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Abstract
The interval join is a popular operation in temporal, spatial, and uncertain databases. The majority of interval join algorithms
assume that input data reside on disk and so, their focus is tominimize the I/O accesses. Recently, an in-memory approach based
on plane sweep (PS) for modern hardware was proposed which greatly outperforms previous work. However, this approach
relies on a complex data structure and its parallelization has not been adequately studied. In this article, we investigate in-
memory interval joins in two directions. First, we explore the applicability of a largely ignored forward scan (FS)-based plane
sweep algorithm, for single-threaded join evaluation.We propose four optimizations for FS that greatly reduce its cost, making
it competitive or even faster than the state-of-the-art. Second, we study in depth the parallel computation of interval joins. We
design a non-partitioning-based approach that determines independent tasks of the join algorithm to run in parallel. Then, we
address the drawbacks of the previously proposed hash-based partitioning and suggest a domain-based partitioning approach
that does not produce duplicate results. Within our approach, we propose a novel breakdown of the partition-joins into mini-
joins to be scheduled in the available CPU threads and propose an adaptive domain partitioning, aiming at load balancing. We
also investigate how the partitioning phase can benefit from modern parallel hardware. Our thorough experimental analysis
demonstrates the advantage of our novel partitioning-based approach for parallel computation.

Keywords Interval data · Join · Query processing · Plane sweep · Parallel processing · Main memory

1 Introduction

Given a 1D discrete or continuous domain, an interval is
defined by a starting and an ending point in this domain.
Consider for example the domain of all non-negative integers
N; two integers start, end ∈ N, with start ≤ end define an
interval i = [start, end] as the subset of N, which includes
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all integers x with start ≤ x ≤ end. 1 Let R, S be two
collections of intervals. The interval join R��S is defined
by all pairs of intervals r ∈ R, s ∈ S that intersect, i.e.,
r .start ≤ s.start ≤ r .end or s.start ≤ r .start ≤ s.end.

The interval join is one of themost widely used operations
in temporal databases [16]. Generally speaking, temporal
databases store relations of explicit attributes that conform
to a schema and each tuple carries a validity interval. In
this context, an interval join would find pairs of tuples from
two relations which have intersecting validity. For example,
assume that the employees of a company may be employed
at different departments during different time periods. Given
the employees in Fig. 1 who have worked in departments A
(red), B (blue), the interval join would find pairs of employ-
ees, whose periods of work in A and B, respectively, overlap.

Interval joins find application in other domains as well. In
multidimensional spaces, an object can be represented as a
set of intervals from a space-filling curve. The intervals cor-
respond to the subsequences of points on the curve that are

1 Note that the intervals in this paper are closed. Yet, our techniques and
discussions apply on generic intervals where the begin and end sides
are either open or closed.
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Fig. 1 Motivation example in temporal databases

included in the object. Spatial joins can then be reduced to
interval joins in the space-filling curve representation [22].
The filter-step of spatial joins between sets of objects approx-
imated by minimum bounding rectangles (MBRs) can also
be processed by finding intersecting pairs in one dimension
(i.e., an interval join) and verifying the intersection in the
other dimension on-the-fly [2,7,36]. Another application is
uncertain datamanagement.Uncertain values are represented
as intervals (which can be paired with confidence values).
Thus, equi-joins on the uncertain attributes of two relations
translate to interval joins [11].

Most of the previous works on interval joins [13,15,18,
32,34] assume that the input data reside on disk and their
objective is to minimize I/O accesses during the join. Such
a setting becomes less relevant in contemporary in-memory
data management and the wide availability of parallel and
distributed platforms and models. Hence, the classic plane
sweep (PS) algorithm [31] for in-memory join evaluation
has not been the focus in most of the previous work. A recent
paper [29] proposed an optimized PS algorithm (taken from
[2]), called Endpoint-Based Interval (EBI) Join. EBI sorts the
endpoints of all intervals (fromboth R and S) and then sweeps
a line which stops at each of the sorted endpoints. As the line
sweeps, EBImaintains the active sets of intervals from R and
S which intersect with the current stop point of the line to
output the join results.

Thework of [29] focused onminimizing the randommem-
ory accesses due to the updates and scans of the active sets. To
this end, a special data structure called gapless hash mapwas
proposed. However, random accesses can be overall avoided
by another implementation of PS, presented in [7] for MBR
(i.e., spatial) joins. We call this version forward scan (FS)
based PS. In a nutshell, FS sweeps all intervals in increasing
order of their start points. For each interval encountered (e.g.,
r ∈ R), FS scans forward the list of intervals from the other
set (e.g., S). All such intervals having their start point before
the end of r form join results with r . The cost of FS (exclud-
ing sorting) is O(|R| + |S| + |R �� S|), where |R �� S| is
the number of join results.
Contributions In this work, we investigate the in-memory
computation of interval joins, taking advantage of the paral-
lel processing offered by modern multi-core hardware. Our
contributions are twofold. First, we study the single-threaded
computation of interval joins, by presenting four novel opti-

mizations for the FS algorithm, which greatly reduce its
computational cost. In particular, optimized FS manages to
produce multiple join tuples in batch at the cost of a single
comparison or even output some results with zero compar-
isons. The performance of FS is further enhanced by careful
storage of the intervals inmainmemory, which reduces cache
misses. Overall, we achieve competitive or better perfor-
mance to the state-of-the-art PS algorithm (EBI [29]), without
using any special data structures.

Second, we study the in-memory parallel computation
of interval joins. We investigate two approaches that dif-
fer on whether they physically partition the inputs. Our
no-partitioning method operates in a master-slaves manner;
the master CPU thread sweeps input intervals, while slave
threads perform independent forward scans in parallel. For
partitioning-based parallel processing, we first show the lim-
itations of the hash-based partitioning framework from [29].
Then,wepropose a novel, domain-based partitioning instead.
Although intervals should be replicated in the domain par-
titions to ensure correctness, as we show, duplicate results
can be avoided, therefore the partition-join jobs can become
completely independent. To minimize the number of com-
parisons and also achieve load balancing, we break down
each partition-join into five independent mini-join jobs with
varying costs; in practice, only one of these mini-joins has
the complexity of the original join problem, while the oth-
ers have a significantly lower cost. We show how to schedule
thesemini-joins to the available CPU threads. To improve the
cost balancing between the partition-joins, we also suggest
an adaptive splitting approach. Finally, we present and eval-
uate three strategies for the partitioning phase which benefit
frommodernhardware.Our experimental analysis shows that
the domain-based partitioning framework, after employing
all the proposed optimizations, achieves high speedup with
the number of threads, greatly outperforming both the hash-
based partitioning framework of [29] and the no-partitioning
approach.
Comparison to our previouswork This article significantly
extends a preliminary version of our work [5] in a number
of directions. First, we design two additional optimization
techniques for FS which further boost its performance. All
optimizations are thoroughly evaluated, includingnewexper-
iments to provide better insights. Second, we provide a rule
of the thumb that decideswhich optimizations to apply, based
on the characteristics of the join inputs. Accordingly, we
devise optFS, a self-tuning version of FS, which automati-
cally selects and applies the most appropriate optimizations.
Third, we present a specialized version of FS for interval
self-joins, i.e., when we seek overlapping pairs of intervals
in a single collection. Fourth, we discuss and evaluate a new
approach for parallel processing which does not physically
partition the inputs. Fifth,we investigate alternative strategies
for the partitioning phase of the join. Finally, we conduct new
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tests to investigate the best setup for each parallel processing
framework.
Outline The rest of the article is organized as follows. First,
Sect. 2 discusses related work while Sect. 3 reviews in more
detail plane sweep methods; EBI [29] and original FS [7].
Then, we discuss the single-threaded join evaluation. Sec-
tion 4 details our optimizations for FS, Sect. 5 discusses
self-joins and Sect. 6 presents our experimental analysis
which demonstrates the effect of our FS optimizations.
Next, we discuss the parallel computation of interval joins.
Section 7 presents two novel parallel techniques, termed no-
partitioning and domain-based partitioning, Sect. 8 details
our strategies for parallelizing the partitioning phase and
Sect. 9 presents the second part of our experiments that
demonstrates the efficiency of our parallel interval join
framework. Last, Sect. 10 concludes the paper.

2 Related work

We classify previous works based on the data structures they
use and on the underlying architecture.
Nested loops and merge join Early work on interval joins
[18,32] studied a temporal join problem, where two relations
are equi-joined on a non-temporal attribute and the temporal
overlaps of joined tuple pairs should also be identified. Tech-
niques based on nested-loops (for unordered inputs) and on
sort-merge join (for ordered inputs)were proposed, aswell as
specialized data structures for append-only databases. Sim-
ilar to plane sweep, merge join algorithms require the two
input collections to be sorted, but join computation is sub-
optimal compared to FS, which guarantees at most |R| + |S|
comparisons that do not produce results.
Index-based algorithms Enderle et al. [15] propose interval
join algorithms,which operate on twoRI-trees [23] that index
the input collections. Zhang et al. [37] focus on finding pairs
of records in a temporal database that intersect in the (key,
time) space (i.e., a problem similar to that studied in [18,32]),
proposing an extension of the multi-version B-tree [3].
Partitioning-based algorithms A partitioning-based
approach for interval joins was proposed in [34]. The domain
is split into disjoint ranges. Each interval is assigned to the
partition corresponding to the last domain range it overlaps.
The domain ranges are processed sequentially from last to
first; after the last pair of partitions are processed, the intervals
which overlap the previous domain range aremigrated to the
next join. This way data replication is avoided. Histogram-
based techniques for defining good partition boundaries
were proposed in [33]. A more sophisticated partitioning
approach, called Overlap Interval Partitioning (OIP) Join
[13], divides the domain into equal-sized granules and con-
secutive granules define the ranges of the partitions. Each
interval is assigned to the partition corresponding to the

smallest sequence of granules that contains it. In the join
phase, partitions of one collection are joined with their over-
lapping partitions from the other collection. OIP was shown
to be superior compared to index-based approaches [15]
and sort-merge join. These results are consistent with the
comparative study of [16], which shows that partitioning-
based methods are superior to nested loops and merge join
approaches.

Disjoint Interval Partitioning (DIP) [8] was recently pro-
posed for temporal joins and other sort-based operations
on interval data (e.g, temporal aggregation). The main idea
behind DIP is to divide each of the two input relations into
partitions, such that each partition contains only disjoint
intervals. Every partition of one input is then joinedwith all of
the other. Since intervals in the same partition do not overlap,
sort-merge computations are performed without backtrack-
ing. Prior to this work, temporal aggregation was studied in
[26]. Given a large collection of intervals (possibly associ-
ated with values), the objective is to compute an aggregate
(e.g., count the valid intervals) at all points in time. An algo-
rithm was proposed in [26] which divides the domain into
partitions (buckets), assigns the intervals to the first and last
bucket they overlap and maintains a meta-array structure for
the aggregates of buckets entirely covered by intervals. The
aggregation can then be processed independently for each
bucket (e.g., using a sort-merge based approach) and the algo-
rithm can be parallelized in a shared-nothing architecture.
We also propose a domain-partitioning approach for parallel
processing (Sect. 7), but the details differ due to the different
natures of temporal join and aggregation.
Methods based on plane sweep The Endpoint-Based Inter-
val (EBI) Join [29] (reviewed in Sect. 3.1) and its lazy version
LEBI were shown to significantly outperform OIP [13] and to
also be superior to another plane sweep implementation [2].
An approach similar to EBI is used in SAP HANA [21]. To
our knowledge, no previous work was compared to FS [7]
(detailed in Sect. 3.2). In Sect. 4, we propose four optimiza-
tions for FS that greatly improve its performance, making
it competitive or even faster than LEBI. Last, extensions and
applications of the plane sweep approach has been discussed
in [6,10], but in the context of temporal aggregation and
SPARQL query processing, respectively.
Parallel algorithms A domain-based partitioning strategy
for interval joins on multi-processor machines was proposed
in [24]. Each partition is assigned to a processor and inter-
vals are replicated to the partitions they overlap, to allow join
results being produced independently at each processor. At
the end, a merge phase with duplicate elimination is required
as the same join result can be produced by different proces-
sors. Duplicates can be avoided using the reference test from
[14] but, this approach incurs extra comparisons. Our parallel
processing approach in Sect. 7 also applies a domain-based
partitioning but produces no duplicates. Also, we propose a
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ALGORITHM 1: Endpoint-Based Interval Join (EBI)
Input : collections of intervals R and S
Output : all intersecting pairs (r , s) ∈ R × S
Variables : endpoint indices E I R and E I S , active interval sets AR and AS

1 AR ← ∅, AS ← ∅;
2 build E I R and E I S ;

3 sort E I R and E I S first by endpoint then by type;

4 eR ← first index tuple in E I R ;

5 eS ← first index tuple in E I S ;

6 while E I R and E I S not depleted do
7 if eR < eS then
8 if eR .type = ST ART then
9 r ← interval in R with identifier eR .id;

10 add r to AR ; � r is open

11 foreach s ∈ AS do
12 output (r , s); � update result

13 else
14 remove r from AR ; � r no longer open

15 eR ← next index tuple in E I R ;

16 else
17 if eS .type = ST ART then
18 s ← interval in S with identifier eS .id;

19 add s to AS ; � s is open

20 foreach r ∈ AR do
21 output (r , s); � update result

22 else
23 remove s from AS ; � s no longer open

24 eS ← next index tuple in E I S ;

breakdown of each partition join to a set of mini-join jobs,
which has never been considered in previous work.
Distributed algorithmsDistributed interval joins were stud-
ied in [22]. The goal is to join sets of intervals located
at different clients. The clients iteratively exchange statis-
tics with the server, which help the latter to compute a
coarse-level approximate join; exact results are refined by
on-demand communication with the clients. Chawda et al.
[9] implement the partitioning algorithm of [24] in the
MapReduce framework and extend it to operate for other
(non-overlap) join predicates. The main goal of distributed
algorithms is to minimize the communication cost between
the machines that hold the data and compute the join.

3 Plane sweep for interval joins

This section presents the necessary background on plane
sweep based computation of interval joins. First, we detail the
EBI algorithm [29]. Then, we review the forward scan based
algorithm from [7], which has been overlooked by previous
work. Both methods take as input collections R, S of inter-
vals and compute all (r , s) pairs with r ∈ R, s ∈ S, that
intersect. We denote by r .start (r .end) the starting (ending)
endpoint of an interval r .

3.1 Endpoint-Based Interval Join

EBI [29] is based on the internal-memory plane sweep
technique of [31], but tailored to modern hardware. Algo-
rithm 1 illustrates the pseudo-code of EBI. EBI represents
each input interval, e.g., r ∈ R, by two tuples in the form of
〈endpoint, type, id〉, where endpoint equals either r .start
or r .end, type flags whether endpoint is a starting or an
ending endpoint, and id is the identifier of r . These tuples
are stored inside the endpoint indices E I R and E I S , sorted
primarily by their endpoint and secondarily by type. To
compute the join,EBI concurrently scans the endpoint indices,
accessing their tuples in increasing global order of their sort-
ing key, simulating a “sweep line” that stops at each endpoint
from either R or S. At each position of the sweep line, EBI
keeps track of the intervals that have started but not fin-
ished, i.e., the index tuples that are start endpoints, for which
the index tuple having the corresponding end endpoint has
not been accessed yet. Such intervals are called active and
they are stored inside sets AR and AS ; EBI updates these
active sets depending on the type entry of current index
tuple (Lines 10 and 14 for collection R and Lines 19 and
23 for S). Finally, for a current index tuple (e.g., eR) of type
ST ART , the algorithm iterates through the active intervals
of the opposite input (e.g., AS on Lines 11–12) to produce
the next bunch of results (e.g., the intervals of S that join with
eR .id).

By recording the active intervals from each collection,
EBI can directly report the join results without any end-
point comparisons. To achieve this, the algorithm needs to
store and scan the endpoint indices which contain twice the
amount of entries compared to the input collections. Hence
excluding the sorting cost for E I R and E I S , EBI conducts
2 · (|R| + |S|) endpoint comparisons to advance the sweep
line, in total. However, the critical overhead of EBI is the
maintenance and scanning of the active sets at each loop;
i.e., Lines 10 and 19 (add), Lines 11–12 and 20–21 (scan),
Lines 14 and 23 (remove). This overhead can be quite high;
for example, typical hash map data structures support effi-
cient O(1) updates but scanning their contents is slow. To
deal with this issue, Piatov et al. designed a special hash
table termed the gapless hash map which efficiently sup-
ports all three insert, remove and getNext operations.
Finally, the authors further optimized the join computation
by proposing a lazy evaluation technique which buffers con-
secutive index tuples of type ST ART (and hence, their
corresponding intervals) as long as they originate from the
same input (e.g., R). When producing the join results, a sin-
gle scan over the active set of the opposite collection (e.g.,
AS) is performed for the entire buffer. This idea is captured
by the Lazy Endpoint-Based Interval (LEBI) Join algorithm.
By keeping the buffer size small enough to fit inside the
L1 cache or even the cache registers, LEBI greatly reduces

123



In-Memory Interval Joins 671

ALGORITHM 2: Forward Scan based Plane Sweep
(FS)
Input : collections of intervals R and S
Output : all intersecting pairs (r , s) ∈ R × S

1 sort R and S by start endpoint;
2 r ← first interval in R;
3 s ← first interval in S;
4 while R and S not depleted do
5 if r .start < s.start then
6 s′ ← s;
7 while s′ �= null and r .end ≥ s′.start do
8 output (r , s′); � update result
9 s′ ← next interval in S; � scan forward

10 r ← next interval in R;

11 else
12 r ′ ← r ;
13 while r ′ �= null and s.end ≥ r ′.start do
14 output (r ′, s); � update result
15 r ′ ← next interval in R; � scan forward

16 s ← next interval in S;

main memory cache misses and hence, outperforms EBI even
more.

3.2 Forward scan-based plane sweep

The experiments in [29] showed that LEBI outperforms not
only EBI, but also the plane sweep algorithm of [2], which
directly scans the inputs ordered by start endpoint and keeps
track of the active intervals in a linked list. Intuitively, both
approaches perform a backward scan, i.e., a scan of already
encountered intervals, organized by a data structure that sup-
ports scans and updates. In practice however, the need to
implement a special structure may limit the applicability
and the adoption of these evaluation approaches while also
increasing the memory space requirements.

In [7], Brinkhoff et al. presented a different implementa-
tion of plane sweep, which performs a forward scan directly
on the input collections and hence, (i) there is no need to
keep track of active sets in a special data structure and (ii)
data scans are conducted sequentially. 2 Algorithm 2 illus-
trates the pseudo-code of this method, denoted by FS. First,
both inputs are sorted by the start endpoint of each interval.
Then, FS sweeps a line, which stops at the start endpoint
of all intervals of R, S in order. For each position of the
sweep line, corresponding to the start of an interval, say
r ∈ R, the algorithm produces join results by combining
r with all intervals from the opposite collection, that start (i)
after the sweep line and (ii) before r .end, i.e., all s′ ∈ S with
r .start ≤ s′.start ≤ r .end (internal while-loops on Lines 7–
10 and 13–16). Excluding the cost of sorting R and S, FS
conducts |R| + |S| + |R �� S| point comparisons, in total.
Specifically, each interval r ∈ R (the case for S is symmet-

2 The algorithm originally targets intersection join of 2D rectangles,
but it is straightforward to apply for interval joins.

ric) is compared to just one s′ ∈ S which does not intersect
r in the loop at Lines 8–10.

4 Optimizing FS

We present four optimization techniques for FS that can
greatly enhance its performance. Naturally, the cost of FS
cannot be asymptotically reduced; |R| + |S| endpoint com-
parisons is the unavoidable cost of advancing the sweep line.
However, it is possible to reduce the number of |R �� S|
comparisons required to produce the join results, which is
the focus of the first two optimization techniques termed
grouping and bucket indexing. In addition, low level code
engineering and careful data layout in main memory can fur-
ther improve the running time of FS, which is the focus of
our enhanced loop unrolling and decomposed data layout
techniques.

4.1 Grouping

The intuition behind our first optimization technique is to
group consecutively sweeped intervals from the same col-
lection and produce join results for them in batch, avoiding
redundant comparisons. We exemplify this idea in Fig. 2,
which depicts intervals {r1, r2} ∈ R and {s1, s2, s3, s4, s5} ∈
S sorted by start endpoint. Assume that FS has already exam-
ined s1; since r1.start < s2.start, the next interval where the
sweep line stops is r1. Algorithm 2 (Lines 7–10) then for-
wardly scans through the shaded area in Fig. 2a from s2.start
until it reaches s5.start > r1.end, producing result pairs
{(r1, s2), (r1, s3), (r1, s4)}. The next stop of the sweep line
is r2.start, since r2.start < s2.start. FS scans through the
shaded area in Fig. 2b producing results {(r2, s2), (r2, s3)}.
Weobserve that the scanned areas of r1 and r2 are not disjoint,
which in practice means that FS performed redundant end-
point comparisons. Indeed, this is the case for s2.start and
s3.start which were compared to both r1.end and r2.end.
However, since r1.end > r2.end holds, r2.end > s2.start
automatically implies that r1.end > s2.start; therefore, pairs
(r1, s2), (r2, s2) could have been reported by comparing only
r2.end to s2.start. Hence, processing consecutively sweeped
intervals from the same collection (e.g., r1 and r2) as a group
allows us to scan their common areas only once.

Algorithm 3 illustrates the pseudo-code of gFS, which
enhances FS with the grouping optimization. Instead of pro-
cessing a single interval at a time, gFS considers a group
of consecutive intervals from the same collection at a time.
Specifically, assume that at the current loop r .start < s.start
(the other case is symmetric). Starting from r , gFS accesses
all r ′ ∈ R with r ′.start < s.start (Line 7) and puts them
in a group GR . Next, the contents of GR are reordered by
increasing end endpoint (Line 8). Then, gFS initiates a for-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2 Scanned areas by FS, gFS, bFS and bgFS for r1 and r2; with
grouping r2 precedes r1. Underlined result pairs are produced without
any endpoint comparisons

ward scan on S starting from s′ = s (Lines 9–14), but unlike
FS the scan is done only once for all intervals in GR . For
each ri ∈ GR in the new order, if s′.start ≤ ri .end, then s′
intersects not only ri but also all intervals in GR after ri (due
to the sorting of GR by end). If s′.start > ri .end, then s′
does not join with ri but may join with succeeding intervals
in GR , so the for loop proceeds to the next ri ∈ GR .

Figure 2c, d exemplify gFS for intervals r1 and r2 grouped
under GR ; as r1.end > r2.end, r2 is considered first. When
the shaded area in Fig. 2c from s2.start until s4.start is
scanned, gFS produces results that pair both r2 and r1 with
covered intervals s2 and s3 from S, by comparing s2.start
and s3.start only to r2.end. Intuitively, avoiding redundant
endpoint comparisons corresponds to removing the overlap
between the scanned areas of consecutive intervals; compare
r1’s scanned area by gFS in Fig. 2d to the area in Fig. 2b by
FS after removing the overlap with r2’s area.

ALGORITHM 3: FS with grouping (gFS)
Input : collections of intervals R and S
Output : all intersecting pairs (r , s) ∈ R × S
Variables : groups GR and GS

1 sort R and S by start endpoint;
2 r ← first interval in R;
3 s ← first interval in S;
4 while R and S not depleted do
5 if r .start < s.start then
6 GR ← next group from R w.r.t. r , s;

7 sort GR by end endpoint;
8 s′ ← s;

9 foreach ri ∈ GR in order do
10 while s′ �= null and s′.start ≤ ri .end do
11 foreach r j ∈ GR , j ≥ i do
12 output (r j , s

′); � update result

13 s′ ← next interval in S; � scan forward

14 r ← first interval in R after GR ;

15 else
16 GS ← next group from S w.r.t. s, r ;

17 sort GS by end endpoint;
18 r ′ ← r ;

19 foreach si ∈ GS in order do
20 while r ′ �= null and r ′.start ≤ si .end do
21 foreach s j ∈ GS , j ≥ i do
22 output (r ′, s j ); � update result

23 r ′ ← next interval in R; � scan forward

24 s ← first interval in S after GS ;

Discussion and implementation details The grouping tech-
nique of gFS differs from the buffering employed by LEBI
[29]. First, LEBI groups consecutive start endpoints in a sort
order that includes 4 sets of items, whereas in gFS there
are only 2 sets of items (i.e., only start endpoints of the
two collections). As a result, the groups in gFS are likely
to be larger than LEBI’s buffer (and larger groups make gFS
more efficient). Second, the buffer in LEBI is solely employed
for outputting results while groups in gFS also facilitate the
avoidance of redundant endpoint comparisons due to the
reordering of groups by end endpoint.

Regarding the implementation of grouping in gFS, we
experimented with two different approaches. In the first
approach, each group is copied to andmanaged in a dedicated
array in main memory. The second approach retains pointers
to the begin and end index of each group in the correspond-
ing collection; the segment of the collection corresponding
to the group is re-sorted (note that correctness is not affected
by this). Our tests showed that the first approach is always
faster, due to the reduction of cache misses during the mul-
tiple scans of the group (i.e., Lines 12-13 and Lines 22-23).

4.2 Bucket indexing

Our second optimization technique extends FS to avoid even
more endpoint comparisons during the computation of the
join results. The idea is as follows. First, we split the domain
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Fig. 3 Bucket indexing: domain stripes and BI R , BI S bucket indices
for the intervals of Fig. 2

into a predefined number of equally-sized disjoint stripes; all
intervals from R (resp. S) that start within a particular stripe
are stored inside a dedicated bucket of the BI R (resp. BI S)
bucket index. Figure 3 exemplifies the domain stripes and the
bucket indices for the interval collections of Fig. 2.3

ALGORITHM 4: FS with bucket indexing (bFS)
Input : collections of intervals R and S
Output : all intersecting pairs (r , s) ∈ R × S
Variables : bucket indices BI R and BI S

1 sort R and S by start endpoint;

2 build BI R and BI S ;
3 r ← first interval in R;
4 s ← first interval in S;
5 while R and S not depleted do
6 if r .start < s.start then
7 s′ ← s;

8 B ← bucket in BI S : B.start ≤ r .end < B.end;
9 while s′ is before B do � no comparisons

10 output (r , s′); � update result
11 s′ ← next interval in S; � scan forward

12 while s′ �= null and s′.start ≤ r .end do
13 output (r , s′); � update result
14 s′ ← next interval in S; � scan forward

15 r ← next interval in R;

16 else
17 r ′ ← r ;

18 B ← bucket in BI R : B.start ≤ si .end < B.end;
19 while r ′ is before B do � no comparisons
20 output (r ′, s); � update result
21 r ′ ← next interval in R; � scan forward

22 while r ′ �= null and s.end ≥ r ′.start do
23 output (r ′, s); � update result
24 r ′ ← next interval in R; � scan forward

25 s ← next interval in S;

With the bucket indices, the area scanned by FS for an
interval is entirely covered by a range of stripes. Consider
Fig. 2c, e; r1’s scanned area lies inside four stripes which
means that the involved intervals from S start between the

3 A bucket may in fact be empty; however, we can control the ratio of
empty buckets by properly setting the total number of stripes while in
practice, empty buckets mostly occur for very skewed distributions of
the start endpoints.

BI S bucket covering s2.start and the BI S bucket covering
r1.end. In this spirit, area scanning resembles a range query
over the bucket indices.Hence, every interval si fromabucket
completely inside r1’s scanned area or lying after s2 in thefirst
bucket, can be paired to r1 as join result without any endpoint
comparisons; by definition of the stripes/buckets, for such
intervals si .start ≤ r1.end. So, we only need to conduct
endpoint comparisons for the si intervals from the bucket
that covers r1.end. This distinction is graphically shown in
Fig. 2e, f where solid gray areas are used to directly produce
join results with no endpoint comparisons. Observe that, for
this example, both join results produced when FS performs
a forward scan for r2 are directly reported when using the
bucket indexing. On the other hand, bucket indexing enables
us to directly report only two of the three join results for r1
as the bucket that contains s4 is not completely inside r1’s
scanned area.

Algorithm 4 illustrates the pseudo-code of bFS which
enhances FS with bucket indexing. Essentially, bFS operates
similar to FS. Their main difference lies in the forward scan
for the current interval. Without loss of generality, consider
r ∈ R (the case of s ∈ S is symmetric); Lines 8–14 imple-
ment the range query discussed in the previous paragraph.
The algorithm first identifies bucket B ∈ BI S which cov-
ers r .end. Then, it iterates through the s′ ∈ S intervals after
current s, originating from all buckets before B to directly
produce join results on Lines 9–11 without any endpoint
comparisons, while finally on Lines 12–14, the intervals of
B are scanned and compared exactly as in FS.
Discussion and implementation details In our implementa-
tion, we choose not to materialize the index buckets, i.e., no
intervals are copied to dedicated data structures. We store for
each bucket a pointer to the last interval in it; this allows bFS
to efficiently perform the forward scans.With this design, we
guarantee a small main memory footprint for our method as
there is no need to practically store a second copy of the data.

4.3 Enhanced loop unrolling

Our third optimization builds upon a code transformation
technique known as loop unrolling or loop unwinding [1,27,
28]. Essentially, the goal of loop unrolling is to reduce the
execution time by (i) eliminating the overhead of controlling
a loop (i.e., checking its exit condition) and the latency due
tomainmemory accesses, and (ii) reducing branch penalties.
Such a transformation can be carried either manually by the
programmer or automatically by the compiler; our focus is
on the former case.

The idea of manual unrolling involves the re-writing
of the loop as a repeated sequence of similar indepen-
dent statements. For example, a loop which processes the
1000 elements of an array can be modified to perform only
100 iterations using a so-called unrolling factor of 10; i.e.,
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Fig. 4 Enhanced loop unrolling: forward scans. Endpoint comparisons
are colored in dark gray; direct results output with no comparisons are
in light gray

every iteration of the new loop executes 10 identical and
independent element processing statements. In this spirit, a
straightforward way to benefit from loop unrolling will be to
unfold the forward scan loop on Lines 7–9 of Algorithm 2
(the case of Lines 13–15 is symmetric) by a factor of x .
Under this, the exit condition s′ �= null will checked only
once for every x-th interval. Also, every iteration of the new
loop checks the r .end ≥ s′.start overlap condition on each
of the next x (r , s′) pairs and if so, the pair is output.

Despite its positive effect on reducing the loop cost, this
straightforward approach would still incur the same number
of endpoint comparisons as the forward scan of FS, because
the r .end ≥ s′.start condition is checked for every reported
pair. In view of this, we propose an adaptation termed the
enhanced loop unrolling which skips endpoint comparisons
to accelerate FS. Specifically, instead of checking r .end ≥
s′.start for every (r , s′) pair, we checkwhether this condition
holds for the x-th s′. If so, all x intervals are guaranteed to pair
with current interval r , the x pairs are reported without the
need of any comparisons, and we proceed to the next x inter-
vals. Otherwise (i.e., if r .end < s′.start) the x-th s′ interval
does not overlap r and therefore, we need to scan the x − 1
intervals similar to FS. We denote by uFS the extension of FS
which employs the enhanced loop unrolling optimization.

Figure 4 illustrates the functionality and the effect of the
enhanced loop unrolling. Fix current interval r from collec-
tion R, which overlaps with 8 intervals from S. The forward
scan of FS accesses 9 s′ intervals, conducting 9 endpoint
comparisons for the r .end ≥ s′.start condition. The last
comparison is needed to terminate the forward scan, i.e., it
determines the first s′ interval that starts after r .end. On the
other hand, uFS with an unrolling factor of 4 requires only
4 endpoint comparisons, in total. Specifically, the r .end ≥
s′.start condition is initially checked for the fourth interval
in S; since, the condition holds, all first 4 s′ intervals overlap
current r . The next 4 s′ intervals are examined in the same
manner. Last, uFS checks the r .end ≥ s′.start condition for
the twelfth s′ interval. As r .end < s′.start, the twelfth inter-
val from S does not overlap r , which means that uFS will
complete the forwards scan similar to FS conducting an extra
endpoint comparison for the ninth interval.

Fig. 5 Decomposed data layout: sweeping and scans

4.4 Decomposed data layout

Wecan further enhance FS by carefully storing the input inter-
val, in main memory. To demonstrate our intuition, consider
again Algorithm 2 and the pseudo-code of FS. The algorithm
essentially performs two operations; it advances the sweep
line and forwardly scans the collections. We observe that
neither of these operations considers every attribute from the
input intervals. Specifically, in order to advance the sweep
line the start endpoints of the current intervals r ∈ R and
s ∈ S are compared, while end endpoints are of no use.
Concerning forward scanning, assume without loss of gen-
erality that the current (fixed) interval is r ∈ R and so, FS
will next scan collection S (the case of forwardly scanning
R is symmetric). Essentially, the algorithm needs only the
end endpoint of current interval r and the start endpoint
of every scanned interval s′ from S, in order to check the
r .end ≥ s′.start condition in Line 7. On the other hand, both
r .start and s′.end for every examined s′ are of no use to the
forward scan operation.

Based on this observation, our last technique is inspired
by the Decomposition Storage Model (DSM) [12], adopted
by column-oriented database systems (e.g., [35]). Instead of
storing an input collection as an array of 〈start, end〉 tuples,
we decompose it into two separate arrays; one having the
start endpoints andonewithend endpoints.With this decom-
position, the algorithm can iterate only over the start arrays
when advancing the sweep line or forward scanning, which
results in a smaller footprint in main memory and reduces
the number of cache misses. We denote by dFS the extension
of FS that employs our decomposed data layout. Figure 5
illustrates our decomposed data layout for dFS compared to
the data layout for FS.

4.5 Employing all optimizations

We finally discuss how all proposed optimization techniques
can be put together in FS. Grouping and bucket indexing
optimize FS in an orthogonal manner; hence, it is possible
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to pair the optimizations resulting to what we call FS with
grouping and bucket indexing (bgFS). Figures 2(g) and (h)
exemplify bgFS for intervals r2 and r1 (sorted by end end-
points) and their group GR . Compared to bFS, the algorithm
iterates through the samebuckets regarding r2’s scanned area,
but produces join results for both r2 and r1 at the same time,
similarly to gFS. Regarding r1’s scanned area, bgFS operates
exactly as gFS since the area is covered by a single bucket.

Essentially, the pseudo-code of bgFS would resemble
Algorithm 4 of bFS with the exceptions of having to form
groups and how the forward scans are performed. Similar
to gFS and Lines 6–7 in Algorithm 3, bgFS groups together
consecutive intervals from the same input and reorders the
contents of each group by their increasing end endpoint.
Then, Lines 9–11 and 12–14 are adjusted according to
Lines 9–13 in Algorithm 3 of gFS, where a forward scan
is performed for an entire group instead of a single interval.
The case of grouping on collection S is symmetric.

The performance of bgFS can be further improved by
the enhanced loop unrolling and adopting the decomposed
data layout. Plugging enhanced loop unrolling into bgFS is
straightforward and so is pairing our decomposed data layout
with bucket indexing.Grouping can be enhanced by carefully
decomposing the group data. Without loss of generality con-
sider gFS; the same approach can be applied for bgFS and
bguFS. Similarly to FS, we observe that forward scans on
collection S in (Lines 9–13, Algorithm 3) take into account
only the end endpoint of each interval in group GR (the
case of forward scanning R is symmetric). In fact, start for
r intervals is used only to form the group in Line 6 before
the forward scan commences. Hence, we can model every
group as two arrays. Figure 5 illustrates this idea. Origi-
nally, all gFS operations are conducted under the original
layout where both the input collections and created groups
are stored in arrays of 〈start, end〉 tuples. In contrast, by
employing our decomposed layout advancing the sweep line
and forward scan operations use only the start arrayswhereas
group scans (i.e., the for loops in Line 9 and 19) operate on
the end arrays.

In Sect. 6.2, we experimentally study the effect of each
of the four proposed optimization techniques. We also pro-
vide insights on how we can decide which of them should be
activated depending on the characteristics of the input collec-
tions. To this end, we devise the optFS method in Sect. 6.3.

5 The case of self-joins

Up to this point, we investigated only the case where the
intervals from two distinct collections are joined. In this
section, we discuss the case of a self-join, which receives
a single collection as input R and looks for the pairs of
intervals (ri , r j ) ⊆ R × R that overlap. All interval join

ALGORITHM 5: Self-join FS
Input : collection of intervals R
Output : all intersecting pairs (r , r ′) ∈ R × R

1 sort R by start endpoint;
2 r ← first interval in R;
3 while R not depleted do
4 output (r , r); � update result
5 r ′ ← interval right after r in R;
6 while r ′ �= null and r .end ≥ r ′.start do
7 output (r , r ′); � update result
8 r ′ ← next interval in R; � scan forward

9 r ← next interval in R;

algorithms, which we have discussed already, can be directly
applied to solve this problem, if we set the second input
S = R. However, such an approach requires a duplicate
elimination post-processing step (or an extra comparison
for each computed pair), otherwise every (ri , r j ) would be
reported twice, increasing the total number of results to
(2 · |R �� R| − |R|). Consider, for example, the collection
R = {r1[3, 5], r2[4, 6], r3[7, 11]}. The result of the R �� R
self-join contains pairs (r1, r1), (r1, r2), (r2, r2) and (r3, r3).
Now, assume we use FS from Algorithm 2 to compute this
join by setting S = R. The sweep line will first stop at r1;
the forward scan on S will start from s1 and output (r1, s1)
and (r1, s2), which correspond to (r1, r1) and (r1, r2). The
next interval will be s1; the forward scan will start from the
current interval from R, which was set to r2 at the end of the
first forward scan, and hence, output (s1, r2) (i.e., (r1, r2))
for a second time.

To address this issue, we design a simplified version of FS
which pairs an interval r only with itself and intervals from
the collection that come after r in the sort order. 4 Algorithm5
illustrates the pseudo-code for the self-join version of FS.
Going back to the previous example, the forward scan for
r1 will produce (r1, r2) but the forward scan for r2 will start
from r3 and so, avoid duplicate results.

All our proposed optimizations can be applied on the self-
join FS. The case of bucket indexing is straightforward; in
practice, only one bucket index is defined and Algorithm 5
is extended accordingly to Algorithm 4. Enhanced loop
unrolling and decomposed data layout for self-joins operate
exactly as discussed in Sects. 4.3 and 4.4, respectively. On
the other hand, we reconsider our grouping optimization, as
all intervals are essentially consecutive from the same input.
The solution is to group together intervals with exactly the
same start endpoint. Last, special care is taken for the group
scan of gFS (i.e., corresponding to the for loop in Lines 9 and
9, Algorithm 3). Specifically, to avoid duplicate results the
i-th interval of a group G is paired to itself and the |G| − i

4 A similar approach canbe taken forEBI / LEBI; in this case,wemaintain
only one active set A.
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Table 1 Characteristics of experimental datasets

BOOKS [5] FLIGHTS [6] GREEND [8,25] INFECTIOUS [8,19] TAXIS WEBKIT [5,6,13]

Cardinality 2,312,602 445,827 110,115,441 415,912 172,668,003 2,347,346

Domain duration (secs) 31,507,200 2,750,280 283,356,410 6,946,360 31,768,287 461, 829, 284

Distinct endpoints 5330 41,975 182,028,123 81,514 29,873,023 174,471

Shortest interval (secs) 1 1260 1 20 1 1

Avg. interval duration (secs) 2,201,320 8790 15 20 758 33, 206, 300

Longest interval (secs) 31,406,400 42,300 59,468,008 20 2,148,385 461,815,512

intervals that comeafter it insideG, in the sort order.Note that
these results can be reported while constructing the group.

6 Experiments on single-threaded
processing

We next present the first part of our experimental analysis on
the single-threaded computation of interval joins.

6.1 Setup

Our single-threaded analysis was conducted on a machine
with 384 GBs of RAM and a dual Intel(R) Xeon(R) CPU
E5-2630 v4 clocked at 2.20GHz running CentOS Linux
7.3.1611. All methods were implemented in C++, com-
piled using gcc (v4.8.5) with flags -O3, -mavx and
-march=native. We imported in our source code the
implementations of EBI/LEBI [29], OIP [13] and DIP [8],
kindly provided by the authors of the corresponding papers.
The setup of our benchmark is similar to [29]; every inter-
val contains two 64-bit endpoint attributes (i.e., start and
end) while the workload accumulates the sum of an XOR
between the start attributes on every result pair. Note that all
data (input collections, index structures etc.) reside in main
memory.
Datasets We experimented with 6 real datasets, the major-
ity of which was used in recent literature on interval joins;
Table 1 details the characteristics of the datasets. BOOKS
[5] records all transactions at Aarhus public libraries in
2013 (https://www.odaa.dk); valid times indicate the peri-
ods when a book is lent out. FLIGHTS [6] records domestic
flights in USA during January 2016 (https://www.bts.gov);
valid times indicate the duration of a flight. GREEND [8,25]
records power usage data from households in Austria and
Italy from January 2010 toOctober 2014; valid times indicate
the period of a measurement. INFECTIOUS [8,19] stores
visiting information from the “INFECTIOUS: stay Away!”
exhibition at Science Gallery in Dublin, Ireland, from May
to July 2009; valid times indicate when a contact between
visitors occurred. TAXIS records taxi trips (pick-up, drop-

Fig. 6 Selectivity of the tested join queries

off timestamp) from New York City (https://www1.nyc.gov/
site/tlc/index.page) in 2013; valid times indicate the dura-
tion of each ride. WEBKIT [5,6,13] records the file history
in the git repository of the Webkit project from 2001 to 2016
(https://webkit.org); valid times indicate the periods when a
file did not change.
Queries We ran a series of interval join queries using uni-
formly sampled subsets of each dataset as the outer input
R and the entire dataset as the inner S; for each setting, the
|R|/|S| ratio varies inside {0.25, 0.5, 0.75, 1}. 5 To assess the
performance of the evaluation methods, we measured their
total execution time which includes sorting, indexing and
partitioning costs (wherever applicable).

Figure 6 reports on the selectivity of our tested join
queries; for each dataset and |R|/|S| value, the figure plots
how many intervals overlap with an input interval, on aver-
age. Under this, our datasets can be essentially divided into 3
categories. Joins on GREEND and INFECTIOUS are highly
selective as every interval overlaps with at most 10 others, on
average. In contrast, the result sets onWEBKIT and BOOKS
queries include over 10, 000 pairs for each input interval, on
average. Queries on FLIGHTS and TAXIS lie in the middle,
but they are significantly less selective than the GREEND
and INFECTIOUS joins.
Tuning To tune our bucket indexing optimization, we ran a
test for the |R| = |S| setting which monitored the execution
time of bFSwhile varying the number B of buckets or equiv-
alently the number of domain stripes used. Table 2 reports
on the results of this test; the lowest execution time for each

5 We also tested disjoint subsets observing similar behavior.
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Table 2 Tuning bucket indexing: bFS execution time [secs] for |R| = |S|; lowest time in bold

# buckets B (or domain stripes) BOOKS FLIGHTS GREEND INFECTIOUS TAXIS WEBKIT

1 645 1.33 9.74 0.022 1, 464 1, 250

5 552 1.33 10.3 0.022 1, 345 1, 120

10 524 1.21 10.3 0.022 1, 340 1, 126

50 451 1.21 10.4 0.023 1, 332 1, 063

100 372 1.16 10.5 0.025 1, 314 914

500 355 0.92 10.4 0.026 1, 312 899

1000 353 0.72 10.5 0.025 1, 286 877

5000 348 0.56 10.1 0.024 1, 268 874

10,000 347 0.53 10.3 0.026 1, 281 872

50,000 350 0.52 10.9 0.027 1, 065 873

100,000 354 0.52 10.2 0.027 872 865

500,000 354 0.53 10.5 0.033 693 878

1,000,000 347 0.53 10.7 0.040 645 876

5,000,000 355 0.58 10.1 0.089 651 902

10,000,000 354 0.64 10.8 0.105 650 898

dataset is highlighted in bold. We draw two important find-
ings. First, bucket indexing is not effective on GREEND and
INFECTIOUS; the lowest execution time was observed for
B = 1, i.e., when bFS operates exactly as FS. We elaborate
on this issue in the next section. On the other hand, increas-
ing the number of buckets accelerates bFS for BOOKS,
FLIGHTS, TAXIS and WEBKIT joins. The best B value
for all four datasets lies in between 10, 000 and 1, 000, 000;
further increasing B eventually slows down bFS because the
domain is fragmented in too many stripes. Under this, we set
the number of buckets for the rest of this article to 100, 000.
Last,we set the loop unrolling factor to 32, similar to previous
work in [29], such that every loop iteration can be processed
as high as possible in the main memory cache hierarchy.

6.2 Optimizing FS

We first study the effectiveness of our optimization tech-
niques for FS, i.e., grouping, bucket indexing, enhanced loop
unrolling and decomposed data layout, captured by methods
gFS, bFS, uFS and dFS, respectively. Figure 7 reports the exe-
cution time of the methods. To save space, we do not include
a breakdown for the execution time of the methods. Never-
theless, the findings are similar to the case of one partition in
Figures 11 and 13, i.e., for highly selective queries, sorting
dominates the total computation cost.
Grouping We observe that the grouping optimization is
effective in 4 out of our 6 experimental datasets. In fact,
the execution times in Fig. 7 align with the join selectivities
in Fig. 6. For the highly selective queries in GREEND and
INFECTIOUS, gFS is slower than FS. As these datasets con-
tain very short intervals (see Table 1), a forward scan by FS

(a) (b)

(c) (d)

(e) (f)

Fig. 7 Optimizing FS: execution time
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Table 3 Grouping: extent of
forward scan per input interval

Dataset |R|/|S|
0.25 0.5 0.75 1
FS gFS FS gFS FS gFS FS gFS

BOOKS 63,557 1149 103,769 1321 133,746 1406 156,001 1456

FLIGHTS 753 140 1257 185 1615 208 1885 220

GREEND 3.1 2.1 5.1 3.9 6.5 5.3 7.5 6.5

INFECTIOUS 5.6 0.5 9.5 0.8 12.2 1.2 14.2 1.5

TAXIS 2039 576 3398 893 4369 1069 5098 1169

WEBKIT 106,209 6943 181,776 11,029 233,422 13,713 272,945 15,408

Table 4 Grouping: average group size

Dataset |R|/|S|
0.25 0.5 0.75 1

BOOKS 290 339 392 446

FLIGHTS 11.1 10.6 11.3 12.3

GREEND 2.7 1.7 1.4 1.2

INFECTIOUS 13.5 8.1 6.3 5.4

TAXIS 7.2 5.9 6 6.3

WEBKIT 14.4 12.2 12.3 13.4

examines only a few intervals (10 or less on average, accord-
ing to Fig. 6); recall that the forward scan for an interval,
e.g., r ∈ R, extents from the first interval in S which starts
after r .start until the first interval in S which starts after
r .end. As a result, any reduction in the average extent of the
forward scan achieved by gFS does not payoff in practice.
Table 3 reports on the forward scan extent per interval by
FS and gFS. 6 Grouping induces a clear relative reduction of
this extent for INFECTIOUS (approximately, one order of
magnitude), but in absolute numbers the forward scans were
very short and thus, cheap in the first place. An additional
indicator for the ineffectiveness of grouping is the size of the
created groups, reported in Table 4. Notice that for GREEND
queries, groups contain less than two intervals on average;
hence, gFS does not provide any benefit over FS.

On the other hand, gFS significantly outperforms FS, by a
wide margin (up to one order of magnitude), for BOOKS,
WEBKIT, FLIGHTS and TAXIS where the join queries
return a large number of results. As the intervals in these
datasets are significantly longer compared to GREEND and
INFECTIOUS, a forward scan by FS examines a large num-
ber of intervals and consequently conducts a large number of
endpoint comparisons. In this context, grouping consecutive
intervals from the same input andperforming a single forward

6 Overall, gFS forwardly scans the same number of intervals as FS -
otherwise, its result set would be incomplete. However, gFS manages
to reduce the total number of conducted scans as it performs one scanper
group instead of one scan per interval; this optimization is equivalent
to reducing the extent of the forward scan per input interval.

Table 5 Bucket indexing: percentage of the join results produced with-
out endpoint comparisons.

Dataset |R|/|S|
0.25 0.5 0.75 1

BOOKS 77% 72% 75% 77%

FLIGHTS 60% 60% 60% 60%

GREEND 9% 9% 9% 9%

INFECTIOUS 0% 0% 0% 0%

TAXIS 49% 48% 48% 48%

WEBKIT 78% 73% 63% 59%

scan for the entire group enables gFS to massively produce
result pairs and avoid redundant comparisons. In fact, the
performance gain of gFS over FS grows with |R|/|S|, as the
extent of the forward scans increases and the join queries
become computationally harder. Last, we observe that the
effectiveness of grouping increases also with the size of the
created groups; notice how much gFS outperforms FS in
BOOKS where each group contains some hundreds of inter-
vals.
Bucket indexing Similar to grouping, the effectiveness of
the bucket indexing optimization depends on the extent of the
forward scans. Recall from Sect. 4.2 that bFS performs the
forward scans as range queries over the domain stripes; buck-
ets for stripes entirely contained inside the forward scan areas
provide direct join results, i.e., without the need for addi-
tional endpoint comparisons. The longer forward scans are,
themore stripes are entirely covered and hence, a larger num-
ber of redundant comparisons are avoided. Under this, bFS
outperforms FS for all |R|/|S| values on BOOKS, FLIGHTS,
TAXIS andWEBKIT queries, while FS is faster than bFS for
GREEND and INFECTIOUS where forward scans are very
short. Table 5 reports the ratio of the result pairs that bFS
outputs without conducting any comparisons. For joins on
GREEND and INFECTIOUS, bFS essentially operates sim-
ilar to FS but with the extra cost of creating and querying the
bucket indices. In contrast, for the rest of the datasets, bFS
outputs from 48% to over 70% of the result pairs without any
endpoint comparisons.
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Table 6 Enhanced loop unrolling: percentage of the join results pro-
duced without endpoint comparisons.

Dataset |R|/|S|
0.25 0.5 0.75 1

BOOKS 97% 97% 97% 97%

FLIGHTS 97% 97% 97% 97%

GREEND 48% 59% 64% 68%

INFECTIOUS 75% 77% 79% 80%

TAXIS 97% 97% 97% 97%

WEBKIT 97% 97% 97% 97%

Enhanced loop unrolling Among all four proposed opti-
mizations, the enhanced loop unrolling is the most robust. As
Fig. 7 shows, the technique is very effective when forward
scans are long, i.e., for all queries in BOOKS, FLIGHTS,
TAXIS and WEBKIT, while for highly selective joins with
short scans, i.e., in GREEND, INFECTIOUS, it is less effec-
tive but almost never slows down the computation. The ratio
of the result pairs which uFS outputs without any endpoint
comparisons supports this finding (see Table 6); note that
even on the highly selective joins in GREEND and INFEC-
TIOUS, uFS directly outputs 50% or more of the results.
Decomposed data layout Last, our decomposed data layout
exhibits similar behavior to grouping and bucket indexing.
Essentially, long forward scans incur a large main memory
footprint and hence, scanning a smaller in bytes dedicated
array for start endpoints can significantly reduce the cache
misses. Under this, queries on BOOKS andWEBKIT benefit
the most from applying dFS. In contrast, for GREEND and
INFECTIOUS the extra cost of the decomposition does not
payoff as data for the forward scans are already small enough
to be handled in the highest levels of the cache.
Discussion Figure 7 also reports the execution time of
bgudFS which employs all four optimizations at the same
time. We observe that on BOOKS, FLIGHTS, TAXIS and
WEBKIT queries, bgudFS clearly outperforms FS and all its
variants that employ a single optimization; this is expected as
the proposed techniques optimize FS in an orthogonalmanner
and so, can be effectively combined. Note that the perfor-
mance gain of bgudFS over the rest of the methods actually
grows with |R|/|S|. On the other hand, for GREEND and
INFECTIOUS queries, the method inherits the shortcomings
of grouping, bucket indexing and decomposed data layout
which renders bgudFS the slowest method.

Our analysis on optimizing FS draws two key conclusions.
First, the enhanced loop unrolling which builds upon code
transformation should be always applied; uFS outperformed
FS in almost all our test queries. Second, the less selective
and hence, more computationally expensive an interval join
is, the more effective grouping, bucket indexing and decom-
posed data layout will be. Under these observations, the most

efficient FS variant is either bgudFS or uFS, depending on
the selectivity of the interval join.

6.3 optFS: a self-tuning FS

To deal with this decision problem, we devised the optFS
method which operates in two phases. In the first phase,
optFS roughly estimates the average cost of a forward scan;
we rely on sampling and executing uFS, for this purpose.
In brief, we uniformly divide the domain into a predefined
number of ranges (equal to 50) and let uFS run on a sample
from both inputs (equal to 10/00), inside every range; practi-
cally, a simplified and very fast version of uFS, which only
counts the extent of the conducted forward scans, is exe-
cuted. This sampling-based process manages to approximate
the real value for the average forward scan extent with a 18%
relative error, on average. Although we could improve the
accuracy by increasing the number of ranges we divide the
domain and/or the sampling ratio, our goal is different.Weare
interested only in estimating the order of magnitude for the
forward scans extent; in this context, the discussed sampling-
based process achieves almost an 100% accuracy. Our tests
has shown that when forward scans cover only some tens
(or a hundred in the worst case) of intervals on average then
grouping, bucket indexing and the decomposed data layout
will not payoff; i.e., the case of GREEND and INFECTIOUS
queries. Based on this observation, optFS decides whether to
run uFS or bgudFS in its second phase. Note that the cost of
the first (sampling and decision) phase of optFS is negligible
compared to the cost of the second phase (joining); in our
tests, sampling and decision making took only 30/00 of the
total execution time by optFS, on average.

6.4 optFS against the competition

After optimizing FS, we compare our optFS against previ-
ous work, i.e., the partition-based methods DIP, OIP and the
state-of-the-art plane sweep method LEBI. For the competitor
methods, we enforced traditional loop unrolling whenever
was possible. In addition, we included the bgFS method
from our previous publication [5]. Figure 8 reports the exe-
cution times; as expected, the time of all methods rises while
increasing the |R|/|S| ratio. Observe however that the plane
sweep based methods LEBI, bgFS-[5] and optFS always out-
perform their partition-based competitors, in most cases by
orders of magnitude with the exception of GREEND queries
where DIP performance is very close to LEBI. This finding
fully aligns with the analysis in [29], where LEBI (and plane
sweep based algorithms in general) was shown to outperform
OIP.

For optFS against LEBI, the tests clearly show that we
achieved our original goal. Optimized FS can be not only
competitive to but also faster than state-of-the-art LEBIwhich,
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Comparisons: optFS against competition

as discussed in Sect. 3.1, performs no endpoint comparisons
to produce the results. Also, we made this possible without
relying on a special data structure such as the gapless hash
map. In fact, optFS outperforms LEBI in 16 of the 24 queries
in Fig. 8. For the highly selective joins on GREEND and
INFECTIOUS, optFS (powered by uFS) is faster by a 70-
82% margin, while for the least selective joins on BOOKS
andWEBKIT,optFS (powered bybgudFS) outperforms LEBI
by a 13-36% margin. LEBI steadily outperforms optFS only
on FLIGHTS by a 14-22% margin while on TAXIS the two
methods have similar performance.

In terms of memory consumption, our preliminary analy-
sis in [5] showed that LEBI always incurs a larger memory
footprint than bgFS, due to the data replication from its
endpoint indices and maintaining open intervals inside two
gapless hashmaps. The same trend holds compared to optFS.
As a code transformation, enhanced loop unrolling incurs no
extra storage costs, while the decomposed data layout results
into a 19% average increase over bgFS, when used, i.e., for
queries in BOOKS, FLIGHTS, TAXIS and WEBKIT.

In view of these results, our analysis in the rest of this
article will primarily focus on optFS as the most efficient
single-threaded method for interval joins.

7 Parallel processing

We now shift our focus to the parallel processing of inter-
val joins that benefits from the existence of multiple CPU
cores in a machine. We discuss three different solutions; (i)
the case where no physical partitioning of the input collec-
tions is employed, (ii) the hash-based partitioning approach
suggested in [29], and (iii) our domain-based partitioning
approach. For the latter two approaches, we also discuss dif-
ferent strategies for efficiently partitioning the input intervals
in Sect. 8.

7.1 No-partitioning parallel join

A straightforward approach to benefit from modern parallel
hardware is to identify tasks of an interval join algorithm
that are independent to each other and hence, can run in par-
allel. Every such task is assigned to a separate CPU core
or thread. The input interval collections are never physi-
cally partitioned (hence, the name of the approach), which
means that the processing threads need to simultaneously tra-
verse data structures stored in sharedmainmemory.A similar
approach was used in the past for relational equi-joins, e.g.,
in [4], where a hash table is built in shared memory for the
inner input and then, every thread reads a chunk of the outer
and probes the shared hash table to produce join results.

Our experiments on single-threaded join computation
clearly showed the advantage of plane sweep based evalu-
ation and optFS in specific. In what follows, we discuss a
no-partitioning parallel adaptation of FS and its variants. 7

Recall from Sect. 3.2 that the algorithm essentially involves
two tasks; (i) advancing a sweep line which stops at the start
endpoint of all input intervals, and (ii) for each position of the
sweep line, performing a forward scan to output join results.
Despite traversing the same data structures, i.e., those con-
taining the input collections, it is easy to confirm that the
forward scans are independent from each other. Therefore,
we design a parallel version of FS which follows a master-
slaves approach. We rely on a particular thread, which we
call the master, to advance the sweep line, i.e., to execute
Lines 4–5, 10–11 and 16 of Algorithm 2. When the sweep
line stops, the master assigns the current forward scan to the
next available thread (i.e., to a slave). Slave threads oper-
ate in a completely independent and asynchronous manner,
executing instances of Lines 6–9 and 12–15 of Algorithm 2
in parallel. Note that all optimizations from Sect. 4 can be

7 A similar approach can be employed for EBI/LEBI.
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PARADIGM 1: Hash-based Partitioning
Input : collections of intervals R and S, number of partitions k, hash

function h
Output : all intersecting interval pairs (r , s) ∈ R × S

1 foreach interval r ∈ R do � partition R
2 v ← h(r); � apply hash function
3 add r to partition Rv ;

4 foreach interval s ∈ S do � partition S
5 v ← h(s); � apply hash function
6 add s to partition Sv ;

7 foreach partition Ri of R do
8 foreach partition S j of S do
9 compute Ri �� S j ; � LEBI,FS and variants

applied for parallel FS. Enhanced loop unrolling, decom-
posed data layout and bucket indexing are straightforward;
for the latter, every slave thread will practically execute
Lines 7–14 and 17–24 of Algorithm 4. For the grouping
optimization, the master thread has to additionally create the
groups (Lines 6 and 16 of Algorithm 3) but every group is
then assigned to a slave thread which will first sort the group
intervals according to their end endpoint and then perform
the forward scan; in other words, a slave thread executes an
instance of Lines 7–13 and 17–23 of Algorithm 3, receiving
a group of intervals as input.

7.2 Hash-based partitioning

In [29], Piatov et al. proposed a hash-based partitioning
paradigm for parallelizing EBI (and its lazy LEBI version),
described by Paradigm 1. The evaluation of the join involves
two phases. First, the input collections are split into k dis-
joint partitions using the same hash function h. During
the second phase, a pairwise join is performed between all
{R1, . . . , Rk} partitions of collection R and all {S1, . . . , Sk}
of S; in practice, any single-threaded interval join algorithm
can be employed to join two partitions. Since the partitions
are disjoint, the pairwise joins run independently of each
other.

In [29], the intervals in the input collections are sorted
by their start endpoint before partitioning, and then assigned
to partitions in a round-robin fashion, i.e., the i-th interval
is assigned to partition h(i) = (i mod k). This causes the
active tuple sets AR , AS at each instance of the EBI join to
become small, because neighboring intervals are assigned to
different partitions. As the cardinality of AR , AS impacts the
run time of EBI, each join in Line 9 is cheap. On the other
hand, the intervals in each partition span the entire domain,
meaning that the data in each partition aremuch sparser com-
pared to the entire dataset. This causes Paradigm 1 to have
an increased number of endpoint comparisons compared to a
single-threaded algorithm, as k increases. In particular, recall
that the basic cost of FS and EBI is the sweeping of the whole
space, incurring |R| + |S| and 2 · (|R| + |S|) comparisons,

Fig. 9 Domain-based partitioning of the intervals in Fig. 2; the case of
4 domain stripes t1 . . . t4

respectively. Under hash-based partitioning, k2 joins are exe-
cuted in parallel, and each partition carries |R|/k + |S|/k
intervals. Hence, the total basic cost becomes k · (|R| + |S|)
and 2 ·k ·(|R|+|S|), respectively (i.e., an increase by a factor
of k).

7.3 Domain-based partitioning

Similar to Paradigm 1, our domain-based partitioning para-
digm for parallel interval joins (Paradigm 2) involves two
phases. The first phase (Lines 1–13) splits the domain uni-
formly into k non-overlapping stripes; a partition R j (resp.
S j ) is created for each domain stripe t j . Let tstart, tend
denote the stripes that cover r .start, r .end of an interval
r ∈ R, respectively. Interval r is first assigned to partition
Rstart created for stripe tstart. Then, r is replicated across
stripes tstart+1…tend. During the second phase (Lines 15–
16), the domain-based paradigm computes R j �� S j for
every domain stripe t j , independently. To avoid producing
duplicate results, a join result (r , s) is reported if at least
one of the involved intervals is not a replica. We can easily
prove that if for both r and s the start endpoint is not in t j ,
then r and s should also intersect in the previous stripe t j−1,
therefore (r , s) will be reported by another partition-join.

We show the difference between the two paradigms using
Fig. 2; without loss of generality, assume that we are allo-
cating 4 CPU threads for computing R �� S. To fully take
advantage of parallelism, we assign each partition-join to a
separate thread. Hence, the hash-based paradigm will first
create

√
4 = 2 partitions for each input, i.e., R1 = {r1},

R2 = {r2} for collection R and S1 = {s1, s3, s5}, S2 =
{s2, s4} for S, and then evaluate pairwise joins R1 �� S1,
R1 �� S2, R2 �� S1 and R2 �� S2. In contrast, the domain-
based paradigm will first split the domain into the 4 disjoint
stripes pictured in Fig. 9, and then assign and replicate (if
needed) the intervals into 4 partitions for each collection;
R1 = {r1}, R2 = {r̂1, r2}, R3 = {r̂1, r̂2}, R4 = {r̂1} for R
and S1 = {s1}, S2 = {s2, s3}, S3 = {ŝ3}, S4 = {ŝ3, s4, s5}
for S, where r̂ j (resp. ŝ j ) denotes the replica of an interval
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PARADIGM 2: Domain-based Partitioning
Input : collections of intervals R and S, number of partitions k
Output : all intersecting interval pairs (r , s) ∈ R × S

1 split domain into k stripes;
2 foreach interval r ∈ R do � partition R
3 tstart ← domain stripe covering r .start;
4 tend ← domain stripe covering r .end;
5 add r to partition Rstart;
6 foreach stripe t j inside (tstart, tend] do
7 replicate r to partition R j ;

8 foreach interval s ∈ S do � partition S
9 tstart ← domain stripe covering s.start;

10 tend ← domain stripe covering s.end;
11 add s to partition Sstart;
12 foreach stripe t j inside (tstart, tend] do
13 replicate s to partition S j ;

14 foreach domain stripe t j do
15 compute R j �� S j ; � LEBI,FS and variants

ri ∈ R (resp. si ∈ S) inside stripe t j . Last, the paradigm will
compute partition-joins R1 �� S1, R2 �� S2, R3 �� S3 and
R4 �� S4. Note that R3 �� S3 will produce no results because
all contents of R3 and S3 are replicas, while R4 �� S4 will
only produce (r1, s4) but not (r1, s3) which will be found in
R2 �� S2.

Our domain-basedpartitioningparadigmachieves ahigher
degree of parallelism compared to Paradigm 1, because for
the same number of partitions it requires quadratically fewer
joins. Also, as opposed to previous work that also applies
domain-based partitioning (e.g., [9,24]), we avoid the pro-
duction and elimination of duplicate join results. On the other
hand, long lived intervals that span a large number of stripes
and skewed distributions of start endpoints create joins of
imbalanced costs. In what follows, we propose two orthog-
onal techniques that deal with load balancing.

7.3.1 Mini-joins and Greedy scheduling

Our first optimization of Paradigm 2 is based on decompos-
ing the partition-join R j �� S j for a domain stripe t j into a
number of mini-joins. The mini-joins can be executed inde-
pendently (i.e., by a different thread) and bear different costs.
Hence, they form tasks that can be greedily scheduled based
on their cost estimates, in order to achieve load balancing.

Specifically, consider stripe t j and let t j .start and t j .end
be its endpoints. We distinguish between the following cases
for an interval r ∈ R (resp. s ∈ S) which is in partition R j

(resp. S j ):

(A) r starts inside t j , i.e., t j .start ≤ r .start < t j .end,
(B) r starts inside a previous stripe but ends inside t j , i.e.,

r .start < t j .start and r .end < t j .end, or
(C) r starts inside a previous stripe and ends after t j , i.e.,

r .start < t j .start and r .end ≥ t j .end.

Note that in cases (B) and (C), r is assigned to partition R j

by replication (Lines 7–8 and 13–14 of Paradigm 2). We use
RA
j , R

B
j , and RC

j (resp. SA
j , S

B
j , and SCj ) to denote the mini-

partitions of R j (resp. S j ) that correspond to the 3 cases
above.

Under this, we can break partition-join R j �� S j down
to 9 distinct mini-joins; only 5 of these 9 need to be evalu-
ated while the evaluation for 4 out of these 5 mini-joins is
simplified. Specifically:

– RA
j �� SA

j is evaluated as normal; i.e, as discussed in
Sections 3 and 4.

– For RA
j �� SB

j and RB
j �� SA

j , join algorithms only visit

end endpoints in SB
j and RB

j , respectively; S
B
j and RB

j
only contain replicated intervals from previous stripes
which are properly flagged to precede all intervals start-
ing inside t j , and so, they form the sole group from SB

j and

RB
j when the grouping optimization technique is used.

– RA
j �� SCj and RC

j �� SA
j reduce to cross-products,

because replicas inside mini-partitions SCj and RC
j span

the entire stripe t j ; hence, all interval pairs are directly
output as results without any endpoint comparisons.

– RB
j �� SB

j , R
C
j �� SB

j , R
C
j �� SB

j , R
C
j �� SCj are not

executed at all, as intervals from both inputs start in a
previous stripe, and hence the results of these mini-joins
would be duplicates.

Given a fixed number n of available CPU threads, i.e.,
partitioning of the domain into k = n stripes, our goal is
to assign each of the 1 + 5 · (k − 1) in total mini-joins 8

to a thread, in order to evenly distribute the load among all
threads, or else to minimize the maximum load per thread.
This is a well known NP-hard problem, which we opt to
solve using a classic (4/3 − 1/3n)-approximate algorithm
[17] that has very good performance in practice. The algo-
rithm greedily assigns to the CPU thread with currently the
lowest load the next largest job. In details, we first estimate
the cost of eachmini-join; a straightforward approach for this
is to consider the product of the cardinalities of the involved
mini-partitions. Next, for each available thread p, we define
its bag bp that contains the mini-joins to be executed and
its load �p by adding up the estimated cost of the mini-joins
in bp; initially, bp is empty and �p = 0. We organize the
bags in a min-priority queueQ based on their load. Last, we
examine all mini-joins in descending order of their estimated
cost. For each mini-join say RA

j �� SA
j , we remove bag bp at

the top ofQ corresponding to thread p with the lowest load,
we append RA

j �� SA
j to bp and re-insert the bag to Q. This

8 The only possible mini-join for the first stripe is RA
j �� SA

j , as it is
not possible for it to contain any replicas.
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greedy scheduling algorithm terminates after all mini-joins
are appended to a bag.
Discussion and implementation details In practice, the
greedy scheduling algorithm replaces an atomic assignment
approach (Lines 15–16 of Paradigm 2) that would schedule
each partition-join as a whole to the same thread. The break-
down of each partition-join task into mini-joins that can be
executed at different CPU threads greatly improves load bal-
ancing in the case where the original tasks have big cost
differences.

7.3.2 Adaptive partitioning

Our second adaptive partitioning technique for load balanc-
ing re-positions the borders between the {t1, . . . , tk} stripes,
aiming at making the costs of all partition-joins on Line 16 in
Paradigm 2 similar. Assuming a 1-1 assignment of partition-
joins to CPU threads, load balancing can be achieved by
finding the optimal k partitions that minimize the maximum
partition-join cost. This can be modeled as the problem of
defining a k-bins histogram with the minimum maximum
error at each bin. 9 This problem can be solved exactly in
PTIME with respect to the domain size, with the help of
dynamic programming [20]; however, in our case the domain
of the intervals is huge, so we resort to a heuristic that gives
a good solution very fast. The time taken for partitioning
should not dominate the cost of the join (otherwise, the pur-
pose of a good partitioning is defeated). Our heuristic is
reminiscent to local search heuristics for creating histograms
in large domains that do not have quality guarantees but com-
pute a good solution in practice within short time [30]. Note
that, in practice, the overall execution time is dominated by
the most expensive partition-join. Hence, given as input an
initial set of stripes and partitions (more details in the next
paragraph), we perform the following steps. First, the CPU
thread or equivalently the stripe t j that carries the highest
load is identified. Then, we reduce t j ’s load (denoted as � j )
by moving consecutive intervals from R j and S j to the cor-
responding partitions of its neighbor stripe with the highest
load, i.e., either t j−1 or t j+1, until � j−1 > � j or � j+1 > � j

holds, respectively. Intuitively, this procedure corresponds
to advancing endpoint t j .start or retreating t j .end. Last, we
continuously examine the thread with the highest load until
no further moving of the load is possible.

The implementation of this heuristic raises two important
challenges; (i) how we can quickly estimate the load on each
of the n = k available CPU threads and (ii) what is the
smallest unit of load (in other words, the smallest number

9 We assume that there is a function to compute/update the cost of each
partition-join in constant time; this function should be monotonic with
respect to the sub-domain covered by the corresponding stripe, which
holds in our case.

of intervals) to be moved in between threads/stripes. To deal
with both issues we build histogram statistics HR and HS for
the input collections online, without extra scanning costs. In
particular, we create a much finer partitioning of the domain
by splitting it to a predefined number ξ of granules with ξ

being a large multiple of k, i.e., ξ = α · k, where α >> 1.
For each granule g, we count the number of intervals HR[g]
and HS[g] from R and S, respectively, that start inside g. We
define every initial stripe t j as a set of consecutiveα granules;
in practice, this partitions the input collections into stripes of
equal widths as our original framework. Further, we select a
granule as the smallest unit (number of intervals) to bemoved
between stripes. The load on each thread depends on the cost
of the corresponding partition-join. This cost is optimized if
we break it down into mini-joins, as described in Sect. 7.3.1,
because numerous comparisons are saved. Empirically, we
observed that the cost of the entire bundle of the 5 mini-
joins for a stripe t j is dominated by the first mini-join, i.e.,
RA
j �� SA

j , the cost of which can be estimated by |RA
j | · |SA

j |.
Hence, in order to calculate |RA

j | (resp. |SA
j |), we can simply

accumulate the counts HR[g] (resp. HS[g]) of all granules
g ∈ t j . As the heuristic changes the boundaries of a stripe t j
by moving granules to/from t j , cardinalities |RA

j |, |SA
j | and

the join cost estimate for t j can be incrementally updated
very fast.

8 Strategies for parallel partitioning

Wenext elaborate on how the partitioning process can benefit
from modern parallel hardware. We discuss three strategies
applicable on both the hash-based and the domain-based par-
titioning; in the next section, we carefully evaluate these
strategies for each partitioning type. As a common feature,
all strategies operate in three phases. During the first phase,
all available CPU cores or threads are employed to calculate
the cardinality of each |R j | and |S j | partition. During the
second phase, the threads are employed to allocate the space
required to store every partition in main memory and then
physically partition the input collections. Finally, again all
available threads are used to sort and index (if needed) the
input partitions, depending on the interval join algorithm to
be used. 10 In the following, we detail the first two phases for
each partitioning strategy.
One2One The first strategy was used in [29] for hash-based
partitioning but can be straightforwardly applied for the
domain-based as well. The idea is to exclusively assign every

10 Recall that every partition may take part in multiple joining tasks.
Hence,we choose to introduce a separate sorting/indexing phase instead
of having this step integrated inside the join algorithm.
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STRATEGY 1: One2One
Input : collection of intervals R, number of partitions k, number of

threads c
Output : partitions {R1, . . . , Rk }
Variables : counters {|R1|, . . . , |Rk |}

1 create c parallel threads;
2 foreach thread j do � executed in parallel
3 assign the j-th set of k

c partitions to the thread;
4 read intervals from R;
5 calculate counters {|R(

( j−1)· kc +1
)|, . . . , |R(

j · kc
)|};

6 allocate memory space for assigned partitions;
7 read intervals from R;
8 fill partitions {R(

( j−1)· kc +1
), . . . , R(

j · kc
)};

9 return {R1, . . . , Rk };

R j (resp. S j ) partition to a single thread.11 Under this, the
thread executes all phases of the partitioning process for R j .
As every partition of the collection is assigned to exactly one
thread, the entire partitioning process is essentially divided
into smaller independent tasks which run in parallel without
the need of synchronization. Strategy 1 illustrates a high-
level pseudo-code of One2One. After initiating c parallel
threads in Line 1, every thread executes the first and the sec-
ond phase of the partitioning independently in Lines 3–8.
Consider thread j . During the first phase in Lines 3–5, thread
j is assigned k

c partitions for the input collection R, where k
is the number of requested partitions and c is the number of
available threads. Specifically, the thread gets all partitions
in the range from

(
( j − 1) · k

c + 1
)
to

(
j · k

c

)
Then, it scans

collection R to count how many intervals will be contained
inside its assigned partitions. Last, during the second phase
in Lines 6–8, every thread allocates the space needed to store
their assigned partitions and then, scans for the second time
the input collection to fill these partitions.

Despite its simplicity, the One2One strategy has two
important drawbacks. First, it requires multiple scans over
the input; to be precise, the collection is scanned 2 · c times.
Second, the strategy cannot cope with skewed data distribu-
tions; essentially, the cost of the entire partitioning process
is dominated by the cost of processing the largest partition.
In what follows, we discuss two partitioning strategies that
address these issues.
Temps The key idea for fast partitioning is to assign parts
of the input collection to the available threads instead of
entire partitions. Under this, every thread reads a chunk from
the input containing |R|

c intervals, and builds a temporary
local partitioning. The input chunks should be disjoint such
that the parallel threads operate completely independently.
Every thread performs a first scan of its assigned intervals to
count how large its local partitions will be, then allocates the
required space in main memory and reads again the intervals

11 In general, the number of partitions per input may exceed the num-
ber of available threads in which case, every thread is responsible for
multiple partitions.

STRATEGY 2: Temps
Input : collection of intervals R, number of partitions k, number of

threads c
Output : partitions {R1, . . . , Rk }
Variables : global counters {|R1|, . . . , |Rk |}, local partitions {R j

1 , . . . , R j
k }

and local counters {|R j
1 |, . . . , |R j

k |} for every parallel thread j

1 create c parallel threads;
2 foreach thread j do � executed in parallel

3 read the j-th chunk of |R|
c intervals from R;

4 calculate local counters {|R j
1 |, . . . , |R j

k |};
5 allocate memory space for {R j

1 , . . . , R j
k };

6 read the j-th chunk of |R|
c intervals from R;

7 fill local partitions {R j
1 , . . . , R j

k };
8 wait until all threads finished; � synchronization
9 foreach partition Ri do � executed in parallel

10 calculate global counter |Ri | = ∑c
j=1 |R j

i |;
11 allocate memory space;

12 Ri ← ⋃c
j=1 R j

i ; � unify local partitions

13 return {R1, . . . , Rk };

to fill the partitions. Finally, after all threads have finished,
the local partitionings are unified into the final result as the
last step.

Strategy 2 illustrates a high-level pseudo-code of Temps.
In Lines 2–7, every thread scans (two times) its assigned
chunk of the input collection to create a local partitioning.
Specifically, thread j gets the j-th chunkof |R|

c input intervals

and produces local partitioning {R j
1 , . . . , R

j
k }; notice that

local partitionings contain the same number of partitions as
the final result. To count the cardinality of its local partitions,
the thread maintains private local counters {|R j

1 |, . . . , |R j
k |}.

After all local partitionings are built (synchronization barrier
in Line 8), Temps unifies them by copying local partitions
to a contiguous space allocated in main memory for the
final partitions, in Lines 9–12. Both the hash-based and the
domain-based partitioning assign every interval to exactly
one local partition; the same holds for the replicas in case
of domain-based. Under this, the cardinality for each final
partition Ri is calculated as |Ri | = ∑c

j=1 |R j
i | and the parti-

tion is defined as R1
i

⋃
. . .

⋃
Rc
i , where c is the total number

of parallel threads and local partitionings. Last, to accelerate
this unification step, the Temps strategy assigns the compu-
tation of every partition Ri to the next available thread in a
round robin fashion.

Compared to One2One, the Temps strategy scans the
entire input collection R only twice as every thread now
operates on a different chunk of R. In addition, as R’s chunks
are equi-sized, i.e., all contain at most |R|

c intervals, the par-
titioning load is better distributed to the available threads.
But, Temps still exhibits important shortcomings. First, for
every partition Ri , the strategy allocates twice the required
space in main memory, i.e., to store both its corresponding
local partitions and Ri itself. Second, the strategy introduces
an extra costly step, i.e., the unification of local partitioning.
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STRATEGY 3: Divs
Input : collection of intervals R, number of partitions k, number of

threads c
Output : partitions {R1, . . . , Rk }
Variables : global counters {|R1|, . . . , |Rk |}, and local counters

{|R j
1 |, . . . , |R j

k |} for every parallel thread j

1 create c parallel threads;
2 foreach thread j do � executed in parallel

3 read the j-th chunk of |R|
c intervals from R;

4 calculate local counters {|R j
1 |, . . . , |R j

k |};
5 wait until all threads finished; � synchronization
6 foreach partition Ri do � executed in parallel

7 calculate global counter |Ri | = ∑c
j=1 |R j

i |;
8 allocate memory space;
9 divide partition into c logical parts;

10 wait until all threads finished; � synchronization
11 foreach thread j do � executed in parallel

12 read the j-th chunk of |R|
c intervals from R;

13 fill j-th part of each partition in {R1, . . . , Rk };
14 return {R1, . . . , Rk };

Also, the cost of this last step is dominated by the largest
partition which is again computed by a single thread.
Divs To address these shortcomings, we next discuss our last
strategy. Strategy Divs shares the same key idea to Temps,
i.e., every thread j processes independently the j-th chunk of
|R|
c input intervals. But, instead of building a temporary local
partitioning, the thread directly updates the final partitions.
For this purpose, the strategy logically divides every final
partition Ri into c parts, i.e., one for each available thread.
The extent of each R j

i part is determined by local counters

|R j
i |, which are computed similar to strategy Temps. With

this division, each thread independently fills a dedicated part
of Ri ’s data structure in memory without the need of locking
or any type of synchronization.

Strategy 3 illustrates a high-level pseudo-code of Divs.
Lines 2 and 3 are identical to Strategy 2, i.e., a first scan of the
input collection determines local counters {|R j

1 |, . . . , |R j
k |}

for each thread j . After local counters are computed (syn-
chronization barrier in Line 5), Divs allocates the necessary
space in main memory to build every Ri partition (Lines 7–
8) and also, logically divides Ri into c parts using its local
counters (Line 9). Finally after this preparation step is fin-
ished for all partitions (synchronization barrier in Line 10),
every thread scans for the second time its assigned input
intervals and fills its dedicated part inside the data structure
of every partition, in Lines 10–13.

Compared to Temps, the Divs strategy does not allocate
extra space for every partition; at the same time, the costly
unification step of Temps is entirely avoided. In addition, the
largest partition which could become the bottleneck for both
strategies One2One and Temps is now filled by multiple
threads in parallel achieving a better load balancing.

9 Experiments on parallel processing

Last, we present the second part of our experimental evalu-
ation, which focuses on the parallel computation of interval
joins. In view of the results for single-threaded processing in
Sect. 6, we next focus on optFS.

9.1 Setup

The experiments were conducted on the same machine used
for the single-threaded tests in Sect. 6 with an identical
setup, i.e., XOR workload, all data stored in main mem-
ory. Further, we chose to activate hyper-threading which
allowed us to run up to 40 threads and used OpenMP for
multi-threaded processing. Besides varying the |R|/|S| ratio
inside {0.25, 0.5, 0.75, 1}, we also increase the number of
available parallel threads inside {5, 10, 15, 20, 25, 30, 35,
40}. We indicate the activation of hyper-threading by an h
subscript, e.g., 25h . Last, for the adaptive partitioning, we
conducted a series of tests to determine the multiplicative
factor α which controls the number of granules in the fine
partitioning of the domain (see Sect. 7.3.2). To avoid signif-
icantly increasing the partitioning cost, we ended up setting
α = 1000 when the number of threads is less than 10, and
α = 100 otherwise.

9.2 Tuning hash-based partitioning

We first tune the hash-based paradigm. [29] sorts every col-
lection prior to partitioning. We experimented with a variant
of the paradigm which does not include such a pre-sort step
and proved always faster. Hence, in the following we run
our variant of the hash-based paradigm. Our analysis inves-
tigates which is the best strategy for the parallel partitioning
of the inputs and how to select the number of partitions to be
created.

9.2.1 Partitioning strategies

Fig. 10 reports the partitioning time of theOne2One, Temps
and Divs strategies while varying the number of partitions
on our six datasets. For all tests, we set |R| = |S| and used
up to 20 parallel threads to partition the input collections.
The results clearly show that Divs is both the most efficient
and the most robust partitioning strategy, i.e., its time is little
affected by the increase in the number of partitions.One2One
is competitive to Divs only if each collection is split into
20 or more partitions. Recall that One2One assigns each
partition to exactly one thread, so with less than 20 partitions,
some of the 20 available threads are never used. A key factor
for understanding the differences in the performance of the
strategies is the size of the inputs (see Table 1). GREENDand
TAXIS contain more than 100m intervals; for these datasets,
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 Tuning hash-based partitioning: strategies, |R| = |S| and 20
threads

One2One is always slower than both Temps and Divs due
to scanning these big inputs multiple times while Temps is
always slower than Divs due to creating and unifying local
partitions. The rest of the datasets contain 2mor less intervals.
Provided that at least 20 partitions are created, One2One is
always faster than Temps because these partitions contain
very few intervals and the overhead from local partitioning
in Temps becomes increasingly higher by the number of
partitions.

9.2.2 Number of partitions

Piatov et al. [29] suggested that the hash-based paradigm
performs at its best when each input is split into

√
n parti-

tions, where n is the number of available threads. Under this,
every available thread is assigned exactly one of the n in total
partition-joins. Although we used this heuristic in our pre-
liminary work [5], we investigate here in detail the impact of
the number of partitions.

Figure 11 reports the breakdown of optFS execution time
while varying thenumber of partitions in each collection from
1 to 1, 000; note that the number of available parallel threads

(a) (b)

(c) (d)

(e) (f)

Fig. 11 Tuning hash-based partitioning: # partitions, |R| = |S| and 20
threads

is fixed to 20. As expected, there is a tradeoff between the
number of partitions and the total execution time. Initially,
optFS benefits from splitting each input into more partitions
but the algorithm slows down when the number of partitions
exceeds a particular value. However, our tests also unveil a
correlation between the number of partitions and the selectiv-
ity of the join. For the highly selective queries in GREEND
and INFECTIOUS, the execution time ofoptFS isminimized
when the number of partitions equals almost the number of
available threads. On the other hand, for queries of low or
medium selectivity, the heuristic from [29] is effective, i.e.,
the number of partitions should be set to �√20� = 4. To
understand this behavior, observe the time breakdown in Fig-
ures 11(c) and (d) when the number of partitions is set below
20, especially equal to 4. Different from all other cases, the
total execution time is dominated by the sorting cost; the
actual joining phase is very cheap due to the low number
of results. Essentially, we can enhance sorting by splitting
the inputs into more partitions which creates smaller sorting
tasks to run in parallel.
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(a) (b)

(c) (d)

(e) (f)

Fig. 12 Tuning domain-based partitioning: strategies, |R| = |S| and
20 threads

9.3 Tuning domain-based partitioning

Wenext tune our domain-based paradigm. Besides determin-
ing the best strategy for parallel partitioning and the number
of partitions, we also study the impact of our load balancing
techniques from Sect. 7.3.

9.3.1 Partitioning strategies

Fig. 12 reports the domain-based partitioning time for strate-
gies One2One, Temps and Divs while varying the number
of partitions; for the tests, we set again |R| = |S| and used
up to 20 parallel threads. Also, adaptive partitioning from
Sect. 7.3.2was deactivated. Similar to Sect. 9.2.1, we observe
that Divs is the most efficient and most robust strategy for
parallel partitioning; on the largest datasets GREEND and
TAXIS, Temps is competitive to Divs but still slower. How-
ever, different to our hash-based analysis,One2One is clearly
the slowest strategy in all cases; its time is severely affected
by the increase in the number of partitions exhibiting also a
“staircase” pattern (more obvious in Figures 12(c) and (e)).
The difference in One2One’s behavior is due to the higher

processing cost per interval incurred by the domain-based
partitioning compared to hash-based. This cost is ampli-
fied by the increase in the number of partitions. Recall that
for hash-based partitioning, we only need to hash the start
endpoint of every interval. In contrast, for domain-based
partitioning we also need to replicate an interval to all over-
lapping stripes; the replication cost naturally increases with
the number of partitions. Regarding the “staircase” pattern,
notice that One2One’s time essentially goes up every 20
partitions. Consider for example the increase from 20 to 40
partitions. At first, every thread builds exactly one partition.
When we increase the number of partitions to 21, this extra
partition will be assigned as a second task to one of the avail-
able threads. The total time of this thread will increase and
dominate the overall partitioning time Adding more parti-
tions will not change this overall time because there still
threads assigned one partition unless the total number of par-
titions grows higher than 40.

9.3.2 Number of partitions

In [5], we always set the number of partitions equal to the
number of threads such that each thread is assigned exactly
one partition-join. To confirm the effectiveness of this heuris-
tic, wemeasure the runtime ofoptFS under the domain-based
paradigm while varying the number of partitions from 1 to
1, 000. Similar to Sect. 9.2.2, the number of available threads
is set to 20.

Figure 13 reports the results of our tests. The expected
tradeoff between the execution time and the number of par-
titions from each collection is again observed. But, different
from the hash-based paradigm, optFS under the domain-
based performs at its best when the number of partitions
equals the number of available threads. An exception arises
for the very selective joins; in INFECTIOUS, the lowest exe-
cution time is observed for around 100 partitions per input
while in GREEND for over 100. Nevertheless, we can safely
use the same heuristic even in these cases because (i) the
average execution time for INFECTIOUS joins is extremely
low (below 20 msec) even for 20 partitions while (ii) for
GREEND, the time does not significantly drop when the
number of partitions exceeds 20.

9.3.3 Load balancing

We now evaluate the load balancing achieved by the opti-
mizations of domain-based partitioning of Section 7.3. To
save space, we only show the results on WEBKIT; simi-
lar conclusions can be drawn for join queries on the other
datasets. Apart from the overall execution time of each join,
we also measured the load balancing among the participat-
ing CPU threads. Let set L = {�1 . . . �n} be the measured
time spent by each of the available n threads; we define the
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(a) (b)

(c) (d)

(e) (f)

Fig. 13 Tuning domain-based partitioning: # partitions, |R| = |S| and
20 threads

average idle time as:

1

n

n∑
j=1

{max(L) − � j }

A high average idle time means that the threads are under-
utilized in general, whereas a low average idle time indicates
that the load is balanced.

We experimented by activating or deactivating the mini-
joins breakdown denoted by mj (Section 7.3.1), greedy
scheduling denoted by greedy (Sect. 7.3.1), and adaptive par-
titioningdenotedbyadaptive (Section7.3.2).Weuse the term
atomic to denote the assignment of each partition-join or the
bundle of its corresponding 5 mini-joins to the same thread,
and uniform to denote the (non-adaptive) uniform initial par-
titioning of the domain. We tested the following setups: 12

12 Based on our analysis in Sect. 9.3.2, greedy/uniform or
greedy/adaptive setups are meaningless since the number of partitions
equals the number of available CPU threads.

(a)

(b)

(c) (d)

Fig. 14 Tuning domain-based partitioning: load balancing, optFS on
WEBKIT

(1) uniform/atomic is the baseline domain-based para-digm
of Sect. 7.3 with all load balancing optimization tech-
niques deactivated;

(2) atomic/adaptive is an extension to the baseline that
employs only the adaptive partitioning;

(3) uniform/mj+atomic splits each partition-join of the base-
line into 5 mini-joins which are all executed by the same
CPU thread;

(4) adaptive/mj+atomic first applies the adaptive partition-
ing technique and then splits each partition-join into 5
mini-joins to be all executed by the same thread;

(5) uniform/mj+greedy splits each partition-join of the base-
line into 5 mini-joins which are greedily distributed to
the available threads;

(6) adaptive/mj+greedy employs all optimizations.

Figures 14(a), (c) report the total execution time for each
setup (1)–(6), while Figures 14(b), (c) report the ratio of the
average idle time over the execution time.

We observe the following. First, setups (2)–(6) all manage
to enhance the parallel computation of the join. Their execu-
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Table 7 Setups for
partitioning-based computation

Hash-based Domain-based

Partitioning # partitions uFS: # threads # threads

bgudFS: �√# threads�
Strategy Divs Divs

Adaptive – Yes

Joining Mini-joins – Yes

Breakdown

Greedy – Yes

Scheduling

tion time is lower than the time of the uniform/atomic base-
line. The most efficient setups always include themj+greedy
combination regardless of activating adaptive partitioning or
not. In practice, splitting every partition-join into 5mini-joins
creates mini-jobs of varying costs (recall that 2 of them are
cross-products and other 2 are also quite cheap), which facil-
itates the even partitioning of the total join cost to processors.
For example, if one partition is heavier overall compared to
the others, one thread would be dedicated to its most expen-
sive mini-join and the other mini-joins would be handled by
less loaded CPU threads. Also, notice that the mj optimiza-
tion is beneficial even when the 5 defined mini-joins are all
executed by the same CPU thread (i.e., uniform/mj+atomic),
although the benefit is small compared to the other setups.
This is because breaking down a partition-join into 5 mini-
joins greatly reduces the overall cost of the partition-join
(again, recall that 4 of the mini-joins are cheap).

Adaptive partitioning appears to have a smaller impact
compared to the other two optimizations. Among the setups
that do not employ the greedy scheduling, adaptive/atomic
ranks first (both in terms of the execution time the average
idle time ratio) but when activated on top of the uni-
form/mj+greedy setup, adaptive partitioning enhances the
join computation when the number of threads is low, below
20; notice how faster is the adaptive/mj+greedy setup com-
pared to uniform/mj+greedy in case of 5 available CPU
threads.

Overall, we observe that (i) the mj optimization greatly
reduces the cost of a partition-join and adds flexibility
in load balancing, (ii) the uniform/mj+greedy and adap-
tive/mj+greedy setups perform very well in terms of load
balancing, by reducing the average idle time of any thread
to below 20% of the total execution time in almost all cases
(|R|/|S| = 0.25 and when less than 15 threads are available
for uniform/mj+greedy are the only exceptions).

9.4 Comparisons

Table 7 summarizes the best setup for optFS under the hash-
based and the domain-based paradigms. Both paradigms use

(a) (b)

(c) (d)

Fig. 15 Comparing parallel processing solutions: optFS speedup for
|R| = |S|

Divs to efficiently partition the inputs. For hash-based, we
set the number of partitions on the selectivity of the join,
i.e., depending on whether optFS acts as uFS or bgudFS; for
domain-based, we always set the number of partitions equal
to the number of available CPU threads. Also, to take full
advantage of all proposed load balancing optimizations, we
setup the domain-based paradigm as adaptive/mj+greedy.

We next compare all three approaches for the parallel
computation of interval joins. 13 We first report in Fig. 15
the speedup over the single-threaded optFS (Sect. 6), while
varying the number of available CPU threads; to save space,
we omit the results on FLIGHTS and INFECTIOUS since
the findings are identical to TAXIS and GREEND, respec-
tively. Overall, we observe that the domain-based paradigm
is clearly the most efficient approach, being able to achieve

13 We also tested a hybrid that applies domain-based partitioning and
uses no-partitioning for every partition-join, but, this approach was
always slower than original no-partitioning.
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the highest speedup in all cases. In fact, the performance
advantage of the domain-based paradigm grows by the
number of available threads. This is because the queries
benefit increasingly more from domain-based’s ability to
significantly reduce the number of endpoint comparisons
conducted. In contrast, the number of comparisons under
the hash-based paradigm increases, compared even to single-
threaded optFS, as the number of available threads goes up.
14 Our tests also reveal the role of join selectivity. For the
highly selective queries in GREEND and INFECTIOUS, the
hash-based paradigm always outperforms no-partitioning,
but for the low selectivity joins in BOOKS andWEBKIT, no-
partitioning is competitive; in fact, for WEBKIT, it achieves
always the second highest speedup. For queries of medium
selectivity, i.e., in FLIGHTS and TAXIS, no-partitioning is
able to incur a speedup only when up to 5 parallel threads
are employed. To understand the behavior of no-partitioning
optFS, we need to discuss two important shortcomings stem-
ming from its master-slaves approach. The first problem is
thread starvation; essentially, the master thread cannot cre-
ate forward scan tasks fast enough for the slaves to run. This
is the case with highly selective queries, where the forward
scans are too short and hence cheap, as Fig. 6 shows. The sec-
ond problem is the high number of cache misses incurred by
all threads scanning the same data structures in main mem-
ory. This problem is amplified when increasing the number
of CPU threads used as slaves.

Finally, we report in Fig. 16 the total execution time for
each approach while varying the |R|/|S| ratio of the input
collections; for these tests, we used up to 20 threads. As
expected all approaches are affected by increasing the input
size; their execution time rises. Nevertheless, the domain-
based paradigm outperforms both the hash-based and no-
partitioning in every test.

10 Conclusions and future work

In this paper, we targeted the efficient in-memory com-
putation of interval overlap joins. Under single-threaded
evaluation, we studied FS, a simple and efficient algorithm
based on plane sweep that does not rely on any special
data structures. We proposed four novel optimizations for
FS that greatly accelerate the algorithm in practice. Our
experimental analysis showed that a self-tuning version of
FS which automatically selects and applies the most appro-
priate optimizations is competitive or even faster than the
state-of-the-art. For parallel join evaluation, we proposed (i)
a master-slaves approach that does not physically partition
the inputs and (ii) a domain-based partitioning computation

14 Results on endpoint comparisons can be found in our preliminary
analysis [5].

(a) (b)

(c) (d)

Fig. 16 Comparing parallel processing solutions: optFS running time
for 20 threads

framework. Under the latter, each partition-join is broken
down to five independent mini-joins which can be greedily
assigned to the availableCPU threads achieving a high degree
of load balancing. Our experiments showed that our domain-
based partitioning framework for parallel joins significantly
outperforms both our no-partitioning approach and the hash-
based framework of [29] while also scaling well with the
number of available threads. In the future, we plan to study
interval joins in stream processing. Also, we intend to inves-
tigate novel indexing structures for interval queries and joins.
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