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Abstract

Modern NoSQL database systems use log-structured merge (LSM) storage architectures to support high write throughput.
LSM architectures aggregate writes in a mutable MemTable (stored in memory), which is regularly flushed to disk, creating
a new immutable file called an SSTable. Some of the SSTables are chosen to be periodically merged—replaced with a single
SSTable containing their union. A merge policy (a.k.a. compaction policy) specifies when to do merges and which SSTables to
combine. A bounded depth merge policy is one that guarantees that the number of SSTables never exceeds a given parameter
k, typically in the range 3—10. Bounded depth policies are useful in applications where low read latency is crucial, but they and
their underlying combinatorics are not yet well understood. This paper compares several bounded depth policies, including
representative policies from industrial NoSQL databases and two new ones based on recent theoretical modeling, as well as
the standard Tiered policy and Leveled policy. The results validate the proposed theoretical model and show that, compared
to the existing policies, the newly proposed policies can have substantially lower write amplification with comparable read

amplification.

Keywords NoSQL database - LSM - Merge policy - Compaction

1 Introduction

Many modern NoSQL systems [8,9] use log-structured
merge (LSM) architectures [36] to achieve high write
throughput. To insert a new record, a WRITE operation sim-
ply inserts the record into the memory-resident MemTable
[9] (also called the in-memory component). UPDATE opera-
tions are implemented lazily, requiring only a single WRITE
to the MemTable. DELETE operations are implemented sim-
ilarly, by writing an anti-matter record for the key to the
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MemTable. Thus, each WRITE, UPDATE, or DELETE opera-
tion avoids any immediate disk access. When the MemTable
reaches its allocated capacity (or for other reasons), it is
flushed to disk, creating an immutable disk file called a com-
ponent, or, usually, an SSTable (Sorted Strings Table [9]).
This process continues, creating many SSTables over time.
Each READ operation searches the MemTable and SSTa-
bles to find the most recent value written for the given key.
With a compact index stored in memory for each SSTable,
checking whether a given SSTable contains a given key
typically takes just one disk access [22, §2.5]. (For small
SSTables, this access can sometimes be avoided by storing
a Bloom filter for the SSTable in memory [14].) Hence, the
time per READ grows with the number of SSTables. To con-
trol READ costs, the system periodically merges SSTables
to reduce their number and to prune updated and anti-matter
records. Each merge replaces some subset of the SSTables by
asingle new SSTable that holds their union. The merge batch-
writes these items to the new SSTable on disk. The write
amplification is the number of bytes written by all merges,
divided by the number of bytes inserted by WRITE operations.
A merge policy (also known as a compaction policy)
determines how merges are done. The policy must effi-
ciently trade off total write amplification for total read cost
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(which increases with the average number of SSTables being
checked per READ operation, known as read amplification).
This paper focuses on what we call bounded depth policies—
those that guarantee a bounded number of disk accesses for
each READ operation by ensuring that, at any given time,
the SSTable count (the number of existing SSTables) never
exceeds a given parameter k, typically 3—10, such that the
read amplification is at most k. Maintaining bounded depth
is important in applications that require low read latency, but
bounded depth policies are not yet well understood.

A recent theoretical work by Mathieu et al. [35] (including
one of the current authors) formally defines a broad class of
so-called stack-based policies. (See Sect. 3 for the definition.)
This class includes policies of many popular NoSQL sys-
tems, including Bigtable [9], HBase [19,27,37], Accumulo
[26,37], Cassandra [29], Hypertable [25], and AsterixDB [2].
In contrast, leveled policies (used by LevelDB and its spin-
offs [21]) split SSTables by key space to avoid monolithic
merges, so they do not fit the stack-based model. Note that
all current leveled implementations yield unbounded depth;
hence, they are not considered here.

Mathieu et al. [35] also propose theoretical metrics for
policy evaluation and, as a proof of concept, propose new
policies that, among stack-based policies, are optimal accord-
ing to those metrics. Two such policies, MINLATENCY and
BINOMIAL (defined in Sect. 2) are bounded depth policies
which were designed to have minimum worst-case write
amplification (subject to the depth constraint) among all
stack-based policies. Mathieu et al. [35] observe that, accord-
ing to the theoretical model, on some inputs existing policies
are far from optimal, so, on some common workloads, com-
pared to existing policies, MINLATENCY and BINOMIAL can
have lower write amplification.

Here, we empirically compare MINLATENCY and BINO-
MIAL to three representative bounded depth merge policies
from state-of-the-art NoSQL databases: a policy from Aster-
ixDB [6], EXPLORING (the default policy for HBase [5]), and
the default policy from Bigtable (as described by Mathieu et
al. [35], which includes authors from Google), as well as the
standard TIERED policy (the default policy for Cassandra [4])
and LEVELED policy (the default policy for LevelDB [21]).
Section 2 defines these policies. We implement the policies
under consideration on a common platform—Apache Aster-
ixDB [2,6]—and evaluate them on inputs from the Yahoo!
Cloud Serving Benchmark (YCSB) [11,44]. This is the first
implementation and evaluation of the policies proposed by
Mathieu et al. [35] on a real NoSQL system. The empiri-
cal results validate the theoretical model. MINLATENCY and
BINOMIAL achieve write amplification close to the theoretical
minimum, thereby outperforming the other policies by orders
of magnitude on some realistic workloads. (See Sect. 4.)

Having a realistic theoretical model facilitates merge pol-
icy design both via theoretical analysis (as for MINLATENCY
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and BINOMIAL), and because it enables rapid but faithful
simulation of experiments. NoSQL systems are designed to
run for months, incorporating hundreds of terabytes. Experi-
ments can take weeks, even with appropriate adaptations. In
contrast, the model allows some experiments to be faithfully
simulated in minutes. (See Sect. 5.)

In summary, this work makes the following contributions:

1. The implementation of several existing merge policies,
including the popular TIERED and LEVELED, and two
recently proposed merge policies, on a common, open-
source platform, specifically Apache AsterixDB.

2. An experimental evaluation on write, read, and tran-
sient space amplification using the Yahoo! Cloud Serving
Benchmark (YCSB) benchmark, confirming that the
recently proposed policies can significantly outperform
the state-of-the-art policies on some common workloads,
such as append-only and update-heavy workloads.

3. A study on how insertion order affects the write amplifi-
cation of merge policies, especially for LEVELED.

4. We have shown that BINOMIAL and MINLATENCY out-
perform the popular TIERED and LEVELED policies with a
better trade-off between write amplification and average
read amplification.

5. An empirical validation of a realistic cost model, which
facilitates the design of merge policies via theoretical
analysis and rapid simulation.

2 Policies studied

Bigtable (Google) The default for the Bigtable platform is
as follows [35]. When the MemTable is flushed, if there are
fewer than k SSTables, add a single new SSTable holding the
MemTable contents. Otherwise, merge the MemTable with
the i most recently created SSTables, where i is the minimum
such that, afterwards, the size of each SSTable exceeds the
sum of the sizes of all newer SSTables." Roughly speaking,
this tries to ensure that each SSTable is at most half the size
of the next older SSTable. We denote this policy BIGTABLE.
Exploring (Apache HBase) EXPLORING is the default for
HBase [5]. In addition to k, it has configurable parameters
A (default 1.2), C (default 3), and D (default 10). When the
MemTable (Memstore in HBase) is flushed, the policy orders
the SSTables (HFiles in HBase) by time of creation, consid-
ers various contiguous subsequences of them, and merges
one that is in some sense most cost-effective. Specifically:
Temporarily add the MemTable as its own (newest) SSTable
and then consider every contiguous subsequence s such that

! The implementation of this and other policies may temporarily create
an SSTable holding the MemTable contents and then merge that SSTable
with the other SSTables.
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e s has at least C and at most D SSTables, and
e in s, the size of the largest SSTable is at most A times the
sum of the sizes of the other SSTables.

In the case that there is at least one such subsequence s,
merge either the longest (if there are at most k SSTables)
or the one with minimum average SSTable size (otherwise).
In the remaining case, and only if there are more than k
SSTables, merge a contiguous subsequence of C SSTables
having minimum total size.

Constant (AsterixDB before version 0.9.4) CONSTANT is as
follows. When the MemTable is flushed, if there are fewer
than k SSTables, add a single new SSTable holding the
MemTable contents. Otherwise, merge the MemTable and
all k SSTables into one.

Tiered and Leveled TIERED policy is the default for Cassan-
dra. LEVELED is the default for LevelDB [21]. In theory, both
policies have one core configurable parameter, the size ratio
B. In practice, TIERED may need multiple parameters (3 in
Cassandra) to determine SSTables of similar sizes, and LEV-
ELED also has an extra parameter that control the number of
SSTables in level 0 as an on disk buffer. The total SSTable
size in one tier or level is B times larger than the previous
tier or level. The differences are:

e In TIERED, every tier must have at most B SSTables and
each SSTable is B larger than the SSTable size in the
previous tier. In LEVELED, all SSTables are of the same
size and the number of SSTables in one level is B more
than the previous level.

e Any two SSTables can have overlapping key space in
TIERED, while all SSTables must not have overlapping
key space in the same level in LEVELED

e TIERED only allows merging consecutive SSTables, while
in LEVELED, one SSTable is picked to be merged with
all SSTables in the next level that have overlapping key
ranges with the picked SSTable (if any). These SSTables
do not have to be consecutive.

e In TIERED, every merge involves at least two SSTables.
In LEVELED, only one SSTable can be merged if there is
no overlapping SSTable in the next level.

e Only one SSTable is created in a merge in TIERED. In
LEVELED, the number of SSTables created in a merge
is typically the same as the number of SSTables being
merged.

e In TIERED, the new SSTable size is typically the same as
the total size of the SSTables being merged. In LEVELED,
all input and output SSTables have the same size.

Next are the definitions of the MINLATENCY and BINO-
MIAL policies which were proposed by Mathieu et al [35].
First, define a utility function B, as follows. Consider any
binary search tree T with some nodes {1, 2, ..., n} in search

tree order (each node is larger than those in its left subtree,
and smaller than those in its right subtree). Given a node ¢ in
T, define its stack (merge) depth to be the number of ances-
tors smaller (larger) than ¢. (Hence, the depth of 7 in T equals
its stack depth plus its merge depth.)

Fix any two positive integers k and m, and letn = (ml':k) -
1. Let 7*(m, k) be the unique n-node binary search tree on
nodes {1, 2, ..., n} that has maximum stack depth k — 1 and
maximum write depth m — 1. For ¢ € {1, 2, ..., n}, define
B(m, k, t) to be the stack depth of node # in T'.

Compute the function B(m, k, t) via the following recur-
rence. Define B(m, k, 0) to be zero, and for r > 0 use

B(m — 1,k, 1) ifr < ("),

B(m,k,1) = {1 +B(m,k— 1,t— (m+,ffl)> ifr > (erllc(il)'

The policies are defined as follows.

MinLatency Foreach t = 1,2, ..., n, in response to the zth
flush, the action of the policy is determined by ¢, as follows:

Let m’ = min{m : ('"ntk) >tyandi = B(m', k,t). Order
the SSTables by time of creation, and merge the i-th oldest
SSTable with all newer SSTables and the flushed MemTable
(leaving i SSTables).

Binomial For eacht = 1,2,...,n, in response to the tth
flush, the action of the policy is determined by ¢, as follows:

Let Ty(m) = Y. ("J“mmgi‘k)*l) and m’ = min{m :
Ti(m) > t}.

Leti =14 B(m/,min(m’, k) — 1,1 — Try(m’ — 1) — 1).
Order the SSTables by time of creation, and merge the i-
th oldest SSTable with all newer SSTables and the flushed
MemTable (leaving i SSTables).

As described in Sect. 3, these policies are designed
carefully to have the minimum possible worst-case write
amplification among all policies in the aforementioned class
of stack-based policies.

BIGTABLE, CONSTANT, and (although it is not obvious
from its specification) MINLATENCY are lazy—whenever the
MemTable is flushed, if there are fewer than k SSTables, the
policy leaves those SSTables unchanged and creates a new
SSTable that holds just the flushed MemTable’s contents. For
this reason, these policies tend to keep the number of SSTa-
bles close to k. In contrast, for moderate-length runs (4" or
fewer flushes, as discussed later), EXPLORING and BINOMIAL
often merge multiple SSTables even when fewer than k SSTa-
bles are already present, so may keep the average number
of SSTables well below k, potentially allowing faster READ
operations.

Examples of all these seven merge policies for the first 16
flushes are shown in Fig. 1. For the six stack-based policies
(Fig. 1a—f), a new SSTable is added to the top of the stack in
every flush. Several SSTables are merged into one SSTable.
For example in Fig. la, before the 12th flush, there are 2
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[ Bigtable (k=4)

B Binomial (k= 4)

4 [ Constant (k = 4)

1 EEE Exploring (k = 4)

SSTables' Sizes
SSTables' Sizes

0x
1234567 8910111213141516
Flushes

(b) BinoMIAL

0x
12345678 910I111213141516
Flushes

(a) BiGTABLE

SSTables' Sizes

SSTables' Sizes

0x
12345678910111213141516
Flushes

(d) ExpLORING

0x
1234567 8910111213141516
Flushes

(¢) CONSTANT

16x

16x
15x 4
14x 4
13x 4
12x 4
11x 4
10x 1
9x 1
8x 1
7x1

16x
15x 1
14x 4
13x 4
12x 4
11x 4
10x 1
9x 1
8x 1
Tx1

[ MinLatency (k = 4) B Tiered (B=2)

SSTables' Sizes
SSTables' Sizes

X
12345678 910111213141516
Flushes

(€) MINLATENCY

0x
12345678 910111213141516
Flushes

(f) TierED

15x 1 #E Leveled (B =2)
14x
13x
12x
11x
10x
9x
8x
7x

SSTables' Sizes

0x
123456 728910111213141516
Flushes

(g) LEVELED

Fig. 1 Examples of SSTables states after 16 flushes for the 7 merge policies. SSTables are represented by rectangles (solid for the 6 stack-based
policies, dotted for LEVELED). Older SSTables are lower, newer SSTables are higher. Levels are represented by solid rectangles in the last plot.

SSTables’ sizes are with respect to the flush size

SSTables of size 2x and 2 SSTables of size 1x. After the 12th
flush, all the 5 SSTables are merged into one big SSTable of
size 12x. The number of SSTables of BIGTABLE, BINOMIAL,
CONSTANT, EXPLORING, and MINLATENCY never exceeds
k = 4. BINOMIAL and MINLATENCY choose different SSTa-
bles to merge starting from the 9th flush, based on their own
computations (Fig. 1b, e). For TIERED, a merge is triggered
every B = 2 flushes and multiple merges are triggered at the
4th, 8th, 12th, and 16th flush (Fig. 1f). For LEVELED, mul-
tiple merges may be triggered at every flush starting from
the 3rd flush, while only one merge is triggered at the 2nd
flush (Fig. 1g). For example, before the 12th flush, there are
2 SSTables in level 1 (top rectangle), 4 rectangles in level
2, and 5 SSTables in level 3 (bottom rectangle). After the
12th flush, a new SSTable is added to level 1, triggering a
merge which selects an SSTable in level 1 and merges it to
level 2. Then, level 2 has 5 SSTables, and another merge is
triggered which selects an SSTable in level 2 and merges it
to level 3. Eventually, there are still 2 SSTables in level 1 and
4 SSTables in level 2, but 6 SSTables in level 3.

3 Design of MinLatency and Binomial
This section reviews definition of the class of so-called

stack-based merge policies in [35], the worst-case write
amplification metric, and how MINLATENCY and BINOMIAL

@ Springer

are designed to minimize that metric among all policies in
that class.

3.1 Bounded depth stack-based merge policies

Informally, a stack-based policy must maintain a set of SSTa-
bles over time. The set is initially empty. At each time
t = 1,2,...,n, the MemTable is flushed, having current
size in bytes equal to a given integer ¢; > 0. In response,
the merge policy must choose some of its current SSTables
and then replace those chosen SSTables by a single SSTable
holding their contents and the MemTable contents. As a spe-
cial case, the policy may create a new SSTable from the
MemTable contents alone. (The policy may replace addi-
tional sets of SSTables by their respective unions, but the
policies studied here do not.)

Each newly created SSTable is written to the disk, batch-
writing a number of bytes equal to its size, which by
assumption is the sum of the sizes of the SSTables it replaces,
plus ¢; if the merge includes the flushed MemTable. (This
ignores UPDATES and DELETES, but see the discussion below.)

A bounded depth policy (in the context of a parameter k)
must keep the SSTable count at k£ or below. Subject to that
constraint, its goal is to minimize the write amplification,
which is defined to be the total number of bytes written in
creating SSTables, divided by ZLI £;,the sum of the sizes of
the n MemTable flushes. (Write amplification is a standard
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measure in LSM systems [16,30,31,40].) TIERED is stack-
based but not bounded depth, while LEVELED is neither stack-

based nor bounded depth.
For intuition, consider the example k = 2 and £; = 1 uni-
formly fort € {1, 2, ..., n}. The optimal write amplification

is ©(/n).
Next is the precise formal definition, as illustrated in
Fig. 2a:

Problem 1 (k-Stack-Based LSM Merge) A problem instance

is an £ € ]Rf’F. For each t € {1,...,n}, say flush t has
(flush) size ¢;. A solution is a sequence o = {0y, ...,0y},
called a schedule, where each o, is a partition of {1, 2, ..., ¢}

into at most k parts, each called an SS7Table, such that
o; is refined by o;_1 U {{r}} (if t > 2). The size of
any SSTable F is defined to be £(F) = Y ,.p{;—the
sum of the sizes of the flushes that comprise F. The
goal is to minimize o’s write amplification, defined as
W(o) = Y_; 8(01,01-1)/> 1, £s, where 8(0;, 0-1) =
ZFEQ\UH L(F) is the sum of the sizes of the new SSTables
created during the merge at time ¢.

Formally, a (bounded depth) stack-based merge policy is
a function P mapping each problem instance £ € R’ to a
solution o. In practice, the policy must be online, meaning
that its choice of merge at time ¢ depends only on the flush
sizes £1, {2, . .., £; seen so far. Because future flush sizes are
unknown, no online policy P can achieve minimum possible
write amplification for every input £. Among possible metrics
for analyzing such a policy P, the focus here is on worst-case
write amplification: the maximum, over all inputs £ € R’_; of
size n, of the write amplification that P yields on the input.
Formally, this is the function n = max{W (P (¢)) : £ € R} }.
Updates and Deletes The formal definitions above ignore the
effects of key UPDATEs and DELETEs. While it would not be
hard to extend the definition to model them, for designing
policies that minimize worst-case write amplification, this is
unnecessary: These operations only decrease the write ampli-
fication for a given input and schedule, so any online policy in
the restricted model above can easily be modified to achieve
the same worst-case write amplification, even in the presence
of UPDATES and DELETES.
Additional terminology Recall that a policy is stable if, for
every input, it maintains the following invariant at all times
among the current SSTables: the WRITE times of all items in
any given SSTable precede those of all items in every newer
SSTable. (Formally, every SSTable created is of the form
{i,i+1,..., j}forsomei, j.) As discussed previously, this
can speed up READs. We note without proof that any unstable
solution can be made stable while at most doubling the write
amplification. Likewise, each uniform input has an optimal
stable solution. All policies tested here are stable.

2 Each part in oy is the union of some parts in o;—; U {{t}}.

A policy is eager if, for every input £, for every time 7, the
policy creates just one new SSTable (necessarily including
the MemTable flushed at time ¢). Every input has an optimal
eager solution, and all bounded depth policies tested here
except for EXPLORING are eager.

An online policy is static if each o; is determined solely
by k and t. In a static policy, the merge at each time ¢
is predetermined—for example, for r = 1, merge just the
flushed MemTable; for + = 2, merge the MemTable with
the top SSTable, and so on—independent of the flush sizes
£1,42, ... The MINLATENCY and BINOMIAL policies are
static. Static policies ignore the flush sizes, so it may seem
counterintuitive that static policies can achieve optimum
worst-case write amplification.

3.2 MinLatency and Binomial

Among bounded depth stack-based policies, MINLATENCY
and BINOMIAL, by design, have the minimum possible
worst-case write amplification. Their design is based on the
following relationship between schedules and binary search
trees.

Fix any k-Stack-based LSM Merge instance ¢ =
(1, ..., £,).Consider any eager, stable schedule o for £. (So
o creates just one new SSTable at each time ¢.) Define the
(rooted) merge forest F for o as follows: Fort = 1,2, ...,n,
represent the new SSTable F; that o creates at time ¢ by a
new node ¢ in F, and, for each SSTable F; (if any) that is
merged in creating F;, make node ¢ the parent of the node s
that represents Fj.

Next, create the binary search tree T for o from F as
follows. Order the roots of F in decreasing order (decreas-
ing creation time ¢). For each node in JF, order its children
likewise. Then, let T = T (o) be the standard left-child,
right-sibling binary tree representation of . That is, 7 and
F have the same vertex set {1, 2, ..., n}, and, for each node
t in T, the left child of 7 in T is the first (oldest) child of
t in F (if any), while the right child of ¢ in T is the right
(next oldest) sibling of ¢ in F (if any; here we consider the
roots to be siblings). It turns out that (because o is stable)
the nodes of 7" must be in search-tree order. (Each node is
larger than those in its left subtree and smaller than those in
its right subtree.) Figure 2a, ¢ shows an example.

What about the depth constraint on o, and its write ampli-
fication? Recall that the stack (merge) depth of anode t is the
number of ancestors that are smaller (larger) than 7. While
the details are out of scope here, the following holds:

For any eager, stable schedule o:

1. o obeys the depth constraint if and only if every node in
T (o) has stack depth at most k — 1,
2. the write amplification incurred by ¢ on £ equals
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SSTable

t | SSTables at time ¢  bytes written count
1|01 = {1} 01 1
2|02 ={1},{2} 2 2
3|03 ={1},{2,3} lo + 3 2
4|04 ={1},{2, 3},{4} n 3

5 0'52{1,2,3,4,5} 01+l + 03+ €4 + 15 1
6|06 =1{1,2,3,4,5}{6} ¢l 2
(@
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6 ©® s ©
(b) (c)

Fig.2 a An eager, stable schedule o (n = 6, k = 3). b A graphical representation of . Each shaded rectangle is an SSTable (over time). Row ¢ is

the stack at time ¢. ¢ The binary-search-tree representation of o

>t (mergedepth(z, T(0)) + 1)¢;
Y1l

<1+ m’élx mergedepth(z, T'(0)).
t=

The mapping o — T (o) is invertible. Hence, any binary
search tree t with nodes {1, 2, ..., n}, maximum stack depth
k — 1, and maximum merge depth m — 1 yields a bounded
depth schedule o (such that T (o) = t), having write ampli-
fication at most m on any input £ € R,

Rationale for MinLatency MINLATENCY uses this observa-
tion to produce its schedule [35]. First consider the case that

n= (’",’:k) — 1 for some integer m. Among the binary search
trees on nodes {1, 2, ..., n}, there is a unique tree with max-

imum stack depth k£ — 1 and maximum merge depth m — 1.
Let t*(m, k) denote this tree, and let o*(m, k) denote the
corresponding schedule.

MINLATENCY is designed to output o * (m, k) for any input
of size n. Since 7*(m, k) has maximum merge depth m — 1,
as discussed above, o * (m, k) has write amplification at most
m, which by calculation is

(1+00/k) kn'* /ey, (1

where ¢, = (k + 1)/(k!)1/k € [2, e]. This bound extends to
arbitrary n, so MINLATENCY’s worst-case write amplification
is at most (1).

This is optimal, in the following sense: For every € > 0
and large n, no stack-based policy achieves worst-case write
amplification less than (1 — €)k n'/¥/c;. This is shown by
using the bijection described above to bound the minimum
possible write amplification for uniform inputs.

Binomial and the small-n and large-n regimes As mentioned
previously, due to the fact that MINLATENCY and BIGTABLE
are lazy, they produce schedules whose average SSTable
count is close to k. When n is large, any policy with near-
optimal write amplification must do this. Specifically, in what
we call the large-n regime—after the number of flushes
exceeds 4% or so—any schedule with near-optimal write
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amplification (e.g., for uniform £) must have average SSTable
count near k. In this regime, BINOMIAL behaves similarly to
MINLATENCY. Consequently, in this regime, BINOMIAL still
has minimum worst-case write amplification.

However, in what we call the small-n regime—until the
number of flushes n reaches 4*—it is possible to achieve
near-optimal write amplification while keeping the average
SSTable count somewhat smaller. BINOMIAL is designed to
do this [35]. In the small-n regime, it produces the sched-
ule o for the tree t*(m, m), for which the maximum stack
depth and maximum merge depth are both m ~ log,(n)/2,
so BINOMIAL’s average SSTable count and write amplifica-
tion are about log, (n)/2, which is at most & (in this regime)
and can be less. Consequently, in the small-n regime, BINO-
MIAL can opportunistically achieve average SSTable count
well below k. In this way, it compares well to EXPLORING,
and it behaves well even with unbounded depth (k = o0).

4 Experimental evaluation
4.1 Test platform: AsterixDB

Apache AsterixDB [2,6] is a full-function, open-source big
data management system (BDMS), which has a shared-
nothing architecture, with each node in an AsterixDB cluster
managing one or more storage and index partitions for its
datasets based on LSM storage. Each node uses its memory
for a mix of storing MemTables of active datasets, buffering
of file pages as they are accessed, and other memory-intensive
operations. AsterixDB represents each SSTable as a BT -tree,
where the number of keys at each internal node is roughly
the configured page size divided by the key size. (Internal
nodes store keys but not values.) Secondary indexing is also
available using B -trees, R-trees, and/or inverted indexes
[3]. As secondary indexing is out of the scope of this paper,
our experiments involve only primary indexes.

AsterixDB provides data feeds for rapid ingestion of data
[23]. A feed adapter handles establishing the connection with
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a data source, as well as receiving, parsing, and translating
data from the data source into ADM objects [2] to be stored
in AsterixDB. Several built-in feed adapters available for
retrieving data from network sockets, local file system, or
from applications like Twitter and RSS.

4.2 Experimental setup

The experiments were performed on a machine with an Intel
13-4330 CPU running CentOS 7 with 8 GB of RAM and
two mirrored (RAID 1) 1 TB hard drives. AsterixDB was
configured to use 1 node controller, so all records are stored
on the same disk location. The relatively small RAM size
of 8 GB limits caching, to better simulate large workloads.
The MemTable capacity was configured at 4 MB. The small
MemTable capacity increases the flush rate to better simulate
longer runs.

The workload was generated using the Yahoo! Cloud
Serving Benchmark (YCSB) [11,44], with default param-
eters used in load phase. The full workload consists of
80,000,000 WRITES, each writing one record with a primary
key of 5 to 23 bytes plus 10 attributes of 100 bytes each,
giving 11 attributes of about 1 KB total size. Each primary
key is a string with a 4-byte prefix and a long integer (as a
string). Insert order was set to the default hashed.

To achieve high ingestion rate, we implemented a YCSB
database interface layer for AsterixDB using the “socket
_adapter” data feed (which retrieves data from a network
socket) with an upsert data model, so that records are writ-
ten without a duplicate key check to achieve a much higher
throughput. Upsert in AsterixDB and Cassandra is the equiv-
alent of standard insert in other NoSQL systems, where, if an
inserted record conflicts in the primary key with an existing
record, it overwrites it.

The MemTable flushes were triggered by AsterixDB when
the MemTable was near capacity, so the input £ generated by
the workload was nearly uniform, with each flush size ¢;
about 4 MB. This represents about 3300 records per flush, so
the input size n—the total number of flushes in the run—was
just over 24,000.

For each of the five bounded depth stack-based policies
tested, and for each k € {3,4,5, 6,7, 8, 10}, we executed a
single run testing that policy and configured with that depth
(SSTable count) limit k. For TIERED and LEVELED policies,
we executed the same runs with size ratio B € {4, 8, 16, 32},
the number of SSTables in level 0 was set to 2 in LEVELED
policy. LEVELED also used a strategy that picks the SSTable
which overlaps with the minimum number of SSTables in
the next level for merges in order to reduce the write ampli-
fication. All other policy parameters were set to their default
values. (See Sect. 2.) Each of the 43 runs started from an
empty instance and then inserted all records of the workload

into the database, generating just over 24,000 flushes for the
merge policy.

For some smaller k values, some of the bounded depth
policies had significantly large write amplification and so did
not finish the run. BINOMIAL and MINLATENCY finished in
about 16 hours, but BIGTABLE and EXPLORING ingested less
than 40% of the records after two days, so were terminated
early. Similarly, CONSTANT was terminated early in all of its
runs.

As our focus is on write amplification, which is not
affected by READs, the workload contains no READs. (But
see Sect. 4.3.2.)

The data for all 43 runs are tabulated in “Appendix A.”

4.3 Policy comparison
4.3.1 Write amplification

At any given time ¢ during a run, define the write amplifica-
tion (so far) to be the total number of bytes written to create
SSTables so far divided by the number of bytes flushed so
far (va:l £s). This section illustrates how write amplifica-
tion grows over time during the runs for the various policies.
The 5 bounded depth stack-based policies all share acommon
parameter k, which is the maximum number of SSTables. On
the other hand, TIERED and LEVELED both share a different
parameter B, which is the size ratio between tiers or levels.
Because these two parameters carry different meanings, it is
not meaningful to compare the write amplification of these
7 policies directly with the same value of k and B. Thus, in
this subsection, we compare and evaluate them into 2 groups:
One group containing the 5 bounded depth stack-based poli-
cies are compared for the same value of k, while the other
group of TIERED and LEVELED are compared for the same
value of B.

Bounded depth stack-based policies

We focus on the runs with k € {5, 6, 7}, which are particu-
larly informative. The runs for each k are shown in Fig. 3a—c,
each showing how the write amplification grows over the
course of all n ~ 24,000 flushes. Because workloads with
at most a few thousand flushes are likely to be important in
practice, Fig. 3d—f repeats the plots, zooming in to focus on
just the first 2000 flushes (n = 2000).

In interpreting the plots, note that the caption of each sub-
figure shows the threshold 4. The small-n regime lasts until
the number of flushes passes this threshold, whence the large-
n regime begins. Note that (depending on n and k) some
runs lie entirely within the small-n regime (n < 4"), some
show the transition, and in the rest (with n > 4%) the small-
n regime is too small to be seen clearly. In all cases, the
results depend on the regime as follows. During the small-n
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n = 2000. The transition from the small-n regime to the large-n regime (if present) occurs at 4 flushes. Complete data are in “Appendix A”

regime, MINLATENCY has smallest write amplification, with
BINOMIAL, BIGTABLE, and then EXPLORING close behind.
As the large-n regime begins, MINLATENCY and BINOMIAL
become indistinguishable. Their write amplification at time
t grows sub-linearly (proportionally to #!/), while those of
BIGTABLE and EXPLORING grow linearly (proportionally to
t). Although we do not have enough data for CONSTANT, its
write amplification is O(¢/k) as it merges all SSTables in
every k flushes. These results are consistent with the analyt-
ical predictions from the theoretical model [35].

Tiered policy and Leveled policy

The runs for TIERED and LEVELED are shown in Fig. 4a for
n ~ 24,000 flushes with B € {4, 8, 16, 32}. TIERED achieved
lowest write amplification than any other policy tested, while
LEVELED has significantly higher write amplification than all
the other policies except for CONSTANT. The write amplifi-
cation is O (logt) and O (B logt) for TIERED and LEVELED,
respectively. From the figure, it is observable that smaller size
ratio leads to higher write amplification in TIERED but lower
write amplification in LEVELED, which verifies the theoretical
numbers. Runs with 2000 flushes are shown in Fig. 4b which
shows the same results. Unlike the bounded depth policies,
the small-n regime does not apply to TIERED and LEVELED.

4.3.2 Read amplification
Read amplification is the number of disk I/Os per READ

operation. In this paper, we focus on point query only. In
practice, accessing one SSTable only costs one disk I/O,
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assuming all metadata and all internal nodes of BT -trees are
cached. Therefore, the worst-case read amplification can be
computed as the SSTable count for all stack-based policies,
or approximately the number of levels for LEVELED policy
(number of SSTables in level 0 is 2 in our experiments),
although techniques such as Bloom filter can skip checking
most of the SSTables, making the actual read amplification
be only 1.

As noted previously, MINLATENCY and BIGTABLE, being
lazy, tend to keep the read amplification near its limit k.
In the large-n regime, any policy that minimizes worst-case
write amplification must do this. But, in the small-n regime,
BINOMIAL opportunistically achieves smaller average read
amplification, as does EXPLORING to some extent.

Figure 5 shows a line for each policy except CONSTANT.
The line for CONSTANT was generated from simulation. It
can be clearly seen from the figure that CONSTANT is far from
optimal; thus, below we concentrate on the other policies. The
curve shows the trade-off between final write amplification
and average read amplification achieved by its policy: It has
apoint (x, y) for every run of the bounded depth stack-based
policy with k € {4,5,6,7, 8, 10}, or TIERED and LEVELED
with B € {4,8, 16,32} (and n ~ 24,000), where x is the
final write amplification for the run and y is the average read
amplification over the course of the run. Both the x-axis and
y-axis are log-scaled.

First consider the runs with k € {7,6,5,4}. Within
each curve, these correspond to the four rightmost/lowest
points (with k = 4 being rightmost/lowest). These runs
are dominated by the large-n regime, and each policy has
average SSTable count (y coordinate) close to k. In this
regime, the BINOMIAL and MINLATENCY policies achieve
the same (near-optimal) trade-off, while the EXPLORING and
BIGTABLE policies are far from the optimal frontier due to
their larger write amplification.

Next consider the remaining runs, for k € {10, 8}. On each
curve, these are the two leftmost/highest points, with k =
10 leftmost. In the curve for EXPLORING, its two points are
indistinguishable. These runs stay within the small-n regime.
In this regime, BINOMIAL achieves a slightly better trade-off
than the other policies. MINLATENCY and BIGTABLE give
comparable trade-offs. For EXPLORING, its two runs lie close

to the optimal frontier, but low: increasing the SSTable limit
(k) from 8 to 10 makes little difference.

The read amplification of TIERED and LEVELED is inverse
of their write amplification, that is O(Blogt) for TIERED
and O(log?) for LEVELED. TIERED—the 4 points from left
to right correspond to B € {32, 16, 8, 4}, respectively—has
higher read amplification than any other policy tested but
has significantly lower write amplification. LEVELED—the
4 points from left to right correspond to B € {4, 8, 16, 32},
respectively—has comparable read amplification to the other
policies except TIERED, but has much higher write amplifi-
cation. Usually, a merge policy cannot achieve low write and
read amplification at the same time. Most researches tried
to improve the trade-off curve of TIERED and LEVELED such
that it can get closer to the optimal frontier [13,14]. As shown
in the figure, BINOMIAL and MINLATENCY are both closer to
the optimal frontier, which has better trade-off between write
and read. BIGTABLE and EXPLORING are closer to the optimal
frontier with a few large k values, but they have to pay very
high write cost to reduce the read cost.

4.3.3 Transient space amplification

Recently, various works [7,16,28] have discussed the impor-
tance of space amplification. In an LSM-tree based database
system, space amplification is mostly determined by the
amount of obsolete data from updates and deletions in a sta-
ble state which are yet to be garbage-collected in merges.
Because our primary focus is an append-only workload with-
out any updates or deletions, there would be no obsolete data,
so the space amplification of all policies would be almost the
same. Therefore, comparing space amplification among these
policies is not interesting here.

On the other hand, what is more interesting is the tran-
sient space amplification, which measures the temporary
disk space required for creating new components [18,33]
during merges. We compute transient space amplification as
the maximum total size of all SSTables divided by the total
data size flushed (inserted) so far. For example, a flush in
TIERED or LEVELED can trigger several merges in sequence,
where only the largest merge will be counted. A maximum of
transient space amplification of 2 can happen when a major
merge involves all existing SSTables. A policy with higher
transient space amplification needs larger disk space to load
the same amount of data, causing lower disk space utiliza-
tion. The highest transient space amplification observed in
our experiments for each policy is shown in Fig. 6, where
BINOMIAL, MINLATENCY, BIGTABLE, and EXPLORING use
k = 4, TIERED uses B = 4, and LEVELED uses B = 32. All
stack-based policies tested (including TIERED) could eventu-
ally reach a transient space amplification of 2, while LEVELED
has very low transient space amplification that is close to 1,
and hence utilizes disk space much better. Among the five
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stack-based policies, TIERED offered lowest transient space
amplification but highest read amplification; the transient
space amplification is lower than the others for BIGTABLE,
but its write amplification is high. But in general, any policy
which tries to reduce the total number of SSTables to a min-
imum can have a high transient space amplification close to
2 due to major merges.

4.4 Updates and deletions

UPDATE and DELETE operations insert records whose keys
already occur in some SSTable. As a merge combines SSTa-
bles, if it finds multiple records with the same key, it can
remove all but the latest one. Hence, for workloads with
UPDATE and DELETE operations, the write amplification can
be reduced. But the experimental runs described above have
no UPDATE or DELETE operations. As a step toward under-
standing their effects, we did additional runs with k = 6
and B € {4, 8, 16, 32}, with 70% of the WRITE operations
replaced by UPDATES, each to a key selected randomly from
the existing keys according to a Zipf distribution with expo-
nent E = 0.99, concentrated on the recently inserted items,
similar to the “Latest” distribution in YCSB. The flush rate
is reduced, as UPDATESs to keys currently in the MemTable
are common but do not increase the number of records in the
MemTable. To compensate, we increased the total number of
operations by 50%, resulting in about n ~ 26, 400 flushes.

Figure 7a, b plots the write amplification versus flushes
for the 4 runs of the bounded depth policies and for the 8 runs
of TIERED and LEVELED, respectively.

The primary effect (not seen in the plots) is a reduction
in the total number of flushes, but the write amplification
(even as a function of the number of flushes) is also some-
what reduced, compared to the original runs (Fig. 3b). The
relative performance of the various policies is unchanged.
Experiments with other key distributions (uniform over exist-
ing keys, or Zipf concentrated on the oldest) yielded similar
results that we do not report here.

Although the theoretical model mostly focuses on the
append-only workload, via the experiments shown in Fig. 7,
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Fig.7 Runs with random UPDATESs (n = 26, 400)

the write amplifications are still aligned with the model’s pre-
diction even with a update-heavy workload. In practice, with
more updates or deletions, the error between the theoretical
and the actual write cost of BINOMIAL and MINLATENCY
can become more and more significant. One way to solve
this problem is to periodically re-evaluate the current status
of SSTables and recompute the number of flushes based on
the total SSTable size. Hence, BINOMIAL and MINLATENCY
are still good candidates even for update-heavy workloads in
real-world applications.

4.5 Insertion order

Unlike stack-based policies where merges are independent of
SSTable contents, LEVELED is highly sensitive to the inser-
tion order, which affects the number of overlapping SSTables
in every merge. For workloads with sequentially inserted
keys, SSTables do not overlap with each other, and hence
they are simply moved to the next level by updating only the
metadata with no data copy [38]. For an append-only work-
load with sequential insertion order, LEVELED can achieve a
minimum write amplification that is close to 1, as all merges
are just movements of SSTables. However, if updates or dele-
tions were added to such workload, we found that LEVELED
could have very similar write amplification as a workload
with non-sequential insertion order. We reran the same exper-
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iments for LEVELED with updates, except that we changed
the insert order from hashed to ordered, such that new keys
inserted are in sequential order, while some of the inserted
keys can be updated later. Results of these runs are shown
in Fig. 8, which is almost identical to Fig. 7b. The insertion
order does not impact the write amplification of the other
stack-based policies by much; thus, we do not report their
write amplifications here.

A minor observation from these runs is, compared to the
runs with hashed insertion order, the total number of flushes
is slightly reduced, leading to a slightly lower write ampli-
fication. This is because AsterixDB implements MemTable
as BT -tree. The MemTables are usually 1/2 to 2/3 full with
hashed, so flushes are triggered more often. As SSTables are
created using bulk loading method, their BT -tree fill factors
are very high, making the flushed SSTable size smaller than
the MemTable size. For a workload with sequential inser-
tion order, both MemTables and SSTables have very high fill
factors, so flushes are triggered less frequently.

5 Model validation and simulation

In each run, the fotal time spent in each merge operation is
well predicted by the bytes written. This is demonstrated by
the plotin Fig. 9, which has a point for every individual merge
in every run, showing the elapsed time for that merge versus
the number of bytes written by that merge.

Also, observed write amplification is in turn well pre-
dicted by the theoretical model. More specifically, using the
assumptions of the theoretical model, we implemented a sim-
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Fig. 10 Observed and simulated write amplification over time

ulator [42] that can simulate a given policy on a given input
for any stack-based policies. For each of the 35 runs of the
bounded depth policies from the experiment, we simulated
the run (for the given policy, k, and n =~ 24,000 uniform
flushes).

Figure 10a illustrates the five runs with k = 7, over
time, by showing the write amplifications over time as
observed in the actual runs. Figure 10b shows the same
for the simulated runs. For the static policies MINLATENCY
and BINOMIAL, the observed write amplification tracks the
predicted write amplification closely. For EXPLORING and
BIGTABLE, the observed write amplification tracks the pre-
dicted write amplification, but not as closely. (For these
policies, small perturbations in the flush sizes can affect total
write amplification.)

Figure 11 shows that the simulated write amplification is
a reasonable predictor of the write amplification observed
empirically. That figure has two plots. The first (top) plot
in that figure has a curve for each policy (except CON-
STANT), with a point for each of the six or seven runs that the
policy completed, showing the observed final write ampli-
fication versus the simulated final write amplification. The
two extreme points in the upper right are for BIGTABLE and
EXPLORING with k = 4, with very high write amplification.
To better show the remaining data, the second (bottom) plot
expands the first, zooming in to the lower left corner (the
region with x € [7, 39]). For each curve, the R? value of the
best-fit linear trendline is shown in the upper left of the first
plot. (The trendlines are not shown.) The R? values are very
close to 1, demonstrating that the simulated write amplifica-
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tion is a good predictor of the experimentally observed write
amplification.
Policy design via analysis and simulation

A realistic theoretical model facilitates design in at least
two ways. As described earlier, the model allows a pre-
cise theoretical analysis of the underlying combinatorics,
as illustrated by the design of MINLATENCY and BINO-
MIAL. It also allows accurate simulation. As noted in the
Introduction, LSM systems are designed to run for months,
incorporating terabytes of data. Even with appropriate adap-
tations, real-world experiments can take days or weeks.
Replacing experiments by (much faster) simulations can
moderate this bottleneck. As a proof of concept, Fig. 12
shows simulated write amplification over time for BIGTABLE,
BINOMIAL, CONSTANT, EXPLORING, and MINLATENCY for
k € {6,7, 10}. As these policies’ average read amplification
are all less than k (% for CONSTANT), the following settings
were used for TIERED and LEVELED to achieve similar aver-
age read amplification (assuming one SSTable overlaps with
B SSTables in the next level in every merge for LEVELED):

— Figure 12a: k = 6, n = 100,000,B = 2 for TIERED and
B = 9 for LEVELED, their average read amplification are
8.15 and 6.25, respectively;

— Figure 12b: k = 7, n = 100,000, B = 2 for TIERED and
B = 6 for LEVELED, their average read amplification are
8.15 and 7.33, respectively;

— Figure 12c: k = 10, n = 1,000,000, B = 2 for TIERED
and B = 9 for LEVELED, their average read amplification
are 9.88 and 10.53, respectively.

The smallest size ratio allowed for TIERED is 2, which also

provides the lowest average read amplification it can achieve.
In all settings, the write amplification of LEVELED is 3 to
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4 times larger than BINOMIAL and MINLATENCY; they are
only comparable with EXPLORING and slightly better than
BIGTABLE in the first plot. TIERED, on the other hand, had
lower write amplification than BIGTABLE and EXPLORING,
but always higher than BINOMIAL and MINLATENCY, and its
average read amplification is higher too, except for the last
plot, which is slightly lower than 10.
These simulations took only minutes to complete.

6 Discussion

As predicted by the theoretical model, policy behavior fell
into two regimes: the small-n regime (until the number of
flushes reached about 4%) and the large-n regime (after that).
MINLATENCY achieved the lowest write amplification, with
BINOMIAL a close second to it. BIGTABLE and EXPLORING
were not far behind in the small-n regime, but in the large-n
regime their write amplification was an order of magnitude
higher. In short, the two newly proposed policies achieve
near-optimal worst-case write amplification among all stack-
based policies, outperforming policies in use in industrial
systems, especially for runs with many flushes.

The trade-offs between write amplification and average
read amplification were also studied in this paper. In the large-
n regime, all bounded depth policies except (sometimes)
EXPLORING had average read amplification near k. MIN-
LATENCY and BINOMIAL, but not EXPLORING or BIGTABLE,
were near the optimal frontier. In the small-n regime, all poli-
cies were close to the optimal frontier, with BINOMIAL and
EXPLORING having average read amplification below k. On
the other hand, although popular in the literature, the trade-
offs of TIERED and LEVELED are much worse than BINOMIAL
and MINLATENCY. These two policies might be overrated if
we focus more on the cost of writes and reads.

Limitations and future work

Non-uniform flush sizes, UPDATEs, dynamic policies. The
experiments here are limited to near-uniform inputs, where
most flush sizes are about the same. Most LSM database
systems, including AsterixDB, Cassandra, HBase, LevelDB,
and RocksDB, use uniform flush size. Some of them sup-
port checkpointing, which flushes the MemTable at some
timeout interval, or when the commit log is full, poten-
tially creating smaller SSTable before the MemTable is full.
Although uniform or near-uniform flush is more common
in the literature, workloads with variable flush sizes are of
interest. Variable flush size may be used to coordinate multi-
ple datasets sharing the same memory budget, or balance the
write buffer and the read buffer cache for dynamic workloads.
For example, a recent work [32] described an architecture
which provides adaptive memory management to minimize
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Fig. 12 Simulated total write amplification for 100,000 flushes (and 1,000,000 for k = 10)

overall write costs. For moderately variable flush sizes, we
expect the write amplification of most policies (and certainly
of MINLATENCY and BINOMIAL) to be similar to that for uni-
form inputs. Regardless of variation, the write amplification
incurred by MINLATENCY and BINOMIAL is guaranteed to be
no worse than it is for uniform inputs.

Most of the experiments here are limited to APPEND-only
workloads. A few preliminary results here suggest that a
moderate to high rate of UPDATEs and DELETEs mainly reduce
flush rate and slightly reduce write amplification. At a min-
imum, UPDATEs and DELETEs are guaranteed not to increase
the write amplification incurred by MINLATENCY and BINO-
MIAL. But inputs with UPDATES, DELETES, and non-uniform
flush sizes can have optimal write amplification substantially
below the worst case of @ (n!/%). In this case, dynamic poli-
cies such as BIGTABLE, EXPLORING, and new policies which
are designed using the theoretical framework of competitive-
analysis (as in [35]), may, in principle, outperform static
policies such as BINOMIAL and MINLATENCY. Future work
will explore how significant this effect may be in practice. On
the other hand, all the six evaluated stack-based policies are
not very sensitive to workloads with UPDATEs or DELETES;
their relative ranking of write and read cost almost remains
the same. The exception is LEVELED, which is very sensi-
tive to UPDATEs or DELETES if the insertion order is nearly
sequential. With a very low rate of UPDATEs or DELETES,
write amplification of LEVELED increased significantly.
Compression Many databases support data compression to
reduce the data size on disk, at a cost of higher CPU usage to
retrieve data with decompression. In general, a system with
stronger compression has lower write amplification and space
amplification because of smaller data size [16]. Moreover,
compression makes flushed SSTable size smaller than the
MemTable size which can potentially affect the performance
of BINOMIAL and MINLATENCY.

Read costs The experimental design here focuses on min-
imizing write amplification, relying on the bounded depth
constraint to control read costs such as read amplification—
the average number of disk accesses required per read for

point queries. Most LSM systems (other than Bigtable) offer
merge policies that are not depth-bounded, instead allow-
ing the SSTable count to grow, say, logarithmically with the
number of flushes. A natural objective would be to minimize
a linear combination of the read and write amplification—
this could control the stack depth without manual configura-
tion. (This is similar to BINOMIAL’s behavior in the small-n
regime, where it minimizes the worst-case maximum of the
read and write amplification, achieving a reasonable bal-
ance.) For read costs, amore nuanced accounting is desirable:
It would be useful to take into account the effects of Bloom
filters, and dynamic policies that respond to varying rates
of READs are also of interest. Moreover, read amplification
of point queries or range queries, query response time and
throughput, sequential versus random access to SSTables can
be of interest as well.

Secondary indexes The existence of secondary indexes
impacts merging. For example, AsterixDB (with default set-
tings) maintains a one-to-one correspondence between the
SSTables for the primary indexes and the SSTables for the
secondary indexes. Ideally, merge policies should take sec-
ondary indexes into account.

7 Related work

Historically, the main data structure used for on-disk key
value storage is the BT -tree. Nonetheless, LSM architectures
are becoming common in industrial settings. This is partly
because they offer substantially better performance for write-
heavy workloads [24]. Further, for many workloads, reads are
highly cacheable, making the effective workload write-heavy.
In these cases, LSM architectures substantially outperform
BT -trees.

In 2006, Google released Bigtable [9,20], now the primary
data store for many Google applications. Its default merge
policy is a bounded depth stack-based policy. We study it
here. Spanner [12], Google’s Bigtable replacement, likely
uses a stack-based policy, though details are not public.
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Apache HBase [5,19,27] was introduced around 2006,
modeled on Bigtable, and used by Facebook 2010-2018. Its
default merge policy is EXPLORING, the precursor of which
was a variant of BIGTABLE called RATIOBASED. Both poli-
cies are configurable as bounded depth policies. Here, we
report results only for EXPLORING, as it consistently outper-
formed RATIOBASED.

Apache Cassandra [4,29] was released by Facebook in
2008. Its first main merge policy, SIZETIERED, is a stack-
based policy that orders the SSTables by size, groups
similar-sized SSTables, and then merges a group that has
sufficiently many SSTables. SIZETIERED is not stable—that
is, it does not maintain the following property at all times: the
WRITE times of all items in any given SSTable precede those
of all items in every newer SSTable. With a stable policy, a
READ can scan the recently created SSTables first, stopping
with the first SSTable that contains the key. Unstable poli-
cies lack this advantage: A READ operation must check every
SSTable. Apache Accumulo [26] which was created in 2008
by the NSA uses a similar stack-based policy. We do not test
these policies here, as our test platform supports only stable
policies, and we believe they behave similarly to BIGTABLE
or EXPLORING.

Previous to this work, our test platform—Apache

AsterixDB—provided just one bounded depth policy
(CONSTANT), which suffered from high write amplification
[3]. AsterixDB has removed support for CONSTANT, and,
based on the preliminary results provided here, added support
for BINOMIAL. Our recent work [34] shows that BINOMIAL
can provide superior write and read performance for LSM
secondary spatial indexes, too.
Leveled policies LevelDB [15,21] was released in 2011 by
Google. Its merge policy, unlike the policies mentioned
above, does not fit the stack-based model. For our purposes,
the policy can be viewed as a modified stack-based policy
where each SSTable is split (by partitioning the key space
into disjoint intervals) into multiple smaller SSTables that
are collectively called a level (or sorted run). Each READ
operation needs to check only one SSTable per level—the
one whose key interval contains the given key. Using many
smaller tables allows smaller, “rolling” merges, avoiding the
occasional monolithic merges required by stack-based poli-
cies.

In 2011, Apache Cassandra added support for a lev-
eled policy adapted from LevelDB. (Cassandra also offers
merge policies specifically designed for time-series work-
loads.) In 2012, Facebook released a LevelDB fork called
RocksDB [16,17]. RocksDB offers several policies: the
standard TIERED and LEVELED, LEVELED-N which allows
multiple sorted runs per level, a hybrid of TIERED+LEVELED,
and FIFO which aims for cache-like data [18].

Mixed of tiered and leveled policies In the literature, TIERED
provides very low write amplification but very high read

@ Springer

amplification. On the other hand, LEVELED provides good
read amplification at the cost of high write amplification. It
is natural to combine these 2 policies together to achieve a
more balanced trade-off between write and read amplifica-
tion. In RocksDB [16,17], there are 2 policies of such mix of
TIERED and LEVELED policies. The Leveled- N policy allows
N sorted run in a single level instead of 1 sorted run per
level. Similar idea was also described in [13,14]. The other
policy is called tiered+leveled, which uses TIERED for the
smaller levels and LEVELED for the larger levels. This pol-
icy allows transition from TIERED to LEVELED at a certain
level. SIimDB [39] is one example of this policy. It is an
interesting research direction to evaluate and compare their
trade-offs between write and average read amplification with
BINOMIAL and MINLATENCY.

None of the leveled or mixed policies are stack-based or

bounded depth policies.
Other merge policy models and optimizations Independently
of Mathieu et al. [35], Lim et al. [30] propose a similar theo-
retical model for write amplification and point out its utility
for simulation. The model includes a statistical estimate of
the effects of for UPDATEs and DELETES. For leveled policies,
Lim et al. use their model to propose tuning various policy
parameters—such as the size of each level—to optimize per-
formance. Dayan et al. [13,14] propose further optimizations
of SIZETIERED and leveled policies by tuning aspects such
as the Bloom filters’ false positive rate (vs. size) according to
SSTable size, the per-level merge frequency, and the memory
allocation between buffers and Bloom filters.

Multi-threaded merges (exploiting SSD parallelism) are
studied in [10,16,31,43]. Cache optimization in leveled
merges is studied in [41]. Offloading merges to another server
is studied in [1].

Some of the methods above optimize READ performance;
those complement the optimization of write amplification
considered here. None of the above works consider bounded
depth policies.

This paper focuses primarily on write amplification (and
to some extent read amplification). Other aspects of LSM
performance, such as I/O throughput, can also be affected by
merge policies but are not discussed here. For a more detailed
discussion of LSM architectures, including compaction poli-
cies, see [33].

8 Conclusions

This work compares several bounded depth LSM merge
policies, including representative policies from industrial
NoSQL databases and two new ones based on recent the-
oretical modeling, as well as the standard TIERED policy and
LEVELED policy, on a common platform (AsterixDB) using
Yahoo! cloud serving benchmark. The results have validated
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the proposed theoretical model and show that, compared
to existing policies, the newly proposed policies can have
substantially lower write amplification. TIERED and LEV-
ELED, while popular in the literature, generally underperform
because of their worse trade-off between writes and reads.
The theoretical model is realistic and can be used, via both
analysis and simulation, for the effective design and analysis
of merge policies. For example, we shared our experimental
findings with the developers of Apache AsterixDB [6], and
BINOMIAL, designed via the theoretical model, has now been
added as an LSM merging policy option to AsterixDB.
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A Appendix (Data)

For each of the 43 runs, Table 1 shows the total write amplifi-
cation and the average read amplification at five points during
the run: after 1000, 3000, 5000, 10,000, and 20,000 flushes.
If it happens that the MemTable is flushed while a merge is
ongoing, the SSTable count may briefly exceed k. For this
reason, the average read amplification slightly exceeded k in
a few runs (with k € {3, 4, 5}—see the bold numbers).
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