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Abstract Virtually all of today’s Big Data systems are

passive in nature, responding to queries posted by their

users. Instead, we are working to shift Big Data plat-

forms from passive to active. In our view, a Big Active

Data (BAD) system should continuously and reliably

capture Big Data while enabling timely and automatic

delivery of relevant information to a large pool of in-

terested users, as well as supporting retrospective anal-

yses of historical information. While various scalable

streaming query engines have been created, their ac-

tive behavior is limited to a (relatively) small window

of the incoming data.

To this end we have created a BAD platform that

combines ideas and capabilities from both Big Data

and Active Data (e.g., Publish/Subscribe, Streaming

Engines). It supports complex subscriptions that con-
sider not only newly arrived items but also their rela-

tionships to past, stored data. Further, it can provide

actionable notifications by enriching the subscription

results with other useful data. Our platform extends

an existing open-source Big Data Management System,
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Apache AsterixDB, with an active toolkit. The toolkit

contains features to rapidly ingest semistructured data,

share execution pipelines among users, manage scaled

user data subscriptions, and actively monitor the state

of the data to produce individualized information for

each user.

This paper describes the features and design of our

current BAD data platform and demonstrates its ability

to scale without sacrificing query capabilities or result

individualization.
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1 Introduction

Work on Big Data management platforms has led to
map-reduce based frameworks that provide after-the-

fact Big Data analytics systems [4,11,69,75] as well as

NoSQL stores [5,8,9] that focus primarily on scalable

key-based record storage and fast retrieval for schema-

less data. There are also modern platforms that seek to

provide the benefits of both analytics and NoSQL [17,

19]. While these systems generally scale well, they re-

main mostly “passive” in nature, replying with answers

when a user poses a query.

With the ever-increasing amounts of data being gen-

erated daily by social, mobile, and web applications, as

well as the prevalence of the Internet of Things, it is

critical to shift from passive to “active” Big Data, over-

coming barriers in ingesting and analyzing this sea of

data and continuously delivering real time personalized

information to millions of users. Past work on active

databases [36,48,47,67,73] was never built to scale to

modern data sizes and arrival rates. Recently, various

systems have been built to actively analyze and dis-

tribute incoming data; these include Publish/Subscribe
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systems [42,49,61,62,66,77] and Streaming Query en-

gines [3,32,33,45,55]. However, these approaches have

achieved a compromise by accepting functional con-

straints in order to scale (e.g, limiting queries to a re-

cent window of data, or supporting a specific class of

queries).

In contrast, we advocate for Big Active Data, an

approach that aims to leverage modern Big Data Man-

agement in order to scale without giving up on data

or query capabilities, and in particular to address the

following BAD desiderata:

(D1) Incoming data items might not be important in iso-

lation, but in their relationships to other items in

the data as a whole. Subscriptions need to consider

data in context, not just newly arrived items’ con-

tent.

(D2) Important information for users is likely to be miss-

ing in the incoming data items, yet it may exist

elsewhere in the data as a whole. The results de-

livered to users must be able to be enriched with

other existing data in order to provide actionable

notifications that are individualized per user.

(D3) In addition to on-the-fly processing, later queries

and analyses over the collected data may yield im-

portant insights. Thus, retrospective Big Data

analytics must also be supported.

To build a Big Active Data (BAD) platform, we

have leveraged the benefits of Apache AsterixDB, a

modern Big Data Management System (BDMS) [2,19]

(namely, its scalability, declarative query language, flex-

ible data model, and support for parallel data analyt-

ics), as well as borrowing key ideas underlying the active

capabilities offered by existing Pub/Sub and streaming

query systems.

A complete BAD platform will fully utilize and in-

tegrate all layers of the platform with all three goals in

mind. In contrast, some related systems have been pro-

posed or implemented (e.g., [22]) which seek to “glue”

together separate existing platforms that accomplish

different parts of these goals. Such systems (as seen

through experimentation, e.g., [46]) will suffer the dis-

advantages of (1) introducing complexity of communi-

cation and processing between systems that aren’t built

specifically to work in unison and (2) missing on poten-

tial performance gains by treating individual compo-

nents (e.g., a permanent storage layer) as black boxes to

communicate with. Creating a BAD platform presents

the challenge of implementing the platform completely,

but gives great gains in utilizing all layers with knowl-

edge of the overall BAD vision.

The rest of the paper is organized as follows: Section

2 gives a high level overview of the objectives, capabil-

ities, and needs of a BAD platform, and it introduces

an example BAD application that we will examine for

the bulk of the paper. In Section 3 we discuss related

work and the shortcomings of existing systems, which

fall short in either capabilities or performance (or both)

with respect to our BAD platform requirements. Since

we aim to build a BAD system starting from an existing

passive BDMS (namely AsterixDB), Section 4 details

the advantages offered by AsterixDB but also its short-

comings with respect to our active requirements. In Sec-

tion 5 we introduce our Active Toolkit, which can be

used to create a BAD platform. Section 6 delves into the

three communication layers of BAD, used to maintain

subscriber interests, discover complex data states of in-

terest, and distribute this information to subscribers

efficiently. In Section 7 we briefly step aside to con-

sider how one might build a BAD application today,

in the absence of BAD, by combining multiple existing

systems. In Section 8 we take a first look at BAD’s per-

formance characteristics using a synthetic workload in-

spired by our example application. We also briefly look

at how the same application might be built using ex-

isting passive Big Data technology (e.g., triggers) and

the shortcomings of such an implementation. Finally,

Section 9 concludes the paper and describes our future

plans.

2 A BAD overview

Fig. 1: Big Active Data – System Overview.

Figure 1 provides a 10,000 foot overview of our BAD

Platform. Outside of the platform, and the reason for its

existence, are its data sources (Data Publishers) and its

end users (Data Subscribers). Within the system itself,

its components provide two broad areas of functional-

ity – Big Data monitoring and management (handled

by the BAD Data Cluster) and user notification man-

agement and distribution (handled by the BAD Broker

Network).
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2.1 A BAD Application

Consider as an example existing emergency notification

services. One of the limitations of systems such as the

USGS ShakeCast [13] system is that their notifications

are blanket statements for everyone (e.g., everyone re-

ceives the same flood warning or Amber Alert message).

There is no individualization of messages to meet the

needs of specific users (e.g., adding information relevant

to the users’ specific locations or needs). Such systems

belong to the Pub/Sub system category, where users

just get messages for topics of interest.

In contrast, suppose a BAD system existed with the

three capabilities sketched in Section 1. Rather than a

user simply subscribing to emergency publications, now

a user could ask something like “when there is an emer-

gency near my child, and it is a flash flood, please no-

tify me, and provide me with the contact information

for the security on-duty at the school, as well as nearby

safety shelter locations.” Suddenly a user is not getting

a simple publication, but a rich set of data specifically

relevant to the user, including the enrichment of the

emergency information with security personnel sched-

ules, local shelter information, etc.

We will use a similar example for demonstration and

evaluation purposes for the bulk of this paper. Specif-

ically, we will build a hypothetical example applica-

tion that uses three data sources: UserLocations (with

records indicating the current location of each user),

Reports (containing a record for each emergency gener-

ated as emergencies occur), and Shelters (holding the

known locations of emergency shelters).

UserLocations and Reports will be continuously in-

gested into the data cluster, whereas Shelters will be

loaded once and can be thought of as mainly a static,

reference dataset (i.e., infrequently updated). We will

focus on users who want to know about emergencies

occurring near them in space and time, and provid-

ing those users with individualized shelter information

based on their locations. Note how the three user needs

described in Section 1 apply to this example. The emer-

gencies are only important to users if they are near the

known reported location of the user, and the provided

notifications are enriched with shelter information be-

fore delivery. The emergency reports data will continue

to grow over time and can be analyzed later to gain his-

torical insights to help with long-term emergency ser-

vice planning.

It should be noted that this example is intended

to serve as a simple (toy) example for illustrative pur-

poses. Real potential use cases are varied and many. In

addition to uses in emergency management, a few ex-

amples of possible applications include: (i) public safety,

where one could monitor social media for various forms

of concerning chatter near (or about) sensitive or public

areas, or by certain watched individuals, to try and pre-

empt mass shootings or other acts of terror; (ii) public

health, where one could monitor social media comments

and hospital reports to the CDC for patterns that could

provide early warnings of infectious disease outbreaks;

and (iii) business, where one might monitor a combi-

nation of customer service call records, other customer

data, social media activity, and related product data

for events that might forewarn a company about a po-

tential impending departure of a valued customer.

2.2 BAD Platform Prerequisites

A fully BAD Platform should take advantage of tech-

nologies and techniques that exist today for both Big

Data performance and Scalable Delivery of results.

Big Data performance: For functionality and scal-

ability, BAD should utilize the full capabilities of a

modern BDMS; specifically, such systems can offer:

1. A rich, declarative query language.

2. Rich data type support that includes numeric, tex-

tual, temporal, spatial and semi-structured data.

3. Capabilities for fast data ingestion.

4. A data-partition-aware query optimizer.

5. A dataflow execution engine for partitioned-parallel

execution of query plans.

Item (1) above, prevents BAD applications from be-

ing limited in query capability, while (2) and (3) allow

for the variety and velocity of modern Big Data, as well

as active spatial-temporal queries. (4) and (5) enable

the scaling of the data volume and optimizing of active

tasks to run in parallel across the BAD platform.

Scalable Delivery of results: Since a BAD data

cluster is useless unless it can rapidly process data and

its results actually reach its end users, a BAD platform

must also offer the full capabilities of a Publish/Sub-

scribe distributed network, including:

1. Geo-distributed brokers that can scale dynamically

to the demand of subscribers.

2. Dynamic heuristics for handling large influxes of

subscribers and results.

3. Caching mechanisms designed with subscriber con-

nectivity issues and commonality of interests in mind.

4. Enhancements for communicating with the under-

lying BAD data cluster efficiently.

5. Support for rapid ingestion of incoming events from

various data sources.

6. Low-latency requirements for delivery of results.
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3 Related Work

Our work draws on work and ideas from modern Big

Data platforms, early active database systems, and mod-

ern active platforms including both Publish/Subscribe

systems and Streaming Query systems.

3.1 Big Data Platforms

First-generation Big Data management efforts resulted

in various MapReduce-based [37] frameworks and lan-

guages, often layered on Hadoop [4] for long-running

data analytics; in key-value storage management tech-

nologies [23,27,38,41] that provide simple but high-

performance record management and access; and, in

various specialized systems tailored to tasks such as

scalable graph analysis [35,57,59,74] or data stream an-

alytics [15,24,40,43,44,60]. With the exception of data

streams (which limit query capabilities in order to scale),

these developments have been “passive” in nature –

meaning that query processing, updates, and/or data

analysis tasks have been scaled up to handle very large

volumes of data, but these tasks run only when explic-

itly requested.

Several recent Big Data projects, including Apache

Flink (Stratosphere) [3,30], Apache Spark [6,76], and

Apache AsterixDB [2,19], have made strides in moving

away from the tradition of the MapReduce paradigm,

moving instead towards new approaches based on alge-

braic runtime engines. Nevertheless, these approaches

maintain a mostly-passive approach. Data feed mecha-

nisms, such as those offered in AsterixDB [46,71], pro-

vide a step in the direction of becoming active, and we

have advanced and evolved them to become part of our

Active Toolkit.

Recent work using the lambda architecture [52] de-

sign pattern seeks to provide a Big Data back-end as

well as massive scale batch processing by combining a

storage solution with a large-scale data query process-

ing engine (typically triggered via batch jobs) in order

to continuously ingest and analyze data. Though such

solutions may fulfill some of the requirements for BAD,

they do so by “gluing” several systems together, and

they also focus on batch-queries for the sake of over-

all analytics, rather than on producing and delivering

individualized results to scalable numbers of users.

3.2 Active Data

The key foundations for active data (ECA rules, trig-

gers) were arguably laid by the HiPac Project [36].

Many other systems contributed to the work on ECA

rules, including TriggerMan [48], Ariel [47], Postgres

[67], and Starburst [73]. There are, however, two issues

when directly applying past active techniques on Big

Data. First, triggers and ECA rules can be seen as a

“procedural sledgehammer” for a system: when event

A happens, perform action B. We seek a more declara-

tive (optimizable) way of making Big Data active and

detecting complex events of interest. Second, to the best

of our knowledge, no one has scaled an implementation

of triggers or ECA rules to the degree required for Big

Data (in terms of either the number of rules or the

scaled out nature of the data itself).

Work on Materialized View Maintenance (e.g., [16,

34,63,65]) is also related to Active Data. Nevertheless,

materialized view implementations have generally been

designed to scale on the order of the the number of

tables. Being more of a database performance tuning

tool, the solutions developed in this area have not tried

to address the level of scale that we anticipate for the

number of simultaneous data subscriptions that should

be the target for a BAD platform.

3.3 Publish/Subscribe Systems

In Pub/Sub Systems the data arrives in the form of

publications, and these publications are of interest to

specific users. Pub/Sub systems seek to optimize the

problems of identifying the relevant publications and of

delivering those publications to users in a scalable way.

Early Pub/Sub systems were mostly topic-based (e.g.,

a user might be interested in sports or entertainment

as publication topics). Modern Pub/Sub systems [42,

49,56,62,66] provide a richer, content-based subscrip-

tion language, with predicates over the content of each

incoming publication. Our BAD platform goes beyond

this functionality in two ways: First, whether or not

newly arrived data is of interest to a user can be based

on not only its content, but on its relationships to other

data. Second, the resulting notification(s) can include

information drawn from other data as well.

There has been some work done to enable Pub/-

Sub systems to cache data in order to provide a richer

subscription language and result enrichment [50,64,72],

but this research has largely relied on limiting the size of

the cached data (e.g., by storing a window of recent his-

tory). This limitation prevents subscriptions from being

applied to Big Data as a whole.

3.4 Continuous Query Engines

The seminal work on Tapestry [45] first introduced Con-

tinuous Queries over append-only databases, including
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a definition of monotonic queries. Most subsequent re-

search has focused on queries over streaming data (e.g.,

STREAM [21], Borealis [14], Aurora [15], TelegraphCQ

[31], and PIPES [53]). These systems are typically im-

plemented internally by building specialized data flows

(“boxes and arrows”) to process query results as new

data streams transiently through the system. Related

to both Pub/Sub and streaming data, the Distributed

Reactive Programming model [25] which some systems

are starting to adopt seeks to create event-driven ap-

plications that coordinate and react to multiple events

in order to produce state or event outputs.

Recently, more advanced algebraic streaming query

engines (e.g., Storm, Flink, and Spark Streaming) [33]

have been produced, which provide robust Big Data

scale processing of incoming data, but they are still de-

signed to work on incoming flows or windows, not pro-

viding a means of permanent Big Data storage. Struc-

tured Streaming on Spark [22] provides improvements

for such systems, introducing a more user-friendly declar-

ative API as well as providing the ability to join streams

with static data sources. However, even at their best,

streaming query systems are not designed to offer a

subscription model for delivering individual results to

a scalable number of users, instead outputting the re-

sults of a large job to a single log or database. As a

result, they don’t provide individualization or enrich-

ment of results or a scaled user-based online delivery

mechanism. Essentially, they provide analytic capabili-

ties but without the storage or result delivery features

needed for a complete BAD platform.

Data-centric approaches The most closely related

work to BAD has been on supporting continuous queries

via a data-centric approach, i.e., finding ways to treat

user queries as “just data” rather than as unique data

flows. To this end, NiagaraCQ [32] performed a live

analysis of standing queries to detect “group signa-

tures,” which are groups of queries that perform a selec-

tion over the same attribute and that differ only by the

constant of interest (e.g., age=19 vs. age=25). Given

these group signatures, it created a dataset of the con-

stants used and incrementally joined this dataset with

incoming data to produce results for multiple users via

a single data join. The growing field of Spatial Alarms

[26,55,68] serves to issue alerts to users based on ob-

jects that meet spatial predicates. Spatial predicates

are directly stored as objects (data) in an R-Tree, and

incoming updates are then checked against all of the

standing queries by simply performing a spatial join

with this R-Tree.

The technical approach taken by NiagaraCQ and

Spatial Alarms of treating continuous queries as data

is one of the main inspirations for our own subscrip-

tion scaling work. Both systems had limitations that

we seek to relax in our work. NiagaraCQ was designed

to operate using a very limited query language designed

for XML data. Spatial Alarms focused on one special

use case (where the queries are locations) rather than

on the problem as a whole. We build on these ideas for

the more general world of Big Data, e.g., with horizon-

tally partitioned data and a more fully expressive query

language.

4 Passive BDMS

Our aim here is to start with a passive BDMS, in this

case AsterixDB, and then show how to transform it

into a BAD system. We start with an introduction to

some of the advantages that we inherit from AsterixDB

as well as the limitations of a passive BDMS. This will

serve as a preamble to creating our Active Toolkit (Sec-

tion 5).

Fig. 2: The architecture of passive AsterixDB

Apache AsterixDB (see Figure 2) is a full-featured

BDMS that supports all of the prerequisites listed in

Section 2.2. The underlying runtime engine for execut-

ing its queries, written in SQL++, is the Hyracks data-

parallel platform [29]. Queries are compiled and opti-

mized via the Algebricks extensible algebraic parallel

query planning and optimization framework [28]. As-

terixDB has fully developed support for rich Big Data

types, including GeoJSON and other advanced spatial

types, which fits well with the location-oriented appli-

cations we are considering [18]. Another feature of As-

terixDB that makes it particularly suitable for becom-

ing active is the provision of data feeds built on top of

LSM (Log-Structured Merge) tree storage technology,

allowing for fast data ingestion [20,46,58,71].

Figure 3 illustrates by example the AsterixDB data

model (ADM) and language; part (a) shows the data

type, dataset, and index definitions that could be used
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CREATE DATAVERSE emergencyNotifications;
USE emergencyNotifications;

CREATE TYPE UserLocation AS {
location: circle,
userName: string,
timestamp: datetime

};
CREATE TYPE EmergencyReport AS {

reportId: uuid,
Etype: string,
location: circle,
timestamp: datetime

};
CREATE TYPE Contact AS {
contactName: string,
phone: int64,
address: string?
};
CREATE TYPE EmergencyShelter AS {

shelterName: string,
location: point,
contacts: {{ Contact }}?

};

CREATE DATASET UserLocations(UserLocation)

PRIMARY KEY userName;
CREATE DATASET Shelters(EmergencyShelter)

PRIMARY KEY shelterName;
CREATE DATASET Reports(EmergencyReport)

PRIMARY KEY reportId autogenerated;

CREATE INDEX location_time ON UserLocations(timestamp)

TYPE BTREE;
CREATE INDEX u_location ON UserLocations(location)

TYPE RTREE;
CREATE INDEX s_location ON Shelters(location)

TYPE RTREE;
CREATE INDEX report_time ON Reports(timestamp)

TYPE BTREE;

(a)

SELECT report, u.userName FROM

(SELECT VALUE r FROM Reports r

WHERE r.timestamp >
current_datetime() - day_time_duration(‘‘PT10S’’)
) report,
UserLocations u

WHERE spatial_intersect(report.location,u.location);

(b)

INSERT INTO Shelters (

{‘‘shelterName’’ : ‘‘swan’’ ,
‘‘location’’ : point(‘‘2437.34,1330.59’’) ,
‘‘contacts’’ : {{
{ ‘‘contactName’’ : ‘‘Jack Shepherd’’,

‘‘phone’’ : 4815162342 },
{ ‘‘contactName’’ : ‘‘John Locke’’,

‘‘phone’’ : 1234567890 }
}}}

);

(c)

Fig. 3: Examples of (a) ADM data types, datasets, and

indexes, (b) a SQL++ query, and (c) a SQL++ INSERT

statement

for our example application, as well as a SQL++ SELECT

query and a SQL++ INSERT statement. The query in

part (b) finds the emergencies that have been reported

in the last ten seconds and joins them spatially with

the locations of users, and part (c) shows how a new

shelter could be added.

When a request (e.g. the SELECT query in Figure

3b) is sent to AsterixDB, it is first parsed and opti-

mized into an algebraic parallel query plan. This plan

is then physically compiled into a Hyracks job, a di-

rected acyclic operator/connector graph (DAG), that

is distributed to the cluster to execute. A high-level

DAG will be seen in Figure 13.

4.1 Limitations of Passive BDMS

AsterixDB was architected with Big Data capabilities

in mind; however, it has some limitations from the per-

spective of the needs of an active framework. With the

exception of data feeds, every job performed is tied to

an explicit user interaction, from start to finish. Com-

pounding this problem is the fact that jobs in Aster-

ixDB are treated in isolation. Consider our use case

where users want to know about emergencies near them

as they occur. In passive AsterixDB, information is only

gained by directly requesting it (e.g., running a query

to check recent emergencies near the user’s current lo-

cation). If a user wanted to continuously check for new

information, the user would need to continuously re-

quest it (e.g., by sending a new request every 10 seconds

to check for new emergencies from the last 10 seconds).

This could be done in the following way:

1. The user sets up a cron job that runs every 10 sec-

onds and calls the AsterixDB REST API.

2. At each execution, the script sends a query to As-

terixDB.

3. AsterixDB treats this request as a new (never-before-

seen) job, which must be parsed, compiled, and op-

timized. Then it is distributed to the nodes of the

cluster.

4. The job for the query is finally executed.

5. AsterixDB performs job cleanup, including the re-

moval from all nodes of the information for the job.

6. Steps (2-5) are repeated ad infinitum.

This query model works well for a query that is run

once, but clearly becomes wasteful when a job is re-

peated, resulting in significant shortcomings:

1. The work for steps (3) and (5) is repeated every ten

seconds, even though it is exactly the same every

time.
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2. Every execution of the job requires explicit trigger-

ing by an outside source (the cron job in step (2)).

3. Both (1) and (2) are multiplied by the number of

users who are performing the same task in parallel.

5 The Active Toolkit

To overcome the above limitations we created an Active

Toolkit for AsterixDB. It contains four tools needed to

build a BAD framework, namely:

1. Data feeds to rapidly ingest application data. A data

feed represents the flow of scalable rapid data into

one or more datasets.

2. Deployed jobs that can perform arbitrary SQL++

tasks. They get compiled and distributed once and

used multiple times.

3. Data channels to actively process data with respect

to subscriber interests. A single channel is compiled

once and shared by a scalable number of users yet

produces individualized staged results.

4. Procedures to use deployed jobs to perform other ac-

tive management processes regularly and efficiently.

Returning to Figure 1, these four tools realize the

vision of a BAD Platform. The Data Feeds enable large

numbers of Data Publishers to provide rapid data to

the BAD Platform. Deployed Jobs and Procedures en-

able Data Managers to maintain and monitor the BAD

Platform. Most importantly, Data Channels provide the

mechanism for taking the data as a whole and produc-

ing enriched individualized results for Data Subscribers,

which the Broker Network can then deliver.

5.1 Data Feeds

Since data in an active environment is being generated

rapidly, it would not be efficient to insert records one

by one through a typical DDL statement. Alternatively,

bulk data loading is useful when there is a large collec-

tion of new data sitting on the disk waiting to be im-

ported, but for data incoming as a continuous stream,

we need a different mechanism. Data feeds [46] were ini-

tially introduced as a new feature in AsterixDB to per-

sist continuous data streams into AsterixDB datasets.

Starting from there, we have made a series of updates

to data feeds in order to make them even more effective

for BAD scenarios.

In [46], we introduced the notions of a “primary

feed”, which gets data from an external data source,

and “secondary feeds” that can be derived from an-

other feed. In addition, either/both could have an asso-

ciated user-defined function (UDF). Data feeds enable

users to attach UDFs onto the feed pipeline so that the

incoming data can be annotated (if needed) before be-

ing stored. A user could use that architecture to build

a rich “cascade network” that routes data to different

destinations for particular purposes.

While that initial architecture introduced a lot of

flexibility for building feed dataflow networks, it also

brought extra overheads related to persisting the data

and additional complexities in maintaining the dataflow

network. In a BAD application, the timeliness of data

and the robustness of the network outweigh the user-

level flexibility of defining a complex feed network. To

meet the BAD requirements, we have redesigned the

feed dataflow in a more succinct yet equally powerful ar-

chitecture (in terms of the set of addressable use cases),

as depicted in Figure 4.

Fig. 4: The updated feed dataflow

In the updated architecture, we have removed the

previous cascade network and instead branch out sub-

dataflows earlier with a “replicator”. The sub-dataflows

are isolated from one other so that the data movement

in each sub-dataflow can proceed without interfering

with the others. The UDFs attached to each path are

evaluated separately as well.

A feed (on the far left in Figure 4) internally con-

sists of an adapter and a parser. The adapter gets data

from an external data source, and the parser translates

the incoming data into ADM objects. Feeds were in-

troduced with Socket, File, RSS, and Twitter adapters

as well as JSON, ADM, Delimited Data, and Tweet

parsers to handle common use cases. In building the

BAD platform, we soon realized the need for adding

many more adapters and parsers in order to handle a

larger selection of data sources and formats. To address

this issue we created a pluggable adapter and parser

framework so that users can add their own parsers and

adapters and use them just like the native ones.

In [46], data feeds provided INSERT semantics since

they were initially intended to be continuously-running

sources of new data. Later experiences, including us-
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USE emergencyNotifications;

CREATE TYPE UserLocationFeedType AS {
location: circle,
userName: string

};
CREATE TYPE EmergencyReportFeedType AS {

Etype: string,
location: circle

};

CREATE FEED LocationFeed WITH

{
‘‘adapter-name’’ : ‘‘socket_adapter’’,
‘‘sockets’’ : ‘‘bad_cluster.edu:10009’’,
‘‘address-type’’ : ‘‘IP’’,
‘‘type-name’’ : ‘‘UserLocationFeedType’’,
‘‘format’’ : ‘‘adm’’
};
CREATE FEED ReportFeed WITH

{
‘‘adapter-name’’ : ‘‘socket_adapter’’,
‘‘sockets’’ : ‘‘bad_cluster.edu:10008’’,
‘‘address-type’’ : ‘‘IP’’,
‘‘type-name’’ : ‘‘EmergencyReportFeedType’’,
‘‘format’’ : ‘‘adm’’
};

Fig. 5: Create data feeds for the Reports and UserLoca-

tions

ing feeds for “BAD” applications, led us to add UPSERT

(i.e., insert if new, else replace) semantics as an option

as well. Incoming data may in some cases contain du-

plicates (e.g., the same Tweet arriving via an “at least

once” connection, or the same emergency report from

several agencies). In other cases, users may explictly in-

tend for the stream to contain updates, and they may

only want to keep the latest information (e.g., users’

current locations). UPSERT semantics are in fact the new

default for feeds.

In our example application, we assume that the data

being ingested into UserLocations and Reports are highly

dynamic, as the user locations are being updated and

reports are being generated frequently. Figure 5 depicts

feeds being created for both datasets. Both feeds in

this example expect data in ADM format. The default

create-feed statement creates a feed with UPSERT se-

mantics. The DDL demonstrates a socket adapter on a

designated host (e.g., “bad cluster.edu: 10008”). When

clients come, they can connect to these endpoints and

send their data directly.

Note that Figure 5 defines two additional datatypes,

“UserLocationFeedType” and “EmergencyReportFeed-

Type”, for our feeds. Incoming data from publishers is

not required to have a timestamp, thus the datatype

for the incoming data does not have a timestamp. For a

USE emergencyNotifications;
CREATE FUNCTION add_insert_time(record) {
object_merge({‘‘timestamp’’: current_datetime()}
, record)
};

/∗
Sample Incoming Record:

{‘‘Etype’’ : ‘‘storm’’,
‘‘location’’ : circle(‘‘846.5, 2589.4, 100.0’’)}
Sample Output Record:

{‘‘Etype’’ : ‘‘storm’’,
‘‘location’’ : circle(‘‘846.5, 2589.4, 100.0’’),
‘‘timestamp’’ : datetime(‘‘2018-08-27T10:10:05’’)}
∗/

Fig. 6: Create the “add insert time” function

USE emergencyNotifications;

CONNECT FEED LocationFeed TO DATASET UserLocations

APPLY FUNCTION add_insert_time;

CONNECT FEED ReportFeed TO DATASET Reports

APPLY FUNCTION add_insert_time;

START FEED LocationFeed;
START FEED ReportFeed;

Fig. 7: Connect the data feeds to both datasets with func-

tion

BAD application, however, the timestamp is an impor-

tant field as it will be used later for generating the emer-

gency notifications. To annotate the incoming data with

proper timestamps, we create a UDF and attach it to a

feed so that the incoming data is timestamped before it

reaches the dataset (BAD nodes should be synchronized

using NTP). We first create a function to add insert

time, as shown in Figure 6. This function utilizes the

built-in SQL++ functions “current datetime()” and “ob-

ject merge()” to add a new field with the current times-

tamp to an incoming record, thus converting a record of

the “EmergencyReportFeedType” into a record of the

actual datatype, “EmergencyReport.”

As the final step in setting up a data feed, we attach

the UDF to the feed pipeline, connect the feed to the

dataset, and start the feed. The DDL statements to

accomplish this are shown in Figure 7. All incoming

records for the UserLocations and Reports datasets will

now be annotated with an arrival timestamp that will

be used shortly in their associated data channels.
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5.2 Deployed Jobs

The overhead of parsing, compiling, optimizing, and

distributing a job (e.g., an “INSERT” or “QUERY”

execution pipeline) can be especially time-consuming

for small jobs. For example, fetching a single record by

primary key in AsterixDB currently takes around 20

milliseconds regardless of the size of the data cluster.

This is because the process of parsing, compiling, opti-

mizing, and distributing a job incurs a penalty of 10-20

milliseconds before the job even starts executing. This

is “noise” for longer-running Big Data analytics queries,

but for small jobs this process can become dominant.

We created an extendable class of jobs called de-

ployed jobs to address this overhead. A deployed job is a

new first-class citizen in the runtime of AsterixDB that

is created once but can be run many times. Deployed

jobs are roughly similar in function to the prepared

query facilities found in many conventional relational

database systems. Deployed jobs can be created for the

following types of SQL++ tasks: DELETE, INSERT, and

SELECT (query).

Fig. 8: Deploying a Job

When a deployed job is created (see Figure 8), the

SQL++ syntax for the job is provided (see step A).

This is then parsed, compiled, and optimized once to

produce a job specification (B). The resulting job spec

is then distributed (C) and cached at each node (D).

When executing a deployed job (Figure 9), it is sim-

ply referenced by name (E). The cluster controller sends

an “execute” command (F) to the nodes, which then

execute the job (G) using the stored job spec.

Note that the deployed job in Figures 8 and 9 has a

parameter representing the primary key of the record to

be deleted. This parameterization is another enhance-

ment that makes deployed jobs more robust. There are

Fig. 9: Executing a Deployed Job

cases where different users may want to run a simi-

lar job that differs by only some set of parameters (in

this case the id of the record). To support this, we im-

plemented parameterized deployed jobs. The parameter

values are passed to the node controller for the given

job execution by the cluster controller. At runtime, an

added operator in the job’s ongoing plan fetches the

value for a given parameter. At job cleanup, the stored

parameter values are removed for the job. Allowing

users to share parameterized jobs will be examined fur-

ther in the channels and the procedures.

A deployed job is one limited special case of an ac-

tive job. More generally, a BAD platform should be able

to support a scalable number of users (through a sim-

ple interface) who subscribe to data of interest to them.

This implies actively processing data as it changes, stor-

ing new results as they are found, and delivering them

to the data subscribers. We achieve this through the

next feature of the Active Toolkit: repetitive data chan-

nels.

5.3 Channels

5.3.1 Channels for users

We introduce the notion of a channel as a new, scal-

able mechanism that allows users to subscribe to data.

A channel is a shared deployed active job that pro-

duces individualized data for subscribing users. In order

to scale, a channel is implemented as a parameterized

query with each user specifying their individual param-

eter values of interest.

Consider our example application, where users want

to be notified when emergencies occur that intersect

with their current locations. A natural implementation

using passive AsterixDB would be through polling. Ev-
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USE emergencyNotifications;

CREATE FUNCTION RecentEmergenciesNearUser(userName) {
SELECT report, shelters
FROM

(SELECT VALUE r FROM Reports r

WHERE r.timestamp > current_datetime() -

day_time_duration(‘‘PT10S”)) report,
UserLocations u,
(SELECT s.location FROM Shelters s WHERE

spatial_intersect(s.location,u.location)) shelters

WHERE u.userName = userName

AND spatial_intersect(report.location,u.location)
};

(a)

RecentEmergenciesNearUser(‘‘dharma1’’);

(b)

Fig. 10: DDL (a) for a function that finds recent emer-

gencies near a given user, and an example invocation (b)

of the function

ery user would explicitly poll the data cluster, at some

interval, to see whether something new has occurred

since the last poll. This would incur a steep penalty

since every instance of every poll would be seen and

compiled as a brand new query. We examine the per-

formance of such a passive approach in Section 8.

AsterixDB already provides an interface (functions)

for defining a passive parameterized query that polling

users could utilize. The move from passive to active

for users can be colloquialized as follows: “Rather than

calling this function myself to check for data, I would

like the function to call me when there is data of interest

to me.” Or, more succinctly, “You’ve got data!”

A repetitive data channel can be thought of as an

active, shared version of a function (in fact the chan-

nel DDL makes use of the existing SQL++ function

DDL) that utilizes an optimized deployed job to lever-

age shared interests but that produces individualized

results for many users at once based on their individual

parameters and sends notifications when new data is

produced.

We provide an SQL++ DDL extension for channels

that leverages AsterixDB parameterized function defi-

nitions. As an example, recall the query in Figure 3 that

joined recent emergency reports with the UserLocations

dataset. Suppose that we want to create a function that

will run a similar query on behalf of a single user. We

can see such a function in Figure 10(a). When a user

calls RecentEmergenciesNearUser(“dharma1”) in Fig-

ure 10(b), the variable “userName” will be replaced

with “dharma1” in the query, and then the query will

USE emergencyNotifications;

CREATE REPETITIVE CHANNEL EmergenciesNearMe USING

RecentEmergenciesNearUser@1 PERIOD duration(‘‘PT10S’’);

CREATE BROKER BADBrokerOne AT ‘‘BAD_broker_one.edu’’;

SUBSCRIBE TO EmergenciesNearMe(‘‘dharma1’’)
ON BADBrokerOne;
SUBSCRIBE TO EmergenciesNearMe(‘‘johnLocke’’)
ON BADBrokerOne;

Fig. 11: DDL to create a channel using the function Re-

centEmergenciesNearUser@1, DDL for creating a broker,

and DDL for creating a subscription to the channel

be treated normally. This provides a nice way to de-

scribe exactly the type of shared query that users of

our example application would want to run. Note that

the query in Figure 10(a) also enriches (personalizes)

the user’s results with nearby shelter information.

Figure 11 shows how a channel can be created based

on the function from Figure 10. Creating a repetitive

channel requires two parts: a function for the channel to

use and a time (repeat) period. Creating a channel will

compile the query contained in the function into a single

deployed job that then will be run repetitively based

on the period provided (in this case every 10 seconds).

Every time this deployed job is run it will produce a set

of individualized results for all of the data subscribers.

It is worth noting that a trade-off of sharing a sin-

gle channel execution is that users of the channel will

also share the period of the channel (in this example

10 seconds). It may be the case that some users would

desire the same sort of query behavior but with a differ-

ent rate of analysis and delivery (e.g., “send me the list

of emergencies every hour”). Rather than making the

performance match the user with the fastest demands,

and thereby performing work more often than neces-

sary for other users, multiple channels can be created

with different periods (e.g., a 10-second channel and a

1-hour channel) to enable more capabilities for users.

Of course this will also come with the cost of running

multiple channels in parallel.

In addition to the channel, Figure 11 also shows how

to create a broker as a recognized subscription endpoint

in BAD AsterixDB. In order to provide scalability, data

subscribers connect to the cluster through BAD bro-

kers, providing a one-to-many connection to BAD As-

terixDB (brokers are discussed in more detail in Section

6). When a data subscriber subsequently subscribes to

a channel, the broker acting on behalf of the subscriber

will provide: (i) the parameters relevant for that sub-

scriber (in this case the id of the user), and (ii) the name
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of the broker making the request (in this case BAD-

BrokerOne). Once a subscription has been created, the

subscriber will begin to receive results for emergencies

near her changing location over time.

Fig. 12: The subscription and results tables for the

EmergenciesNearMe channel

5.3.2 Channels under the hood

We now discuss in detail how BAD AsterixDB creates

and manages data channel work flows under the hood

using an EmergenciesNearMe channel as an example.

When this channel is created, two new internal datasets

will be created: EmergenciesNearMeSubscriptions and

EmergenciesNearMeResults. The subscriptions dataset

contains one record for each subscription that has been

created. This includes three important pieces of infor-

mation: (a) an automatically generated id for the sub-

scription, (b) the name of the broker servicing the sub-

scriber of the subscription, and (c) the channel param-

eter values for the subscription. The results dataset is

where the result records for the channel will be stored

(including their subscription ids). An example of these

tables appears in Figure 12. Although these tables will

start out empty, they are depicted with data to illus-

trate how their data could look over time. There are

four subscriptions shown, along with results produced

for some of these subscriptions.

Once these two tables have been created, the chan-

nel will be compiled, optimized, and distributed to the

node controllers. Rather than running the function sep-

arately for each subscription, a join is created between

the function body and the EmergenciesNearMeSubscrip-

tions dataset on the parameter values. The results pro-

duced are inserted into the EmergenciesNearMeResults

dataset. This job is then optimized into a plan DAG by

AsterixDB’s rule-based job optimizer (see Figure 13)

that includes the following steps:

1. Join the Subscriptions and UserLocations datasets

to find the locations of the subscribers.

2. Utilize the time index of Reports to fetch only the

recent Reports (last ten seconds, from the function

query).

3. Perform a spatial join between the results of steps

(1) and (2).

4. Enhance the result with the nearby shelters (also

spatially joined).

5. Insert the results into the results table.

6. Send the brokers notifications that new results have

been created.

Fig. 13: The deployed job for executing the channel

EmergenciesNearMe

It is important to note the advantages of this ap-

proach over a passive polling method. If users were

polling individually, each poll request would produce

an individual job very similar to Figure 13, but with

the Subscriptions table being replaced by a single input

value (the id of the user making the request) and with

the results being delivered directly back to that user.

In contrast, the deployed channel job executes once ev-

ery ten seconds (the period of the channel) on behalf

of all subscribers, potentially produces new results, and

requires no intervention from the users. Section 6 dis-

cusses in more detail how the results (and the subscrip-

tions) are communicated from the data cluster to each

subscriber (and vise-versa).

5.3.3 The Case for Continuous Channels

Repetitive channels have the limitation that they rely

on some fixed time interval to execute (e.g., ten sec-

onds). While this is fine if data is produced and desired

at a specific rate, it cannot handle two extreme but

common cases: users wanting data at the moment of its
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creation (not waiting until the next channel execution),

and events of interest occurring infrequently (not pro-

ducing results for several executions, and thereby po-

tentially wasting interim query processing resources).

In this direction we are currently researching the next

generation of channels, namely continuous channels, in-

spired by [45], which will execute on data changes rather

than relying on fixed execution periods.

It is interesting to note that when events are time-

driven and the channel functions are time-qualified (as

in our sample application), repetitive channels can pro-

vide a batch-y approximation to continuous channels,

as they only execute on and produce a small set of data

if the repeat interval is not too large.

5.4 Procedures

Procedures are another entity built on top of deployed

jobs to help maintain and provide tools for a BAD ap-

plication. For example, brokers might want to retrieve

lists of their current subscriptions to a given channel.

Rather than having each broker send such a request as a

new job each time, an application administrator could

create the first example procedure (CountBrokerSub-

scriptions) in Figure 14 that can then be used multiple

times by multiple brokers. This also shows how one can

provide a parameter to a procedure (in this case the

name of the broker of interest). The value of the pa-

rameter is then passed when “execute” is called. Recall

the execution pipeline in Figure 9. Roughly speaking,

procedures are like a time-based version of the stored

procedures found in the relational world.

In order to accomplish active objectives using pro-

cedures (addressing the limitations discussed in Sec-

tion 4.1), we have augmented the deployed job capa-

bilities by allowing users to specify an execution fre-

quency when running a deployed job (e.g., 24 hours),

thus allowing the creation of repetitive procedures. Here

the user will only make one explicit call. Subsequent

executions will then happen actively, with no user in-

teraction, every 24 hours. Conceptually this can be seen

as the simplest possible version of an active job. It can

be noted that repetitive procedures can perform at scale

many of the use-cases that triggers [36] were used for in

traditional database systems, including inserting corol-

lary information for newly inserted data and enforcing

integrity constraints (albeit with a latency).

Managing a channel results dataset provides a use-

case for such a repetitive procedure. The dataset can

be thought of as a log of results being continually ap-

pended. This data might (depending on the type of

application) be considered to be stale after some time

threshold. In our example application, where users are

USE emergencyNotifications;

CREATE PROCEDURE CountBrokerSubscriptions(brokerName) {
SELECT array_count(

(SELECT sub

FROM EmergenciesNearMeSubscriptions sub

WHERE sub.BrokerName = brokerName))

};

EXECUTE CountBrokerSubscriptions(‘‘BADBrokerOne’’);

CREATE PROCEDURE deleteStaleResults() {
DELETE result FROM EmergenciesNearMeResults

WHERE result.channelExecutionTime <
current_datetime() - day_time_duration(‘‘PT24H’’)

} PERIOD duration(‘‘PT24H’’);

EXECUTE deleteStaleResults();

CREATE PROCEDURE SubCountsForEmergenciesNearMe(){
INSERT INTO SubscriptionStatistics (

SELECT current_datetime() AS timestamp, b.BrokerName,
(SELECT VALUE array_count(

(SELECT sub

FROM EmergenciesNearMeSubscriptions sub

WHERE sub.BrokerName = b. BrokerName)))
AS subscriptions

FROM Metadata.‘Broker’ b)
} PERIOD duration(‘‘PT1H’’);

EXECUTE SubCountsForEmergenciesNearMe();

Fig. 14: DDL for creating and executing three procedures

(with the latter two being repetitive)

notified of emergencies on an ongoing basis, we might

only want to keep the old results in a broker-retrievable

form for one day.

An application administrator can easily set up a

procedure for cleaning up the results dataset using the

DDL and DML for the second procedure (deleteStaleRe-

sults) in Figure 14. The body of this procedure deletes

channel results that are more than 24 hours old. Note

that this procedure can be given an execution inter-

val (24 hours). The “execute” call to initiate the active

procedure will only need to be called once. The proce-

dure will then continue to repeat every 24 hours. There

are many other needs that procedures would be useful

for in our application as well. For example, procedures

could also be used to help evaluate broker utilization.

The third procedure in Figure 14 (SubCountsForEmer-

genciesNearMe) will query the subscription counts for

the EmergencyChannel for every broker, on an hourly

basis, and insert the results into a SubscriptionStatis-

tics dataset. Retrospective analytics can then be used

on this dataset to tune the broker network itself.

There are many ways that procedures could enhance

a BAD Platform, including: gathering statistics on the
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types of emergencies that are frequently producing re-

sults, finding the average number of results produced

per execution, etc.

The table in Figure 15 summarizes the abilities and

differences of the tools in the Active Toolkit. Data Chan-

nels and Procedures are both extended implementa-

tions of deployed jobs.

Fig. 15: Comparison of Active Toolkit tools

5.5 Users of the Active Toolkit

The term “user” could loosely apply to three differ-

ent types of users in our example application, namely,

Application Administrators, Data Publishers and Data

Subscribers.

5.5.1 Application Administrators

An Application Administrator builds applications

using the BAD framework. They have direct access to

the data cluster for hosting datasets and data feeds.

They have knowledge of: (1) Database Administration

for the data stored in the Data Cluster for their appli-

cations, and, (2) the common interests of their “users”

(eventual Data Subscribers). Based on user interests,

an Application Administrator will create and manage

parameterized channels that can be subscribed to in the

application.

In our example scenario, the Application Admin-

istrator is who will create the emergencyNotifications

dataverse. She will then create the three datasets: Re-

ports (the continuously ingested reports), UserLocations

(the current location of each “user” (subscriber) of the

application), and Shelters (the relatively static meta-

data for shelter information, initially bulk loaded with

all known shelters by the administrator).

The Application Administrator will then proceed to

make this a BAD application by creating the data feeds

for both Reports and UserLocations (DDLs shown in

Figure 5), and by creating the subscribe-able repetitive

channels for the application (via the DDL shown in Fig-

ure 11). Lastly, she can create the relevant Procedures

to help with the active management of the application

(shown in Figure 14).

5.5.2 Data Publishers

Data Publishers provide data in the form of streams

of incoming records. These streams enter the Data Clus-

ter directly via data feeds. In a typical use case, the data

publishers will be exteral services that are known/trusted

by the Application Administrators (such as news sites,

social media data streams, or government agencies) and

the incoming data will be broadly relevant to a given

BAD application (e.g., emergency reports or weather

broadcasts).

In our example scenario, the Application Admin-

istrator will provide the Emergency Report publisher

with the cluster endpoint for sending reports to the

ReportFeed, and the publisher will then send its reports

to this endpoint (e.g., “bad data cluster.edu:10008”).

5.5.3 Data Subscribers

The third category is Data Subscribers. They con-

nect to BAD applications and subscribe to one or more

of their channels. They are never given direct access to

the data cluster, but instead perform all of their tasks

via a nearby BAD Broker. This separation of the sub-

scribers from the cluster provides several advantages.

Rather than dealing with result data requests per sub-

scriber, the cluster instead receives aggregated requests
from brokers on behalf of many subscribers at once,

and in the same way the cluster sends aggregate notifi-

cations to the brokers, rather than communicating with

every subscriber. This limits the per-user impact on the

cluster, freeing more resources for BAD tasks. In addi-

tion, this layered approach separates concerns, allowing

brokers to focus on problems of result caching and com-

munication issues with the subscriber, while the cluster

deals with the data creation itself. A subscription can be

created for a specific channel and indicates the specific

parameters of individual interest to a subscriber. Each

subscription will be registered in the BAD data cluster

with a subscription id. After its creation, the broker for

a subscription will begin to receive new results from the

channel that the given subscriber has subscribed to.

There are cases where a data subscriber may also

serve as a data publisher. As an example, an applica-

tion such as ours may want to allow users to provide

(publish) their locations to the application (e.g., to en-

able subscriptions involving those locations). For such
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cases, an API is provided for a data feed that passes

data from the subscribers through the brokers to the

data cluster.

In our example application, users will want to sub-

scribe to the EmergenciesNearMe channel, so they will

allow the application to have access to their current

locations. The application will send this data via the

brokers to the LocationFeed. Users can then subscribe

to the channel (their associated brokers will do so as

shown in Figure 11), at which point they will start re-

ceiving relevant results.

5.6 A BAD Recap

In this section, we presented the implementation of

an active toolkit for AsterixDB that meets the BAD

desiderata proposed in Section 1.

Our main contributions in building the active toolkit

can be summarized as follows:

– We redesigned AsterixDB’s data feeds, leading to

a more succinct feed architecture that branches out

sub-dataflows with a “replicator”. This allows data

feeds to feed multiple datasets concurrently while

maintaining high throughput. In addition, we intro-

duced UPSERT semantics for data feeds involving “at

least once” data sources; these are now the default

semantics for feeds.

– Inspired by prepared queries, we added deployed

jobs into AsterixDB as the building block for repet-

itive channels and procedures. In addition to pre-

compiling jobs to avoid per-query parsing, optimiza-

tion, and job generation costs, we go further, de-

ployng and caching the resulting compiled jobs on

each node and invoking them with parameters to

further reduce the per-job initiation cost.

– We introduced and implemented channels, a new

mechanism that allows data subscribers to specify

their data interests using parameters without hav-

ing to write independent queries. Channels, which

are defined functionally by application developers

and built on top of deployed jobs, actively deliver

(“push”) data of interest to subscribers instead of

having them poll for data (“pull”) as in a passive

data management system.

– We also introduced active procedures that enable

administrators to easily manage the data life-cycle(s)

in BAD applications by specifying data maintenance

jobs to be executed on a pre-specified periodic basis.

This periodic activation differentiates BAD proce-

dures from the stored procedures typically found in

the relational world.

With the active toolkit, application developers

and application administrators can easily create and

manage BAD applications to provide customized data

notification and delivery services for data publishers

and data subscribers using DDL statements based

on a rich declarative query language. As we will dis-

cuss in Section 7, such a declarative and systematic

solution saves administrators from the additional effort

of gluing multiple systems together and orchestrating

them to provide equivalent BAD functionalities. Addi-

tionally, with the optimizations employed in the BAD

framework (efficient data ingestion, deployed jobs, etc.),

BAD applications can provide such customized notifi-

cation services efficiently at scale.

6 BAD Layers

Fig. 16: Communication in the BAD system

As shown in Figure 16, there are three layers of com-

munication for a BAD application. This provides a sep-

aration of concerns and allows each layer to perform

tasks that are optimal for such a layer. Specifically, the
Broker network is focused on efficiently handling both

subscription communication and result delivery. Since

the Broker network is structurally similar to a Pub/Sub

Broker network, it can utilize state-of-the-art Pub/Sub

scaling techniques and heuristics. On the other hand,

the Data Cluster layer is built directly on a state-of-the-

art Big Data Platform, and it can therefore capitalize

on its capabilities (e.g., the distributed query engine).

These details are discussed in further depth below.

6.1 Subscriber Network

A user joining the application will first communicate

with a Broker Coordination Service (BCS), which will

assign a broker to communicate through. The BCS com-

municates with the brokers, and may change user as-

signments based on the loads of brokers and locations

of users. If a broker fails, the user can also communi-

cate with the BCS to receive a new broker assignment.
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The Application Administrator can decide to what level

the users will be aware of the underlying channels and

communications. For example, whether they are choos-

ing from a list of channels to subscribe to or simply

registering interests using a higher-level interface.

Fig. 17: Communications between a subscriber’s device

and a broker

The communications between a subscriber’s device

and a broker are as follows:

1. The user’s application will send a subscribe request

to the broker (and will get back a subscription id

that represents that subscription).

2. In the background, the application will continue to

send the broker location updates.

3. When there are new results, the broker will send a

push notification to the application.

4. The application will send a get results request to

retrieve these results from the broker (including the

subscription id).

5. When a subscriber is no longer interested in a chan-

nel, the device can send an unsubscribe request to

the broker.

The interactions made by the user will ultimately

be translated into requests made to the broker from the

subscriber’s device application. Figure 17 illustrates the

types of communication between a broker and a sub-

scriber’s (“dharma1”) device. There are five main inter-

actions that will occur between the broker and a sub-

scriber to the EmergenciesNearMe channel. The reason

for using a pull-based architecture is to allow the device

application to be intermittently connected and to use

its own heuristics (including network connection, bat-

tery power, etc.,) to determine when and how to fetch

results. In addition, the application may use heuristics

to tell the broker how it wants to be able to get results

(e.g., if I have been disconnected for a long time, just

give me the newest result), which the broker can use to

manage result caching.

The end subscriber does not need to be aware of the

data cluster at all, or of how the channels and locations

are being maintained. This separation of concerns is

repeated in the broker-to-data-cluster interaction.

6.2 Broker Network

The broker network is comprised of a scalable number

of nodes, each designed to provide a one-to-many con-

nection between the data cluster and the end user data

subscribers. The broker network can capitalize on cur-

rent Pub/Sub research for heuristics on subscriber dis-

tribution, subscription management, and result caching

and delivery (as noted in Section 2.2). Such techniques

are examined in [70] and lie outside the scope of this

paper. Below we focus on the communication layer be-

tween a broker and the data cluster.

Fig. 18: Communications between a broker and the data

cluster

Requests made by an end data subscriber are han-

dled (directly or indirectly) by requests made by the

broker to the data cluster controller, using the follow-

ing operations:

1. The broker sends a subscribe request on behalf of a

user (again, getting back a subscription id).

2. The broker sends newly reported user locations di-

rectly to the LocationFeed data feed.
3. When the channel executes, the cluster sends a no-

tification to the broker if there are new results, in-

cluding the subscription ids for which there are new

results.

4. The broker can run queries on the Results dataset

to retrieve results.

5. The broker can unsubscribe on behalf of a user.

It is up to the broker to determine when and how

to query the Results dataset based on the needs and

availability of its users. In the simplest case, the broker

can simply request results individually when they are

requested by the user. The broker could fetch all of its

users results every time it gets a notification, so these

results would be cached for when users request them. A

broker could also opt to only request and cache results

for users who ask for results often, and hold off on other

results [70].

As an optimization, a broker could also share sub-

scriptions among its users. For example, if there were
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a channel to find emergencies of a certain type in a

certain city, there might be several users subscribing to

tornadoes in San Francisco. Rather than creating a new

subscription per user, the broker could share a single

subscription on the cluster for these users but provide

end user subscribers with individual ids to communi-

cate their requests to the broker (which will use the

shared subscription on the cluster).

6.3 Data Cluster

At the bottom of the Active Toolkit’s software stack,

the data cluster has the advantage of treating every-

thing as “just data”. Static and dynamic datasets, sub-

scription data, result data, and user data all end up as

scalable, distributed data that can capitalize on Aster-

ixDB as a performant Big Data platform. This includes

the ability to utilize AsterixDB’s rich query capabilities

for later ad hoc historical data analyses. The abstract

notions of subscribe and unsubscribe are translated at

this level into simple cases of INSERT and DELETE. The

application administrator can also build indexes on the

datasets involved in the query, including the Subscrip-

tions and Results datasets themselves. Temporal in-

dexes can help with fetching recent data. The execution

of the channel then becomes an optimized, scalable Big

Data join.

7 Pretending to be BAD

To further showcase the advantages of building a BAD
system, in this section we describe an alternative ap-

proach that attempts to address all the BAD desiderata

(namely D1, D2 and D3 described in Section 1), by glu-

ing together existing off-the-shelf component systems

(with minimum customization).

To identify such components, consider again the emer-

gency example application used throughout the paper.

On the input side, we have the emergency reports and

the user location updates, which are events that, de-

pending on the application, can demonstrate high ar-

rival rates and need to be efficiently ingested by the

system. One could thus utilize an ingestion engine that

is able to support such fast incoming data, e.g. Apache

Kafka [54].

On the output side, in order to deliver incoming

data to subscribed users, one could utilize a notification

delivery servicee like Amazon’s Simple Notification Ser-

vice (SNS) [1]. Amazon SNS enables notification deliv-

ery to a massive number of users and allows notification

filtering based on a notification’s content.

USE emergencyNotifications;

SELECT report.Etype AS Emergency_Type,
count(report) AS Frequency,
avg(spatial_area(report.location)) AS Avg_Scope

FROM Reports report

WHERE report.timestamp >
current_datetime() - duration(‘‘P1Y”)
GROUP BY report.Etype;

Fig. 19: An analysis of emergencies in the last year

Fig. 20: A ‘pretending to be BAD’ example

Note that, in the BAD context, notifications’ rele-

vance to users do not consider just the content of the in-

coming data items, but also their relationships to other

data (D1). Moreover, notifications sent to subscribers

may need to be enriched (e.g., with shelter information)

to provide actionable data (D2). Amazon SNS alone is

thus not sufficient to support the D1 and D2 desider-

ata. The complete solution requires a system that also

supports complex computations on large scale data in a

timely manner; an example processing engine would be

a streaming query processor like Apache Spark Struc-

tured Streaming [22].

Last but not least, ingested data (e.g., reports) can

be used a posteriori for revealing useful insights, for

example finding the frequencies and scopes of emergen-

cies reported in the last year (see Figure 19). To sup-

port such retrospective Big Data analytics (D3), we also

need to persist the incoming data into a DBMS, e.g.,

MongoDB. Additionally, the large set of user subscrip-

tions can also be persisted in this DBMS to remember

them and efficiently support changes to them.

Figure 20 depicts an example of gluing all these four

components together (namely the ingestion tool, the

streaming engine, the data warehouse, and the notifi-

cation service). While the figure handpicks a popular

choice per component, there are many other choices

one would have to consider and examine. For exam-

ple, instead of AmazonSNS, one could consider Fire-

base Cloud Messaging, or Microsoft Notification Hubs,

or even low-level customized web socket services. Fur-

ther, some choices (e.g. Kafka) may be used to substi-

tute for multiple components (e.g. as an ingestion tool

and a streaming engine), increasing the number of pos-

sible glueable combinations. Nevertheless, to build such
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a system, one would have to spend a significant amount

of effort on configuring and orchestrating the different

components. Gluing components together in this way

involves disadvantages including the effort as well as

potential runtime overhead and functional limitations.

Limitations: We can categorize the limitations of the

gluing approach into three categories:

(1) Management Complexity. Different systems have

and utilize different data types and data representa-

tions in their runtimes. As data is transferred between

different components, it may need to be transformed

between different data types repeatedly. These transla-

tions may result in added overheads. For example, data

items are ingested in Kafka as JSON strings. Spark then

would parse these strings and cast the parsed result into

rows in data frames, which then would be processed and

persisted as documents in MongoDB. Eventually, data

has to be transformed into JSON strings again for the

AmazonSNS notifications. Further, a user would need

to configure and deploy each component separately and

then glue them together. Setting up the environment

and maintaining it requires significant user effort and

domain knowledge about its component. These addi-

tional management complexities are avoided when us-

ing the BAD platform’s unified model.

(2) Limited Functionality. The various components may

not offer all of the needed functionality. Assume that

we were to create Channel-like jobs in Spark. To cre-

ate the notifications, one would need to run a spatial

join between the report and user locations. However,

Spark Structured Streaming does not support spatial

joins over streams. This implies that a user would have

to modify their existing queries to use equi-joins (thus

limiting the application functionality). In contrast, in

the BAD system, the user can take their existing queries

and use them directly in channels. As another limita-

tion, Spark Streaming can only operate on a limited

suffix of a data stream (due to memory limitations).

As a result, if a user has not updated his/her location

recently, such a location may not be available for the

application.

(3) Integration Difficulty. Given the presence of mul-

tiple independent components, data exchange between

them in the glued system is inevitable and frequent. Al-

though different vendors have provided connectors for

bridging the gaps between them, users still would have

to construct configuration files or even “glue” programs

for shipping data from one component to the other. Be-

cause of this, the system as a whole loses the possibil-

ity of optimizing user queries across components. Data

stored in MongoDB would first be pulled (via a full

scan) into Spark for computation; Spark would then

not utilize efficient data structures such as indexes to

accelerate the data accesses in MongoDB. In the BAD

system, users can create channels by just using SQL++

statements and they have no need to write lower-level

programs. The channels can be optimized by the Aster-

ixDB query optimizer to seek their most efficient query

plans, and users can create indexes on datasets that

BAD can then utilize to improve their runtime perfor-

mance.

The above discussion summarizes why the BAD ap-

proach is unique and is not directly comparable with

any one alternative platform – the only functional al-

ternative is to construct a multi-system tangle. We fur-

ther note that if one were to avoid dealing with the glue

issues among multiple components, picking just one

component and heavily customizing it to meet the re-

maining BAD requirements, the task would be challeng-

ing (or even impossible) since each component provides

only a subset of the required desiderata. No one sys-

tem has the persistence, query power, and declarative-

ness of BAD. For example, using only Spark Stream-

ing, one would have to customize ingestion and result

delivery. Spark could persist data in HDFS, but with-

out database guarantees (updates, consistency, concur-

rency). Similarly, Kafka is not designed for storing data

and has limited querying capabilities. Amazon SNS is

a data routing service without complex computation

capabilities or storage.

Loosely speaking, the end goal of BAD is to reduce

the effort required to build big active data applications

in a manner not unlike the way that the onset of rela-

tional databases and SQL reduced the effort required to

build passive business applications – it should be possi-

ble to build applications declaratively, with a minimum

of programming effort.

8 Experimental Evaluation

We now proceed to examine how our initial implemen-

tation of a BAD system performs and scales. Our ob-

jective in this context is simply to take a first look at

the performance characteristics of the BAD approach

itself. (We leave the possibility of comparing BAD to a

wired-together glue competitor to future work.)

The separation of concerns between the data sub-

scribers, the brokers, and the data cluster allows us to

separate their performance evaluations. For example,

one could look at the end-to-end performance experi-

enced by users, the caching and user distribution per-

formance of brokers, or the data cluster itself. As this

paper is focused on the techniques and research of the

BAD data cluster, our experiments here focus on this

layer. Specifically, we look at three performance aspects

of the data cluster: ingesting scalable data, processing
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channel jobs for a scalable number of users, and deliv-

ery of results to the brokers. We see this as a critical

factor of the performance overall, as all other aspects

of performance will depend on it. Since users are just

“data” from the data cluster perspective, we can es-

sentially remove the end users from the performance

picture and treat the brokers as the “clients” of the

BAD data cluster.

8.1 Experimental Setup

For our experiments, we used the example application

that has been discussed throughout this paper, includ-

ing its data model, datasets, feeds, and the repetitive

EmergenciesNearMe channel with period of 10 seconds

(Figure 11). It is important to note that the choice of 10

seconds is not important in and of itself. Rather than

fixing the window size and varying the arrival rates of

data, we could fix the arrival rates and vary the window

size to do a similar evaluation. The definitions of data

types, data feeds, channel, and broker were shown in

Figures 3, 5, 7, 10, and 11 respectively.

In order to model the realistic movement of people

in the real world, we used the the Opportunistic Net-

work Environment (ONE) simulator [10,51,39] to sim-

ulate users’ movement in our experiments. The ONE

simulator allows for maps to be built representing real

cities, including map graphs of pedestrian paths, roads,

tram routes, etc., and for creating classes of “hosts”

that represents cars, pedestrians, and commuters by

providing movement models and graphs for each class,

thereby simulating a realistic flow of human movement

within that city. The publicly available ONE simulator

comes with a pre-built simulation of the city Helsinki,

including the actual roads and metro routes. We used

this city in our following experiments.

Due to the complexity of modeling massive user

movement directly in the ONE simulator, we let the

ONE simulator generate data for small groups of users,

and then we merged them together for our experiments

depending on the number of users that we needed. In

each group, there were 30 users, which includes 10 pedes-

trians, five cars, and 15 metro commuters. The metro

commuters were evenly assigned to three different metro

routes, five commuters for each route. The moving users

reported their location every 10 seconds in our simu-

lated world where there were emergencies happening at

the same time. Our goal was to see how many users we

can support with our system in the given emergencies-

near-me application.

The emergencies were generated using the ONE sim-

ulator as well. We created a group of ten emergency

creators and allowed them to traverse rapidly and ran-

domly around the map. There were four potential emer-

gency types: floods (with a radius of about 1/8th of the

city and a probability of 50%), fires (with a radius of

about 1/16th of the city and a probability of 30%),

storms (with a radius of about 1/4th of the city and a

probability of 10%), and car crashes (with a radius of

about 1/100th of the city and a probability of 10%).

Also, we randomly generated a set of statically located

shelters in Helsinki. A distribution of the 200 shelters

is shown in Figure 21.

Fig. 21: Distribution of 200 shelters in Helsinki

With this emergency-heavy scenario setup, which

one might characterize as “Hell”-sinki, we ran the ONE

simulator with the described configurations, exported

the data, and converted them into AsterixDB data model

(ADM) files, so we could repeatedly replay the emergencies-

near-me scenario by reloading the generated data. In

each experiment, we loaded the shelter data into the

Shelters dataset and then fed the users’ locations and

emergencies through the “LocationFeed’ and “Report-

Feed’ into the UserLocations and Reports datasets re-

spectively.

8.2 Data

To start with a non-empty state, we pre-loaded the Re-

ports dataset with a history of over 2 million reports.

Since we created an index on the “report time” at-

tribute, the size of the report dataset would not harm

the overall performance of the channel execution, but

we pre-loaded so as to show this held true. The Shel-

ters dataset was pre-loaded with 200 shelters scattered

across Hellsinki.
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In our experimental application, there were two pa-

rameters that could be changed: the arrival rates of new

reports, and the number of users. We assumed all of our

users were subscribed to the channels, thus the sub-

scriptions dataset had the same size as the UsersLoca-

tions dataset. A new emergency report coming into the

system through the “ReportFeed” was automatically

assigned a UUID as its primary key and then stored

in the Reports dataset. A user sent his/her location up-

date every 10 seconds through the “LocationFeed”, and

this location was then upserted into the UsersLocations

dataset. We only kept the latest location of each user

in our system.

Figure 22 shows a snapshot in time of “Hellsinki”.

Here we show the locations of 1000 users along with the

locations of four emergencies that occurred. The dense

areas of users are commuters on the city’s tram routes.

Fig. 22: A BAD moment in “Hellsinki”

8.3 Experimental Setup

In order to show the advantages of using the BAD sys-

tem, we designed another approach that supports the

same scenario using only the passive AsterixDB. In this

approach, the broker would need to send explicit re-

quests to AsterixDB on behalf of every user. We created

a “polling” program that reads users’ location updates

and issues the query shown in Figure 23 to obtain the

the nearby emergencies and shelters within the same

time interval as the repetitive channel (10 seconds). The

“polling program” maintained a queue to receive the

incoming users’ location updates, and there are one or

more “poller” threads that take the location updates

from the queue and query AsterixDB for the requested

information. We will further investigate how the num-

USE emergencyNotifications;

SELECT r, shelters
FROM Reports r,
(SELECT s.location FROM Shelters s

WHERE spatial_intersect(s.location,
circle(‘‘2437.3,1330.5 100.0”))) shelters

WHERE r.timestamp > current_datetime() -

day_time_duration(”PT10S”)
AND spatial_intersect(r.location, point(‘‘2437.3,1330.5”));

Fig. 23: The polling query for a single user (at location

“2437.3,1330.5”)

ber of “poller” threads affects the performance later in

Figure 34. For clarity we will refer to BAD AsterixDB

as the active mode and to vanilla AsterixDB as the

passive mode.

In the active (i.e., BAD) mode, we loaded the Shel-

ters and Reports datasets with the shelters data and

the prepared 2 million history reports first. Then, we

created the EmergencyNearMe channel and loaded the

subscription data. Lastly, we started feeding data into

the UserLocations and Reports datasets with a specified

number of users and report rates. Our experiments mea-

sured how well the channel was able to scale in terms of

the number of supportable users, i.e., how many users

and how much data it could handle within the desired

inter-results period of 10 seconds. After that, the sys-

tem would be in a “overloaded” situation since it would

fail to operate within the specified interval of the chan-

nel. We ran the experiment multiple times to search for

the maximum supportable users given a certain rate of

reports.

To instrument the active experiment, we recorded

the time (tie) of the channel (‘Channel Execution Time’,

i.e., the time to produce results), and the time (tif ) that

the broker spent on fetching the new results on behalf

of users after receiving a notification (‘Result Fetching

Time’) in all n invocations throughout the channel life-

time, where 0 ≤ i ≤ n. Notice that both the Channel

Execution Time and the Result Fetching Time need to

be within the 10-second period for a channel to work in

a stable state. The criterion that the channel can sup-

port a given number users and a certain report rate is

maxn
i=1(max(tie, t

i
f )) < 10.

In the passive (i.e., user polling) mode, we initial-

ized the Shelters and Reports datasets in the same way

using the prepared shelter and reports data and then

started feeding only the Reports dataset. After that, we

started the poller program that reads users’ location

updates and polls the requested emergencies and shel-

ters for each user location one-by-one using the query

in Figure 23. For a given number of users, the poller
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program has to be able to consume all location updates

from all users in each 10-second interval, otherwise it

too would be in an overloaded state. We measured how

many users the poller program can serve given a certain

report rate in the 10-second window.

8.4 Hardware Configurations

Our experiments were conducted on a six node cluster

consists of Inter NUC (BOXNUC5I7RYH). Each node

had an i7-5557U CPU processor (4 cores per machine),

16 Gigabytes of RAM, and a 1 TB hard drive. The

nodes were connected with a Gigabit Ethernet switch.

For the active mode, we deployed the BAD system on

four nodes where one node hosted the Cluster Con-

troller (CC), which accepts and compiles user queries

and schedules query evaluation over the cluster. The

other three nodes hosted Node Controllers (NC), which

receive complied query plans from the CC, compute

according to the plan, and store the data. Each NC

contained one data partition. The broker and the data

feeding programs which sent reports and location up-

dates ran on the other two nodes separately. For the

passive mode, we deployed the AsterixDB cluster us-

ing the same configuration as BAD, and the poller and

reports feeding programs ran on the other two nodes.

8.5 Feeds vs. Manual Inserts

We used active data feeds for ingestion of both Re-

ports and UserLocations. Data feeds are an important
contributer of data for scalable channels, as they pro-

vide the mechanism used by the BAD platform to in-

gest data at scale. To illustrate the advantages of using

data feeds for rapid data ingestion, we compared the in-

gestion performances of using data feeds versus issuing

insert statements. We also evaluated against the insert

performance of Postgres as another baseline. For data

feeds, we set up an external program that fed data con-

tinuously. For passive AsterixDB and Postgres, we also

set up an external program that inserted new data by

repeatedly issuing insert statements. We measured the

number of ingested data records during a 10 minutes

experiment to show their performance differences. The

experimental resutls are plotted in Figure 24. Note that

the number of ingested records is on logarithmic scale.

As we can see, the data feeds maintained very high

ingestion performance during the experiment. Both pas-

sive AsterixDB and Postgres, issuing insert statements,

had much lower ingestion performance. Data received

by data feeds is parsed and fed to the ingestion pipeline

Fig. 24: Feeds vs. Manual Inserts

which can then be persisted into the storage system di-

rectly. This allowed the incoming data to be efficiently

consumed by the system. For the passive insertion case

on both AsterixDB and Postgres, however, each insert

statement has to be handled by the query compiler sep-

arately and executed as an independent job. This in-

creased the per-record insertion cost, which led to their

lower performance.

8.6 Channels vs. Polling

In real scenarios, the published reports may have dif-

ferent degrees of intersection with the subscribed users.

This intersection rate will affect the overall performance

of both the BAD and polling approaches (channel exe-

cution time and result fetching time in the active mode,

and query evaluation time in the passive mode). In or-

der to explore how different intersection rates of reports

and subscribed users affected performance, we designed
four scenarios and compared the performance of each

under the active (BAD) mode and passive (polling)

modes respectively. The scenarios are as follows:

– Case 1: A large percentage of subscribers intersect

with emergencies, and a large percentage of the emer-

gencies intersect with subscribers.

– Case 2: A large percentage of subscribers intersect

with emergencies, but a small percentage of the emer-

gencies intersect with those subscribers.

– Case 3: A small percentage of subscribers intersect

with emergencies, while a large percentage of the

emergencies intersect with those subscribers.

– Case 4: A small percentage of subscribers intersect

with emergencies, and a small percentage of the

emergencies intersect with those subscribers.

In order to demonstrate these scenarios, we created

two additional cities outside of Hellsinki: Tartarusinki,

where lots of emergencies happen but (fortunately) no
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one resides, and Elysinki, where lots of people reside

but (also fortunately) no emergencies ever happen. The

added cities each also have 200 shelters. In all cases,

we did our breaking-point analysis, which showed how

many subscribers the system can serve within the 10-

second window for a given arrival rate of reports.

8.6.1 Case 1 - “Hellsinki” Alone

For Case 1, we assumed that Helsinki was the only city

(as in Figure 22). All emergencies took place there, and

all subscribers resided there. As the number of incom-

ing emergencies per second increased, Helsinki gradu-

ally became more and more of an apocalyptic “Hell”-

sinki.

We present the experimental results in Figure 25.

The x-axis represents the rate of reports. The y-axis

shows the maximum number of subscribers that can

be served while staying within the 10-second delivery

deadline. Note that both the x and y axes are on a log-

arithmic scale due to the large performance differences

observed.

Fig. 25: Case 1 - “Hellsinki” Alone

In the passive mode, the polling performance is af-

fected by not only the execution cost of computing

the results but also the compilation cost in processing

the polling queries. When AsterixDB receives a polling

query, it compiles and optimizes that query into a job

specification on the CC node and sends that specifica-

tion to the NC nodes for execution. When the report

arrival rate is low, the pollers’ performance is mainly

bounded by the available resources on the CC node

for compiling the polling queries, so the pollers’ perfor-

mance is relatively stable on the left side of the graph

(i.e., for smaller report rates). As the report arrival rate

increases, the high execution cost of each polling query

causes fewer queries to be completed during the given

time window, so the execution cost becomes the main

performance impactor. As a result, the pollers’ perfor-

mance drops when the report arrival rate is very high.

Increasing the number of pollers improves the perfor-

mance (but within a limit); we will further discuss this

in Section 8.6.5.

The active mode starts with a drastically higher

number of supportable subscribers that gradually de-

creases as the rate of reports increases. The decrease is

because the computational load for the channel query

execution grows when there are more reports being gen-

erated during its execution window (10 seconds in this

case). The active mode outperforms or (at worst) matches

the one poller passive mode. It is strikingly better for

lower incoming report rates, where it outperforms the

one poller passive mode by supporting up to two orders

of magnitude more subscribers. The passive mode with

multiple pollers outperforms the active mode only for

much higher rates (many hundreds of incoming emer-

gency reports/sec). We will further analyze the perfor-

mance of the BAD system versus the passive mode in

Section 8.6.5.

8.6.2 Case 2 - Hellsinki and Tartarusinki

If we add Tartarusinki to our map and have 90% of all

of the emergencies occur there, all of our subscribers

will potentially receive notifications, but most of the

emergencies that occur “worldwide” will not contribute

to those notifications. Figure 26 shows this scenario.

Fig. 26: Hellsinki (Left) next to Tartarusinki (Right)

As we can see from the results shown in Figure 27,

the active mode starts with a much higher number of

supportable subscribers compared with Case 1. This

is because in Case 2 there are many less notifications

generated given the same number of subscribers and

rate of reports. In the passive mode, the primary bot-

tleneck is still the query compilation cost on the CC

node. Thus, the passive mode’s performance in Case 2

is similar to that in Case 1, and it remains relatively

stable for smaller report rates. As the report rate in-

creases, the passive performance starts to decrease due

to a larger workload introduced by more reports in the

channel execution window. Note that in Case 2, the
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BAD system’s performance superiority with respect to

the passive mode with multiple pollers extends further

to the right; as before the active mode outperforms the

one poller passive case, except for very high report rates

where the two approaches behave similarly.

Fig. 27: Case 2 - Hellsinki and Tartarusinki

8.6.3 Case 3 - Hellsinki and Elysinki

If instead we add Elysinki as the second city, all of the

emergencies will be in Hellsinki. Since only 10% of the

subscribers are in Hellsinki now, most subscribers will

not receive emergency notifications. Figure 28 shows

this scenario.

Fig. 28: Elysinki (Left) next to Hellsinki (Right)

Figure 29 shows the related performance results. Al-

though the subscribers outside of Hellsinki are involved

in the channel computation, there are no results pro-

duced for them. Thus, the active mode starts with a

much higher number of supportable subscribers com-

pared with Case 1. Note that the general performance

trend of Case 3 resembles the performance in Case 2.

This is expected as we reduced 90% of the “effective”

reports in Case 2 by moving them to Tartarusinki, and

we reduced 90% of the “effective” users in Case 3 by

moving them to Elysinki. The number of produced re-

sults in both cases are roughly the same, which leads

to similar performance. This is also supported by the

results in Section 8.7 which presents the channel exe-

cution times and result sizes for all cases. As before,

the passive mode performance remains stable when the

rate of reports is low and starts to drop when it further

increases.

Fig. 29: Case 3 - Hellsinki and Elysinki

8.6.4 Case 4 - All three cities

Lastly, we simulate a world where 90% of the emer-

gencies occur in Tartarusinki while 90% of the sub-

scribers reside in Elysinki, and an unlucky few remain

in Hellsinki. In this case emergency notifications will

exist for only 10% of both emergencies and subscribers.

Figure 30 depicts this scenario.

Fig. 30: Elysinki(Left), Hellsinki(Center), and Tar-

tarusinki(Right)

As shown in Figure 31, the active mode outperforms

the one and two pollers passive mode even when we

scale the disaster rate to thousands of emergencies per

second. Different from Cases 2 and 3, the performance

of the active mode does not drop as much as we increase

the rate of reports from one to four. This is because of

the low intersection rate of the “effective” reports and

users, which causes very few results to be generated

when the report rate is relatively low. After we further

increase the report rate, performance starts to drop as

before.

The performance of the passive mode is similar to

the previous cases. It remains stable for smaller report
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rates and starts to drop at very high report rates. When

considering all four scenarios, the main difference in the

passive mode is that for Case 1, the performance dete-

rioration starts at much lower report rates (around 64

reports/sec). This is because for Case 1, even a rela-

tively small report rate produces large computational

workload (due to the large number of intersections be-

tween reports and users).

Fig. 31: Case 4 - All three cities

8.6.5 Discussion

The previous graphs all used logarithmic scales. Fig-

ure 32 shows a portion of the performance graph from

Case 4 (Figure 31) using a linear scale to better convey

the large performance difference between the active and

passive modes. The performance of the active mode for

all four cases is summarized for comparative purposes

in Figure 33. Case 1 represents the most ‘apocalyptic’

scenario where all events and all subscribers have the

potential to intersect. Thus, the number of supported

subscribers is the lowest. Cases 2 and 3 each have only

a fraction of Case 1’s “effective” data (10% reports in

Case 2 and 10% users in Case 3), so their performance

is better than in Case 1, and the performance of Cases

2 and 3 is very similar. In Case 4, there are three cities,

which increased the number of shelters (we used 200

shelters per city, so Cases 2 and 3 had 400 shelters each,

while Case 4 had 600). Thus, the starting point of Case

4’s performance (1 report per second) is slightly lower

than Cases 2 and 3 due to the additional computational

cost from joining with more shelters. The performance

of Case 4 drops slower than Case 2 and Case 3 while

the report rate increases, since in Case 4 there are fewer

results generated (there are fewer intersections as most

users and most reports are moved to different cities).

For low to moderate report rates, the BAD system

is much better than the passive mode in all four cases.

This shows the advantage of batch processing and de-

ployed jobs used in the BAD system, as opposed to

repeatedly issuing the polling queries using poller pro-

grams in the passive mode. When the report rate be-

comes very high, the performance of both the BAD and

passive mode start to decline due to the increased work-

load. In particular, the gap between the BAD system

and the passive mode with one poller narrows and their

performance eventually converges. This is because the

BAD executes one channel query in each time window,

and the one poller program makes one request for a user

at a time. In both cases, there is only one query/job be-

ing executed concurrently. The resources allocated for

evaluating the channel/polling query in both cases (the

BAD and one poller) are roughly the same.

Increasing the number of pollers allowed multiple

queries to run concurrently, thus resulting in better

performance, using however more of the system’s re-

sources than the BAD channel query that runs repeat-

edly. The performance gains will be limited by the addi-

tional query compilation cost. To show this limitation,

we conducted an experiment (using the Case 1 scenario)

where we varied the number of pollers and measured

the performance in terms of supportable subscribers.

The results are shown in Figure 34, for different report

rates. As can be seen, the passive mode can only be im-

proved to a limited extent by adding more pollers; for

all examined report rates, the performance soon flattens

after 16 pollers. Furthermore, the maximum number of

supportable subscribers achieved decreases as the re-

port rate increases. For the lower report rates (1 and

32 reports/sec) the main bottleneck is the compilation

cost of the polling queries. For the higher report rates

(128 and 1024 reports/sec) the performance is affected

by the compilation cost as well as the increased com-

putational cost introduced by having more reports.

It should be noted that the very high report rates in

our experiments were used so as to identify the limits

of the BAD system, rather than representing a realistic

scenario. High rates with thousands or even hundreds of

emergencies per second would create a practically un-

usable amount of data for each subscriber. A subscriber

would be expected to read hundreds or thousands of re-

sults during one execution (every 10 seconds). In more

‘realistic’ scenarios, where subscribers might each get

one or a few notifications during an execution, the BAD

system performs orders of magnitude better than the

passive mode.

8.7 Diving into the BAD Performance Details

In this section, we look a bit more deeply at the perfor-

mance details of the channel execution in different cases



24 Steven Jacobs et al.

Fig. 32: Case 4 on a linear scale

Fig. 33: Active performance in the four cases

Fig. 34: Supportable Subscriber gains as the number of

polling threads is increased (Using Case 1)

to investigate the factors impacting the performance of

the BAD system. To do so, we fixed the number of sub-

scribers at 900, the window size was again 10 seconds

and we used three report rates, namely 4, 16 and 64

reports/sec. We report the channel execution time, the

broker result fetching time, and the result size (number

of records) averaged over 30 executions. The results are

shown in Figure 35.

The channel execution time, result fetching time,

and result count all increase as the report rate increases.

This is because there are more reports contributing to

the channel query evaluation. In all three settings, the

channel execution time of Case 1 is higher than Cases 2

and 3, which are slightly higher than Case 4. The reason

is that in Case 1, there is a higher probability that

a user’s location intersects with an emergency report.

This in turn leads to a higher result size and thus a

higher result fetching time. In Case 2, we moved 90%

of the reports to another city, and in Case 3, we moved

90% of the users to another city. Both cases reduced

the size of the data participating in result generation by

the same factor of 0.9. Thus, we see similar execution

times in both cases, and their result size and result

fetching times are roughly the same as well. In Cases 2

and 3, as we moved most of the reports or the users to

a different city, both the evaluation time and result size

become smaller than Case 1. In Case 4, there is only

a small fraction of users and emergency reports that

could intersect, so the channel execution time, result

fetching time and result size are the smallest.

8.8 BAD vs. Postgres

In discussing BAD with various audiences, we have found

“what about triggers?” to be a frequently-asked ques-

tion. As a result, to explore the challenges of handling

the emergencies-near-me use case without a system like

BAD, but with a single system – i.e., without resorting

to gluing multiple systems together – we also attempted

to achieve the same goals using a DBMS that supports

triggers. We chose Postgres [67] for this exercise due to

its popularity and long-standing support for triggers.

Since Postgres is a single node DBMS1 we could only

compare its performance against a single node deploy-

ment of BAD.

Recall that the emergencies-near-me scenario has

two tables (datasets) being updated actively, UserLoca-

tions and Reports. Data changes in either table could

generate new notifications for corresponding subscribers,

e.g., a user walks into an emergency event or a new

emergency event happens near a subscribed user. In or-

der to capture both cases, we created one trigger on

each of these Postgres tables. In response to an up-

date/insert on UserLocations, the corresponding trigger

finds intersecting reports that happened in the past 10

seconds, joins them with the Shelters table, and inserts

the result (i.e., a new notification) into the Results ta-

ble. The trigger on Reports works in a similar way for

each new report insertion into that table.

1 There is a distributed variant of Postgres – from Green-
plum – that provided database triggers in an earlier version.
However, triggers have been removed in the current version
due to their unreliable behavior in a distributed setting [12].
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(a) 900 users with 4 reports / second (b) 900 users with 16 reports / second (c) 900 users with 64 reports / second

Fig. 35: Channel statistics with different rates of reports in all four cases

Special care is needed to avoid duplicate results.

Consider the following scenario. Assume that the last

known location of a user is reported at time t0. If an

emergency that happens at time t1 (where t1 > t0) in-

tersects with this user’s location, the Reports trigger

will produce a new result. Soon after, at time t2 (where

t2 − t1 < 10) that user sends a new location update

which also intersects with the same emergency. The

UserLocations trigger will produce a (duplicate) result

with the same emergency and user id. Such duplication

will increase the result size and lead to the users receiv-

ing redundant notifications. To avoid this we defined

the Results primary key as < user name, report id >

and set the triggers to upsert data into this table.

In this experiment, we created two client programs

that feed separately the UserLocations and Reports ta-

bles by issuing upsert and insert statements respec-

tively. The client for UserLocations upserts user loca-

tions every 10 seconds. The client for the Reports table

inserts new reports at a specified rate (as needed by the

experiment). Unlike the BAD data feeds, both clients

could be slowed down due to expensive trigger calls and

the overall system load. We consider the trigger-based

approach as being overloaded if any of the clients fails to

upsert/insert data at the specified rate. For the exper-

iment, we also set up an external broker program that

pulls recent results from the system every 10 seconds.

For comparison purposes, we also implemented a

passive mode with one poller thread using Postgres.

Similar to the trigger implementation, we also created

the Reports table and set up an external client program

that sends new reports at a specified rate. Instead of re-

lying on triggers to generate results and having a broker

program to fetch them, we set up a poller program that

polls the nearby emergencies and shelters on behalf of

each user. This poller works in the same way as the

passive mode of AsterixDB in Section 8.6. Similarly to

the trigger approach, both the Reports client and the

poller program could be slowed by the system load. We

consider the one poller implementation as able to sup-

port a certain amount of users and rate of reports if

both the Reports client and the poller program can up-

date/query data at the specified rate.

We deployed the single node BAD system with both

CC and NC on the same node. We created the same

datatypes, datasets, and channels from Section 8.6. Note

that while Postgres cannot be scaled to multiple nodes,

the BAD system’s performance can be improved by

scaling in a larger cluster. For comparison purposes,

we also added experimental results based on running

BAD on 4 nodes (one CC and three NCs).

The experimental results of the comparison (in loga-

rithmic scale) are shown in Figure 36; the scenario used

was Case 4. In the figure “Postgres Triggers” and “Post-

gres Poller” denote the triggers and single-poller imple-

mentations on Postgres respectively. Similarly, “BAD

on 1 node” and “BAD on 4 nodes” correspond to the

single- and four- node deployments of BAD. Both the

“Postgres Triggers” and “Postgres Poller” start with

relatively stable performance. “Postgres Triggers” starts

declining as the rate of reports gets higher because more

incoming reports make the computation in both trig-

gers more expensive. As the report rate increases fur-

ther (above 32 reports/sec for the “Postgres Triggers”

and 64 reports/sec for the “Postgres Poller”), the Re-

ports clients in the Postgres-based implementations fail

to add new data at the specified rate.

In contrast to Postgres, “BAD on 1 node” starts

with a much higher number of supportable users. Ben-

efiting from the data feeds and channel mechanisms,

BAD is able to consume rapid incoming data and pro-

duce results, even when the report arrival rate is very

high. Further improvements can be achieved by scaling.

(See “BAD on 4 nodes” and remember the log scale.)

We finally note that in the “Postgres Triggers” case,

we have to create triggers for each of the “active” tables

that participates in the computation. This adds extra

complexity for application development (managing du-

plicate results, etc.) However, in BAD, a single channel

can access many datasets and compute complex results

on their data. The BAD system not only provides bet-

ter performance compared with the traditional trigger
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implementation, but it also reduces the effort involved

in building BAD applications.

Fig. 36: Emergencies-near-me on Postgres vs. BAD

8.9 Cluster Scaling Experiments

Speed-up: In order to show how the channel execu-

tion time can scale with the cluster size, we performed

additional experiments on a 20-node cluster with Dual-

Core AMD Opteron Processor 2212 2.0GHz. Each ma-

chine had 8 GB of memory and dual 1 TB 7200 RPM

SATA disks. Recall that a BAD cluster consists of one

CC node and one or more NC nodes. The number of

NC nodes determines the computational power of the

cluster when executing jobs (including the channel ex-

ecution). We conducted this experiment using Case 1,

but extended the channel execution window and query

(as well as the update rate of users’ locations) to 20

seconds. We tested three different scenarios: 4140 users

with 16 reports/sec, 2160 users with 32 reports/sec, and

1020 users with 64 reports/sec. The number of users set-

ting was determined by finding the maximum number

of supportable users on the cluster with two NC Nodes

for the given report rate.

We measured the channel execution time on 4 dif-

ferent scales (2 NC nodes, 4 NC nodes, 8 NC nodes, and

16 NC nodes). The other configurations remained the

same as Section 8.6. We show the speed-up performance

against the number of NC nodes in Figure 37. All re-

sults are reported with 95% confidence. As expected,

the channel execution time decreases as we introduce

more nodes, showing good speed-up performance.

Scale-up: We also measured the scale-up perfor-

mance by increasing the report rates in proportion to

the cluster size using Case 1. We tested with 900 users

and three different report rates per NC node (160 re-

ports/sec/node, 320 reports/sec/node, and 640 report-

s/sec/node) on 4 different scales (2 NC nodes, 4 NC

Fig. 37: Channel speed-up for different cluster sizes

nodes, 8 NC nodes, and 16 NC nodes). In order to better

highlight large scales of data and cluster utilization we

used a 600 second channel execution window. The other

configurations remained the same as in Section 8.6. The

results are shown in Figure 38. All results are reported

with 95% confidence. As we increased the cluster size

and report rate together, the channel execution time

maintained relative stability and only grew slightly due

to the increased execution overhead of a larger cluster.

This shows that the BAD system can scale well for use

cases with larger workloads.

Fig. 38: Channel scale-up for different cluster sizes

9 Conclusions and Future work

We have introduced a new paradigm for big data, namely

Big Active Data, that merges Big Data Management

with active capabilities. We have implemented a BAD

system prototype using a modern Big Data Platform

(AsterixDB), and we showed how it can outperform

passive Big Data by an order (or two) of magnitude

in many practical scenarios. BAD can consider data in

context and enrich results in ways unavailable to other

active platforms, in addition to allowing for retrospec-

tive Big Data analytics. Our code (> 20,000 LOC) is

available as an open-source Apache project [7].

From this point, BAD can be improved in a myriad

of ways. For example, this paper only scratched the sur-

face of the research for Broker to User communication

and scalability. In addition, we currently treat channels



BAD to the Bone 27

as completely isolated jobs. We can instead tackle the

task of scaling multiple channels together by recogniz-

ing common work (e.g., detecting recent emergencies)

and sharing this work between channels at the runtime

level. While we focus here on repetitive channels, they

are limited by the periodicity that they need to execute

at. As future work we plan to create continuous chan-

nels, channels that will execute based on data changes

as they happen rather than on fixed intervals.

We also believe that BAD is ready for a rich perfor-

mance benchmark. This paper has focused on the big

picture and initial results of BAD, and therefore is not

a comprehensive look at all performance optimization

possibilities. For example, based on our experimental

results, we have seen that the overhead of staging the

results on the data cluster can be a limiting factor for

performance in some cases. We are currently explor-

ing a push-based channel model where results are more

eagerly sent directly to brokers (rather than just notifi-

cations of results). We are also working on a comparison

of the BAD approach with a glue-based approach. Ex-

periments on a much larger cluster with higher-scale

workloads would also be an interesting future under-

taking.
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