
Noname manuscript No.
(will be inserted by the editor)

Incremental Maintenance of Maximal Cliques in a Dynamic Graph

Apurba Das · Michael Svendsen · Srikanta Tirthapura

the date of receipt and acceptance should be inserted later

Abstract We consider the maintenance of the set of all max-
imal cliques in a dynamic graph that is changing through the
addition or deletion of edges. We present nearly tight bounds
on the magnitude of change in the set of maximal cliques, as
well as the first change-sensitive algorithms for clique main-
tenance, whose runtime is proportional to the magnitude of
the change in the set of maximal cliques. We present ex-
perimental results showing these algorithms are efficient in
practice, and are faster than prior work by two to three or-
ders of magnitude.

1 Introduction

Graphs are widely used in modeling linked data, and there
has been tremendous interest in efficient methods for find-
ing patterns in graphs, an area often called “graph mining”.
A fundamental task in graph mining is the identification
of dense subgraphs, which are groups of vertices that are
tightly interconnected.

Many applications need to identify dense subgraphs
from an evolving graph that is changing with time as new
edges are added and old edges are deleted. Examples in-
clude real-time identification of stories from Twitter [1]
through mining dense subgraphs from an evolving graph on
entities, and the maintenance of common intervals among
genomes [5] through mining maximal cliques in an ap-

Apurba Das
Iowa State University
E-mail: adas@iastate.edu

Michael Svendsen
Iowa State University
E-mail: michael.sven5@gmail.com

Srikanta Tirthapura
Iowa State University
E-mail: snt@iastate.edu

propriately defined dynamic graph. More broadly, identi-
fying dense structures in a graph is applicable to any task
that needs to identify and analyze communities with a net-
work, such as the analysis of communities among users in
microblogging platforms [18], identification of groups of
closely linked people in a social network [15, 23, 26], iden-
tification of web communities [14, 22, 33], and even in the
construction of the Phylogenetic Tree of Life [9, 34, 44].

Most current methods for identifying dense subgraphs
are designed for a static graph. Suppose we used a method
designed for a static graph to handle a dynamic graph. If the
input graph changes slightly, say, by the addition of a few
edges, it is necessary to enumerate all dense subgraphs all
over again, even though the set of dense subgraphs may have
only changed slightly due to the addition of the new edges.
This repeated and redundant work is a source of serious in-
efficiency, so that methods designed for static graphs are not
applicable to a graph that is changing frequently. Different
methods are needed, which can handle changes to a graph
more efficiently. From a foundational perspective, identify-
ing dense structures in a graph has been a problem of long-
standing interest in computer science, but even basic ques-
tions remain unanswered on dynamic graphs.

We consider the maintenance of the set of maximal
cliques in a dynamic graph. The maximal clique is perhaps
the most fundamental and widely studied dense subgraph.
Let G = (V,E) be an undirected unweighted graph on ver-
tex set V and edge set E. A clique in G is a set of vertices
C ⊆ V such that any two vertices inC are connected to each
other in G. A clique is called maximal if it is not a proper
subset of any other clique. Let C(G) denote the set of max-
imal cliques in G. Many applications benefit from efficient
maintenance of maximal cliques in a dynamic graph, such
as described in the work of Chateau et al. [5] on maintain-
ing common intervals among genomes, Duan et al. [10] on

ar
X

iv
:1

60
1.

06
31

1v
3

 [
cs

.D
S]

 1
7

M
ar

 2
01

8

2 Apurba Das et al.

incremental k-clique clustering, Hussain et al. [17] on main-
taining the maximum range-sum query over a point stream.

Suppose that we started from a graph G = (V,E)

and the state of the graph changed to G′ = (V,E ∪ H)

through an addition of a set of new edges H to the set of
edges in the graph G. See Figure 1 for an example. Let
Λnew(G,G′) = C(G′) \ C(G) denote the set of maximal
cliques that were newly formed in going from G to G′, and
Λdel(G,G′) = C(G) \ C(G′) denote the set of cliques that
were maximal in G but are no longer maximal in G′. Let
Λ(G,G′) = Λnew(G,G′) ∪ Λdel(G,G′) denote the sym-
metric difference of C(G) and C(G′). We ask the following
questions:

– How large can the size of Λ(G,G′) be? To systemati-
cally study the problem of maintaining maximal cliques
in a dynamic graph, we first need to understand the mag-
nitude of change in the set of maximal cliques.

– What are efficient methods to compute Λ(G,G′)? Is it
possible to have methods that computeΛ(G,G′) quickly
in cases when the size of Λ(G,G′) is small, and take
longer when it is large? Do these methods scale to large
graphs?

1.1 Contributions

(A) Magnitude of Change in the Set of Maximal Cliques:
We present a tight analysis of the magnitude of change
in the set of maximal cliques in a graph, when a set of
edges are added. When a set of edges H is added to graph
G = (V,E) resulting in graph G′ = G ∪H = (V,E ∪H).

(A.1) We present nearly matching upper and lower bounds
on the maximum size of Λ(G,G ∪ H), taken across all
possible graphs G and edge sets H . Let f(n) denote the
maximum number of maximal cliques in a graph on n

vertices. A result of Moon and Moser [29] shows that f(n)
is approximately 3n/3. We show that by the addition of a
small number of edges to the graph G on n vertices, it is
possible to cause a change of nearly 2f(n) ≈ 2 · 3n/3. We
also note that this is an upper bound on the magnitude of
Λ(G,G′). We present this analysis in Theorem 3.

(A.2) We encountered an error in the 50-year old result of
Moon and Moser [29] on the number of maximal cliques in a
graph, which is directly relevant to our bounds on the change
in the set of maximal cliques. We present our correction to
their result in Observation 1.

It is easy to see that the set of maximal cliques can
change by very little upon the addition of edges. For
instance, adding a single edge between two vertices that
are part of different components can lead to only a single

new maximal clique being added (the clique consisting of
a single edge), and no maximal cliques subsumed, so that
the total change in the set of maximal cliques is 1. Thus, we
note that the magnitude of the change can vary significantly
from one input instance to another.

(B) Algorithm for Maintaining Maximal Cliques:
We present incremental and decremental algorithms for
maintaining the set of maximal cliques of a dynamic graph.
We describe result on incremental algorithms here. The
results for decremental algorithms are similar.

(B.1) We present algorithms that take as inputG andH , and
enumerate the elements of Λ(G,G′) in time proportional
to the size of Λ(G,G′), i.e. the magnitude of the change
in the set of maximal cliques. We refer to such algorithms
as change-sensitive algorithms. To our knowledge, these are
the first provably change-sensitive algorithms for maintain-
ing the set of maximal cliques in a dynamic graph. The time
taken for enumerating newly formed cliques Λnew(G,G′)
is O(∆3ρ|Λnew(G,G′)|) where ∆ is the maximum degree
of a vertex in G′ and ρ is the number of edges in H . The
time taken for enumerating subsumed cliquesΛdel(G,G′) is
O(2ρ|Λnew(G,G′)|). Note that when ρ, the size of a batch
of edges, is logarithmic in ∆, the cost of enumerating sub-
sumed cliques is of the same order as that of enumerating
new cliques.

Our algorithm is based on a careful exploration of a
subgraph of G that is local to the set of edges that have
been added. Importantly, it does not iterate through existing
maximal cliques in the graph. Instead, it directly outputs
the maximal cliques that have changed (either added or
subsumed). Based on theoretically-efficient algorithms, we
present a practical algorithm IMCE for enumerating new and
subsumed cliques, and an efficient implementation.

(B.2) Our methods extend to the decremental case, to
handle deletion of edges from the graph. They can also
be applied to the fully dynamic case, where the change
includes both the addition and deletion of edges from the
graph. However, the fully dynamic case is not provably
change-sensitive, as discussed in Section 4.4.

(C) Experimental Evaluation We present empirical eval-
uation of our algorithm using real world dynamic graphs
as well as synthetic graphs. Our experimental study shows
that IMCE can enumerate change in maximal cliques in a
large graph with of the order of a hundred thousand vertices
and millions of edges within a few seconds. Our compari-
son with prior and recent works show that IMCE significantly
outperform prior solutions, including ones due to Stix [37],
Ottosen and Vomlel [32], and Sun et al. [38]. For example,
on the flickr-growth graph, our algorithms are faster

Incremental Maintenance of Maximal Cliques in a Dynamic Graph 3

Fig. 1: Change in maximal cliques due to addition of edges. On the left is the initial graph G with maximal cliques
{1, 2, 5} and {2, 3, 4}; On the middle is the graphG′ after adding edges (3, 5) and (4, 5) toG resulting in new maximal
clique {2, 3, 4, 5} and only subsumed maximal clique {2, 3, 4}; On the right is the graph G′′ after adding edges (1, 3)
and (1, 4) to G′ resulting in new maximal clique {1, 2, 3, 4, 5} and subsumed cliques {1, 2, 5} and {2, 3, 4, 5}.

than [32, 37, 38] by a factor of more than a thousand. On
the flickr-growth graph, in order to maintain the set
of maximal cliques over the insertion of 250 batches of 100
edges each, IMCE took about 40 ms, while prior techniques
took anywhere from 5 mins to 2 hrs. Further details are in
Section 5.

1.2 Prior and Related Work

Maximal Clique Enumeration in a Static Graph. There
is substantial prior work on enumerating maximal cliques in
a static graph, starting from the algorithm based on depth-
first-search due to Bron and Kerbosch [4]. A significant im-
provement to [4] is presented in Tomita et al. [41], lead-
ing to worst-case optimal time complexity O(3n/3) for an
n vertex graph [29]. Other work on refinements of [4, 41]
include [20], who presents several strategies for pivot selec-
tion to enhance the algorithm in [4], and a fixed parame-
ter tractable algorithm parameterized by the graph degener-
acy [11, 12].

There is a class of algorithms for enumerating struc-
tures (such as maximal cliques) in a static graph whose time
complexity is proportional to the size of the output – such
algorithms are called “output-sensitive” algorithms. Many
output-sensitive structure enumeration algorithms for static
graphs, including [7, 27, 42], can be seen as instances of a
general technique called “reverse search” [2]. The current
best bound on the time complexity of output-sensitive maxi-
mal clique enumeration on a dense graph G = (V,E) is due
to [27] which runs with O(M(n)) time delay (the interval
between outputting two maximal cliques), where M(n) is
the time complexity for multiplying two n×nmatrix, which
is O(n2.376). Further work in this direction includes [21]
and [19], who consider the enumeration of maximal inde-
pendent sets in lexicographic order, [6], who consider the
external memory model, and [31], who consider uncertain
graphs. Extensions to parallel frameworks such as MapRe-
duce or MPI are presented in [30, 39].

Maximal Clique Enumeration in a Dynamic Graph.
In [37], the authors present algorithms for tracking new and

subsumed maximal cliques in a dynamic graph when a sin-
gle edge is added to the graph. These algorithms are not
proved to be change-sensitive, even for a single edge. The
algorithm due to Stix [37] for enumerating new maximal
cliques needs to consider (and filter out) maximal cliques
in the original graph that remain unaffected due to addi-
tion of new edge. This can be wasteful, in terms of update
time. Hence, such an algorithm cannot be change-sensitive.
For example, consider the case of a graph growing from an
empty graph on 10 vertices to a clique on 10 vertices. Only
one new maximal clique has been formed by this batch, but
numerous maximal cliques arise during intermediate steps –
if all these are enumerated, then the time complexity of enu-
meration is inherently large, even though the magnitude of
change is small.

Ottosen and Vomlel [32] present an algorithm to enu-
merate the change in set of maximal cliques, based on run-
ning a maximal clique enumeration algorithm on a smaller
graph. Their algorithm supports addition of a set of edges
all at once. In contrast with our work, there are no prov-
able performance bounds for this algorithm. Another differ-
ence is that the algorithm of [32] may not maintain the exact
change in the set of maximal cliques, in certain cases, while
our algorithms can maintain the change in the set of maxi-
mal cliques exactly.

Sun et al. [38] present an algorithm for enumerating the
change in set of maximal cliques, based on iterating over the
set of maximal cliques of the original graph to derive the set
of maximal cliques of the updated graph. This need to iterate
over currently existing cliques makes the algorithm expen-
sive, especially for cases when the set of maximal cliques
does not change significantly due to the update in edge set.

Prior algorithms for maximal clique enumeration on a
dynamic graph are not proved to be change-sensitive, and
do not provide a provable bound on the cost to enumerate
the change, or on the magnitude of the change.

Other Queries on a Dynamic Graph. Other works on
maintaining dense structures on a dynamic graph include
methods for the maintenance of k-cores [25, 35], k-truss
communities [16], densest subgraph [3, 28], and maximal
bicliques in a bipartite graph [8]. Bicliques are complete

4 Apurba Das et al.

structures in bipartite graphs, and the theory on the number
of substructures and enumeration algorithms is substantially
different. The other structures: k-core, k-truss, and densest
subgraph, are different from maximal cliques in that they do
not require complete connectivity among different vertices
within the structure.

Roadmap: We present preliminaries in Section 2, fol-
lowed by bounds on magnitude of change in Section 3, al-
gorithms for enumerating the change in Section 4, and ex-
perimental results in Section 5.

2 Preliminaries

We consider a simple undirected graph without self loops
or multiple edges. For graph G, let V (G) denote the set of
vertices in G and E(G) denote the set of edges in G. Let n
denote the size of V (G), andm denote the size ofE(G). For
vertex u ∈ V (G), let ΓG(u) denote the set of vertices adja-
cent to u in G. When the graph G is clear from the context,
we use Γ (u) to mean ΓG(u). For edge e = (u, v) ∈ E(G),
letG−e denote the graph obtained by deleting e fromE(G),
but retaining vertices u and v in V (G). Similarly, let G+ e

denote the graph obtained by adding edge e to E(G). For
edge set H , let G +H (G −H) denote the graph obtained
by adding (subtracting) all edges in H to (from) E(G). Let
∆(G) denote the maximum degree of a vertex in G. When
the context is clear, we use ∆ to mean ∆(G). For vertex
v ∈ V (G), let G − v denote the induced subgraph of G on
the vertex set V (G) − {v}, i.e. the graph obtained from G

by deleting v and all its incident edges. Let Cv(G) denote
the set of maximal cliques in G containing v.

Change-Sensitive Algorithms: An algorithm for a
property P on a dynamic graph is said to be change-sensitive
if the time complexity of enumerating the change in P is
linear in the magnitude of change (in P), and polynomial
in the size of the input graph and the size of change in the
set of edges. Note that the notion of “change-sensitive” for a
dynamic graph algorithm is similar to the notion of “output-
sensitive” in the static graph algorithm where the time com-
plexity is proportional to the size of output times polynomial
in other parameters like degree, number of edges etc. For ex-
ample, see Theorem 2.

An algorithm for a dynamic graph is called incremen-
tal if it can efficiently handle insertion of edges, decremen-
tal if it can handle deletion of edges, and fully dynamic if
it can handle both insertions and deletions. For example, a
parallel algorithm due to Simsiri et al. [36] is an incremental
algorithm for graph connectivity, an algorithm due to Tho-
rup [40] is a decremental algorithm, and one due to Wulff-
Nilsen [43] is a fully dynamic algorithm. Our algorithms can
be viewed as a change-sensitive incremental algorithm for
maximal cliques, and a change-sensitive decremental algo-
rithm for maximal cliques.

Results for Static Graphs: We present some known re-
sults about maximal cliques on static graph. Nearly 50 years
ago, Moon and Moser [29] considered the question: “what
is the maximum number of maximal cliques that can be
present in an undirected graph on n vertices”, and gave the
following answer. Let f(n) denote the maximum possible
number of maximal cliques in a graph on n vertices. A graph
on n vertices that achieves f(n) maximal cliques is called a
“Moon-Moser” graph.

Theorem 1 (Theorem 1, Moon and Moser, [29])

f(n) = 3
n
3 if n mod 3 = 0

= 4 · 3
n−4
3 if n mod 3 = 1

= 2 · 3
n−2
3 if n mod 3 = 2

We use as a subroutine an output-sensitive algorithm for
enumerating all maximal cliques within a (static) graph, us-
ing time proportional to the number of maximal cliques.
There are multiple such algorithms, for example, due to
Tsukiyama et al. [42], and due to Makino and Uno [27].
We use the following result due to Chiba and Nishizeki
since it provides one of the best possible time complexity
bounds for general graphs. Better results are possible for
dense graphs [27] and our algorithm can use other methods
as a subroutine also.

Theorem 2 (Chiba and Nishizeki, [7]) There is an algo-
rithm MCE(G) that enumerates all maximal cliques in graph
G using time O(αmµ) where µ is the number of maximal
cliques in G and α is the arboricity of G1 The total space
complexity of the algorithm is O(n+m).

3 Magnitude of Change

From prior work [29], the maximum number of maximal
cliques in an n-vertex graph, denoted by f(n) is known (see
Theorem 1). The result of [29] is relevant for static graphs.
In the case of a dynamic graph, a different question is more
relevant: what is the maximum change in the set of maxi-
mal cliques, that can result from the addition of edges to the
graph? This will give us a bound on the worst case complex-
ity of enumerating the change in the set of maximal cliques.

3.1 Maximum Possible Change in Maximal Cliques

We consider the maximum change in the set of maximal
cliques upon the addition of edges to the graph. For an inte-
ger n, let λ(n) be the maximum size of Λ(G,G+H) taken

1 The arboricity of a graph is no more than the maximum vertex
degree of the graph, but could be significantly lesser.

Incremental Maintenance of Maximal Cliques in a Dynamic Graph 5

over all possible n vertex graphs G and edge sets H . We
present the following result with nearly tight bounds on the
value of λ(n). Interestingly, our results show that it is pos-
sible to change the set of maximal cliques by as much as
≈ 2 · 3n/3 by the addition of only a few edges to the graph.

Theorem 3
16

9
f(n) ≤ λ(n) < 2f(n) if (n mod 3) = 0

λ(n) = 2f(n) if (n mod 3) = 1

11

6
f(n) ≤ λ(n) < 2f(n) if (n mod 3) = 2

Proof We first note that λ(n) ≤ 2f(n) for any integer n. To
see this, note that for any graphG on n vertices and edge set
H , it must be true from Theorem 1 that |C(G)| ≤ f(n) and
|C(G+H)| ≤ f(n). Since |Λnew(G,G+H)| ≤ |C(G+H)|
and |Λdel(G,G+H)| ≤ |C(G)|, we have |Λ(G,G+H)| =
|Λnew(G,G+H)|+ |Λdel(G,G+H)| ≤ |C(G)|+ |C(G+

H)| ≤ 2f(n).
The result of Moon and Moser [29] states that for n ≥ 2,

there is only one graph Hn on n vertices (subject to isomor-
phism) that has f(n) maximal cliques. We show below that
there is an error in this result for the case (n mod 3) = 1.
Note that the result is still true in the cases (n mod 3)

equals 0 or 2. Thus for the cases where (n mod 3) is 0

or 2, adding or deleting edges from Hn leads to a graph
with fewer than f(n) maximal cliques, so that we can never
achieve a change of 2f(n) maximal cliques. Thus we have
that for (n mod 3) equal to 0 or 2, λ(n) is strictly less than
2f(n). The case of (n mod 3) = 1 is discussed separately
(see Observation 1 below).

We next show that there exists a graph G on n vertices
and an edge set H such that the size of Λ(G,G + H) is
large. See Figure 2 for an example. Graph G is constructed
on n vertices as follows. Let ε > 3 be an integer. Choose ε
vertices in V (G) into set V1. Let V2 = V \ V1. Edges of G
are constructed as follows.

– Each vertex in V1 is connected to each vertex in V2.
– Edges are added among vertices of V2 to make the in-

duced subgraph on V2 a Moon-Moser graph on (n − ε)
vertices. Let G2 denote this induced subgraph on V2,
which has f(n− ε) maximal cliques.

– There are no edges among vertices of V1 in G.

It is clear that for each maximal clique c inG2 and vertex
v ∈ V1, there is a maximal clique inG by adding v to c. Thus
the number of maximal cliques in G is |V1| · |C(G2)|. Hence
we have

|C(G)| = ε · f(n− ε) (1)

To graph G, we add the edge set H , constructed as fol-
lows. H consists of edges connecting vertices in V1, to form

a Moon-Moser graph on ε vertices. Let G′ = G + H . We
note that C(G) and C(G′) are disjoint sets. To see this, note
that each maximal clique in G contains exactly one vertex
from V1, since no two vertices in V1 are connected to each
other in G. On the other hand, each maximal clique in G′

contains more than one vertex from V1, since each vertex
v ∈ V1 is connected to at least one other vertex in V1 in G′.
Hence, Λ(G,G′) = C(G) ∪ C(G′), and

|Λ(G,G′)| = |C(G)|+ |C(G′)| (2)

To compute |C(G′)|, note that since each vertex in V1
is connected to each vertex in V2, for each maximal clique
in G′(V1) and each maximal clique in G′(V2), we have
a unique maximal clique in G′. There are f(ε) maximal
cliques in G′(V1) and f(n− ε) maximal cliques in G′(V2),
and hence we have

|C(G′)| = f(ε) · f(n− ε) (3)

Putting together Equations 1, 2, and 3 we get

|Λ(G,G′)| = (ε+ f(ε)) · f(n− ε) (4)

Let F (ε) = (ε+f(ε))f(n−ε). We compute the value of
ε(> 3) at which F (ε) is maximized. To do this, we consider
three different cases depending on the value of (n mod 3),
and omit the calculations. If n mod 3 = 0, F (ε) is max-
imized at ε = 4 and the maximum value F (4) = 16

9 f(n).
If n mod 3 = 1, F (ε) is maximized at ε = 4 and F (4) =
2f(n). And finally if n mod 3 = 2, F (ε) is maximized at
ε = 5 and F (5) = 11

6 f(n). This completes the proof. ut

3.2 An Error in a Result of Moon and Moser (1965)

Moon and Moser [29], in Theorem 2 in their paper, claim
“For any n ≥ 2, if a graph G has n nodes and f(n) cliques,
then G must be equal to Hn”, where Hn is a specific graph,
described below. We found that this theorem is incorrect for
the case when (n mod 3) = 1.

The error is as follows (see Figure 3). For (n mod 3) =

1, the graph Hn is constructed on vertex set Vn =

{1, 2, . . . , n} by taking vertices {1, 2, 3, 4} into a set S0 and
dividing the remaining vertices into groups of three, as sets
S1, S2, . . . , Sn−4

3
. In graph Hn, edges are added between

any two vertices u, v such that u ∈ Si, v ∈ Sj and i 6= j.
This graph Hn has 4 · 3n−4

3 maximal cliques, since we can
make a maximal clique by choosing a vertex from S0 (4
ways), and one vertex from each Si, i > 0 (3 ways for each
such Si, i = 1 . . . (n− 4)/3).

Contradicting Theorem 2 in [29], we show there is an-
other graph Gn that is different from Hn, but still has the
same number of maximal cliques. Gn is the same as Hn,

6 Apurba Das et al.

Fig. 2: Construction showing a large change in set of maximal cliques when a few edges are added. V1 is the set
of vertices above the horizontal line and V2 is the set of vertices below the horizontal line where V1 ∪ V2 = V and
V1 ∩ V2 = φ. On the left is G, the original graph with n vertices where each vertex in V1 is connected to each vertex
in V2, and V1 is an independent set. In G, the induced subgraph G2 on vertex set V2 forms a Moon-Moser graph.
On the right is G′, the graph formed after adding edge set H to G such that the induced subgraph on vertex set V1
becomes a Moon-Moser graph. Let c be a clique in G2, and c′ a new clique in G′ formed among vertices in V1. Note
that c ∪ {v} was a maximal clique in G, and is now subsumed by a new maximal clique c ∪ c′.

Fig. 3: On the left is Hn where each vertex v in Si is connected to each vertex u in Sj , i 6= j. On the right is Gn which
is formed from Hn by adding four edges to S0. For the case (n mod 3) = 1, Hn and Gn are non-isomorphic graphs
on n vertices, with f(n) maximal cliques each, showing a counterexample to Theorem 2 of Moon and Moser [29].

except that the vertices within S0 are connected by a cy-
cle of length 4. In this case, we can still construct 4 · 3n−4

3

maximal cliques, since we can make a maximal clique by
choosing two connected vertices in S0 (4 ways to do this),
and one vertex from each Si, i > 0 (3 ways for each such
Si, i = 1 . . . (n− 4)/3).

Observation 1 For the case (n mod 3) = 1, there are
two distinct non-isomorphic graphs Hn and Gn described
above, that have 4 ·3n−4

3 maximal cliques, which is the max-
imum possible. This is a correction to Theorem 2 of Moon
and Moser [29], which states that there is only one such
graph, Hn.

This observation enables us to have λ(n) = 2f(n) for
the case (n mod 3) = 1. By starting with graph Hn and
by adding edges to make it Gn, we remove f(n) maximal
cliques and introduce f(n) maximal cliques, leading to a
total change of 2f(n).

4 Enumeration of Change in Set of Maximal Cliques

In this section we present algorithms for enumerating the
change in the set of maximal cliques. In Section 4.1, we
first present an algorithm with provable theoretical prop-
erties for enumerating new maximal cliques that arise due
to the addition of a batch of edges, followed by an algo-
rithm with good practical performance in Section 4.2. In
Section 4.3, we present an algorithm for enumerating sub-
sumed cliques due to the addition of new edges. We then
consider the decremental case where edges are deleted from
the graph in Section 4.4. For graph G and edge set H , when
the context is clear, we use Λnew to mean Λnew(G,G+H)

and similarly Λdel to mean Λdel(G,G+H).

Incremental Maintenance of Maximal Cliques in a Dynamic Graph 7

4.1 Enumeration of New Maximal Cliques When Edge Set
H is Added

When a set of edges H is added to the graph G, let G′ de-
note the graph G + H . One approach to enumerating new
cliques in G′ is to simply enumerate all cliques in G′ us-
ing an output-sensitive algorithm such as [7], suppress those
cliques that were also present inG, and output the rest. How-
ever, this is clearly not change-sensitive, since it is possible
that most cliques in G′ will not be finally output. An impor-
tant point to note here is that most similar approaches, that
involve enumerating maximal cliques in a certain graph, fol-
lowed by suppressing cliques that do not belong to Λnew,
run this risk of sometimes having to suppress most of the
cliques that were enumerated, and such approaches will not
be change-sensitive. In the following, we present a simple
approach, which, at its core, directly outputs cliques from
Λnew, and does not output cliques that do not belong to
Λnew.

For edge e ∈ H , let C ′(e) denote the set of maximal
cliques in G′ that contain edge e. We first present the fol-
lowing observation that Λnew, the set of all new maximal
cliques, is precisely the set of all maximal cliques in G′ that
contain at least one edge from H .

Lemma 1

Λnew(G,G′) = ∪e∈HC ′(e)

Proof We first note that each clique in Λnew must contain
at least one edge from H . We use proof by contradiction.
Consider a clique c ∈ Λnew. If c does not contain an edge
from H , then c is also a clique in G, and hence cannot be-
long to Λnew. Hence, c ∈ C ′(e) for some edge e ∈ H , and
c ∈ ∪e∈HC ′(e). This shows that Λnew ⊆ ∪e∈HC ′(e). Next
consider a clique c ∈ ∪e∈HC ′(e). It must be the case that
c ∈ C ′(h) for some h in H . Thus c is a maximal clique in
G′. Since c contains edge h ∈ H , c cannot be a clique in G.
Thus c ∈ Λnew. This shows that ∪e∈HC ′(e) ⊆ Λnew. ut

We now consider efficient ways of enumerating cliques
from ∪e∈HC ′(e). For an edge e ∈ H , the enumeration of
cliques in C ′(e) is reduced to the enumeration of all maxi-
mal cliques in a specific subgraph of G′, as follows. Let u
and v denote the endpoints of e, and let G′e denote the in-
duced subgraph of G′ on the vertex set {u, v} ∪ {ΓG′(u) ∩
ΓG′(v)} i.e. the set of vertices adjacent to both u and v in
G′, in addition to u and v. For example, see Figure 4 for
construction of G′e.

Lemma 2

For each e ∈ H, C ′(e) = C(G′e)

Proof First we show that C ′(e) ⊆ C(G′e). Consider a clique
c in C ′(e), i.e. a maximal clique in G′ = G+H containing

edge e. Hence c must contain both u and v. Every vertex in
c (other than u and v) must be connected to both u and to v
in G′, and hence must be in ΓG′(u)∩ΓG′(v). Hence c must
be a clique in G′e. Since c is a maximal clique in G′, and G′e
is a subgraph of G′, c must also be a maximal clique in G′e.
Hence we have that c ∈ C(G′e), leading to C ′(e) ⊆ C(G′e).

Next, we show that C(G′e) ⊆ C ′(e). Consider any max-
imal clique d in G′e. We note the following in G′e: (1) every
vertex in G′e (other than u and v) is connected to u as well
as v (2) u and v are connected to each other. Due to these
conditions, dmust contain both u and v, and hence also edge
e = (u, v). Clearly, d is a clique in G′ that contains edge e.
We now show that d is a maximal clique in G′. Suppose not,
and we could add vertex v′ to d and it remained a clique in
G′. Then, v′ must be in ΓG′(u)∩ΓG′(v), and hence v′ must
be in G′e, so that d is not a maximal clique in G′e, which is
a contradiction. Hence, it must be that d is a maximal clique
in G′ that contains edge e, and d ∈ C ′(e). ut

Following Lemma 2, in Figure 4, {2, 3, 4, 5} is a new max-
imal clique in G′ that contains e = (4, 5) ∈ H,H =

{(3, 5), (4, 5)}. Note that {2, 3, 4, 5} is also a maximal
clique in G′e.

Our change-sensitive algorithm, IMCENewClq (Algo-
rithm 1) is based on the above observation, and uses an
output-sensitive algorithm MCE, due to [7], to enumerate all
maximal cliques in G′e.

Algorithm 1: IMCENewClq(G,H)
Input: G - Input graph, H - Set of ρ edges added to G
Output: All cliques in Λnew , each clique output once

1 Consider edges of H in an arbitrary order e1, e2, . . . , eρ
2 G′ ← G+H

3 for i = 1 . . . ρ do
4 e← ei = (u, v)
5 Ve ← {u, v} ∪ {ΓG′(u) ∩ ΓG′(v)}
6 G′

e ← graph induced by Ve on G′

7 Generate cliques using MCE(G′
e). For each clique c thus

generated, output c only if c does not contain an edge ej
for j < i

Theorem 4 IMCENewClq enumerates the set of all
new cliques arising from the addition of H in time
O(∆3ρ|Λnew|) where ∆ is the maximum degree of a vertex
inG′. The space complexity isO(|E(G+H)|+|V (G+H)|).

Proof We first prove the correctness of the algorithm. From
Lemmas 1 and 2, we have that by enumerating C(G′e) for ev-
ery e ∈ H , we enumerate Λnew. Our algorithm does exactly
that, and enumerates C(G′e) using Algorithm MCE. Note that
each clique c ∈ Λnew is output exactly once though cmaybe
in C(G′e) for multiple edges e ∈ H . This is because c is out-
put only for edge e that occurs earliest in the pre-determined
ordering of edges in H .

8 Apurba Das et al.

Fig. 4: Illustration of Lemma 2 that, the set of new maximal cliques in G′ containing e = (4, 5), i.e. the single clique
{2, 3, 4, 5}, is exactly the set of all maximal cliques in G′e.

For the runtime, consider that the algorithm iterates over
the edges inH . In an iteration involving edge e, it constructs
a graph G′e and runs MCE(G′e). Note that the number of ver-
tices in G′e is no more than ∆ + 1, and is typically much
smaller, since it is the size of the intersection of two vertex
neighborhoods in G′. Since the arboricity of a graph is less
than its maximum degree, α′ ≤ ∆ where α′ is the arboricity
ofG′e. Further, the number of edges inG′e isO(∆2). The set
of maximal cliques generated in each iteration is a subset of
Λnew, hence the number of maximal cliques generated from
each iteration is no more than |Λnew|. Applying Theorem 2,
we have that the runtime of each iteration is O(∆3|Λnew|).
Since there are ρ iterations, the result on runtime follows.

For the space complexity, we note that the algorithm
does not store the set of new cliques in memory at any point.
The space required to construct G′e is linear in the size of
G′ = (G + H), and so is the space requirement of Algo-
rithm MCE(G′e), from Theorem 2. Hence the total space re-
quirement is linear in the number of edges in G+H . ut

4.2 Practical Algorithm for Enumerating New Maximal
Cliques

The algorithm IMCENewClq uses as a subroutine Algorithm
MCE (Chiba and Nishizeki [7]) to enumerate maximal cliques
within a subgraph of G. While MCE has theoretical proper-
ties of being output-sensitive, in practice, it is not the fastest
algorithm for maximal clique enumeration. In practice, the
most efficient algorithms for maximal clique enumeration
in a static graph are based on depth-first search using a tech-
nique called “pivoting”, such as the algorithm due to Tomita
et al. [41]. While the runtime of these algorithms are not
provably output-sensitive, they are faster in practice than
those algorithms that are provably output-sensitive.

The algorithm due to Tomita et al. [41], which we call
TTT, is a recursive algorithm based on backtracking for enu-
merating C(G), given G. In its recursive procedure, it main-
tains a currently found clique, not necessarily maximal, and
adds vertices one to the current clique, declaring the current
clique to be maximal when no further vertices can be added.
The vertices are considered in a carefully chosen order using
a method called “pivoting”. TTT is shown to be worst-case
optimal with a runtime of O(3n/3) for an n vertex graph. It

is possible to improve the performance of the IMCENewClq

algorithm by directly using TTT in place of MCE. In the fol-
lowing, we show how to do even better.

Reducing Redundant Clique Computation:Note that
IMCENewClq(G,H) may compute the same clique c

multiple times, for example, if c ∈ C ′(e1) and c ∈ C ′(e2)
for e1 6= e2. Duplicates are suppressed prior to emitting the
cliques, by outputting c only for one of the edges among
{e1, e2}, but the algorithm still pays the computational cost
of computing a clique such as c multiple times. We present
Algorithm FastIMCENewClq that eliminates the cost of
having to even compute a clique such as c multiple times.

Algorithm 2: TTTExcludeEdges(G,K, cand, fini, E)
Input: G - The input graph, K - a non-maximal clique to

extend
cand - Set of vertices that may extend K, fini - vertices that
have been used to extend K
E - set of edges to exclude

1 if (cand = ∅) & (fini = ∅) then
2 Output K and return

3 pivot← (u ∈ cand ∪ fini) such that u maximizes the size of
cand ∩ ΓG(u)

4 ext← cand− ΓG(pivot)
5 for q ∈ ext do
6 Kq ← K ∪ {q}
7 if Kq ∩ E 6= ∅ then
8 cand← cand− {q} ; fini← fini ∪ {q}
9 continue

10 candq ← cand ∩ ΓG(q) ; finiq ← fini ∩ ΓG(q)
11 TTTExcludeEdges(G,Kq , candq , finiq , E)
12 cand← cand− {q} ; fini← fini ∪ {q}

Algorithm FastIMCENewClq uses as a subroutine Al-
gorithm TTTExcludeEdges, an extension of the TTT algo-
rithm, which enumerates all maximal cliques of an input
graph that avoid a given set of edges. While TTT simply
takes a graph as input and enumerates all maximal cliques
within the graph, TTTExcludeEdges takes an additional in-
put, a set of edges E , and only enumerates those cliques
within the graph that do not contain any edge from E . We
present the recursive version of TTTExcludeEdges, which
takes as input five parameters – an input graph G, three sets

Incremental Maintenance of Maximal Cliques in a Dynamic Graph 9

Algorithm 3: FastIMCENewClq(G,H)

Input: G - input graph
H - Set of ρ edges being added to G

Output: Cliques in Λnew = C(G+H) \ C(G)
1 G′ ← G+H ; E ← φ

2 Consider edges of H in an arbitrary order e1, e2, . . . , eρ
3 for i← 1, 2, . . . , ρ do
4 e← ei = (u, v)
5 Ve ← {u, v} ∪ {ΓG′(u) ∩ ΓG′(v)}
6 G ← Graph induced by Ve on G′

7 K ← {u, v}
8 cand← Ve \ {u, v} ; fini← ∅
9 S ← TTTExcludeEdges(G,K, cand, fini, E)

10 Λnew ← Λnew ∪ S
11 E ← E ∪ ei

of vertices K, cand, and fini, and a set of edges E . The al-
gorithm outputs every maximal clique in G that (a) contain
all vertices in K, (b) zero or more vertices in cand, (c) none
of the vertices in fini, and (d) none of the edges in E .

A description of TTTExcludeEdges is presented in Al-
gorithm 2. We note that this algorithm follows the struc-
ture of the recursion in the TTT algorithm, and incorpo-
rates additional pruning of search paths, by avoiding paths
that contain an edge from E . In particular, in Line 7 of
TTTExcludeEdges, if the clique Kq (formed after adding
vertex q to K) contains an edge from E , then the rest of the
search path, which will continue adding more vertices, is not
explored further. Instead the algorithm backtracks and tries
to extend the clique K by adding other vertices.

Our algorithm for enumerating new maximal cliques
FastIMCENewClq (Algorithm 3) is an adaptation of change-
sensitive algorithm IMCENewClq (Algorithm 1) where we
use TTTExcludeEdges instead of the output-sensitive MCE.
In particular, while enumerating all new cliques contain-
ing edge ei, FastIMCENewClq enumerates only those
cliques that exclude edges {e1, e2 . . . , ei−1}. Note that in
FastIMCENewClq, there is no further duplicate suppression
required, since the call to TTTExcludeEdges does not re-
turn any cliques that contain an edge from E . This is more
efficient than first enumerating duplicate cliques, followed
by suppressing duplicates before emitting them. This idea
makes FastIMCENewClq more efficient in practice than
IMCENewClq.

The correctness of FastIMCENewClq follows in a simi-
lar fashion to that of Algorithm IMCENewClq proved in The-
orem 4, except that we also need a proof of the guarantee
provided by Algorithm TTTExcludeEdges, which we prove
below.

Lemma 3 TTTExcludeEdges(G,K, cand, fini, E) (Al-
gorithm 2) returns all maximal cliques c in G such that (1) c
contains all vertices from K, (2) remaining vertices in c are
chosen from cand, (3) c contains no vertex from fini and
(4) c does not contain any edges in E .

Proof We note that TTTExcludeEdges matches the origi-
nal TTT algorithm, except for lines 7 to 9. Hence, if we do
not consider lines 7 to 9 in TTTExcludeEdges, the algo-
rithm becomes TTT, and by the correctness of TTT (Theorem
1 [41]), all maximal cliques c in G are returned.

Now consider lines 7 to 9 in TTTExcludeEdges.
Clearly, (1), (2), (3) are preserved for each maximal clique
c generated by TTTExcludeEdges. Now to complete the
correctness proof of TTTExcludeEdges, along with prov-
ing (4), we also need to prove that each maximal clique c
in G that does not contain any edge in E is generated by
TTTExcludeEdges.

Assume there exists a maximal clique c in G,
which contains an edge in E , which is output by the
TTTExcludeEdges algorithm, assume the offending edge
is e = (q, v). Suppose that vertex v was added to our ex-
panding clique first. Then, as q is processed, line 7 of the
algorithm will return back true as e ∈ Kq and E , thus q
will not be added to the clique, and c will not be reported as
maximal, a contradiction.

Now we will show that, if a maximal clique does not
contain an edge from E , the clique will be generated.
Consider a maximal clique c in G that contains no edge
from E but c is not generated by TTTExcludeEdges. The
only reason for c not being generated is the inclusion of
lines 7 to 9 (of TTTExcludeEdges) to TTT resulting in
TTTExcludeEdges, because, otherwise, c would be gener-
ated due to correctness of TTT. So in TTTExcludeEdges,
during the expansion of K towards c, there exists a vertex
q ∈ c such that line 7 in TTTExcludeEdges is satisfied
and c never gets a chance to be generated as q is excluded
from cand and included in fini (line 8). This implies that c
contains at least an edge in E , because otherwise, condition
at line 7 would never be satisfied. This is a contradiction.
Hence, c must be generated. This completes the proof. ut

4.3 Enumeration of Subsumed Maximal Cliques

We now consider the enumeration of subsumed cliques, i.e.
the set C(G) \ C(G + H). A subsumed clique c′ still ex-
ists in G′ = G + H , but is now a part of a larger clique
in G′. Such a larger clique must be a part of Λnew. Thus,
an algorithm idea is to check each new clique c in Λnew to
see if c subsumed any maximal clique c′ in G. In order to
see which maximal cliques c′ may have subsumed, we note
that any maximal clique subsumed by c must also be a max-
imal clique within subgraph c−H . Thus, one approach is to
enumerate all maximal cliques in c − H and for each such
generated clique c′, we check whether c′ is maximal inG by
verifying maximality of c′ in G. This algorithm can be im-
plemented in space proportional to the size of G+H , since
it can directly use an algorithm for maximal clique enumer-
ation such as MCE.

10 Apurba Das et al.

Fig. 5: Enumeration of new maximal cliques when graph changes from G to G′ due to addition of new edges (3, 6)

and (4, 6). Consider the ordering of edges as (3, 6) followed by (4, 6). There are two new maximal cliques containing
edge (4, 6), which are {4, 5, 6} and {2, 3, 4, 6}. With TTTExcludeEdges, only {4, 5, 6} is enumerated when considering
edge (4, 6), since {2, 3, 4, 6} has already been enumerated while considering edge (3, 6).

However, in practice, checking each potential clique for
maximality is a costly operation since it potentially needs to
consider the neighborhood of every vertex of the clique. An
alternative approach to avoid this costly maximality check
is to store the set of maximal cliques C(G) and check if c′

is in C(G). The downside of this approach is that the space
required to store the clique set can be high.

Hence, we considered another approach to subsumed
cliques, where we reduce the memory cost by storing sig-
natures of maximal cliques as opposed to the cliques them-
selves. The signature is computed by representing a clique
in a canonical fashion (for instance, representing the clique
as a list of vertices sorted by their ids.) as a string followed
by computing a hash of this string. By storing only the sig-
natures and not the cliques themselves, we are able to check
if a clique is a current maximal clique, and at the same time,
pay far lesser cost in memory when compared with storing
the clique itself. The algorithm is described in Algorithm 4,
With this approach of storing signatures instead of storing
the cliques themselves, there is a (small) chance of colli-
sion of signatures, which means for two different cliques C1

and C2 the signature might be the same. This might result
in false positives meaning that some cliques might wrongly
be concluded as subsumed cliques. However, the probabil-
ity of the event that the hash values of two different cliques
are same is extremely low with the use of a hashing algo-
rithm such as 64-bit murmur hash 2. In our experiments,
we observed that the set of subsumed cliques reported with
the use of signature is always the same as the actual set
of subsumed cliques. If it is extremely important to avoid
false positives, we can explicitly check a potential subsumed
clique for maximality in the original graph.

In Algorithm 4, Lines 4 to 12 describes the procedure
for computing S, the set of all maximal cliques in c−H and
Lines 13 to 15 decide which among the maximal cliques in
S are subsumed. For computing maximal cliques in c −H ,

2 https://sites.google.com/site/murmurhash/

we only consider the edges in H that are present in c as we
can see in Line 4. We prove that S is the set of all maximal
cliques in c−H in the following lemma:

Lemma 4 In Algorithm 4, for each c ∈ Λnew, S contains
all maximal cliques in c−H .

Proof First note that, we only consider the set of all edges
H1 ⊆ H which are present in c (line 4). Clearly comput-
ing maximal cliques in c − H reduces to computing maxi-
mal cliques in c −H1. We prove this using induction on k,
the number of edges in H1. Suppose k = 1 so that H1 is
a single edge, say e1 = {u, v}. Then clearly, c − H1 has
two maximal cliques, c \ {u} and c \ {v}, proving the base
case. Suppose that for any set H1 of size k, it is true that all
maximal cliques in c − H1 have been generated using in-
duction hypothesis. Consider a set H ′1 = {e1, e2, ..., ek+1}
with (k + 1) edges. Now each maximal clique c′ in c−H1

either remains a maximal clique within c − H ′1 (if at least
one endpoint of ek+1 is not in c′), or leads to two maximal
cliques in c−H ′1 (if both endpoints of ek+1 are in c′). Thus
lines 4 to 12 in Algorithm 4 generates all maximal cliques
in c−H . ut

We show that the above is a change-sensitive algorithm
for enumerating Λdel in the case when the number of edges
ρ in H is a constant.

Lemma 5 Algorithm IMCESubClq (Algorithm 4) enumer-
ates all cliques in Λdel = C(G) \ C(G′) using time
O(2ρ|Λnew|). The space complexity of the algorithm is
O(|E(G′)| + |V (G′)| + |C(G)|). The algorithm can also
be adapted to run in time O(2ρ|E(G)||Λnew|), and space
O(|E(G′)|+ |V (G′)|.

Proof We first show that every clique c′ enumerated by the
algorithm is indeed a clique in Λdel. To see this, note that c′

must be a maximal clique in G, due to explicitly checking
the condition. Further, c′ is not a maximal clique inG′, since
it is a proper subgraph of c, a maximal clique inG′. Next, we

https://sites.google.com/site/murmurhash/

Incremental Maintenance of Maximal Cliques in a Dynamic Graph 11

Algorithm 4: IMCESubClq(G,H,C,Λnew)
Input: G - Input Graph

H - Edge set being added to G
C - Set of maximal cliques in G
Λnew - set of new maximal cliques in G+H

Output: All cliques in Λdel = C(G) \ C(G+H)
1 Λdel ← ∅
2 for c ∈ Λnew do
3 S ← {c}
4 for e = (u, v) ∈ E(c) ∩H do
5 S′ ← φ

6 for c′ ∈ S do
7 if e ∈ E(c′) then
8 c1 = c′ \ {u} ; c2 = c′ \ {v}
9 S′ ← S′ ∪ c1 ; S′ ← S′ ∪ c2

10 else
11 S′ ← S′ ∪ c′

12 S ← S′

13 for c′ ∈ S do
14 if c′ ∈ C then
15 Λdel ← Λdel ∪ c′
16 C ← C \ c′

show that all cliques in Λdel are enumerated. Consider any
subsumed clique c′1 ∈ Λdel. It must be contained within c1−
H , where c1 ∈ Λnew. Moreover, c′1 will be a maximal clique
within c1 − H , and will be enumerated by the algorithm
according to Lemma 4.

For the time complexity we show that for any c ∈ Λnew,
the maximum number of maximal cliques in c−H = c−H
is 2ρ. Proof is by induction on ρ. Suppose ρ = 1 so that
H is a single edge, say e1 = {u, v}. Then clearly c−H has
two maximal cliques, c \ {u} and c \ {v}, proving the base
case. Suppose that for any set H of size k, it was true that
c−H has no more than 2k maximal cliques. Consider a set
H ′′ = {e1, e2, . . . , ek+1} with (k + 1) edges. Let H ′ =
{e1, e2, . . . , ek}. Subgraph c−H ′′ is obtained from c−H ′
by deleting a single edge ek+1. By induction, we have that
c−H ′ has no more than 2k maximal cliques. Each maximal
clique c′ in c − H ′ either remains a maximal clique within
c−H ′′ (if at least one endpoint of ek+1 is not in c′) , or leads
to two maximal cliques in c−H ′′ (if both endpoints of ek+1

are in c′). Hence, the number of maximal cliques in c−H ′′
is no more than 2k+1, completing the inductive step.

Thus, for each cliques c ∈ Λnew, we need to check max-
imality for no more than 2ρ cliques in G. Note that a clique
c′ is maximal in G if it is contained in C(G), the set of max-
imal cliques in G. This can be done in constant time by stor-
ing the signatures of maximal cliques and checking if the
signature of c′ is in the set of signatures of maximal cliques
of G.

For the space bound, we first note that all operations in
Algorithm 4 except maximality check can be done in space

Algorithm 5: Decremental(G,H)

Input: G - Input Graph, H - Set of ρ edges being deleted
Output: All cliques in Λnew(G,G−H) ∪ Λdel(G,G−H)

1 Λnew ← ∅, Λdel ← ∅, G′′ ← G−H
2 Λdel ← IMCENewClq(G′′, H)
3 Λnew ← IMCESubClq(G′′, H, C(G′′), Λdel)

linear in the size ofG′. For maximality check we need space
O(|C(G)|) as we need to store the (signatures of) maximal
cliques of G. The only remaining space cost is the size of
Λnew, which can be large. Note that the algorithm only iter-
ates throughΛnew in a single pass. If elements ofΛnew were
provided as a stream from the output of an algorithm such
as IMCENewClq, then they do not need to be stored within a
container, so that the memory cost of receiving Λnew is re-
duced to the cost of storing a single maximal clique within
Λnew at a time.

An alternative algorithm does not store C(G) (or hashes
of elements in C(G)). Instead, each time a potential sub-
sumed clique c′ is generated that is contained in a new clique
c ∈ Λnew, we simply check c′ for maximality inG. This can
be done in time O(|E(G)|), by checking the intersections
of the different vertex neighborhoods – typical runtime for
maximality checking can be much smaller. ut

4.4 Decremental Case

We next consider the case when a set of edges H is deleted
from G, as opposed to added to G. We start from graph G
and go to graph G −H , and we are interested in efficiently
enumerating Λ(G,G − H). The decremental case can be
reduced to the incremental case through the following ob-
servation.

Observation 2 Λdel(G,G − H) = Λnew(G − H,G) and
Λnew(G,G−H) = Λdel(G−H,G)

Proof Consider the first equation: Λdel(G,G − H) =

Λnew(G − H,G). Let c ∈ Λdel(G,G − H). This means
that c ∈ C(G) and c 6∈ C(G − H). Equivalently, c is
not a maximal clique in G − H , but upon adding H to
G−H , c becomes a maximal clique inG. Hence, it is equiv-
alent to say that c ∈ Λnew(G − H,G). Hence, we have
Λdel(G,G − H) = Λnew(G − H,G). The other equation,
Λnew(G,G −H) = Λdel(G −H,G), can be proved simi-
larly. ut

The decremental case is outlined in Algorithm 5.

Fully Dynamic Case: Consider the fully dynamic case,
where there is a set of insertions (edge set H) as well as
deletions (edge set H ′) from a graph. This can be processed
as follows. First, we ensure there is no overlap between H

12 Apurba Das et al.

and H ′, i.e. H ∩H ′ = ∅. If this is not the case, we can sim-
ply remove overlapping elements since they have no effect
on the final graph. Next, we enumerate the change following
all the edge deletions, followed by enumerating the change
upon edge insertions. Note however, that this may not lead
to a change-sensitive algorithm. Intermediate cliques that
are output may not be in the final set of new or subsumed
cliques.

5 Experimental Evaluation

In this section, we present results from empirical evaluation
of the performance of algorithms proposed in this paper. We
address the following questions: (1) What is the runtime and
memory usage for maintaining the set of maximal cliques of
a dynamic graph? (2) How does the runtime compare with
the magnitude of the change? (3) How do our algorithms
compare with prior work?

5.1 Datasets

Real Dynamic Graphs: We consider graphs from the
Stanford large graph database [24] and KONECT- The
Koblenz Network Collection 3: dblp-coauthor is a co-
authorship network where each vertex represents an au-
thor and there is an edge between two authors if they
have a common publication. flickr-growth is a so-
cial network of Flickr users where each vertex represents
a user and there exists a directed edge if two users are
friends. sx-stackoverflow-a2q is a social network
where each vertex represents a user on stackoverflow, and
if user a answers user b’s question then there is a directed
edge from a to b. wiki-talk is a network of Wikipedia
users where each vertex represents a user and if user a
edited user b’s talk page then there exists a directed edge
from a to b. wikipedia-growth is a hyperlink net-
work of the English Wikipedia where each vertex repre-
sents a wikipedia page and there is an edge from a page
wiki1 to a page wiki2 if there is a hyperlink of wiki2
from wiki1. youtube-u-growth is a social network of
youtube users, where nodes are the users and there is an edge
between two users if they are friends. In each graph, edges
have time-stamps of creation. We convert all these graphs
into simple undirected graphs. If there are multiple time-
stamp edges between two vertices, we take the edge with
the earliest time-stamp. A summary of the graphs used in
this experiment is given in Table 1. In our experiments, we
start with the empty graph and at each iteration, we add a
batch of new edges, and enumerate the change resulting af-
ter the addition.

3 http://konect.uni-koblenz.de/

Synthetic Graphs: We also considers a variant of the
Erdős-Rényi random graph model G(n,N) graph for our
experiments where n is the number of vertices and N is the
number of edges. In these, we first generate graphs accord-
ing to the standard Erdős-Rényi random graph model [13],
and we “plant” cliques of a certain size. We call these
graphs ER-1M-20M with 1M vertices, 20M edges and
ER-2M-15M with 2M vertices and 15M edges. We plant 10
random cliques each of size 20 on ER-1M-20M and 10 ran-
dom cliques each of size 30 on ER-2M-15M, with the goal
of finding the planted cliques through incremental computa-
tion.

5.2 Experimental Setup and Implementation Details

We implemented all the algorithms in Java on a 64-bit In-
tel(R) Xeon(R) CPU with 8G DDR3 RAM with 6G heap
memory.

Algorithms: We evaluate our algorithm IMCE for
maintenance of maximal cliques. IMCE consists of
FastIMCENewClq for enumerating new maximal cliques
and IMCESubClq for enumerating subsumed maximal
cliques. We also implemented IMCENewClq for enumerat-
ing new maximal cliques, but FastIMCENewClq performed
better, hence we present results for FastIMCENewClq.

We consider the following prior algorithms for compari-
son with IMCE: (1) STIX (Stix [37]) computes on a dynamic
graph by incrementally adding one edge at a time; (2) OV
(Ottosend and Vomlel [32]) computes on a dynamic graph
by incrementally adding a set of edges; (3) MCMEI (Sun et
al. [38]) computes on a dynamic graph by incrementally
adding one edge at a time. For the algorithms (STIX, MCMEI)
that support only single edge additions, we simulate the ad-
dition of a batch of edges by inserting the edges one at a
time.

Metrics: We evaluate the performance of algorithms
through the following metrics: (1) total computation time
for determining new maximal cliques and subsumed max-
imal cliques when a batch of new edges is added to the
graph; (2) change-sensitiveness, i.e, total computation time
as a function of the size of the total change. We define the
size of the total change in terms of edges denoted as change-
in-edges as the cumulative sum of the number of edges in
the new and subsumed maximal cliques. For example, if
there are two new maximal cliques of sizes 3 and 4, and
one subsumed clique of size 2, the number of edges of a
new maximal clique of size 3 is

(
3
2

)
= 3, the number of

edges of another new maximal clique of size 4 is
(
4
2

)
= 6,

and the number of edges of the subsumed clique of size 2 is(
2
2

)
= 1. Hence, the size of total change is 3 + 6 + 1 = 10.

We also consider the size of change in terms of nodes de-
noted as change-in-nodes where we compute the cumulative
number of nodes of all cliques in the change set; (3) memory

http://konect.uni-koblenz.de/

Incremental Maintenance of Maximal Cliques in a Dynamic Graph 13

Dataset Nodes Edges

dblp-coauthor 1282468 5179996
flickr-growth 2302925 22838276
sx-stackoverflow-a2q 2433067 15079969
wiki-talk 1094018 2722029
wikipedia-growth 1870709 36532531
youtube-u-growth 3223585 9375374
ER-1M-20M 1000000 20001900
ER-2M-15M 2000000 15004350

Table 1: Summary of Graphs Used.

103

104

105

106

107

108

1000 2000 3000 4000 5000
10−3

10−2

10−1

100

101

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

103

104

105

106

107

108

1000 2000 3000
10−3

10−2

10−1

100

101

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

change-in-edges

change-in-nodes

time

(a) dblp-coauthor (b) flickr-growth

103

104

105

4000 8000 12000
10−3

10−2

10−1

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

103

104

105

106

107

108

700 1400 2100
10−3

10−2

10−1

100

101

102

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)
Iteration number

(c) sx-stackoverflow-a2q (d) wiki-talk

103

104

105

106

4000 8000 12000 16000
10−3

10−2

10−1

100

101

102

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

103

104

105

106

2000 4000 6000 8000
10−3

10−2

10−1

100

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number
(e) wikipedia-growth (f) youtube-u-growth

Fig. 6: Computation time for enumerating the change in set of maximal cliques for IMCE, and size-of-change per batch
(batch size ρ = 1000). The left y axis shows the size of change and the right y axis shows the computation time in
seconds.

14 Apurba Das et al.

Dataset STIX OV MCMEI IMCE

dblp-coauthor (464) 3811 285 7237 0.1
flickr-growth (251) 3664 277 7255 0.04
sx-stackoverflow-a2q (190) 4883 232 7316 0.1
wiki-talk (113) 7284 62 1425 0.1
wikipedia-growth (305) 3923 283 7190 0.3
youtube-u-growth (172) 3976 279 7257 0.1

Table 2: Comparison of different algorithms showing cumulative time (in sec.). The number of batches for which the
cumulative time is computed is in the parenthesis. Batch size ρ is set to 100.

Dataset IMCENewClq FastIMCENewClq

dblp-coauthor(9602) 6768 19
flickr-growth(24860) 7318 115
sx-stackoverflow-a2q(150800) 2852 65
wiki-talk(12777) 7154 75
wikipedia-growth (26795) 562 33
youtube-u-growth (59814) 2981 82

Table 3: Cumulative computation time (in sec.) for new maximal cliques with batch size ρ = 100. The number of
batches for which the cumulative time is computed is in the parenthesis.

Dataset IMCE IMCENewClq

ER-1M-20M 19 min. 24 min.
ER-2M-15M 15 min. 15 min.

Table 4: Total time taken to find all the planted cliques incrementally (ρ = 100). Other algorithms (STIX, OV, MCMEI)
cannot find a single planted clique even in an hour.

cost, which includes the space required to store the graph as
well as additional data structures used by the algorithm; and
(4) cumulative computation time (through a series of incre-
mental updates) as a function of the size of the batch.

5.3 Discussion of Experimental Results

Computation time: Figure 6 shows the computation time
of IMCE for computing the change in the set of maxi-
mal cliques when batches of edges are added. The batch
size is set to ρ = 1000. On the left y-axis is shown the
size of the change, and on the right y-axis is the time for
computing the change. We see that the runtime for com-
puting the change in cliques becomes greater as iterations
progress for graphs flickr-growth, wiki-talk,
youtube-u-growth, and remains roughly the same for
other graphs. Fig. 7 shows the breakdown of computation
time of IMCE into computation time for new maximal cliques
(FastIMCENewClq) and computation time for subsumed
maximal cliques (IMCESubClq).

We also compare the computation time of IMCE with
prior works as shown in Table 2. Clearly, IMCE is many or-
ders of magnitude (more than 1000) faster than prior algo-
rithms. One reason why IMCE is so much faster than prior
works is that IMCE systematically selects a local subgraph

of the entire graph to search for new and subsumed maximal
cliques. This reduces the computation effort considerably.
OV tried to achieve such a local computation but OV is not
provably change-sensitive for new maximal cliques, and its
computation of subsumed cliques is expensive since the al-
gorithm iterates over the entire set of maximal cliques for
deriving subsumed cliques. A similar strategy of iterating
over the entire set of maximal cliques for deriving maximal
clique set of the updated graph as in MCMEI makes the algo-
rithm less efficient.

Next, we compare the computation times of
IMCENewClq and FastIMCENewClq as shown in Table 3.
We observe that FastIMCENewClq is much faster than
IMCENewClq. The increase in speed of FastIMCENewClq

over IMCENewClq can be attributed to the additional pruning
performed in FastIMCENewClq using TTTExcludeEdges,
when compared with IMCENewClq which may enumerate
the same clique multiple times (though suppressing it in the
output).

On synthetic graphs, we observe that IMCE can find all
“planted” cliques in approximately 20 min. where as the
other algorithms (STIX, OV, MCMEI) could not find a single
planted clique in an hour. Results are shown in Table 4.

Change-Sensitiveness: The change in the enumera-
tion time as a function of the size of change can be seen

Incremental Maintenance of Maximal Cliques in a Dynamic Graph 15

0
0.1
0.2
0.3
0.4
0.5
0.6

1-2
K

2K
-3K

3K
-4K

4K
-5KA

vg
.

co
m

p.
ti

m
e

in
ra

ng
e

Iteration range

0
1
2
3
4
5
6
7
8
9

1-.8
K

.8K
-1.6

K

1.6
K-2.4

K

2.4
K-3KA

vg
.

co
m

p.
ti

m
e

in
ra

ng
e

Iteration range

FastIMCENewClq

IMCESubClq

(a) dblp-coauthor (b) flickr-growth

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016
0.018
0.02

1-4
K

4K
-8K

8K
-12

K
12K

-15
K

A
vg

.
co

m
p.

ti
m

e
in

ra
ng

e

Iteration range

0
2
4
6
8

10
12

1-.7
K

.7K
-1.4

K

1.4
K-2.1

K

2.1
K-2.7

K

A
vg

.
co

m
p.

ti
m

e
in

ra
ng

e

Iteration range
(c) sx-stackoverflow-a2q (d) wiki-talk

0
0.1
0.2
0.3
0.4
0.5
0.6

1-5
K

5K
-9K

9K
-13

K
13K

-17
K

A
vg

.
co

m
p.

ti
m

e
in

ra
ng

e

Iteration range

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

1-2
K

2K
-4K

4K
-6K

6K
-9KA

vg
.

co
m

p.
ti

m
e

in
ra

ng
e

Iteration range
(e) wikipedia-growth (f) youtube-u-growth

Fig. 7: Computation time (in sec.) broken down into time for new and subsumed cliques with batch size ρ = 1000.
Average time in the y-axis is the average taken over the total computation times (new + subsumed) of the iterations in
each of the ranges on the x-axis.

in Figure 6. As the iterations progress, the size of change
per batch of new edges increases for most graphs, but not
in a smooth manner. In general, we observe that the time
to compute the change tracks the size of change quite
closely, except for graphs sx-stackoverflow-a2q,
wikipedia-growth, youtube-u-growth.

For these three graphs, we examined the breakdown of
runtime more closely. The time for handling a set of edges
consists of three components: (1) graph update time; (2) sub-
graph computation time (isolating the subgraph for com-
puting new maximal cliques); (3) computation of new and
subsumed cliques. Note that the time for the first two com-

16 Apurba Das et al.

0
50

100
150
200
250
300
350
400
450
500

1000 2000 3000 4000 5000

m
em

or
y

co
st

(M
B

)

Iteration number

with hash
without hash

(a) dblp-coauthor

0
200
400
600
800

1000
1200
1400

900 1800 2700

m
em

or
y

co
st

(M
B

)

Iteration number

(b) flickr-growth

0
100
200
300
400
500
600
700
800

4000 8000 12000

m
em

or
y

co
st

(M
B

)

Iteration number

(c) sx-stackoverflow-a2q

0

500

1000

1500

2000

2500

600 1200 1800 2400

m
em

or
y

co
st

(M
B

)

Iteration number

(d) wiki-talk

0
200
400
600
800

1000
1200
1400
1600

3500 7000 10500

m
em

or
y

co
st

(M
B

)

Iteration number

(e) wikipedia-growth

0

200

400

600

800

1000

1200

2000 4000 6000 8000

m
em

or
y

co
st

(M
B

)

Iteration number

(f) youtube-u-growth

Fig. 8: Memory cost of IMCE with and without using hash function (ρ = 1000).

Dataset ρ = 1 ρ = 10 ρ = 100 ρ = 1000 ρ = 3 log2∆

dblp-coauthor (5179996) 1622 1317 1166 1264 1204
flickr-growth (3298× 103) 7151 7125 5551 7177 7000
sx-stackoverflow-a2q (15079969) 270 270 166 204 106
wiki-talk (2717× 103) 6572 6873 5795 6897 5722
wikipedia-growth (17000× 103) 8869 9093 9134 8495 8678
youtube-u-growth (9375374) 459 462 494 400 493

Table 5: Cumulative computation time (in sec.) of IMCE with different batch sizes. Note that∆ is the maximum degree
of the graph before update. Numbers in the parenthesis indicates the total number of edges inserted incrementally.

Incremental Maintenance of Maximal Cliques in a Dynamic Graph 17

ponents do not depend on the size of change in the set of
maximal cliques. In sx-stackoverflow-a2q, the first
two components take around 45% of the time, and in each of
wikipedia-growth, youtube-u-growth, the first
two components take around 30% of the time. The signifi-
cant proportion of time for the first two components means
that the overall time for computing the change is not very
closely correlated with the size of the change. In the other in-
put graphs, first two components take about 2% of the over-
all computation time and the change-sensitive behavior can
be clearly observed in these plots.

Memory Consumption: Figure 8 shows the main mem-
ory used by IMCE. For this experiment, we consider two dif-
ferent versions of the algorithm – one with storing the clique
set explicitly, and one version with only storing the hashes of
the cliques. As expected, the use of a hash function reduces
the memory consumption considerably. The difference in
memory consumption between the two versions is espe-
cially visible in graphs flickr-growth, wiki-talk
and youtube-u-growth, where the sizes of the max-
imal cliques are considerably larger. We used the 64-bit
murmur4 hash function on the canonical string representa-
tion of a clique, for computing the hash signature. Note that
there are some “spikes” in the plot for dblp-coauthor,
where the memory consumption suddenly increased. On this
graph, we observed that the number of maximal cliques at
the point corresponding to the spike in memory usage also
increased suddenly and then subsequently decreased.

Cumulative Computation time vs. batch size: We also
studied the effect of the batch size (ρ) on the cumulative
computation time of IMCE, while keeping the total number
of edges added the same. For example a total of 10,000
edges would lead to 1000 batches if we used a batch size
of 10, and 100 batches if we used a batch size of 100. Ta-
ble 5 shows the results for different batch sizes. There is no
observable trend found by varying the batch size.

Summary of Results: To summarize the results of our
experiments, we note the following: (1) IMCE is change-
sensitive: its runtime to enumerate the change in the set
of maximal cliques is proportional to the magnitude of the
change in the set of maximal cliques. (2) IMCE is two to three
orders of magnitude faster than prior algorithms (3) the use
of hash signatures for storing maximal cliques greatly re-
duces the memory consumption.

6 Conclusion

We presented change-sensitive algorithms for maintaining
the set of maximal cliques in a graph that is changing due
to the addition or deletion of edges. We showed nearly tight
bounds for the magnitude of change in the set of maximal

4 https://sites.google.com/site/murmurhash/

cliques, due to a change in the set of edges. Our results show
that even for the addition of a small number of edges, the
change in the number of maximal cliques can be exponen-
tial in the size of the graph, in the worst case. Motivated by
this, we designed change-sensitive algorithms, whose time
complexity of enumerating the change is proportional to the
magnitude of the change. Experimental results show that our
algorithms are practical and improve on prior work by orders
of magnitude.

Many interesting research questions remain open, in-
cluding: (1) Design of more efficient change-sensitive al-
gorithms for computing Λnew(G,G + H), especially for
enumerating subsumed cliques. (2) Computation of the the
exact value of λ(n), the maximum magnitude of change
(3) Design of change-sensitive algorithms for other dense
structures in a graph such as quasi-cliques.

References

1. A. Angel, N. Koudas, N. Sarkas, D. Srivastava, M. Svendsen, and
S. Tirthapura. Dense subgraph maintenance under streaming edge
weight updates for real-time story identification. The VLDB Jour-
nal, pages 1–25, 2013.

2. D. Avis and K. Fukuda. Reverse search for enumeration. Discrete
Applied Mathematics, 65:21–46, 1993.

3. B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest subgraph in
streaming and mapreduce. VLDB, 5(5):454–465, 2012.

4. C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an
undirected graph. Commun. ACM, 16(9):575–577, 1973.

5. A. Chateau, P. Riou, and E. Rivals. Approximate common in-
tervals in multiple genome comparison. In Bioinformatics and
Biomedicine (BIBM), 2011 IEEE International Conference on,
pages 131–134. IEEE, 2011.

6. J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Finding max-
imal cliques in massive networks. TODS, 36(4):21, 2011.

7. N. Chiba and T. Nishizeki. Arboricity and subgraph listing algo-
rithms. SIAM J. Comput., 14:210–223, 1985.

8. A. Das and S. Tirthapura. A change-sensitive algorithm for main-
taining maximal bicliques in a dynamic bipartite graph. CoRR,
abs/1707.08272, 2017.

9. A. C. Driskell, C. An, J. G. Burleigh, M. M. McMahon, B. C.
O’Meara, and M. J. Sanderson. Prospects for building the tree
of life from large sequence databases. Science, 306(5699):1172–
1174, 2004.

10. D. Duan, Y. Li, R. Li, and Z. Lu. Incremental k-clique clustering
in dynamic social networks. Artificial Intelligence Review, pages
1–19, 2012.

11. D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques
in sparse graphs in near-optimal time. In ISAAC, pages 403–414,
2010.

12. D. Eppstein and D. Strash. Listing all maximal cliques in large
sparse real-world graphs. In P. Pardalos and S. Rebennack, editors,
Experimental Algorithms, volume 6630 of LNCS, pages 364–375.
2011.

13. P. Erds and A. Rényi. On the evolution of random graphs. Publ.
Math. Inst. Hung. Acad. Sci, 5:17–61, 1960.

14. D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense
subgraphs in massive graphs. In VLDB, pages 721–732, 2005.

15. R. A. Hanneman and M. Riddle. Introduction to social net-
work methods. http://faculty.ucr.edu/˜hanneman/
nettext/. Textbook on the web.

http://faculty.ucr.edu/~hanneman/nettext/
http://faculty.ucr.edu/~hanneman/nettext/

18 Apurba Das et al.

16. X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-
truss community in large and dynamic graphs. In SIGMOD, pages
1311–1322, 2014.

17. M. M.-u. Hussain, A. Wang, and G. Trajcevski. Co-maxrs: Contin-
uous maximizing range-sum query. Sciences, 305:110–129, 2015.

18. A. Java, X. Song, T. Finin, and B. L. Tseng. Why we twitter: An
analysis of a microblogging community. In WebKDD/SNA-KDD,
pages 118–138, 2007.

19. D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On gen-
erating all maximal independent sets. Information Processing Let-
ters, 27(3):119–123, 1988.

20. I. Koch. Enumerating all connected maximal common subgraphs
in two graphs. Theoretical Computer Science, 250(1):1–30, 2001.

21. F. Kose, W. Weckwerth, T. Linke, and O. Fiehn. Visualizing plant
metabolomic correlation networks using clique-metabolite matri-
ces. Bioinformatics, 17(12):1198–1208, 2001.

22. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawl-
ing the web for emerging cyber-communities. Computer networks,
31(11):1481–1493, 1999.

23. S. Lehmann, M. Schwartz, and L. K. Hansen. Biclique communi-
ties. Phys. Rev. E, 78:016108, Jul 2008.

24. J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data,
2014.

25. R. Li, J. X. Yu, and R. Mao. Efficient core maintenance in large
dynamic graphs. TKDE, 26(10):2453–2465, 2014.

26. D. Lo, D. Surian, K. Zhang, and E.-P. Lim. Mining direct antag-
onistic communities in explicit trust networks. In CIKM, pages
1013–1018, 2011.

27. K. Makino and T. Uno. New algorithms for enumerating all max-
imal cliques. In SWAT, pages 260–272. 2004.

28. A. McGregor, D. Tench, S. Vorotnikova, and H. T. Vu. Densest
subgraph in dynamic graph streams. In MFCS, pages 472–482,
2015.

29. J. W. Moon and L. Moser. On cliques in graphs. Israel J. Math.,
3(1):23–28, 1965.

30. A. P. Mukherjee and S. Tirthapura. Enumerating maximal bi-
cliques from a large graph using mapreduce. IEEE Trans. Services
Computing, 10(5):771–784, 2017.

31. A. P. Mukherjee, P. Xu, and S. Tirthapura. Enumeration of max-
imal cliques from an uncertain graph. IEEE Trans. Knowl. Data
Eng., 29(3):543–555, 2017.

32. T. J. Ottosen and J. Vomlel. Honour thy neighbour: clique main-
tenance in dynamic graphs. In PGM, pages 201–208, 2010.

33. J. E. Rome and R. M. Haralick. Towards a formal concept analysis
approach to exploring communities on the world wide web. In
Formal Concept Analysis, volume 3403 of LNCS, pages 33–48.
2005.

34. M. J. Sanderson, A. C. Driskell, R. H. Ree, O. Eulenstein, and
S. Langley. Obtaining maximal concatenated phylogenetic data
sets from large sequence databases. Mol. Biol. Evol., 20(7):1036–
1042, 2003.

35. A. E. Sariyüce, B. Gedik, G. Jacques-Silva, K. Wu, and Ü. V.
Çatalyürek. Streaming algorithms for k-core decomposition.
PVLDB, 6(6):433–444, 2013.

36. N. Simsiri, K. Tangwongsan, S. Tirthapura, and K.-L. Wu. Work-
efficient parallel union-find with applications to incremental graph
connectivity. In European Conference on Parallel Processing,
pages 561–573. Springer, 2016.

37. V. Stix. Finding all maximal cliques in dynamic graphs. Comput.
Optim. Appl., 27(2):173–186, 2004.

38. S. Sun, Y. Wang, W. Liao, and W. Wang. Mining maximal cliques
on dynamic graphs efficiently by local strategies. In Data En-
gineering (ICDE), 2017 IEEE 33rd International Conference on,
pages 115–118. IEEE, 2017.

39. M. Svendsen, A. P. Mukherjee, and S. Tirthapura. Mining maxi-
mal cliques from a large graph using mapreduce: Tackling highly
uneven subproblem sizes. J. Parallel Distrib. Comput., 79-
80:104–114, 2015.

40. M. Thorup. Decremental dynamic connectivity. Journal of Algo-
rithms, 33(2):229–243, 1999.

41. E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time
complexity for generating all maximal cliques and computational
experiments. Theoretical Computer Science, 363(1):28–42, 2006.

42. S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new al-
gorithm for generating all the maximal independent sets. SIAM J.
Comput., 6(3):505–517, 1977.

43. C. Wulff-Nilsen. Faster deterministic fully-dynamic graph con-
nectivity. In Proceedings of the twenty-fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1757–1769. SIAM,
2013.

44. C. Yan, J. G. Burleigh, and O. Eulenstein. Identifying optimal
incomplete phylogenetic data sets from sequence databases. Mol.
Phylogenet. Evol., 35(3):528–535, 2005.

http://snap.stanford.edu/data

	1 Introduction
	2 Preliminaries
	3 Magnitude of Change
	4 Enumeration of Change in Set of Maximal Cliques
	5 Experimental Evaluation
	6 Conclusion

