The VLDB Journal (2017) 26:855-880
DOI 10.1007/s00778-017-0484-3

@ CrossMark

REGULAR PAPER

Answer validation for generic crowdsourcing tasks with minimal

efforts

Nguyen Quoc Viet Hung! - Duong Chi Thang? - Nguyen Thanh Tam? .
Matthias Weidlich® . Karl Aberer? - Hongzhi Yin* - Xiaofang Zhou*

Received: 31 March 2017 / Revised: 20 July 2017 / Accepted: 23 September 2017 / Published online: 13 October 2017

© Springer-Verlag GmbH Germany 2017

Abstract Crowdsourcing has been established as an essen-
tial means to scale human computation in diverse Web
applications, reaching from data integration to information
retrieval. Yet, crowd workers have wide-ranging levels of
expertise. Large worker populations are heterogeneous and
comprise a significant amount of faulty workers. As a con-
sequence, quality insurance for crowd answers is commonly
seen as the Achilles heel of crowdsourcing. Although various
techniques for quality control have been proposed in recent
years, a post-processing phase in which crowd answers are
validated is still required. Such validation, however, is typi-
cally conducted by experts, whose availability is limited and
whose work incurs comparatively high costs. This work aims
at guiding an expert in the validation of crowd answers. We
present a probabilistic model that helps to identify the most
beneficial validation questions in terms of both improve-
ment in result correctness and detection of faulty workers.
By seeking expert feedback on the most problematic cases,
we are able to obtain a set of high-quality answers, even if
the expert does not validate the complete answer set. Our
approach is applicable for a broad range of crowdsourcing
tasks, including classification and counting. Our comprehen-
sive evaluation using both real-world and synthetic datasets
demonstrates that our techniques save up to 60% of expert
efforts compared to baseline methods when striving for per-
fect result correctness. In absolute terms, for most cases, we
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achieve close to perfect correctness after expert input has
been sought for only 15% of the crowdsourcing tasks.
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1 Introduction

Crowdsourcing has attracted much attention from both
academia and industry, due to the high availability of Inter-
net users (a.k.a. crowd workers) [53]. It has proved to be an
efficient and scalable approach to overcome problems that
are computationally expensive or unsolvable for machines,
but rather trivial for humans. The number of crowdsourcing
applications is tremendous, ranging from data acquisition [1],
data integration [78], data mining [66], and information
extraction [17] to information retrieval [75]. To facilitate the
development of crowdsourcing applications, more than 70
crowdsourcing platforms such as Amazon Mechanical Turk
(AMT) and CrowdFlower have been developed in recent
years.

A common crowdsourcing setup features users that post
tasks in the form of questions, which are answered by crowd
workers for financial rewards. Depending on the type of ques-
tion, different types of crowdsourcing tasks are distinguished:
In discrete tasks, workers are asked to assign one or more
labels to each object that needs to be processed [23]. An
example for such a task is sentiment annotation, where work-
ers label movie reviews with two labels: positive or negative.
In continuous tasks, objects are assigned real values, e.g.,
scores or measurement values [72]. An assessment of the
relevance of the result for Web search is an example for such
a continuous task. Furthermore, tasks may also define objects
as rules (referred to as partial-function tasks) [1,44] or

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-017-0484-3&domain=pdf

856

N. Q. V. Hung et al.

require the evaluation of matches between entities (referred
to as similarity tasks) [19]. An example of a partial-function
task is discussed in [1], where crowd workers shall provide
association rules between predefined items.

Much work on crowdsourcing focused on discrete tasks,
also known as classification tasks as they are the core of
many applications, such as training classifiers [66] and entity
extraction [9]. In recent years, however, non-classification
tasks gained increasing importance, e.g., when counting
objects in an image or defining a bounding box around an
object [72].

1.1 Validation of crowd answers

Regardless of the type of crowdsourcing tasks, quality con-
trol is a major obstacle. Workers have different backgrounds
and wide-ranging levels of expertise and motivation [31], so
that the collected answers are not always correct. To over-
come this issue, tasks are often assigned to multiple workers
to aggregate the results. In the presence of faulty workers
giving random answers, however, the aggregated answer is
not guaranteed to be correct.

To increase the trustworthiness of obtained crowd answers
(referred to as an answer set), crowdsourcing platforms such
as AMT include a validation phase. Crowd answers are val-
idated against the supposedly correct answers given by a
human validator (henceforth called expert) such as the task
submitter himself. It should be noted that the notion of expert
is different from domain experts or high-expertise work-
ers [3], whose answers are still aggregated as normal workers.

Validation of answer by an expert leads to a trade-off
between the verified result correctness and the invested effort.
The more effort the expert puts into providing answers that
can be used to judge correctness of answers from crowd
workers, the higher is the quality of the final answer set.
Seeking expert input incurs high costs, so that, given the
sheer amount of questions to be answered, only a fraction of
the answer set can be validated based on the expert’s answers.
In fact, validating a large part of the crowd answers would
negate the benefits of crowdsourcing in the first place.

1.2 Contributions

This paper targets the effective utilization of expert efforts in
the validation of crowd answers. By (I) aggregating answers
of crowd workers and (II) guiding an expert in the valida-
tion process, we go beyond the aforementioned trade-off and
reduce the amount of expert efforts needed to achieve the
same level of result correctness. Both steps, answer aggrega-
tion and expert guidance, are interrelated. On the one hand,
answer aggregation exploits the reliability of workers, which
is assessed based on the feedback given by an expert as part of
the answer validation. On the other hand, an expert is guided
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based on the potential effect that the validation of a certain
answer has for the aggregation of answers.

(I) Answer aggregation To aggregate answers obtained from
crowd workers, we develop a probabilistic model estimat-
ing whether a certain answer is correct. In order to cope
with diverse types of crowdsourcing tasks, our approach
is based on the notion of a factor graph, which enables us
to model complex relations between crowd answers, expert
input, and among the labels themselves. Unlike traditional
likelihood estimators which only take into account the answer
set, see [23], our estimator is able to achieve higher accuracy
by also considering expert input. In particular, the expert
input is used to assess the reliability of a worker, captured as
variables in the factor graph. The reliability of workers is then
exploited to calculate the probability that a certain answer is
correct. Moreover, a decision-theoretic measure allows us to
conclude on the uncertainty related to an answer set based
on the reliability of workers. Since expert input is sought
continuously, it is important to realize answer aggregation
as pay-as-you-go process. We achieve this by updating the
model for worker reliability incrementally upon the arrival
of new expert input.

(Il) Expert guidance To guide the validation of crowd
answers by an expert, we formally define the problem of
effort minimization to reach a validation goal in terms of
result correctness. The problem can only be solved when
assuming that workers are truthful. Even in that case, which
is not realistic, however, the problem is intractable—even
a restricted variant of the problem is NP-hard. Hence, we
introduce two guidance strategies that cater for complemen-
tary aspects of the problem:

— The first strategy aims at a maximal improvement of the
result correctness, which is motivated by the observation
that some expert validations are more beneficial than oth-
ers. Since workers and tasks are not independent, a certain
expert input may have a positive effect on the evaluation
of the worker reliability and, thus, on the estimated result
correctness. We show how a measure for the expected
benefit of a validation question can be used to guide an
expert.

— The second strategy focuses on the detection of faulty
workers (e.g., spammers), which can account for up
to 40% of the worker community [31]. Faulty workers
increase the cost of acquiring correct answers and con-
taminate the answer set by adding uncertainty. Hence,
we estimate the likelihood of a worker to be a spammer
and show how an expert can be guided to detect faulty
workers.

Both guidance strategies have different strengths, so that we
also present a hybrid approach. It combines the two strategies
dynamically.
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In addition, we propose various methods that allow to
terminate the validation process early when the benefit
of getting new feedbacks is negligible. Early termination
helps to reduce the expert effort further while the quality
is unchanged.

We evaluated the developed approach with multiple real-
world and synthetic datasets. Our techniques save up to 60%
of expert efforts compared to a baseline method when striv-
ing for perfect result correctness. For most cases, we achieve
close to perfect correctness with expert input on only 15%
of the questions. Also, the explicit integration of answer val-
idations as realized by our techniques is twice as effective
in increasing result correctness compared to the traditional
approach of integrating expert input as crowd answers. More-
over, we demonstrate robustness of the approach against
erroneous expert input and show that, by distributing a cost
budget between crowd workers and experts, it achieves high
correctness while satisfying completion time and budget con-
straints.

This paper extends and revises our previous work [43] on
minimizing expert efforts in validating crowd answers. The
approach presented in [43] is applicable solely for one spe-
cific type of crowdsourcing tasks, i.e., classification tasks. In
these discrete tasks, labels that shall be assigned to objects
are independent, so that our earlier approach is grounded in a
probabilistic model based on expectation—maximization. In
contrast, the approach presented in this work targets a broader
class of crowdsourcing settings, including continuous, sim-
ilarity or partial-function tasks where answer options are
interrelated. We present novel methods for answer aggrega-
tion and the detection of faulty workers that take into account
the dependencies between labels. In addition, we contribute
a technique to measure the quality of aggregation results in
order to terminate the expert validation process early.

The rest of the paper is organized as follows. Next we dis-
cuss characteristics of crowd workers and motivate the need
to have their answers validated by an expert. Section 3 defines
a formal model for crowdsourcing and gives an overview of
our approach. The details on the proposed techniques are
given subsequently: Sect. 4 introduces our method for prob-
abilistic answer aggregation; Sect. 5 defines the problem of
expert efforts minimization and presents heuristics to approx-
imate a solution; Sect. 6 discusses how to terminate the val-
idation process early and how to deal with erroneous expert
input. Evaluation results are presented in Sect. 7, before we
summarize related work in Sect. 8 and conclude in Sect. 9.

2 Background
2.1 A crowdsourcing example

An exemplary crowdsourcing task asks workers to count the
number of objects in a picture. Table 1 illustrates a simple

Table 1 Answers provided by 5 workers for 4 pictures

1%} Ws W3 Wy Ws Correct ~ Majority voting
pr 7 6 7 5 6 7 7 or6
p2 4 4 4 8 6 4 4
p3 7 4 3 4 6 3 4
ps 2 2 2 3 6 2 2

setup, in which five workers (W;—Ws5) provided their answers
to this task for four pictures (p1—pa). The correct label assign-
ments are shown in a separate column.

The quality of the result of a crowdsourcing task highly
depends on the performance of the crowd workers. Previous
studies [31] characterized different types of crowd workers to
reflect their expertise: (1) Reliable workers have deep knowl-
edge about specific domains and answer questions with very
high reliability; (2) normal workers have general knowledge
to give correct answers, but make mistakes occasionally; (3)
sloppy workers have very little knowledge and thus often
give wrong answers, but unintentionally; (4) uniform spam-
mers intentionally give the same answer for all questions;
(5) random spammers carelessly give random answers for
all questions. The detail characteristics of worker types can
be found in our previous work [43,54].

For the above example given in Table 1, for instance,
worker W; would be considered a normal worker (three out
of four answers are correct), W3 is a reliable worker (all
answers are correct), whereas Ws is a uniform spammer
(same answer to all questions). Especially in this counting
task, W5 requires careful treatment as two of their answers
are correct, whereas the others are nearly correct (the dif-
ference between his answers and the correct ones is only
1, which should be tolerable). This illustrates that relations
between labels need to be considered for an accurate evalu-
ation of workers.

In practice, submitters of crowdsourcing tasks have lim-
ited control over the selection of crowd workers and little
insights into the level of expertise and reliability of the work-
ers that provided answers. Hence, tasks are often assigned
to multiple workers. Various methods for answer aggrega-
tion and estimation of worker reliability have been proposed
in the literature. However, the results of automatic meth-
ods are inherently uncertain, since they are heuristic-based
and no technique performs well in the general case [22].
Although some techniques might achieve reliable results in
a few domains [8,64,65,76], they often rely on preprocess-
ing selection of workers (e.g., bootstrapping questions) or
domain-specific heuristics, which are not always available in
limited budget or cross-domain scenarios [39].

The example in Table 1 illustrates an inconsistent label
assignment due to different levels of expertise of workers.
For instance, three different answers are assigned for picture
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Fig. 1 A simple answer validation process

Pp1, whereas four possible labels are provided for picture p4.
Yet, the popular approach of aggregating results by “Majority
Voting” would return only a partially correct result for the
example.

2.2 Validation of crowd answers

To overcome the inherent uncertainty of crowdsourcing
results, many crowdsourcing platforms such as AMT include
a validation phase as depicted in Fig. 1. This process fea-
tures a validator (also referred to as a validating expert) that
provides trustworthy answers. The integration of trustwor-
thy input from experts is, in many cases, more efficient than
enlarging the number of considered crowd workers. In fact,
our evaluation in Sect. 7 shows that the inclusion of expert
input, even though it is more expensive then additional input
by crowd workers, is preferable in all but extreme cases (e.g.,
when the expert is more than 100 times more expensive than
crowd workers).

Expert input is commonly considered to be correct, not
only in crowdsourcing, but also in the related fields of error
correction in databases [74] or active learning [2]. Expert
input provides a ground truth for the assessment of the crowd
answers. As part of our evaluation in Sect. 7, we empiri-
cally show that it is indeed reasonable to assume that experts
provide correct answers. Yet, we later also investigate cases
where expert input may include a certain amount of incorrect
answers.

Although most crowdsourcing platforms acknowledge the
need for validation, they only provide rudimentary support
for the validation phase. The state of the art in answer valida-
tion confronts the validating expert with the raw answer set
data, complemented by simple statistics of the distribution
of answer values [5,69]. As such, the process of aggregat-
ing and validating answers from crowd workers is largely
unguided. This is an issue given that the effort budget for
validation is limited, and without guidance, validation effort
is likely to be wasted on answers that have a limited potential
for increasing the correctness of the overall result.

For the example in Table 1, the validation of 4 being the
correct label for object p;, for instance, would allow for
assessing workers Wy, W,, and W3 as reliable. Feedback
on picture p3 would be more beneficial, though, as it helps
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to identify W3 as a reliable worker, who indeed labeled all
objects correctly.

Against this background, our work is the first to propose a
method for post-processing answer validation that combines
crowd answers with expert feedback for pay-as-you-go qual-
ity control in a generic setting. With the goal to minimize
validation efforts, we get the best of both worlds: The cost
of crowdsourcing is lower than having an expert answering
all questions, whereas answer validation increases the result
correctness.

3 Model and approach

This section presents a crowdsourcing model and, based
thereon, gives an overview of our overall approach to answer
validation.

3.1 Model

As detailed above, crowdsourcing tasks can be classified into
four different types: discrete, continuous, partial-function,
and similarity tasks. We generalize the differences of these
task types by introducing a notion of label similarity to
capture dependencies between labels. For example, for con-
tinuous tasks, the space of labels is discretized, and ordering
between the discrete values is realized by defining their sim-
ilarity. For partial-function tasks, such as association rule
aggregation and ranking aggregation, we can consider each
association rule orrank as alabel, again resorting to the notion
of similarity to induce an order between them. Similarity
tasks, in turn, define a similarity measure explicitly, which
can be lifted to possible labels.

Against this background, we formalize crowdsourcing as
follows. The input of our model consist of a set of k work-
ers W = {wp, ..., wy} that provide answers for a set of
n objects O = {o1,...,0,}. Also, there is a set of labels
L = {l,...,1,} and a function sim : L x L — [0, 1]
that measures the similarity between the labels. The simi-
larity function allows us to model different types of tasks.
For instance in case of discrete tasks, the similarity values
between the labels are 0. Then, crowd answers are modeled
as an n x k answer matrix:

where x;; € (L U {O}) for1 <i <n,1 < j < k. Here, the
special label © denotes that a worker did not assign a label to
an object. We write M (0, w) to denote the answer of worker
w for object o.
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Using the above notions, we define an answer set as a
quadruple N = (O, W, L, M) where O is a set of objects,
W a set of workers, L a set of labels, and M an answer
matrix.

Expert input is modeled by an answer validation function
e: O — (L U {©}) that assigns labels to objects. Again, the
label © denotes that the expert has not yet assigned a label
to an object.

Our model includes the reliability of workers by means
of a confusion matrix over labels. For a worker w € W
and a set of labels L = {ly, Iy, ..., [}, there is an m X m
confusion matrix F,, such that F,,(I,1") € [0, 1] denotes
the probability that the worker w assigns the label I’ to an
object for which the correct label is /.

Further, our work employs a probabilistic aggregation of
crowd answers. For each combination of a label and an object,
our model includes an assignment probability. For O =
{o1, 02, ..., 0,} as the set of objects and L = {I1, 2, ..., [;n}
as the set of labels, a probabilistic assignment is captured
by an n x m assignment matrix U. Here, U(o,1) € [0, 1]
denotes the probability that [ € L is the correct label for
object 0 € O, and we require that the matrix defines a prob-
ability distribution for each object, i.e., Zle LU, ) =1

Combining the above notions, a probabilistic answer set
is a quadruple P = (N, e, U,C) where N = (O, W, L, M)
is an answer set, e is an answer validation function, ¢/ is an
assignment matrix, andC = |,y {Fw} is a set of confusion
matrices.

The actual result of the crowdsourcing process is a deter-
ministic assignment, a function d : O — L assigning labels
to objects.

3.2 The overall approach to answer validation

Validation happens iteratively, such that in each step, an
expert asserts the correct label for an object. This process
halts either when reaching a validation goal or upon con-
sumption of an expert efforts budget. The former relates to
the desired quality of the result assignment, e.g., a threshold
on the estimated correctness of the deterministic assignment.
Since expert input is a scarce resource, the latter defines an
upper bound for the number of validations and, thus, itera-
tions of the validation process.

Starting with an answer set N = (O, W, L, M), the val-
idation process continuously updates a deterministic assign-
ment, which is considered to be correct. Each iteration of the
process comprises the following steps:

(1) select an object o for which expert feedback shall be
sought;

(2) elicit expert input on the label of object 0 and update
e(0),

859
Answer Aggregation ]
t |

T 1% ~

\
\
| H
| Worker Reliability | 1
: o
o

|
H
H
H
H
|
i
H

—>
Deterministic

Instantiation

Validating | o : Assignment
T Expert Validation ; | Label Correctness
Expert R e o om oo e e o
N, Probabilistic answer set l y
o -1 L
“ — [ Expert Guidance |

Fig. 2 Framework for guided answer validation

(3) conclude the consequences of the expert input on the
probabilistic answer set P;

(4) filter the deterministic assignment d assumed to be cor-
rect based on the probabilistic answer set P.

Instantiations of the general validation process differ in their
implementation of steps (1), (3), and (4). For instance, a sim-
ple manual validation process is emulated as follows: An
object is randomly selected; as part of the conclusions, the
probability of the object for which feedback has been sought
is updated; filtering selects, for all objects, the labels with
highest assignment probability.

Striving for guided answer validation, an overview of our
approach is presented in Fig. 2. An initial answer set is built
from the workers’ responses, which is then used to construct
a probabilistic answer set by means of Answer Aggregation
under consideration of the worker reliability. Based on a
probabilistic answer set and the input sought from the val-
idating expert, we can automatically derive a deterministic
assignment to be used by crowdsourcing applications, which
is referred to as Instantiation. The quality of the deterministic
assignment depends on the degree of uncertainty in the prob-
abilistic answer set. This uncertainty stems from the decision
whether to trust certain workers and select their answers when
computing the assignment. Expert Guidance helps to resolve
the uncertainty by selecting and ranking candidate objects to
seek expert input. This closes the cycle since the answer val-
idation leads to a new assessment of the worker reliability
and, thus, a new probabilistic answer set. Hence, the prob-
abilistic answer set is updated in a pay-as-you-go process,
where a deterministic assignment can be instantiated at any
time.

There is the following relation between the components

of the framework as visualized in Fig. 2 and the validation
process:
Answer aggregation This component assesses the reliabil-
ity of workers and, based thereon, computes a probabilistic
assignment of labels to objects. As such, it corresponds to step
conclude in the validation process and creates the probabilis-
tic answer set. The realization of this component is detailed
in Sect. 4.

@ Springer
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Expert guidance To guide the uncertainty reduction step, this
component selects and ranks objects for which expert feed-
back should be sought. Hence, this component realizes step
select in the validation process, for which the details are given
in Sect. 5.

Instantiation This component creates the deterministic assign-
ment from the probabilistic answer set, realizing step filter
in the validation process. It is implemented as the selection
of the label with the highest probability in the assignment
matrix for each object.

4 Probabilistic answer aggregation

Given the answer set provided by the workers, a probabilistic
answer set is constructed by assessing the worker reliabil-
ity and computing the probabilistic assignment of labels to
objects. We first describe the construction of a probabilis-
tic answer set (Sect. 4.1) and then turn to a measure for the
answer set uncertainty (Sect. 4.2).

4.1 Construction of a probabilistic answer set

In the construction of a probabilistic answer set, we consider
the following aspects:

Expert validations The expert input provides the supposedly
correct labels for some of the objects. It helps not only to
ensure correctness of the final deterministic assignment, but
also allows for identifying reliable workers.

Worker reliability We expect label assignments done by
reliable workers to be mostly correct, whereas unreliable
workers provide mostly incorrect assignments. Yet, the level
of reliability varies between workers and is not known apri-
ori.

Label similarity Workers who choose labels that are similar
to the correct one may also be reliable as the mistakes could
be unintentional. On the other hand, workers who choose
labels that are highly dissimilar to the correct one are highly
unreliable.

Assignment correctness For each combination of labels and
objects, we have to consider the possibility that the respective
assignment is correct. Clearly, the correctness of such an
assignment is not known except for those that have been
obtained from the expert, but we can expect reliable workers
to provide mostly correct assignments.

There is a mutually reinforcing relationship between workers
and objects: One worker can label multiple objects and one
object can be labeled by multiple workers. Aiding this rela-
tionship, expert validations provide a means to judge both
the reliability of workers and the correctness of label assign-
ments. In addition, the label similarity refrains us from using
traditional answer aggregation methods, e.g., majority voting
and expectation maximization [7], which focus on discrete
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labels. As a result, we approach the construction of a proba-
bilistic answer set using the model of a factor graph [77]. It
allows for concurrent estimation of worker reliability and
assignment correctness, when there is a relation between
the labels. Another advantage of a factor graph is that it
enables self-configuration when new information becomes
available, avoiding the need to manually tune model param-
eters. That is, with the arrival of new expert validation, the
model is updated incrementally by adding variables and fac-
tors, instead of reconstructing it from scratch.

4.1.1 Creation of the factor graph

A factor graph is a bipartite graph (V, F, E) where V is a
set of random variables, F is a set of functions (factors), and
E C{{v, f} | v eV, f e F} are undirected edges. A set of
random variables V and a set of factors F fully characterizes
a factor graph. The definition of the edges relates each factor
f1,...,v4) € F to the random variables over which it is
defined, i.e., {f,vi} € E forv; € V,1 <i <d.

In our context, there are four types of random vari-
ables representing workers, expert validations, objects, and
answers. We overload notation and use W, e, O and X to
refer to the actual workers, expert validations, objects and
answers, as well as to the associated random variables, i.e.,
V = WUeU O U X. Further, our model includes worker fac-
tors fw,objectfactors fp,and answer factors f4 to represent
the relations between these variables, i.e., F = fwU foU f4.

Worker variables Each worker w € W is associated with
a random variable, which, overloading notation, is denoted
by w € [0, 1]. In fact, the worker variable encapsulates the
confusion matrix F,, of the worker. That is, we use Fy, (I, ')
and w(l, I') interchangeably to represent the probability that
the worker w assigns the label I’ to an object for which the
correct label is /.

Object variables Each object o € O is associated with
a variable o € L indicating the actual correct label for this
object. In turn, it encapsulates the assignment matrix via com-
puting the probability (o, /) that [ € L is the correct label
for object o € O.

Answer variables Each answer x;; is also directly consid-
ered as an (observed) variable.

Expertvalidation variables Expert input for a given object
o is an (observed) variable ¢; € (L U {©}) indicating the
correct label for o (i.e., e is connected to o via the answer
factor f,). In the case of ©, it denotes that the object has not
received an expert validation.

Worker factors Each worker variable w is associated with a
prior-distribution factor fy, : {w} — [0, 1] thatis determined
either in a training phase or stems from external sources such
as the crowdsourcing service provider. If no information is
available, we start with f,, (w) = 0.5 following the maximum
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entropy principle. The set of worker factors is defined as
fw = UweW Jw-

Object factors Each object variable o is also associated
with a prior-distribution factor f, : {w} — [0, 1] thatreflects
prior knowledge about the correctness of the labels of the
object. If no information is available, we also follow the max-
imum entropy principle. The set of object factors is defined
as fo = erO Jo-

Answer factors Each object o € O is assigned an answer
factor f, : W x{o} x X, xe, — [0, 1] that captures the rela-
tion between the workers, the object, its related answers and
expert validation. This factor incorporates the intuition that
(1) each object has only one correct label, (2) workers who
have correct answers are reliable, (3) workers whose answers
are similar to the correct label are also reliable, (4) workers
whose answers are highly dissimilar to the correct label are
unreliable, and (5) expert feedback is the most important fac-
tor if available. Against this background, the answer factor
fa 1s defined as:

fa(wl, ..
[Ticq, m sim(xji, 00) x Fu(xji, 0) e = ©
[Tieq, m sim(xji, ) x Fu(xji, ) e =o0; . (1)
0 e # 0

s Wiy Xis oo s Xy 0 €) =

According to the above definition, the probability of a reli-
able worker answering correctly or nearly correctly and the
probability of an unreliable worker answering incorrectly or
highly incorrectly are high. On the other hand, the proba-
bility of an unreliable worker answering correctly or nearly
correctly or the probability of an reliable worker answering
incorrectly or highly incorrectly is low. In addition, when
the expert feedback is available, the reliability of the worker
and the correct labels are calculated based on the feedback.
In other words, the above definition can reflect our intuition
accurately.

Example 1 Figure 3 illustrates the model of a factor graph for
the setting of two workers and three objects. Variables (cir-
cles) are linked to their respective factors (squares). There
are two types of variables: White circles are latent variables,
whereas filled circles are observed variables. For instance,
factor f, connects the observed answer variables x11, x12,
observed expert validation e; and three latent variables:
worker variables wy, w; and object o1. The relation between
these variables are captured in Equation 1.

4.1.2 Probability computation

The model of a factor graph enables us to compute the
probabilities of correctness of the labels and the workers.
This computation exploits the (marginal) probabilities of
the random variables representing the workers, the correct-
ness of a label, and the answers. More precisely, given a

Observed Variables

@ Answer

Factors

Worker

Answer @) Validation
U3 Object Latent Variables
0; Object

@ Worker
Fig. 3 An example of a factor graph

worker w € W, the matrix-valued random variable w(., .)
assuming a certain value is given on its matrix elements
as a probability distribution over [0, 1] with the constraint
that Zi:l,jeL w(i, j) = 1; i.e., each row of the confu-
sion matrix represents a multinomial distribution. Object
variables are multivariate which takes values in L, so that
for each label / € L of an object o, there is a probability
U(o,l) = Pr(o = 1) that indicates the likelihood of label /
being the correct label for 0. Answer variables, in turn, are
observed, which means that the probability of their observed
value is 1, whereas any other value has a probability of 0.
Probability computation is based on the correlations defined
by the factor functions that relate the random variables to
each other.

To compute probabilities in a factor graph, various tech-
niques have been proposed in the literature. Belief prop-
agation considers the (un)certainty as information that is
propagated through the factor graph, e.g., by message-
passing algorithms or sum-product algorithms [33]. The
drawback of these techniques is that they are very slow to
converge if the graph is large and contains circles [77]. When
applying factor graph to the crowdsourcing setting, the num-
ber of variables grows quickly, resulting in a large and dense
factor graph. Therefore, we resort to sampling to find the
most probable values of random variables, while taking into
account the factors connecting them. In other words, given
a joint distribution represented by a factor graph, we want
to obtain k samples that approximate this joint distribution,
since from these samples, statistics about the distribution
can be obtained. In particular, Gibbs sampling has proved
to be a highly efficient and effective mechanism for factor
graphs [77]. The idea of Gibbs sampling is to sample the
conditional distributions of the model, which are represented
by factor nodes connecting the variables in the factor graph.
Further details on Gibbs sampling can be found in [77].

4.2 The uncertainty of answer aggregation

The heterogeneity among the workers renders it likely that
many objects, which are supposed to have a single correct
label, are assigned to different labels by the workers. The
model of a probabilistic answer set, as constructed by the fac-
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tor graph model introduced above, provides us with a truthful
representation of the uncertainty related to the aggregation
of the answers. To guide an expert in the validation process,
the uncertainty needs to be quantified.

Let P = (N, e,U,C) be a probabilistic answer set con-
structed for answer set N = (O, W, L, M). Recall that P
defines an assignment{ (o, /) for each label € L and object
o € O, which represents the likelihood of [ to be the correct
label for o. Since the probabilities of the labels form a distri-
bution, i.e., ZleL U(o, 1) = 1, we can model each object o as
arandom variable. Then, the overall uncertainty of the prob-
abilistic answer set is computed by the Shannon entropy [63]
over a set of random variables. More precisely, the entropy
of an object o is measured as follows:

H(o) = — ZU(O, ) x log(U(o, 1)). 2)

leL

The entropy of an object is the basis for the computation of
the uncertainty of the probabilistic answer set P. It is defined
as the sum of the entropies of all objects:

H(P) = Z H(0). 3)

0e0

The entropy of an object and, thus, also of the probabilis-
tic answer set can only be 0, if all assignment probabilities
are equal to 1 or 0. If so, there is a clear separation of cor-
rect and incorrect assignments for an object or all objects,
respectively.

5 Expert validation guidance

This section presents techniques to guide an expert in the
validation process that reduces the uncertainty of a proba-
bilistic answer set. We first formalize the problem of effort
minimization (Sect. 5.1). As the problem can be solved only
under further assumptions on crowd workers and is compu-
tationally hard, we present two heuristic solutions aiming at
a maximal uncertainty reduction (Sect. 5.2) or the detection
of faulty workers (Sect. 5.3), respectively. Then, we com-
bine both heuristics (Sect. 5.4) to achieve a comprehensive
strategy of expert validation guidance.

5.1 The effort minimization problem

Instantiation of the generic answer validation process described

in Sect. 3.2 requires the definition of a validation goal. For
the answer aggregation introduced above, a reasonable val-
idation goal is grounded in the uncertainty measure defined
in Sect. 4.2.

@ Springer

Given the iterative nature of the validation process, we
would like to minimize the number of necessary expert
interaction steps for a given goal. For an answer set
N = (0,W,L, M), executing the answer validation
process leads to a sequence of deterministic assignments
(do, dy, ...,dy,), termed a validation sequence, where d;
represents the assignment obtained after the ith iteration.
Given an expert efforts budget b and a validation goal A,
we refer to sequence (dy,d,...,d,) as being valid, if
n < b and d,, satisfies A. Let R(A, b) denote a finite set
of valid validation sequences that can be created by instanti-
ations of the validation process. Then, a validation sequence
(do, d1, ...,dn) € R(A, b) is minimal, if for any validation
sequence (d. di, ....d,,) € R(A,b) itholds that n < m.

Problem 1 (Expert efforts minimization) Let (O, W, L, M)
be an answer set and R(A,b) a set of valid validation
sequences for an expert efforts budget b and a goal A. The
problem of expert efforts minimization is the identification
of a minimal sequence (dy, dy, ..., d,) € R(A, D).

Assuming that the validation goal is defined in terms of
the uncertainty of the probabilistic answer set, solving Prob-
lem 1 is challenging. First, the objects are not independent,
due to the mutual reinforcing relation between workers and
objects. Validating one object can affect the uncertainty of
label assignment of other objects. Second, the presence of
malicious workers can alter the uncertainty of the answer
set, as incorrect labels can be mistreated as correct labels
and vice-versa. Further, even in the absence of faulty work-
ers, finding an optimal solution requires investigation of all
permutations of all subsets (with size < b) of objects, which
is intractable. Our previous work [43] outlines that even for a
restricted version of the problem, finding an optimal solution
is NP-hard.

5.2 Uncertainty-driven expert guidance

Our first heuristic to guide the selection of objects for vali-
dation aims at the maximal uncertainty reduction under the
assumption of ethical workers. It exploits the contribution of
a single validation using the notion of information gain from
information theory [61].

First, we define a conditional variant of the entropy
measure introduced earlier. It refers to the entropy of the
probabilistic answer set P = (N,e,U,C), where N =
(0, W, L, M), conditioned on the expert input on object
o. Informally, it measures the expected entropy of P under a
certain expert assignment.

H(P|o)=Y Ulo,l)x H(P) (4)
leL
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where P, = conclude(N, ¢') is constructed by the factor
graph model with ¢’(0) = [ and ¢'(0') = e(0’) for 0’ €
(O \ {o}).

To take a decision on which object to select, we assess
the expected difference in uncertainty before and after the
expert input for an object. The respective change in entropy
is the information gain that quantifies the potential benefit of
knowing the true value of an unknown variable [61], i.e., the
correct label in our case:

IG(o) = H(P) — H(P | o). 5)

The information gain allows for selection of the object that
is expected to maximally reduce the uncertainty of the prob-
abilistic answer set in one iteration of the validation process.
This is formalized by a selection function for uncertainty-
driven expert guidance:

select, (0") = argmax,. 1G(0). 6)
5.3 Worker-driven expert guidance

Uncertainty-driven expert guidance as introduced above
assumes that workers are ethical, an assumption that is often
violated in practice. Recent studies found that up to 40% of
the workers in a worker community may be faulty (e.g., spam-
mers) [31]. This section thus presents a technique for expert
guidance that aims at the detection of the three problematic
worker types discussed in Sect. 2, i.e., uniform spammers,
random spammers, and sloppy workers.

5.3.1 Detecting uniform and random spammers

To assess the likelihood of a worker being a uniform or ran-
dom spammer, we leverage the fact that labels provided by
random spammers tend to be uniformly distributed across the
correct labels, whereas labels provided by uniform spammers
are all the same. These tendencies are directly visible in the
confusion matrix, whose details are briefly summarized in our
previous work [43]. However, a confusion matrix neglects
the relations between labels. We overcome this limitation by
extending the computation of the confusion matrix with our
model:

Fu = FuDsim @)

where Dgjy, is the |L| x |L| matrix in which Dy, (I,1") =
1 — sim(l, I’) denotes the dissimilarity between two labels.
Here, the idea is that the worker answers with similar labels
should be considered as similar and not separate answers.
For the spammer detection, we rely on a variant of the
spammer score proposed in [55] to estimate the probabil-
ity that a worker is a uniform or random spammer. It is

based on the observation that confusion matrices that have
rows with equivalent values across columns (random spam-
mers) or a single column with values larger than O (uniform
spammers) have similar characteristics as a rank-one matrix.
Therefore, we calculate the spammer score s(w) of a worker
w as the distance of the confusion matrix to its closest rank-
one approximation, using the Frobenius norm:

s(w) = min | FE — FyllF (8)
Fu

w

where F! is the extended confusion matrix of worker w and
Fy is a matrix with rank one. This low-rank approximation
problem can be solved via singular value decomposition [ 14].
We then set a threshold t; to filter uniform and random spam-
mers from the population. Moreover, it is noteworthy that
in [55], the confusion matrices are constructed from the labels
that are estimated to be correct, which introduces a bias if this
estimation is incorrect. In our case, we construct the confu-
sion matrices only based on the answer validations.

5.3.2 Detecting sloppy workers

Sloppy workers tend to provide labels incorrectly, which also
contaminates the answer set. One way to detect them is also
based on the confusion matrix. Following the above approach
for uniform and random spammers, we construct a confusion
matrix using the answer validations. As the labels provided
by the sloppy workers are mostly incorrect, we can calcu-
late the error rate of the worker. The error rate of a worker
(denoted as e,,) is the sum of all values not on the main diag-
onal of the confusion matrix weighted by the priors of the
labels. If this error rate ey, is larger than a threshold z,, the
worker is considered as a sloppy worker. It is worth noting
that we can approach in a more efficient way by reusing the
factor graph constructed in Sect. 3. In that, we perform the
belief propagation over only expert-validated objects (with
the same reason of avoiding bias as above). From the fac-
tor graph, we can calculate the error rate e,, of a worker by
summing over the probabilities of its random variable.

5.3.3 Expert guidance

We exploit the detection techniques to guide the answer
validation by selecting objects that will contribute to the
identification of faulty workers. To this end, we measure the
benefit of expert input on an object by the expected number
of detected faulty workers. Formally, by R(W | o = [), we
denote the expected number of detected faulty workers, if the
answer validation indicates that [ is the correct label for the
object 0

RWlo=1)=[{w|sw) <t}U{wley >71p}[. (9
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Then, the total expected number of detected faulty workers
for input on o is

R(W o)=Y U0.1) x RW |o=1).
leL

(10)

Hence, in each iteration of the answer validation process, the
worker-driven expert guidance heuristic will select the object
o with the highest total expected number of detected faulty
workers, formalized by the following selection function:

Select,, (0') = argmax, .o R(W | 0). (11)
5.3.4 Handling faulty workers

A naive way to handle faulty workers is to define a thresh-
old and exclude any worker with a spammer score higher
than the threshold. However, this approach may mistakenly
remove truthful workers, as illustrated by the example given
in Table 2. Assuming that answer validations have been
obtained only for p1, ..., ps, the confusion matrix would
indicate that worker B is a random spammer, even though
worker B will answers 4 out of 6 questions correctly. Hence,
workers may be excluded too early if only a few of their
answers are considered in the spammer score due to a small
number of answer validations.

We overcome this issue by only excluding the answers
of suspected faulty workers from the answer set, while con-
tinuing to collect their answers. Then, as more expert input
becomes available, these answers are included again once
the spammer score is higher than a threshold. In other words,
any of the worker answers will be eventually be included if
they are truly reliable.

5.4 A combined approach to expert guidance

There is a trade-off between the application of the uncertainty-
driven and the worker-driven strategies for expert guidance.
Focusing solely on uncertainty reduction may lead to contam-
ination of the truthful workers’ responses by faulty workers.
On the other hand, an excessively worker-driven approach
is undesirable as it may increase the overall expert efforts

Table 2 Answer and confusion matrix of worker B

P1 p2 p3 P4 ps P6
Correct a a b b a a
B a b a b a a
a b

0.5 0.5

b 0.5 0.5
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significantly. Therefore, we propose a dynamic weighting
procedure that, in each iteration of the answer validation pro-
cess, helps to choose among the two strategies.

5.4.1 Weighting procedure

Intuitively, there are two factors which affect the choice
between the strategies:

Ratio of spammers If a high number of faulty workers is
detected, the worker-driven strategy is preferred. However, as
this strategy depends on expert input, it may not be effective
in the beginning when the number of answer validations is
small. In this case, the uncertainty-driven strategy is favored.
Error rate The deterministic assignment d; captures the
assignments considered to be correct in the i th iteration of the
answer validation process. If d; turns out to be mostly incor-
rect, we have evidence of faulty workers in the community
and, thus, favor the worker-driven strategy.

We balance both factors by combining the two strategies
dynamically. In the beginning, with a low number of answer
validations, it is mainly the error rate of the deterministic
assignment that determines which strategy to use. At later
stages, the number of detected faulty workers becomes the
dominant factor.

To formalize this intuition, we denote the ratio of detected
faulty workers in the ith iteration of the answer validation
process by r;. The error rate of the deterministic assignment
is computed by comparing the expert input for object o in
the ith iteration with the label / that has been assigned to o
in d;_1, i.e., in the previous iteration. Here, we leverage the
probability U _1 (0, I) of the probabilistic answer set P;_| =
(N,ei_1,Ui_1,Ci_1), N = (0, W, L, M), of the (i — 1)th
iteration of the answer validation process. Given the answer
validation that assigns / to o in the ith iteration, the error rate
is computed as:

& =1—U_0,1). (12)

Using the ratio of detected faulty workers r; and the error rate
€;, we compute a normalized score (€ [0, 1]) for choosing
the worker-driven strategy:

zi=1-— e~ (€(I=fi)+ri fi) (13)

where f; = Il_b\ € [0, 1] is the ratio of answer validations.
This score mediates the trade-off between the error rate €; and
the ratio of spammers r; by the ratio of answer validations
fi- When the ratio f; is small, the ratio of spammers has
less influence and the error rate is the dominant factor. When
the ratio f; is large, the ratio of spammers becomes a more
dominant factor.
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5.4.2 Hybrid answer validation procedure

Instantiating the general answer validation process described
in Sect. 3.2, the answer validation process that incorporates
both uncertainty-driven and worker-driven expert guidance
is defined in Algorithm 1.

Algorithm 1: Hybrid answer validation process

input :ananswerset N = (O, W, L, M),
a validation goal A,
an expert efforts budget b.

output: the result assignment d.

// Initialization

eg < (0~ O,0€ 0);

Py < conclude(N, eq);

do < filter(Py);

i,z0 < 0;

end <« false;

while not A A i < bA not end do

N7 I S

// (1) Select an object to get feedback
7 x < random(0, 1);
8 if x < z; then

// Choose the worker-driven strategy
9 0 < selecty, ({0’ € O | ¢;(0)) = O))
10 else
// Choose the uncertainty-driven strategy

1 0 < select, ({0 € O | ¢;(0") =0));

// (2) Elicit expert input
12 Elicit expert input / € L on o;
13 € =1—-U;_1(0,1); // Calculate error rate ¢

// (3) Handle spammers
14 Detect spammers;
15 if x < z; then Handle detected spammers
16 Calculate ratio of spammers 7;;

e (1= L Yrs L

o | =1- G,

// (4) Integrate the answer validation
18 eip] < (01 A o'+ ej(0)),0' € 0,0 #0);
19 P; 11 < conclude(N, e;11);
20 diy) < (o' v filter(Pi11),0 € 0,€j11(0') = O N0 > ej41(0)).0 €

0,100 #0);
21 i <—i+1;

// (5) Compute the early termination condition
22 | end < early_terminate(P;, Py, d;, dit]. €j, €j+]);
23 return d;;

Selection of an object for which expert feedback shall be
sought is done either by the worker-driven or the uncertainty-
driven selection strategy (select,, or select,). The actual
choice is realized by comparing factor z; to a random
number (line 8), thereby implementing a roulette wheel selec-
tion [18]. Thus, even if factor z; assumes a large value,
there is a chance that the uncertainty-driven strategy is cho-
sen. For each selection strategy (worker-driven at line 9 and
uncertainty-driven at line 11), we consider the set of objects
that have not been validated by the expert. This concludes
the first step of our algorithm.

Asasecond step (line 12—13), we elicit the expert feedback
for the object selected in the first step (line 12). Based on the
validation by the expert, the error rate is computed (line 13)
following Eq. 12.

Next, as a third step (line 14—17), we focus on the han-
dling of spammers. First, we run the method for detecting
faulty workers (line 14). The workers detected in this step
are handled if the worker-driven strategy had been selected
(line 15). Further, the ratio of unethical workers r; is calcu-
lated to compute score z;11 (lines 16—17), used in the next
iteration to choose between the selection strategies.

The aim of the fourth step (line 18-21) is to integrate the
feedback and update the probabilistic model. Feedback is
integrated by updating the answer validation function e;
(line 18). For all objects for which an expert validation is
available, the answer validation function e;y; returns the
expert validation. Then, we compute the probabilistic answer
set P;41 with the function conclude that implements prob-
abilistic answer aggregation as defined in Sect. 4 (line 19).
The general idea is to update the factor graph with the new
expert validation and recompute the probabilistic model.
Next, we update the deterministic assignment set function
d;+1 (line 20). This is done as follows: For objects for which
no expert input has been received, the correct assignment
is estimated based on the probabilistic answer set using
the function filter, as discussed in Sect. 3.2. The filtered
assignments, together with the answer validations, define the
deterministic assignment assumed to be correct at this vali-
dation step.

Finally, we also update the early termination condition by
running the early_terminate function (line 22), which will
be discussed in Sect. 6.

5.4.3 Implementation

A practical implementation of the hybrid answer validation
process must cope with the complexity of the computation
of the information gain and the expected spammer score for
each object [as part of step (1)]. Therefore, to achieve an
efficient implementation, we consider two techniques:
Parallelization The computations of the information gain and
the expected spammer score for different objects are indepen-
dent and, therefore, can be executed in parallel for all objects.
Sparse matrix partitioning Due to the implied cognitive load,
workers answer a limited amount of questions. Hence, the
answer matrix is sparse when having a large number of
objects [26]. We use sparse matrix partitioning [30] to divide
a large answer matrix into smaller dense ones that fit for
human interactions and can be handled more efficiently.

6 Scalability and robustness considerations
Having introduced our general solution to answer validation,
this section turns to scalability and robustness considerations

that are relevant for any instantiations of answer validation
in practice.
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So far, we considered a twofold termination condition for
answer validation: either the validation goal is reached or the
expert budget has been utilized, see Problem 1. However, we
can further improve scalability of the approach by also ter-
minating answer validation upon convergence of the results.
Intuitively, expert feedback dramatically reduces the overall
uncertainty of the factor graph model in the beginning of the
validation process, but its effects may become negligible at a
later point in time. In that case, it is reasonable to terminate
the validation process, even if the validation goal has not yet
been reached and there is still some effort budget remaining.
The latter may be saved without lowering the result qual-
ity. In Sect. 6.1, we discuss how to implement such early
termination.

Furthermore, it is commonly assumed that the answers
provided by the validating expert are correct, see Sect. 2.
Yet, in practice, expert input may contain mistakes, caused
not by the lack of knowledge of the expert, but stemming
from the interaction as part of the validation [57]. In other
words, if such erroneous answer validations are detected,
they can be fixed by the expert themselves. In Sect. 6.2, we
elaborate on how to handle potentially erroneous expert input
and eliminate them with little extra effort.

6.1 Early termination of the answer validation process

In Algorithm 1, we considered an option for early termination
based on an explicit termination predicate end, for which the
truth value is determined by a function early_terminate.
Below, we consider different practical realizations of this
function that indicate convergence of the answer validation
process.

6.1.1 Uncertainty reduction rate

Our first convergence indicator is grounded in the effect of
expert feedback on the uncertainty reduction. At the begin-
ning of the answer validation process, the uncertainty of the
probabilistic answer set is high, since there are many con-
flicting labels from the workers but little feedback from the
expert. New expert input is thus highly beneficial as its infor-
mation can be propagated widely to resolve many conflicts
in the probabilistic answer set. While more expert feedback
is received, the overall uncertainty is reduced, so that expert
input has limited potential to be propagated.

Formally, after each validation step in Algorithm 1, the
probabilistic answer set P; becomes P; 1. The reduction rate
of uncertainty can be measured by the ratio of the uncertainty
difference before and after the validation:

H(P;)) — H(Pi11)
H(P;)

(14)
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When the process converges, the uncertainty reduction rate
reaches zero. The termination predicate end, thus, may be
set to true when the rate levels off, e.g., < 10%.

6.1.2 The number of changes

While the previous indicator is based on the probabilities of
correctness of the labels, this indicator only concerns the label
with the highest likelihood to be correct. This is motivated
by the fact that one may be interested in the deterministic
assignment rather than the probability values themselves.
The purpose of this metric is to measure the change of the
deterministic assignment in two consecutive feedback itera-
tions. In some cases, the overall uncertainty is reduced but
the deterministic assignment remains unchanged. For exam-
ple, assume that for some object o it holds Pr(o = T) = 0.8
and Pr(o = F) = 0.2. If after integrating expert input, we
have Pr(o = T) = 0.9 and Pr(o = F) = 0.1, then the
uncertainty of object o is indeed lower, but its most probable
label remains unchanged.

After a considerable number of iterations, if the number
of changes is zero or insignificant, we can conclude that the
deterministic assignment is likely to be correct. Formally,
after each iteration of Algorithm 1, the deterministic assign-
ment d; becomes d;1, and then the number of changes in
the deterministic assignment can be measured by:

> Lioytdisi o) (15)

0e0

The termination predicate end may be set to true, if the
number of changes is less than a predefined threshold (e.g.,
10%) within a number of (consecutive) iterations.

6.1.3 The number of good predictions

Another useful indicator for a high-quality answer set is the
ability to instantiate label assignments that are matched with
expert input. Intuitively, if the instantiated label matches the
label assigned by an expert, the probabilistic model is in good
state, regardless of its level of uncertainty. Formally, in each
iteration of Algorithm 1, the model derived a correct label
assignment if:

ei(0) = d;(0). (16)

Again, this information can be used to set the termina-
tion predicate end. For instance, it is set to true if more than
a predefined number of (consecutive) correct label assign-
ments are derived.
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6.1.4 Precision improvement rate

The above measures are “indirect” indicators of the process
convergence. A direct way to measure the convergence is
to rely on the precision of the model itself. However, in
order to compute the precision of a deterministic assign-
ment, we need to known the ground truth, which is not
available. Therefore, we propose a method to estimate the
precision of the deterministic assignment based on k-fold
cross validation [58]. Informally, we randomly partition the
expert-validated objects into “test” and “training” sets and
measure the correctness of the labels of the objects in the
test set constructed using the expert-validated objects in the
training set.

Formally, at step i in Algorithm 1, given the set of val-
idated objects D = {o € O | ei(0) # ©}, we divide
it into k equal size partitions D = Dy U ... U Dy. We
repeat the following procedure k times: (i) consider the
objects of the jth partition D; as non-validated, (ii) calculate
P;j = conclude(N, D \ Dj) and d} = filter(P;), (iii) com-
pare the calculated labels for the objects in D; based on d}
with the correct labels already given by the expert to compute
the “partial” precision:

{o € Dj | d’(0) = ei(0)}]
Ap, =
! [D;]

a7)

For an accurate estimation, we take the average of k runs
as an overall estimation of the model precision at step i:

k
Zj:] ADj

A==

(18)
Then, we can calculate the rate of precision improvement at
step i as follows:

Ai — Ay ) (19)
Aj-

While conducting answer validation, the precision improve-
ment rate should converge to zero. Yet, with more expert
input available, this indicator becomes more costly to com-
pute. In practice, therefore, this indicator may only be used
periodically in order to decide on early termination of the
answer validation process.

6.2 Erroneous answer validations

In order to achieve robustness of answer validation, we con-
sider the possibility of erroneous expert input (i.e., the case
that the expert gives incorrect feedback). In particular, we dis-
tinguish two cases: (1) The crowd is right, i.e., the aggregated
answer is correct, whereas the expert validation is wrong; (2)

the crowd is wrong, but the answer validation is also wrong.
As illustrated later in our evaluation, case (1) is unlikely to
happen since a validating expert is confronted with statistics
about crowd answers, so that a decision to deviate from the
aggregated answer is typically taken well-motivated. Case
(2), however, is more likely to happen since an expert is more
likely to confirm the aggregated answer than to deliberately
deviate from it.

We cater for erroneous answer validations as in case (2) by
augmenting the answer validation process with a lightweight
confirmation check. This check is triggered after a fixed num-
ber of iterations of the validation process and proceeds as
follows. At step i,

(D) Forevery object o for which expert input has been sought,
a deterministic assignment d’_, is constructed based on
the answer set N and the expert validations e from which
the expert feedback for o has been excluded.

(I) The label for object o ind’_, is compared with the respec-
tive expert feedback e(0). If d’_,(0) # e(0), then e(0) is
identified as an erroneous answer validation as in case

2).

The intuition of this approach can be described as follows.
At the ith iteration, when the expert provides feedback for
the object o, the deterministic assignment constructed at this
step, d', gives an incorrect label for object o (d’ (o) is incor-
rect), while the input by the expert is also incorrect (e(0)
is incorrect). However, at a later iteration, say the jth step
(j > i), we run the check for erroneous answer validations.
The deterministic assignment constructed at this step, d’,,
is based on a larger collection of expert validations, as it also
incorporates the input received between the ith and the jth
step. Now, it may turn out that the deterministic assignment
at the jth step returns a different label compared to the ith
step, i.e., dio * d'. If so, the label return by di,, is consid-
ered to be correct for object o, since d, is supposedly more
trustworthy. Later, our evaluation will demonstrate that this
simple check is highly effective, which makes the answer
validation process robust against erroneous expert input.

7 Evaluation

This section presents an empirical evaluation of the proposed
approach using both real-world and synthetic datasets. We
first discuss the experimental setup (Sect. 7.1), before turning
to an evaluation of the following aspects of our solution:

— The runtime performance of the presented approach
(Sect. 7.2).

— The benefits of integrating expert input as a first-class
citizen in the answer aggregation (Sect. 7.3).
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— The performance of the factor graph method for answer
aggregation (Sect. 7.4).

— The effectiveness of the detection of faulty workers
(Sect. 7.5).

— The effectiveness of hybrid expert guidance (Sect. 7.6).

— The effectiveness of early termination methods (Sect. 7.7).

— The robustness of the approach when experts provide
erroneous input (Sect. 7.8).

— The cost-effectiveness of expert-based answer validation
(Sect. 7.9).

7.1 Experimental setup
7.1.1 Datasets

Our experiments have been conducted on five real-world
datasets and synthetic datasets. The real-world data provides
us with a realistic crowdsourcing setup by means of four
micro-task problems that span different application domains,
such as image processing (dataset people (ppl)) or sentiment
analysis (dataset product (prod)). Statistics on the sizes of the
real-world datasets are given in Table 3. The ground truth is
provided by experts in the field beforehand, and the valida-
tion process is simulated by taking the validation from expert
input according to the used guidance strategy. We further
employed synthetic datasets to explore parameter spaces and
understand the influence of data characteristics on the per-
formance of the algorithms. More details on both real-world
and synthetic datasets are given in “Appendix A.”

7.1.2 Metrics

In addition to the uncertainty of the probabilistic answer set
defined in Equation 3, we relied on the following measures:
Relative expert efforts (E;) is the number of expert feedbacks
i relative to the number of objects n in the dataset, i.e., E =
i/n.

Precision (P;) measures the correctness of the deterministic
assignment at each validation step.

Let g : O — L be the correct assignment of labels for all
objects. Then, the precision of the deterministic assignment
d; at the ith validation step is

Table 3 Statistics for real-world datasets

Dataset Domain # Objects # Workers # Labels
ppl Image processing 192 43 15

obj Image processing 453 89 20

prod Sentiment analysis 110 35

arg Knowledge extraction 326 72 7

bb Image tagging 108 39
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Percentage of precision improvement (R;) is a normalized
version of precision as it measures the relative improvement.
If the precision at the ith validation step is P; and the initial
precisionis Py, then the percentage of precision improvement
is

P — P
)
1— Py

7.1.3 Experimental environment

All experimental results have been obtained on an Intel Core
i7 system (3.4GHz, 12GB RAM). In addition, it is worth not-
ing that except the experiment on early termination condition
in Sect. 7.7, others experiments are run without terminating
the validation process early as we want to evaluate the vali-
dation process thoroughly.

7.2 Runtime performance

Since answer validation entails interactions with the expert, it
should show a good runtime performance. In this experiment,
we studied the effects of the number of objects on the runtime
performance. The reported time is the response time of the
system during one iteration of Algorithm 1, i.e., the time the
expert has to wait for the selection of the next object after
providing input.

Figure 4 shows the results obtained as an average of 100
runs when using matrix partitioning (see Sect. 5.4) and the
plain algorithm (Serial) or its parallel version (Parallel).
Increasing the number of objects from 20 to 50, which are
typically found in crowdsourcing platforms [22], increases
the response time. However, even for 50 objects, the response
time is less than 1.5 second when using parallelization, which
enables immediate interactions with humans.

Further, we evaluate the start-up time required due to
matrix partitioning before running the actual answer vali-
dation process (which does not affect the response time for
the expert). We conducted an experiment with synthetic data,
16,000 questions posted randomly to 1000 workers. The spar-
sity of the matrix is simulated by the maximal number of

O Parallel [« eevveennineannnd

Time(s)

20 30 40 50
Number of objects

Fig. 4 Response time
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Table 4 Matrix ordering

#Objects Time (s)
20 3.1
30 4.3
40 7.5
50 9.8

questions per worker which varies from 20, 30, 40, 50. Table 4
shows that the start-up time is a few seconds.

7.3 Expert validation as first-class citizen

To study the benefits of integrating expert input as a first-class
citizen instead of considering it as ordinary crowd answers,
we compare two ways of using expert feedback. First, each
expert input is a common crowd answer in the answer aggre-
gation (Combined). Second, each expert input is used to
validate crowd answers as proposed in our approach (Sep-
arate).

Figure 5 shows the results in terms of expert effort and
precision improvement for the prod dataset (results for other
datasets are omitted as they exhibit similar characteristics).
The Separate strategy outperforms the Combined strategy
regardless of the expert efforts. This is expected—even
though both approaches leverage the expert feedback, the
precision of the Combined strategy is lower since expert
answers are seen as equally important as those of the work-
ers. Using the Separate strategy, expert input is deemed most
important, overruling incorrect worker answers. As such, the
results highlight the benefits of our method to integrate expert
input as a first-class citizen when aggregating crowd answers.

7.4 Factor graph for answer aggregation

We evaluate the factor graph model w.r.t the estimated assign-
ment probability of the correct labels. For each object, answer
aggregation should assign a higher probability to correct label
than to incorrect ones. In the experiment, we keep track of
the correct labels for objects and their associated probabili-
ties while varying the expert efforts (0, 15, 30%). Figure 6
presents a histogram of the probability distribution in the
bb dataset (similar results, omitted for brevity, have been
obtained for the other datasets). For each object 0o, we mea-
sure the assignment probability ¢/ (o, [) of its correct label /
assigned by the factor graph model. If the assignment proba-
bility of the label for object o is in a probability bin, the count
for that bin is increased.

We note that the number of correct labels which have a
probability less than 0.5 is overall small. Still, around 6%
of correct labels have a probability less than 0.2 when no
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expert input has been integrated (expert effort 0%), meaning
that answer aggregation without validation may assign a very
low probability for some of the correct labels. Increasing the
amount of expert input, the probability range covering most
of the correct labels shifts from the 0.5 bin to higher probabil-
ity bins. Hence, answer aggregation with more expert input
is able to assess the assignment probabilities of the correct
labels better than without expert input.

7.5 Effectiveness of the spammer detection

Since our guiding technique includes the detection of faulty
workers (e.g., spammers, sloppy workers), it is necessary
to analyze the technique with different detection thresholds.
Since real datasets do not have information about who is
spammer, we resort to using synthetic data with 20 workers
that assign one of two labels to 50 objects. We then vary the
threshold 7, to detect uniform and random spammers from
0.1 to 0.3 while keeping the threshold 7, for sloppy work-
ers at 0.8. We also vary the validation effort from 20% to
100%. We measured the precision (ratio of correctly identi-
fied spammers over all identified spammers) and recall (ratio
of correctly identified spammers over all spammers) of the
detection.

Figure 7 (average of 100 runs) illustrates that, as the num-
ber of validations increases, both precision and recall of
spammer detection increase. The confusion matrices used
to detect spammers are built based on the answer valida-
tions. Hence, with more expert input, the confusion matrices
better reflect the reliability of the workers. Also, we observe
the trade-off between precision and recall as we increase
the spammer score threshold. An increased threshold yields
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lower precision, but higher recall. Striving at a balance, we set
the detection threshold to 0.2 in the remaining experiments.

7.6 Effectiveness of expert guidance

Next, we evaluate the effectiveness of our approach for reduc-
ing expert efforts on real-world datasets

7.6.1 Relation between uncertainty and precision

We first verified the underlying assumption of our techniques
to expert guidance, i.e., that the uncertainty of a probabilistic
answer set, quantified as introduced in Sect. 4.2, is corre-
lated to the actual precision of the deterministic assignment.
We perform the uncertainty-driven expert guidance on a syn-
thetic dataset, in which we vary the number of workers from
20 to 40, the percentage of spammers from 15% to 35%,
and the reliability of the workers from 0.65 to 0.75. For each
combination setting of the parameters, we guide the answer
validation until precision reaches 1.0 and report the uncer-
tainty of answer aggregation along the way.

Figure 8 depicts the results in terms of the relation
between precision and normalized uncertainty (i.e., divid-
ing the uncertainty values by the maximum uncertainty
obtained in the run). We observe a strong correlation between
both measures, which is further supported by the Pearson’s
correlation coefficient of —0.9257. Hence, the measured
uncertainty is a truthful indicator of the result correctness.

7.6.2 Guidance strategies

Turning to the guidance strategies, we mimic the validating
expert by using the ground truth provided in the datasets until
precision reaches 1.0. We compare the proposed approach
(hybrid) with a method that implements the function select
in the validation process by selecting the most “problematic”

@ Springer

object (baseline). Intuitively, we measure how ‘“problem-
atic” an object is by the entropy of its probability (see
“Appendix B” for a formal definition). This baseline method
is better than random selection since it strives for the objects
that are on the edge of being considered right or wrong, which
are the major sources of uncertainty in the answer set.

Figure 9 shows the results for the first three real-world
datasets (ppl, prod, and arg), the remaining dataset is dis-
cussed “Appendix B.” The approach developed in this paper
(hybrid) clearly outperforms the baseline method. For exam-
ple, in the ppl dataset, our approach leads to a precision above
0.9 with expert input on only 10% of the objects. The baseline
method requires expert validation of around 40% to reach the
same level of precision.

The relative improvement of precision for different expert
effort levels is illustrated in the last plot in Fig. 9. For
instance, for 15% expert efforts, we achieve an improvement
of precision of at least 50% for all datasets. Also, precision
improvement is larger for smaller amounts of expert efforts,
which emphasizes the effectiveness of our guidance strategy
in particular for scenarios with a limited effort budget for the
validation.

We further explored the effectiveness of our approach in
relation to different aspects of a crowdsourcing setup using
synthetic data. While the detailed results of these experi-
ments are available in “Appendix B,” we summarize the main
findings as follows. The presented approach outperforms
the baseline method in terms of effectiveness (precision vs.
expert effort) independent of (1) the number of possible
labels, (2) the size of the crowd, (3) the worker reliability, (4)
the difficulty of the questions, and (5) the presence of spam-
mers. This indicates that the improvements obtained with the
presented approach are not specific to particular crowdsourc-
ing setups, but generalize to a wide range of applications.

7.7 Benefits of early termination

In this experiment, we study the benefits of terminating
the validation process early. The experiment is conducted
on the ppl dataset (similar results are obtained for other
datasets). The following indicators are studied: (URR) uncer-
tainty reduction rate—the relative difference of uncertainty
of answer aggregation between two consecutive feedbacks,
(CNG) the number of changes—the number of different
deterministic assignments between two consecutive feed-
backs (presented in percentage over the total number of
objects), (PRE) the number of good predictions—the per-
centage of times the expert feedback agrees with the deter-
ministic assignment (presented as histogram), and (PIR)
precision improvement rate—the relative difference of the
estimated precision between two consecutive feedbacks.
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The characteristics of these indicators are shown in
Fig. 10. The X-axis and Y-axis are expert effort and precision
improvement, respectively. The secondary Y-axis presents
the values of these indicators. It can be clearly seen that
the indicators are matched with the convergence status of
the validation process. The expert can monitor and decide
to terminate the process early for saving effort while only
sacrificing small precision. For instance, using the URR indi-
cator, we can stop the process early at 50% of expert effort
which already achieves a large improvement of precision
(over 80%). In other words, the expert can decide to terminate
the process if the URR value is less than 10%.

7.8 Robustness against erroneous exert input

In Sect. 6.2, we discussed two types of erroneous answer
validations, the expert wrongly deviates from the aggregation
of crowd answers or wrongly confirms it, along with a simple
confirmation check to detect mistakes of the second type.

7.8.1 Types of erroneous answer validations

To analyze which of the two erroneous validations is more
likely to occur, we performed a preliminary study with five
expert giving feedback on crowd answers for the two datasets
ppl and obj. Their input was verified against the ground truth.

In general, the number of erroneous answer validations is
small. For the ppl dataset, all experts provide correct input.
For the obj dataset, 10% of the expert input is erroneous. For
these cases, we find that, throughout, the respective answer
from the crowd workers is also incorrect. This indicates that
indeed, the wrong confirmation of an aggregated answer is
the more likely type of mistake.

Expert effort (%) Expert effort (%)

Table 5 Percentage of detecting erroneous expert input

Dataset p : probability of mistake

0.15 0.20 0.25 0.30
ppl 100 100 92 86
obj 100 93 87 82
prod 100 100 93 88
arg 100 95 89 77
bb 100 100 94 82

7.8.2 Detecting erroneous answer validations

Next, we evaluate the effectiveness of the confirmation check
to detect erroneous answer validations by simulating expert
mistakes. For a given probability p, we change the expert
input from a correct validation to an incorrect validation.
The experiment is conducted on all real-world datasets with
the hybrid selection strategy and when triggering the confir-
mation check after each 1% number of total validations.

Table 5 shows the percentage of detected mistakes when
increasing the probability of an expert mistake. Across all
datasets, the vast majority of artificially inserted mistakes is
detected. For example, even with a relatively high probability
for erroneous answer validations (p = 15%), all mistakes in
expert input are detected.

7.8.3 Expert guidance and erroneous answer validations

Finally, we study the relation between expert effort and pre-
cision in the presence of expert mistakes. The confirmation
check is run after each 1% number of total validations. Upon
each detected mistake, we allow the expert to reconsider the
respective input; i.e., increment the expert effort by 1. The
experiment is conducted using the real-world dataset obj,
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for which the experts indeed made mistakes. To aim for the
worst-case scenario, we use the validations from the expert
with the most mistakes.

As illustrated in Fig. 11, the precision obtained with the
hybrid strategy is still much better than the baseline method.
Moreover, the actual obtained precision values are close to
those obtained without erroneous answer validations (see
Fig. 18 in “Appendix B”). This result indicates that our
approach is robust against potential mistakes in expert input.

7.9 Cost trade-off: experts vs crowd workers

In the previous experiments, we have evaluated different
aspects of our guiding approach for reducing expert efforts.
In this final set of experiments, we aim to show that our
approach is able to achieve high precision within a reason-
able cost for different crowdsourcing setups. Technically, we
compare two strategies: (i) EV, our approach that uses an
expert to validate crowd answers, and (ii) WO, we use only
the crowd and add more crowd answers with the assumption
that this will increase the correctness of the answer set.

7.9.1 Cost model

Our cost model for this experiment covers monetary cost and
completion time.

Monetary cost We assume that the cost of an expert input
is O-times more expensive than an answer by a worker. To
estimate 0, we first consider the answer cost of a crowd
worker via the average wage on AMT, which is just under
2.00$/h [59]. For the cost of an answer by an expert, we con-
sider salary standards of traditional workers and select the
most expensive case, i.e., 25%/h, the average wage in Lux-
embourg [68]. Then, the ratio # between the cost per answer
of an expert and a worker is about (25%/h)/(2$/h) = 12.5.

Completion time Crowdsourcing in practice is often sub-
ject to a time constraint (e.g., 1 hour for simple tasks on
AMT). In our setting, the completion time involves (1) crowd
time, time for the crowd workers to answer and (2) expert
time, time for the experts to provide input for all the questions
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that can be covered by the budget. Crowd time is often con-
sidered to be constant, since workers work concurrently [75].
Hence, the completion time is primarily determined by the
expert time, which is derived from the number of expert
inputs (assuming constant validation time for all questions).

Below, we consider a setting where m workers have been
hired to answer n questions. With ¢q as the average cost of
asking crowd workers per object, the initial cost for deriving
the answers is n x ¢g. To improve the quality of the answer
set, two strategies may be followed. First, an expert can be
asked to validate i answers (the EV approach), which incurs
an additional cost of @ x i orintotal Py = 0 X i+n X ¢y.
Second, the workers can be asked to answer more questions,
which increases the average cost per object to ¢ > ¢g. Then,
the total cost of the WO approach is Pyo = n X ¢.

7.9.2 Trade-off with undefined budget

In general, there is a trade-off between the cost incurred by a
crowdsourcing task and the result correctness. Higher cost,
spent on answer validation by an expert or additional crowd
answers, yields higher correctness of the aggregated answers.
We analyze this trade-off to determine under which condi-
tions hiring only additional crowd workers (WO approach) is
less beneficial than hiring a validating expert (EV approach).
Figure 12 illustrates the relation between the invested cost,
normalized over the number of objects (Pyo/n = ¢ and
Pry/n = ¢9 + 6 x i/n), and the obtained improvement
in precision for different expert-crowd cost ratios 6 =
12.5, 25, 50, 100 and initial costs ¢p9 = 3, 13.

The EV approach yields higher precision improvements
for the same costs compared to the WO approach with differ-
ent values of ¢g and for 6 = 12.5, 25, 50. With ¢ = 3 and
0 = 25, for instance, to improve the precision by 80%, the
EV approach requires a cost of 22 per object, while the cost
of the WO approach is 50. Also, the WO approach does not
achieve 100% precision even under high costs, due to faulty
workers. Having more answers from these types of workers
only increases the uncertainty in the answer set.

In sum, if high precision is desired, the EV approach yields
better overall results. For instance, for a realistic setup with
¢o = 13 and 6 = 12.5, to achieve 100% precision improve-
ment, our approach has a cost per object of 25. The WO
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Fig. 12 Collect more crowd answers versus validate more
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approach, in turn, has a cost of 100, but is still not able to
achieve 100% precision improvement. When expert input is
very expensive (§ = 100), increasing only the number of
crowd workers yields better results. However, we consider
an expert-crowd cost ratio of 100 to be unlikely in practice.

7.9.3 Trade-off with budget constraint

The results above indicate that, without budget constraints,
the EV approach achieves higher precision with lower cost
compared to the WO approach regardless of ¢9. However,
using a fixed cost, the precision obtained with the EV
approach depends on the value of the initial cost ¢»g. We there-
fore analyze how to achieve the highest precision under a
fixed budget b using the EV approach. That requires deciding
how much of an overall budget should be spent on retrieving
crowd answers. Finding an optimal value of ¢ thereby deter-
mines the best budget allocation between the expert and the
crowd workers. In practice, the budget b is bounded by the
cost of using only an expert, i.e., n < b < 6 x n. To param-
eterize the budget spent on expert feedback, we formulate it
asb = p x 0 x n,where p € [1/6, 1].

Figure 13 illustrates the result correctness in terms of pre-
cision for different allocations of the budget to crowd workers
(¢o/(p x 0)), when varying the ratio p and setting 6 = 25.
As areference, the figure also includes the result for the WO
approach (crowd cost is 100%), which is a special case of the
EV approach where all the budget is spent on crowd workers,
ie.,0 x i =0and ¢g = b/n.

We observe that for each ratio p, there is an allocation point
(¢po) that maximizes precision. For instance, for p = 0.4,
maximal precision is obtained with 62% of the budget being
spent on crowd workers and 38% of the budget used for
validation by an expert. Based on this analysis, we can there-
fore select the optimal allocation for a specific setup. Further,
except for the case with little budget (o = 0.2), a distribution
of the budget between the crowd workers and the validat-
ing expert leads to maximal precision, which highlights the
benefits of integrating answer validation in a crowdsourcing
setup.

7.9.4 Trade-off with budget and time constraints

Next, we consider a setup where the best budget allocation
should be determined under both, budget and time con-
straints. Figure 14 extends the plot of the relation between the
result precision and the budget allocation with the comple-
tion time captured by the amount of expert input (y2-axis).
In this figure, point B denotes the intersection between the
lines representing the time constraint (green dashed line) and
the completion time (orange solid line). Based on point B, a
region in which the time constraint is satisfied is identified,
which, in Fig. 14 is bounded by the range [C, 100] in terms

-

=3
o
@
°
1
I
W

Precision
o

o » o

= & o

\?)
n

r o
o

e
3
G

L L L
20 40 60 80 100
Crowd cost (%)

Fig. 13 Allocation of fixed budget

—&— Precision
== Time

p=04

Precision
s
Expert feedback (Time)

Fig. 14 Balance with time and budget constraints

of the allocation of the budget to crowd workers. For this
region, the maximum precision is denoted by point A. As
a result, we have determined the budget allocation (x-value
at point A) that yields the highest precision when satisfying
both the time and budget constraint.

Finally, we analyzed the effects of faulty workers, worker
reliability, and question difficulty, on the cost model and the
handling of the trade-off. The details of these experiments
are provided in “Appendix C.” We found that the presented
approach of using an expert to validate crowd answers, in
most cases, outperforms an approach that relies solely on
crowd workers. Exceptions to this trend are observed only in
borderline cases, e.g., if the budget is extremely small (mean-
ing that only a small number of crowd workers can be hired in
the first place) and experts are much more costly than crowd
workers, i.e., & > 100 (which is very unlikely in practice
as this means the tasks are overpaid or too difficult even for
crowdsourcing). Hence, we conclude that the integration of
an expert allows for more efficient crowdsourcing for a wide
range of applications.

8 Related work
8.1 Crowdsourcing

We already discussed that crowdsourcing tasks can be cate-
gorized into four main types: discrete, continuous, partial-
function, and similarity tasks. We note that all of these
different types of tasks have practical relevance. Discrete
tasks [21,23,46,52] are used, for example, in document
labeling, image tagging, and relevance feedback problems.
Continuous tasks [72] are commonly found in participatory
sensing and ranking problems. Partial-function tasks are the
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generalized form of association rule problems [1]. Finally,
similarity tasks have proved valuable in record linkage and
entity resolution problems [19].

One of the inherent aspects of crowdsourcing is cost,
including monetary costs and completion time. Several stud-
ies focused on minimizing cost when posting tasks [4,29,75].
Some other works study different optimization objectives
such as diversity, sparsity, and confidence [49]. In this paper,
we leverage existing works on task-posting mechanism as
a black box; i.e., all of the worker answers are collected
in advance before being considered by our approach. The
focus of our work is the guidance for minimizing a different
aspect of crowdsourcing, i.e., the cost of validating crowd
answers. As a side effect, given a limited budget constraint,
our approach can predict the optimal strategy of distributing
the cost for the validation and for the crowd to achieve the
highest output quality (see Sect. 7.9).

8.2 Automatic quality control

Regarding quality control in crowdsourcing, there is a
plethora of automatic approaches that target an assessment of
the worker quality, including expertise characterization [31]
and spammer detection [38]. Crowd workers can be charac-
terized based on their level of expertise and answer strategy,
for instance, as reliable workers, normal workers, uniform
spammers, and random spammers [31,70]. In particular, the
behavior of spammers has received much attention and is dis-
cussed thoroughly in [10], since the proportion of spammers
may be up to 40% of workers in online communities [70].
Various method to detect and control spammers have been
proposed in the literature. [23] propose an EM-based algo-
rithm to detect spammers after crowd answers have been
collected. [35] use machine learning to detect spammers
using Naive Bayes. In [56], the authors propose a spammer
score to measure the likelihood that a worker is a spammer
based on the answers given by the worker. In this paper, we
propose a worker assessment mechanism that, compared to
previous approaches, takes a different angle to support the
expert validation process. In other words, none of the above
techniques can be directly applied to our setting that incor-
porates expert validation [29,49,70]. Moreover, our work
focuses on finding true labels via answer aggregation, ren-
dering post-processing analysis of worker performance, such
as worker profiling and disagreement analysis [65], out of
scope.

Complemented with a worker assessment mechanisms,
answer aggregation tries to find the hidden ground truth from
the answer set given by crowd workers. Answer aggregation
methods can be classified into two categories: non-iterative
and iterative approaches. Non-iterative approaches [38] use
heuristic methods to compute a single aggregated value of
each object separately. Iterative approaches [23,29] perform
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aseries of convergent iterations by considering the answer set
as a whole. Some further techniques exploit domain-specific
knowledge such as similarity between objects [6], which is
not always available in our generic crowdsourcing setting.
Despite the above efforts, the results of automatic quality
control are inherently uncertain, since they are heuristic-
based and there is no technique that performs well in the
general case [22]. To address this dilemma, the semiauto-
matic solution presented in this paper is to employ an expert
to validate crowd answers. However, none of the above aggre-
gation methods can be directly applied to incorporate expert
validation.

In addition, our answer aggregation method follows a dif-
ferent approach, in which we leverage a factor graph model
to capture the complex relations between workers, answers,
and labels. Factor graph models have been used in a crowd-
sourcing setting in [9,73]. Closest to our work is the work by
Demartini et al. [9] that targets the entity linking problem.
Despite the similarity in using the factor graph model, there
are various differences between our works. First, instead of
modeling the reliability of the workers as binary, we model
them as continuous values, which can capture the reliability
in a finer grain. Second, our factor graph also models the
expert feedbacks which helps in estimating the reliability of
the workers and correctness of the labels. In addition to these
fundamental differences, our work is geared toward large-
scale computation by relying on sampling for the probability
estimation.

8.3 Crowd-expert collaboration

While there is a large body of works on crowdsourcing, lit-
tle has been done regarding incorporating expert-generated
labels to the crowdsourcing tasks. Our approach is the first
to guide an expert in the validation of input obtained from
crowd workers. Although there are approaches for crowd-
sourcing that include experts, such as [20,27,28], we target
a different problem setting. In particular, Karger et al. [28]
rely on experts that know the reliability of crowd workers, a
premise that is not realistic in the general setting for crowd-
sourcing explored in this work, to prove the optimality of
their approach. Other works [20,27] focus on a related, but
fundamentally different problem. They target the identifica-
tion of correct labels for new objects based on the labels for
known objects, whereas we aim at validation, i.e., finding the
correct labels for known objects.

Despite sharing the goal of improving the quality of
crowdsourced data, our approach is orthogonal to other
work on quality improvement [25,62]. While we focus on
the integration of expert knowledge, it was also suggested
to use preprocessing mechanisms or additional statistical
information. In particular, Sarma et al. [62] decompose
crowdsourcing tasks to decrease the difficulty of questions,
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thereby improving the chance for workers to provide cor-
rect answers. Although such decomposition is useful for
large-scale data, it might render the answer matrix sparser,
which requires further customization [42,47,48]. Joglekar et
al. [25], on the other hand, measure the confidence interval of
worker error rates, making the classification of worker types
more fine-grained and thus the filtering of faulty workers
more accurate.

8.4 Truth finding

Given a set of data items claimed by multiple sources,
the truth finding (a.k.a. truth discovery) problem is to
determine the true values of each claimed item, with var-
ious usages in information corroboration [15], and data
fusion [13]. Similar to our crowdsourcing setting, existing
work on truth finding also models the mutual reinforc-
ing relationship between sources and data items, e.g., by a
Bayesian model [79], maximum likelihood estimation [71],
and latent credibility analysis [51]. In contrast to our setting,
these techniques incorporate prior knowledge about various
aspects of the source and the data, such as the dependence
between sources [11] and the temporal dimension in evolv-
ing data [12]. As such, these techniques cannot be directly
applied to our solution (workers perform the tasks individ-
ually, objects do not evolve over time). To the best of our
knowledge, there is no work on employing answer valida-
tion by experts to check the results of automatic techniques.
Therefore, our work on guiding validation effort can be tai-
lored to the truth finding settings as well.

8.5 Recommendation systems

Close to our work is research on recommendation systems.
Here, the core problem is, given an existing set of user ratings
for particular items, to recommend one of these items that
best fit a particular user in terms of information content [16].
This problem is similar to ours in the sense that we also select
the objects with best information content (i.e., that yield the
maximal uncertainty reduction) for answer validation. How-
ever, the underlying models of the two settings are completely
different. In recommendation systems, the information of an
item is measured by the notion of similarity: Similar users
would have similar preferences on similar items and vice-
versa [60]. Whereas, this similarity assumption does not exist
for workers and objects in crowdsourcing. Moreover, there is
a also large body of work on recommendation systems study-
ing malicious users [36], who provide untruthful ratings or
reviews to manipulate the recommendation output. Although
many detection techniques have been proposed, they cannot
be applied in our context since they depend on the applica-
tion domains and contextual features [50]. Most importantly,
there is no method making use of validation input for iden-

tifying malicious users. As a result, our work on using a
validating expert to handle spammers in crowdsourcing can
be tailored for recommendation systems.

8.6 Guiding user feedback

Guiding user or expert feedback has been studied in differ-
ent contexts. In the field of data integration, [24] proposed
a decision-theoretic framework to rank candidate matches
for answer validation in order to improve the quality of a
dataspace. Focusing on matching of data schemas in a net-
work setting, [45] presented a reconciliation algorithm that
leverages expert input. [74], in turn, proposed an active-
learning-based process that requests expert input to help
training classifiers in order to detect and repair erroneous
data. Similar to these works, we rely on models from the
fields of decision theory and active learning [41,61]. Despite
the similarities in the applied models, there are two main
differences between the aforementioned approaches to user
guidance and the method presented here. First, in the above
domains (data integration, schema matching), input stems
from automatic tools, which renders it deterministic and
traceable. In contrast, our methods have to cope with human
input, which is unreliable, potentially non-deterministic or
even malicious. Second, existing guidance methods aim at a
different goal, which means that measures for the benefit of
expert input are highly domain dependent (e.g., the approach
in [24] is purely driven by the size of query results and inde-
pendent of the source of user input). Our method is tailored
to the specific characteristics of crowdsourcing scenarios.
An important problem in guiding user feedback is when to
stop asking for feedback. Various works in the field of active
learning[37,40] have studied this problem. [40] proposed a
stopping condition based on an estimation of performance
using held-out labels and showed that this method was able
to provide reliable estimates of the quality. [37] compared
various stopping conditions based on performance estimation
and illustrated that there are various factors that can affect the
quality of the estimation. In our work, by leveraging the factor
graph, we are able to propose different stopping conditions
such as uncertainty reduction rate, number of changes, which
are able to show different aspects of the quality of the results.

9 Conclusions

This paper proposed techniques to support an expert in vali-
dating answers obtained for a crowdsourcing task. Based on
the requirements identified for such techniques, we presented
an answer validation process that features two steps: answer
aggregation and expert guidance. The former relates to the
creation of a probabilistic model that assesses the reliabil-
ity of workers and the correctness of the crowd answers. By
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capturing the complex relations between the crowd, expert
feedbacks and answers using a factor graph model, we are
able to handle different types of crowdsourcing tasks, such
as discrete, continuous, partial-function, and similarity tasks.
We proposed different strategies for guiding an expert
in the validation: worker-driven, uncertainty-driven, and
a hybrid approach. The worker-driven method aims at
detecting and removing faulty workers from the commu-
nity, whereas the uncertainty-driven strives for a maximal
improvement of the answer correctness under the assump-
tion of truthful workers. Since both goals help to improve the
overall result, our hybrid approach combines both methods
with a dynamic weighting scheme. Our evaluation showed
that our techniques outperform respective baselines meth-
ods significantly and save up to 60% of expert efforts. Also,
in most cases, close-to-perfect result correctness is reached
with expert input for only 15% of the considered objects.

A Further details on datasets
Real-world data and task design

We have used real-world datasets from different domains,
namely people (ppl),object (obj), product reviews (prod),
argument (arg), and bluebird (bb). Opting for a generic
crowdsourcing setting, our task design uses the default
multiple-choice question template from AMT [23,32]. Fur-
ther complex, yet out of scope, task designs aiming for human
factors and exploiting domain-specific knowledge can be
found in [34]. In the ppl dataset, workers have to count the
number of people in an real-life image. The crowdsourcing
tasks of the obj dataset comprise counting the number of peo-
ple in digital-art picture. However, the questions of the obj
dataset are more difficult than the questions of the ppl dataset
as the people in digital-art picture are harder to recognize. In
the prod dataset, workers are asked to annotate whether a
review expresses positive, neutral or negative meaning. The
tasks for the arg dataset require the crowd workers to extract
claim and evidence related to a topic from articles from the
web. In the bb dataset, workers have to identify one of two
types of birds in an image. The similarity function—input of
our model—are simply computed by uniformly normalizing
the labels into natural number space. The ground truth/expert
validation is provided by experts in the field.

Synthetic data

We used several generated datasets. Since this data should
exhibit similar characteristics as real-world data, we consid-
ered several parameters for the data generation, in particular:
(i) n—the number of objects, (ii) k—the number of workers,
(iii) m—the number of labels, (iv) r—the reliability of nor-
mal workers, reflecting the probability of their answers being

@ Springer

correct, (v) o—the percentage of spammers in the worker
population and (vi) sim—the similarity between labels, sim-
ulated as a uniform distribution in [0, 1]. For the synthetic
dataset, we also simulated the ground truth (the correct labels)
for the objects. However, it is not known by the simulated
workers and only used to simulate the answer validations.

An important part of our synthetic data is the crowd sim-
ulation. We follow a practical guideline [22] to simulate
the different worker characteristics of the crowd. Specially,
we distribute the worker population into o% reliable work-
ers, 8% sloppy workers and y % spammers. According to a
study on crowd population at real-world crowdsourcing ser-
vices [31], we assign the default values of these parameters
as follows: « = 43, 8 = 32 and y = 25. In the experiments,
the distribution of the worker types is the same as discussed
unless stated otherwise.

B Evaluations of expert guidance (cont’d)

In the following experiments, we analyze the effects of the
guiding strategy with different crowdsourcing setup, includ-
ing the number of labels, the number of workers, worker
reliability, question difficulty, and the presence of spammers.
Since these experiments (except the experiment on ques-
tion difficulty) require changing the workers’ characteristics
(which is not known for the real-world datasets), they are
conducted using synthetic data.

We compare the results obtained with our guiding approach
(hybrid) to a baseline guiding method that selects the object
with the highest uncertainty to seek feedback (baseline):

select(O) = argmax H (0)

0e0

Our hybrid approach is different from the baseline as it fur-
ther considers the consequences of validation in addition to
the mutually reinforcing relations between the reliability of
workers and assignment correctness.

Effect of the number of workers

The idea behind crowdsourcing is that individual crowd
answers complement each other. Thus, the aggregation of
answers should be closer to the truth as more workers par-
ticipate [67]. To evaluate the effect of the number of workers
on the performance of our approach, we rely on a synthetic
dataset containing 50 objects. We vary the number of work-
ers k from 20 to 40 that assign one of three labels to the
objects. Figure 15 illustrates an important finding that our
approach leads to better results for any number of workers.
Taking a fixed amount of expert input, precision increases if
more workers are employed. The reason is the widely quoted
“wisdom of the crowd” [67], which eventually leads to better
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precision. Another finding is that the precision improvement
with the same amount of expert input is higher if we have
more workers (most right plot in Fig. 15). This is expected
since, by having more workers, we acquire more answers for
the same question, which results in better estimates of assign-
ment probabilities and worker reliabilities. Our approach,
thus, has a higher chance to select the objects that lead to a
large gain in correctness.

In sum, the two findings suggest that increasing the
number of workers is beneficial not only for computing
assignment probabilities, but also for guiding answer vali-
dation. For the remaining experiments, we fix the number of
workers to be the smallest tested value (k = 20), which is
the most challenging scenario.

Effect of worker reliability

We further explored the effects of the worker reliability r
on the effectiveness of our approach. As above, we used a
dataset of 20 workers assigning one out of three labels to 50
objects. We then varied the reliability of the non-spammer
workers from 0.65 to 0.75.

Figure 16 illustrates a significant improvement in preci-
sion using our approach (hybrid) compared to the baseline
method. For instance, if the average worker reliability is 0.7,
to achieve a precision of 0.95, our approach requires expert
input for 20% of the objects, whereas the baseline method
requires input for 50% of the objects. In other words, the
amount of efforts the baseline method requires is 2.5 times
that of our approach. Also, with the same amount of feed-
back, precision is increased if the average reliability of the
workers is higher (most right plot in Fig. 16). This is because
an answer set provided by reliable workers requires less val-
idation than an answer set coming from unreliable workers.

Expert effort (%) Expert effort (%)

Effect of spammers

In this experiment, we studied the robustness of our guiding
approach to spammers using the same dataset as in the pre-
vious experiment (20 workers, three labels, 50 objects). We
varied the percentage of spammers o in the worker popula-
tion from 15 to 35% to analyze the effect of these spammers.
Independent of the percentage of spammers, our approach
(hybrid) outperforms the baseline method, see Fig. 17. The
largest difference between the two approaches is observed
when the percentage of spammers is 15%. In that case, to
achieve a precision of 0.95, our approach needs 20% of expert
input, while the baseline method requires 50%. Regarding
the precision improvement (right most plot in Fig. 17), the
results are relatively similar across different percentages of
spammers. For instance, using 50% of expert input, we are
able to increase the precision of the deterministic assignment
by 80%, independent of the percentage of spammers. Hence,
our approach is indeed robust to the presence of spammers.

Effects of question difficulty

Beside worker reliability, another factor that can affect the
performance of our method is the question difficulty. For hard
questions, even reliable workers may give incorrect answers.
As aresult, there is a need to analyze the effects of question
difficulty on the performance of our approach. We compared
our approach with the baseline approach using two datasets:
pp! and obj, where the questions in the obj dataset is harder
than the other. The experimental results are shown in Fig. 18,
where the x-axis depicts the expert efforts while the y-axis
illustrates the precision of the deterministic assignment.

We observe that our approach is able to outperform
the baseline approach for both datasets, meaning that the
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Fig. 18 Effects of question difficulty

approach is robust against question difficulty. For instance,
for the ppl dataset with easy question, our approach needs
only 20% of expert effort to achieve a precision of 0.95 while
the baseline approach needs over 60% of expert efforts. Also,
the performance of our approach when the questions are easy
is better than in the setup with hard questions. This is expected
and can be explained as follows. In the dataset with easy
questions, most of the workers are able to give the correct
answers, which makes the uncertainty in the dataset low. As
aresult, with the same amount of feedbacks, we can improve
the precision higher than when the questions are hard.

C Cost trade-offs (cont’d)

We complement the experiments reported in Sect. 7.9 by
studying the effects of question difficulty, spammers, and
worker reliability when comparing the EV approach with
the WO approach.

Effects of question difficulty

In this experiment, we compare our EV approach with the
WO approach with respect to the difficulty of the questions.
We remove the answers from the answer matrix randomly
such that 13 answers remain per question (¢9 = 13). Then,
to simulate the addition of answers for the WO approach,
we add the answers back to the questions. We fix the expert-
crowd cost ratio to § = 25 and average the results over 100
experiment runs.

The experimental results are shown in Fig. 19 where the
X-axis depicts the normalized cost and the Y-axis measures
the precision improvement of the deterministic assignment.
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The precision improvement of the EV approach is always
higher than that of the WO approach, indicating that our EV
approach is robust against the effects of question difficulty.

Effects of spammers

In this experiment, we analyze the effects of spammers by
varying the percentage of spammers in the dataset from 15 to
35%. The experiment is conducted on the synthetic dataset
with ¢o = 13, 6 = 25.

The results illustrated in Fig. 20 show the benefits of using
our approach with different percentages of spammers. The
EV approach is able to achieve high precision improvement
with a small amount of cost. For instance, when o = 35%,
to improve the precision by 80%, a cost of 30 is required for
the EV approach while the WO approach needs twice the
amount. Also, the more spammers are part of the popula-
tion, the better becomes the performance of the EV approach
regarding the WO approach. For example, the difference
in cost to achieve 80% precision improvement is about 15
when the percentage of spammers is 15%, but this increases
three times to 30 as the percentage of spammers increases to
35%. Again, the reason is that as the percentage of spammer
increases, the WO suffers from adding more answers as they
are more likely to come from unreliable workers.
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Effects of worker reliability

Worker reliability can affect the quality of crowd answers,
thus also affects the cost model. If the worker reliability is
high, the expert can spend less effort to give feedbacks as
most of the answers are already correct. On the other hand,
when the worker reliability is low, more feedbacks from the
expert are required to achieve the same amount of precision.
In this experiment, we analyze the effects of worker reliability
on the cost of validating the crowd answers by varying the
reliability of the normal workers from 0.6 to 0.7. Similar
to the above experiment, we fix the following parameter:
¢o = 13,6 = 25 and the workers population is simulated as
discussed in Sect. 7.1.

The obtained results are illustrated in Fig. 21, which high-
lights the relation between the cost normalized over each
question and the precision of the deterministic assignment.
Interestingly, when the reliability of the workers is 0.6, the
precision of the deterministic assignment using the WO
approach converges to 0 as we add more answers. The rea-
son is that as we decrease the worker reliability, the average
worker reliability becomes less than 0.5, which makes the
precision converge to 0. This shows that adding more answers
to the answer set may not improve but reduce the quality due
to unreliable workers. When the reliability of the workers is
0.65, the precision of the deterministic assignment using the
WO approach improves very slowly as the average reliabil-
ity of the whole population is about 0.5. On the other hand,
when the reliability of the workers is 0.7, the precision of the
WO approach converges to 1. Yet, it requires higher cost to
reach the same amount of precision as the EV approach. In
summary, this experiment shows that our approach is robust
against the reliability of the workers.
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