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Abstract
The ability to efficiently analyze changing data is a key requirement of many real-time analytics applications. In prior work, 
we have proposed general dynamic Yannakakis (GDyn), a general framework for dynamically processing acyclic 
conjunctive queries with θ -joins in the presence of data updates. Whereas traditional approaches face a trade-off between 
materialization of subresults (to avoid inefficient recomputation) and recomputation of subresults (to avoid the potentially 
large space overhead of materialization), GDyn is able to avoid this trade-off. It intelligently maintains a succinct data 
structure that supports efficient maintenance under updates and from which the full query result can quickly be enumerated. 
In this paper, we consolidate and extend the development of GDyn. First, we give full formal proof of GDyn’s correctness 
and complexity. Second, we present a novel algorithm for computing GDyn query plans. Finally, we instantiate GDyn to 
the case where all θ -joins are inequalities and present extended experimental comparison against state-of-the-art engines. 
Our approach performs consistently better than the competitor systems with multiple orders of magnitude improvements in 
both time and memory consumption.

Keywords Incremental view maintenance · Dynamic query processing · Complex event processing · Theta joins · Inequalities · 
Acyclic joins
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1 Introduction

The ability to efficiently analyze changing data is a key
requirement in stream processing [39], complex event recog-
nition [16], business intelligence [35], and machine learning
[44]. Generally, the analysis that needs to be kept up-to-date,
or at least their basic elements, are specified in a query lan-
guage. The main task is then to efficiently update the query
results under data updates.

In this context, we tackle the problem of dynamic query
evaluation, where a given query Q has to be evaluated against
a database that is constantly changing. Concretely, when
database db is updated to database db + u under update u,
the objective is to efficiently compute Q(db+u), taking into
consideration that Q(db) was already evaluated and recom-
putations could be avoided. Dynamic query evaluation is of
utmost importance if response time requirements for queries
under concurrent data updates have to be met or if data vol-
umes are so large that full re-evaluation is prohibitive.

In this paper, we focus on the problem of dynamic evalu-
ation for conjunctive queries that feature multi-way θ -joins.
The following example illustrates our setting. Assume that
we wish to detect potential credit card fraud. Credit card
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transaction t ′ then we are essentially fully recomputing the
join of Fig. 1b, but now with t ′ instead of t . Hence, by fully
recomputing �Q whenever a new update u′ arrives, we are
ignoring the fact that certain computation—most notably, the
join between T1 and T2 common to t and t ′—is shared and
in principle need not be redone.

This can be solved by introducing more materialization:
in addition, to storing Q(db) also materialize the result of the
join between T1 and T2 indicated in the shaded area in Fig. 1a
and use additional delta queries tomaintain this result as well
as Q(db). In the IVM literature, this approach is known as
higher-order IVM (HIVM). This method is highly effective
in practice and formally lowers the update processing com-
plexity [29].

Whilemorematerialization can imply less recomputation,
it has a serious drawback in terms ofmemory overhead:mate-
rialization of Q(db) requires �(|Q(db)|) space, where |db|
denotes the size of db. Therefore, when Q(db) is large, which
is often the case in CER as well as in data preparation sce-
narios for training statistical models, materializing Q(db)
quickly becomes impractical, especially for main memory-
based systems. Note that |Q(db)| can be polynomial in |db|.
HIVM is even more affected by this problem since it not
only materializes the result of Q but also the results of par-
tial joins, which can be larger than both db and Q(db). For
example, the shaded area of Fig. 1a builds the table of all
pairs of small transactions that could be part of a credit card
fraud. If we assume that there are N small transactions, all
of the same account, this materialization will take �(N 2)

space. This naturally becomes impractical when N grows.
In summary, in traditional techniques for dynamic query

evaluation, there is a trade-off between recomputation and
materialization: more materialization can mean less recom-
putation and hence faster update processing, but more
memory consumption. In previous works [25,26], we have
shown that this trade-off can be avoided by taking a different
approach to dynamic query evaluation: instead of material-
izing Q(db), we can build a succinct data structure that (1)
supports updates efficiently and (2) represents Q(db) in the
sense that from it we can generate Q(db) as efficiently as if it
wasmaterialized. In particular, the representation is equipped
with index structures so that we can enumerate Q(db) with
bounded delay [38]: one tuple at a time, while spending only
a small amount of work to produce each new tuple. This
makes the enumeration competitive with enumeration from
materialized query results.

In essence, we hence separate dynamic query processing
into two stages: (1) an update stage where we only maintain
under updates the (small) information that is necessary for
result enumeration and (2) an enumeration stage where the
query result is efficiently enumerated.

The main insight of [25,26] is that a practical family of
algorithms for dynamic query evaluation based on this idea

Fig. 1 a Example query for detecting fraudulent credit card activity. b 
Delta query of (a) to be executed upon insertion of new high-amount 
transaction tuple t

transactions specify their timestamp (ts), account number 
(acc), and amount (amnt). A typical fraud pattern is that, 
in a short period of time, a criminal tests a stolen credit card 
with a few small purchases to then make larger purchases (cf.
[37]). Assuming that the short period of time is 1 h, this pat-
tern could be detected by dynamically evaluating the query 
in Fig. 1a. Queries like this may exhibit arbitrary local predi-
cates and multi-way joins with equality as well as inequality 
predicates.

Dynamic query evaluation has a rich history in data 
management and has been researched in the context of incre-
mental view maintenance (IVM) [22,29,30], stream join pro-
cessing [4,20,34,43], and complex event recognition (CER, 
also known as complex event processing) [11,15,31,46,49]). 
All of the existing techniques are based on recomputation of 
query (sub)results and/or on their materialization. We next 
illustrate the issues with recomputation and result material-
ization; a detailed literature review is given in Sect. 2.

The most extreme form of recomputation is of course full 
recomputation: simply evaluate Q on db + u from scratch 
whenever an update u arrives on db. Clearly, this incurs the 
highest possible update processing cost, since it completely 
ignores the fact that Q(db) was already evaluated and certain 
shared computations were performed. This can be solved by 
introducing the simplest form of materialization: simply store 
the current result Q(db) and, whenever an update u arrives, 
evaluate the delta query �Q associated with Q [22]. �Q 
takes as input db and u and computes the update that needs 
to be applied to the materialized Q(db) to obtain Q(db + u). 
While this exploits certain shared computation, it unfortu-
nately does so only to some extent.

Let us illustrate this by means of our example fraud 
query in Fig. 1a. Assume that u inserts a single new high-
amount transaction t . Then, �Q(db, u) amounts to 
computing the join shown in Fig. 1b. While we can expect 
that this is more efficient that full recomputation of Q (since 
the join with T3 is replaced by the join with a single tuple), 
observe that if we now get another update u′ that inserts 
another high-amount
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can naturally be obtained by modifying Yannakakis’ semi-
nal algorithm for processing acyclic joins in the static setting
[47]. In particular, instead of materializing Q(db) and its
subjoins (which can both be large), it suffices to materialize
semijoins (which are of size linear in db) and build indexes on
these semijoins aswell as the base relations. Themost general
formof thismodification, calledgeneral dynamicYannakakis
(GDyn), supports the class of acyclic generalized conjunc-
tive queries (GCQs), which are acyclic conjunctive queries
with θ -joins, that are evaluated under multiset semantics and
support certain forms of aggregation. The representation of
query results that underliesGDyn has several desirable prop-
erties:

– It allows to enumerate Q(db) with bounded delay.
– It requires only O(|db|) space and is hence independent
of the size of Q(db).

– It features efficient maintenance under updates. When Q
is a conjunctive query (with equijoins only), then we can
update the representation of Q(db) to a representation of
Q(db+ u) in timeO(|db| + |u|). In contrast, techniques
based on (H)IVM may require �(|u| + |Q(db + u)|)
time in the worst case. For the subclass of q-hierarchical
queries [8], our update time is O(|u|). When Q con-
sists of both equality and inequality joins (<,≤) the
update time increases. If Q has at most one inequality per
pair of relations, the update time is O(M logM), where
M = |db|+|u|; otherwise, it isO(M2). In contrast, exist-
ing techniques may require �(|db|k−1) time in the worst
case, where k is the number of relations to be joined.

In this paper, we consolidate and expand our development of
GDyn. Our contributions are as follows.

(1) We give an intuitive, concise, and stand-alone descrip-
tion ofGDyn and explain the main components behind
its efficiency. In addition, we provide, for the first time,
full formal proof of GDyn’s correctness and complex-
ity (Sect. 4).

(2) Like most query evaluation algorithms,GDyn’s opera-
tion is driven by the availability of a query plan. In our
previous work, we have always assumed query plans to
be explicitly given. In this paper, in contrast,we present,
for the first time, an algorithm for efficiently computing
GDyn query plans (Sect. 5).

(3) Finally, we present our implementation of GDyn
(Sect. 6) and extended experimental comparison of
GDyn to state-of-the-art IVM and CER engines. We
explore the full design space of queries with up to
three joins.GDyn performs consistently better than the
competitor systems with multiple orders of magnitude
improvements in both time and memory consumption
(Sect. 7).

We discuss related work in Sect. 2, introduce the required
background in Sect. 3, and conclude in Sect. 8. Because of
space restrictions, certain supporting material and proofs of
auxiliary statements are given in the Appendix.

2 Related work

IVM The trade-off between materialization and recompu-
tation explained in the Introduction is at the core of IVM
[12,21,22,29,30]. IVM hence differs from GDyn as already
explained in the Introduction.

CER There are two approaches to CER: relational and
automaton based. Relational approaches (e.g., [31]) are
similar to IVM. In contrast to the relational approaches,
automaton approaches assume that event tuples are endowed
with a timestamp and that the arrival order of event tuples
corresponds to the timestamp order (i.e., there are no out-
of-order events). They build an automaton to recognize the
desired temporal patterns in the input stream. Broadly speak-
ing, there are two automata-based recognition approaches.
In the first approach, followed by [3,46], events are cached
per state and once a final state is reached, a search through
the cached events is done to recognize the complex events.
While it is no longer necessary to check the temporal con-
straints (e.g., T1.ts < T2.ts) during the search, the additional
constraints (in our fraud query example T1.acc = T2.acc =
T3.acc) must still be verified. At essence, this corresponds
to fully recomputing a delta query since each event trigger-
ing a transition to a final state may cause re-evaluation of a
subjoin on the cached data. In the second approach, followed
by [11,14,15,49], partial runs are materialized according to
the automaton’s topology. For our example query, this means
that, just like HIVM, the join in the shaded area of Fig. 1a is
materialized and maintained, so it is available when a large
amount transaction arrives. This approach hence shares with
HIVM its high memory overhead.

Stream JoinsThe goal of stream join processing is to produce
join results incrementally as new tuples are added to the input
or old tuples retracted. To see howGDyn differs from stream
joins, we discern two classes of stream join algorithms.

Algorithms in the first class are designed to produce output
tuples as soon as possible, without blocking for more input
to become available. They are based on the symmetric hash
join [45] and its variants [41,43]. Algorithms in this class
favor full recomputation of delta queries and hence ignore the
opportunity to reduce redundant recomputation by additional
materialization. Moreover, these algorithms are limited to
processing equijoins only.

Algorithms in the second class focus on window-based
stream joins [20,27,34,40]. Like the automata-based appro-
aches in CER, they assume that each tuple is endowed with
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x, y, …to denote hyperedges. A generalized conjunctive
query (GCQ) is an expression of the form

Q = πy
(
r1(x1)�� . . . ��rn(xn) |

m∧

i=1

θi (zi )
)
. (1)

Here r1, . . . , rn are relation symbols; x1, . . . , xn are hyper-
edges (of the same arity as r1, . . . , rn); θ1, . . . , θm are pred-
icates over z1, . . . , zm , respectively; and both y and

⋃m
i=1 zi

are subsets of
⋃n

i=1 xi . We treat predicates abstractly: for our
purpose, a predicate over x is a (not necessarily finite) decid-
able set θ of tuples over x . For example, θ(x, y) = x < y is
the set of all tuples (a, b) satisfying a < b. We indicate that θ
is a predicate over x by writing θ(x). Throughout the paper,
we consider only non-nullary predicates, i.e., predicates with
x �= ∅.
Example 1 The following query is hence a GCQ.

πx,y,z
(
r(x, y)��s(z, u)��t(v,w) | x < u, z < w

)
.

Since, as usual, the natural join between relations that have a
disjoint schema is simply their Cartesian product, this query
asks to take the Cartesian product of r(x, y), s(z, u) and
t(v,w); subsequently, select those tuples that satisfy x < u
and z < w and finally project on x, y, z. Likewise, the GCQ

πy,z
(
r(x, y)��s(y, z)��t(z, v) | y < v

)

asks to take the natural join of r(x, y), s(y, z) and t(z, v)

(where r(x, y) and s(y, z) equijoin on y, and s(y, z) and
t(z, v) equijoin on z), subsequently select those tuples that
satisfy y < v and project on y, z.

We call y the output variables of Q and denote it by
out(Q). If y = x1 ∪ · · · ∪ xn , then Q is called a full query
and we may omit the symbol πy altogether for brevity. We
denote by full(Q) the full GCQ obtained from Q by setting
out(Q) to x1∪· · ·∪xn . The elements ri (xi ) are called atoms.
at(Q) denotes the set of all atoms in Q and pred(Q) the set
of all predicates in Q. A conjunctive query (or CQ) is a GCQ
where pred(Q) = ∅.
SemanticsWe evaluate GCQs over generalized multiset rela-
tions (GMRs for short) [25,29,30]. Let dom(x) denotes the
domain of variable x . As usual, a tuple over x is a func-
tion t that assigns a value from dom(x) to every x ∈ x .
T[x] denotes the set of all tuples over x . A GMR over x is
a function R : T[x] → Z mapping tuples over x to integers
such that R(t) �= 0 for finitely many tuples t. In contrast to
classical multisets, the multiplicity of a tuple in a GMR can
hence be negative, allowing to treat insertions and deletions
uniformly. We write var(R) for x ; supp(R) for the set of
all tuples with nonzero multiplicity in R; t ∈ R to indicate
t ∈ supp(R); and |R| for |supp(R)|.

a timestamp attribute and are restricted to the setting where 
tuples follow a FIFO paradigm: new tuples arrive in increas-
ing timestamp order and tuples with the oldest timestamp 
are deleted first. This property is crucial for the algorithm’s 
proposed optimizations to work. GDyn, in contrast, makes 
no FIFO assumption and can deal with arbitrary updates, 
including out-of-order updates. Furthermore, we note that 
window-based joins are a strict subclass of the class of all 
inequality joins, since in a window-based join, only a sin-
gle temporal attribute will be compared across all relations. 
As such, queries like R1��R1.amnt<R2.amnt R2��R2.ts<R3.ts R3 
that inequality join across multiple unrelated attributes are 
not considered by [20,27,34,40]. GDyn, in contrast, pro-
cesses such queries intelligently. Finally, we note that, in 
contrast to GDyn, support for multi-way stream joins is lim-
ited: [27,34,40] consider only binary joins, while [20] treats 
multi-way joins, but makes the simplifying assumption that 
all comparisons are on the same, single attribute.

Because of the increasing widespread use of distributed 
compute engines such as Flink, Spark, and Storm in con-
temporary data analysis scenarios, there has also been much 
research on how to support stream joins in such engines (e.g.,
[44]). To the best of our knowledge, this work builds upon the 
above-mentioned centralized stream join algorithms (while 
tackling additional challenges such as distribution and fault-
tolerance) and hence similarly differ from GDyn as described 
above. We leave the extension of GDyn to parallel and dis-
tributed settings as future work.

Query evaluation with constant delay enumeration has 
gained increasing attention in the last decade [6–8,10,25, 
32,33,33,36,38]. This setting, however, deals with equijoins 
only.

Inequality joins also related, although restricted to the static 
setting, is the practical evaluation of binary [17,18,23] and 
multi-way [9,48] inequality joins. Our work, in contrast, 
considers dynamic processing of multi-way θ -joins, with a 
specialization to inequality joins. Khayyat et al. [28] pro-
posed fast multi-way inequality join algorithms based on 
sorted arrays and space efficient bit arrays. They focus on 
the case where there are exactly two inequality conditions 
per pairwise join. While they also present an incremental 
algorithm for pairwise joins, their algorithm makes no effort 
to minimize the update cost of multi-way joins. As a result, 
they either materialize subresults (implying a space overhead 
that can be more than linear) or recompute subresults.

3 Preliminaries

Query Language Throughout the paper, let x, y, z, . . . 
denote variables (also commonly called column names or 
attributes). A hyperedge is a finite set of variables. We use
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R

x y z Z
1 2 2 2
2 4 6 3
1 2 3 3

S

u v Z
4 5 5
2 3 4
1 4 2

T

u v Z
4 5 −4
2 1 6

R T

x y z u v Z
1 2 2 4 5 −8
1 2 2 2 1 12
2 4 6 4 5 −12
2 4 6 1 6 18
1 2 3 4 5 −12
1 2 3 2 1 18

πy(R)
y Z
2 5
4 3

S + T

u v Z
4 5 1
2 3 4
1 4 2
2 1 6

S − T

u v Z
4 5 9
2 3 4
1 4 5
2 1 −6

σy<u(R S)
x y z u v Z
1 2 2 4 5 10
1 2 3 4 5 15

Fig. 2 Operations on GMRs

Figure 2 illustrates the operations of GMR union (R+ S),
minus (R − S), projection (πz R), natural join (R��T ), and
selection (σP (R)) which are defined similarly as in rela-
tional algebrawithmultiset semantics. See [25,30] for formal
semantics. We stress that, as usual, if R and T have disjoint
schema, then R��T is simply their Cartesian product.

A GMR R is positive if R(t) > 0 for all t ∈ supp(R). A
database over a set A of atoms is a function db that maps
every atom r(x) ∈ A to a positive GMR dbr(x) over x . Given
a database db over the atoms occurring in query Q, the eval-
uation of Q over db, denoted Q(db), is the GMR over y
constructed in the expected way: take the natural join of the
GMRs in the database, do a selection over the result w.r.t.
each predicate and finally project on y. It is instructive to note
that after evaluation, each result tuple has an associated mul-
tiplicity that counts the number of derivations for the tuple.
In other words, the query language has built-in support for
COUNT aggregations. We note that, in their full generality,
GMRs can carry multiplicities that are taken from an arbi-
trary algebraic semiring structure (cf., [29]), which can be
useful to describe the computation of more advanced aggre-
gations over the result of a GCQ [2]. To keep the notation and
discussion simple, we fix the ring Z of integers throughout
the paper, but our results generalize to arbitrary semirings
and their associated aggregations.

Semijoins If � is a set of predicates, then we write σ�R
for σ∧

θ∈�
R and R���S for σ�(R��S). If z ⊆ var(R) or

z ⊆ var(S), then πz(R���S) is called a semijoin. We write
R �� S for the subGMR of R consisting of all tuples that
have a joining tuple in S:

R �� S ∈ T[var(R)] → Z :

t 
→
{
R(t) if t ∈ πvar(R)(R���S)

0 otherwise

Often, S will contain only a single tuple t with multiplicity
1. In that case, we simply write R �� t.

Updates An update to a GMR R is simply a GMR �R over
the same variables as R. Applying update�R to R yields the
GMR R + �R. An update to a database db is a collection
u of (not necessarily positive) GMRs, one GMR ur(x) for
every atom r(x) of db, such that dbr(x) + ur(x) is positive.1

We write db + u for the database obtained by applying u
atom-wise to db.

Computational Model We focus on dynamic query evalua-
tion in main memory. We assume a model of computation
where the space used by tuple values and integers, the time
of arithmetic operations on integers, the time of operations
on tuples (such as projecting a tuple on a subset of its vari-
ables, or taking the union of two tuples), and the time of
memory lookups are all O(1). We further assume that hash
tables haveO(1) access and update timeswhile requiring lin-
ear space. While it is well known that real hash table access
isO(1) expected time and updates areO(1) amortized, com-
plexity results that we establish for this simpler model can
be expected to translate to average (amortized) complexity
in real-life implementations [13].

A direct consequence of these assumptions is that, using
standard database implementation techniques, every GMR
R can be represented in our model by a data structure that
allows (1) enumeration of R with delay O(1) (as defined in
Sect. 4.1); (2) multiplicity lookups R(t) inO(1) time given t;
(3) single-tuple insertions and deletions in O(1) time; while
(4) having size that is proportional to |R|. In addition, we
assume it possible to sort GMRs by a given order on its tuples
in O(|R| log |R|) time, after which it allows enumeration in
the given order with O(1). Single-tuple insertions that keep
the GMR sorted become O(log |R|) in this case.

4 General dynamic Yannakakis

In this section, we formulate GDyn, a dynamic version of
the Yannakakis algorithm [47] that focuses on the evaluation
of GCQs. GDyn takes a nonstandard approach to dynamic
query evaluation: instead of materializing Q(db) and sub-
joins of Q, GDyn builds a succinct, efficiently updatable
data structure that represents Q(db) in the sense that from
it we can enumerate Q(db). Formally, a data structure D
supports enumeration of a set E if there is a routine enum
such that enum(D) outputs each element of E exactly once.
Such enumeration occurs with delay d if the time until the
first element is output; the time between any two consecu-

1 Note that, in this framework, value modifications inside a tuple are
modeled by deleting the tuple with the old value, and then reinserting
the tuple, but now with the new value.
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computed. Concretely, this hash index allows us to retrieve,
for every y-tuple t, in O(1) time a pointer to the GMR S �

t of all S-tuples that join with t. Now observe that, when
iterating over R to probe the index, we may have to visit an
unbounded number of R-tuples that do not join with any S-
tuple. Consequently, the delay between consecutive outputs
may be as large as |R|. A similar analysis shows that other
join algorithms, such as the sort-merge join, do not yield
CDE.

How then can we obtain CDE for r(x, y)��s(y, z)? Intu-
itively, if we can ensure to only iterate over those R-tuples
that have matching S-tuples, we trivially obtain constant
delay since then every probe will yield at least one out-
put tuple. As such, the key is to first compute the semijoin
ρx,y = πx,y(R��S). We can then iterate over the elements
of ρx,y , probing S in each iteration to generate the output
with constant delay. Note that, because ρx,y is a semijoin,
the space needed to store ρx,y is linear in |db|.

CDE for queries that feature θ -joins can be obtained sim-
ilarly. Consider Q2 = (s(y, z)��t(z, v) | y < v) which
is a combination of an equijoin on z and inequality join
on y < v. To obtain CDE for Q2, first compute the semi-
join ρy,z = πy,z(S(y, z)��y<vT (z, v)) which consists of all
tuples in S that have a matching tuple in T . Assume for a
moment that we have a more powerful index structure I that
allows, for any {y, z}-tuple s, to enumerate T �y<v s with
constant delay. We can then easily enumerate Q2(db) with
constant delay by iterating over s ∈ ρy,z , and for each such
s, probe I to produce the tuples t ∈ T �y<v s, outputting
(s ∪ t, S(s) × T (t)) for each such s and t. Since T �y<v s
allowsCDEandmultiplicity lookups areO(1), the entire pro-
cedure is CDE. The key question then is how we can build
this more powerful index structure I . The solution is to group
T on z; subsequently, sort each group in descending order on
v; and create a normal (hash-based) index J that allows to
find the group for each z-value. This now supports CDE of
T �y<v s: first, use J to get a pointer to the group with z-
value s(z) in O(1) time, and then enumerate this group with
constant delay and in decreasing order on v. Yield the current
tuple t that is being enumerated in this fashion, provided that
s(y) < t(v). As soon as s(y) ≥ t(v), we know that all subse-
quent t will fail the inequality, and we can hence terminate.
The lower left of Fig. 3 illustrates S, T , ρy,z , and J .

CDE for queries that join more than two relations can
be obtained similarly, but now by computing nested semi-
joins. Figure 3 illustrates how to obtain CDE for Q3.
Concretely, we first ensure CDE of the subquery Q2 of
Q3 as already explained above by computing the semijoin
ρy,z = πy,z(S(y, z)��y<vT (z, v)) and suitably indexing T .
ThenCDEof Q3(db) is obtained by observing that Q3(db) ≡
R��Q2(db), where R��Q2(db) is a binary equijoin, which
can hence treated completely analogous as Q1. Concretely,
compute the nested semijoin ρx,y = πx,y(R��ρy,z), and

tive elements and the time between the last element and the 
termination of enum(D), are all bounded by d. D supports 
enumeration of a GMR R if it supports enumeration of the 
set ER = {(t, R(t)) | t ∈ supp(R)}.

When evaluating a GCQ Q over a database db, we will be 
interested in representing the elements of Q(db) by means 
of a data structure Ddb, such that we can enumerate Q(db) 
from Ddb. If, for every db, the delay to enumerate Q(db) 
from Ddb is sublinear in |db|, then we say that the enumer-
ation occurs with sublinear delay. Similarly, if the delay is 
independent of |db|, then we say that the enumeration occurs 
with constant delay [38]. Note that this is sublinear/constant 
in data complexity [42]: the delay may still depend on the 
size of the query Q. This is reasonable since Q specifies the 
arity of the query result, and a larger arity inherently implies 
a longer delay between elements. Note that enumeration with 
constant delay is what we typically obtain by materializing 
Q(db). For example, if we store the elements of Q(db) in 
an array, then enumerating Q(db) amounts to scanning the 
array where each element access is O(1).

We start the development of GDyn by first giving some 
intuition into constant delay enumeration (henceforth: CDE) 
in Sect. 4.1. The algorithm itself is stated in Sect. 4.2, while 
proofs of its correctness and analysis of its complexity is 
given in Sect. 4.3. Finally, we specialize GDyn to the case 
where all θ -joins are inequality joins in Sect. 4.4.

4.1 Intuition

In this section, we discuss how we can obtain CDE of the 
result Q(db) of a GCQ Q. Of course, the simplest way to 
obtain this is simply to materialize Q(db). Unfortunately, this 
requires memory proportional to |Q(db)| which, depending 
on Q, can be of size polynomial in |db|. We hence desire 
other data structures to represent Q(db) using less space, 
while still allowing CDE. Let us build some intuition on how 
this can be done by subsequently considering three queries 
of increasing complexity:

Q1 = r(x, y)��s(y, z),
Q2 = s(y, z)��t(z, v)  | v <  y, and

Q3 = r(x, y)��s(y, z)��t(z, v)  | v <  y.

Throughout our discussion, assume that the GMRs assigned 
to r(x, y), s(y, z), and t(z, v)  by input database db are R, S, 
and T , respectively.

It is instructive to start with the simple binary equijoin 
query Q1 = r(x, y)��s(y, z) and analyze why traditional 
join processing algorithms do not yield CDE. Suppose that 
we evaluate Q1 using a simple in-memory hash join with 
R as probe relation and S as build relation. Assume that 
the corresponding hash index of S on y has already been
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ρ{x,y}
x y #
2 3 36

ρ{y,z}
y z #
3 2 9
2 2 6
2 1 12

ρs = S
y↑z↑ #
3 2 3
2 2 2
3 1 8
2 1 4

ρt = T
z v↑ #
1 3 3
1 2 2
2 4 3
2 2 2

y < v

ρr = R
x y #
2 3 4
4 6 2
4 5 5

Iρ{y,z}
y
3
2

Iρt = J

y
1
2

= πx,y(ρ{y,z} ρr)

= πy,z(ρs z<v ρt)

Fig. 3 Illustration of query Q3

build a hash index of ρy,z on y. (This index is depicted as
Iρy,z in Fig. 3). Enumeration of Q3(db) is done by iterating
over the tuples r ∈ ρx,y , and for each such tuple r, use Iρy,z

to get a pointer to ρy,z � r, which consists of all s ∈ ρy,z

that equijoin with r. Iterate over these s with constant delay,
and finally use the more advanced index on T to enumerate
all tuples t ∈ T �y<v s. For each such r, s, and t, we out-
put (r ∪ s ∪ t, R(r) × S(s) × T (t)). By construction ofρx,y ,
we are ensured that matching s will exists for every r. Sim-
ilarly, matching t exist for every s by construction of ρy,z .
Therefore, each tuple that we iterate over will produce a new
output, and the entire enumeration of Q(db) is CDE.

In conclusionAs the examples above illustrate, we can obtain
CDE for GCQs by computing (nested) semijoins, and suit-
ably indexing both base relations and semijoin results for
enumeration. Because the only additional relations that we
compute are obtained by semijoining existing relations, the
size of all additional GMRs that are stored is linear in the
input db. Contrast this to techniques that materialize subjoin
results, whose size may become polynomial in the database.

Updates We finish this section by remarking that, in the
presence of updates, this approach is only valid if we mate-
rialize and maintain all required semijoin results. To speed
up the maintenance of semijoin results under updates, it is
sometimes beneficial to create additional indexes that help
in incremental computation of the semijoins, as we illustrate
next. Reconsider Q3 as illustrated in Fig. 3. If we receive
an update �T to T , then we need to correspondingly update
ρy,z from πy,z(S��y<vT ) to πy,z(S��y<v(T + �T )). To that
end, it suffices to compute �ρy,z = πy,z(S��y<v�T ), and
add this to ρy,z . Computing �ρy,z by means of a nested loop
join has �(|S| × |�T |) complexity. We can do better if we
index S by sorting S lexicographically on (z, y), in decreas-

ing order (this is actually how S is depicted in Fig. 3). �ρ′
y,z

can then be computed by means of a hybrid form of sort-
merge and index nested loop join. First, group �T on z and,
per group, sort tuples in decreasing order on variable v. Cre-
ate a hash index on �T to be able to quickly find each group
by a given z-value. Second, iterate over the tuples in S in the
given lexicographic order. For each z-group in S, find the cor-
responding group in �T by passing the z-value to the hash
table. Let s be the first tuple in the S-group. Then iterate over
the tuples of the�T group in decreasing order on v, and sum
up their multiplicities until s(y) becomes larger than v. Add
s to �ρy,z , with its original multiplicity in S multiplied by
the found sum (provided that it is nonzero). Then, consider
the next tuple in the S-group, and continue summing from
the current tuple in the �T group until s(y) becomes again
larger than v, and add the result tuple with the correct multi-
plicity. Continue repeating this process for each tuple in the
S-group, and for each group in S. Assuming that the index
on S already existed, then the total cost of computing ρy,z in
this way isO(|S| + |�T | + |�T | log |�T |) since we scan S
and �T only once, need to sort �T , and create a hash table
for each group. This is much better than the O(|S| × |�T |)
complexity of a nested loop.

4.2 The algorithm

We now turn to the general formulation of the dynamic Yan-
nakakis algorithm.As exemplified inSect. 4.1,GDynobtains
CDE by computing (nested) semijoins and indexing both
these semijoins and the base relations. The order in which
semijoins are computed and how they are indexed is recorded
in a dynamic query plan, which is introduced next.

Dynamic Query Plans To simplify notation, we denote the
set of all variables (resp. atoms, resp. predicates) that occur
in an object X (such as a query) by var(X) (resp. at(X),
resp. pred(X)). In particular, if X is itself a set of variables
(a hyperedge), then var(X) = X . We extend this notion uni-
formly to labeled trees, e.g., if n is a node in tree T , then
varT (n) denotes the set of variables occurring in the label of
n and similarly for edges and trees themselves. If T is clear
from the context, we omit subscripts from our notation.

Definition 1 A dynamic query plan (or simply: plan) is a
tuple (T , N ) where T is a binary generalized join tree, and
N is a sibling-closed connex subset of T . A generalized join
tree (GJT) is a node-labeled and edge-labeled directed tree
T = (V , E) such that:

– Every leaf is labeled by an atom.
– Every interior node n is labeled by a hyperedge and has
at least one child c such that var(n) ⊆ var(c). Such a
child is called a guard of n.
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{x, y}
(T1, N1)

{y, z}

s(y, z) t(z, v)

y < v

r(x, y)

{y, w}
(T2, N2)

{y, z, w}

r(x, y)

x < z

s(y, z, w)

{u}

t(u, v)

w < u

Fig. 4 Two example plans. The connex sets are indicated by the shaded
areas

– Whenever the same variable x occurs in the label of two
nodes m and n of T , then x occurs in the label of each
node on the unique path linking m and n. This condition
is called the connectedness condition.

– Every edge p → c from parent p to child c in T is
labeled by a set pred(p → c) of predicates. It is required
that for every predicate θ(z) ∈ pred(p → c), we have
var(θ) = z ⊆ var(p) ∪ var(c).

T is binary if every node in T has at most two children. A
connex subset of T is a set N ⊆ V that includes the root of
T such that the subgraph of T induced by N is a tree. N is
sibling closed if for every node n ∈ N with a sibling m in T ,
m is also in N . The frontier of a connex set N is the subset
F ⊆ N consisting of those nodes in N that are leaves in the
subtree of T induced by N .

Figure 4 shows two plans (T1, N1) and (T2, N2). The set
N1 contains all nodes of T1 and is therefore a sibling-closed
connex subset of T1. Its frontier is {r(x, y), s(y, z), t(z, v)}.
If we remove {y, z} from N1 the set is no longer connex.
If instead we remove r(x, y), the set is still connex, but no
longer sibling closed. The set N2 is a sibling-closed connex
subset of T2, and its frontier is {{y, z, w}, {u}}. Removing
either {y, z, w} or {u} makes N2 no longer sibling closed.

Definition 2 Let T be a GJT and let N be a connex subset
of T . Assume that {|r1(x1), . . . , rn(xn)|} is the multiset of
atoms occurring as labels in the leaves of T . Then, the query
associated with T is the full join

Q[T] = r1(x1)�� · · · ��rn(xn) |
∧

θ(z)∈pred(T )

θ(z),

need be maintained and indexed, while the connex set N
drives the enumeration of query results. We formalize this
next. Because in this section, we are introducing GDyn for
arbitrary GCQs (with arbitrary join predicates θ ), we first
need to introduce general notions of an index.

Definition 3 (Enumeration index) Let R be aGMR, θ a pred-
icate, and y be a hyperedge. A data structure I that is of
size linear in R and that allows, for any given y-tuple t,
enumeration of (R �θ t) with delay O( f (|R|)) is called an
enumeration index of R by (θ, y) with delay f : N → N.

For example, in Sect. 4.1, we have discussed how, by
means of grouping and sorting,we can obtain an enumeration
index of T (z, v) on (y < v, {y, z}) with constant delay.
Definition 4 (Join Index) Let R be a GMR, θ be a predicate,
and y, z be hyperedges such that z ⊆ var(R) or z ⊆ y. A
data structure I that is of size linear in R and that allows,
for any GMR S over y, computation of πz(R��θ S) in time
O(g(|R|, |S|)) is called a join index of R by (θ, y, z) with
access time g : N

2 → N.

For example, in Sect. 4.1, we have discussed how, by
means of grouping and sorting, we can obtain a join index
of R(y, z) by (y < v, {z, v}, {y, z}) whose access time is
O(|R| + |S| log |S|).

For both enumeration and join indexes, the update time is
the time required to update the index to a corresponding new
index on R + �R, given update �R.

Definition 5 Let (T , N ) be a plan and let db be a database
over at(T ). The T -reduct (or semijoin reduction) of db is a
collection ρ of GMRs, one GMR ρn for each node n ∈ T ,
defined inductively as follows. Let pred(n) denote the set of
all predicates on the edges from n to its children in T .

– If n = r(x) is an atom, then ρn = dbr(x).
– If n has a single child c, then ρn = πvar(n)σpred(n)ρc.
– Otherwise, n has two children c1 and c2. In this case, we
have ρn = πvar(n)σpred(n)

(
ρc1��ρc2

)
. Note that, because

n has a guard child, this is actually a semijoin.

A T -reduct needs to be augmented by suitable index struc-
tures to be used for both enumeration andmaintenance under
updates. Concretely for each node n with parent p in T , the
following indexes are created:

– If n belongs to N , then we store an enumeration index
Pn on ρn by (pred(p → n), var(p)).

– If n is a node with a sibling m, then we store a join index
Sn on ρn by (pred(p), var(m), var(p)).

The T -reduct ρ together with these indexes is called a
(T , N )-representation for db, or (T , N )-rep for short.

and the query associated with (T , N ) is the GCQ defined as 
Q[T , N] = πvar(N )(Q[T ]).

To illustrate, referring to Fig. 4,wehave that  Q[T1, N1] = 
πx,y,z,v (r(x, y)��s(y, z)��t(z, v)  | y < v), which is Q3 from 
Sect. 4.1.

The data structure Following the intuition of Sect. 4.1, the 
GJT T of a plan (T , N ) specifies the semijoin results that
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Algorithm 1 GDyn: General Dynamic Yannakakis
1: function enumT ,N (ρ)
2: for each t ∈ ρroot(T ) do enumT ,N (root(T ), t, ρ)

3: function enumT ,N (n, t, ρ)
4: if n is in the frontier of N then yield (t, ρn(t))
5: else if n has one child c then
6: for each s ∈ ρc �pred(n→c) t do enumT ,N (c, s, ρ)

7: else n has two children c1 and c2
8: for each t1 ∈ ρc1 �pred(n→c1) t do
9: for each t2 ∈ ρc2 �pred(n→c2) t do
10: for each (s1, μ) ∈ enumT ,N (c1, t1, ρ) do
11: for each (s2, ν) ∈ enumT ,N (c2, t2, ρ) do
12: yield (s1 ∪ s2, μ × ν)

13: procedure updateT ,N (ρ, u)
14: for each n ∈ leafs(T ) labeled by r(x) do
15: �n ← ur(x)
16: for each n ∈ nodes(T ) \ leafs(T ) do
17: �n ← empty GMR over var(n)

18: for each n ∈ nodes(T ), traversed bottom-up do
19: ρn+ = �n
20: if n has a parent p and a sibling m then
21: �p+ = πvar(p)

(
ρm��pred(p)�n

)

22: else if n has parent p then
23: �p+ = πvar(p)σpred(p)�n

Reconsider the plan (T1, N1) from Fig. 4. Figure 3 depicts
an example (T1, N1)-representation ρ for the database db
composed of the GMRs shown at the leaves of the tree. Iρy,z

and Iρt illustrate the enumeration indexes; the join indexes
are not illustrated.

It is important to observe that, since a T -reduct constructs
only semijoins of database GMRs, and projections thereof,
each |ρn| is linear in the size of db. Consequently, the indexes
are also of size linear in db and hence the entire (T , N )-rep
is linear in db.

Proposition 1 |ρn| ≤ maxr(x)∈at(T ) |dbr(x)|, for every n ∈
T .

Given these definitions, the enumeration andmaintenance
algorithms that form GDyn are shown in Algorithm 1. They
operate as follows.

Enumeration To enumerate from a (T , N )-rep, we iterate
over the reductionsρn withn ∈ N in a nested fashion, starting
at the root and proceeding top down. When n is the root, we
iterate over all tuples in ρn . For every such tuple t, we iterate
only over the tuples in the children c of n that are compatible
with t (i.e., tuples in ρc that join with t and satisfy pred(n →
c)). Note that such tuples can be enumerated directly using
the enumeration index Pc. This procedure continues until we
reach nodes in the frontier of N at which time the output tuple
can be constructed. The pseudocode is given by the routine
enum in Algorithm 1.

Update processing To maintain a (T , N )-rep under update
u, we traverse the nodes of T in a bottom-up fashion. At

each node n, we have to compute the update �n to apply to
ρn and its associated indexes. For leaf nodes, this update is
given by the update u itself. For interior nodes, �n can be
computed from the update and the original reduct of its chil-
dren. update in Algorithm 1 gives the pseudocode. Here,
line 21 is implemented by using the join index Sm on ρm by
(pred(p), var(n), var(p)). Line 23 can be implemented by
a straightforward hash-based aggregation. We assume here
that, as a side effect of the presented modifications, the asso-
ciated indexes are also updated.

4.3 Correctness and complexity

We next prove correctness of the enumeration and update
procedures, and bound their complexity. We start with enu-
meration. Throughout this section, let (T , N ) be a plan, let db
be a database over at(T ), and assume that we have (T , N )-
rep of db with T -reduct ρ. Given a node n ∈ T , we denote
the subtree of T rooted at n by Tn , and the subset of all nodes
of N that are in Tn by Nn . The following lemma relates the
GMRs at each node n of a T -reduct to the query induced by
the subtree of T at n. Here, we write Q[Tn, n] as a short-
hand forQ[Tn, {n}]. Recall fromDefinition 2 that this is the
query that joins all atoms in Tn (w.r.t. all predicates in Tn),
and subsequently projects on var(n).

Lemma 1 ρn = Q[Tn, n](db), for every node n ∈ T .

The proof by induction is detailed in “Appendix A”.
To show correctness of enumeration, we need the follow-

ing additional lemma regarding the subroutine ofAlgorithm1
(line 3). The proof is again by induction and detailed in
“Appendix A”.

Lemma 2 For every node n ∈ N and every tuple t in ρn,
enumT ,N (n, t, ρ) enumerates Q[Tn, Nn](db) � t.

Finally, we require the following insights, also proved in
“Appendix A”.

Lemma 3 1. Q(db) is a positive GMR, for any GCQ Q
and any database db.

2. If R is a positive GMR over x and y ⊆ x, then t[y] ∈
πy R for every tuple t ∈ R.

We note that item (2) is not true for when R has both
positive and negative multiplicities, since multiplicities of
opposite sign could cancel each other out when projecting,
thereby removing t[y] from πy(R).

Proposition 2 If ρ is a T -reduct of db, then enumT ,N (ρ)

enumerates Q[T , N](db).

Proof Let r be the root of T . By Lemma 1, we have
ρr = Q[Tr , r](db) = Q[T , r](db) = πvar(r)Q[T](db).
Furthermore, πvar(r)Q[T](db) = πvar(r)πvar(N )Q[T](db)
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since var(r) ⊆ var(N ) as r ∈ N . Therefore, ρr =
πvar(r)πvar(N )Q[T](db) = πvar(r)Q[T , N](db). We con-
clude that ρr is a projection ofQ[T , N](db), and hence by
Lemma 3 that every tuple inQ[T , N](db) has a compatible
tuple in ρr . As such,Q[T , N](db) equals the disjoint union⋃

t∈ρr
Q[T , N](db) � t. By Lemma 2, this is exactly what

enumT ,N (ρ) enumerates.

We now analyze the complexity of enumT ,N . First,
observe that by definition of T -reducts, it is the case that
for every parent node p with a child n and every t ∈ ρp

there exists a tuple in ρn �pred(p→n) t. Hence, every tuple
that we iterate over will eventually produce a new output
tuple. This ensures that we do not risk wasting time in iterat-
ing over tuples that in the end yield no output. As such, the
time needed for enumT ,N (ρ) to produce a single new output
is dominated by the time taken to iterate over the tuples in
ρn �pred(p→n) t, where p is the parent of n. Since we can use
the enumeration index Pn to do so efficiently, the efficiency
of the entire enumeration will depend on the delay incurred
by accessing the enumeration indexes. The following propo-
sition formalizes this insight.

Proposition 3 Assume that every enumeration index has enu-
meration delay f , where f is a monotone function. Then,
using these indexes, enumT ,N (ρ) enumeratesQ[T , N](db)
with delay O(|N | f (M)) where M = maxr(x)∈at(T ) |dbr(x)|.
Thus, the total time required to execute enumT ,N (ρ) is
O(|Q[T , N](db)||N | f (M)).

Proof enumT ,N (ρ) correctly enumerates Q[T , N](db) by
Proposition 2. As such, it suffices to show that that the delay
satisfies the given bounds. To that end, we show that for
every node n ∈ N and t ∈ ρn , the call enumT ,N (n, t, ρ)will
produce outputs with delay O(|Nn| f (M)). We proceed by
induction on |Nn|. If |Nn| = 1, then n is in the frontier of N
and the delay is clearly constant as the algorithm will only
yield (t, ρn(t)) (line 4). Now assume that |Nn| > 1. Then,
n is not in the frontier of N . If n has a single child c, then
line 6 is executed, and the enumeration index Pc allows us
to iterate over ρc �pred(n) t with delay O( f (|ρc|)), which is
O( f (M)) by Proposition 1. For each element s of this enu-
meration, the algorithm calls enumT ,N (c, s, ρ), which by
induction hypothesis produces output elements with delay
O(|Nc| f (M)). Hence, themaximum delay between two out-
puts is O(

f (|M |) + |Nc| f (M)
) = O(

(|Nc| + 1) f (M)
) =

O(|Nn| f (M)
)
. For the case in which n has two children c1

and c2, lines 7–12 are executed. By similar reasoning, it is
easy to show that the maximum delay between outputs is

O( f (|M |)) + O(|Nc1 | f (M))

+ O( f (|M |)) + O(|Nc2 | f (M))

In particular, if all enumeration indexes are with con-
stant delay (i.e., f (M) = O(1)), then GDyn enumerates
Q[T , N](db) with delay O(|N |), which is also constant in
data complexity.

Update processing We next turn our attention to the update
procedure update of Algorithm 1. Since this is straightfor-
ward to prove correct, we focus on its complexity. Since
update uses the join indexes available in the (T , N )-rep
during its execution we will hence bound the running time
of update in terms of the join index access and update
times. We first require the following insight, which bounds
the running time under the condition that the GMRs com-
puted by update have a certain bounded size. The proof is
in “Appendix A”.

Proposition 4 Assume that all join indexes in the (T , N )-rep
have access time g, and that all indexes (join and enumer-
ation) have update time h, where g and h are monotone
functions. Further assume that, during the entire execu-
tion of update, K and U bound the size of ρn and �n,
respectively, for all n. Then, updateT ,N (ρ, u) runs in time
O (|T | · (U + h(K ,U ) + g(K ,U ))).

We next bound the size of ρn and �n throughout the exe-
cution of update.

Proposition 5 During the entire execution of update, we
have |ρn| ≤ M and |�n| ≤ 4M for every n ∈ T , where
M = maxr(x)∈at(T ) |dbr(x)| + |ur(x)|.
Proof We first establish the bound on |ρn| during execution.
Before execution, ρ is a T -reduct of db. Hence, by Proposi-
tion 1, |ρn| ≤ maxr(x) |dbr(x)| ≤ M before execution starts.
Now note that the only line that updates ρn is line 19, exe-
cuted while visiting node n in the bottom-up traversal of T .
This line is only applied once for every node n. Hence, since
at the end of execution the collection of modified GMRs
ρm for m ∈ N form a T -reduct of db + u, we know that
after executing line 19, ρn contains exactly the content for
the T -reduct of db + u. Hence, by Proposition 1, |ρn| ≤
maxr(x) |(db + u)r(x)| ≤ maxr(x) |dbr(x)| + |ur(x)| = M .

We are now ready to establish the bounds on |�n|. Clearly,
|�n| ≤ M during the initialization of�n done in lines 14–17.
Now consider that we are executing the bottom-up traver-
sal of T in lines 18–23 and that n is the currently visited
node. We have already established that both before and after
applying the update �n to ρn , we have |ρn| ≤ M (line 19).
This implies that |�n| ≤ 2M : in the worst case, �n deletes
all existing tuples in ρn and adds M new ones. To see that
|�p| ≤ 4M after executing line 21, we consider two cases.
If n is visited before m in the bottom-up traversal of T , then
�p is necessarily empty before executing line 21 and hence
|�p| = |πvar(p)(ρm��pred(p)�n)|. Because, by definition of
GJTs, p has either m or n as a guard, it follows that every

which is bounded by O((|Nc1 | + |Nc2 | + 2) f (M)) = 
O(2|Nn| f (M)) = O(|Nn| f (M)).
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tuple in πvar(p)(ρm��pred(p)�n) is either a projected version
of some tuple in ρm , or a projected version of some tuple
in �n . As such, |�p| ≤ max (|ρm |, |�n|) = 2M . If, on the
other hand,m is visited before n in the bottom-up traversal of
T , then �p necessarily contains the result computed during
executing line 21 while visiting m. By the reasoning of the
previous case, |�p| ≤ 2M before executing line 21 while
visiting n. Furthermore, by the same reasoning, we know
that |πvar(p)(ρm��pred(p)�n)| ≤ 2M . Hence, atmost 2M new
tuples can be added to�p. As such, |�p| ≤ 4M after execut-
ing line 21 when visiting n. To see that also |�p| ≤ 4M after
executing line 23 when visiting n, it suffices to observe that
�p starts out empty, and |�n| ≤ 2M (as already established).

Combining Propositions 4 and 5, we obtain

Theorem 1 Assume that all join indexes in the (T , N )-rep
have access time g and that all indexes (join and enumer-
ation) have update time h, where g and h are monotone
functions. updateT ,N (ρ, u) runs in time

O (|T | · (4M + h(M, 4M) + g(M, 4M))) .

where M = maxr(x)∈at(T ) |dbr(x)| + |ur(x)|.

4.4 IEDyn

GDyn provides a general framework for dynamic query pro-
cessing in the presence of arbitrary θ -joins. In this section,we
instantiate GDyn to the specific setting where queries men-
tion only inequality predicates (<,≤,>,≥).2 We refer to
this instantiation as IEDyn. Concretely, IEDyn uses the fol-
lowing data structures for its enumeration and join indexes.
Let R be a GMR over x , θ be a conjunction of inequalities,
and y, z be hyperedges such that z ⊆ x or z ⊆ y. The data
structure underlying the enumeration and join index of R by
(θ, y) resp. (θ, y, z) depends on the number of inequalities
in θ .

(1) No inequality In this case, θ is hence equivalent to true,
and the enumeration and join index only have to deal with
equijoins. Concretely, the enumeration index of R on (θ, y)
is obtained by creating a traditional (hash-based) index of R
on the variables that x and y have in common. Then, for any
y-tuple t, R�t can be enumeratedwith constant delay by first
using the hash index to find the corresponding (x ∩ y)-group
of R and enumerating the elements of that group.

To obtain the join index by (θ, y, z), we discern two cases.
If z ⊆ y, then the same index as for enumeration is reused
except that in addition, for each (x ∩ y)-group of R, we

2 Note that such queriesmay also contain equijoins by sharing variables
between atoms.

cache the sum of all multiplicities in that group. This allows
to evaluate πz(R��S) in time O(|S|) independently of |R|),
as follows. Initialize an empty GMR to hold the join result.
Group S on the variables in x ∩ y in O(|S|) time (using
hashing). For each group in S, use the index on R to locate
the corresponding group of R in O(1) time and retrieve the
cached sum-of-multiplicities μ of that group. Then, iterate
over the tuples s of the S-group one by one and add S(s)×μ to
themultiplicity of s[z] in the result GMR. (If s[z] has not been
added to the result before, this multiplicity is zero.) Repeat
this process for all tuples in the S-group, and for every group
in S. Since we only scan |S| once, the total time is O(|S|).

If z ⊆ x , no special data structure is required: we can
compute πz(R��S) in O(|R| + |S|) time by first computing
πx∩y S in O(|S|) time and then repeating the above process
with the roles of R and S reversed.

We conclude that in this case the enumeration delay is
O(1), the access time is O(|S|) if z ⊆ x and O(|R| + |S|)
otherwise, and the update time is O(|�R|).
(2) Single inequality Assume that θ = x > y with x ∈
x and y ∈ y (the other cases x < y, x ≤ y, x ≥ y are
similar). Then, we build a hash-based index I of R on x ∩ y,
sorting each group in descending order on x . In Sect. 4.1,
we have illustrated, by means of example, that this realizes
an enumeration index by (θ, y) with constant delay. At the
end of the same section, we have also illustrated that, when
z ⊆ x , this also realizes a join index of R by (θ, y, z) with
access timeO(|R|+|S|+|S| log |S|) = O(|R|+|S| log |S|).3
When z ⊆ x , the same procedure, but using S for the outer
loop, and R for the inner loop, can be used to realize a join
index of R by (θ, y, z)with access timeO(|R|+ |S| log |S|).

Note that, because we need to keep data sorted the update
time of these indexes is O(|�R| log(|R| + |�R|)).

We conclude that in this case the enumeration delay is
O(1), the access time isO(|R| + |S| log |S|), and the update
time O(|�R| log(|R| + |�R|)).
(3) Multiple inequalities Assume that θ = x1 > y1 ∧ x2 >

y2 ∧ · · · ∧ xk > yk with x1, . . . , xk ∈ x and y1, . . . , yk ∈ y.
(The reasoning where some of the > are replaced by < is
completely analogous.) Then, as with the case with single
inequalities, we build a hash-based index I of R on x ∩ y but
now sort each group lexicographically on (x1, . . . , xk) (each
xi in descending order). In addition, for each group and each
i (1 ≤ i ≤ k), we record the smallest xi -value present in the
group.

The fact that we have multiple inequalities complicates
matters, in the sense that enumeration delay becomes loga-
rithmic instead of constant. We can see this as follows. To

3 Strictly speaking, we described in section that R needs to be sorted
lexicographically, first on x ∩ y and then on x . The grouping + sorting
of the enumeration index obtains the same result.
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enumerate R �θ t given y-tuple t, we first use I to obtain a
pointer to R� t[x ∩ y] inO(1) time. Initialize (m1, . . . ,mk)

such that mi is the smallest xi -value in the group. Then, start
enumerating R� t[x∩ y]with constant delay and in decreas-
ing lexicographic order. Yield the current pair (s, μ) that is
being enumerated, provided that s[xi ] > t[yi ] for all i . In
contrast to the case where there is a single inequality, how-
ever, we cannot deduce that all subsequent s will fail θ . The
problem is then to find the next tuple in the group that occurs
after s in sorted order, but is larger than t. Concretely, let i be
the smallest index such that s(xi ) ≤ t(yi ) yet s(x j ) > t(x j )
for all j < i . Let s′ be the tuple obtained from s by setting
s(x j ) := m j for all j ≥ i . Then, using binary search, find
the next tuple that lexicographically larger or equal than s′
and recontinue enumeration from there. This binary search
takes O(log |R|) time, which causes the logarithmic delay.

Having multiple inequalities also complicates the update
processing, since the sorted order no longer can be exploited
to speed up join computation. In this case, therefore, we sim-
ply do a nested loop join per group, which yields a total
access time of O(|R| × |S|). Designing an join index with
better access time is a interesting avenue for future work.

We conclude that in this case the enumeration delay is
O(log |R|), the access time is O(|R| × |S|), and the update
time is O(|�R| log(|R| + |�R|)).
Complexity of IEDyn By plugging in the above-mentioned
delay intoProposition 3 and the above-mentioned access time
and update time into Corollary 1, we obtain the following
complexity of IEDyn.

Theorem 2 Assume that (T , N ) is a plan in which all pred-
icates are inequalities and let all enumeration and join
indexes be as described above. Then, enum enumerates with
delay O(|N | log(maxr(x) |dbr(x)|)) and update processes
updates in timeO(|T |M2)where M = maxr(x)∈at(T ) |dbr(x)|
+|ur(x)|.4 If T is such that each edge is labeled by atmost one
predicate, then the enumeration delay isO(|N |) and update
time is O(|T |M logM). If T has no inequalities, the update
time is O(|T |M).

A simpleGJT is aGJTwithout predicates where var(p) ⊆
var(n) for every node n with parent p. In a simple GJT, every
child is hence a guard of its parent. For simple GJTs, the
update processing time is optimal, in the following sense.

Theorem 3 If T is simple, then update processes updates in
time O(|T |maxr(x) |ur(x)|), which is independent of |db|.
Proof Using the fact that every node is a guard of its parent,
it is straightforward to prove by induction on the height of a

node n in T (defined as the length of the shortest path from n
to a leaf in T ) that |�ρn| ≤ maxr(x) |ur(x)|, for each n. Since
T does not contain any predicates, all join indexes that are
created are as described in the paragraph “(1) No inequality”
above. In particular, since every node is guard of its parent,
we have that for every join index Sm by (pred(p), pred(n),

var(p)) that is created we have var(p) ⊆ pred(m). For
this particular case, the access time to execute the semijoin
πvar(p)(ρm���n) is O(|�|n) = O(maxr(x) |ur(x)|). By now
plugging in this access time and the linear index update time
into Proposition 4, the result follows.

Berkholz et al. [8] show that, unless the Online Matrix-
Vector Multiplication conjecture [24] is false, the class of
conjunctive queries that allow both (1) constant delay enu-
meration of query results (in data complexity) and (2) update
processing time that is linear in |u| (again in data com-
plexity) for every update u, is exactly the class of so-called
q-hierarchical queries. While we forego a formal definition
of this class, we show in [25] that a CQ Q is q-hierarchical
if, and only if, there exists a plan (T , N ) for Q such that
T is simple. Since, by the results above, GDyn has both
constant delay enumeration and update time O(|u|) (in data
complexity) for exactly these queries,GDyn hencemeets the
theoretical lower bound.

5 Computing query plans

We say that (T , N ) is a plan for GCQ Q, or that Q has
plan (T , N ), if Q and Q[T , N] are the same query, up to
reordering of atoms and predicates, i.e., if #at(Q) = #at(T ),
pred(Q) = pred(T ), and out(Q) = var(N ). Here, #at(X)

denotes the multiset of atoms occurring in object X .
By the results of Sect. 4, it follows thatwe can dynamically

process a given GCQ Q by first computing a plan for Q and
subsequently applying GDyn on that plan. In this section
we show how to compute a plan for Q by describing two
algorithms.

1. The first algorithm computes a GJT pair for Q. Here,
a GJT pair is a pair (T ′, N ′) defined exactly like a
query plan, except that T ′ need not be binary and N ′
need not be sibling closed. A query plan is hence a
particular kind of GJT pair. We call (T ′, N ′) a GJT
pair for Q if #at(Q) = #at(T ′), pred(Q) = pred(T ′),
and out(Q) = var(N ′).

2. The second algorithm transforms this GJT pair into
an equivalent query plan. Here, two GJT pairs (T , N )

and (T ′, N ′) are equivalent if #at(T ) = #at(T ′),
pred(T ) = pred(T ′), and var(N ) = var(N ′).

Clearly, the plan resulting from the composition of the two
algorithms must be a plan for Q.

4 In the conference version of this paper [26], there was an incorrect 
claim: we stated that updates could be processed in time O(M · log(M)) 
in the general case of multiple inequalities. We then found a bug in our 
proof and we currently do not know if this bound can be achieved.
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Before describing these two algorithms, it is important
to emphasize that there are GCQs for which no GJT pair
exists (and, consequently, for which no query plans exists).
This is illustrated in Example 2 below. In particular, for full
conjunctive queries (i.e., GCQs without θ -joins and projec-
tions), the results of [25] imply that a GJT pair exists for a
full CQ Q if, and only if, Q is acyclic, a well-studied class
of queries [1,47]. Similarly, the results imply that for con-
junctive queries (with projections, but still without θ -joins) a
GJT pair exists if an only if the query is free-connex acyclic,
another well-studied class [6]. The existing definitions of
acyclicity and free-connex acyclicity are given for CQs only.
Given the previous discussion, we extend these notions to
GCQs as follows.

Definition 6 A GCQ Q is free-connex acyclic if it has a GJT
pair. It is acyclic if full(Q) has a GJT pair. A GCQ that is not
acyclic is cyclic.

In particular, every full GCQ that is acylic is also free-
connex acyclic. Also note that, since out(full(Q)) = var(Q),
a GJT pair will exist for full(Q) if an only if there exists
a GJT T for Q, i.e., a GJT with #at(Q) = #at(T ) and
pred(Q) = pred(T ). Indeed, if T is a GCQ for Q, then
(T , N ) with N the set of all nodes in T , is a GJT pair for
Q: clearly N is connex and var(N ) = var(T ) = out(Q).
For this reason, free-connex acyclicity is a stronger require-
ment than acyclicity: acyclicity only requires that a GJT for
Q exists while free-connex acyclicity requires, in addition,
that there exists a connex subset with out(Q) = var(N ).

Example 2 The trees T1 and T2 depicted in Fig. 4 are GJTs
for the full GCQs

Q1 = (
r(x, y)��s(y, z)��t(z, v) | y < v

)
, and

Q2 = (
r(x, y)��s(y, z, w)��t(u, v) | x < z ∧ w < u

)
,

respectively. These queries are hence acyclic. In contrast,
r(x, y)��s(y, z)��t(x, z) (also known as the triangle query)
is the prototypical cyclic join query.

Let Q′
2 = πy,z,w,u(Q2). Q′

2 is free-connex acyclic since
the pair (T2, N2) of Fig. 4 is a GJT pair for Q2. In contrast,
there is no GJT pair for Q′

1 = πy,z(Q1) that contains tree T1.
Indeed, observe that any connex set of T1 must include the
root, which includes x /∈ out(Q′

1). Finally, it can be verified
that there is no GJT pair for πx,v(Q1); this query is hence
not free-connex acyclic.

Given that plans only exist for free-connex acyclic queries,
it is desirable to be able to check free-connex acyclicity. In
this respect, we develop an algorithm in Sect. 5.1 that checks
whether Q is free-connex acyclic and if so computes a GJT
pair for Q. This algorithm hence realizes step (1) above.
Subsequently, step (2) above is realized in Sect. 5.2 where

we discuss how to transform GJT pairs into equivalent query
plans.

5.1 Computing GJT pairs

The canonical algorithm for checking acyclicity of normal
conjunctive queries is the GYO algorithm [1]. The algorithm
described in this section is a generalization of the GYO algo-
rithm that checks free-connex acyclicity in addition to normal
acyclicity and deals with GCQs featuring θ -join predicates
instead ofCQs that have equality joins only.Wefirst recall the
classical GYO algorithm and then formulate its extension.

5.1.1 Classical GYO

The GYO algorithm operates on hypergraphs. A hypergraph
H is a set of nonempty hyperedges. Recall from Sect. 3 that
a hyperedge is just a finite set of variables. Every GCQ is
associated with a hypergraph as follows.

Definition 7 Let Q be aGCQ. The hypergraph of Q, denoted
hyp(Q), is the hypergraph

hyp(Q) = {x | r(x) is an atom of Q with x �= ∅}.

The GYO algorithm checks acyclicity of a normal con-
junctive query Q by constructing hyp(Q) and repeatedly
removing ears from this hypergraph. If ears can be removed
until only the empty hypergraph remains, then the query is
acyclic; otherwise, it is cyclic.

An ear in a hypergraph H is a hyperedge e for which we
can divide its variables into two groups: (1) those that appear
exclusively in e and (2) those that are contained in another
hyperedge 
 of H . A variable that appears exclusively in a
single hyperedge is also called an isolated variable. Thus, ear
removal corresponds to executing the following two reduc-
tion operations.

– Remove isolated variables: select a hyperedge e in H and
remove isolated variables from it; if e becomes empty,
remove e it altogether from H .

– Subset elimination: remove hyperedge e from H if there
exists another hyperedge 
 for which e ⊆ 
.

The GYO reduction of a hypergraph is the hypergraph that
is obtained by executing these operations until no further
operation is applicable. The following result is standard; see,
e.g., [1] for a proof.

Proposition 6 ACQ Q is acyclic if andonly if theGYOreduc-
tion of hyp(Q) is the empty hypergraph.
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5.1.2 GYO reduction for GCQs

In order to extend the GYO reduction to check free-connex
acyclicity (not simply acyclicity) of GCQs (not simply stan-
dard CQs), we will: (1) redefine the notion of being an ear to
take into account the predicates and (2) transform the GYO
reduction into a two-stage procedure. The first stage allows
to check that a connex set with exactly out(Q) can exist while
the first stage and second stage combined check that the query
is acyclic.

Our algorithm operates on hypergraph triplets instead of
hypergraphs, which are defined as follows.

Definition 8 A hypergraph triplet is a triple

H = (hyp(H), out(H), pred(H))

with hyp(H) a hypergraph, out(H) a hyperedge, and pred(H)

a set of predicates.

Intuitively, the variables in out(H) will correspond to the
output variables of a query and the set pred(H) will contain
predicates that need to be taken into account when removing
ears. Every GCQ is, therefore, naturally associated with a
hypergraph triplet as follows.

Definition 9 The hypergraph triplet of a GCQ Q, denoted
H(Q), is the triplet (hyp(Q), out(Q), pred(Q)).

In order to extend the notion of an ear, we require the
following definitions. Let H be a hypergraph triplet. Vari-
ables that occur in out(H) or in at least two hyperedges in
hyp(H) are called equijoin variables of H. We denote the
set of all equijoin variables of H by jv(H) and abbreviate
jvH(e) = e ∩ jv(H). A variable x is isolated in H if it is
not an equijoin variable and is not mentioned in any pred-
icate, i.e., if x /∈ jv(H) and x /∈ var(pred(H)). We denote
the set of isolated variables of H by isol(H) and abbreviate
isolH(e) = e∩isol(H). The extended variables of hyperedge
e in H, denoted extH(e) is the set of all variables of predi-
cates that mention some variable in e, except the variables in
e themselves:

extH(e) =
⋃

{var(θ) | θ ∈ pred(H), var(θ) ∩ e �= ∅}\e.

Finally, a hyperedge e is a conditional subset of hyperedge 


w.r.t.H, denoted e �H 
, if jvH(e) ⊆ 
 and extH(e\
) ⊆ 
.
We omit subscripts from our notation if the triplet is clear
from the context.

var(θ2) = {x, y}. Now consider tripletH1 in particular. It is
the hypergraph triplet H(Q) for the following GCQ Q:

Q = πt,u,z,w(r1(s, t, u)��r2(t, u)��r3(u, w, x)

��r4(s, v)��r5(w, z, y) | t < v ∧ x < y).

Moreover, jv(H1) = {s, t, u, w, z} and isol(H1) = ∅. Fur-
thermore, extH1({v}) = {t} since θ1 = t < v shares
variables with {v}. Finally jvH1

({s, v}) = {s} ⊆ {s, t, u}
and extH1({s, v}\{s, t, u}) = extH1({v}) = {t} ⊆ {s, t, u}.
Therefore, {s, v} �H1 {s, t, u}. Similarly, {t, u} �H1

{s, t, u}.
We define ears in our context as follows.

Definition 10 A hyperedge e is an ear in a hypergraph triplet
H if e ∈ hyp(H) and either

1. We can divide its variables into two: (a) those that are
isolated and (b) those that form a conditional subset of
another hyperedge 
 ∈ hyp(H)\{e}; or

2. e consists only of nonjoin variables, i.e., jv(e) = ∅ and
ext(e) = ∅.

Note that case (2) allows for θ ∈ pred(H) with var(θ) ⊆
e. We call predicates that are covered by a hyperedge in
this sense filters because they correspond to filtering a single
GMR instead of θ -joining two GMRs. If, in case (2), there
is no filter θ with var(θ) ⊆ e, then e = isolH(e). Similar to
the classical GYO reduction, we can view ear removal as a
rewriting process on triplets, where we consider the follow-
ing reduction operations.

– (ISO) Remove isolated variables: select a hyperedge e ∈
hyp(H) and remove a nonempty set X ⊆ isolH(e) from
it. If e becomes empty, remove it from hyp(H).

– (CSE)Conditional subset elimination: removehyperedge
e from hyp(H) if it is a conditional subset of another
hyperedge f in hyp(H). Also update pred(H) by remov-
ing all predicates θ with var(θ) ∩ (e\ f ) �= ∅.

– (FLT) Filter elimination: select e ∈ hyp(H) and a
nonempty subset of predicates � ⊆ pred(H) with
var(�) ⊆ e. Remove all predicates in � from pred(H).

We write H � I to denote that triplet I is obtained from
triplet H by applying a single such operation, and H �∗ I
to denote that I is obtained by a sequence of zero or more of
such operations.

Example 4 For the hypergraph triplets illustrated in Fig. 5,
we have H1 � H2 � H3 � H4 and H5 � H6 � H7

� H8 � H9 � H10 � H11. For each reduction, it is illus-
trated in the figure which set of isolated variables is removed,
or which conditional subset is removed.

Example 3 In Fig. 5, we depict several hypergraph triplets. 
There, hyperedges in H are depicted by colored regions and 
variables in out(H) are underlined. We use dashed lines to 
connect variables that appear together in a predicate. So, in 
H1, we have predicates θ1, θ2 with var(θ1) = {t, v} and
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Fig. 5 Illustration of GYO reduction for GCQs. Colored regions depict hyperedges. Variables in out are underlined. Variables occurring in the
same predicate are connected by dashed lines (color figure online)

We write H↓ to denote H is in normal form, i.e., that
no operation is applicable on triplet H. Note that, because
each operation removes at least one variable, hyperedge, or
predicate, we will always reach a normal form after a finite
number of operations. Furthermore, while multiple different
reduction steps may be applicable on a given triplet H, the
order in which we apply them does not matter:

Proposition 7 (Confluence)WheneverH �∗ I1 andH �∗
I2, there exists J such that I1 �∗ J and I2 �∗ J .

Because the proof is technical but not overly enlightening,
we defer it to “Appendix B.1”. A direct consequence is that
normal forms are unique: ifH �∗ I1↓ andH �∗ I2↓, then
I1 = I2.

Let H be a triplet. The residual of H, denoted H̃, is the
triplet (hyp(H),∅, pred(H)), i.e., the triplet where out(H) is
set to ∅. A triplet is empty if it equals (∅,∅,∅).

Our main result in this section states that to check whether
a GCQ Q is free-connex acyclic, it suffices to start from
H(Q) and do a two-stage reduction: the first from H(Q)

until a normal form I↓ is reached, and the second from the
residual of I↓, until another normal form J is reached.5

Theorem 4 Let Q be a GCQ. Assume H(Q) �∗ I ↓ and
Ĩ �∗ J↓. Then, the following hold.

1. Q is acyclic if, and only if, J is the empty triplet.

5 Note that because we set out(I) = ∅ on the residual, new variables
may become isolated and therefore more reductions steps may be pos-
sible on the normal form of I.

2. Q is free-connex acyclic if, and only if, J is the empty
triplet and var(hyp(I)) = out(Q).

3. For every GJT T of Q and every connex subset N of T ,
it holds that var(hyp(I)) ⊆ var(N ).

We devote Sect. 5.1.3 to the proof of this theorem.

Example 5 Figure 5 illustrates the two-stage sequence of
reductions starting from H(Q) with Q the GCQ of Exam-
ple 3. Note that H(Q) = H1 and H5 is the residual of H4.
Because we end with the empty triplet Q is acyclic, but it is
not free-connex since out(Q) � var(H4).

Theorem 4 gives us a decision procedure for check-
ing free-connex acyclicity of GCQ Q. From its proof in
Sect. 5.1.3, we can actually derive an algorithm for construct-
ing a GJT pair for Q. At its essence, this algorithm starts with
the set of atoms appearing in Q and subsequently uses the
sequence of reduction steps from Theorem 4 to construct a
GJT from it, at the same time checking free-connex acyclic-
ity. Every reduction step causes new nodes to be added to the
partial GJT constructed so far. We will refer to such partial
GJTs as generalized join forests (GJF).

Definition 11 [GJF ] A generalized join forest is a set F of
pairwise disjoint GJTs s.t. for distinct trees T1, T2 ∈ F , we
have var(T1) ∩ var(T2) = var(n1) ∩ var(n2) where n1 and
n2 are the roots of T1 and T2.

Every GJF encodes a hypergraph as follows.

Definition 12 The hypergraph hyp(F) associated with GJF
F is the hypergraph that has one hyperedge for every
nonempty root node in F ,
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hyp(F) = {var(n) | n root node in F, var(n) �= ∅}.

The GJT construction algorithm does not manipulate
hypergraph triplets directly. Instead, it manipulates GJF
triplets. A GJF triplet is defined like a hypergraph triplet,
except that it has a GJF instead of a hypergraph.

Definition 13 A GJF triplet is a triple F = (forest(F),

out(F),�F) with forest(F) a GJF, out(F) a hyperedge, and
�F a set of predicates. Every GJF triplet F induces a hyper-
graph tripletH(F) = (hyp(forest(F)), out(F),�F).

The algorithm for constructing aGJT pair for a givenGCQ
Q is now shown in Algorithm 2. It starts in line 2 by initial-
izing the GJF triplet F to F = (forest(Q), out(Q), pred(Q)).
Here, forest(Q) is the GJF obtained by creating, for every
atom r(x) that occurs k > 0 times in Q, k corresponding
leaf nodes labeled by r(x). In lines 3–4, Algorithm 2 then
performs the first phase of reduction steps of Theorem 4. To
this end, it checks whether a reduction operation is applica-
ble toH(F) and, if so, enacts this operation by modifying F

as follows.

– (ISO) If the reduction operation on the hypergraph triplet
H(F) is to remove a nonempty subset X of isolated vari-
ables from hyperedge e, then F is modified as follows.
Let n1, . . . , nk be all the root nodes in forest(F) that are
labeled by e. Merge the corresponding trees into one tree
by creating a new node n with var(n) = e and attaching
n1, . . . , nk as children to it with pred(n → ni ) = ∅ for
1 ≤ i ≤ k. Then, enact the removal of X by creating a
new node p with var(p) = e\X and attaching n as child
to it with pred(p → n) = ∅.

– (CSE) If the reduction operation onH(F) is to remove a
hyperedge e because it is a conditional subset of another
hyperedge 
, thenF ismodified as follows.Letn1, . . . , nk
(resp. m1, . . . ,ml ) be all the root nodes in forest(F)

that are labeled by e (resp. 
) and let T1, . . . , Tk (resp.
U1, . . . ,Ul ) be their corresponding trees. Similar to the
previous case, merge the Ti (resp. Uj ) into a single tree
with new root n labeled by e (resp. m labeled by 
).
Then, enact the removal of e by creating a new node p
with var(p) = 
 and attaching n and m as children with
pred(p → n) = {θ ∈ pred(F) | var(θ) ∩ (e\
) �= ∅}
and pred(p → m) = ∅.

– (FLT) If the reduction operation on H(F) is to remove
nonempty set of predicates � because there exists a
hyperedge e with var(�) ⊆ e, then F is modified as fol-
lows. Let n1, . . . , nk be all the root nodes in forest(F) that
are labeled by e. Merge the corresponding trees into one
tree by creating a new root n labeled by e and attaching
n1, . . . , nk as children with pred(n → ni ) = �. Enact
the removal of � by removing all θ ∈ � from �(F).

Algorithm 2 Compute a GJT pair
1: Input: A GCQ Q.

2: F ← (forest(Q), out(Q), pred(Q))

3: while a reduction step is applicable to H(F) do
4: enact the reduction on F

5: X ← set of all root nodes in F

6: set pred(F) := ∅
7: while a reduction step is applicable to H(F) do
8: enact the reduction on F

9: if H(F) is not the empty triplet then
10: error “Q is not acyclic”
11: else
12: T ← tree obtained by connecting all root nodes of F’s forest to

a new root, labeled by ∅
13: N ← all nodes in X and their ancestors in T
14: return (T , N )

It is straightforward to check that these modifications of
the forest triplet F faithfully enact the corresponding opera-
tions on H(F), in the following sense.

Lemma 4 Let F be a forest triplet and assume H(F) � I.
Let G be the result of enacting this reduction operation on
F. Then G is a valid forest triplet andH(G) = I.

We continue the explanation of Algorithm 2. In line 5,
Algorithm 2 records the set of root nodes obtained after the
first stage of reductions. It then sets out(F) = ∅ in line 6 and
continues with the second stage of reductions in lines 7, 8. It
then employs Theorem 4 to check acyclicity of Q. If Q is not
acyclic, it reports this in lines 9, 10. If Q is acyclic, then we
know by Theorem 4 thatH(F) has become the empty triplet.
Note thatH(F) can be empty only if all the roots of F’s join
forest are labeled by the empty set of variables. As such, we
can transform this forest into a join tree T by linking all of
these roots to a new unique root, also labeled ∅. This is done
in line 12. In line 13, the set of nodes N is computed and
consists of all nodes identified at the end of the first stage
(line 5) plus all of their parents in T .

We will prove in Sect. 5.1.3 that Algorithm 2 is correct,
in the following sense.

Theorem 5 Given a GCQ Q, Algorithm 2 reports an error
if Q is cyclic. Otherwise, it returns a GJT pair (T , N ) with
T a GJT for Q. If Q is free-connex acyclic, then (T , N ) is
GJT pair for Q. Otherwise, out(Q) � var(N ), but var(N ) is
minimal in the sense that for every other GJT pair (T ′, N ′)
with T ′ a GJT for Q, we have var(N ) ⊆ var(N ′).

It is straightforward to check that this algorithm runs in
polynomial time in the size of Q.

Example 6 In Fig. 6, we show a GJT T and use this GJT to
illustrate a number ofGJFs F1, . . . , F10 in the followingway:
let level 1 be the leaf nodes, level 2 the parents of the leaves,
and so on. Then, we take GJF Fi to be the set of all trees
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F1, {θ1, θ2}

F2, {θ1, θ2}

F3, {θ1, θ2}

F4, {θ2}

F6, •

F7, •

F8, •

F9, •

F10, ∅

F11, ∅ {∅}
(T )

{w, x}

•

•

{w, y}

•

•

•

•

r5(w, y, z)

x < y

{w, x}

{u, w, x}

•

•

•

•

•

r3(u, w, x)

•

{u}

{t, u}

{s, t, u}

{s, t, u}

r1(s, t, u) r2(t, u)

•

r4(s, v)

t < v

Fig. 6 GJT Construction by GYO reduction

rooted at nodes at level i , for 1 ≤ i ≤ 10, and with each level
i , wemention the set of remaining predicates θi for 1 ≤ i ≤ k
where k is the number of predicates in Q. Nodes (resp. pred-
icates with each Fi ) labeled by “•” in Fig. 6 indicates that the
node (and hence tree, resp. predicates) was already present
in Fi−1 and did not change. These should hence not be inter-
preted as new nodes (resp. predicates changed). With this
coding of forests, it is easy to see that for all 1 ≤ i ≤ 9,
Fi = hyp(Hi ) with Hi illustrated in Fig. 5 (note here that
the hypergraph of residual ofH4, i.e.,H5 is the same asH4,
hence we do not show the corresponding F5). Furthermore,
pred(Fi ) = pred(Q)\pred(Hi )with Q theGCQfromExam-
ple 3. As such, the tree illustrates the sequence of GJF triplets
that is obtained by enacting the hypergraph reductions illus-
trated in Fig. 5. For example, letF1 = (F1, out(Q), pred(Q).
After enacting the removal of hyperedge {t, u} from H1 to
obtainH2, we obtain F2 = (F2, out(Q), pred(Q)). Here, F2
is obtained by merging the single-node trees (i.e., labeled by
the atoms in Q) {s, t, u} and {t, u} in to a single tree with root
{s, t, u}. The shaded area illustrate the nodes in the connex
subset N computed by Algorithm 2.

We stress that Algorithm 2 is nondeterministic in the sense
that the pair (T , N ) returned depends on the order in which
the reduction operations are performed.

5.1.3 Correctness

To prove Theorems 4 and 5 we show some propositions.

Proposition 8 Let Q be a GCQ. Assume H(Q) �∗ I↓ and
Ĩ �∗ J ↓. If J is the empty triplet, then, when run on Q,

Algorithm 2 returns a pair (T , N ) s.t. T is a GJT for Q and
var(N ) = var(hyp(I)).

Proof Assume that J is the empty triplet. Algorithm 2 starts
in line 3 by initializing F = (forest(Q), out(Q), pred(Q)).
Clearly, H(F) = H(Q) at this point. Algorithm 2 subse-
quently modifies F throughout its execution. Let H denote
the initial version of F; let I denote the version of F when
executing line 5; let Ĩ denote the version of F after execut-
ing line 6 and let J denote the version of F when executing
line 9. By repeated application of Lemma 4, we know that
H(Q) = H(H) �∗ H(I). Furthermore, H(I) is in normal
form. Since alsoH(Q) �∗ I↓ and normal forms are unique,
H(I) = I. Therefore, H(Ĩ) = Ĩ. Again by repeated appli-
cation of Lemma 4, we know that Ĩ = H(Ĩ) �∗ H(J).
Moreover,H(J) is in normal form. Since also Ĩ �∗ J↓ and
normal forms are unique, H(J) = J . As J is empty, we
will execute lines 12–14. Since J is the empty hypergraph
triplet, every root of every tree in forest(J) must be labeled
by ∅. By definition of join forests, no two distinct trees in
forest(J) hence share variables. As such, the tree T obtained
in line 12 by linking all of these roots to a new unique root,
also labeled ∅, is a valid GJT.

We claim that T is a GJT for Q. Indeed, observe that
at(T ) = at(Q) and the number of times that an atom occurs
in Q equals the number of times that it occurs as a label in
T . This is because initially forest(H) = forest(Q) and by
enacting reduction steps, we never remove nor add nodes
labeled by atoms. Furthermore pred(T ) = pred(Q). This
is because initially pred(H) = pred(Q) yet �J is empty.
This means that, for every θ ∈ pred(Q), there was some
reduction step that removed θ from the set of predicates of
the current GJF triplet F. However, when enacting reduction
steps we only remove predicates after we have added them to
forest(F). Therefore, every predicate in pred(Q) must occur
in T . Conversely, during enactment of reduction steps, we
never add predicates to forest(F) that are not in �F, so all
predicates in T are also in pred(Q). Thus, T is a GJT for Q.

It remains to show that N is a connex subset of T and
var(N ) = var(hyp(I)). To this end, let X be the set of all root
nodes of forest(I), as computed in Line 5. Since J is obtained
from Ĩ by a sequence of reduction enactments, and since such
enactments only add new nodes and never delete them, X is a
subset of nodes of forest(J) and therefore also of T . As com-
puted in line 5, N consists of X and all ancestors of nodes of
X in T . Then, N is a connex subset of T by definition. Fur-
thermore, since H(I) = I, hyp(forest(I)) = hyp(I). Thus,
var(X) = var(hyp(I)) = var(hyp(I)). Hence, to establish
that var(N ) = var(hyp(I)), it suffices to show that var(X) =
var(N ). Since X ⊆ N the inclusion var(X) ⊆ var(N ) is
immediate. To also establish var(N ) ⊆ var(X), let n be
an arbitrary but fixed node in N . If n ∈ X , then clearly
var(n) ⊆ var(X). If n /∈ X , then n was created during the
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sequence of reduction enactments in that transform Ĩ into J.
Now note that, whenever a new node m is created during a
reduction enactment on a GJF G, there exists a root node of
forest(G) that contains all variables of m. From this obser-
vation and the fact that n was created during a sequence of
reduction enactments that start from Ĩ, it follows that there is
some root node r in Ĩwith var(n) ⊆ var(r). Then, because X
contains all root nodes of Ĩ, also var(n) ⊆ var(X). Therefore,
var(N ) = var(X) = var(hyp(I)).

Corollary 1 (Soundness) Let Q be a GCQ and assume that
H(Q) �∗ I↓ and Ĩ �∗ J↓. Then:

1. If J is the empty triplet then Q is acyclic.
2. If J is the empty triplet and var(hyp(I)) = out(Q),

then Q is free-connex acyclic.

To also show completeness, we will interpret a GJT T
for a GCQ Q as a “parse tree” that specifies the two-stage
sequence of reduction steps that can be done on H(Q) to
reach the empty triplet. Not all GJTs will allows us to do so
easily, however, and we will, therefore, restrict our attention
to those GJTs that are canonical.

Definition 14 (Canonical) A GJT T is canonical if:

1. its root is labeled by ∅;
2. every leaf node n is the child of an internal nodem with

var(n) = var(m);
3. for all internal nodes n and m with n �= m, we have

var(n) �= var(m); and
4. for every edge m → n and all θ ∈ pred(m → n), we

have var(θ) ∩ (var(n)\var(m)) �= ∅.

denotedH(T , N , z) to be the hypergraph triplet (hyp(T , N ),

z, pred(T , N )).
The following technical Lemma shows that we can use

canonical pairs as “parse” trees to derive a sequence of reduc-
tion steps. Its proof can be found in “Appendix B”.

Lemma 5 Let (T , N1) and (T , N2) be canonical GJT pairs
with N2 ⊆ N1. Then,H(T , N1, z) �∗ H(T , N2, z) for every
z ⊆ var(N2).

We require the following additional lemma, proven in
“Appendix B”:

Lemma 6 Let H1 and H2 be two hypergraphs such that for
all e ∈ H2 there exists 
 ∈ H1 such that e ⊆ 
. Then,
(H1 ∪ H2, z,�) �∗ (H1, z,�), for every hyperedge z and
set of predicates �.

We these tools in hand we can prove completeness.

Proposition 10 Let Q be aGCQ, let T be aGJT for Q and let
N be a connex subset of T with out(Q) ⊆ var(N ). Assume
that H(Q) �∗ I↓ and Ĩ �∗ J ↓. Then, J is the empty
triplet and var(hyp(I)) ⊆ var(N ).

Proof By Proposition 9, wemay assume without loss of gen-
erality that (T , N ) is a canonical GJT pair. Let A be the set of
all of T ’s interior nodes. Clearly, A is a connex subset of T
and var(A) ⊆ var(Q). Furthermore, because for every atom
r(x) in Q there is a leaf node l in T labeled by r(x) (as T
is a GJT for Q), which has a parent interior node nl labeled
x (because T is canonical), also var(Q) ⊆ var(A). There-
fore, var(A) = var(Q). By the same reasoning, hyp(Q) ⊆
hyp(T , A). Therefore, hyp(T , A) = hyp(T , A) ∪ hyp(Q).
Furthermore, because every interior node in a GJT has a
guard descendant, and the leaves of T are all labeled by
atoms in Q, we know that for every node n ∈ A there exists
some hyperedge f ∈ hyp(Q) such that var(n) ⊆ var( f ).
In addition, we claim that pred(T , A) = pred(Q). Indeed,
pred(T , A) ⊆ pred(Q) since T is a GJT for Q. The con-
verse inclusion follows from canonicality properties (2) and
(4): because leaf nodes in a canonical GJT have a parent
labeled by the same hyperedge, there can be no predicates
on edges to leaf nodes in T . Thus, all predicates in T are
on edges between interior nodes, i.e., in pred(T , A). Then,
because every predicate in Q appears somewhere in T (since
T is a GJT for Q), we have pred(Q) ⊆ pred(T , A). From all
of the observations made so far and Lemma 6, we obtain:

H(T , A, out(Q))

= (hyp(T , A), out(Q), pred(T , A))

= (hyp(T , A) ∪ hyp(Q), out(Q), pred(T , A))

�∗ (hyp(Q), out(Q), pred(T , A))

= (hyp(Q), out(Q), pred(Q)) = H(Q)

A connex subset N of T is canonical if every node in it is an 
interior node of T . A GJT pair (T , N ) is canonical if both T 
and N are canonical.

The following proposition, proven in “Appendix B”, 
shows that we may restrict our attention to canonical GJT 
pairs without loss of generality.

Proposition 9 For every GJT pair, there exists an equivalent 
canonical pair.

We also require the following auxiliary notions and 
insights. First, if (T , N ) is a GJT pair, then define the hyper-
graph associated with (T , N ), denoted hyp(T , N ), to be the  
hypergraph formed by node labels in N ,

hyp(T , N ) = {varT (n) | n ∈ N , varT (n) �= ∅}.

Further, define pred(T , N ) to be the set of all predicates 
occurring on edges between nodes in N . For a hyper-edge z, 
define the hypergraph triplet of (T , N ) w.r.t. z,

Final edited form was published in "The VLDB Journal". 29, S. 619–653. ISSN: 0949-877X. 
https://doi.org/10.1007/s00778-019-00590-9

18 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden



Thus H(T , A, out(Q)) �∗ H(Q) �∗ I. Furthermore,
because (T , N ) is also canonical with N ⊆ A and out(Q) ⊆
var(N ), we have H(T , A, out(Q)) �∗ H(T , N , out(Q))

by Lemma 5. Then, because reduction is confluent (Proposi-
tion 7),we obtain thatH(T , N , out(Q)) andI can be reduced
to the same triplet. Because I is in normal form, neces-
sarily H(T , N , out(Q)) �∗ I. Since reduction steps can
only remove nodes and hyperedges (and never add them),
var(hyp(I)) ⊆ var(N ).

It remains to show that J is the empty triplet. Hereto,
first verify the following. For any hypergraph triplets U
and V , if U �∗ V then also Ũ �∗ Ṽ . From this,
H(T , A, out(Q)) �∗ I, and the fact that H(T , A,∅) is
the residual of H(T , A, out(Q)), we conclude H(T , A,∅)

�∗ Ĩ. Then, because Ĩ �∗ J , it follows that H(T , A,∅)

�∗ J . Let r be T ’s root node, which is labeled by ∅
since T in canonical. Then, {r} is a connex subset of T . By
Lemma 5, H(T , A,∅) �∗ H(T , {r},∅). Now observe that
the hypergraph ofH(T , {r},∅) is empty and its predicate set
is also empty. Therefore, H(T , {r},∅) is the empty hyper-
graph triplet. In particular, it is in normal form. But, since J
is also in normal form and normal forms are unique, J must
also be the empty triplet.

Corollary 2 (Completeness) Let Q be a GCQ. Assume that
H(Q) �∗ I↓ and Ĩ �∗ J↓.

1. If Q is acyclic, then J is the empty triplet.
2. If Q is free-connex acyclic, then J is the empty triplet

and var(hyp(I)) = out(Q).
3. For every GJT T of Q and every connex subset N of T

it holds that var(hyp(I)) ⊆ var(N ).

Proof (1) Since Q is acyclic, there exists a GJT T for Q.
Let N be the set of all of T ’s nodes. Then, N is a
connex subset of T and out(Q) ⊆ var(N ) = var(Q).
The result then follows from Proposition 10.

(2) Since Q is free-connex acyclic, there exists a GJT pair
(T , N ) compatible with Q. In particular, var(N ) =
out(Q). By Proposition 10, J is the empty triplet,
and var(hyp(I)) ⊆ var(N ) = out(Q). It remains to
show out(Q) ⊆ var(hyp(I)). First, verify the follow-
ing: A reduction step on a hypergraph triplet H never
removes any variable in out(H) from hyp(H), nor does
it modify out(H). Then, since out(H(Q)) = out(Q) ⊆
var(Q) ⊆ var(hyp(H(Q)))), and H(Q) �∗ I, we
obtain out(Q) ⊆ var(hyp(I)).

(3) Follows directly from Proposition 10.

Theorem 4 follows directly fromCorollaries 1 and 2. The-
orem 5 follows from Theorem 4 and Proposition 8.

5.2 Transforming GJT pairs to query plans

Let us call a GJT pair (T , N ) binary if T is binary and sibling
closed if N is sibling closed. A query plan is hence a binary
and sibling-cloded GJT pair. In this section, we prove the
following result.

Proposition 11 Every GJT pair can be transformed in poly-
nomial time into an equivalent plan.

We prove Proposition 11 in two steps. First, we show that
any pair (T , N ) can be transformed in polynomial time into
an equivalent sibling-closed pair. Next, we show that any
sibling-closed GJT pair (T , N ) can be converted in poly-
nomial time into an equivalent plan. Proposition 11 hence
follows by composing these two transformations. Through-
out this section, let chT (n) denote the set of children of n in
T .

Sibling-closed transformationWe say that n ∈ T is a violator
node in a GJT pair (T , N ) if n ∈ N and some, but not all
children of n are in N . A violator is of type 1 if some node in
chT (n)∩ N is a guard of n. It is of type 2 otherwise. We now
define two operations on (T , N ) that remove violators of type
1 and type 2, respectively. The sibling-closed transformation
is then obtained by repeatedly applying these operators until
all violators are removed.

The first operator is applicable when n is a type 1 violator.
It returns the pair (T ′, N ′) obtained as follows:

– Since n is a type 1 violator, some g ∈ chT (n) ∩ N is a
child guard of n (i.e., var(n) ⊆ var(g)).

– Because every node has a guard, there is some leaf node
l that is a descendant guard of g (i.e., var(g) ⊆ var(l)).
Possibly, l is g itself.

– Now create a new node p between node l and its par-
ent with label var(p) = var(l). Since l is a descendant
guard of n and g, p becomes a descendant guard of n
and g as well. Detach all nodes in chT (n)\N from n
and attach them as children to p, preserving their edge
labels. This effectivelymoves all subtrees rooted at nodes
in chT (n)\N from n to p. Denote by T ′ the final result.

– If l was not in N , then N ′ = N . Otherwise, N ′ = N\{l}∪
{p}.

We write (T , N )
1,n−→ (T ′, N ′) to indicate that (T ′, N ′) can

be obtained by applying the above-described operation on
node n.

Example 7 Consider the GJT pair (T , N ) from Fig. 7 where
N is indicated by the nodes in the shaded area. Let us denote
the root node by n and its guard child with label {y, z, w}
by g. The node l = h(y, z, w, t) is a descendant guard of
g. Since s(y, z,m) is not in N , n is violator of type 1. After
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Fig. 7 Illustration of the sibling-closed transform: removal of type-1
violator. The connex sets N and N ′ are indicated by the shaded areas

applying the operation 1 for the choice of guard node g and
descendant guard node l, (T ′, N ′) shows the resulting valid
sibling-closed GJT.

Lemma 7 Let n be a violator of type 1 in (T , N ) and assume

(T , N )
1,n−→ (T ′, N ′). Then, (T ′, N ′) is a GJT pair and it is

equivalent to (T , N ). Moreover, the number of violators in
(T ′, N ′) is strictly smaller than the number of violators in
(T , N ).

We prove this lemma in “Appendix C”. The second opera-
tor is applicable when n is a type 2 violator. When applied to
n in (T , N ), it returns the pair (T ′, N ′) obtained as follows:

– Since n is a type 2 violator, no node in chT (n) ∩ N is a
guard of n. Since every node has a guard, there is some
g ∈ chT (n)\N which is a guard of n.

– Create a new child p of n with label var(p) = var(n);
detach all nodes in chT (n)\N (including g) from N , and
add them as children of p, preserving their edge labels.
This moves all subtrees rooted at nodes in chT (n)\N
from n to p. Denote by T ′ the final result.

– Set N ′ = N ∪ {p}.

{y, z, w}
(T, N)

h(y, z, w, t) r(x, y) s(y, z, m)

m < w

{y, z, w}
(T , N )

{y, z, w}

h(y, z, w, t) s(y, z, m)

m < w

r(x, y)

Fig. 8 Illustration of the sibling-closed transform: removal of type-2
violator. The connex sets N and N ′ are indicated by the shaded areas
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Fig. 9 Binarizing a k-ary node n

Proof The two operations introduced above remove viola-
tors, one at a time. By repeatedly applying these operations
until no violator remains we obtain an equivalent pair with-
out violators, whichmust hence be sibling closed. Since each
operator can clearly be executed in polynomial time and the
number of times that we must apply an operator is bounded
by the number of nodes in the GJT pair, the removal takes
polynomial time.

Binary transformation Next, we show how to transform a
sibling-closed pair (T , N ) into an equivalent binary and
sibling-closed pair (T ′, N ′). The idea here is to “binarize”
each node n with k > 2 children as shown in Fig. 9. There,
we assume without loss of generality that c1 is a guard child
of n. The binarization introduces k − 2 new intermediate
nodes m1, . . . ,mk−2, all with var(mi ) = var(n). Note that,
since c1 is a guard of n and var(mi ) = var(n), it is straight-
forward to see that c1 will be a guard of m1, which will be a
guard ofm2, which will be a guard ofm3, and so on. Finally,
mk−2 will be a guard of n. The connex set N is updated as
follows. If none of n’s children are in N , i.e., n is a frontier
node, set N ′ = N . Otherwise, since N is sibling closed, all
children of n are in N , and we set N ′ = N∪{m1, . . . ,mk−2}.
Clearly, N ′ remains a sibling-closed connex subset of T ′ and
var(N ′) = var(N ). We may hence conclude:

Lemma 9 By binarizing a single node in a sibling-closed
GJT pair (T , N ) as shown in Fig. 9, we obtain an equivalent
GJT pair (T ′, N ′) that has strictly fewer nonbinary nodes
than (T , N ).

We write (T , N ) 2−→,n 
(T ′, N ′) to indicate that (T ′, N ′) was

obtained by applying this operation on n.

Example 8 Consider the GJT pair (T , N ) in Fig. 8. Let us 
denote the root node by n. Since its guard child h(y, z, w, t) 
is not in N , n is violator of type 2. After applying operation 2 
on n, (T ′, N ′) shows the resulting valid sibling-closed GJT.

Lemma 8 Let n be a violator of type 2 in (T , N ) and assume

(T , N ) 2−→,n 
(T ′, N ′). Then, (T ′, N ′) is a GJT pair and it is 

equivalent to (T , N ). Moreover, the number of violators in 
(T ′, N ′) is strictly smaller than the number of violators in
(T , N ).

The proof can be found in “Appendix C”.

Proposition 12 Every GJT pair can be transformed in poly-
nomial time into an equivalent sibling-closed pair.
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Binarizing a single node is a polynomial-time operation.
Then, by iteratively binarizing nonbinary nodes until all
nodes have become binary we hence obtain:

Proposition 13 Every sibling-closed GJT pair can be trans-
formed in polynomial time into an equivalent plan.

6 Implementation

We have implemented IEDyn, the instantiation of GDyn
to setting where all θ -joins are inequality joins described
in Sect. 4.4, as a query compiler that generates executable
code in the Scala programming language. The generated
code instantiates a (T , N )-rep and defines trigger functions
that maintain the (T , N )-rep under updates. Off-the-shelf
Scala collection libraries are used to implement the required
indexes, andwe take care to share the data structures between
the join and enumeration indexes whenever possible. An
important optimization used by our implementation lies in
observing that, for the nodes in the connex set N that are not
in the frontier of N , we never use the multiplicities stored
in ρn during enumeration. As such, we also do not need to
compute thesemultiplicities during update processing.While
our theoretical framework supports batch updates, our imple-
mentation is currently limited to single-tuple updates.

Our implementation supports two modes of operation:
push based and pull based. In both modes, the system
maintains the T -rep under updates. In the push-based mode
the system generates, on its output stream, the delta result
�Q(db, u) after each single-tuple update u. To do so, it uses
a modified version of enumeration (Algorithm 1) that we call
delta enumeration. Similarly to howAlgorithm 1 enumerates
Q(db), delta enumeration enumerates �Q(db, u) with con-
stant delay (if Q has at most one inequality per pair of atoms)
resp. logarithmic delay (otherwise). To do so, it uses both (1)
the T -reduct GMRs ρn and (2) the delta GMRs �ρn that are
computed by Algorithm 1 when processing u. In this case,
however, one also needs to index the �ρn similarly to ρn .
In the pull-based mode, in contrast, the system only main-
tains the (T , N )-rep under updates but does not generate any
output stream. Nevertheless, at any time a user can enum
(Algorithm 1) to obtain the current output.

We have described in Sect. 4 how IEDyn can process free-
connex acyclic GCQs under updates. It should be noted that
our implementation also supports the processing of general
acyclic GCQs that are not necessarily free-connex. This is
done using the following simple strategy. Let Q be acyclic
but not free-connex. First, compute a free-connex acyclic
approximation QF of Q. QF can always be obtained from
Q by extending the set of output variables of Q. In the worst
case, we need to add all variables, and QF becomes the full
join underlyingQ. Then, use IEDyn tomaintain a (T , N )-rep

for QF .When operating in push-basedmode, for each update
u, we use the (T , N )-rep to delta-enumerate �QF (db, u)
and project each resulting tuple to materialize �Q(db, u)
in an array. Subsequently, we copy this array to the output.
Note that the materialization of �Q(db, u) here is necessary
since the delta enumeration can produce duplicate tuples after
projection. When operating in pull-based mode, we materi-
alize Q(db) in an array and use delta enumeration of QF

to maintain the array under updates. Of course, under this
strategy, we require �(|Q(db)|) space in the worst case, just
like (H)IVM would, but we avoid the (partial) materializa-
tion of delta queries. Note the distinction between the two
modes: in push-based mode �Q(db, u) is materialized (and
discarded once the output is generated), while in pull-based
mode Q(db) is materialized upon requests.

Our query compiler computes query plans using the algo-
rithm of Sect. 5. Whenever we have the choice between
enacting multiple reduction steps, we first enact using (ISO),
then using (FLT), and finally using (CSE). This corresponds
to the usual heuristics of pushing down projections and selec-
tions. If multiple applications of (CSE) are possible, we
prefer those where the hyperedge to be eliminated has no
extended variables. This corresponds to pushing down equi-
semijoins so that inequality semijoins are hopefully executed
over GMRs of reduced cardinality.

7 Experimental evaluation

In this section, we experimentally compare IEDyn against
competing state-of-the-art HIVM and CER systems.

Queries Because the effectiveness of Dyn for equijoin
queries has already been documented [25], we focus on
inequality join queries during our experimental analysis.
Since there is no industry-strength established benchmark
suite for such queries, we perform a systematic and in-depth
exploration of the design space of inequality joins of up to
three relations. Concretely,we evaluate IEDyn on the queries
listed in Table 1. Here, Q1–Q7 are full join queries (i.e.,
queries without projections). Among these, Q1, Q3 and Q4

contain only inequality join predicates, while Q2, Q5–Q7

additionally contain at least one equality join. Queries Q1

and Q2 are binary joins, while Q3–Q6 are multi-way join
queries over three relations. The inequality predicates in Q3

are unrelated (a < d ∧ e < g) while they form a chain
(a < d < g) in Q4–Q7. Note that Q5–Q7 are variants of
Q4 with equijoins added. We have similarly experimented
with variants of Q3 with equijoins added, but the trends are
similar to what we obtain for Q4–Q7. Collectively, Q3–Q7

(and the omitted variants) cover all possible ways in which
three relations can be inequality joined in an acyclic manner.
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Table 1 Benchmark queries # Query expression Features

< = π FC

Q1 R(a, b, c), S(d, e, f ) | a < d � �
Q2 R(a, b, c, k), S(d, e, f , k) | a < d � � �
Q3 R(a, b, c), S(d, e, f ), T (g, h, i) | a < d ∧ e < g � �
Q4 R(a, b, c), S(d, e, f ), T (g, h, i) | a < d ∧ d < g � �
Q5 R(a, b, c, k), S(d, e, f , k), T (g, h, i) | a < d ∧ d < g � � �
Q6 R(a, b, c), S(d, e, f , k), T (g, h, i, k) | a < d ∧ d < g � � �
Q7 R(a, b, c, k), S(d, e, f , k), T (g, h, i, k) | a < d ∧ d < g � � �
Q8 πa,b,d,e, f ,g,h(Q4) � � �
Q9 πa,d,e, f ,g,h,k(Q5) � � � �
Q10 πd,e, f ,g,h,k(Q6) � � � �
Q11 πa,b,d,e,g,h,k(Q7) � � � �
Q12 πb,c,e, f ,h,i (Q4) � �
Q13 πb,c,e, f ,h,i (Q5) � � �
Q14 πb,c,e, f ,h,i (Q6) � � �
Q15 πb,c,e, f ,h,i (Q7) � � �

FC Free-connex acyclic

Queries Q8–Q15 project over the result of queries Q4–
Q7. Among these, Q8–Q11 are free-connex acyclic while
Q12–Q15 are acyclic but not free-connex.

UpdatesWe evaluate on streams of synthetic updates where
each update consists of a single-tuple insertion. We focus
on the setting where updates are single-tuple insertions for
the following reasons. First, single-tuple updates stress-test
dynamic query processing since the query results must be
kept up-to-date after each and every single tuple, in contrast
to the setting for batch updates, where results can be out-
of-sync for the duration of the batch. Second, since batch
updates can always be processed by executing all updates
in the batch individually (using the single-tuple update trig-
gers), performance measurements for single-tuple updates
yield an upper bound for the performance of batch updates.
Third, while it is true that, in principle, the processing of
batch updates can be done faster than that of single tuple
updates (e.g., by amortizing index access and data struc-
ture updates over the entire batch instead of per tuple), both
our implementation and most of the competing systems that
we describe below do not implement such optimization.6 As
such, we restrict attention to single-tuple updates. We focus
on insertions because this is supported by all of the systems
that we consider whereas explicit deletions are not. While
we have experimented with mixed (insert and delete) update
streams for IEDyn, performance is similar to that for insert-
only streams. This is expected, since IEDyn treats insertions
and deletions uniformly.

The database is always empty when we start processing
the update stream. We synthetically generate two kinds of
update streams: randomly ordered and temporally ordered
update streams. In randomly ordered update streams, inser-
tions can occur in any order. In contrast, temporally ordered
update streams guarantee that any attribute that participates
in an inequality in the query has a larger value than the same
attribute in any of the previously inserted tuples. Randomly
ordered update streams are useful for comparing against sys-
tems that allow processing of out-of-order tuples; temporally
ordered update streams are useful for comparison against
systems that assume events arrive always with increasing
timestamp values. Examples of systems that process tempo-
rally ordered streams are automaton-based CER systems.

Competitors We compare IEDyn with the following state-
of-the-art HIVM and CER engines: DBToaster (DBT) [30],
Esper (E) [19], SASE (SE) [3,46,49], Tesla (T) [14,15], and
ZStream (Z) [31]. The competing systems differ in theirmode
of operation (push based vs pull based, cf. Sect. 6) and some
of them only support temporally ordered streams. The capa-
bilities of each system is summarized inTable 2 anddiscussed
in detail in “Appendix D”.

Setup Our experiments are run on an 8-core 3.07 GHz
machine runningUbuntuwithGNU/Linux3.13.0-57-generic.
To compile the different systems or generated trigger pro-
grams, we have used GCC version 4.8.2, Java 1.8.0_101,
and Scala version 2.12.4. Each query is evaluated ten times
to measure update processing delay and two times to mea-
sure memory footprint. We present the average over those
runs. Each time a query is evaluated, 20 GB of main memory
are freshly allocated to the program. To measure the memory

6 In the sense that batch updates are only supported by treating each 
update tuple in the batch individually.
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Table 2 Competing systems capabilities overview

Mode Stream Unsupported queries

DBT Pull Random

E Push Random

SE Push Ordered Q3, Q5–Q15

T Push Ordered Q3

Z Push Ordered Q8–Q15

footprint for Scala/Java-based systems, we invoke the JVM
system calls every 10 updates and consider the maximum
value. For C/C++-based systems we use the GNU/Linux
time command to measure memory usage. Experiments that
measure memory footprint are always run separately of the
experiments that measure processing time.

7.1 Results

Wewill compare using total update processing time,memory
footprint, and enumeration delay as metrics. Here, the total
update processing time is the time required to process the
entire update stream, where updates are fed into the systems
as fast as they can process them. This hence measures the
maximum system performance. While measuring the update
processing time, we take care to compare fairlywith the com-
peting systems by consistently running IEDyn in the same
operation mode as the one supported by the competitor. Con-
cretely, for push-based systems, we report the time required
to process the entire update stream, while generating the
delta result �Q(db, u) after each update (cf. Sect. 6). When
comparing against a pull-based system, the measured time
includes only processing the entire update stream. For these
systems, we later separately report the enumeration delay,
i.e., the speedwithwhich the result can be generated from the
underlying representation of the output (a T -representation
in the case of IEDyn). SASE, ZStream, and Tesla only sup-
port temporally ordered streams and hence we only compare
with them on such streams. While DBToaster and Esper
support both random and temporally ordered streams, we
only report comparisons using randomly ordered streams.
We have also looked at temporally ordered streams for these
systems, but their throughput is similar (fluctuating between
3% and 12%) while that of IEDyn significantly improves
(fluctuating between 35% and 50%) because insertions to
sorted lists become constant instead of logarithmic. We omit
these experiments due to lack of space.

Some executions of the competing systems failed either
because they required more than 20GB of main memory or
they took more than 1500 s. If an execution requires more
than 20GB, we report the processing time elapsed until the
exception was raised. If an execution is still running after

1500 s, we stop it and report its maximum memory usage
while running.

Full join queriesWe first analyze the performance of the full
join queries Q1–Q7 in the setting where the join selectivity
is relatively large. Here, the selectivity of R��S is defined
as |R��S|

|R|×|S| . High-selectivity joins are common in CER sce-
narios. We refer to Table 3(Left) for output sizes. Figure 10
compares the update processing time of IEDyn against the
competing systems for full join queries Q1–Q7, grouped per
system capability (push/pull, random/temporal). We observe
that all of the competing systems have large processing times
even for very small update stream sizes, indicating poor scal-
ability. In particular, DBT runs out of memory on streams
of sizes≥18k for query Q5, and on streams of size≥15k for
query Q6. Z runs out of memory for Q5 and Q6 on streams
of size 21k. Similarly, T took more than 1500 s for Q5 on
streamsof size≥12k, forQ6 on streamsof size≥18k, and for
Q7 on streams of size ≥9k and was aborted at that time. All
of these behaviors are due to the large selectivity of joins on
this dataset. Note that in all cases, IEDyn scales satisfactorily
with increasing stream sizes and significantly outperforms
the competitors, often by orders of magnitude. This is con-
firmed in Table 3 (Right) where we show the processing time
and memory footprint used by IEDyn as a percentage of
the corresponding usage in the competing systems (for the
largest stream size of each query). Writing “(x, y) oom”:
to indicate x orders of magnitude improvement in process-
ing time and y orders in memory consumption, we see that
IEDyn improves up to (1, 2) oom w.r.t. Z; almost (3, 1) oom
w.r.t. T; almost (2, 2) oomw.r.t SE, and up to (4, 3) oomw.r.t
DBT. Moreover, for these queries, even in push-based mode
IEDyn can support the enumeration of query results from its
data structures at any time while competing push-based sys-
tems have no such support. Hence, IEDyn is not only more
efficient but also provides more functionality.

Drilling deeper into the specific queries, we see from
Fig. 10 that while existing systems already perform poorly
on the inequality-only binary join query Q2, this is further
aggravatedwhenmoving to the corresponding three-way join
query Q3 and Q4: note that the plot for Q1 shows streams
sizes up to 12k, whereas the plots for Q3 and Q4 only go
to 2.7k while having much larger runtimes. Because Q2

and Q5–Q7 modify Q1, resp. Q4 by adding equality join
predicates, they have a smaller join selectivity. As a result,
performance for these queries is much better, across all sys-
tems. (To see this, note that, for Q5–Q6 the first data point
plotted has a significantly lower processing time while pro-
cessing a data stream three times the size.) Similarly, we
note that, while not visually apparent fromFig. 10, the perfor-
mance of all systems on Q3 is 10%−100% slower compared
to the same systems on Q4. This is due to the fact that the
two unrelated inequality predicates (a < d ∧ e < g) of Q3
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Table 3 (Left) Maximum update stream and result sizes, k = 103. (Right) Relative performance of IEDyn, expressed as a percentage of the
corresponding resources used by competing systems

Data size Z T SE E DBT

Stream Output Time Mem Time Mem Time Mem Time Mem Time Mem

Q1 12k 18, 017k Q1 45.33 3.4 12.06 96.15 2.74 25.23 29.33 24.51 0.43 2.74

Q2 12k 3.8k Q2 19.34 87.1 0.52 168.75 97.8 1 22.62 16.67 52.1 0.2

Q3 2.7k 178, 847k Q3 11.3 0.87 N/A N/A N/A N/A 24.49 16.57 0.25 0.19

Q4 2.7k 90, 425k Q4 10.69 0.69 4.64 3.45 13.94 55.56 24.5 14.2 0.01 0.2

Q5 21k 411, 669k Q5 10.85 0.3 13.72 19.11 N/A N/A 25.5 23.44 0.04 0.15

Q6 21k 297, 873k Q6 10.58 0.31 14.61 11.03 N/A N/A 23.28 17.37 0.86 0.15

Q7 21k 64, 603k Q7 0.03 2.38 0.05 24.1 N/A N/A 19.18 67.14 0.32 1.18

Q8 2.7k 114, 561k Q8 N/A N/A 9.01 6.36 N/A N/A 24.91 10.24 0.02 0.35

Q9 21k 411, 669k Q9 N/A N/A 13.96 40 N/A N/A 34.16 94.34 0.07 0.25

Q10 21k 99, 043k Q10 N/A N/A 0.07 38.52 N/A N/A 17.49 23.38 24.22 61.84

Q11 21k 43, 564k Q11 N/A N/A 0.04 10.23 N/A N/A 4.95 25.43 0.01 0.45

Q12 2.7k 114, 561k Q12 N/A N/A 7.11 10.49 N/A N/A 21.42 14.17 71.19 54.07

Q13 21k 294, 139k Q13 N/A N/A 9.99 47.58 N/A N/A 29.59 109.26 10.14 68.29

Q14 21k 297, 873k Q14 N/A N/A 13.96 47.2 N/A N/A 34.68 28.92 91.75 77.9

Q15 21k 50, 468k Q15 N/A N/A 0.16 25.26 N/A N/A 95.8 70 0.17 15.02

N/A Not applicable
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Fig. 10 Processing time in seconds on full join queries for various stream sizes. (*: DBT out of memory, +: Z out of memory, ′: T was stopped
after 1500 s)

also generated datasets with probability distributions that are
parametrized by a selectivity s, such that the expected num-
ber of output tuples is s percent of the Cartesian product of all
relations in the query. The results in Fig. 11 show that IEDyn
consistently continues to perform better also on very selec-
tive inequality joins. For super selective inequality joins the
measurements come similar to what we observe for equality
joins, which we investigated in detail in [25].

are linearly ordered in Q4 (a < d ∧ d < g), which causes Q4 
to have higher selectivity, improving performance. From 
these observations we may conclude that the performance 
of all systems increases as the join selectivity decreases. 
Never-theless, in contrast to existing systems, IEDyn 
continues to scale and perform satisfactorily even with large 
selectivities. To confirm this trend in the setting of very low 
selectivities, were processing is hence less output-size 
dependent, we have
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Projections The trends observed for full join queries are con-
firmed for the queries Q8–Q15 with projections, as shown
in Table 3 (Right). In particular, IEDyn improves up to
almost (4, 1) oom w.r.t. T; up to almost (1, 1) w.r.t. E . and
up to (4, 3) oom w.r.t DBT. Again, we observe that, while
IEDyn consistently outperforms the competitors, when the
selectivity of the queries decreases, the performance gain of
IEDyn increases. In addition, we note that the performance
gain of IEDyn is bigger on queries that are free-connex
acyclic (namely: Q8–Q10) as opposed to those that are not
(Q11–Q14). This is to be expected since our implementation
evaluates nonfree-connex queries by approximating them by
free-connexvariants, requiring additionalmaterialization (cf.
Sect. 6).

Result enumeration CDE is theoretical notion that hides a
constant factor which could decrease performance in prac-
ticewhen compared to enumerating from a fullymaterialized
representation In Fig. 12, we show the practical applica-
tion of CDE in IEDyn and compare against DBT which
materializes the full query results. We plot the time required
to enumerate the result from IEDyn’s T -rep as a fraction
of the time required to enumerate the result from DBT ’s
materialized views. As can be seen from the figure, both enu-
meration times are comparable on average. Note that we do
not compare enumeration time for push-based systems, since
for these systems the time required for delta enumeration is
already included in the update processing time.

8 Conclusions

Traditional techniques for dynamic query evaluation are
based on a trade-off between materialization of join sub-
results (to avoid recomputing these subresults) and their
recomputation (to avoid the space overhead induced bymate-
rialization). We have shown that instead of materializing
full join subresults, it suffices to maintain and index semi-
join subresults. This methodology, called General Dynamic
Yannakakis, allows us to maintain a data structure that, like
recomputation, has low memory overhead; and yet supports
all operations one commonly expects from full materi-
alization: enumeration with bounded delay and efficient
processing of updates. In addition, the framework supports
bounded-delay delta enumeration under single-tuple update,
hence allowing to operate in push-based mode similar to
streaming systems. Our experiments against state-of-the-art
engines in the IVM and CER domains show that Dynamic
Yannakakis can improveperformancebyorders ofmagnitude
in both time and space. The performance gap with exist-
ing systems is the largest for output-dominated queries (i.e.,
querieswhere the join result is large).While thegapdecreases
for more selective joins,GDyn continues to consistently out-
perform existing systems. In addition, while GDyn’s theory
is developed only for free-connex acyclic GCQs, our exper-
iments show that GDyn’s adaptation to acyclic GCQs that
are notfree connex (by means of free-connex approximation
followed by post-processing) is equally effective compared
to existing systems.

From a theoretical viewpoint, it would be satisfying
to establish lower bounds on the complexity of process-
ing inequality joins dynamically. For equijoins, such lower
boundswere recently established byBerkholz et al. [8]. Since
GDyn meets these lower bounds on queries with equijoins
only [25], it would be interesting to know whether it is sim-
ilarly optimal for inequality joins.

A Proofs of Sect. 4

Lemma 1 ρn = Q[Tn, n](db), for every node n ∈ T .

Proof We proceed by induction on the number of descen-
dants of n. If n has no descendants, then Tn is a single
atom r(x) with x = var(n) = out(Q[Tn, n]). Then,
Q[Tn, n](db) = (πvar(n)r(x))(db) = r(x)(db) = dbr(x) =
ρn , concluding the basic case. Now, for the inductive case,
we distinguish whether n has one or two children.

Assume n has a single child c. Then, at(Tn) = at(Tc) and
pred(Tn) = pred(Tc) ∪ pred(n). Therefore, by definition of
Q[·], we haveQ[Tn] ≡ σpred(n)Q[Tc], which implies that
Q[Tn, n] = πvar(n)Q[Tn] ≡ πvar(n)σpred(n)Q[Tc]. Fur-
thermore, since pred(n) only mentions variables in var(c) ∪
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var(n) and var(n) ⊆ var(c), as c is a guard of n, this is
equivalent to

πvar(n)σpred(n)Q[Tc] ≡ πvar(n)σpred(n)πvar(c)Q[Tc]

= πvar(n)σpred(n)Q[Tc, c].

By induction, πvar(n)σpred(n)Q[Tc, c](db) = πvar(n)σpred(n)

ρc = ρn , showing that Q[Tn, n](db) = ρn .
Assume now that n has two children c1 and c2.We assume

w.l.o.g. that c1 is a guard for n. Note that at(Tn) = at(Tc1) ∪
at(Tc2) and pred(Tn) = pred(Tc1) ∪ pred(Tc2) ∪ pred(n).
Therefore,

Q[Tn] ≡ σpred(n)σpred(Tc1 )σpred(Tc2 )

(
at(Tc1)��at(Tc2)

)
.

Here, we abuse notation and write at(Ti ) for the natural join
of all atoms in Tci . Since pred(Tci ) only mentions variables
of atoms in Tci (for i ∈ {1, 2}), we can push the selections:

Q[Tn] ≡ σpred(n)

(
σpred(Tc1 )at(Tc1)��σpred(Tc2 )at(Tc2)

)

≡ σpred(n)

(Q[Tc1]��Q[Tc2]
)
.

Therefore,

Q[Tn, n]=πvar(n)Q[Tn] ≡ πvar(n)σpred(n)

(Q[Tc1]��Q[Tc2]
)
.

Since var(pred(n)) ⊆ var(c1) ∪ var(c2) ∪ var(n) and
var(n) ⊆ var(c1), we have var(pred(n)) ⊆ var(c1) ∪
var(c2). This is combined with the fact that, due to the
connectedness property of T , we have var(Q[Tc1]) ∩
var(Q[Tc2]) ⊆ var(ci ) for i ∈ {1, 2}, we can add the fol-
lowing projections

Q[Tn, n] ≡ πvar(n)σpred(n)

(
πvar(c1)Q[Tc1]��πvar(c2)Q[Tc2]

)

≡ πvar(n)σpred(n)

(Q[Tc1 , c1]��Q[Tc2 , c2]
)
.

Hence, by induction hypothesis, we have

Q[Tn, n](db) = πvar(n)σpred(n)

(
ρc1��ρc2

) = ρn,

concluding our proof.

Lemma 3

1. Q(db) is a positive GMR, for any GCQ Q and any
database db.

2. If R is a positive GMR over x and y ⊆ x , then t[y] ∈
πy R for every tuple t ∈ R.

Proof (1) Follows by straightforward induction on Q, using
the fact that the GMRs in db are themselves positive by def-
inition. (2) Is a standard result in relational algebra, which
hence transfers to the case of positive GMRs.

Lemma 10 Let R be a positive GMR over x, S a positive
GMR over y and t a tuple over z. If z ⊆ y ⊆ x, then R �

(S � t) = (R � S) � t.

Proof This results well know in standard relational algebra,
and its proof transfers to the case of positive GMRs.

Lemma 2 For every node n ∈ N and every tuple t in ρn ,
enumT ,N (n, t, ρ) enumerates Q[Tn, Nn](db) � t.

Proof. Let n ∈ N and t ∈ ρn . We need to show that
executing enumT ,N (n, t, ρ) outputs all (tuple, multiplicity)
pairs of Q[Tn, Nn](db) � t exactly once. We proceed by
induction on the number of nodes in Nn . If Nn = {n},
then Q[Tn, Nn] = Q[Tn, n]. Therefore, by Lemma 1,
Q[Tn, Nn](db) = ρn . Since t ∈ ρn , this implies that the
only tuple in Q[Tn, Nn](db) that is compatible with t is t
itself. Furthermore, since Nn = {n}, n must be in the fron-
tier of n. Therefore, enumT ,N (n, t, ρ) will output precisely
{(t, ρn(t))} (line 4), which concludes the base case.

For the inductive step we need to consider two cases
depending on the number of children of n.

Case 1 If n has a single child c, then necessarily c is a
guard of n, i.e., var(n) ⊆ var(c). In this case, Algorithm 1
will call enumT ,N (c, s, ρ) for each tuple s ∈ (

ρc �pred(n) t
)
.

By induction hypothesis and Lemma 1, this will correctly
enumerate and output the elements of Q[Tc, Nc](db) � s,
for every s in Q[Tc, c](db) �pred(n) t. Note that the sets
Q[Tc, Nc](db) � s are disjoint for different values of s.
Thus, no element is output twice. Hence, enumT ,N (n, t, ρ)

enumerates the GMR

Q[Tc, Nc](db) � (Q[Tc, c](db) �pred(n)
t). (2)

Since var(pred(n)) ⊆ var(c) ∪ var(n) = var(c) =
out(Q[Tc, c], we can pull out the selection:

(2) = Q[Tc, Nc](db) � σpredn(Q[Tc, c](db) � t). (3)

Subsequently, because var(pred(n)) = var(c) ⊆
out(Q[Tc, Nc]), we can pull out the selection again:

(3)=σpred(n) (Q[Tc, Nc](db)�(Q[Tc, c](db) � t)) . (4)

Because the variables in t are a subset of var(c), because
var(c) ⊆ var(Nc), and because Q[Tc, Nc](db) and
Q[Tc, c](db) are positive (Lemma 3(1)), we can apply
Lemma 10:

(4)=σpred(n) ((Q[Tc, Nc](db)�Q[Tc, c](db)) � t) . (5)
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Next, observe that, since var(nc) ⊆ var(Nc) as c ∈ Nc, we
have

Q[Tc, nc] = πvar(c)Q[Tc]

≡ πvar(c)πvar(Nc)Q[Tc]

≡ πvar(c)Q[Tc, Nc]

Then, because Q[Tc, Nc])(db) is positive, we obtain
from Lemma 3(2) that

(5) = σpred(n)(Q[Tc, Nc](db) � t). (6)

Finally, because pred(n) ⊆ var(n) ⊆ var(Nc), we push the
selection again and obtain

(6) = (σpred(n)Q[Tc, Nc](db)) � t (7)

= (πvar(Nn)σpred(n)Q[Tc, Nc])(db) � t. (8)

Here, the last equality is due to the fact that var(Nn) =
var(n)∪var(Nc) = var(Nc), as var(n) ⊆ var(c) and c ∈ Nc,
which implies that projecting on var(Nn) does not modify
the result. The result then follows from the observation that
Q[Tn, Nn] ≡ πvar(Nn)σpred(n)Q[Tc, Nc].

Case2Otherwise,n has twochildren c1 and c2.Weassume
w.l.o.g. that c1 is a guard of n, i.e., var(n) ⊆ var(c1). Since
|Nn| > 1 and N is sibling closed, we have {c1, c2} ⊂
N . In this case, Algorithm 1 will first enumerate ti ∈
ρci �pred(n→c1) t for i ∈ {1, 2}. By Lemma 1, this is equiv-
alent to enumerate every ti in Q[Tci , ci](db) �pred(n→c1)

t. Then, for each such ti the algorithm will enumerate
every pair (si, μi ) generated by enumT ,N (ci , ti, ρ), which
by induction is the same as enumerating every (si, μi ) in
Q[Tci , Nci](db)�ti. Note that the setsQ[Tci , Nci](db)�ti
are disjoint for distinct ti. Therefore, no (si, μi ) is generated
twice. the algorithm is hence enumerating

Q[Tci , Nci](db) �

(Q[Tci , ci](db) �pred(n→ci ) t
)

By the same reasoning as in Case (1), this is equivalent to
enumerating every (si, μi ) in (σpred(n→ci )Q[Tci](db)) �

t. From the connectedness property of T , it follows that
var(Q[Tc1])∩var(Q[Tc2]) ⊆ var(n). Thus, var(Q[Tc1])∩
var(Q[Tc2]) is a subset of the variables of t. Hence, every
tuple s1 will be compatible with every tuple s2, and therefore,
enumeration of every pair (s1 ∪ s2, μ1 × μ2) is the same as
the enumeration of

(
(σpred(n→c1)Q[Tc1, Nc1](db)) � t

)

��

(
(σpred(n→c2)Q[Tc2 , Nc2](db)) � t

)
. (9)

The semijoin with t factors out of the join:

(9) = (
σpred(n→c1)Q[Tc1, Nc1]

��σpred(n→c2)Q[Tc2 , Nc2]
)
(db) � t

(10)

We can now pull out the selections and obtain

(10) = (
σpred(n→c1)σpred(n→c2)(Q[Tc1 , Nc1]

��Q[Tc2 , Nc2])(db)
)

� t.

= (
σpred(n)(Q[Tc1 , Nc1]��Q[Tc2 , Nc2])(db)

)
� t.

= (
πvar(Nn)σpred(n)(Q[Tc1 , Nc1]��Q[Tc2 , Nc2])(db)

)
� t

Here, the last equality is due to the fact that var(Nn) =
var(n) ∪ var(Nc1) ∪ var(Nc2) = var(Nc1) ∪ var(Nc2), as
var(n) ⊆ var(c1) ⊆ var(Nc1). This implies that

var(Nn) = out(Q[Tc1 , Nc1]) ∪ out(Q[Tc2 , Nc2])

Hence, projecting the join result on var(Nn) does not
modify the result. The result then follows from the obser-
vation that Q[Tn, Nn] ≡ πvar(Nn)σpred(n)(Q[Tc1, Nc2]��

Q[Tc2 , Nc2]).

Proposition 4 Assume that all join indexes in the (T , N )-rep
have access time g, and that all indexes (join and enumer-
ation) have update time h, where g and h are monotone
functions. Further assume that, during the entire execu-
tion of update, K and U bound the size of ρn and �n ,
respectively, for all n. Then, updateT ,N (ρ, u) runs in time
O (|T | · (U + h(K ,U ) + g(K ,U ))).

Proof First, note that the initialization of�n in line 15 can be
done in O(U ) time (by copying ur(x)) to �n tuple by tuple)
and the initialization of�n in line 17 inO(1) time. Therefore,
lines 14–17 run in O(|T | · U ) time, which falls within the
claimed bounds. We next show that the for loop of lines 18–
23 also runswithin the claimed bounds. Since the body of this
for loop is executed |T | times, it suffices to show that each
of the lines 19–23 run in timeO(U + h(K ,U ) + g(K ,U )).
Since |�n| ≤ U by assumption, the statement ρn+ = �n

of line 19 can be executed in O(U ) time by iterating over
the tuples t ∈ �n , and updating ρn(t) for each such tuple.
(Recall that multiplicity lookup and modification in a GMR
are O(1) operations). The indexes associated with ρn (if
any) are updated in time h(K ,U ). Therefore, the total time
require to execute line 19 isO(U+h(K ,U )).We next bound
the complexity of line 21. Computing πvar(p)(ρm��predp�n)

using the join index on ρm takes O(g(K ,U )) time. Further-
more, the number of tuples in πvar(p)(ρm��predp�n) can be
at most 2U . This is because |�p| ≤ U at any time during the
execution. In the worst case, therefore,πvar(p)(ρm��predp�n)

can at most delete the tuples already present in �p (which
requires U tuples) and subsequently insert U new tuples
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(requiring another U tuples), for at most 2U tuples in total.
For each of the 2U resulting tuples, we update �p accord-
ingly inO(1) time. The total time to execute line 21 is hence
O(2 · U + g(K ,U )). Finally, using similar reasoning, the
complexity of line 23 can be shown to be O(U ).

B Proofs of Sect. 5.1

B.1 Proof of Proposition 7

Because no infinite sequences of reduction steps are possible,
it suffices to demonstrate local confluence:

Proposition 14 IfH � I1 andH � I2, then there exists J
such that both I1 �∗ J and I2 �∗ J .

Indeed, it is a standard result in the theory of rewriting
systems that confluence (Lemma 7) and local confluence
(Lemma 14) coincide when infinite sequences of reductions
steps are impossible [5].

Before proving Lemma 14, we observe that the property
of being isolated or being a conditional subset is preserved
under reductions, in the following sense.

Lemma 11 Assume that H � I. Then, pred(I) ⊆ pred(H)

and for every hyperedge e, we have extI(e) ⊆ extH(e),
jvI(e) ⊆ jvH(e), and isolH(e) ⊆ isolI(e). Furthermore,
if e �H f then also e �I f .

Proof First, observe that pred(I) ⊆ pred(H), since reduc-
tion operators only remove predicates. This implies that
extI(e) ⊆ extH(e) for every hyperedge e. Furthermore,
because reduction operators only remove hyperedges and
never add them, it is easy to see that jvH(e) ⊆ jvI(e).
Hence, if x ∈ isolH(e) then x /∈ jvH(e) ⊇ jvI(e) and
x /∈ var(pred(H)) ⊇ var(pred(I)). Therefore, x ∈ isolI(e).
As such, isolI(e) ⊆ isolH(e).

Next, assume that e �H f .We need to show that jvI(e) ⊆
f and extI(e\ f ) ⊆ f . The first condition follows since
jvI(e) ⊆ jvH(e) ⊆ f where the last inclusion is due to e �H
f . The second also follows since extI(e\ f ) ⊆ extH(e\ f ) ⊆
f where the last inclusion is due to e �H f .

and isolH(e2) ⊆ isolI1(e2). Therefore, we can still remove
X2 from I1 by means of rule ISO and similarly remove X1

from I2. LetJ1 (resp.J2) be the result of removing X2 from
I1 (resp. I2). Then, J1 = J2 (and hence equals triplet J ):

hyp(J1) = hyp(H)\{e1, e2} ∪ {e1\X1 | e1\X1 �= ∅}
∪ {e2\X2 | e2\X2 �= ∅}

= hyp(J2)

pred(J1) = pred(H) = pred(J2)

(1b) e1 = e2. We show that X2\X1 ⊆ isolI1(e1\X1) and
similarly X1\X2 ⊆ isolI1(e2\X1). This suffices because we
can then apply ISO to remove X2\X1 from I1 and X1\X2

from I2. In both cases, we reach the same triplet as removing
X1 ∪ X2 ⊆ isolH(e1) fromH.7

To see that X2\X1 ⊆ isolI1(e1\X1), let x ∈ X2\X1.
We need to show x /∈ jvI1

(e1\X1) and x /∈ var(pred(I1)).
Because x ∈ X2 ⊆ isolH(e1), we know x /∈ jvH(e1).
Then, since x /∈ X1, also x /∈ jvH(e1\X1). By Lemma 11,
jvI1

(e1\X1) ⊆ jvH(e1\X1). Therefore, x /∈ jvI1
(e1\X1).

Furthermore, because x ∈ isolH(e1), we know x /∈
var(pred(H)). Since var(pred(I1)) ⊆ var(pred(H)) by
Lemma 11, also x not ∈ var(pred(I1)).

X1\X2 ⊆ isolI1(e2\X1) is shown similarly.
(2)Case (CSE, CSE) assume thatI1 is obtained by remov-

ing hyperedge e1 because it is a conditional subset of
hyperedge f1, while I2 is obtained by removing e2, con-
ditional subset of f2. Since I1 �= I2, it must be e1 �= e2. We
need to further distinguish the following cases.

(2a) e1 �= f2 and e2 �= f1. In this case, e2 and f2 remain
hyperedges in I1 while e1 and f1 remain hyperedges in I2.
Then, by Lemma 11, e2 �I1 f2 and e1 �I2 f2. LetJ1 (resp.
J2) be the triplet obtained by removing e2 from I1 (resp. e1
from I2). Then, J1 = J2 since clearly out(J1) = out(J2)

and

hyp(J1) = hyp(H)\{e1, e2} = hyp(J2)

pred(J1) = {θ ∈ pred(H) | var(θ) ∩ (e1\ f1) = ∅,

var(θ) ∩ (e2\ f2) = ∅}
= pred(J2)

From this the result follows by taking J = J1 = J2.
(2b) e1 �= f2 but e2 = f1. Then, e1 �H e2 and e2 �H f2

with f2 �= e1. It suffices to show that e1 �H f2 and e1\ f2 =
e1\ f1, because then (CSE) due to e1 �H f1 has the same
effect as CSE on e1 �H f2, and we can apply the reasoning
of case (2a) because e1 �= f2 and e2 �= f2.

7 Should X2\X1 be empty, we don’t actually need to do anything on
I1: X1 ∪ X2 is already removed from it. A similar remark holds for I2
when X1\X2 is empty.

Proof of Proposition 14 If I1 = I2, then it suffices to take 
J = I1 = I2. Therefore, assume in the following that I1 �= 
I2. Then, necessarily I1 and I2 are obtained by applying two 
different reduction operations on H. We make a case analysis 
on the types of reductions applied.

(1) Case (ISO, ISO) assume that I1 is obtained by remov-
ing the nonempty set X1 ⊆ isolH(e1) from hyperedge e1, 
while I2 is obtained by removing nonempty X2 ⊆ isolH(e2) 
from e2 with X1 �= X2. There are two possibilities.
(1a) e1 �= e2. Then, e2 is still a hyperedge in I2 and e1 is still 

a hyperedge in I1. By Lemma 11, isolH(e1) ⊆ isolI2 (e1)
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We first show e1\ f2 = e1\ f1. Let x ∈ e1\ f2 and suppose
for the purpose of contradiction that that x ∈ e2 = f1. Then,
since e1 �= e2, x ∈ jv(e2) ⊆ f2 where the last inclusion
is due to e2 �H f2. Hence, e1\ f2 ⊆ e1\ f1. Conversely, let
x ∈ e1\ f1. Since f1 = e2, x /∈ e2. Suppose for the purpose of
contradiction that x ∈ f2. Because e1 �= f2, x ∈ jvH(e1) ⊆
e2 where the last inclusion is due to e1 �H e2. Therefore,
e2\ f1 = e1\ f2.

To show that e1 �H f2, let x ∈ jvH(e1). Because e1 �H
e2, x ∈ e2. Because x occurs in two distinct hyperedges in
H, also x ∈ jvH(e2). Then, because e2 �H f2, x ∈ f2.
Hence, jvH(e1) ⊆ f2. It remains to show extH(e1\ f2) ⊆
f2. To this end, let x ∈ extH(e1\ f2) and suppose for the
purpose of contradiction that x /∈ f2. By definition of ext
there exists θ ∈ pred(H) and y ∈ var(θ)∩ (e1\ f2) such that
x ∈ var(θ)\(e1\ f2). In particular, y /∈ f2. Since e1\ f2 =
e1\e2, y ∈ var(θ) ∩ (e1\e2) and x ∈ var(θ)\(e1\e2). Thus,
x ∈ extH(e1\e2). Then, since e1 �H e2, x ∈ e2. Thus,
x ∈ e2\ f2 since x /∈ f2. Hence, x ∈ var(θ) ∩ (e2\ f2).
Furthermore, since y /∈ e2 also y /∈ e2\ f2. Hence, y ∈
var(θ)\(e2\ f2). But then θ shows that y ∈ extH(e2\ f2).
Then, by because e2 �H f2, also y ∈ f2 which yields the
desired contradiction.

(2c) e1 = f2 but e2 �= f1. Similar to case (2b).
(2d) e1 = f2 and e2 = f1. Then, e1 �H e2 and

e2 � He1 and e1 �= e2. Let K1 (resp. K2) be the triplet
obtained by applying (FLT) to remove all θ ∈ pred(I1)
(resp. θ ∈ pred(I2) for which var(θ) ⊆ var(e2) (resp.
(var(θ) ⊆ var(e2). Furthermore, let J1 (resp. J2) be the
triplet obtained by applying ISO to removing isolI1(e2)
fromK1 (resp. removing isolI2(e1) fromK2). Here, we take
J1 = K1 if isolK1(e2) is empty (and similarly for J2). Then,
clearly H � I1 �∗ K1 �∗ J1 and H � I2 �∗ K2 �∗
J2. The result then follows by showing that J1 = J2.
Toward this end, first observe that out(J1) = out(K1) =
out(I1) = out(H) = out(I2) = out(K2) = out(J2). Next,
we show that pred(J1) = pred(J2). We first observe that
pred(J1) = pred(K1) and pred(J2) = pred(K2) since the
ISOoperation does not remove predicates. Then, observe that

pred(K1) = {θ ∈ pred(I1) | var(θ) � var(e2)}
= {θ ∈ pred(H) | var(θ) ∩ (e1\e2) = ∅ and

var(θ) � e2},
pred(K2) = {θ ∈ pred(I2) | var(θ) � e1}

= {θ ∈ pred(H) | var(θ) ∩ (e2\e1) = ∅ and

var(θ) � e1}.

We only show the reasoning for pred(K1) ⊆ pred(K2),
the other direction being similar. Let θ ∈ pred(K1). Then,
var(θ ∩ (e1\e2) = ∅ and var(θ) � e2. Since var(θ) � e2
there exists y ∈ var(θ)\e2. Then, because var(θ)∩(e1\e2) =
∅, y /∈ e1. Thus, var(θ) � e1. Now, suppose for the purpose

of obtaining a contradiction, that var(θ)∩(e2\e1) �= ∅. Then
take z ∈ var(θ)∩ (e2\e1). But then y ∈ extH(e2\e1). Hence,
y ∈ e1 because e2 �H e1, which yields the desired contra-
diction with y /∈ e2. Therefore, var(θ) ∩ (e2\e1) = ∅, as
desired. Hence, θ ∈ pred(K2).

It remains to show that hyp(J1) = hyp(J2). To this end,
first observe

hyp(J1) = hyp(K1)\{e2} ∪ {e2\isolK1(e2)},
= hyp(H)\{e1}\{e2} ∪ {e2\isolK1(e2)},

hyp(J2) = hyp(K2)\{e1} ∪ {e1\isolK2(e1)}
= hyp(H)\{e2}\{e1} ∪ {e1\isolK2(e1)}.

Clearly, hyp(J1) = hyp(J2) if e2\isolK1(e2) = e1\
isolK2(e1).

We only show e2\isolK1(e2) ⊆ e1\isolK2(e1), the other
inclusion being similar. Let x ∈ e2\isolK1(e2). Since x /∈
isolK1(e2) one of the following hold.

– x ∈ out(K1). But then, x ∈ out(K1) = out(I1) =
out(H) = out(I2) = out(K2). In particular, x is an equi-
join variable in H and K∈. Then, x ∈ jvH(e2) ⊆ e1
because e2 �H e1. From this and the fact that x remains
an equijoin variable in K2, we obtain x ∈ e1\isolK2(e1).

– x occurs in e2 and in somehyperedge g inK1 with g �= e2.
Since e1 is not inK1 also g �= e1. Since every hyperedge
in K1 is in I1 and every hyperedge in I1 is in H, also
g is in H. But then, x occurs in two distinct hyperedges
in H, namely e2 and g, and hence x ∈ jvH(e2) ⊆ e1
because e2 �H e1. However, because x also occurs in g
which must also be in I2 and therefore also inK2, x also
occurs in two distinct hyperedges in K2, namely e1 and
g. Therefore, x ∈ jvI2

(e1) and hence x ∈ e1\isolI2(e1),
as desired.

– x ∈ var(pred(K1)). Then, there exists θ ∈ pred(K1)

such that x ∈ var(θ). Since pred(K1) = pred(K2), θ ∈
pred(K2). As such, θ ∈ pred(H), var(θ) ∩ (e2\e1) = ∅,
and var(θ) � e1. But then, since x ∈ var(θ); x ∈ e2; and
var(θ) ∩ (e2\e1) = ∅, it must be the case that x ∈ e1. As
such, x ∈ e1 and x ∈ var(K2).Hence, x ∈ e1\isolK2(e1).

(3)Case (ISO, CSE) assume that I1 is obtained by remov-
ing the nonempty set of isolated variables X1 ⊆ isolH(e1)
from e1, while I2 is obtained by removing hyperedge e2,
conditional subset of hyperedge f2. We may assume w.l.o.g.
that e1 �= isolH(e1): if e1 = isolH(e1), then the ISO opera-
tion removes the complete hyperedge e1. However, because
no predicate in H shares any variable with e1, it is readily
verified that e1 �H e2 and thus the removal of e1 can also
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be seen as an application of CSE on e1,8 and we are hence
back in case (2).

Now reason as follows. Because e2 �H f2 and because
isolated variables of e1 occur in no other hyperedge in H, it
must be the case that e2∩X1 = ∅. In particular, e1 and e2 must
hence be distinct. Therefore, e1 ∈ hyp(I2) and e2 ∈ hyp(I1).
By Lemma 11, we can apply ISO on I2 to remove X1 from
e1. It then suffices to show that e2 remains a conditional sub-
set of some hyperedge f ′

2 in I1 with e2\ f2 = e2\ f ′
2. Indeed,

we can then use ECQ to remove e2 from hyp(I1) as well as
predicates θ with var(θ) ∩ (e2\ f2) �= ∅ from pred(I1). This
clearly yields the same triplet as the one obtained by remov-
ing X1 from e1 in I2. We need to distinguish two cases.

(3a) f2 �= e1. Then, f2 ∈ hyp(I1) and hence e2 �I1 f2
by Lemma 11. We hence take f ′

2 = f2.
(3b) f2 = e1. Then, we take f ′

2 = e1\X . Since
e1 �= isolH(e1), it follows that e1\X1 �= ∅. Therefore,
f ′
2 = e1\X1 ∈ hyp(I1). Furthermore, since X ⊆ isolH(e1),

no variable in X is in any other hyperedge in H. In par-
ticular X ∩ e2 = ∅. Therefore, e2\ f ′

2 = e2\(e1\X) =
(e2\e1) ∪ (e2 ∩ X) = e2\e1\e1 = e2\ f2. It remains to show
that e2 �I1 e1\X1.

– jvI1
(e2) ⊆ e1\X1. Let x ∈ jvI1

(e2). By Lemma 11,
x ∈ jvI1

(e2) ⊆ jvH(e2) ⊆ e1 where the last inclusion is
due to e2 �H e1. In particular, x is an equijoin variable
in H. But then it cannot be an isolated variable in any
hyperedge. Therefore, x /∈ X1.

– extI1(e2\e1) ⊆ e1\X . Let x ∈ extI1(e2\e1). Then,
x ∈ extI1(e2\e1) ⊆ extH(e2\e1) ⊆ e1 where the first
inclusion is by Lemma 11 and the second by e2 �H e1.
Then, because x ∈ extH(e2\e1), it follows from the def-
inition of ext that x occurs in some predicate in pred(H).
However, X is disjoint with var(pred(H)) since it consist
only of isolated variables. Therefore, x /∈ X .

(4)Case (ISO, FLT)Assume thatI1 is obtained by remov-
ing the nonempty set X1 ⊆ isolH(e1) from hyperedge
e1, while I2 is obtained by removing all predicates in the
nonempty set � ⊆ pred(H) with var(�) ⊆ e2 for some
hyperedge e2 in hyp(H). Observe that e1 ∈ hyp(I2). By
Lemma 11, X ⊆ isolH(e1) ⊆ isolI2(e1). Therefore, we may
apply reduction operation (ISO) on I2 to remove X1 from e1.
Wewill now show that, similarly, wemay still apply (FLT) on
I1 to remove all predicates in � from pred(I1) = pred(H).
The two operations hence commute, and clearly, the resulting
triplets in both cases is the same. We distinguish two possi-
bilities. (i) e1 �= e2. Then, e2 ∈ I1 and, var(�) ⊆ e2 and,
since (ISO) does not remove predicates, � ⊆ pred(H) =

pred(I1). As such the (FLT) operation indeed applies to
remove all predicates in� from pred(I1). (ii) e1 = e2. Then,
since X ⊆ isolH(e1) and isolated variables donooccur in any
predicate, X ∩ var(�) = ∅. Then, since var(�) ⊆ e2 = e1,
it follows that also var(�) ⊆ e1\X . In particular, since we
disallow nullary predicates and � is nonempty, e1\X �= ∅.
Thus, e1\X ∈ hyp(I1) and hence operation (FLT) applies
indeed applies to remove all predicates in � from pred(I1)

(5)Case (CSE, FLT) assume thatI1 is obtained by remov-
ing hyperedge e1, conditional subset of e2 in H, while I2 is
obtained by removing all predicates in the nonempty set� ⊆
pred(H)with var(�) ⊆ e3 for somehyperedge e3 ∈ hyp(H).
Since the (FLT) operation does not remove any hyperedges,
e1 and e2 are inhyp(I2). Then, since e1 �H e2 also e1 �I2 e2
by Lemma 11. Therefore, we may apply reduction opera-
tion (CSE) on I2 to remove e1 from hyp(I2) as well as all
predicates θ ∈ pred(I2) for which var(θ) ∩ (e1\e2) �= ∅.
Let J2 be the triplet resulting from this operation. We will
show that, similarly, we may apply (FLT) on I1 to remove
all predicates in � ∩ pred(I1) from pred(I1), resulting in a
tripletJ1. Observe that necessarily,J1 = J2 (and hence they
form the triplet J ). Indeed, out(J1) = out(I1) = out(H) =
out(I2) = out(J2) since reduction operations never modify
output variables. Moreover,

hyp(J1) = hyp(I1)
= hyp(H)\{e1}
= hyp(I2)\{e1}
= hyp(J2)

where the first and third equality is due to fact that (FLT)
does not modify the hypergraph of the triplet it operates on.
Finally, observe

pred(J1) = pred(I1)\(� ∩ pred(I1))
= pred(I1)\�
= {θ ∈ pred(H) | var(θ) ∩ (e1\e2) = ∅}\�
= {θ ∈ pred(H)\� | var(θ) ∩ (e1\e2) = ∅}
= {θ ∈ pred(I2) | var(θ) ∩ (e1\e2) = ∅}
= pred(J2)

It remains to show that we may apply (FLT) on I1 to
remove all predicates in � ∩ pred(I1), resulting in a triplet
J1. There are two possibilities.

– e3 �= e1. Then, e3 ∈ I1, � ∩ pred((I1)) ⊆ pred(I1)),
and var(�∩pred(I1)) ⊆ var(�) ⊆ e3. Hence, the (FLT)
operation indeed applies to I1 to remove all predicates
in � ∩ pred(I1).

– e3 = e1. In this case, we claim that for every θ ∈
� ∩ pred(I1), we have var(θ) ⊆ e2. As such, var(� ∩

8 Note that, since e1 does not share variables with any predicate, the 
CSE operation also does not remove any predicates from H1, similar to 
the ISO operation and hence yields I1.
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pred(I1)) ⊆ e2. Since e2 ∈ hyp(I1) and �∩pred(I1) ⊆
pred(I1), we may hence apply (FLT) to remove all pred-
icates in � ∩ pred(I1) from I1. Concretely, let θ ∈
� ∩ pred(I1). Because, in order to obtain I1, (CSE)
removes all predicates fromH that share a variable with
e1\e2, we have var(θ)∩(e1\e2) = ∅. Moreover, because
θ ∈ �, var(θ) ⊆ e1. Hence, var(θ) ⊆ e2, as desired.

The remaining cases, (CSE, ISO), (FLT, ISO), and (FLT,
CSE), are symmetric to case (3), (4), and (5), respectively.

B.2 Proof of Proposition 9

Proposition 9 For every GJT pair there exists an equivalent
canonical pair.

Proof Let T be a GJT. The proof proceeds in three steps.
Step 1 Let T1 be the GJT obtained from T by (i) removing

all predicates from T , and (ii) creating a new root node r
that is labeled by ∅ and attaching the root of T to it, labeled
by the empty set of predicates. T1 satisfies the first canon-
icality condition, but is not equivalent to T because it has
none of T ’s predicates. Now re-add the predicates in T to
T1 as follows. For each edge m → n in T and each predi-
cate θ ∈ predT (m → n), if var(θ) ∩ (var(n)\var(m)) �= ∅
then add θ to predT1(m → n). Otherwise, if var(θ) ∩
(var(n)\var(m)) = ∅, do the following. First, observe that,
by definition of GJTs, var(θ) ⊆ var(n) ∪ var(m). Because
var(θ)∩(var(n)\var(m)) = ∅ this implies var(θ) ⊆ var(m).
Because we disallow nullary predicates, var(m) �= ∅. Let a
be the first ancestor of m in T1 such that var(θ) � var(a).
Such an ancestor exists because the root of T1 is labeled
∅. Let b be the child of a in T1. Since a is the first ances-
tor of m with var(θ) � var(a), var(θ) ⊆ var(b). Therefore,
var(θ) ⊆ var(b)∪var(a) and var(θ)∩(var(b)\var(a)) �= ∅.
As such, add θ to predT1(a → b). After having done this for
all predicates in T , T1 becomes equivalent to T and satisfies
canonicality conditions (1) and (3). Then, take N1 = N∪{r}.
Clearly, N1 is a connex subset of T1 and var(N ) = var(N ′).

Therefore, (T1, N1) is equivalent to (T , N ).
Step 2 Let T2 be obtained from T1 by adding, for each

leaf node l in T1 a new interior node nl labeled by var(l)
and inserting it in-between l and its parent in T1, i.e., if l
has parent p in T1, then we have p → nl → l in T2 with
predT2(p → nl) = predT1(p → n) and predT2(nl → l) =
∅.9 Furthermore, let N2 be the connex subset of T2 obtained
by replacing every leaf node l in N1 by its newly inserted
node nl . Clearly, var(N2) = var(N1) = var(N ) because
var(l) = var(nl) for every leaf l of T1. By our construction,
(T2, N2) is equivalent to (T , N ); T2 satisfies canonicality
conditions (1), (2), and (4); and N2 is canonical.

9 Note that all leafs have a parent since the root of T1 is an interior node
labeled by ∅.

Step 3 It remains to enforce condition (3). To this end,
observe that, by the connectedness condition of GJTs, T2
violates canonicality condition (3) if and only if there exist
internal nodes m and n where m is the parent of n such that
var(m) = var(n). In this case, we call n a culprit node. We
will now show how to obtain an equivalent pair (U , M) that
removes a single culprit node; the final result is then obtained
by iterating this reasoning until all culprit nodes have been
removed.

The culprit removal procedure is essentially the reverse of
the binarization procedure of Fig. 9. Concretely, let n be a
culprit node with parentm and let n1, . . . , nk be the children
of n in T2. Let U be the GJT obtained from T2 by removing
n and attaching all children ni of n as children to m with
edge label predU (m → ni ) = predT2(n → ni ), for 1 ≤
i ≤ k. Because var(n) = var(m), the result is still a valid
GJT. Moreover, because var(n) = var(m) and T2 satisfied
condition (4), we had predT2(m → n) = ∅, so no predicate
was lost by the removal of n. Finally, define M as follows. If
n ∈ N2, then setM = N2\{n}; otherwise, setM = N2. In the
former case, since N2 is connex and n ∈ N2, m must also be
in N2. It is hence in M . Therefore, in both cases, var(N ) =
var(N2) = var(M). Furthermore, it is straightforward to
check that M is a connex subset of U . Finally, since N2

consisted only of interior nodes of T2, M consists only of
interior nodes of U and hence remains canonical.

B.3 Proof of Lemma 5

We first require a number of auxiliary results.
Wefirstmake the following observations regarding canon-

ical GJT pairs.

Lemma 12 Let (T , N ) be a canonical GJT pair, let n be a
frontier node of N and let m be the parent of n in T .

1. x /∈ var(N\{n}), for every x ∈ var(n)\var(m).
2. hyp(T , N\{n}) = hyp(T , N )\{var(n)}).
3. θ /∈ pred(m → n), for every θ ∈ pred(T , N\{n})
4. pred(T , N\{n}) = pred(T , N )\pred(m → n).
5. pred(m → n) = {θ ∈ pred(T , N ) | var(θ) ∩

(var(n)\var(m)) �= ∅}.
6. pred(T , N\{n}) = {θ ∈ pred(T , N ) | var(θ) ∩

(var(n)\var(m)) = ∅}.

Proof (1) Let x ∈ var(n)\var(m) and let c be a node in
N\{n}. Clearly the unique undirected path between c
and n in T must pass through m. Because x /∈ var(m),
it follows from the connectedness condition of GJTs
that also x /∈ var(c). As such, x /∈ var(N\{n}).

(2) The ⊇ direction is trivial. For the ⊆ direction, assume
that m ∈ N\{n} with var(m) �= ∅. Then, clearly
m ∈ N and hence var(m) ∈ hyp(T , N ). Further-
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more, because N is canonical, both m and n are
interior nodes in T . Then, because T is canonical
and m �= n, we have var(m) �= var(n). Therefore,
var(m) ∈ hyp(T , N )\{var(n)}.

(3) Let θ ∈ pred(T , N\n). Then, θ occurs on the edge
between two nodes in N\n, saym ′ → n′. By definition
of GJTs, var(θ) ⊆ var(n′) ∪ var(m′) ⊆ var(N\{n}).
Now suppose for the purpose of contradiction that also
θ ∈ pred(m → n). Because T is nice, there is some
x ∈ var(θ)∩ (var(n)\var(m)) �= ∅. Hence, by (1), x /∈
var(N\{n}), which contradicts var(θ) ⊆ var(N\{n}).

(4) Clearly,pred(T , N )\pred(m → n) ⊆ pred(T , N\{n}).
The converse inclusion follows from (3).

(5) The ⊆ direction follows from the fact that m and n are
in N , and T is nice. To also see ⊇, let θ ∈ pred(T , N )

with var(θ) ∩ (var(n)\var(m)) �= ∅. There exists x ∈
var(θ) ∩ (var(n)\var(m)). By (1), x /∈ var(N\{n}).
Therefore, θ cannot occur between edges in N\{n} in
T . Since it nevertheless occurs in pred(T , N ), it must
hence occur in pred(m → n).

(6) Follows directly from (4) and (5).

Lemma 13 Let (T , N ) be a canonical GJT pair, let n be a
frontier node of N and let m be the parent of n in T . Let
z ⊆ var(N\{n}).

1. var(n) �H(T ,N ,z) var(m).
2. x /∈ jv(H(T , N , z)), for every x ∈ (var(n)\var(m)).

Proof For reasons of parsimony, let H = H(T , N , z). We
first prove (2) and then (1).

(2) Let x ∈ var(n)\var(m). By Lemma 12(1), x /∈
var(N\{n}). Therefore, x occurs in var(n) in H and in no
other hyperedge. Furthermore, because z ⊆ var(N\{n}),
also x /∈ z. Hence, x /∈ jvH(var(n)).

(1) We need to show that jvH(var(n)) ⊆ var(m) and
extH(var(n)\var(m)) ⊆ var(m). Let x ∈ jvH(var(n)). By
contraposition of (2), we know that x /∈ (var(n)\var(m)).
Therefore, x ∈ var(m) and thus jvH(var(n)) ⊆ var(m). To
show extH(var(n)\var(m)) ⊆ var(m), let y ∈ extH(var(n)\
var(m)). Then, y /∈ var(n)\var(m) and there exists θ ∈
pred(T , N ) with var(θ) ∩ (var(n)\var(m)) �= ∅ and y ∈
var(θ). By Lemma 12(5), θ ∈ predT (m → n). Thus,
y ∈ var(m) ∪ var(n). Since also y /∈ var(n)\var(m), it fol-
lows that y ∈ var(m). Therefore, extH(var(n)\var(m)) ⊆
var(m).

Case 1 Node n is the root in N . Because the root of a
canonical tree is labeled by ∅, we have var(n) = ∅. Since
n is a frontier node of N , N = {n}. Thus, hyp(T , N ) =
∅ and hyp(T , N\{n}) = ∅. Furthermore, pred(T , N ) =
pred(T , N\{n}) = ∅ and z ⊆ var(N\{n}) = var(∅) = ∅.
As such, both H1 and H2 are the empty triplet (∅,∅,∅).
Therefore, H1 �∗ H2.

Case 2 n has parent m in N and var(m) �= ∅. Then,
var(n) �= ∅ since in a canonical tree the root node is the
only interior node that is labeled by the empty hyperedge.
Therefore, var(n) ∈ hyp(T , N ), var(m) ∈ hyp(T , N ), and
var(n) �H1 var(m) by Lemma 13(1). We can hence apply
reduction (CSE) to remove var(n) fromhyp(H1) and all pred-
icates that intersect with var(n)\var(m) from pred(H1). By
Lemma 12(2) and 12 (6) the result is exactly H2:

hyp(H2)

= hyp(T , N\{n})
= hyp(T , N )\{var(n)} = hyp(H1)\{var(n)}

pred(H2)

= pred(T , N\{n})
= {θ ∈ pred(T , N ) | var(θ) ∩ (var(n)\var(m)) = ∅}
= {θ ∈ pred(H1) | var(θ) ∩ (var(n)\var(m)) = ∅}

Case 3 n has parent m in N and var(m) = ∅. Then,
var(n) �= ∅ since in a canonical tree the root node is the only
interior node that is labeled by the empty hyperedge. By def-
inition of GJTs, it follows that for every θ ∈ pred(m → n),
we have var(θ) ⊆ var(n)∪var(m) = var(n). In other words:
all θ ∈ pred(m → n) are filters. As such, we can use reduc-
tion (FLT) to remove all predicates in pred(m → n) from
H1. This yields a triplet I with the same hypergraph as H1,
same set of output variables as H1, and

pred(I) = pred(H1)\predT (m → n)

= pred(T , N )\predT (m → n)

= pred(T , N\{n}) = pred(H2),

where the third equality is due to Lemma12(4).We claim that
every variable in e is isolated in I. From this the result fol-
lows, because then we can apply (ISO) to remove the entire
hyperedge var(e) from hyp(I) = hyp(H1) while preserv-
ing out(I) and pred(I). The resulting triplet hence equals
H2. To see that e ⊆ isol(I), observe that no predicate in
pred(I) = pred(T , N\{n}) shares a variable with var(n) =
(var(n)\var(m)) by Lemma 12(6). Therefore, var(n) ∩
var(pred(I)) = ∅. Furthermore, var(n)∩ jv(I) = ∅ because
jv(I) = jv(H1) and no x ∈ var(n) = var(n)\var(m) is in
jv(H1) by Lemma 13(2).

Lemma 14 s Let (T , N ) be a canonical GJT pair and let n be
a frontier node of N. Then, H(T , N , z) �∗ H(T , N\{n}, z) 
for every z ⊆ var(N\{n}).
Proof For reasons of parsimony, let us abbreviate H1 = 
H(T , N , z) and H2 = H(T , N\{n}, z). We make the fol-
lowing case analysis.
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Lemma 5 Let (T , N1) and (T , N2) be canonical GJTpairs
with N2 ⊆ N1.Then,H(T , N1, z) �∗ H(T , N2, z) for every
z ⊆ var(N2).

Proof By induction on k, the number of nodes in N1\N2. In
the base casewhere k = 0, the result trivially holds since then
N1 = N2 and the two triplets are identical. For the induc-
tion step, assume that k > 0 and the result holds for k − 1.
Because both N1 and N2 are connex subsets of the same tree
T , there exists a node n ∈ N1 that is a frontier node in N1

and which is not in N2. Then, define N ′
1 = N1\{n}. Clearly

(T , N ′
1) is again canonical, and |N ′

1\N2| = k−1. Therefore,
H(T , N ′

1, z) �∗ H(T , N2, z) by induction hypothesis. Fur-
thermore, by H(T , N1, z) �∗ H(T , N ′

1, z) by Lemma 14,
from which the result follows.

B.4 Proof of Lemma 6

Lemma 6 Let H1 and H2 be two hypergraphs such that for
all e ∈ H2 there exists 
 ∈ H1 such that e ⊆ 
. Then,
(H1 ∪ H2, z,�) �∗ (H1, z,�), for every hyperedge z and
set of predicates �.

Proof The proof is by induction on k, the number of hyper-
edges in H2\H1. In the base case where k = 0, the result
trivially holds since H1 ∪ H2 = H1 and the two triplets are
hence identical. For the induction step, assume that k > 0
and the result holds for k − 1. Fix some e ∈ H2\H1 and
define H ′

2 = H2\{e}. Then, |H ′
2\H1| = k − 1. We show

that (H1 ∪ H2, z,�) �∗ (H1 ∪ H ′
2, z,�), from which the

result follows since (H1∪H ′
2, z,�) �∗ (H1, z,�) by induc-

tion hypothesis. To this end, we observe that there exists

 ∈ H1\{e}with e ⊆ 
. Therefore, jv(H1∪H2,z,�)(e) ⊆ e ⊆ 
.
Moreover, e\
 = ∅. Therefore, ext(H1∪H2,z,�)(e\
) = ∅ ⊆

. Thus e �(H1∪H2,z,�) 
. We may, therefore, apply (CSE) to
remove e from H1 ∪ H2, yielding H1 ∪ H ′

2. Since no predi-
cate shares variables with e\
 = ∅ this does not modify �.
Therefore, (H1 ∪ H2, z,�) �∗ (H1 ∪ H ′

2, z,�).

C Proofs of Section 5.2

Lemma 7 Let n be a violator of type 1 in (T , N ) and assume

(T , N )
1,n−→ (T ′, N ′). Then, (T ′, N ′) is a GJTpair and it is

equivalent to (T , N ). Moreover, the number of violators in
(T ′, N ′) is strictly smaller than the number of violators in
(T , N ).

Proof. The lemma follows from the following observations.
(1) It is straightforward to observe that T ′ is a valid GJT: the
constructionhas left the set of leaf nodes untouched; took care
to ensure that all nodes (including the newly added node p)

continue to have a guard child; ensures that the connectedness
condition continues to hold also for the relocated children of
n because every variable in n is present on the entire path
between n and p; and have ensured that also edge labels
remain valid (for the relocated nodes this is because var(p) =
var(g) ⊆ var(n)).

(2) N ′ is a connex subset of T ′ because the subtree of T
induced by N equals to subtree of T ′ induced by N ′, modulo
the replacement of l by p in case that l was in N and p is
hence in N ′.

(3) (T , N ) is equivalent to (T ′, N ′) because the construc-
tion leaves leaf atoms untouched, preserves edge labels, and
var(N ) = var(N ′). The latter is clear if l /∈ N because then
N = N ′. It follows from the fact that var(l) = var(p) if
l ∈ N , in which case N ′ = N\{l} ∪ {p}.

(4) All nodes in chT (n)\N (and their descendants) are
relocated to p in T ′. Therefore, n is no longer a violator
in (T ′, N ′). Because we do not introduce new violators, the
number of violators of (T ′, N ′) is strictly smaller than the
number of violators of (T , N ).

Lemma 8 Let n be a violator of type 2 in (T , N ) and assume

(T , N )
2,n−→ (T ′, N ′). Then, (T ′, N ′) is a GJTpair and it is

equivalent to (T , N ). Moreover, the number of violators in
(T ′, N ′) is strictly smaller than the number of violators in
(T , N ).

Proof. The lemma follows from the following observations.
(1) It is straightforward to observe that T ′ is a valid GJT: the
constructionhas left the set of leaf nodes untouched; took care
to ensure that all nodes (including the newly added node p)
continue to have a guard child; ensures that the connectedness
condition continues to hold also for the relocated children of
n because every variable in n is also present in p, their new
parent; and have ensured that also edge labels remain valid
(for the relocated nodes this is because var(p) = var(n)).

(2) N ′ is a connex subset of T ′ because (i) the subtree of
T induced by N equals to subtree of T ′ induced by N ′ {p},
(ii) n ∈ N , and (iii) p is a child of n in T ′. Therefore, N ′
must be connex.

(3) (T , N ) is equivalent to (T ′, N ′) because the construc-
tion leaves leaf atoms untouched, preserves edge labels, and
var(N ) = var(N ′). The latter follows because var(N ′) =
var(N ∪ {p}) and because var(p) = var(n) ⊆ var(N ) since
n ∈ N .

(4) All nodes in chT (n)\N (and their descendants) are
relocated to p in T ′. Therefore, n is no longer a violator
in (T ′, N ′). Because we do not introduce new violators, the
number of violators of (T ′, N ′) is strictly smaller than the
number of violators of (T , N ).
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D Description of competing systems

DBToaster DBToaster (henceforth denoted DBT) is a state-
of-the-art implementation of HIVM. It operates in pull-based
mode and can deal with randomly ordered update streams.
DBT is particularly meticulous in that it materializes only
useful views, and therefore, it is an interesting implementa-
tion for comparison. It has been extensively tested on equijoin
queries and has proven to bemore efficient than a commercial
database management system, a commercial stream process-
ing system and an IVM implementation [30]. DBT compiles
given SQL statements into executable trigger programs in
different programming languages.We compare against those
generated in Scala from the DBToaster Release 2.2,10 and it
uses actors11 to generate events from the input files. During
our experiments, however, we have found that this creates
unnecessarymemory overhead. For a fairmemory-wise com-
parison, we have, therefore, removed these actors.

Esper Esper (E) is a CER engine with a relational model
based on Stanford STREAM [4]. It is push based and can
deal with randomly ordered update streams.We use the Java-
based open source12 for our comparisons. Esper processes
queries expressed in the Esper event processing language
(EPL).

SASE SASE (SE) is an automaton-based CER system. It
operates in push-based mode and can deal with temporally
ordered update streams only. We use the publicly available
Java-based implementation of SASE.13 This implementa-
tion does not support projections. Furthermore, since SASE
requires queries to specify a match semantics (any match,
next match, partition contiguity) but does not allow combi-
nations of such semantics, we can only express queries Q1,
Q2, and Q4 in SASE. Hence, we compare against SASE for
these queries only. To be coherent with our semantics, the
corresponding SASE expressions use the any match seman-
tics [3].

Tesla/T-RexTesla/T-Rex (T) is also an automaton-basedCER
system. It operates in push-based mode only, and supports
temporally ordered update streams only. We use the publicly
available C-based implementation.14 This implementation
operates in a publish-subscribe model where events are pub-
lished by clients to the server, known as TRexServer. Clients
can subscribe to receive recognized composite events. Tesla
cannot deal with queries involving inequalities on multiple
attributes, e.g., Q3, therefore, we do not show results for Q3.

Since Tesla works in a decentralized manner, we measure
the update processing time by logging the time at the Tesla
TRexServer from the stream start until the end.

ZStream ZStream (Z) is a CER system based on a rela-
tional internal architecture. It operates in push-based mode
and can deal with temporally ordered update streams only.
ZStream is not available publicly. Hence, we have created
our own implementation following the lazy evaluation algo-
rithm described in the original paper [31]. This paper does
not describe how to treat projections, and as suchwe compare
against ZStream only for full join queries Q1–Q8.
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