
Noname manuscript No.
(will be inserted by the editor)

Coconut: Sortable Summarizations for Scalable Indexes over
Static and Streaming Data Series

Haridimos Kondylakis · Niv Dayan · Kostas Zoumpatianos · Themis
Palpanas

Received: date / Accepted: date

Abstract Many modern applications produce massive
streams of data series that need to be analyzed, re-
quiring efficient similarity search operations. However,
the state-of-the-art data series indexes that are used
for this purpose do not scale well for massive datasets
in terms of performance, or storage costs. We pinpoint
the problem to the fact that existing summarizations
of data series used for indexing cannot be sorted while
keeping similar data series close to each other in the
sorted order. To address this problem, we present Co-
conut, the first data series index based on sortable sum-
marizations, and the first efficient solution for indexing
and querying streaming series. The first innovation in
Coconut is an inverted, sortable data series summa-
rization that organizes data series based on a z-order
curve, keeping similar series close to each other in the
sorted order. As a result, Coconut is able to use bulk-
loading and updating techniques that rely on sorting
to quickly build and maintain a contiguous index us-
ing large sequential disk I/Os. We then explore prefix-
based and median-based splitting policies for bottom-
up bulk-loading, showing that median-based splitting
outperforms the state of the art, ensuring that all nodes
are densely populated. Finally, we explore the impact

H. Kondylakis
FORTH-ICS
E-mail: kondylak@ics.forth.gr

N. Dayan
Harvard University
E-mail: dayan@seas.harvard.edu

Kostas Zoumpatianos
Harvard University
E-mail: kostas@seas.harvard.edu

Themis Palpanas
Paris Descartes University
E-mail: themis@mi.parisdescartes.fr

of sortable summarizations on variable size window
queries, showing that they can be supported in the pres-
ence of updates through efficient merging of temporal
partitions. Overall, we show analytically and empiri-
cally that Coconut dominates the state-of-the-art data
series indexes in terms of construction speed, query
speed, and storage costs.

1 Introduction

Many scientific and business applications today pro-
duce massive collections and streams of data series1

and need to analyze them, requiring the efficient ex-
ecution of similarity search, or nearest neighbor oper-
ations, over either the entire dataset, or variable-sized
windows of the incoming data. Example applications
range across the domains of audio [22], images [73], fi-
nance [65], telecommunications [51,41], environmental
monitoring [63], scientific data [20,2,39], and others.

As the price of digital storage continues to plum-
met, the volume of data series collections grows, driv-
ing the need for the development of efficient sequence
management systems [47,49,78]. For the specific prob-
lem of sequence similarity search, searching for a near-
est neighbor by traversing the entire dataset for every
query quickly becomes intractable as the dataset size
increases. Consequently, multiple data series indexing
techniques have been proposed over the past decade

1 Informally, a data series, or data sequence, is an ordered
sequence of data points. If the dimension that imposes the
ordering of the sequence is time then we talk about time se-
ries, though a series can also be defined over other measures
(e.g., angle in radial profiles in astronomy, mass in mass spec-
troscopy, position in genome sequences, etc.). For the rest of
this paper, we are going to use the terms data series and
sequence interchangeably.

ar
X

iv
:2

00
6.

11
47

4v
2

 [
cs

.D
B

]
 1

6
A

pr
 2

02
1

2 Haridimos Kondylakis et al.

to organize data series based on similarity [48,15]. The
state-of-the-art approach is to index data series based
on smaller summarizations that approximate the dis-
tances among data series. This enables pruning large
parts of the dataset that are guaranteed to not contain
the nearest neighbor, and thereby these indexes signif-
icantly improve query speed.

Large data series collections and indexes that span
hundreds of gigabytes to terabytes [2,3,52] must reside
in slow secondary storage devices for cost-effectiveness.
This poses a set of challenges for data series indexes. (1)
They must support construction, updates and queries
using I/O efficient access patterns. (2) They must take
up as little storage space as possible to be cost-effective
and to minimize the physical space that queries tra-
verse. (3) They must utilize the limited I/O bandwidth
effectively by narrowing a query’s search not only spa-
tially but also temporally to the window size that is
most appropriate for a given application.
Unsortable Summarizations. In this paper, we show
that the state-of-the-art data series indexes are de-
signed in a manner that prevents them from meet-
ing the above challenges. We pinpoint the problem
to the fact that the summarizations, used as keys by
data series indexes, are unsortable. Existing summa-
rizations [35,11] partition and tokenize data series into
multiple (independent) segments that are laid out in the
summarized representation based on their original or-
der within the data series; thus, sorting based on these
summarizations would place together data series that
are similar in terms of their beginning, i.e., the first
segment, yet arbitrarily far in terms of the rest of the
segments2. Hence, existing summarizations cannot be
sorted while keeping similar data series next to each
other in the sorted order. This leads to the following
two problems.
Problem 1: Top-Down Insertions. The first prob-
lem is that traditional algorithms for efficiently bulk-
loading and updating a database index cannot be used
because they rely on being able to sort the data. In-
stead, state-of-the-art data series indexes perform bulk-
loading and updates using top-down in-place insertions
and splitting nodes as they fill up [48,10,76]. This ap-
proach leads to many small random I/Os to secondary
storage that slow down both construction speed and
updating during runtime. Moreover, the resulting nodes
(after many splits) are non-contiguous in storage, mean-
ing that querying also involves many slow random I/Os.

Relying on top-down insertions also prevents data-
series indexes from being able to temporally partition
the data to enable efficient queries over variable-sized

2 This is analogous to sorting points in a multi-dimensional
space based on one dimension.

windows. The reason is that batched updates are peri-
odically applied to the complete data structure through
in-place split operations. While this choice facilitates
queries that touch the entire history of the data, the
absence of temporal partitioning penalizes queries that
need to touch smaller parts of the history. Moreover,
no matter the window size, pending updates are always
applied in an inefficient manner, as existing indexes do
not support merge-sort operations. While various so-
lutions [9,10] have been proposed to partition pending
updates to touch independent subsets of the index, still
all temporal partitions are merged using top-down in-
sertions, which are prohibitively expensive.
Problem 2: Prefix-Based Node-Splitting. The sec-
ond problem is that it is not possible to sort and thereby
split data series evenly across nodes (i.e., using the me-
dian value as a splitting point). Instead, state-of-the-art
data series indexes divide data series across nodes based
on common prefixes across all segments. As a result, it
is impossible for entries that do not share a common
prefix in one or more of the segments to reside in the
same node. We show that this leads to most nodes being
nearly empty (i.e., their fill-factor is low, which trans-
lates to an increased number of leaves). This slows down
query speed and amplifies storage costs.
Our Solution: Sortable Summarizations and Co-
conut. To address these problems, we show how to
transform existing data series summarizations into
sortable summarizations. The core idea is interweav-
ing the bits that represent the different segments, such
that the more significant bits across all segments pre-
cede all less significant bits. As a result, we describe
the first technique for sorting data series based on their
summarizations: the series are positioned on a z-order
curve [42], in a way that similar data series are close to
each other.

Moreover, we show that indexing based on sortable
summarizations has the same ability as existing sum-
marizations to prune parts of the index that do not
contain the nearest neighbor, while it offers three ad-
ditional benefits: it enables (i) efficiently bulk-loading
and updating the index, (ii) packing data series more
densely into nodes, and (iii) efficient merging of tem-
poral partitions to allow variable-sized window queries.
Furthermore, we show that using sortable summariza-
tions enables data series indexes to leverage a wide
range of indexing infrastructure.

We further introduce the Compact and Contiguous
Sequence Infrastructure (Coconut). Coconut is a novel
data series indexing infrastructure that organizes data
series based on sortable summarizations. It supports
bulk-loading techniques and log-structured updates to
enable maintaining a contiguous index. This eliminates

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 3

random I/O during construction, updating and query-
ing. Furthermore, Coconut is able to split data series
across nodes by sorting them and using the median
value as a splitting point, leading to data series being
packed more densely into leaf nodes (i.e., at least half
full).

In order to study the design space and isolate the
impact of the different design decisions, we first in-
troduce two variants: Coconut-Trie and Coconut-Tree,
which split data series across nodes based on common
prefixes and median values, respectively. We show that
Coconut-Trie dominates the state-of-the-art in terms of
query speed because it creates contiguous leaves. We
further show that Coconut-Tree dominates Coconut-
Trie and the state-of-the-art in terms of construction
speed, query speed and storage overheads because it
creates a contiguous, balanced index that is also densely
populated. We then introduce Coconut-LSM to support
efficient log-structured updates and variable-size win-
dow queries over different windows of the data based on
recency. Overall, we show across a wide range of work-
loads and datasets that Coconut-Tree improves both
construction speed and storage overheads by one order
of magnitude and query speed by two orders of mag-
nitude relative to the state-of-the-art. We further show
that Coconut-LSM supports updates without degrad-
ing query throughput, and that it is able to narrow the
search scope temporally. This improves query through-
put by a further 2-3 orders of magnitudes in our exper-
iments for queries over recent data.

Our contributions are summarized as follows.
– We show that existing data series summarizations

cannot be sorted in a straightforward way. Con-
sequently, state-of-the-art data series indexes can-
not efficiently bulk-load and pack data densely into
nodes, leading to large storage overheads and perfor-
mance bottlenecks for both index construction and
query answering, when dealing with very large data
series collections.

– We introduce a sortable data series summarization
that keeps similar data series close to each other
in the sorted order, and preserves the same prun-
ing power as existing summarizations. We show how
sortability enables new design choices for data series
indexes, thereby opening up infrastructure possibil-
ities that were not possible in the past.

– We introduce Coconut-Trie that exploits sortable
summarizations for prefix-based bulk-loading of ex-
isting state-of-the-art indexes, leading to improve-
ments at querying time performance.

– We present Coconut-Tree, which employs median-
based bulk-loading to quickly build the index and
to restrict space-amplification, by enabling entries

that do not share a common prefix to be in the same
node.

– We introduce Coconut-LSM to enable efficient simi-
larity search over variable-sized windows in the pres-
ence of updates.

– Our experimental evaluation with a variety of syn-
thetic and real datasets demonstrates that Coconut-
Tree and Coconut-LSM strictly dominate existing
state-of-the-art indexes in terms of both construc-
tion speed and storage overheads by one order of
magnitude, and query speed by two orders of mag-
nitude. We further show that Coconut-LSM dom-
inates the state-of-the-art by orders of magnitude
in the presence of insertions for queries over recent
data.
A preliminary version of this paper has appeared in

VLDB [29]. This version extends the previous one by
introducing Coconut-LSM for efficient similarity search
in the presence of updates, and presents the first effi-
cient solution for indexing and querying streaming sets,
along with the corresponding experiments. We have also
developed a system that implements the ideas described
in this paper [30].

2 Preliminaries and Related Work

Data Series. Measuring data that fluctuate over a
dimension is a very frequent scenario in a large vari-
ety of domains and applications. Such data are com-
monly called data series or sequences. The dimension
over which they fluctuate can range from time, angle or
position to any other dimension. They can be measured
at either fixed or variable intervals.

Definition 1 Formally, a data series s = {r1, ..., rn}
is defined as an ordered set of recordings, where each
ri =< pi, vi > describes a value vi corresponding to a
position pi.

Nearest Neighbor Search. Analysts perform a wide
range of data mining tasks on data series including clus-
tering [28,34,64,57], classification and deviation detec-
tion [66,13], frequent pattern mining [44,18], and more.
Existing algorithms for executing these tasks rely on
performing fast similarity search across the different
data series. Thus, efficiently processing nearest neigh-
bor (NN) queries is crucial for speeding up the afore-
mentioned tasks. NN queries are formally defined as
follows.

Definition 2 Given a set of data series S ⊆ S, where S
is the set of all possible data series, a query data series
sq ∈ S and a distance function d(•, •) : S × S → R, a

4 Haridimos Kondylakis et al.

PAA(S1)S1

 f f
 c d

SAX(S1)a
b
cd
e
g
f

h

000

001
010
011
100
101
110

111

Fig. 1: Example PAA and SAX summarizations.

nearest neighbor query is defined as:

nnd(•,•)(sq,S) = si ∈ S : d(si, sq) ≤ d(sj , sq)∀sj 6= si ∈ S.

Common distance metrics for comparing data se-
ries include Euclidean Distance (ED) and dynamic time
warping (DTW). While DTW is better for most data
mining tasks, the error rate using ED converges to that
of DTW as the dataset size grows [61,70,67]. There-
fore, data series indexes for massive datasets use ED
as a distance metric [66,67,74,75,76], though simple
modifications can be applied to make them compat-
ible with DTW [67,24]. Euclidean distance is com-
puted as the sum of distances between pairs of aligned
points in sequences of the same length, where normal-
izing the sequences for alignment and length is a pre-
processing step [66,67,74,75,76]. In all cases, data are
z-normalized by subtracting the mean and dividing by
the standard deviation (note that minimizing ED on z-
normalized data is equivalent to maximizing their Pear-
son’s correlation coefficient [45]).
Brute-Force Search. The brute-force approach for
evaluating nearest neighbor queries is by performing
a sequential pass over the complete dataset3. How-
ever, as data series collections grow to terabytes [2,
3,52], scanning the complete dataset becomes perfor-
mance bottleneck taking hours or more to complete.
This is especially problematic in exploratory search sce-
narios, where batch execution of queries is impossible
because the next query depends on the results of pre-
vious queries.
Data Series Summarizations. To mitigate this prob-
lem, various dimensionality reduction techniques have
been proposed to transform data series into summa-
rizations that enable approximating and lower bound-
ing the distance between any two data series. Examples
include generic Discrete Fourier Transforms (DFT) [5,
16,55,54], Piecewise Linear Approximation (PLA) [26],
Singular Value Decomposition (SVD) [31,62], Discrete
Haar Wavelet Transforms (DHWT) [12,23], Piecewise

3 Note that recent state-of-the-art serial scan algo-
rithms [56,43] are only efficient for scenarios that involve
nearest neighbor operations of a short query subsequence
against a very long data series. On the contrary, in this work,
we are interested in finding similarities in very large collec-
tions of short sequences.

Constant Approximation (PCA), and Adaptive Piece-
wise Constant Approximation (APCA) [11], as well as
data series specific techniques such as Piecewise Aggre-
gate Approximation (PAA) [27], Symbolic Aggregate
approXimation (SAX) [36] and the indexable Symbolic
Aggregate approXimation (iSAX) [67,9]. These smaller
summarizations can be scanned and filtered [23,33], or
indexed and pruned [76,66,67,74,75,19,7,69,71,38,53,
37,72] to avoid accessing parts of the data that do not
contain the nearest neighbor.
Clustering Approaches. Various clustering algo-
rithms have been proposed for data series [25,34], and
such approaches can be used to facilitate nearest neigh-
bor search. The general approach involves adapting dis-
tance measure between data series and using a cluster-
ing algorithm on top (e.g., K-means [40], K-shape [50],
agglomerative [25], etc.). Such algorithms require mul-
tiple passes over the data to build (e.g., to measure
distances between all pairs of points as in agglomer-
ative clustering, or to iteratively refine clusters with
K-means). As a result, construction can take a very
long time. In contrast, we focus on approaches based
on indexable summarizations that are designed to lead
to fast index construction, and thereby shorten the
indexing-to-query time.
Data Series Indexing with SAX. We now discuss
the state-of-the-art in data series indexing. We concen-
trate on SAX summarizations [67,36], which have been
shown to outperform other summarizations in terms of
pruning power using the same amount of bytes [77]. We
illustrate the construction of a SAX summarization in
Figure 1.

SAX first partitions the data series in equal-sized
segments, and for each segment it computes its average
value. This is essentially a PAA summarization, and
can be seen in Figure 1(middle). In a second step, it
discretizes the value space by partitioning it in regions,
whose size follows the normal distribution. As a result,
we have more regions corresponding to values close to 0,
and less regions for the more extreme values (this leads
to an approximately equal distribution of the raw data
series values across the regions, since extreme values
are less frequent than values close to 0 for z-normalized
series). A bit-code (or a symbol) is then assigned to
every region. The data series is then summarized by
the sequence of symbols of the regions in which each
PAA value falls.

In the example in Figure 1, the data series S1 be-
comes “fcfd”. This lossy representation requires much
less space (typically in the order of 1%) and reduces
the number of dimensions from the number of points
in the original series to the number of segments in the
summarization (four in Figure 1).

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 5

Data series indexes based on SAX rely on a multi-
resolution indexable SAX representation (iSAX) [67,66]
whereby every node corresponds to a common SAX pre-
fix from across all segments. When a node fills up, the
segment whose next unprefixed digit divides the resi-
dent data series most is selected for splitting the data
series across two new nodes. iSAX 2.0 [9] and iSAX
2+ [10] are variants that improve construction speed by
storing all internal nodes in main memory and buffer-
ing access to leaf nodes. ADS [74,75,76] represents the
state-of-the-art method and builds on these ideas by
constructing an index based on the summarizations; the
method then incorporates the raw data series into the
index adaptively during query processing.

These indexes all share the following four perfor-
mance problems. (1) If main memory is small relative
to the raw data size, they incur many random I/Os
due to swapping and early flushing of buffers. This
significantly elongates construction time and updates
for massive datasets. (2) The resulting leaf nodes af-
ter many splits are non-contiguous in secondary stor-
age and therefore require many slow random I/Os to
query. (3) Temporal partitioning to enable window
queries over recent data cannot be performed efficiently,
because different temporal partitions cannot be eas-
ily merged. This operation requires top-down entry-
by-entry insertions, which lead to many small random
I/Os. (4) Data series that do not share common prefixes
cannot reside in the same node, and so the leaf nodes in
these indexes are in practice sparsely populated. This
leads to significant storage overheads and slows down
queries as they must traverse a greater physical area to
access the same data.

Our work follows the same high-level idea of index-
ing the data series based on a smaller summarization
to enable pruning, though our work is the first to use
sortable summarizations to speed up index construc-
tion, updating and querying and to restrict storage
space. In all previous work, the index is constructed
and maintained through top-down insertions that lead
to many slow random I/Os and to a sparsely populated,
non-contiguous and unbalanced index. Our work is the
first to use fast bottom-up bulk-loading, log-structured
updates, and median-based splitting to efficiently build
and maintain a contiguous, balanced, and densely pop-
ulated index. Note that our infrastructure can be used
in conjunction with any summarization that represents
a sequence as a multi-dimensional point, and so it is
compatible with all main-stream summarizations [67,5,
16,55,54,26,31,62,12,23,11,9].

e
c

e e

SAX(S1) SAX(S2)

f

c

SAX(S3)

g

SAX(S4)

e

000

001
010
011
100
101
110

111

a
b
c
d
e
f
g

h

e c (100, 010) e e (100, 100) f c (101, 010) g e (110, 100)

Fig. 2: Sorting iSAX summarizations.

3 Problem: Unsortable Summarizations

In this section, we describe why existing data series
summarizations are not sortable, and we discuss the
implications on index design, performance, and storage
overheads.

Sorting summarizations. Figure 2 gives an exam-
ple of sorting data series based on SAX summariza-
tions.There are four different data series with corre-
sponding 2-character SAX words4: S1 = ec, S2 = ee,
S3 = fc, and S4 = ge. Observe that S1 is most similar
to S3, while S2 is most similar to S4 (apart from small
differences in the first segments). Sorting these summa-
rizations lexicographically gives the order S1, S2, S3, S4:
the data series that are most similar to each other are
not placed next to each other in the sorted order. The
reason is that existing summarizations lay out the seg-
ment representations sequentially, one by one. Sorting
based on such a representation would place next to each
other data series that are similar in terms of their first
segment, yet arbitrarily dissimilar in terms of the rest
of the segments. As a result, an index that is built by
sorting data series based on existing summarizations
would degenerate to scanning the full dataset for each
query and would defeat the point of having an index.

It is important to note that even though we use
SAX, the same observations hold for all other main-
stream summarizations (discussed in Section 2). This
is because they all represent data series as multi-
dimensional points. As a result, they still suffer from the
problem of poor lexicographical ordering, where sorting
is based on arbitrarily ordering dimensions. SAX was
chosen in our work, since it has been shown to out-
perform other approaches in terms of quality [77] and
index performance [10,74,9].

We next discuss how existing data series indexes
overcome the inability to sort summarizations, and we
analyze the impact on performance and storage over-
heads.

4 Note that SAX words are typically longer to enable more
precision; we use 2-character SAX words in this example for
ease of exposition.

6 Haridimos Kondylakis et al.

Root

…

0 0 0 1 0 0 1 1 1

0 00 0 0 01 0

Leaf LeafLeaf

Root

…

0 0 0 1 0 0

BufferBuffer

RAM

DISK

1 1 1

…

…

BufferSi =
SAX(Si) 10 10 11

00 01 01

00 01 00

00 01 00

00 00 01

00 00 00

00 01 01

00 01 00

00 01 00

00 00 01

00 00 00

11 10 10

10 10 10

11 10 10

10 10 10

10 10 11

Leaf

Flush

Fig. 3: Indexing using iSAX 2.0.

Term Definition
N Total number of data series
B Number of data series that fit into one disk block
M Number of data series that fit into main memory

Table 1: Table of terms

3.1 Top-Down Insertions

The standard approach for bulk-loading a database in-
dex (e.g., a B-Tree) relies on external sorting. This ap-
proach cannot be used with existing data series summa-
rizations, because they are not sortable. Instead, state-
of-the-art data series indexes perform top-down inser-
tions [10,76,69]. Here we analyze and compare their
implications on performance and storage overheads. We
analyze them in the disk access model [4], which mea-
sures the runtime of an algorithm in terms of disk blocks
transferred between main memory and secondary stor-
age. The terms we use are in Table 1.
The Current Approach: Top-Down Insertions.
Data series indexes are built and maintained using top-
down insertions: each data series is inserted through
the root node and trickles down to the appropriate leaf
node [66,67]. Since the internal nodes are maintained
in memory [10,9], every top-down insertion involves at
most three I/Os: one to read the appropriate leaf node,
one to update it, and one to create a new leaf node
in case the first one splits. The cost per insertion is
therefore at most O(1) I/O, and so the cost of index
construction is at most O(N) I/Os. As new leaf nodes
are allocated wherever there is space on disk, adjacent
nodes in the logical space are not necessarily continuous
in storage.

State-of-the-art data series indexes strive to reduce
construction cost by buffering insertions in main mem-
ory before flushing them to storage. This process is il-
lustrated on Figure 3 for the iSAX 2.0 index. The new
series to be inserted, Si, is translated to the iSAX word
(10 10 11). At the first level of the tree, data is split

based on the first bit at each of the segments. As a re-
sult Si is buffered as a part of the (1 1 1) sub-tree. In
our example, all the buffers are full and so the new in-
sertion causes them to flush and get consolidated with
corresponding leafs in storage. During this operation,
when a leaf node runs out of capacity, it creates two
new children by increasing the number of bits used to
represent one of the segments and divides the data se-
ries between them (we discuss this process in detail in
Section 3.2). The right side of Figure 3 shows an exam-
ple where node (0 0 0) splits into two new nodes, (0 00
0) and (0 01 0). The new leafs are allocated with free
space to be able to absorb new insertions. With ample
spatial locality in the insertion pattern, multiple en-
tries in the buffer map onto a small set of M

B
leaf nodes.

Since the buffer flushes N
M

times during index construc-
tion, the best-case construction cost with buffering is
M
B
· N

M
∈ O(N

B
) I/O. With little spatial locality, how-

ever, each entry from the buffer maps onto a different
leaf node, thereby leading to a cost of M · N

M
∈ O(N)

I/O, the same as without buffering. Hence, buffering
cannot in general alleviate the high index construction
cost of top-down insertions, and it also cannot ensure
that adjacent logical nodes are contiguous in storage.
The Elusive Alternative: Bottom-up Insertions.
Building an index on a batch ofN application insertions
through external sorting comprises two phases: parti-
tioning and merging. The partitioning phase involves
scanning the raw file in chunks that fit in main memory,
sorting each chunk in main memory, and flushing it to
secondary storage as a sorted partition. This amounts
to two passes over the data. The merging phase involves
merge-sorting all the different partitions into one con-
tiguous sorted order, using one input buffer for each
partition and one output buffer for the resulting sorted
order. Once the data is ordered, we build the index
bottom-up. Thus, the merging phase amounts to two
additional passes over the data, and so external sorting
involves overall four passes over the data. This amounts
to O(N/B) I/Os with a cost per insertion of O(1/B) I/O
(the reason being that each I/O handles B entries)5.
Implications for Index Construction. The analysis
in the disk access model above shows that external sort-
ing dominates top-down insertions in terms of worst-
case index construction cost because we only need to
do a few passes amounting to O(N/B) I/Os rather than
O(N) random I/Os. Since a disk block B is typically
large relative to data elements, this amounts to a 1-2
order of magnitude difference in construction speed.

5 In fact this condition only holds as long as M >
√
N [58].

Since main memory is approximately two orders of magnitude
more expensive than secondary storage, this condition holds
in practice for massive datasets.

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 7

Implications for Dynamic Insertions. In a dynamic
setting with ongoing insertions during runtime, every
top-down insertion that takes place requires reading a
target block from storage and rewriting it at a cost
of O(1) I/O per insertion. The inability to sort the
data means that data structures with better perfor-
mance properties for ingesting insertions during run-
time cannot be leveraged. For example, many modern
write-optimized data structures buffer insertions and
later sort-merge them multiple times while amortiz-
ing the overheads of sorting through large sort-merge
operations. For example, the log-structured merge-tree
(LSM-tree) has an I/O cost per insertion of O(log(N)

B
) as

it merges each entry a logarithmic number of times, but
the sort-merge operations allow us to divide this cost
by the block size B. A (traditional) data-series index,
however, cannot sort-merge the data and so it would
have to rely on top-down insertions to merge the runs
thereby blowing up the insertion cost to O(log(N)) and
making the scheme impractical. Thus, write-optimized
data structures are currently inapplicable for data se-
ries indexing.
Implications for Window Queries. Performing win-
dow queries requires creating temporal partitions of the
data so that a query can skip partitions with older data
that are not needed by the application. Existing data se-
ries indexes do not perform temporal partitioning, and
so the cost for a window query over the last X inser-
tions only requires searching the whole index at a cost
of O(N

B
) I/O. On the other hand, the log-structured

merge tree, for instance, creates a logarithmic number
of partitions of exponentially increasing sizes, and so
performing a query with a selectivity of s over data
within the most recent window of X insertions requires
performing O(X·r

B
) I/O, where r is the size ratio across

the different runs of LSM-tree [6]. The problem, as we
just saw, is that using LSM-tree is that it blows up the
cost of insertions by a logarithmic factor since the sort-
merge operations cannot be performed efficiently. For
this reason, such data structures that naturally tempo-
rally partition the data and offer support for window
queries cannot be used, and as a result, window queries
cannot be supported efficiently.
Implications for General Query Processing. Per-
forming bulk-loading and insertions through external
sorting has two performance advantages for subsequent
query processing. Firstly, the sorted order can be writ-
ten contiguously in secondary storage, meaning that
queries can traverse leaves using large sequential I/Os
rather than small random I/Os. Secondly, it is possible
to pack data series as compactly as possible in nodes
rather than leaving free space for future insertions. Im-
mediately after bulk-loading, this saves storage costs

and speeds up queries by reducing the physical space
that a query must traverse by a factor of 2.

Summary. Overall, external sorting dominates top-
down insertions in terms of both construction and query
speed. The problem is that existing data series indexes
cannot use external sorting as they cannot sort the data
based on existing data series summarizations.

3.2 Splitting Nodes

Database indexes such as B-trees split nodes when they
run out of capacity using the median value as a split-
ting point, whereas data series indexes use prefix-based
splitting. We now describe these methods in detail and
analyze their implications on performance and storage
overheads. We again use the disk access model [4] to
quantify storage overheads in terms of disk blocks.

Prefix-Based Splitting. In state-of-the-art data se-
ries indexes, every node is uniquely identified by one
prefix for every segment of the SAX representation, and
all elements in the node or its subtrees have matching
prefixes for all segments. When a leaf node runs out of
capacity, we scan the summarizations and identify the
segment whose next unprefixed bit divides the elements
most. We create two new children nodes and divide the
elements among them based on the value of this bit.
The problem is that data is not guaranteed to be un-
evenly distributed across the nodes. In the worst-case,
every node split divides the entries such that one moves
to one of the new nodes and the rest move to the other,
meaning that the index is unbalanced, most nodes con-
tain only 1 entry, and so storage consumption is O(N)
disk blocks.

Median-Based Splitting. Splitting a node using the
median value involves sorting the data elements to iden-
tify the median, moving all elements to the right of this
mid-point into a new node, and adding a pointer from
the parent to the new node to ensure the index remains
balanced. This approach ensures that every node is at
least half full. As a result, the amount of storage space
needed is at most double the size of the actual data.
This amounts to O(N/B) blocks.

Comparison. Prefix-based splitting results in an un-
balanced index amplifies worst-case storage overheads
relative to median-based splitting by a factor of B.
Since exact query answering time is proportional to the
number of leaf nodes in the index, it amplifies it by
the same factor. Overall, median-based splitting domi-
nates prefix-based splitting, but we cannot use it in the
context of data series indexing because existing sum-
marizations are not sortable.

8 Haridimos Kondylakis et al.

4 Coconut

In this section, we present Coconut in detail. Coconut
is a novel data series indexing infrastructure that orga-
nizes data series based on sortable summarizations. As
a result, Coconut indexes are able to use bulk-loading
techniques based on sorting to efficiently build a con-
tiguous index. Furthermore, they are able to divide data
series among nodes based median values to ensure that
the index is balanced and that all nodes are densely
populated. Finally, Coconut indexes are able to lever-
age different data structures during runtime to support
different read/write cost trade-offs, and they can opti-
mize particularly well for streaming applications that
require different temporal views over the data.

In Section 4.1, we show how to make existing sum-
marizations sortable using a simple algorithm that in-
terleaves the bits in a summarization such that all more
significant bits from across all segments precede all
less significant bits. In Sections 4.2 and 4.3, we in-
troduce Coconut-Trie and Coconut-Tree, respectively.
These data structures allow us to isolate and study the
impact of the properties of contiguity and compactness
on query and storage overheads. In Section 4.4, we in-
troduce Coconut-LSM, the first data series index that
supports efficient, log-structured insertions during run-
time.

4.1 Sortable Summarizations

Each data series summarization can be viewed as a
point in multi-dimensional space, where each segment
in the summarization represents a dimension. The ques-
tion is how to place points that are similar across all
dimensions as close to each other as possible in storage
so as to minimize disk access during similarity search.

A well-known technique is to use a space-filling
curve, which linearizes multi-dimensional data on stor-
age while preserving locality. We illustrate an example
in Figure 2 with a z-order curve [42], which linearizes
data by using recursive Z shapes which allow proximal
points to remain close to each other in the linearized
order.

The standard technique for projecting entries into a
Z-order is to (1) interleave the bit representation of all
segments of an entry, and then (2) sorting the entries
based on the inverted bit representation [8,59]. The in-
tuition is that each dimension is represented as a bit
string, whereon more significant bits carry more infor-
mation, while smaller bits increase precision. Concep-
tually, sorting data is an operation that involves recur-
sively dividing data entries based on the most signifi-
cant bit into a hierarchy of sets, and then laying out the

000

001

010
011
100
101

110

111

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

S1

S3

S2

S4

Fig. 4: Z-ordered SAX summarization.

elements in the hierarchy in a depth-first order. Sorting
the inverted summarizations therefore places more im-
portance on co-locating entries that are similar across
their most significant bits, and a decreasing amount of
importance on being closer in terms of each segment’s
lesser significant bits. An implementation of this tech-
nique for data series is shown in Algorithm 1, trans-
forming existing summarization schemes into sortable
ones. To the best of our knowledge we are the first to
apply this into data series summarizations.

Figure 4 shows how to transform the four summa-
rizations in Figure 2 into sortable Z-ordered summa-
rizations in two dimensions (for ease of illustration).
The technique applies to data with any number of
segments/dimensions. The figure also shows their lin-
earized order along the z-ordered curve. As shown, the
data series that are most similar to each other are in-
deed placed closest to each other (which is not the case
when sorting them based on the original representa-
tion).

Note that a sortable summarization contains the
same amount of information as the original summa-
rization, the only difference being that the bits are or-
dered differently. Hence, it is easy and efficient to switch
back and forth between sortable summarizations and
the original form, and we therefore do not lose any-
thing in terms of the ability to prune the index during
querying.

New Infrastructure Opportunities. The ability to
sort data series summarizations enables a plethora of
new indexing infrastructure possibilities for data se-
ries indexes, ranging from read-optimized B-trees [60]
to write-optimized LSM-trees [46] to adaptive struc-
tures that change performance characteristics based
on workload [21,14]. Coconut-Trie, Coconut-Tree, and
Coconut-LSM represent three points in this space that

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 9

Algorithm 1 Sortable Summarization
1: procedure invertSum(Sum)
2: for each bit i of a segment in Sum do
3: for each segment j do
4: Add the i bit of segment j to SSum
5: end for
6: end for
7: return SSum
8: end procedure

push upon the current state-of-the-art, though we ex-
pect that many more opportunities for specialization
based on hardware and workload are possible.

4.2 Coconut-Trie

We now present Coconut-Trie, a data series index that
uses sortable summarizations to construct a contigu-
ous index using bulk-loading. Similarly to the state-
of-the-art indexing schemes, Coconut-Trie divides data
entries among nodes based on the greatest common pre-
fix among all segments. The advantage relative to the
state-of-the-art is that the resulting index is contigu-
ous, meaning that queries do not issue random I/Os,
but a large sequential I/O.
Construction. The construction algorithm is shown
in Algorithm 2. The algorithm initially constructs the
sortable summarizations of all data series and sorts
them using external sort. Then it constructs in a
bottom-up fashion a detailed iSAX index. Finally this
index is compacted by pushing more data series in the
leaf nodes.

The input of the algorithm is a raw file, which con-
tains all data series. The process starts with a full scan
of the raw data file in order to create the sortable sum-
marizations for all data series (lines 4-6). For data se-
ries we also record their offset in the raw file, so future
queries can easily retrieve the raw values. All sortable
summarizations and offsets are stored in an FBL buffer
(First Buffer Layer). As soon as the buffer is full, it is
sorted in the main memory and the sorted pairs are
written to disk.

The process continues until we reach the end of the
raw file.

If there are more than one sorted runs on disk, we
sort them using external sort, and the final sorted file
is written to disk.

Having the sortable summarizations sorted, all
records that belong to a specific subtree are grouped
together. As such we exploit them in order to build a
minimal tree in a bottom-up fashion, i.e., a tree that
does not contain any raw data series (lines 22-24). The

Algorithm 2 Coconut-Trie: bottom-up bulk-loading of
an prefix split based tree
1: procedure Coconut-Trie(rawFile)
2: while not reached end of file do
3: position = current file position;
4: dataSeries= read data series of size n from rawFile;
5: SAX = convert dataSeries to SAX;
6: invSAX = invertSum(SAX);
7: Move file pointer n points;
8: Add the (invSAX, position) pair to the buffer;
9: if the main memory is full then
10: Sort buffer according to invSAX
11: Flush sorted buffer to the disk
12: end if
13: end while
14: Sort flushed runs using external sort
15: while not reached end of sorted file do
16: Read the next (invSAX, position) in the buffer
17: if the main memory is full then
18: for every different subtree in buffer do
19: //Move data from the buffer
20: //to leaf buffer
21: //and construct bottom-up the index
22: for every (invSAX, position) in buffer do
23: insertBottopUp(invSAX, position);
24: end for
25: //merge leaf nodes as much as possible
26: CompactSubtree(root)
27: //Flush all Leaf Buffers containing
28: //(Sax, position) pairs to the disk
29: for every leaf in subtree do do
30: Flush the leaf to the disk;
31: end for
32: end for
33: end if
34: end while
35: end procedure

main idea of the corresponding algorithm, i.e. the in-
sertBottopUp procedure, is that initially a new node
is created for each different SAX representation. Then,
the algorithm replaces in iterations the least significant
bits of the SAX representations with star marks until a
common SAX prefix is identified to be placed in the par-
ent node. Then this idea is applied at the parent level
and so on, until we reach the root (the corresponding
algorithm is omitted due to lack of space).

The next phase is to compact this subtree, i.e. to
push as many records in the leaf nodes as possible.
This is performed using the CompactSubtree procedure
(line 26). To do that the algorithm iteratively checks
whether the records of two sequential sibling nodes can
fit together in a parent node. If they do, the algorithm
merges them and continues till all leaf nodes are vis-
ited. Then the algorithm iterates again over the all
leaves, until no more leaves are merged. Finally each
compacted subtree is flushed back to disk (lines 29-31).

The above algorithm is used to create a secondary
index over the original raw file, keeping only the offsets

10 Haridimos Kondylakis et al.

Fig. 5: Constructing bottom-up a Coconut-Trie index -
before calling the compactSubtree procedure.

in the leaf nodes. The algorithm performs the follow-
ing passes over the data: (i) read the raw data series
and compute the sortable summarizations; (ii) flush the
sorted partitions of the summarizations to disk (along
with their offsets); (iii) merge-sort them; and (iv) build
the index. This process involves O(N/B) I/Os, but usu-
ally all the summarizations and their offsets fit in main
memory, eliminating the need for passes (ii) and (iii).

A slight variation of the aforementioned algorithm
could be used to create a fully-materialized iSAX index
as well.6 We call this variation Coconut-Trie-Full. This
would require the raw data series to be sorted alongside
their sortable summarizations in the sort-merge phase,
and then flushed to disk. Although the complexity of
the algorithm would be the same, it would require addi-
tional passes in the sort-merge phase, and an additional
pass over the raw data, in order to flush them to the
leaf nodes.

Example 1 Figure 5 illustrates an example of creating
a Coconut-Trie index using the bottom-up Algorithm 2.
As shown in the figure, we initially construct the sum-
marizations (SAX) for all data series, as well as their
sortable summarizations (invSAX). Then, we sort them
using their invSAX value, and we construct the corre-
sponding Coconut-Trie index using the InsertBottomUp
algorithm. Following this algorithm, initially, the first
data series is placed in a new node. The second data se-
ries is placed in yet a new node, since it has a different

6 In a materialized index, the raw data-series are stored
alongside their summarizations within the index, whereas in
a non-materialized one the index contains pointers to the raw
data series that are stored in a different file.

SAX representation than the first one. Then, the create-
Uptree procedure is called to link the new node with the
previous node. As such, the four least significant bits are
replaced with stars, until the algorithm identifies a com-
mon prefix that could be used as the mask of the parent
node (0∗0∗1∗1∗). The parent is generated and linked to
the root node. The third data series is then inserted to
the tree, and a new node is generated. This node should
be linked to the already existing tree: the createUptree
procedure is called again, using as input the SAX rep-
resentations of the second and third data series. The
least significant bits are again replaced by a star, one
by one until we identify the parent that should be gen-
erated linking the third node to the tree. The resulting
Coconut-Trie tree (refer to Figure 5) demonstrates the
state of the tree before calling the CompactSubtree pro-
cedure, which will follow in order to compact the entire
tree. Assuming that a leaf node can hold two data se-
ries, the corresponding algorithm will identify that the
first two time-series have the same parent and they fit
together. As such they can be placed directly in their
parent node, removing the child nodes.

Queries. Since the constructed index is essentially no
different than an iSAX index, we use the traditional
approximate and exact search algorithms in order to
perform querying. Approximate search works by visit-
ing the single most promising leaf, and calculating the
minimum distance to the raw data series contained in
it. It provides answers of good quality (returns a top 100
answer for the nearest neighbor search in 91.5% of the
cases for iSAX with extremely fast response times [67]).
On the other hand, exact search guarantees that we get
the exact answer, but with potentially much higher ex-
ecution time. For exact search, we employ the SIMS
algorithm, implementing a skip sequential scan algo-
rithm, shown to outperform traditional exact search al-
gorithms [76].

4.3 Coconut-Tree

Although Coconut-Trie achieves contiguity, i.e. adja-
cent leaf nodes are placed next to each other in stor-
age, a lot of disk space is wasted in those leafs: many
of them are half-full or less, due to the way the index
is constructed (i.e., compacting child nodes to a parent
one). In addition, since the constructed tree in both
Coconut-Trie and in current state-of-the-art are unbal-
anced trees, they offer no guarantees for the query an-
swering time.

We now present Coconut-Tree, a data series index
that organizes data series based on sortable summariza-
tions, and improves upon Coconut-Trie by eliminating

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 11

Algorithm 3 Coconut-Tree: Bottom-up bulk-loading
of a balanced tree
1: procedure Coconut-Tree(rawFile)
2: while not reached end of file do
3: position = current file position;
4: dataSeries = read n data series from rawFile;
5: iSAX = convert dataSeries to iSAX;
6: invSAX = invertSum(iSAX);
7: Move file pointer n points;
8: Add the (invSAX, position) pair in the buffer;
9: if the main memory is full then
10: Sort buffer according to invSAX
11: Flush sorted buffer to the disk
12: end if
13: end while
14: Merge-sort all flushed runs
15: Build internal nodes on top of sorted file
16: end procedure

the constraint that a node can only contain elements
with a common prefix. This leads to a balanced index
that can densely pack data in its leaf nodes (at a fill-
factor that can be controlled by the user). The corre-
sponding algorithm completes index construction again
in O(N/B) time.

Index construction, shown in Algorithm 3, receives
the raw data file as input. A buffer is initialized, and
while the buffer is not full the next data series is loaded
from the raw file, and the sortable summarization is
calculated and stored along with the position of this
data series in the raw data file (lines 2-8). Whenever the
buffer fills up, it gets sorted and flushed to storage as
an independent sorted partition (line 9-13). Ultimately,
all sorted partitions get sort-merged into a single sorted
partition (line 14). Some padding may be left in each
storage block as space for future insertions. Internal
nodes are then built on top of this sorted partition to
construct a B-tree (line 15).

The Algorithm 3 builds a secondary index with only
offsets in the lead nodes, but it can be used to construct
a fully materialized index as well, where all data reside
in the leaf nodes. We call the materialized version of
the algorithm Coconut-Tree-Full. We expect that index
construction time of Coconut-Tree-Full will be signifi-
cantly larger. Nevertheless, we also expect that query
execution time would be better, since it will not perform
additional I/Os to go to the raw data file for accessing
each required data series record.

Example 2 Figure 6 illustrates the construction of
a Coconut-Tree index. Initially, we construct for all
data series their SAX and their invSAX representa-
tions. We then sort them using their invSAX value,
and we construct the Coconut-Tree index in a bottom-up
fashion (exploiting the bulk-loading algorithm for UB-

Fig. 6: Constructing a Coconut-Tree index.

Algorithm 4 Approximate search for the Coconut-
Tree
1: procedure approxSearchCoconutTree(dataSeries,

invSAX, index, radius)
2: targetPoint = point where invSAX should be inserted
3: //Calculate the real leaf distance between
4: //the dataSeries and the raw data series
5: //in a radius around the place that the
6: //dataSeries should reside if existed
7: bsf = caclRadLeafDist(targetPoint, dataSeries, ra-

dius);
8: end procedure

Trees [58]). Note that the constructed index in this case
is balanced.

Querying. For approximate search, when a query ar-
rives (in the form of a data series), it is first converted
to its sortable summarization. Then the Coconut-Tree
index is traversed searching for this sortable summa-
rization similar the approximate search in iSAX trees.
The idea is to search for the leaf, where the query series
would reside if it was part of the indexed data set. If
such a record exists, it is retrieved from the disk and re-
turned to the user. On the other hand, if such a record
does not exist, all data series in a specific radius from
this specific point are retrieved from the disk (usually a
disk page), and their real distances from the query are
calculated. The data series with the minimum distance
found among the data series in that radius is used as
the approximate answer. Thus, in terms of execution
cost, the algorithm visits as many nodes as the depth
of the tree, and any additional leaf nodes within the
selected radius.

Note that in a Coconut-Tree index, we have pointers
between neighboring leaves, which are allocated sequen-
tially on disk. This allowed us to experiment with the
radius size, optimizing the trade-off between the quality
of the answer and the execution time of the approximate
search.

12 Haridimos Kondylakis et al.

Algorithm 5 Coconut-Tree Scan of In-Memory sum-
marizations
1: procedure coconutTreeSIMS(dataSeries, invSAX,

index, radius)
2: //if SAX sums are not in memory, load them
3: if invSums = 0 then
4: invSums = loadinvSaxFromDisk();
5: end if
6: //perform an approximate search
7: bsf = approxSearchCoconutTree(dataSeries, invSAX,

index, radius);
8: //Compute minimum distances for all summaries
9: Initialize mindists[] array;
10: //use multiple threads & compute bounds in parallel
11: parallelMinDists(mindists, invSums, dataSeries);
12: //Read raw data for unprunable recorde
13: recordPosition = 0;
14: for every mindist in mindists do
15: if mindist < bsf then
16: rawData = read raw data series from index;
17: realDist = Dist(rawData, dataSeries);
18: if realDist < bsf then
19: bsf = realDist;
20: end if
21: end if
22: recordPosition++;
23: end for
24: end procedure

For implementing exact search for Coconut-Tree,
we implement a skip sequential scan algorithm (refer
to Algorithm 5) similar to SIMS [76]. Our algorithm
employs approximate search as a first step in order to
prune the search space. It then accesses the data in a se-
quential manner, and finally produces an exact, correct
answer. We call this algorithm Coconut-Tree Scan of
In-Memory Summarizations (CoconutTreeSIMS). The
main intuition is that while the raw data do not fit in
main memory, their summarized representations (which
are orders of magnitude smaller) will fit in main mem-
ory (remember that the SAX summaries of 1 billion
data series occupy merely 16 GB in main memory). By
keeping these data in-memory and scanning them, we
can estimate a bound for every data series in the data
set.

The algorithm differs from the original SIMS algo-
rithm in that it searches over the sorted invSAX rep-
resentations for the initial pruning, and it then uses
the Coconut-Tree index to get the raw data-series in-
stead of accessing the original file with the raw data
series. As such, Algorithm 5 starts by checking whether
the sortable summarization data are in memory (lines
3-4), and if not it loads them in order to avoid recal-
culating them for each query. It then creates an initial
best-so-far (bsf) answer (line 7), using the approximate
search algorithm described previously (Algorithm 4).
A minimum distance estimation is calculated between

the query and each in-memory sortable summarization
(line 11) using multiple parallel threads, operating on
different data subsets. For each lower bound distance es-
timation, if this is smaller than the real distance to the
bsf, we fetch the complete data series from the Coconut-
Tree index, and calculate the real distance (lines 15-22).
If the real distance is smaller than the bsf, we update
the bsf value (lines 19-21). Since the summaries array
is aligned to the data on disk, what we essentially do
is a synchronized skip sequential scan of the raw data
and the in-memory mindists array. This property al-
lows us to prune a large amount of data, while ensuring
that the executed operations are very efficient: we do
sequential reads in both main memory and on disk, and
we use modern multi-core CPUs to operate in parallel
on the data stored in main memory. At the end, the
algorithm returns the final bsf to the user, which is the
exact query answer.

4.4 Coconut-LSM

While Coconut-Tree creates a compact and contiguous
index that can be constructed and queried efficiently, it
does not perform well in the presence of random inser-
tions (i.e., that are uniformly distributed across the key
space). The reason is that when insertions are randomly
distributed, each of them requires O(1) I/O to process
(i.e., one I/O to read the corresponding node and an-
other I/O to rewrite it). For insertion-heavy workloads,
this can harm throughput. To mitigate this problem, we
introduce Coconut-LSM, a new write-optimized data
series index based on sortable summarization.

Coconut-LSM organizes the data series summariza-
tions as an LSM-tree [46,14]. The core idea is to buffer
incoming insertions in memory, to flush the buffer to
storage as an independent sorted run every time that it
fills up, and to bound the overall number of runs in stor-
age by gradually sort-merging them to restrict read cost
(i.e., the number of runs a read has to search). LSM-
tree sort-merges runs of similar sizes, and it organizes
them into levels of exponentially increasing capacities.
We use a variation of LSM-tree with a size ratio of 2
between the capacities of every pair of adjacent levels.
As a result, there are at most O(log2(N)) runs in the
system. Since every insertion gets merged across each
level, and since every I/O during sort-merge copies B

entries, the amortized cost per insertion is O(log2(N)

B
)

I/O. Since the storage block size B is large, the inser-
tion cost for Coconut-LSM gets amortized and is there-
fore significantly lower than for any existing data series
index. Thus, Coconut-LSM enables more efficient inser-
tions at the expense of slightly more expensive queries.

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 13

Algorithm 6 Coconut-LSM: Bottom-up bulk-loading
of an LSM-tree
1: procedure Coconut-LSM(rawFile)
2: while not reached end of file do
3: position = current file position;
4: dataSeries = read n data series from rawFile;
5: iSAX = convert dataSeries to iSAX;
6: invSAX = invertSum(iSAX);
7: Move file pointer n points;
8: Add the (invSAX, position) pair in the buffer;
9: if the main memory is full then
10: Sort buffer according to invSAX
11: Flush sorted buffer to the disk
12: end if
13: end while
14: Sort flushed runs using external sort
15: Use LSM-Tree bulk-loading algorithm to build a tree

on top of the sorted file and record the individual flushes
on disk

16: end procedure

The construction algorithm is similar to the one
for Coconut-Tree, performing a two-pass external sort
of the data in O(N/B) I/O, and is shown in Algo-
rithm 6. The resulting sorted file, also called a run,
becomes the largest level of the LSM-tree. Similarly to
Coconut-Tree, we also consider a materialized variant
of Coconut-LSM called Coconut-LSM-Full, which stores
raw data series within the LSM-tree, and which we eval-
uate later.

Example 3 Figure 7 illustrates the construction of
a Coconut-LSM index. Initially, we construct for all
data series their invSAX representations. We then sort
them using their invSAX value, and we construct the
Coconut-LSM index in a bottom-up fashion (exploit-
ing the bulk-loading algorithm for LSM-Trees). The bulk
loading algorithm buffers incoming insertions in mem-
ory and flushes the buffer to storage as it fill-up, creat-
ing multiple Coconut indexes. As multiple indexes are
constructed in the incoming buffer (also referred to as
level 0), they are asynchronously merged to form larger
indexes in level 1. The same applies for level 1 indexes
that are asynchronously merged to formulate larger,
level 2 indexes.

Querying. For approximate search, Algorithm 4 for
Coconut-Tree is applied to each individual run of
Coconut-LSM. The data series with the minimum dis-
tance found across the runs of Coconut-LSM is used
as the approximate answer. Note that approximate
search in Coconut-LSM is more expensive in terms of
I/Os than Coconut-Tree, as multiple runs need to be
searched. In this way, Coconut-LSM trades approxi-
mate query performance for insertion performance.

Algorithm 7 Coconut-LSM Scan of In-Memory sum-
marizations
1: procedure coconut-LSM-SIMS(dataSeries, invSAX,

index, radius)
2: //if SAX sums are not in memory, load them
3: if invSums = 0 then
4: invSums = loadinvSaxFromDisk();
5: end if
6: //perform an approximate search
7: bsf = approxSearchCoconutTree(dataSeries, invSAX,

index, radius);
8: for every subtree of the LSM structure do
9: //Compute minimum distances for all summaries
10: Initialize mindists[] array;
11: //use multiple threads & compute bounds in par-

allel
12: parallelMinDists(mindists, invSums, dataSeries);
13: //Read raw data for unprunable recorde
14: recordPosition = 0;
15: for every mindist in mindists do
16: if mindist < bsf then
17: rawData = read raw data series from index;
18: realDist = Dist(rawData, dataSeries);
19: if realDist < bsf then
20: bsf = realDist;
21: end if
22: end if
23: recordPosition++;
24: end for
25: end for
26: end procedure

For implementing exact search for Coconut-LSM,
we revisit the corresponding algorithm for Coconut-
Tree. The new algorithm is shown in Algorithm 7. In the
first step, the algorithm employs approximate search in
order to prune the search space. It then accesses the
subtrees in a sequential manner, and finally produces an
exact, correct answer. We call this algorithm Coconut-
LSM Scan of In-Memory Summarizations (Coconut-
LSM-SIMS).

The main intuition for this algorithm is that we
would like to search sequentially all subtrees of the LSM
tree in order to optimize read, still however performing
a skip sequential scan. As such we use the snapshot
of the available summarizations produced in indexing
phase. By keeping these data in-memory and scanning
them, we can estimate a bound for every data series in
the data set.

5 Sliding windows

Up until now, we focused on nearest neighbor search
across an entire dataset. In many modern applications,
however, queries have temporal constraints: they must
find the nearest neighbor from within the most re-
cent data (e.g., in infrastructure monitoring, or geo-

14 Haridimos Kondylakis et al.

Indexed Run

Merge-sort

00110101 00111100 01100110

01100110

invSAX

Raw data

Indexed Run

M
erge-sort

01011001 01111100invSAX

Raw data

Buffer

Empty slot Sort and index

When the buffer is full:

It is sorted, indexed and flushed to
Level 1 forming an “indexed run”

When Level i reaches capacity:

 The runs within it are merged
and flushed to level i+1

Incoming data series are summarised
and the summaries along with the
 raw data are pushed into a buffer

invSAX

Raw data

Indexed Run

Bu
ffe

r
Le

ve
l 1

Le
ve

l 2
Le

ve
l 3

N
ew

er
 d

at
a

O
ld

er
 d

at
a

…

Fig. 7: Constructing a Coconut-LSM index.

temporal applications). The size of the temporal win-
dow of interest often varies across and within applica-
tions to enable different granularities of analysis (e.g.,
data from the past week, month, year, etc.). Therefore,
a data series index needs to flexibly support variable-
sized window queries. Ideally, it should save on storage
bandwidth by avoiding access to data that is older than
a specified query window.

In this section, we describe three approaches for sup-
porting window queries. The first two approaches, post-
processing and temporal partitioning, only support ef-
ficient long or short window queries, respectively, but
neither supports both. These two approaches represent
the best we can do with existing data series indexes as
well as with Coconut-Trie and Coconut-Tree. We then
show how Coconut-LSM enable a third approach that
supports window queries of any size efficiently. We coin
it bounded temporal partitioning (BTP). For all three
approaches, we attach a timestamp to each entry. We
experimentally compare them in Section 6.

5.1 Approach 1: Post-Processing (PP)

Post-processing relies on examining the timestamp of
every entry as it is encountered during query processing
and discarding it if the timestamp does not fit within
the window specified by the query. Exact queries take
place as before, with the difference that they now also
check every entry’s timestamp. Approximate queries,
however, may need to broaden the scope of their search
if the first node that is encountered only contains en-
tries that are outside of the specified window. Hence, we
adapt them to incrementally expand their search across
adjacent leaf nodes until an entry within the specified
window is found.

While post-processing is the simplest approach to
implement, it is inefficient for exact queries if the spec-
ified time window encompasses a small proportion of
the data. The reason is that it does not allow to save
storage bandwidth by avoiding access to older entries.
Hence, an exact query to the most recent data con-
sumes as much storage bandwidth as a query over the

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 15

entire data. For approximate queries, search may also
take significantly longer to execute as potentially many
nodes need to be searched until an entry within the
window is found.

5.2 Approach 2: Temporal Partitioning (TP)

With temporal partitioning, we create a new index par-
tition based on the in-memory buffer’s contents every
time that the buffer fills up. In this way, the system
gathers more and more temporal partitions over time,
and it organizes them based on their creation time. This
allows both approximate and exact queries to access
only indexes whose creation timestamp falls within or
intersects with a specified query window.

TP works well for short window queries as it al-
lows them to skip access to most of the data in stor-
age. On the other hand, it performs poorly for windows
that span a significant proportion of the data. For exact
queries, the reason is that they must begin the search
from scratch for every partition, and so they cannot
leverage the lower-bounding property of invSAX as ef-
fectively to spatially prune within each partition. For
approximate queries, the reason is that they need to
issue one I/O to every qualifying partition (potentially
hundreds for large data sizes).

5.3 Approach 3: Bounded Temporal Partitioning
(BTP)

While neither the first nor the second approach sup-
ports both long and short window queries efficiently,
many applications need to be able to use both short
and long window sizes, while maintaining good perfor-
mance in all cases. Our insight is that Coconut-LSM
enables a new approach that combines the best of these
two approaches. By design, Coconut-LSM creates a new
temporal partition every time the buffer flushes (as with
TP), and it sort-merges temporal partitions of similar
sizes. In this way, newer data resides in smaller parti-
tions, while older data gradually moves to larger con-
tiguous partitions. This allows queries over short win-
dows to save storage bandwidth by skipping larger par-
titions. At the same time, it allows exact queries over
long windows to spatially prune a greater proportion
of the data by leveraging the lower bounding property
of invSAX more effectively, and it allows approximate
queries over long windows to issue fewer I/Os by bound-
ing the overall number of partitions that need to be
accessed.

We refer to this windowing approach as Bounded
Temporal Partitioning (BTP). We implement BTP on

top of Coconut-LSM by modifying it to take a window
size as a query parameter, and to skip accessing larger
partitions that fall outside of a specified window size.
We demonstrate the benefits of BTP for both small and
large window queries in Section 6.

Note that with unsortable summarizations (as is the
case with the traditional state-of-the-art data series in-
dexes), the BTP approach would have been inviable,
as it would have to rely on expensive in-place inser-
tions for merging partitions. We therefore observe here,
too, that the ability to sort the summarizations opens
up new opportunities for optimization that would have
been impossible otherwise.

Example 4 Figure 8 illustrates schematically the three
approaches. In the first case, PP, a full index is con-
structed that covers the entire dataset. For TP, multiple
indexes are constructed, each one for a different window
partition of the data. Finally, in the BTP approach, the
index is constructed containing all entries, however cre-
ating a temporal partition each time the buffer is flushed
to disk. Therefore, it guarantees optimal access to win-
dow queries, but it also enables querying records that
reside on other sliding window sizes.

6 Experimental Evaluation

In this section, we present our experimental evaluation.
We demonstrate the benefits of sortability, enabling a
variety of new choices for data structures to be used
for better space-efficiency and for more efficiently bulk-
loading, querying, and updating the data.
Algorithms.We benchmark all indexing methods pre-
sented in this paper against the state-of-the-art data
series indexing techniques. More specifically, we com-
pare our materialized methods with R-tree [19], Ver-
tical [23], DSTree [69] and ADS-Full [76], and our
non-materialized methods with ADS+ [76] and a non-
materialized version we implemented over R-tree, the
R-tree+.

The Vertical approach generates an index using data
series features, obtained by a multi-resolution Discrete
Wavelet Transform, in a stepwise sequential-scan man-
ner, one level of resolution at a time. DSTree is a
data adaptive and dynamic segmentation tree index
that provides tight upper and lower bounds on dis-
tances between time series. ADS-Full is an algorithm
that constructs an iSAX clustered index by perform-
ing two passes over the raw data series file. ADS+ is
an adaptive data structure, which starts by building a
minimal secondary index. Leaf sizes are refined during
query answering, and leaves are materialized on-the-fly.

16 Haridimos Kondylakis et al.

Fig. 8: The various sliding windows appoaches: (a) Post-Processing (PP), (b) Temporal Partitioning (TP) and (c)
Bounded Temporal Partitioning (BTP).

Astronomy Randomwalk Seismology

−5
.0

−2
.5 0.

0
2.

5
5.

0
−5

.0
−2

.5 0.
0

2.
5

5.
0
−5

.0
−2

.5 0.
0

2.
5

5.
0

0.00

0.01

0.02

0.03

0.04

Value

P
ro

ba
bi

lit
y

Fig. 9: Value histograms for all datasets used.

As such query answering has the additional overhead
of the refinement of the leafs. The R-tree index is built
on the raw data series by indexing their PAA summa-
rizations. The raw data series are stored in the leaves
of the tree. Our R-tree implementation uses the Sort-
Tail-Recursive bulk loading algorithm [32]. R-tree+ is
the non-materialized version of the R-tree, using file
pointers in the leaves instead of the original time se-
ries. In our experiments, we used the same leaf size
(2000 records) for all indexing structures.

In the experiments on index construction and query-
ing, we do not include Coconut-LSM. The reason is
that in the absence of insertions, Coconut-LSM after
bulk-loading contains all of its data in one level, and
a one-level LSM-tree is structurally equivalent to a B-
tree [46]. We therefore include Coconut-LSM in the ex-
periments when we also introduce insertions into the
workloads.
Infrastructure. All algorithms are compiled with
GCC 4.6.3 under Ubuntu Linux 12.04 LTS. We used an
Intel Xeon machine with 5x2TB SATA 7.2 RPM hard
drives in RAID 0. The memory made available for each
algorithm was controlled according to the experiment.
Datasets. For our experiments we used both synthetic

and real datasets. Synthetic datasets were generated
using a random walk data series generator: a random
number is drawn from a Gaussian distribution (0,1);
then, at each time point a new number is drawn from
this distribution and added to the value of the last
number. This kind of data has been extensively used
in the past (see [77] for a list of references), and has
been shown to effectively simulate real-world financial
data [16].

The real datasets we used in our experiments are
seismic and astronomy data. We used the IRIS Seismic
Data Access repository [1] to gather data series repre-
senting seismic waves from various locations. We ob-
tained 100 million data series by extracting one sample
per second from the original data series, and then par-
titioning them into smaller series of 256 samples each
by sliding every 4 samples over the original series. The
complete dataset size was 100GB. For the second real
dataset, we used astronomy data series representing ce-
lestial objects [68]. The dataset comprised of 270 million
data series, obtained by partitioning the original series
into smaller series of 256 samples each using a sliding
step of one sample. The total dataset size was 277GB.

All our datasets have been z-normalized by sub-
tracting the mean and dividing by the standard devia-
tion. This is a requirement by many applications that
need to measure similarity irrespective of translation
and scaling of the data series [17]. Moreover, it allows
us to compute correlations based on the euclidean dis-
tance values [45].

In Figure 9, we show the distributions of the values
for all datasets. The distributions of the synthetic and
seismology data are very similar, while astronomy data
are slightly skewed.
Query Workloads. Each query is given in the form of
a randomly selected data series q and having the index
try to locate whether this data series or a similar one
exists in the database. For querying the real datasets we

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 17

Fig. 10: Indexing & Querying data series using variable
number of summary segments.

obtained additional data series from the raw datasets
using the same technique for collecting the datasets to
be used in the query workload.
Configuring number of segments. As a first step,
before comparing with other approaches, we studied the
effect of the number of segments of the generated sum-
maries on performance. The idea was to evaluate the
trade-off between number of segments, space overhead
introduced by the indexing structure over the raw data,
and indexing and querying execution time. We used a
synthetic data series collection of 100GB data series and
100 exact queries, using limited memory (100K data se-
ries) for both indexing and querying. The accumulative
execution time for both querying and indexing is shown
in Figure 10, where we can also see the index space over-
head in each case (thin gray line). As shown, the larger
the number of segments, the larger the indexing time
for both materialized (CTreeFull) and non-materialized
(CTree) approaches. In addition, the benefit in index-
ing has an impact on querying, as smaller summaries
cannot prune effectively the search space when perform-
ing exact queries. On the other hand going beyond 16
number of segments almost doubles the additional space
introduced by our indexing structures. Therefore, we se-
lected 16 as the number of segments. Unless mentioned
otherwise, in the rest of the experimental evaluation,
the summarizations use 16 SAX words, the size of data
series was of 256 points, and each point has a floating
precision of 4 bytes.

6.1 Indexing

In our first set of experiments, we evaluate index con-
struction speed. The results for the materialized algo-
rithms are shown in Figure 11a as we vary the memory
budget for each method to control the amount of buffer-
ing and caching they are able to leverage. We observe

that Coconut-Tree-Full (CTreeFull) exhibits the best
construction speed in all cases it is able to externally
sort the raw data file. As memory becomes limited,
external sorting degrades gracefully in terms of per-
formance. The construction time of Coconut-Trie-Full
(CTrieFull) on the other hand, significantly increases
as we constrain the memory (and the corresponding
buffering), due to the extensive I/Os spent on the last
pass of the data, for loading the unsorted raw data
to the sorted leaves. Moreover, we observe that Ver-
tical is slower in all cases, while R-tree performs rather
poorly. The STR algorithm [32] that R-tree uses first
sorts based on the first dimension into N

1
D slabs (where

N is the number of points in a D-dimensional space),
and then recursively repeats the process within each
slab with one less dimension. As a result, runtime is the
product of the number of elements and the number of
dimensions: O(N ·D) I/Os. In contrast, our implemen-
tation uses sortable summarizations to sort based on
all dimensions with just one pass, amounting to O(N)

I/Os. Finally, DSTree requires more than 24 hours to
finish in most of the cases, as it inserts all data series
in the index one by one, in a top-down fashion. This
requires multiple iterations to be performed over the
raw data during splits in order to create more detailed
summarizations, leading to a high I/O overhead.

In the non-materialized versions of the algorithms,
shown in Figure 11b, ADS+ is slightly better than
Coconut-Tree (6.3 vs 7.8 mins), when given ample
memory. However when we restrict the available main
memory, Coconut-Tree becomes faster than ADS+ (8.2
vs 13.4 mins). This is due to the fact that as the leaves
in ADS+ split, they cause random disk I/Os. This
slows down index construction, since buffering is lim-
ited when the main memory is limited. On the other
hand, Coconut-Trie (CTrie) spends a significant time in
compacting its nodes, which significantly slows down in-
dex construction. The performance of R-tree+ matches
the behavior of the materialized R-tree, requiring much
more execution time than the leading approaches.

Finally, we observe that non-materialized versions
outperform the materialized ones, since they do not
store the entire dataset, but only the summarizations
and pointers to the raw data file. Moreover, we note
that sorting in the non-materialized versions is really
fast, since only the summarizations need to be sorted,
and so far less data has to be moved and reshuffled.

Space. Since storage space becomes a critical cost for
many applications as the data grows, we next examine
the space overhead imposed by the various indexing
schemes. The results are shown in Figure 11c, where
we report the space required for 10GB of raw data.

18 Haridimos Kondylakis et al.

(a) Index construction - materialized. (b) Index construction - non-
materialized.

(c) Indexing space overhead.

(d) Index construction - materialized. (e) Index construction - non-
materialized.

(f) Indexing data series of different
lengths.

Fig. 11: Indexing.

Fig. 12: Indexing data series different number of sum-
mary segments.

For the materialized indexes, we observe that
Coconut-Tree-Full and DSTree have a smaller space
overhead. Median-based solutions, such as Coconut-
Tree-Full generate indexes with the leaf nodes as full
as possible, whereas in prefix-based solutions there is a
lot of empty space in the leaf nodes: leaves are on aver-
age 10% full in prefix-based solutions, whereas for the
median-based ones utilization reaches 97%. Note that
in the case of Coconut-Trie-Full more space is wasted,
since more leaf nodes are produced, and we cannot fur-
ther compact the leaf nodes due to the specific prefix-
based scheme that is used (there are 55K leaf nodes
for the Coconut-Trie-Full, and 54K leaf nodes for the

ADSFull). For the Coconut-Tree-Full, we can effectively
control the number of leaf nodes produced, resulting in
6K leaf nodes with a 75% fill rate.

For the non-materialized indexes, we can again ob-
serve the superiority of our median based solution, re-
quiring almost half the space required by other solu-
tions.

Scalability with Data Growth. Have identified the
Coconut-Tree methods as the quickest to build data
series indexes and the ADS methods as the closest
contenders, we now proceed to evaluate how construc-
tion speed scales for these methods as the data size
increases. We will return to the other methods when
we evaluate query performance. In this set of experi-
ments, we fix the amount of main memory to that of
a common desktop workstation (8GB), and gradually
increase the number of data series to be indexed. The
results are shown in Figures 11d and 11e. We observe
that when the amount of data is relatively small with
respect to the available main memory, Coconut-Tree-
Full and Coconut-Tree require similar times to ADS-
Full and ADS+, respectively. However, as the data size
increases, the random I/Os of ADSFull and ADS+ in-
cur a significant overhead on the overall time to con-
struct the index, and the Coconut-Tree algorithms be-
come faster. This effect is especially pronounced for the
materialized indexes in Figure 11d. In addition, the ex-
periments show that in Coconut-Tree-Full most of the
time is spent on sorting the raw data, whereas in the

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 19

(a) Exact query answering. (b) Approximate query answering. (c) Approximate query answering (40G).

(d) Average distance of approximate
search. (e) Exact query answering. (f) Visited records in exact query an-

swering.

Fig. 13: Querying.

case of CTree only the summarizations are sorted, and
as such the external sort overhead is really small when
compared to the cost of I/Os and CPU.
Variable Data series and Summary Length.

Next, we evaluate construction speed for the
Coconut-Tree and ADS methods, as we vary the lengths
of the individual data series that need to be indexed,
and the number of segments that are used in the sum-
marizations. We use a data series collections of 100GB,
using limited memory (100K data series) for both ex-
periments. The results for variable lengths of dataseries
are shown in Figure 11f, and the results for the vari-
able number of segments are shown in Figure 12. When
looking at Figure 11f, we observe that in all cases the
Coconut-Tree variations surpass the ADS ones, demon-
strating once again the superiority of Coconut-Tree in
terms of construction speed. Regarding the variable
number of segments, as we observe in Figure 12, the
indexing process becomes slower when we increase the
number of segments, as more segments need to be writ-
ten to disk. We note that the ADS family does not scale
beyond 16 segments as the corresponding indexing al-
gorithms need to construct 2#segments root nodes in
each case, and as such they have a limitation that the
Coconut family has not.

6.2 Querying

Exact Query Performance. Next we evaluate the
various schemes in terms of exact query performance.

To do this, we measure execution time across 100 ran-
dom exact queries as we vary the index sizes. As shown
in Figure 13a, CTree and CTreeFull are faster across
the board. The reason is that Coconut-Tree indexes are
contiguous and compact, and so fewer I/Os are needed
to traverse them.

Interestingly, the non-materialized R-tree in 40GB
is faster than the materialized R-tree. This happens
since R-tree+ needs only the summarizations in mem-
ory to perform query answering, whereas the material-
ized version needs large parts of data series, which leads
to memory swapping to disk.

Approximate Query Performance. We now evalu-
ate the performance of the different indexes in terms
of approximate query answering. To do so, we mea-
sure execution time across 100 random approximate
queries as we vary the size of the dataset. We focus on
the indexes that were deemed most promising by the
last experiment. The results are shown in Figure 13b.
We observe that CTree and CTreeFull are always faster
than the other methods as there are fewer nodes to tra-
verse before reaching the target leaf node. In addition,
the materialized versions of the indexes are faster than
their non-materialized counterparts, since the records
are materialized in the leaf nodes and can be directly
accessed instead of issuing additional accesses to the
raw data file.

Approximate Query Quality vs. Performance. In
the next series of experiments, we explore whether it
is possible to strike different trade-offs between perfor-

20 Haridimos Kondylakis et al.

mance and accuracy for approximate queries. The idea
is that by searching slightly more nodes during an ap-
proximate query and thereby sacrificing some perfor-
mance, we may be able to improve accuracy by finding
a better candidate. To run this experiment, we consider
three variants of our approximate query algorithm that
differ in terms of the number of nodes that get searched:
half a node, a whole node, or ten adjacent nodes. Fig-
ure 13c demonstrates that approximate query execution
time increases in proportion to the number of nodes
we search. In Figure 13d, we measure the correspond-
ing accuracy in terms of Euclidean distance between
the search target to the closest data series we found in
the searched nodes. We indeed observe in these exper-
iments that CTree(1) (which checks one node) is more
accurate than the ADS family for 69% of the queries,
while CTree(10) is more accurate for 94% of the queries.
However, we observe that we quickly hit the point of di-
minishing marginal returns in terms of accuracy as we
search more nodes.

Since the first step of the exact search is the ex-
ecution of an approximate query, we might expect
that a better initial approximate result would lead to
more pruning and thus improved performance for exact
queries. Figure 13f indeed shows that the ADS fam-
ily on average visits more than 80K records during ex-
act query answering, whereas the Coconut family visits
fewer than 59K records in all cases. In Figure 13e, how-
ever, we observe that all the Coconut variants perform
approximately the same. This implies that the perfor-
mance improvement that we observe for the Coconut
family compared with the ADS family mostly arises due
to the compactness and contiguity of the Coconut in-
dexes, which allow us to issue fewer I/Os during exact
queries.

6.3 Complete Workloads on Real Datasets

We now compare Coconut to the state-of-the-art, sim-
ulating the complete process of index construction and
query answering. The results are shown in Figure 14a
for the Astronomy dataset and in Figure 14b for the
Seismic dataset.

The index sizes for the astronomy dataset were as
follows: ADSFull: 311GB, ADS+: 19GB, CTree: 10GB,
CTreeFull: 298GB; and for the seismic dataset: ADS-
Full: 111GB, ADS+: 6GB, CTree: 4GB, CTreeFull:
108GB.

We measure the time to construct first the corre-
sponding indexes, and then to answer 100 exact queries
over the constructed index, using various memory con-
figurations. As shown, when we constrain the available
memory, Coconut-Tree becomes better in all cases, for

both the materialized and non-materialized approaches,
corroborating the experimental results with the syn-
thetic datasets. An interesting observation here is that
the queries are harder on these datasets for all indexes,
because the datasets were denser (for a detailed dis-
cussion on hardness see [77]). As a result, pruning was
not as efficient as with the random walk data. There-
fore, even though Coconut was faster than all compet-
ing methods, it still had to scan a considerable amount
of data in order to answer the exact queries.

6.4 Insertions

Next, we evaluate the different indexes in the pres-
ence of insertions of new data series. We focus on the
ADS and Coconut-Tree families as they were shown
to perform best for index construction. This time, we
also include Coconut-LSM in the experiment (i.e., as
the structural difference between Coconut-LSM and
Coconut-Tree only manifest themselves in the presence
of insertions). In particular, we use C-LSM and C-LSM-
Full as non-materialized and materialized instances of
Coconut-LSM, respectively. We use a synthetic work-
load consisting of 100 random exact queries, where ev-
ery two queries are interleaved by a batch of insertions.
We control the experiment by ensuring that the final
data size after all insertions at the end of each of the
experiments is 100GB, while the initial data size and
the insertion batch size vary. In addition, we limit the
available memory to 0.01% of the data size. The results
in Figure 15 show that in the presence of insertions,
C-LSM performs at least twice as fast as the other ap-
proaches. The reasons are that (1) the LSM-tree on
top of which C-LSM is built optimizes heavily for in-
sertion workloads by buffering and later sort-merging
data and thereby using only sequential rather than ran-
dom writes, and (2) C-LSM is non-materialized and so
only new incoming summarizations get indexed while
the bulk of the data (i.e., the data series) are appended
to the raw file. We further observe that in the absence
of insertions (the final set of bars), C-LSM and CTree
perform similarly because in this case both consist of
one contigous and compact level of summarizations.
We attribute the performance difference in this case
to implementation differences between BerkeleyDB and
RocksDB, on top of which they are implemented. C-
LSM-Full does not perform as well as CTree due to the
overheads of continually sort-merging the whole data
rather than just the summarizations. Overall, we ob-
serve here again that being able to sort the data al-
lows us to optimize for different workload characteris-
tics (in this case for insertions), as well as to introduce

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 21

(a) Astronomy - complete workload. (b) Seismic - complete workload.

Fig. 14: Complete Workloads.

Fig. 15: Updates for both materialized and non-
materialized versions of ADS, Coconut-Tree and
Coconut-LSM.

Coconut-LSM as the first highly write-optimized data
series index.

6.5 Sliding windows

Finally, we show that sortable data series summariza-
tions further allow to process efficient sliding window
queries for streaming applications. To recap from Sec-
tion 5, the baseline approaches for processing sliding
window queries with unsortable summarizations are
post-processing (PP) and temporal partitioning (TP).
Post-Processing (PP) performs a regular exact query
over the whole index and discards data series based
on their creation timestamp after they are retrieved
from storage. Temporal Partitioning (TP), on the other
hand, creates a separate temporal partition for every
new batch of insertions thereby allowing queries to ig-
nore partitions with older data than the specified win-
dow. Our proposed approach, Bounded Temporal Parti-

tioning (BTP), creates temporal partitions as with TP,
but it also sort-merges partitions as they grow older.
This allows to restrict the overall number of partitions.
We implemented the first two approaches for Coconut-
Tree-Full and ADSFull, and we call them CTreeFullPP,
CTreeFullTP, ADSFullPP and ADSFullTP. We imple-
mented the BTP approach on top of Coconut-LSM-
Full, and we refer to this algorithm as CLSMFullBTP.
We conduct the experiment as in Section 6.4 by in-
terleaving batches of insertions with exact queries, but
now each of the queries is an exact sliding window query
over the most recent one million data series. The final
data size after all insertions is 100GB, and the memory
we use is 0.1% of the final data size.

Figures 16 and 18 show the experimental results for
the materialized and non-materialized indexes, respec-
tively. The PP approach is slowest because it accesses
the most data. We stopped the execution of all the PP
methods after 24 hours. The TP approach performs bet-
ter than PP because it allows to restrict the search to
the most recent temporal partitions. However, the high
number of partitions leads to random I/O across parti-
tions. Furthermore, TP does not enable effective prun-
ing within each of the partitions because the search
starts from scratch for each partition, and so it cannot
leverage the lower-bounding property of invSAX as ef-
fectively to spatially prune within each of the partition.
BTP, on the other hand, performs best in all cases be-
cause it further sort-merges partitions to restrict their
number and to create large, compact and contiguous
partitions for older data. Thus, this approach allows us
to prune more at older partitions, and it makes the
access patterns to disk less random and more skip-
sequential.

22 Haridimos Kondylakis et al.

Fig. 16: Sliding window experiments with fixed length window (materialized methods).

Fig. 17: Sliding window experiments with variable
length window (materialized methods).

Figures 17 and 19 repeat the experiments as we
vary the sliding window size for the materialized and
non-materialized indexes, respectively. For this exper-
iment, we start with 10GB of data and each insertion
batch is 1.4GB. We observe that querying takes longer
with larger window sizes as a larger fraction of the data
has to be accessed. In all cases, however, BTP con-
tinues to dominate the other approaches. Overall, this
demonstrates that sortable summarizations provide us
with more scalable means of analyzing data at differ-
ent temporal granularities, an important property for
modern data-heavy streaming applications.

7 Conclusions and Future Work

In this paper, we show that state-of-the-art data se-
ries indexes do not scale well for massive data sizes in
terms of performance for index construction, updating
and querying. We show that the reason is that exist-
ing data series summarizations, on top of which these
indexes are built, are unsortable. As a result, such in-
dexes are constructed and updated through expensive
top-down insertions that create a non-contiguous index
that is expensive to query. To alleviate this problem,
we propose the first sortable data series summariza-
tions, showing that indexing based on sortable sum-
marizations optimizes both indexing and querying. We
start by creating and exploring a prefix-based bottom-
up indexing algorithm, which merely solve the problem
of data contiguity. We proceed by exploring median-
based split trees, and showing that this approach out-
performs the state-of-the-art for both index construc-
tion and querying time. Among the benefits of the ap-
proach is that the resulting index structure is balanced,
providing guarantees on query execution time. More-
over, we design the first write-optimized data series in-
dex by using log-structured updates, a technique that is
enabled by having sortable data series summarizations.
Finally, we explore three approaches for query answer-
ing over streaming sets and we provide an efficient so-
lution in this direction. As future work, we intend to
explore how Cococut can be parallelized, by exploring
parallel UB-Tree index building algorithms.

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 23

Fig. 18: Sliding window experiments with fixed length window (non-materialized methods).

Fig. 19: Sliding window experiments with variable
length window (non-materialized methods).

8 Acknowledgements

This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant
agreement No 748945.

References

1. Incorporated Research Institutions for Seismology – Seis-
mic Data Access. http://ds.iris.edu/data/access/ (2016)

2. Adhd-200. http://fcon_1000.projects.nitrc.org/
indi/adhd200/ (2017)

3. Sloan digital sky survey. https://www.sdss3.org/dr10/
data_access/volume.php (2017)

4. Aggarwal, A., Vitter, J.S.: The input/output complexity
of sorting and related problems. Commun. ACM 31(9),
1116–1127 (1988)

5. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient simi-
larity search in sequence databases. In: FODO, pp. 69–84
(1993)

6. Alsubaiee, S., Carey, M.J., Li, C.: Lsm-based storage
and indexing: An old idea with timely benefits. In:
Second International ACM Workshop on Managing and
Mining Enriched Geo-Spatial Data, GeoRich@SIGMOD
2015, Melbourne, VIC, Australia, May 31, 2015, pp. 1–
6 (2015). DOI 10.1145/2786006.2786007. URL https:
//doi.org/10.1145/2786006.2786007

7. Assent, I., Krieger, R., Afschari, F., Seidl, T.: The ts-
tree: efficient time series search and retrieval. In: EDBT,
pp. 252–263 (2008). DOI 10.1145/1353343.1353376. URL
http://doi.acm.org/10.1145/1353343.1353376

8. Bayer, R., Markl, V.: The ub-tree: Performance of mul-
tidimensional range queries (1998)

9. Camerra, A., Palpanas, T., Shieh, J., Keogh, E.J.: isax
2.0: Indexing and mining one billion time series. In:
ICDM, pp. 58–67 (2010). DOI 10.1109/ICDM.2010.124.
URL https://doi.org/10.1109/ICDM.2010.124

10. Camerra, A., Shieh, J., Palpanas, T., Rakthanmanon, T.,
Keogh, E.: Beyond One Billion Time Series: Indexing and
Mining Very Large Time Series Collections with iSAX2+.
KAIS 39(1), 123–151 (2014)

11. Chakrabarti, K., Keogh, E.J., Mehrotra, S., Pazzani,
M.J.: Locally adaptive dimensionality reduction for in-
dexing large time series databases. ACM Trans. Database
Syst. 27(2), 188–228 (2002). DOI 10.1145/568518.
568520. URL http://doi.acm.org/10.1145/568518.
568520

12. pong Chan, K., Fu, A.W.: Efficient time series match-
ing by wavelets. In: ICDE, pp. 126–133 (1999). DOI
10.1109/ICDE.1999.754915. URL https://doi.org/10.
1109/ICDE.1999.754915

13. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detec-
tion: A survey. ACM computing surveys (CSUR) 41(3),
15 (2009)

14. Dayan, N., Athanassoulis, M., Idreos, S.: Monkey: Op-
timal navigable key-value store. In: SIGMOD, pp. 79–

http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://fcon_1000.projects.nitrc.org/indi/adhd200/
https://www.sdss3.org/dr10/data_access/volume.php
https://www.sdss3.org/dr10/data_access/volume.php
https://doi.org/10.1145/2786006.2786007
https://doi.org/10.1145/2786006.2786007
http://doi.acm.org/10.1145/1353343.1353376
https://doi.org/10.1109/ICDM.2010.124
http://doi.acm.org/10.1145/568518.568520
http://doi.acm.org/10.1145/568518.568520
https://doi.org/10.1109/ICDE.1999.754915
https://doi.org/10.1109/ICDE.1999.754915

24 Haridimos Kondylakis et al.

94 (2017). DOI 10.1145/3035918.3064054. URL http:
//doi.acm.org/10.1145/3035918.3064054

15. Echihabi, K., Zoumpatianos, K., Palpanas, T., Ben-
brahim, H.: The lernaean hydra of data series similarity
search: An experimental evaluation of the state of the
art. PVLDB (2019)

16. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast
subsequence matching in time-series databases. In: SIG-
MOD, pp. 419–429 (1994). DOI 10.1145/191839.191925.
URL http://doi.acm.org/10.1145/191839.191925

17. Goldin, D.Q., Kanellakis, P.C.: On similarity queries
for time-series data: Constraint specification and imple-
mentation. In: Principles and Practice of Constraint
Programming - CP’95, First International Conference,
CP’95, Cassis, France, September 19-22, 1995, Proceed-
ings, pp. 137–153 (1995)

18. Grabocka, J., Schilling, N., Schmidt-Thieme, L.: Latent
time-series motifs. TKDD 11(1), 6:1–6:20 (2016)

19. Guttman, A.: R-trees: A dynamic index structure for spa-
tial searching. In: SIGMOD, pp. 47–57 (1984). DOI
10.1145/602259.602266. URL http://doi.acm.org/10.
1145/602259.602266

20. Huijse, P., Estévez, P.A., Protopapas, P., Principe,
J.C., Zegers, P.: Computational intelligence challenges
and applications on large-scale astronomical time series
databases. IEEE CIM 9(3), 27–39 (2014)

21. Idreos, S., Kersten, M.L., Manegold, S.: Database crack-
ing. In: CIDR 2007, pp. 68–78 (2007). URL http:
//cidrdb.org/cidr2007/papers/cidr07p07.pdf

22. Kashino, K., Smith, G., Murase, H.: Time-series ac-
tive search for quick retrieval of audio and video. In:
ICASSP, pp. 2993–2996 (1999). DOI 10.1109/ICASSP.
1999.757470. URL https://doi.org/10.1109/ICASSP.
1999.757470

23. Kashyap, S., Karras, P.: Scalable knn search on vertically
stored time series. In: SIGKDD, pp. 1334–1342 (2011).
DOI 10.1145/2020408.2020607. URL http://doi.acm.
org/10.1145/2020408.2020607

24. Kate, R.J.: Using dynamic time warping distances as
features for improved time series classification. Data
Min. Knowl. Discov. 30(2), 283–312 (2016). DOI
10.1007/s10618-015-0418-x. URL https://doi.org/10.
1007/s10618-015-0418-x

25. Kaufman, L., Rousseeuw, P.J.: Finding groups in data:
an introduction to cluster analysis, vol. 344. John Wiley
& Sons (2009)

26. Keogh, E.J.: Fast similarity search in the presence of lon-
gitudinal scaling in time series databases. In: ICTAI, pp.
578–584 (1997). DOI 10.1109/TAI.1997.632306. URL
https://doi.org/10.1109/TAI.1997.632306

27. Keogh, E.J., Chakrabarti, K., Pazzani, M.J., Mehrotra,
S.: Dimensionality reduction for fast similarity search in
large time series databases. KAIS 3(3), 263–286 (2001)

28. Keogh, E.J., Pazzani, M.J.: An enhanced representation
of time series which allows fast and accurate classifica-
tion, clustering and relevance feedback. In: KDD, pp.
239–243 (1998). URL http://www.aaai.org/Library/
KDD/1998/kdd98-041.php

29. Kondylakis, H., Dayan, N., Zoumpatianos, K., Palpanas,
T.: Coconut: A scalable bottom-up approach for building
data series indexes. PVLDB 11(6), 677–690 (2018). DOI
10.14778/3184470.3184472. URL http://www.vldb.org/
pvldb/vol11/p677-kondylakis.pdf

30. Kondylakis, H., Dayan, N., Zoumpatianos, K., Palpanas,
T.: Coconut palm: Static and streaming data series ex-
ploration now in your palm. In: Proceedings of the 2019

International Conference on Management of Data, SIG-
MOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019., pp. 1941–1944 (2019). DOI
10.1145/3299869.3320233. URL https://doi.org/10.
1145/3299869.3320233

31. Korn, F., Jagadish, H.V., Faloutsos, C.: Efficiently sup-
porting ad hoc queries in large datasets of time se-
quences. In: SIGMOD, pp. 289–300 (1997). DOI
10.1145/253260.253332. URL http://doi.acm.org/10.
1145/253260.253332

32. Leutenegger, S.T., Edgington, J.M., López, M.A.: STR:
A simple and efficient algorithm for r-tree packing. In:
ICDE, pp. 497–506 (1997). DOI 10.1109/ICDE.1997.
582015. URL https://doi.org/10.1109/ICDE.1997.
582015

33. Li, C., Yu, P.S., Castelli, V.: Hierarchyscan: A hierar-
chical similarity search algorithm for databases of long
sequences. In: ICDE, pp. 546–553 (1996). DOI
10.1109/ICDE.1996.492205. URL https://doi.org/10.
1109/ICDE.1996.492205

34. Liao, T.W.: Clustering of time series data - a survey.
Pattern Recognition 38(11), 1857–1874 (2005). DOI
10.1016/j.patcog.2005.01.025. URL https://doi.org/
10.1016/j.patcog.2005.01.025

35. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic rep-
resentation of time series, with implications for streaming
algorithms. In: Proceedings of the 8th ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowl-
edge Discovery, DMKD (2003)

36. Lin, J., Keogh, E.J., Truppel, W.: Clustering of streaming
time series is meaningless. In: DMKD, pp. 56–65 (2003).
DOI 10.1145/882082.882096. URL http://doi.acm.org/
10.1145/882082.882096

37. Linardi, M., Palpanas, T.: Scalable, variable-length sim-
ilarity search in data series: The ULISSE approach.
PVLDB 11(13), 2236–2248 (2018)

38. Linardi, M., Palpanas, T.: ULISSE: ULtra compact Index
for Variable-Length Similarity SEarch in Data Series. In:
ICDE (2018)

39. Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.J.: Matrix
profile X: Valmod - scalable discovery of variable-length
motifs in data series. In: SIGMOD (2018)

40. MacQueen, J.: Some methods for classification and analy-
sis of multivariate observations. In: BSMSP, pp. 281–297
(1967)

41. Mirylenka, K., Christophides, V., Palpanas, T., Pe-
fkianakis, I., May, M.: Characterizing home device us-
age from wireless traffic time series. In: EDBT, pp.
551–562 (2016). DOI 10.5441/002/edbt.2016.51. URL
http://dx.doi.org/10.5441/002/edbt.2016.51

42. Morton, G.M.: A computer oriented geodetic data base
and a new technique in file sequencing. Ottawa, Interna-
tional Business Machines Company (1966)

43. Mueen, A., Hamooni, H., Estrada, T.: Time series join on
subsequence correlation. In: ICDM, pp. 450–459 (2014)

44. Mueen, A., Keogh, E.J., Zhu, Q., Cash, S., Westover,
M.B., Shamlo, N.B.: A disk-aware algorithm for time se-
ries motif discovery. DAMI 22(1-2), 73–105 (2011)

45. Mueen, A., Nath, S., Liu, J.: Fast approximate correlation
for massive time-series data. In: SIGMOD, pp. 171–182
(2010). DOI 10.1145/1807167.1807188. URL http://
doi.acm.org/10.1145/1807167.1807188

46. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The
log-structured merge-tree (lsm-tree). Acta Inf. 33(4),
351–385 (1996). DOI 10.1007/s002360050048. URL
https://doi.org/10.1007/s002360050048

http://doi.acm.org/10.1145/3035918.3064054
http://doi.acm.org/10.1145/3035918.3064054
http://doi.acm.org/10.1145/191839.191925
http://doi.acm.org/10.1145/602259.602266
http://doi.acm.org/10.1145/602259.602266
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
https://doi.org/10.1109/ICASSP.1999.757470
https://doi.org/10.1109/ICASSP.1999.757470
http://doi.acm.org/10.1145/2020408.2020607
http://doi.acm.org/10.1145/2020408.2020607
https://doi.org/10.1007/s10618-015-0418-x
https://doi.org/10.1007/s10618-015-0418-x
https://doi.org/10.1109/TAI.1997.632306
http://www.aaai.org/Library/KDD/1998/kdd98-041.php
http://www.aaai.org/Library/KDD/1998/kdd98-041.php
http://www.vldb.org/pvldb/vol11/p677-kondylakis.pdf
http://www.vldb.org/pvldb/vol11/p677-kondylakis.pdf
https://doi.org/10.1145/3299869.3320233
https://doi.org/10.1145/3299869.3320233
http://doi.acm.org/10.1145/253260.253332
http://doi.acm.org/10.1145/253260.253332
https://doi.org/10.1109/ICDE.1997.582015
https://doi.org/10.1109/ICDE.1997.582015
https://doi.org/10.1109/ICDE.1996.492205
https://doi.org/10.1109/ICDE.1996.492205
https://doi.org/10.1016/j.patcog.2005.01.025
https://doi.org/10.1016/j.patcog.2005.01.025
http://doi.acm.org/10.1145/882082.882096
http://doi.acm.org/10.1145/882082.882096
http://dx.doi.org/10.5441/002/edbt.2016.51
http://doi.acm.org/10.1145/1807167.1807188
http://doi.acm.org/10.1145/1807167.1807188
https://doi.org/10.1007/s002360050048

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 25

47. Palpanas, T.: Data series management: The road to big
sequence analytics. SIGMOD Record 44(2), 47–52 (2015)

48. Palpanas, T.: Big sequence management: A glimpse of
the past, the present, and the future. In: SOFSEM, pp.
63–80 (2016). DOI 10.1007/978-3-662-49192-8_6. URL
https://doi.org/10.1007/978-3-662-49192-8_6

49. Palpanas, T.: The parallel and distributed future of data
series mining. In: HPCS, pp. 916–920 (2017). DOI 10.
1109/HPCS.2017.155. URL https://doi.org/10.1109/
HPCS.2017.155

50. Paparrizos, J., Gravano, L.: k-shape: Efficient and accu-
rate clustering of time series. In: SIGMOD, pp. 1855–
1870 (2015). DOI 10.1145/2723372.2737793

51. Paraskevopoulos, P., Dinh, T.C., Dashdorj, Z., Palpanas,
T., Serafini, L.: Identification and characterization of hu-
man behavior patterns from mobile phone data. In: D4D
Challenge session, NetMob (2013)

52. Pelkonen, T., Franklin, S., Cavallaro, P., Huang, Q.,
Meza, J., Teller, J., Veeraraghavan, K.: Gorilla: A fast,
scalable, in-memory time series database. PVLDB 8(12),
1816–1827 (2015)

53. Peng, B., Fatourou, P., Palpanas, T.: ParIS: The Next
Destination for Fast Data Series Indexing and Query An-
swering (2018)

54. Rafiei, D.: On similarity-based queries for time series
data. In: ICDE, pp. 410–417 (1999). DOI 10.1109/
ICDE.1999.754957. URL https://doi.org/10.1109/
ICDE.1999.754957

55. Rafiei, D., Mendelzon, A.O.: Similarity-based queries for
time series data. In: SIGMOD, pp. 13–25 (1997). DOI
10.1145/253260.253264. URL http://doi.acm.org/10.
1145/253260.253264

56. Rakthanmanon, T., Campana, B.J.L., Mueen, A.,
Batista, G.E.A.P.A., Westover, M.B., Zhu, Q., Zakaria,
J., Keogh, E.J.: Searching and mining trillions of time
series subsequences under dynamic time warping. In:
SIGKDD, pp. 262–270 (2012). DOI 10.1145/2339530.
2339576. URL http://doi.acm.org/10.1145/2339530.
2339576

57. Rakthanmanon, T., Keogh, E.J., Lonardi, S., Evans, S.:
Time series epenthesis: Clustering time series streams
requires ignoring some data. In: ICDM, pp. 547–556
(2011). DOI 10.1109/ICDM.2011.146. URL https:
//doi.org/10.1109/ICDM.2011.146

58. Ramakrishnan, R., Gehrke, J.: Database management
systems (3. ed.). McGraw-Hill (2003)

59. Ramsak, F., Markl, V., Fenk, R., Zirkel, M., Elhardt, K.,
Bayer, R.: Integrating the ub-tree into a database system
kernel. In: VLDB 2000, Proceedings of 26th International
Conference on Very Large Data Bases, September 10-14,
2000, Cairo, Egypt, pp. 263–272 (2000)

60. Rao, J., Ross, K.A.: Making b+-trees cache conscious in
main memory. In: SIGMOD, pp. 475–486 (2000). DOI
10.1145/342009.335449. URL http://doi.acm.org/10.
1145/342009.335449

61. Ratanamahatana, C.A., Keogh, E.J.: Three myths about
dynamic time warping data mining. In: SIAM, pp. 506–
510 (2005). DOI 10.1137/1.9781611972757.50. URL
https://doi.org/10.1137/1.9781611972757.50

62. Ravi Kanth, K.V., Agrawal, D., Singh, A.: Dimen-
sionality reduction for similarity searching in dynamic
databases. In: SIGMOD, pp. 166–176 (1998)

63. Raza, U., Camerra, A., Murphy, A.L., Palpanas, T.,
Picco, G.P.: Practical data prediction for real-world wire-
less sensor networks. IEEE Trans. Knowl. Data Eng.
27(8), 2231–2244 (2015). DOI 10.1109/TKDE.2015.

2411594. URL https://doi.org/10.1109/TKDE.2015.
2411594

64. Rodrigues, P.P., Gama, J., Pedroso, J.P.: Hierarchical
clustering of time-series data streams. IEEE Trans.
Knowl. Data Eng. 20(5), 615–627 (2008). DOI 10.1109/
TKDE.2007.190727. URL https://doi.org/10.1109/
TKDE.2007.190727

65. Shasha, D.: Tuning time series queries in finance: Case
studies and recommendations. IEEE Data Eng. Bull.
22(2), 40–46 (1999)

66. Shieh, J., Keogh, E.: iSAX: disk-aware mining and in-
dexing of massive time series datasets. Data Mining and
Knowledge Discovery 19(1), 24–57 (2009)

67. Shieh, J., Keogh, E.J.: isax: indexing and mining terabyte
sized time series. In: ACM SIGKDD, pp. 623–631 (2008).
DOI 10.1145/1401890.1401966. URL http://doi.acm.
org/10.1145/1401890.1401966

68. Soldi, S., Beckmann, V., Baumgartner, W., Ponti, G.,
Shrader, C., Lubinski, P., Krimm, H., Mattana, F.,
Tueller, J.: Long-term variability of agn at hard x-rays.
Astronomy & Astrophysics 563, A57 (2014)

69. Wang, Y., Wang, P., Pei, J., Wang, W., Huang, S.: A
data-adaptive and dynamic segmentation index for whole
matching on time series. PVLDB 6(10), 793–804 (2013).
URL http://www.vldb.org/pvldb/vol6/p793-wang.pdf

70. Xi, X., Keogh, E.J., Shelton, C.R., Wei, L., Ratanama-
hatana, C.A.: Fast time series classification using nu-
merosity reduction. In: ICML, pp. 1033–1040 (2006).
DOI 10.1145/1143844.1143974. URL http://doi.acm.
org/10.1145/1143844.1143974

71. Yagoubi, D.E., Akbarinia, R., Masseglia, F., Palpanas,
T.: Dpisax: Massively distributed partitioned isax. In:
ICDM, pp. 1135–1140 (2017)

72. Yagoubi, D.E., Akbarinia, R., Masseglia, F., Palpanas,
T.: Massively distributed time series indexing and query-
ing. TKDE (accepted for publication, 2018)

73. Ye, L., Keogh, E.J.: Time series shapelets: a new prim-
itive for data mining. In: ACM SIGKDD, pp. 947–
956 (2009). DOI 10.1145/1557019.1557122. URL http:
//doi.acm.org/10.1145/1557019.1557122

74. Zoumpatianos, K., Idreos, S., Palpanas, T.: Indexing for
interactive exploration of big data series. In: SIGMOD,
pp. 1555–1566 (2014)

75. Zoumpatianos, K., Idreos, S., Palpanas, T.: RINSE: in-
teractive data series exploration with ADS+. PVLDB
8(12), 1912–1915 (2015)

76. Zoumpatianos, K., Idreos, S., Palpanas, T.: ADS: the
adaptive data series index. VLDB J. 25(6), 843–866
(2016). DOI 10.1007/s00778-016-0442-5. URL https:
//doi.org/10.1007/s00778-016-0442-5

77. Zoumpatianos, K., Lou, Y., Palpanas, T., Gehrke, J.:
Query workloads for data series indexes. In: ACM
SIGKDD, pp. 1603–1612 (2015)

78. Zoumpatianos, K., Palpanas, T.: Data series manage-
ment: Fulfilling the need for big sequence analytics. In:
ICDE (2018)

https://doi.org/10.1007/978-3-662-49192-8_6
https://doi.org/10.1109/HPCS.2017.155
https://doi.org/10.1109/HPCS.2017.155
https://doi.org/10.1109/ICDE.1999.754957
https://doi.org/10.1109/ICDE.1999.754957
http://doi.acm.org/10.1145/253260.253264
http://doi.acm.org/10.1145/253260.253264
http://doi.acm.org/10.1145/2339530.2339576
http://doi.acm.org/10.1145/2339530.2339576
https://doi.org/10.1109/ICDM.2011.146
https://doi.org/10.1109/ICDM.2011.146
http://doi.acm.org/10.1145/342009.335449
http://doi.acm.org/10.1145/342009.335449
https://doi.org/10.1137/1.9781611972757.50
https://doi.org/10.1109/TKDE.2015.2411594
https://doi.org/10.1109/TKDE.2015.2411594
https://doi.org/10.1109/TKDE.2007.190727
https://doi.org/10.1109/TKDE.2007.190727
http://doi.acm.org/10.1145/1401890.1401966
http://doi.acm.org/10.1145/1401890.1401966
http://www.vldb.org/pvldb/vol6/p793-wang.pdf
http://doi.acm.org/10.1145/1143844.1143974
http://doi.acm.org/10.1145/1143844.1143974
http://doi.acm.org/10.1145/1557019.1557122
http://doi.acm.org/10.1145/1557019.1557122
https://doi.org/10.1007/s00778-016-0442-5
https://doi.org/10.1007/s00778-016-0442-5

	1 Introduction
	2 Preliminaries and Related Work
	3 Problem: Unsortable Summarizations
	4 Coconut
	5 Sliding windows
	6 Experimental Evaluation
	7 Conclusions and Future Work
	8 Acknowledgements

