Da] — piP[D1 D3] — piP[D2Ds] + piP[D1 D2 D3]

Comparing the two expressions, we get

P[¢'] = P[¢] = p1(1—p1) (P[D1D2] = P[D1D2D3]) >0 (4)
since P[y1] > Ply; y).

(b) Multi-step dissociation: A k-step dissociation is one where
single-step dissociations are consecutively applied (¢ — ¢’ — ¢’ —
... — 0.1t trivially follows from transitivity that the proposition
also holds for a k-step dissociation. It also follows that a k-step disso-
ciation ¢®) has [x(¥)| = |x| + k variables.

Vice versa, every dissociation with |x'| = |x|+k can be constructed
as a k-step dissociation as follows: Denote the number that a variable
X; € X is mapped to in 6 by k(i). Then consider the following multi-
step dissociation with k = Y7, k(i) — 1 steps: Iterate over all vari-
ables x;. For each variable with has k(i) > 1 dissociate the variable in
k(i) — 1 steps so that afterwards the substitution 0 (x;) = 6(x}) =... =

/‘:

G(xgkfl)) = x;. This can be done by partitioning the appearances of x;
in ¢ according to the appearances of the variables in ¢ and dissociat-
ing these appearances one after the other. Hence, the proposition holds
for any dissociation. o

Note that Equation 4 holds in any of 3 conditions:
(i) ppiseitherOor 1.

(i) Dy =0 or D, = 0, which requires that in all conjuncts c}‘- of either
D, or Dy (written as Dy ) there must exist at least one variable
with 0 probability: V¢ € Dy p.Jix; € ¢} : pi = 0.

(iii) D3 = 1, which requires that there is at least one conjunct in which
x1 does not appear that is 1: 3c; € D3.Vi.x; € cj: pi=1.
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