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Abstract

The join and group-by aggregation are two memory intensive operators that are affecting the performance of relational
databases. Hashing is a common approach used to implement both operators. Recent paradigm shifts in multi-core processor
architectures have reinvigorated research into how the join and group-by aggregation operators can leverage these advances.
However, the poor spatial locality of the hashing approach has hindered performance on multi-core processor architectures
which rely on using large cache hierarchies for latency mitigation. Multithreaded architectures can better cope with poor
spatial locality by masking memory latency with many outstanding requests. Nevertheless, the number of parallel threads,
even in the most advanced multithreaded processors, such as UltraSPARC, is not enough to fully cover the main memory
access latency. In this paper, we explore the hardware re-configurability of FPGAs to enable deeper execution pipelines that
maintain hundreds (instead of tens) of outstanding memory requests across four FPGAs-drastically increasing concurrency
and throughput. We present two end-to-end in-memory accelerators for the join and group-by aggregation operators using
FPGAs. Both accelerators use massive multithreading to mask long memory delays of traversing linked-list data structures,
while concurrently managing hundreds of thread states across four FPGAs locally. We explore how content addressable
memories can be intermixed within our multithreaded designs to act as a synchronizing cache, which enforces locks and
merges jobs together before they are written to memory. Throughput results for our hash-join operator accelerator show
a speedup between 2x and 3.4x over the best multi-core approaches with comparable memory bandwidths on uniform
and skewed datasets. The accelerator for the hash-based group-by aggregation operator demonstrates that leveraging CAMs
achieves average speedup of 3.3x with a best case of 9.4x in terms of throughput over CPU implementations across five
types of data distributions.
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bandwidth. Despite the progress made in multi-core archi-
tectures, the major performance limitations come from the
memory latency (known as the memory wall) that restricts the
scalability of such memory-bounded algorithms. A memory
access can stall instruction execution for hundreds of CPU
cycles.

The most common solution to the memory latency prob-
lem is the use of extensive cache hierarchies. This approach
mitigates memory latency by relying on data and program
instructions localities (spatial and temporal). Unfortunately,
such solution does not come for free as cache hierarchies can
take up to 80% of a typical processor die area, thus limiting
the number of cores that can be accommodated on a single
chip and also contributing to energy consumption through
leakage current.

Moreover, there are many irregular applications that do
not exhibit such localities [12]. As a result, cache hierar-
chies do not provide an effective solution for their memory
accesses [14,54]. In particular, irregular applications can be
characterized by at least one of the following patterns: (1)
Irregular control-flow which breaks the program locality.
This is caused by branches in the code that invalidate pre-
fetched instructions. (2) Irregular data-flow where indirection
in the memory access patterns breaks the data locality and
hence causes cache misses. Some database operators, such
as selection, exhibit control flow irregularity, while others,
like hash-join and (hash-based) group-by aggregation, can
demonstrate both [22].

An alternative for dealing with the memory latency
problem in irregular applications is offered by hardware mul-
tithreaded execution [38,53]. This approach relies on the
masking of memory latency by supporting multiple outstand-
ing memory requests and switching to a ready but waiting
thread when the currently executing thread encounters a long
latency operation, such as a main memory access. Hardware
multithreading was used in the SUN UltraSPARC architec-
ture (for example, the UltraSPARC T5 [55]) where it can
support eight threads per core and 16 cores per chip. How-
ever, tens of threads are not enough to hide memory latency.
Instead we have recently advocated for massive hardware
multithreading implemented on FPGAs (thereafter referred
to as multithreaded Processor or MTP) that is able to support
deeper pipelining, can maintain hundreds (instead of tens) of
outstanding memory requests across four FPGAs and hence
can drastically increase concurrency and therefore through-
put [11,24,28,29].

In this paper, we examine how to use our MTP approach
to implement hash-based algorithms for the join [28] and
group-by aggregation [1] operators. Both operators are basic
building blocks of relational query processor, and various
recent works have explored their implementation tailored
to multi-core CPU architectures [6,9,16,17,35,59]. A com-
mon component in both hash-join and (hash-based) group-by
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aggregation is to efficiently build a hash table (during the
build phase of a join or grouping phase of the aggregation),
which s later used to join with tuples from the second relation
or to return groups in the aggregated relation (potentially with
appropriate aggregates). The hash-based nature of these algo-
rithms incurs poor spatial locality, and thus, all the multi-core
CPU approaches rely on vast caches to somehow alleviate
latency penalty. In order to build a hash table, the MTP exe-
cution takes an alternative approach as it requires massive
parallelism to compete with the CPU’s order of magnitude
faster clock frequency. In turn, that means many threads must
be synchronized and managed locally on the FPGA. One
could instead build a hash table in local on-chip memory
(BRAM), as the BRAM’s 1-cycle latency removes any need
for synchronization. However, current FPGAs only have few
MBs of local storage, which limits the hashed relation size
only to few thousand records [30].

This paper significantly extends two of our previous
works, where we introduced the hash-based join operator
accelerator [28] and the hash-based group-by aggregation
operator accelerator [1]. Both works are extended by explor-
ing how content addressable memories (CAMs) can be
leveraged within the MTP multithreaded designs to enable
processor-side locking by acting as a synchronizing cache.
These CAMs enforce locks and merge threads together
before they are written to memory, thus enabling latency-
masking of threads [57].

Specifically, in [28] we introduced the first end-to-end
hash-join MTP implementation. That design leveraged recent
progress in FPGA-based platforms, namely the Convey-MX
platform [ 18], which supports the locking of individual mem-
ory locations. The locking bits enable atomic operations that
are used to provide synchronization in the build phase. How-
ever, the overhead of these atomic operations restricted the
practical FPGA throughput to 37.5% of its peak theoretical
throughput. One of the major contributions in this work is
the elimination of atomic operations and moving all lock-
ing on chip by using CAMs for processor-side locking of
memory addresses. This results in a more portable, higher
performance, and scalable design. Further, the current design
is modified to support larger key sizes and arbitrarily wide
tuple sizes. This approach is a more practical implementation
of relational query processor components rather than a small
prototype that works only for fixed sized relations consist-
ing of key and payload. With this extension, we were able
to carry further experiments using the TPC-H benchmark.
Finally, in addition to inner joins, the updated design also
supports an array of join variants: left, right, and full outer
join. The above extensions are described in detail in Sects. 3
and 4.

In [1], we applied the MTP multithreading to implement
the hash-based group-by aggregation. As group-by aggrega-
tion requires updating the hash table (to update the aggregate
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as a new record is added to a group), all writes to a hash
table need to be synchronized. In [1], we used locks that
were implemented at the level of hash table buckets. These
coarse-grained locks (CGL) limited parallelism—especially
in the case of skewed datasets. Instead, our new design intro-
duces fine-grained locks (FGL), i.e., locks on the record level
instead of the hash table buckets, thus reducing locking con-
tention and improving parallelism and throughput. The FGL
provides higher parallelism and throughput that is 1.6x to
2.1x times better than the work in [1]. Furthermore, to enable
better utilization of memory channels, the new design uses
only a single memory channel per engine without any sig-
nificant effect on throughput. Finally, we implemented both
hash-join and hash-based group-by aggregation on a com-
mon platform, the Micron (Convey) HC-2ex machine and
rerun all experiments on this platform. (These extensions are
discussed in detail in Sect. 5.)

The rest of this paper is organized as follows: Sect. 2
gives a description of the target FPGA hardware platforms
and background on latency-masking multithreading. Section
3 presents the platform-independent in-memory hash join
operator implementation using CAMs. Section 4 describes
how the hash-join design can be extended to support larger
keys and wide tuples; it also provides an experimental eval-
uation using the widely adopted TPC-H benchmark. Section
5 describes the implementation of the hash-based group-by
aggregation operator and discusses how CAMs can be incor-
porated in the design. Finally, Sect. 6 discusses related work
and Sect. 7 provides conclusions and future work.

2 Background
2.1 FPGA heterogeneous computing

FPGA architectures have evolved from their early stages into
large logic arrays capable of concurrently executing multi-
ple complex instructions. They have historically been used as
off-chip accelerators where CPUs can offload compute inten-
sive workloads and read back the results. In recent years, the
FPGA has been trending closer and closer to the CPU. Xil-
inx currently offers a Zynq [61] line of chips that couples
the FPGA’s reconfigurable fabric with an ARM processor,
while Intel introduced HARP [51] featuring Xeon+FPGA in
a single platform targeting data analysis acceleration [27].
There have been various architectures where FPGA
accesses memory directly referred to near-data process-
ing (NDP). Some NDP platforms use FPGA to directly
process data stored on none-volatile memory such as the
FPGA-Accelerated flash storage proposed in [33] for sort-
ing. Another type of NDP platforms focuses on using the
FPGA for data pre-processing, thus reducing performance
bottlenecks caused by limited secondary storage and net-

work bandwidth. Examples of such platforms are Netezza
[25] used in data analytics and ExtraV framework [41] used
in accelerating out-of-memory graph processing. Similar to
Netezza, the Aqua platform, used by Amazon Redshift, a dis-
tributed and hardware accelerated cache, is another example
of NDP technology [4,19]. Nevertheless, it is currently still
more common to see the FPGA connected with the CPU over
a PCle bus.

Microsoft Research incorporated multiple Stratix-V FPGAs
into a 48 node server that was used to accelerate the Bing
search engine [49]. Alpha Data announced a CAPI envi-
ronment, which allows Xilinx All Programmable devices to
connect with IBM Power§ architectures [3]. Multiple compa-
nies are offering FPGA platforms over PCle, which have been
actively used in the research community to show acceleration
and power savings compared to CPUs and GPUs [13,28].

Different FPGA architectures are optimized for various
use cases: HPC computations, database workloads, or packet
processing. The designs proposed in this paper utilize only
the off-chip memory interface, which makes them general
enough to be ported between most currently available FPGA
platforms. For simplicity, we choose only one platform, the
Micron (Convey) HC-2ex, to implement and run all our
designs. The Convey architecture offers a shared global mem-
ory space between hardware and software, which eliminates
any variability due to the memory architecture and allows us
to do direct performance comparison against CPU and earlier
FPGA implementations.

2.2 Convey heterogeneous computing platforms

The Micron (Convey) HC-2ex is a heterogeneous platform
that offers a shared global memory space between the CPU
and FPGA regions. As shown in Fig. la, the memory is
divided into regions connected through PCle with portions
closer to the CPU, and portions closer to the FPGAs. The soft-
ware region has 2 Intel Xeon E5-2643 processors running at
3.3 GHz with a 10 MB L3 cache. In total, the software region
has 128 GB of 1600 MHz DDR3 memory. The system has a
peak memory bandwidth of 51.2 GB/s.

The hardware region has four Xilinx Virtex6-760 FPGAs
connected to the global memory through a full crossbar. Each
FPGA has 8 64-bit memory controllers running at 300 MHz
(Fig. 1b). The FPGA logic cells run in a separate 150 MHz
clock domain to ease timing and connect to the memory
controllers through 16 channels. These memory channels
provide a highly parallel 8,192 simultaneous outstanding
requests. The hardware region has 64 GB of 1600 MHz
DDR3 RAM. Each FPGA has a peak memory bandwidth
of 19.2 GB/s.

The Convey MX, used in our hash-join MTP implemen-
tation in [28], has the same hardware layout as the HC-2ex;
however, the MX has built-in support for atomic instruc-
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(a) The Micron (Convey) HC-2ex software and
hardware regions.
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(b) Micron (Convey) HC-2ex FPGA AE wrap-
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Fig. 1 The Micron (Convey) HC-2ex architecture. Separation into software and hardware regions in shown in a. In the hardware region, each
FPGA has 8 memory controllers, which are split into 16 channels for the FPGA’s logic cells as shown in b

tions directly in memory. The HC-2ex was used for the MTP
group-by aggregation implementation in [1]. In this paper,
we use the HC-2ex as the common platform for both MTP
hash-join and MTP group-by aggregation.

2.3 Latency-masking multithreading

The disparity between main memory latency and processing
speed is one of the biggest challenges in computer design.
On traditional CPUs and GPUs, it is addressed, by having
very large cache hierarchies that mitigate the memory latency
by exploiting spatial and temporal data localities. However,
large classes of applications have very low levels of data
locality and hence do not benefit much from these massive
cache hierarchies.

Many database operations fall into this category of appli-
cations. The objective of latency masking multithreading is
to keep the processing unit busy while waiting for memory,
thereby masking its latency. For database operations, it is
done by fetching and processing as many tuples, one per
cycle, as the memory latency in cycles. In our model, we
associate a thread with the processing of a tuple. A thread is
initiated when a tuple is read from memory and terminated
when its processing is completed, whether results are mate-
rialized or not. In this paradigm, the processing of an item
(a tuple in our case) is halted whenever a memory access is
done and that thread is put in a wait state until the result of
the memory access is returned. This means that the state of
that thread is put in a queue waiting for memory as shown
in Fig. 2. When the data are returned from memory, in the
case of a memory read, the thread moves to the next stage of
its execution and the process is repeated for every memory
access that the thread makes until its completion, i.e., until
the processing of the tuple is completed. The parallelism, in
this model, is equal to the number of active threads. A thread
is active if it is either executing or waiting. In this model,
a thread goes through an execution pipeline consisting of
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Fig.2 Components of a multithreaded implementation: Numbers rep-
resent execution steps performed by a processing unit (PU) of each
processing engine (PE). The design is scaled by adding as many PEs as
possible

successions of processing stages and waiting stages. Once
this pipeline is full, the execution reaches a steady state and
achieves the maximum throughput of one result per engine
per cycle and memory latency is fully masked.
Nevertheless, a synchronization mechanism must be
provided when threads may write in memory. The main
contribution of this paper is a processor-side synchroniza-
tion mechanism relying on content-addressable memories
(CAMs) described in the next section. This mechanism is
designed to synchronize all the threads within an engine.
On the Micron (Convey) HC-2ex, the average memory
latency is ~ 100-200 cycles and memory accesses are fully
pipelined, meaning that the processing unit can issue one
memory request per cycle per memory channel up to the
capacity of the memory buffer, which is ~ 500 memory
requests. All memory requests, on the same channel, are
returned in the order they were issued. There are three stages
in the multithreaded execution that occur in the following
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order: (1) fill-up, (2) steady-state, and (3) drain-out. In the
fill-up stage, the processing pipeline is being filled. Its dura-
tion is determined by the pipeline latency and the service time
of each tuple. Conversely, the drain-out stage is when all the
tuples have been read from memory and no new ones are
inserted in the pipeline. When the number of tuples is much
larger than the pipeline latency, the duration of the fill-up and
drain-out stages is dwarfed by that of the steady-state, and
hence, the throughput is closer to the maximum achievable
throughput.

In the experiments described in this paper, we implement
a number (N) of engines on each FPGA. The total number
of engines is therefore 4N. Each engine is connected to M
memory channels on its FPGA. The data to be processed are
partitioned equally among all the engines. All the engines
operate concurrently and do not interact.

There is an inherent trade-off between the two parameters
N and M, as well as with the allocation of resources on the
hardware to implement a given configuration. The choice of
these two parameters is discussed in Sect. 3.3 for the MTP
hash-join and in Sect. 5 for the MTP group-by aggregation.

The maximum achievable throughput in this model is
determined by two factors: (1) the memory bandwidth and
(2) the number of active threads per engine. On the HC-2ex,
each FPGA has 16 memory channels, and each channel can
support one memory operation per cycle at 150 MHz. There-
fore, the whole system can achieve a peak of 64 memory
operations per cycle, or 9.6 billion memory operations per
second. The number of active threads within an engine is
limited by the available resources on the FPGA. In an FPGA
design, every hardware item must be mapped, by a software
tool, on some logic resources on the FPGA and items are con-
nected together by routing wires between them. The length of
the longest wire determines the clock frequency of the whole
design. A design is said to meet timing if all the wires can be
clocked at the target clock frequency. Selecting the best pos-
sible routing for every wire is an NP-complete problem. Very
good heuristics take hours and sometimes days to achieve a
routing that meets timing. The internal architecture of the
Xilinx Virtex 6 FPGA is particularly challenging at meeting
timing.

CAM-based synchronization is discussed in Sect. 3.3 for
the MTP hash-join, and in Sect. 5 for the MTP group-by
aggregation. In both cases, the size of the CAM was the main
limitation on the number of active threads. The limitation
on the CAM size comes from the impossibility of meeting
timing for larger CAMs.

2.4 CAMs as synchronizing caches on FPGAs
A CAM (also known as an associative memory) is an array

that can perform efficient entry-matching (i.e., answer mem-
bership queries). Its operation is the inverse of a random

access memory (RAM): When presented with a search word,
the CAM returns all the locations whose content matches that
word. Each CAM bit consists of a flip-flop with a compara-
tor matching it to the corresponding bit in the search word.
The outputs of all the bit positions in a word are ANDed to
generate the (mis)match for that word. The CAM’s ability to
perform a search in unit time comes at a high cost of area,
energy, and long clock cycle time (due to the long wires for
the bit-wise AND and propagating the search word to all the
entries). A CAM with n entries where each entry is w bits,
stores n words of w bits, by construction. Each entry has
a free bit, and the next word to be inserted in the CAM is
inserted in the first free entry and when a word is deleted
from the CAM that entry is marked free. In this paper, depth
or size of a CAM refers to the number of entries in the CAM.

As the number of entries in the CAM increases, the achiev-
able clock frequency of the circuit drops. This limitation
either restricts the size of the CAM or increases the number of
cycles it takes to perform an update operation. Nonetheless,
CAMs have proven to be very useful in domains such as net-
working (e.g., implementing an IP table in a network router).
Recently, we explored how CAMs can be used to accelerate
the breadth first search algorithm [57]. These applications
can usually tolerate long update latencies because update
operations are infrequent.

In a streaming environment, CAMs can maintain a cache
of recently seen unique items and allow quick access to them
without incurring long ready latency and stalling the pipeline.
This fast cache look-up mechanism can also be used as a
fine-grained address-based synchronization primitive, which
avoids long latency trips to main memory and does not require
special hardware synchronization primitives.

Consider the case when a CAM is assigned to guard a
particular memory partition. It can be configured to hold the
addresses of the values that need synchronized access. If all
memory requests within a partition are first submitted to the
CAM, before being routed to the memory, the accesses to
identical addresses are serialized locally in the CAM. In this
case, a CAM entry serves as an exclusive lock, which gets
released (flushed from the CAM) after the request(s) com-
pletion. In Sect. 5.2, we discuss how to use this approach for
synchronization in the MTP group-by aggregation algorithm.

In our previous work [28], we have used atomic oper-
ations which were implemented using locks on individual
memory locations, provided by the now discontinued Convey
MX architecture [18]. Leveraging CAMs for synchronization
of FPGA algorithms increases the portability of our design.
Locking using generic CAMs means that all synchronization
operations are now internal to the FPGA and can be done on
any architecture where an FPGA with a sufficient area has
direct access to the memory. In addition, this design pro-
vides more selective fine-grained synchronization primitives
in comparison with the Convey-MX, which places a lock
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on all FPGA-memory communication channels. We discuss
resource trade-off for CAMs in Sects. 3.1 and 5.3.1. Work on
previous FPGA implementations of CAMSs appears in Sect.
6. An excellent description of CAMs and their applications
can be found in [37].

3 MTP hash join using CAMs

The presented hash join engine in our prior work [28] is in
line with previous research efforts [6,9,35], where all rela-
tions were broken into “skinny” tables with small tuples (8
or 16 byte key/value pairs). The focus is on finding match-
ing tuples between relations, but we also outlined how the
approach can be extended with existing research to further
improve performance. The work in [28] relied on atomic
instructions provided by the Convey MX machine for syn-
chronizing hash table updates. In this section, we describe
how the build phase can be made platform agnostic using
CAMs for synchronization and how the probe phase can be
extended to support left, right, and full outer joins. We target
datasets that are too large to store locally on the FPGA, and
therefore, all data structures are stored in global memory. The
join phases are nicely split such that every tuple in the build
relation incurs write to the data structures, and every tuple
in the probe relation only reads from these data structures.
This separation simplifies the hash table operations for both
the CPU and MTP design, compared to other hash-based
algorithms (i.e., group-by aggregation in Sect. 5).

3.1 Build phase engine

Since our target datasets are too large to keep in on-chip
memory (e.g., BRAMsS), our design trades off small and fast
on-chip memory for larger but slower off-chip memory. The
build engine copes with the long memory latencies by issu-
ing thousands of threads across all PEs and maintaining their
states locally on the FPGA. Because of the MTP design’s
inherent parallelism, multiple threads can be activated dur-
ing the same cycle, while other threads are issuing memory
requests and going idle.

The entire build relation along with the hash table and the
linked lists is stored in main memory as shown in Fig. 3. Our
hash table uses the chaining collision resolution technique:
All elements hashed to the same bucket are connected in a
linked list, and the hash table holds a pointer to the list’s head.
We use a special value (OxFFFE...FFF) to represent empty
buckets and end of chains in the hash table.

Figure 3 also shows how the build engine (FPGA logic)
makes requests to the main memory data structures using
four channels. Figure 4 shows the state diagram for a single
thread of an engine during the build phase. In the FPGA logic,
local registers are programmed at runtime and hold pointers
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Main Memory

- Build Rel. base address
- Build Rel. # tuples

- Hash Table base address
- Hash Table size

- Linked List base address

Build Tuple 0
Relation Tuple 1

Tuple

Tuple Response Request

\ Hash Sync
Function Thread
Hash OXFFFF_FFFF FIFOs
Table 0x0000_003F

HT Read/Write

Hash Table Manager

Write Linked List

Linked ta
Lists 0x0000_0003
list data
0x0000_002A

HT REEPOHSG

list data
L | OxXFFFF_FFFF

Fig.3 The MTP build phase engine

to the relation, hash table, and linked lists. They also hold
information about the number of tuples, the tuple sizes, and
the join key position within the tuple. Lastly, the registers
hold the hash table size, which is used to mask off results from
the hash function. The Tuple Request component will create a
thread for each tuple and issues a request for its join key. The
design assumes the join key size is between 1 and 4 bytes,
and itis set at runtime with a register. In Sect. 4, we show how
this design can be extend to handle larger keys and tuples of
arbitrary sizes. Requests are continually issued until all tuples
have been processed, or the memory architecture issues a
stall. Once a thread issues a request, the tuple’s pointer is
added to the thread state, and the thread goes idle.

As join key requests are completed, the thread is reacti-
vated and the key and hash value are stored in the thread’s
state. The Write Linked List component writes the key and
tuple pointer to a new node into the appropriate linked list
bucket. Instead of issuing an atomic swap command as in the
previous design [28], the Hash Table Manager component
issues several memory requests protected by the CAM to do
the update. First, the thread searches the CAM for the hash
table bucket address. If the address is in the CAM, the thread
must wait in a FIFO and wait as it is already being updated. If
the address is not found, the thread writes the address to the
CAM and now has exclusive access to the hash table bucket.
With the lock secured, the thread issues a read for the old
bucket head pointer. Once we get a response from memory,
the old bucket head pointer is added to the thread’s state and
the thread issues a write of the updated value. When mem-
ory responds with a write complete message, the address
is flushed from the CAM, freeing the lock for other threads.
Synchronization is needed here because a single MTP engine
can have hundreds of threads in flight, and issuing separate
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Fig.4 A state diagram of the steps that every thread goes through in the MTP build phase engine

unprotected reads and writes would create race conditions.
After the write is complete, the new node pointer is added to
the thread’s state.

As the write requests are fulfilled, the thread is again reac-
tivated, and the Update Linked List component updates the
bucket chain pointer. If no previous nodes hashed to that loca-
tion, then the hash table read request will return the empty
bucket value, which by design is also used to signify the
end of a list chain. Otherwise, the old head pointer that was
returned is used to extend the list.

The key insight to this design is to realize that all items
in the relation must end up in the linked list memory space.
Since we know the number of elements, we know exactly
how much memory we need in the linked-list node space.
Instead of dynamically allocating nodes with keys as we see
them, the keys can have a fixed location in memory and it is
the next pointer slot that changes based on the current state
of the hash table. We are effectively building the linked list
around the nodes as they sitin memory. If there are n elements
in the relation, the linked-list structure will be 2xn (one word
for the key, and one word for the next pointer). Every i’th
element will always end up in the 2 * i position and its next
pointer will always be at 2 x i 4+ 1. The dynamic nature of
the list building comes from swapping the pointers out of the
hash table to write into the linked-list table.

Figure 5 shows an insertion example. The left-side tables
show the hash table (HT) and the linked list (LL) after ele-
ments kg, k1, k2, k3 have been inserted, where k; is a pointer
to the key i in main memory. ko and k3 have been hashed to
the same bucket in the HT. Therefore, the next_node of k3
in the LL points to address O that contains k. The right-side

Hash Table

address

Hash Table

address

Linked List
address _(key, next_node)

Linked List
address  (key, next_node)

2 2
Vo] ko | XFFFF | e V| 0| ko | xFFFF
XFFFF |\ | 1] | ™ N A
\ T \
L I L
XFFFF Y XFFFF X
6 N 6 B
\ 4 4 | Ryt XFFFF \ | 4| kz+~XFFFF
XFFFF | ] N xFFEE [N |4 e
\ \\ \\ ‘\
S I I XFFFF | N[ T
XFFFF | | ’ XFFFF| | &% |0
A
XFFFF | xFFFF !
XFFFF |/ | ® XFFFF| 8[| ¢
XFFFF ! /
" xFFFF| /[
4 8
size: 2N size: 2N

Fig.5 Example of inserting an element in the hash table. Dashed lines
represent logical connections. ; is a pointer to the key 7 in main memory.
Elements ko & k4 hash to the same bucket in the hash table. k4 replaces
ko as the head of the linked list of their bucket

tables show the state of the HT and LL after the insertion
of k4, assuming that the hash function, hashed k4 to the last
bucket in the hash table. k» was hashed by a previous thread
to the same bucket as well. Hence, the last bucket at the hash
table already points to address 4 in the linked list which con-
tains k. The new address 8, which contains k4 in the linked
list, will be inserted in the last HT bucket, while the previ-
ous address 4 at that bucket will be moved to the next_node
memory location of k4 in the LL.
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Single Engine Throughput For Different CAM sizes
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Fig. 6 MTP hash-join build throughput of single engine as the CAM
size is varied from 64 to 512

Effect of CAM size in MTP hash join The throughput of a
MTP engine is proportional to its ability to fully mask mem-
ory latency by having multiple concurrent active threads. The
maximum number of concurrent threads is set by the size
(depth) of the CAM: Each entry in the CAM represents a
thread updating the hash table. Figure 6 shows the through-
put as a function of the CAM size for uniform distribution
for CAM size from 64 to 512 entries. The large increase in
throughput, 2.2x, from 64 to 128 entries demonstrates the
CAM’s ability to act as a cache. However, at 256 entries the
throughput is only 1.1x higher than at 128. A CAM size of
512 yields nearly the same performance as that of 256.

Meeting timing (i.e., achieving clock frequency of 150
MHz) on the Xilinx Virtex6 (2012) with one CAM per engine
and four engines per FPGA was extremely difficult with
a CAM size larger than 128. However, on newer FPGAs,
deeper CAMs can be constructed with higher frequencies.
The other limit on the depth of the CAM is the maximum
number of outstanding memory requests supported by the
machine (see Sect. 2.2), which is independent of the FPGA.
Thus, the maximum number of concurrent threads is depen-
dent on both: the size of the CAM as well as the supported
number of outstanding memory requests.

Our current design uses a CAM size of 128 in order to
meet timing requirements without reducing the number of
engines.

3.2 Probe phase engine

The probe engine also assumes that all data structures are
stored in main memory. Like the build engine, it uses memory
masking to cope with high memory latency and maintain
peak performance. Because no data are stored locally for
either engine, the same FPGA used during the build phase can
be reprogrammed with the probe engine (useful for smaller
FPGA). Larger FPGAs can hold both engines and switch state
depending on the required computation. Our prior design of
the probe engine [28] only handled inner-join queries. If key,
and key, are in both the build and probe tables, then the
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Fig.7 The MTP probe phase engine

joined tuple was emitted. In this current design, we support
the full array of join variants: inner, left, right, and full outer
join. These can be toggled on and off in the data path to
configure the join operation desired. Left outer join has no
performance overhead as the work to identify the null match
is already done while answering an inner join. For the right
outer join, the design incurs one final scan of the build table
to emit the tuples in the build table that were not matched
during the query.

Figure 7 shows how the probe engine makes requests to
the data structures in main memory (using 5 channels). Issu-
ing threads, tuple requests and hashing are handled the same
way as in build engine. Again, the join key and the tuple’s
pointer are stored in the thread’s state. Because the probe
phase only reads data structures, there is no need for syn-
chronizing operations. The thread only looks up the proper
head pointer by probing hashed key into the table. The spe-
cial value (OxFFF...FFF) is again used to identify empty table
buckets; if this value is returned, then the probe tuple cannot
have a match and is dropped from the MTP datapath for inner
join or emitted with null for left join. Otherwise, the thread
is sent to the New Thread FIFO.

During the probe phase each node in a bucket chain
must be checked for matches. A thread is not aware of
the bucket chain length without iterating through the whole
chain. Therefore, threads are waiting within the datapath until
they reach the last node in the chain. The Probe Linked List
component takes an active thread and requests its list node.
We devote two channels to this component because it issues
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the bulk of read requests, and its performance is vital to the
engine’s throughput.

After the proper node is retrieved from memory the Ana-
lyze Thread component determines if there was a match.
Matching tuples are sent to the Join Tuple component. If
the query is handling a right outer join, then the engine will
issue a write to the hash table node to mark it as matched. This
enables the final scan of right outer join to identify unmatched
nodes in the build relation. If a node is the last in the bucket
chain, then its thread is dropped from the datapath for inner
join and emitted with null for left join. Otherwise, its next
node pointer is updated in the thread’s state and is sent to
the Waiting Thread FIFO. The datapath can be easily modi-
fied to support semi-joins by including a flag in memory to
indicate which tuple has been materialized already. More-
over, anti-joins can also be supported by materializing only
the tuples that do not match in the build relation without
any change to the datapath. An Arbiter component is used
to decide the next active thread, which will be sent to the
Probe Linked List component. Priority is given to the wait-
ing threads, thus reducing the number of concurrent threads
and ensuring that the design will not deadlock. Otherwise,
when the waiting threads FIFO fills, its back pressure would
stall the memory responses, causing the memory requests to
stall, thus preventing the arbiter from issuing a new thread.
As matches are found, the Join Tuple component merges the
probe tuple’s pointer (from the thread) with the build tuple’s
pointer (from the node list) and sends the result out of the
engine.

3.3 Experimental results

In this section, we show how our approach is implemented
on a Micron (Convey) HC-2ex architecture. We explain how
the engines can be duplicated to increase parallelism and
better utilize the available memory bandwidth. FPGA syn-
thesis is known to be a time intensive process. The designs
presented here are general enough to handle different join
queries without needing to re-synthesize the FPGA logic.
Our MTP implementation is compared, in terms of overall
throughput, to the best multi-core approaches at the time [6].
We attempt to match the FPGA’s and CPU’s memory band-
width (38.4 GB/s for the FPGA vs 51.2 GB/s for the CPU)
because hash join is a memory bounded problem. Scalability
and area utilization results are also presented.

MTP & software implementations The hash join approach
presented in this section is implemented using the Micron
(Convey) HC-2ex platform (Sect. 2.2), but the proposed
methods are platform independent. The Probe Engines are
easily ported between boards because the FIFOs (Xilinx IP
Cores) are the only component specific to the FPGA and
could be easily replaced with generic FIFOs. The Build
Engines are also portable because they utilize CAMs for syn-

chronization instead of the atomic instructions of the previous
design.

Peak MTP performance depends on the number of con-
current engines, and their clock frequency. The number of
engines, N, is limited by the memory bandwidth. The Micron
(Convey) HC-2ex has 16 memory channels per FPGA, which
run at I50MHz. During the build phase, all FPGAs are con-
figured to hold the build engines. During the probe phase,
all FPGAs are re-configured to hold the probe engines. The
build engine described in Sect. 3.1 requires M = 4 memory
channels per engine, and therefore, each FPGA can hold N =
4 build engines. Assuming no stalls, the peak throughput for
the build phase is 600 MTuples/sec (4 engines x 150) per
FPGA. Similarly, the probe engine mentioned in Sect. 3.2
uses M = 5 memory channels per engine, and therefore, each
FPGA can hold N = 3 probe engines. The probe phase has a
peak throughput of 450 MTuples/sec per FPGA.

The multi-core hash join approach [6] we compare
against has 2 types of join algorithms: a hardware-oblivious
non-partitioned joins and a hardware-conscious algorithms,
which performs preliminary partitioning of their input. Both
implementations perform the traditional hash join with build
and probe phases; however, they differ in the way they are
utilizing multi-core CPU architecture. The non-partitioned
approach performs the join using the hash table which
is shared among all threads, therefore relying on hyper-
threading to mask cache miss and thread synchronization
latencies. The partitioning-based algorithm performs pre-
liminary partitioning of the input data to avoid contention
among executing threads. Later during the join operation,
each thread will process a single partition without explicit
synchronization. The Radix clustering algorithm, which is a
backbone of the partitioning stage, needs to be parameterized
with the number of TLB entries and cache sizes, thus mak-
ing the approach hardware-conscious. In our experiments, we
use a two-pass clustering and produce 2'# partitions, which
yields the best cache residency for our CPU architecture.
Dataset description Our experimental evaluation uses four
datasets. Within each dataset, we have a collection of build
and probe relation pairs ranging in size from 229 to 230 ele-
ments. Each dataset uses the same 8-byte wide tuple format,
which is commonly used for performance evaluation of in-
memory query engines [10]. The first 4 bytes hold the join
key, while the rest is reserved for the tuple’s payload. Since
we are only interested in finding matches (rather than joining
large tuples), our payload is arandom 4-byte value. However,
it could just as easily be a pointer to an actual arbitrarily long
record, identified by the join key.

The first dataset, termed Unique, uses incrementally
increasing keys which are randomly shuffled. It represents
the case when the build relation has no duplicates, and thus,
keys in the hash table are uniformly distributed with exactly
one key per bucket (assuming simple modulo hashing). The

@ Springer



342

B. Romanous et al.

next dataset (Uniform) uses random data drawn uniformly
from uint32 value range. Keys are duplicated in less than 5%
of the cases for all build relations having less than 228 tuples.
The largest relations have no more than 20% duplicates. For
this dataset, bucket lists average 1.6 nodes when the hash
table size matches the relation size, and 1.3 nodes when the
hash table size is double the relation size. The longest node
chains have about 10 elements regardless of the hash table
size. To explore the performance on non-uniform input, the
keys in the final two datasets are drawn from a Zipf distri-
bution with coefficients 0.5 and 1.0 (Zipf_0.5 and Zipf 1.0,
respectively); these datasets are generated using the algo-
rithms described by Gray et al. [26]. In Zipf 0.5, 44% of
the keys are duplicated in the build relation. The bucket list
chains have on average 1.8 keys regardless of the hash table
size, while the largest chains can contain thousands of keys.
In Zipf_1.0, the build relations have between 78% and 85%
of duplicates. Their bucket list chains have on average from
4.8t0 6.7 keys. The longest chains range from about 70 thou-
sand keys in the relation with 220 tuples to about 50 million
in the 23 relation.

Throughput evaluation We report the multi-core results
for both partitioning-based and non-partitioned algorithms.
Results are obtained with a single Intel Xeon E5-2643 CPU,
running on full load with 8 hardware threads. However,
because of the memory-bounded nature of hash join, we use
two FPGAs to offset the CPUs bandwidth advantage: A sin-
gle CPU has 51.2 GB/s of memory bandwidth, while two
FPGAs have 38.4 GB/s. (Even with this bandwidth adjust-
ment, the CPU still has almost a 30% advantage.) Obviously,
given of the parallel nature of hash join, the CPU and MTP
performance could easily be improved by adding more hard-
ware resources.

Figure 8 shows the join throughput for two build relations,
with 22! and 228 tuples, respectively, while increasing the
probe relation size from 2%° to 23° for all datasets mentioned
in Sect. 3.3. The MTP performance shows two plateaus
for the Unique, Uniform, and Zipf_0.5 data distributions in
Fig. 8a—c. The MTP sustains a throughput of 820-850 MTu-
ples/sec when the probe phase dominates the computation
(that is, when the size of the probe relation is much larger than
the size of the build relation) and it is close to the peak theo-
retical throughput of 900 MTuples/sec which can be achieved
with N = 6 engines on 2 FPGAs. When the build phase dom-
inates the computation, synchronization restricts the MTP
throughput to about 425 MTuples/sec. (In the MTP 228 plot,
the throughput stays almost constant until the probe relation
becomes comparable in size to the build relation.) Clearly, in
real-world applications the smaller relation should be used
as the build relation. In the worst case, we can expect MTP
throughput to be 500 MTuples/sec when both relations are
of the same size. For the highly skewed dataset, Zipf 1.0,
(shown in Fig. 8d) the MTP throughput decreases signifi-
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cantly and varies widely depending on the specific data. This
happens because extremely long bucket chains create a lot
of stalling during the probe phase, thus greatly affecting the
throughput.

When compared to the results in the previous work [28],
the throughput numbers and trends are nearly identical.
Only the extremely skewed dataset Zipf__1.0 shows a perfor-
mance hit from synchronizing in the CAM. For non-skewed
datasets, synchronizing with the CAM provides platform
independent performance.

The CPU results are consistent with the experiments pre-
sented in [6]. The partitioned algorithm peak performance
is around 250 MTuple/s across all datasets, regardless of
whether computation is dominated by the build or the probe
phase. It is also not affected by the data skew. For the non-
partitioned algorithm, the throughput depends on the relative
sizes of the relations. We have seen the same pattern in
the MTP case, when the throughput of the build phase is
lower than the probe phase. The non-partitioned algorithm
always behaves worse than the MTP approach. Interestingly,
for the Unique dataset, the non-partitioned version has bet-
ter throughput than the partitioned one, because the bucket
chain lengths are exactly one. As the average bucket chain
length increases (moving from the Unique to the Uniform
to the skewed datasets), the throughput of non-partitioned
approach drops. For the highly skewed Zipf 1.0 dataset, it
falls approximately to 50 MTuples/sec. Averaging the data
points within all datasets yields the following results: The
MTP shows a 2x speedup over the best CPU results (non-
partitioned) on Unique data, and a 3.4x speedup over the
best CPU results (partitioned) on Uniform and Zipf 0.5 data.
The MTP shows a 1.2 x slowdown compared to the best CPU
results (partitioned) on Zipf 1.0 data.

Figure 9 shows the throughput of the build and probe
phases separately. The throughput of the build phase (blue
line) is plotted for different sizes of the relation used for the
built phase and is practically constant at 426 MTuples/sec.
The constant throughput of the build phase is explained by
the fact that the processing time of each tuple is relatively
large, and hence, the system quickly reaches steady state.
Therefore, the throughput is independent of the relation size.

When plotting the throughput of the probe phase, one has
to consider the size of the relation used in the built phase as
well. Hence in this figure, a particular probe phase plot (say
“Probe Phase 22!”) denotes the throughput of the probe phase
for various sizes of the probe relation (on the x-axis) assum-
ing the built phase used a relation of size 22!. Note that one of
the two phases will dominate the throughput under different
conditions and parameters (size and cardinality of the build
and probe relations, and their respective distributions). The
throughput of the probe phase increases with both the size
of the probe relation and that of the build one. Note that the
probe throughput saturates at 900 MTuples/sec which is the
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Fig.8 Average dataset throughput of both the build and probe phase as the

maximum bandwidth supported by one memory channel per
engine to materialize the results (150 MTuples/sec/engine
and six engines on two FPGAs). The probe phase through-
put is an example of how the available memory bandwidth
for materializing the results is the limiting factor. In fact, the
probe phase does not use any CAMs for caching or synchro-
nization. In particular, processing a tuple in the build phase
requires many more memory transactions than for the probe
phase, and hence, the system reaches saturation soon after its
initiation. The fact that the probe phase throughput, at satura-
tion, is roughly twice that of the build phase, while the build
has four engines per FPGA as opposed to three for the probe
phase, indicates that processing time per tuple in the build
phase is, on average, three times that in the probe phase.
Small probe relations do not have enough tuples to fill
out the overall pipeline, and hence, the throughput is low
because most of the execution time is spent on fill-up and
drain-out. Probing on a small build relation takes less time
than probing on a larger one because the size of the linked
lists being traversed is smaller, and hence, the overall time is
shorter and more time is spent on fill-up and drain-out. When
both relations are large, there are enough tuples to keep all
the engines busy for a long time so the system is at maximum
throughput for a large percentage of the execution time in the
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Fig.9 Separate MTP throughput for the build and probe phases using
the Unique dataset. The build phase throughput is nearly constant. The
legend of each probe phase plot indicates the build relation size that this
probe phase ran on

probe phase. Further, the time spent per tuple doing the probe
is also larger because of the longer linked lists.

Scalability To examine scalability, in the next experiments
we attempt to match the bandwidth between software and
hardware as closely as possible: Every four CPU threads are
compared to one MTP implementation on FPGA. (Note that
this still provides a slight advantage to the CPU in terms of
memory bandwidth.) One MTP implementation refers to a
single FPGA, with four engines during the build phase and
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Fig. 10 Throughput comparison as the bandwidth and number of threads are increased. In the top row, the build relation has 22!, while probe has
228 tuples. In the bottom row, both build and probe relations have 228 tuples

three engines during the probe phase. We examine two cases,
when the probe relation is much larger than the build one, and
when they are of equal size.

Figure 10a—c shows the results when the probe phase dom-
inates the computation. The MTP design scales linearly on
datasets Unique, Uniform, and Zipf_0.5 (Fig. 10a).

However, for the Zipf_ 1.0 dataset, the performance does
not scale because of the high skew. Each probe thread
searches through an average of 4.8 to 6.7 nodes in the linked
list. Therefore, most threads are waiting through the datapath
multiple times. Having too many threads waiting limits the
ability of a new threads to enter the datapath, causing back
pressure and stalling. The partitioned algorithm scales as the
number of threads increases but at a lower rate than the MTP
approach (depicted in Fig. 10b). The non-partitioned algo-
rithm shows a drop in performance while moving from 8 to
12 threads because of the NUMA latency emerging while
moving from 1 to 2 CPUs (Fig. 10c¢).

The MTP scales at a lower rate when the build and probe
relation are of the same size (Fig. 10d), since the throughput
of the build phase scales at a lower rate and is a larger per-
centage of the overall runtime. However, this is significantly
better scaling than our prior results, where the scaling of the
build started to flatline after 2 FPGAs. The CAMs provide
better scaling over more FPGAs than the atomic instructions.
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Table 1 Per-FPGA resource utilization for probe and build engines

# PEs Registers LUTs BRAMs
Probe 3 106,185 (11%) 87,585 (18%) 71 9%)
Build 4 132,288 (13%) 143,657 (30%) 40 (5%)

The slope of the scale graph is almost comparable to the CPU
implementations (shown in Fig. 10e, f) again with the excep-
tion of highly skewed data.

FPGA resources utilization Table 1 shows the resource uti-
lization (registers, LUTs, and BRAMs used) per FPGA for
the MTP build phase and probe phase designs. The engines
in each phase are built independently of each other. The use
of CAMs in the build phase engine accounts for the higher
use of LUTs in that design.

4 Using larger tuples

While the “skinny” tables with small tuples (8 or 16 byte
key/value pairs) approach is valid for in-memory column-
oriented databases, it is not practical for traditional DBMSs
with row-major storage format. In this section, we show how
our MTP design can be extended to support both wider tuples
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table_orders { 0 | tuple data
int64_t orderkey, 8 | join key
int64_t custkey,
L f 1
char* orderstatus, 6 | tuple data
double totalprice, 24
tm orderdate, 32 0x0000000000 ...
char* orderpriority,
char* clerk, 40 | tuple data
int64_t shippriority, 48
char* comment 56
} N
64

Fig. 11 Wide tuples are stored as contiguous memory blocks, but the
join operation only needs the key value. Its offset can be computed at
runtime

(i.e., with more attributes), and larger key length. This is
done by modifying the initial memory requests to support
user-specific tuple lengths, enabling the user to select a tuple
length and without the need to re-synthesize the accelerator.
We also increase the design’s internal datapath to support
wider keys and values. The updated engines are compared
with modified versions of the partitioned and non-partitioned
software approaches from Sect. 3. The performance of the
modified join implementation is then evaluated using the
TPC-H benchmark.

4.1 Supporting wider tuples

The build engine and probe engine datapaths are logically
similar to those presented in Sects. 3.1 and 3.2. Only the Tuple
Request component is modified allowing us to issue non-
sequential memory requests for the join keys. This change
is done to correctly handle the scenario, when tuples occupy
multiple memory locations. Consider a sample tuple from
the TPC-H Orders table, shown in Fig. 11. The size of this
tuple is 72-bytes. Assume that we implement the join opera-
tion (table_orders v<icysikey table_customer). In the build
phase, only the join key (custkey which is 8-byte long) is
kept inside the hash table, and in the probe phase, only the
join key is needed to determine a match. Therefore, the join
operation only needs to consider 8 bytes from each tuple.
However, once a match is verified, the full tuple data will
have to be streamed into the FPGA and merged. Since only
the join key is used to identify a match, we can reuse the
key/value pair model from the previous section. The value is
a memory pointer to the actual tuple. To compute the stride
length, runtime programmable registers are used to hold the
tuple’s width and the field’s offset value for a given relation.
In our example, the field offset is 8-bytes. This allows the
MTP design to handle various tuple sizes without needing to
be re-synthesized.

Using only the join key to identify matches in the probe
phase can be wasteful of bandwidth when the key is not
matched, for both the CPU and MTP. Furthermore, wide
tuples (e.g., tuples where the key is larger than 64 bits) would
require more than one memory access to fetch that tuple on

a CPU. It would also require multiple operations to process
that tuple since the CPU datapath is limited to 64 bits. On an
FPGA, the design can be modified and adapted for a wide
datapath. The fetching of the tuple would still require more
than one memory access; however, its processing can be done
on a custom-sized datapath.

Lastly, we need to address the issue of a join key that
spans multiple words in memory. In Fig. 11, the join key is
nicely placed inside a single word of memory, and thus, it
requires a single memory request. Short tuple fields are usu-
ally padded with zeros to store them in memory. However,
some databases (especially in-memory DBMSs) could elim-
inate this padding to achieve better data compression. Such
optimization could cause the join key to be split across two
words of memory. The modified Tuple Request component
handles this case by issuing multiple memory requests. A
reorder block is used to realign the join key before sending
it out of the Tuple Request component.

4.2 Increasing the key/value size

As 8-byte memory words are becoming the standard, we now
describe how the build engine and probe engine are expanded
to support the larger key & value sizes. Increasing the key
and value sizes requires the FPGA’s datapath to be widened.
From a design perspective, the modification boils down to
simple change of variables type from uint32_t to uint64_t.
Throughout the HDL specification, wire sizes are increased
from 32-bits to 64-bits as well. Increasing the key and value
sizes also increases the memory bandwidth demands, requir-
ing design changes since the convey bandwidth is fixed. The
memory channels could be reallocated, but it will reduce the
number of engines per FPGA. The FPGA engines could also
duplex extra requests through the same physical channels,
but it will effectively double the execution time.

With this in mind, our implementation opted to keep the
number of engines per FPGA the same (4 engines per FPGA)
and increased the number of memory requests over certain
channels. Each tuple for the wider datapath requires one extra
memory request during the build phase. The Write Linked List
component now breaks the key/value pair into two distinct
memory writes. Because this is not an atomic operation, we
duplex the writes together through the same channel.

For the probe engine, earlier experiments (Sect. 3.3)
showed that the architecture can achieve close to peak per-
formance. In the updated design, a minimum of two extra
memory accesses are required for the following reasons.
First, in the initial design the build phase key/value pairs
fit in a single word of memory, but in the updated design,
they occupy two words of memory. Second, the updated
design outputs two 8-byte values instead of two 4-byte values
merged into a single 8-byte word. Because the probe phase
requires two extra requests, two physical channels could be
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duplexed: one from the Probe Linked List component and
another from the Join Tuple component. However, duplex-
ing any memory channel doubles the number of memory
requests and will cut the throughput performance in half.
A better option is to reallocate the memory channels per
each FPGA, so that the updated design uses 7 channels per
engine. As a result, only two updated probe engines will fit
in the 16 available memory channels for the Micron (Con-
vey) FPGAs, whereas the previous design (Sect. 3.3) could fit
three probe engines with the same channel budget. Therefore,
the throughput performance is decreased only by one-third.

4.3 Adjustments to software approaches

Although the memory is byte-addressable for both hardware
and software join implementations, CPUs incur a special
kind of memory access reading in the whole L1 cache line
(64 bytes on our architecture) and bringing it into the cache
to take advantage of the locality. However, increasing the
tuple length cannot utilize any of the locality properties, nei-
ther temporal (tuples are read only once both during build
and probe phases) nor spatial. (Size of the tuple typically is
greater than a single cache line.) Thus, the extensive caching,
which could not be disabled, only puts additional pressure
on memory bandwidth, effectively deceasing the processing
throughput.

Because such penalty should be paid each time the join
key is accessed, we choose to implement a projection step
and materialize the intermediate result in a form of key/value
pairs, with the same format used in Sect. 3.3. Projection step
essentially allows us to amortize join key access overhead
by allocating additional memory to store projected relations.
Our initial experiments showed that executing projection as
a separate step, without incorporating it into build or probe
phase, yields better performance results due to better locality.

4.4 Experimental results

All results obtained in this subsection were collected by
running tests on the Micron (Convey) HC-2ex platform.
In Sect. 3.3, we showed that MTP design performance is
predictable for most relations, the exception being highly
skewed datasets. However, these experiments used “skinny”
key/value relations. In this subsection, we show that the
same MTP design predictability holds for larger real world
datasets. We extract the join operation from a query in TPC-
H that we use as a proxy. Results show the join performance
on two tables (Orders and Customer) from the TPC-H bench-
mark suite with varying scale factors.

TPC-H dataset For our wide tuple experiments, we used the
TPC-H benchmark from the Transaction Processing Perfor-
mance Council. It is a decision support benchmark which is
traditionally used to compare analytical query performance
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Fig. 12 MTP design throughput results for the build and probe phases
as the TPC-H scale factor is increased. Results are obtained using two
tables (Orders and Customer) from the TPC-H benchmark suite
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Fig. 13 MTP and CPU total throughput performance as the TPC-H
scale factor is increased. Results include both the build and probe phase
execution times. Results are obtained using two tables (Orders and Cus-
tomer) from the TPC-H benchmark suite

on commercial database systems. The schema consists of 8
different relations, and 22 unique queries. A scale factor (SF)
is used to control the datasets’ size and allows it to generate
relations between 1GB and 100TBs. While the absolute size
of the relations might vary, their relative sizes are fixed. For
example, the size of the Orders table is 10 times bigger than
the size of Customer relation, regardless of the SF.

The MTP design can offer significant speed up for
selection and projection. Our experiments perform the
Orders v<cysikey Customer operation, which is used in
queries Q3, 05, 07, 08, 010, 013, and Q18. For all tests,
the smaller Customer table is used as the build relation, and
the Orders table is used as the probe relation. We use the gGen
utility to generate 10 datasets with the scale factor varying
between 1 and 10.

Throughput results Asin Sect. 3.3, we compare the through-
put results between one CPU and two FPGAs, in effort to
match the memory bandwidth.
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Figure 12 shows the MTP design throughput results for the
build phase and probe phase separately. We see that the build
phase is still bottlenecked by synchronization as it was in
Sect. 3.3. Peak performance for 8 engines at 150MHz and one
duplexed memory channel per FPGA is 600 MTuples/sec,
while sustained performance is around 200 MTuples/sec.

The probe phase achieves near peak performance (about
550 MTuples/sec), again in line with the experiments from
Sect. 3.3. Because of the increased key/value pair size, only
4 engines could fit on two FPGAs, and thus, the combined
peak theoretical throughput is 600 MTuples/s.

In Fig. 13, we show the end-to-end throughput for all
three approaches: MTP design, CPU partitioned, and CPU
non-partitioned. In the TPC-H benchmark, the probe table
is 10x larger than the build table and therefore dominates
the computation time. This does not have a big impact on
both CPU approaches, but for the MTP design, it skews the
performance toward the probe phase’s throughput. The MTP
design achieves throughput results between 450 MTuples/sec
and 475 MTuples/sec depending on the scale factor.

The non-partitioned CPU algorithm achieves better through-

put (between 300 and 350 MTuples/sec) in comparison with
partitioning-based one (between 50 and 100 MTuples/sec).
In the Customer relation, each join key is encountered
exactly once, and therefore, its key distribution is identical
to the Unique dataset from Sect. 3.3. As explained earlier,
this is why the non-partitioned approach outperforms its
partitioning-based counterpart.

Conclusions We have demonstrated how the MTP hash join
designs can be extended to support a more generic tuple
formats. We proved that our design is not only limited to
column-major storage formats, but can offer performance
improvements in traditional row-based DBMSs. While both
the CPU and MTP design dropped in performance, our results
showed that the MTP design still holds an edge over both the
partitioned and non-partitioned CPU approaches.

5 MTP group-by aggregation

In our group-by design, we assume the input relation fits in
main memory but is too large to fit locally on the FPGA’s
memory. The aggregation engine is implemented with a sin-
gle memory channel per engine (PE) M=1 and N=12 PEs.
As the results will show, we found that condensing all engine
requests onto a single channel and multiplexing them inter-
nally yields the highest utilization. This prevents stalls in
one system component from stopping progress on multiple
memory channels. It also increases the inter-engine paral-
lelism. The choice of parameters M, N is further discussed
in Sect. 5.3.1.

The mixed read-write nature of aggregation in conjunction
with multiple outstanding memory requests requires explicit

synchronization to ensure correctness. Atomic operations are
one option, but this approach severely impacts the perfor-
mance. Moreover, unlike the join operator, aggregated tuples
may exhibit temporal locality.

We propose a novel multithreaded aggregation implemen-
tation based on CAMs [1] extended with fine-grained locks
and efficient memory channel allocation. The design lever-
ages explicit synchronization combined with the caching
properties of the CAM. This fits perfectly in the context of
group-by aggregation: Firstly, the latency of a single aggrega-
tion thread is hundreds of cycles, which means many threads
can have identical keys. With a CAM, we can merge these
threads pre-aggregating the result locally on the FPGA and
reduce the number of outstanding memory requests. This
merging is achieved by leveraging caching properties of the
CAM (allowing us to hold the aggregate value for a particular
key): We call this the Filter CAM. It also allows us to alleviate
skewed data distributions, where a subset of values appears
as duplicate more often than the rest. Secondly, CAMs allow
the FPGA to enforce locking on specific memory addresses
and therefore decrease the granularity of the locks and boost
the performance: We call this the Lock CAM. Each group-
by aggregation engine uses one Filter and one Lock CAM.
In the following description, we assume a COUNT aggrega-
tion as an example. In the original aggregation design [1],
our locks were implemented at the granularity of hash table
buckets (Fig. 14a). This guaranteed that only one thread was
working on a list in the hash table at a time and it was free
to modify the list as needed. With exclusive access to the
list, the threads can perform node inserts in sorted order
to improve the merge phase. However, such coarse-grained
locking has a big impact on the parallelism the system is able
to achieve. This is especially noticeable on skewed datasets
where a majority of keys might map to the same bucket. All
of those threads must stall and wait for the previous thread
to finish. And the wait for each thread increases hundreds of
cycles for each node added to the list. Each thread must pay
this penalty even if it is only going to increment the count in
a node and not modify the list structure.

5.1 Fine-grained locks

The first insight motivating the fine-grained locks (FGL)
design comes from the benefits of the top-level Filter CAM.
All new tuples that enter the aggregation start at the Filter
CAM. If the key already exists, its count is incremented in
the Filter CAM and the thread terminates. If the key does not
existin the Filter CAM and there is space, the key is added and
athread starts the hash table search. This construction guaran-
tees that all threads searching the hash table are unique—they
will never try to update the count in the same node because
they all have different keys. We can take advantage of this
design and move the lock lower to node pointers (Fig. 14b).
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(a) Coarse-grained locks stop threads at the bucket
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(b) Fine-grained threads lock at the node level, increas-
ing thread concurrency and only synchronize structural
changes.

Fig. 14 Coarse-grained versus fine-grained locking

This enables synchronizing where it matters, when a thread
wants to insert in the list and make a structural change.
Lock free reads Since we only lock for structural changes
(i.e., inserting a node), that means only writes need to be
protected. This observation raises the question—is it safe for
threads to read past a lock? Consider the possible situations
of a thread progressing down a list (Fig. 15). T is a thread
searching the linked list for a key B. Ty is a thread inserting
new node with key = C and count = 2. Therefore, the next
node field at node 1 is locked for the insertion of a pointer
to the new node containing key = C and count = 2. Since
the link-list has key-values sorted, there are three possible
outcomes of Ty traversing the linked list:

1. B > X There is no conflict between threads Ty and 7.
Hence, the lock on the next node at Node 1 is irrelevant
and it is safe for 77 to proceed. Ty will either find a node
with a key equal to key 8, or it will need to insert a new
node with B as the new key later in the list.

2. B = X In this case, T7 has found its node, which is Node
2, and can update the count without synchronization.

3. B < X Thread Ty has progressed too far and must insert.
However, insertion is gated by the lock on Node 1. 77 will
safely synchronize on that lock and will try again after the
lock is free.

There are several benefits to using this design where reads
are not locked. First, at no point does a thread need to stall
until it needs to insert. If reads had to wait for the lock,
these fine-grained locks could deteriorate to behavior like the
coarse-grained lock—a thread blocks the start of the list and
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Fig. 15 Demonstrating lock free reads. While new node is being
inserted between Node 1 and Node 2, thread Ty can traverse the liked
list looking for B. If that key is found in the linked list, the count is
updated; otherwise, a new node is inserted

all work stops. However, the more important benefit comes
from the behavior of the aggregation algorithm. For any given
aggregation, the cardinality of the key can be much smaller
than the size of the data table that is being scanned. Therefore,
there will be a contentious period at the beginning of the
execution where keys are getting inserted. However, once
all keys have been seen once and inserted in their respective
locations in the table, the rest of the execution will proceed
lock free. In the case, where the cardinality is on the order of
the number of items in the data table, there may be no lock-
free execution. However, this is still an improvement over
coarse-grained locks since there will still be parallel inserts
on the linked lists. As an example, consider the worst case
dataset where all keys hash to the same bucket. With coarse-
grained locks, every item will be serialized for insertion by
locking the head of the list to do the update. With fine-grained
locks, the number of insert locations increases over time,
decreasing contention and increasing the parallelism. If the
keys are sorted, such that each ordered thread needs to append
to the list, we lose the parallelism on insert, but we still gain
in the parallel searching of the list for threads to find their
insert location.

5.2 Aggregation engine workflow

Our design of an aggregation operation uses a custom hard-
ware datapath called aggregation engine. Initially, each tuple
from the relation is streamed from memory, gets assigned to a
separate MTP thread, and starts its pipelined execution. Fig-
ure 16 shows the state diagram for a single thread inside the
aggregation engine. The Filter CAM is used to merge threads
with identical keys, hence reduces the memory request con-
tention, and minimizes the synchronization overhead. When
there is a match in the Filter CAM, the thread will increment
the key count in the Filter CAM. The thread that originally
created this entry in the Filter CAM will update the HT with
the new key count. However, due to hash collisions, the syn-
chronization cannot be avoided completely; thus, the Lock
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Fig. 16 A state diagram for threads in the aggregation engine

CAM is used to acquire locks on the hash table, ensuring
its integrity. Each engine uses its own CAM for synchro-
nization. As a result, values are aggregated in separate hash
tables, which requires an extra merging phase at the end of
the computation performed by the FPGA. Merging overhead
grows as we increase the number of engines per FPGA, but
it is an overhead that is amortized as the size of the dataset
Srows.

Table 2 shows an example of events and contents of Filter
CAM, Lock CAM, and main memory hash table, while the
input stream consists of 5 tuples with the following keys: A,
C, A, B, A. The design assumes the COUNT aggregation
function, and thus, the Filter CAM maintains an occurrence
count of duplicate keys. However, other functions could
be potentially applied. Note that operations updating the
CAMs are performed immediately, whereas main memory
hash table accesses (e.g., search, entry update, entry insert)
take hundreds of cycles to finish. For example, Thread 1
sends a request to search value A in a hash table and gets
response only at Cycles3. Lock CAM maintains the locks for
all addresses which are currently being modified. Notice that
all threads only acquire locks after searching memory. Locks
are only needed when creating a new node. Even though both
Thread I and Thread 2 need to search the same bucket, they
will not synchronize until after finding the list is empty and
trying to add a new node. Thread I finishes first and is able
to get the lock, and Thread 2 finds it must wait in the next
cycle. Once a thread completes, it invalidates the record in
both CAMs and frees up resources for other threads. Threads,
waiting for a place ina CAM, will continually cycle through a
FIFO until the resource is available. Whenever there is a hitin
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the Lock CAM, the thread waits until the lock isreleased, e.g.,
Thread 2 resumes its work only at Cycles. Thread 3 provides
an example of early termination, because its value was locally
aggregated in Filter CAM in Cycles. After Cycles, we see
more concurrency as 3 threads are searching the list. Thread
2 provides an example of fine-grained locking in Cycle;. The
thread gets to the end of the list and locks the next pointer
of node A. At the same time, Thread 5 is able to find node
A in the list and update its count without any locks. Finally,
Thread 4 is able to finish in Cyclejo after a long memory
request and waiting for a free cycle in the Lock CAM. This
code can be adapted to fit other forms of aggregation opera-
tions such as SUM(), AVG(), MAX(), and MIN(). In order to
support MAX function instead of COUNT, the function in the
Filter CAM needs to change from performing increments by
1 to computing MAX (current_max, new_value). Both func-
tions would require reading the current value from memory
(COUNT or MAX). While the COUNT always updates the
count in memory, MAX may or may not update the value
in memory. As for AVG(), the Filter CAM is still needed to
count and then divide by number of elements. On the software
side, an opcode can be used to activate a different function
on the FPGA.

5.3 MTP design optimizations & trade-offs

The main factor limiting performance of this memory-
bounded problem is the efficient use of available memory
bandwidth. In this paper, we use a Micron (Convey) HC-2ex
machine, but our designs are platform independent. In the
HC-2ex, the communication between the FPGA and main
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memory relies on the abstraction called channel. Each chan-
nel supports independent and concurrent read/write accesses
to memory.

The original design of our aggregation engine required 4
memory channels: one for streaming the input tuples, one
for accessing the in-memory hash table, and finally two
channels for the bucket lists read/write operations. Since
the Micron (Convey) HC-2ex has 16 memory channels, we
replicated 4 engines (14—6) on a single FPGA thus leveraging
inter-engine parallelism. Our original experiments showed
that some memory channels were idle for almost 70% of
the total execution time. Since the channels within an engine
are statically assigned to perform different functions of the
pipeline, back pressure from some components (e.g., thread
waiting through CAM synchronization) introduces stalls and
decreases the effective throughput.

In order to increase memory utilization, we then multi-
plexed apair of engines on the same set of memory channels,
thus allowing the same channel to be used by two different
engines. This means that the following engine operations:
(1) send and receive tuple request and response, (2) read and
write respective values to the hash table, (3) read and write
entries into respective bucket list, can run concurrently on
two different engines. The multiplexed design increases the
number of CAMs that could be placed on the FPGA, leading
to further improvement in throughput. Unlike the original
design [1], the new multiplexed engine uses 5 memory chan-
nels (adding an extra channel for accessing the in-memory
hash table). This enabled 6 engines (2 * Lls—ﬁj) on a single
FPGA.

In this latest design, to further improve the utilization of
memory bandwidth, we have reduced the number of mem-
ory channels down to 1 per engine. For each engine, all
requests for streaming in the tuples, accessing the hash table,
and accessing linked lists are multiplexed internally. This
construction enables up to 16 engines per FPGA; however,
due to routing constraints, we only implemented 12 engines.
While multiplexing more requests over a given channel likely
increases the latency of any given thread, it enables the engine
to always have a request available to issue and can keep the
engine in the steady state longer. If the aggregation datap-
ath is working through requests but cannot take any more
tuples from the stream, it is a waste of bandwidth to dedicate
a channel to streaming tuples. As the percentage of execu-
tion time in the steady state increases relative to the fill-up
and drain-out stages, the overall throughput of the system
increases.

5.3.1 Experimental results
The MTP aggregation implementation is compared in terms

of overall throughput against the best multi-core approaches
[16,59] running on a single processor with 4 parallel threads.

A summary of the various software aggregation algorithms
follows, as well as a description of the datasets used in the
experiments.

Software implementations In order to evaluate our MTP
architecture, we have implemented the following state-of-
the-art multithreaded software aggregation algorithms: (i)
Independent Tables [16], (ii) Shared Table [16], (iii) Hybrid
Aggregation [16], (iv) Partition with Local Aggregation
Table [59], and (v) Partition and Aggregate [59]. Here, (i)
and (ii) are considered as non-partitioned approaches, while
(iii) and (iv) are hybrid, and (v) is a partitioned approach.

— Independent Tables [16] is the approach most similar to
our hardware implementation. The tuples are evenly split
among separate software threads (without partitioning),
and each thread aggregates result into its own hash table.
Once the aggregation is complete, all tables are merged
together, which requires write synchronization.

— Shared Table (with locking or atomic synchroniza-
tion) [16] splits the tuples evenly between threads, but
all threads aggregate their results into a single hash
table, and hence, no extra merge step is required. The
algorithm could use different synchronization primitives:
either pthread mutex implementation or Intel-specific
hardware atomic instructions. Preliminary experiments
showed that atomic primitives are significantly better on
low key cardinalities and do not have any difference from
mutexes on medium and large cardinalities, so we choose
atomics as a default synchronization primitive in all fur-
ther experiments.

— Hybrid Aggregation [16] is a combination of two pre-
vious approaches. This algorithm allocates a small hash
table for each thread. The size of the table is calculated
based on the processor’s L2 size to avoid cache misses.
If the local table has enough space for a new value, or
the value already exists in the table, that tuple is locally
aggregated. Once the local table is filled and the next
tuple requires a new slot, the oldest entry in the cached
table will be spilled into larger shared table, residing in
main memory, thus maintaining only “hot” data in L2
cache. Once aggregation is complete, all small cached
tables are merged into the large shared table. Merge step
is synchronized as in Independent Tables case.

— Partition and Aggregate [59] (also known as count-
then-move [17]) uses individual tables per thread, but
before aggregation is performed the tuples are parti-
tioned, in contrast to all aforementioned approaches.
Separate partitioning step makes sure that all threads will
work on non-overlapping values, and hence, aggregation
could be done without any synchronization, and the final
tables are simply concatenated, rather than merged. As
with the partitioned join implementations, radix cluster-
ing algorithm is a backbone of this preliminary step.
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— PLAT (Partitioning with Local Aggregation Table)
[59] is a combination of two previous techniques. The
algorithm takes advantage of the fact that we are perform-
ing an additional data scan, while doing a pre-processing
step. While partitioning tuples into groups with mutually
exclusive keys, each thread tries to aggregate values into
its own small L2-resident table, as in Hybrid Aggrega-
tion approach. Values that do not fit into the small table
are partitioned using radix clustering algorithm. Once
preprocessing is done, standard lock-free aggregation is
applied. To finish, all tables which were produced during
aggregation are concatenated together, while local tables
are synchronously merged.

Dataset description We use five datasets with various key
distributions, namely: Uniform, Heavy Hitter, Moving Clus-
ter [16], Self-Similar, and Zipf_0.5.

e In the Uniform dataset, all key values are picked from
the uint64 key range with uniform probability. After that
generated key/value pairs are randomly shuffled.

e A half of the tuples in the Heavy Hitter dataset [16]
share the same a key value. The remaining key values are
picked uniformly and evenly distributed throughout the
the entire relation.

e In the Moving cluster dataset [16], tuples are grouped
into clusters depending on their key values. Lower key
values are more likely to appear at the beginning of the
relation, whereas tuples with higher key values tend to
appear at the end of the relation.

e Self similar uses Pareto rule to model key distributionin a
dataset: A single key value is shared by 20% of the tuples.
Of the remaining 80% of tuples, 20% of those share
another key value. This process is repeated recursively to
generate the relation. Tuples are randomly shuffled. The
generation algorithm is described by Gray et al. [26].

e Inthe Zipf dataset, key values follow the Zipf distribution
with a skew coefficient of 0.5. The generation algorithm
appears in aforementioned work [26].

Each dataset consists of several benchmarks with cardi-
nalities ranging from 2'° to 222 unique keys. The relation
size in all of the experiments was 256 million tuples (in line
with previous research [59]). Each dataset used the same
8-byte wide tuple format, which is commonly used for perfor-
mance evaluation of in-memory query processing algorithms
[5,9,10] and represents a popular column-wise storage for-
mat. The first 4 bytes of the tuple hold the unique primary key,
while the rest is reserved for the grouping key. Since we are
only interested in counting records with the same grouping
keys, our tuples do not store any other information. However,
none of the design choices prevent the use of “wide” tuples
(i.e., containing fields other than primary and grouping keys).
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Fig. 17 Aggregation throughput of single engine for 256M tuples as
the Filter CAM size is varied from 32 to 256

This could be easily supported by adding a key extraction
component into the MTP design. Moreover, experimenting
with such “skinny” tuple format yields the best performance
for software implementations, since it minimizes the cache
capacity misses, which would decrease caching effectiveness
otherwise.

Effect of filter CAM size in MTP group-by aggregation The
throughput of a multithreaded engine is determined by the
number of threads needed to fully mask latency. In this FGL
engine, one of the key controls on the number of threads
concurrently working is the size of the Filter CAM. Since
every entry in the Filter CAM starts a thread searching the
hash table for a node, we started by experimenting on the
effect of the CAM size on throughput. Figure 17 shows the
throughput as a function of the Filter CAM size for two of
the data distributions and illustrates the caching aspect of a
CAM. The other distributions show similar behavior.

For the uniform distribution (Fig. 17a), there is a sharp
drop in throughput where cardinality grows larger than the
Filter CAM size. As the cardinality increases, there will be lit-
tle temporal locality in the tuple stream and pre-aggregation
provides little help. CAM sizes of 64 or 128 provide similar
throughput, especially for larger cardinality where hash table
searching dominates.
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For the Heavy Hitter distribution (Fig. 17b), there is a sim-
ilar drop in throughput where cardinality grows larger than
the Filter CAM size. However, in this instance the Filter CAM
size definitely affects the achievable throughput when hash
searching dominates. A CAM size of 32 keeps the through-
put similar to the uniform distribution. CAM sizes of 64 and
above nearly double the throughput as the Filter CAM is able
to exploit locality in the skewed data. As with all caches, there
are diminishing returns for increasing the size. Maintaining
locality for larger cardinalities requires significantly larger
CAMs. Considering the diminishing returns of CAM sizes
above 64, our current design uses a Filter CAM size of 128
to ease resource pressure.

Throughput evaluation

Figure 18 shows the throughput of group-by aggregation
as the key cardinality is increased, obtained for various dis-
tributions. Throughput was measured for two MTP engine
designs: multiplexed [1] and FGL, and five software imple-
mentations: two non-partitioned, two hybrid, and one par-
titioned. Throughput for the skewed Heavy Hitter dataset
in Fig. 18d resembles the results for Self-Similar dataset in
Fig. 18b, while the throughput for moderately skewed data
Zipf_0.5 18e is similar to the results obtained for Uniform
dataset in Fig. 18a. Software implementations demonstrate
the best performance on Moving cluster dataset in Fig. 18c
due to the property of the data distribution: Similar grouping
keys appear in the input stream clustered together, increasing
CPU-cache hit rates.

Despite all the differences in data distribution, the CPU
aggregation performance is mainly determined by the dataset’s
key cardinality. When the number of unique keys is low,
hash tables can fit into the CPU cache entirely. However,
as the cardinality increases, cache misses start to hamper the
throughput due to high latency memory round-trips. Software
performance severely deteriorates at cardinalities higher than
218 on all datasets for all algorithms. Another trend, which
appears in all experiments, is that the Independent Tables
approach yields the best result across all software algorithms.
Nevertheless, that algorithm exhibits poor scalability, since
the amount of memory needed for aggregation processing
grows linearly with the number of parallel threads and the
key cardinality. As the number of parallel threads increases,
the amount of available memory could quickly become a
bottleneck. We could also see that hybrid algorithms (PLAT
and Hybrid Aggregation) outperform traditional partitioned
(Partition and Aggregate) and non-partitioned (Shared Table)
approaches by amortizing the cache miss cost and sustain a
throughput around 400 MTuples/sec. This trend continues for
cardinalities up to 216, which marks the end of L3-cache resi-
dency. After that point, the performance advantage of hybrid
algorithms vanishes and drops below 100 MTuples/sec.

The throughput of the MTP designs also drops as the key
cardinality increases; however, this effect is much less pro-
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Fig. 18 Aggregation throughput of hardware and software approaches
for datasets with 256M tuples. Y-axes are logarithmic
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found. Unlike the software throughput, this drop is explained
by the overhead, introduced by the post-processing merge
step.

The most striking aspect of the MTP throughput is that it

is mostly constant across the range of cardinality dropping
by a factor of two at the most, while the software one drops
by factors in the 100s. The results clearly show the benefits of
the FGL MTP design over the multiplexed one. An important
detail to note is that the FGL implementation is only using 12
engines, thus only using 75% of the available memory band-
width. Even with this handicap in bandwidth, FGL design
is able to outperform the multiplexed design. The increased
throughput comes from three main factors. First, reducing
the number of channel allocations lets us use more engines
and hence see increased inter-engine parallelism. Second,
because we are multiplexing more requests over the same
channel, this design is able to use the available bandwidth
more efficiently. This better efficiency improves the latency-
masking and increases throughput. Last, the fine-grained
locks mean that we only need to do locking in the begin-
ning of execution, while the first nodes are being inserted.
The remainder of the execution is lock free.
Trade-offs For a given workload, as the number of engines
in the machine increases, the work done in each engine
decreases and the time spent by this engine in the steady
state, at maximal throughput, is reduced, and hence, the over-
all throughput is reduced as more time is spent in the fill-up
and drain-out stages.

We varied the number of engines per FPGA from 1 to 12
(4-48 total engines) and tested it with Uniform key distri-
bution on 256M tuples dataset. The results in Fig. 19 show
that the throughput is linear with the number of engines. As
the number of engines grows higher, the bandwidth starts to
saturate, causing the gain in throughput to decrease. The gain
in throughput when going from 40 engines to 48 engines is
less than that when going from 32 engines to 40 engines.
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Fig.20 Ratio of average effective memory bandwidth to peak theoret-
ical bandwidth achieved by the Independent Tables software algorithm
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The comparison of the FGL throughput to that of the mul-
tiplexed design appears in Fig. 18. The following factors
contribute to the decline in throughput:

1. The locking ratio increases with cardinality, taking up a
much larger portion of the execution time.

2. FGL MTP design has 12 engines versus 6 in the multi-
plexed MTP design, which means each engine has less
data to work on.

3. FGL MTP design has a smaller Lock CAM of depth 32
compared to 128 in the multiplexed MTP design. It was
not possible to place and route 12 engines with the larger
CAMs on the Xilinx Virtex6-760 FPGA.

We note that a newer FPGA could fit a larger CAM and 12
engines eliminating the drop in throughput.

Discussion The performance benefits of the MTP approach
come not from architecture-specific features of the FPGA
devices, but from the massive multithreading that enables the
MTP engine to better utilize the available memory bandwidth
while masking latency. Figure 20 depicts the ratio of effec-
tive average memory bandwidth to peak theoretical memory
bandwidth for the best software (Independent Tables) and
the MTP implementations while varying the dataset sizes
and key cardinalities. The MTP approach allows the FGL
MTP to keep the ratio almost constant, irrespective of the
dataset size or key cardinality. Since the FPGA’s and CPU’s
memory bandwidth are 38.4 GB/s and 51.2 GB/s, respec-
tively (Sect. 3.3), then ratio 1 in Fig. 20 corresponds to 38.4
GB/s on the HC-2ex and 51.2 GB/s on the CPU.

For the software implementation, at low cardinality the
aggregated relation and hash table are mostly in the cache
hierarchy and there are almost no memory accesses, and
hence, the ratio approaches zero. The ratio peaks at around
0.5 for cardinality 2'8, but drops significantly for higher key
cardinalities.
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Fig. 21 Aggregation throughput normalized against available band-
width of CGL and FGL approaches for Uniform key and Heavy Hitter
key distribution datasets with 256M tuples

The effective memory bandwidth of the CPU implemen-
tation tends to grow as the size of the relation increases (from
16M to 128M), whereas the MTP approach is less suscepti-
ble to data size variations. For average cardinalities, the FGL
MTP implementation is almost 30 times higher.

For very large cardinalities, the FGL MTP implementa-
tion ratio drops due to the small Lock CAM as explained in
Sect. 5.3.1. Yet, the ratio is still about 2.5 times higher on
average than the software.

Fine-grained locks versus coarse-grained locks The perfor-
mance benefits of FGL compared to the CGL [1] are shown
in Fig. 21a (for the Uniform key distribution dataset) and
21b (for the Heavy Hitter key distribution dataset). For this
experiment, both FGL and CGL designs have the same num-
ber of engines and the same sizes of Filter and Lock CAMs.
The throughput is normalized over the available bandwidth.
The FGL design normalized throughput is 4 times higher
than that of CGL design demonstrating the reduction of the
locking overhead as discussed in Sect. 5.1.

Effects of the merge operation Figure 22 shows aggregation
throughput, while the size of the datasets having Uniform key
distribution is increased. The parallel MTP aggregation step
has almost constant throughput of about 820 MTuples/sec,
which drops on very high cardinalities due to the usage of
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Fig. 22 Effect of varying relation sizes on the MTP aggregation
throughput for datasets with Uniform key distribution. Solid lines rep-
resent throughput of the aggregation step (without merge operation),
while dashed lines represent end-to-end (aggregation followed by the
merge) throughput

Table 3 Per-FPGA resource utilization for aggregation engines

#PEs  Registers LUTs BRAMs
Original 1 99,597 (11%) 87,194 (18%) 126 (17%)
MUX 6 179,641 (18%) 200,175 (42%) 250 (34%)
FGL 12 240,118 (25%) 296,778 (62%) 192 (26%)

a small Lock CAM as explained in 5.3.1. The effect of a
small Lock CAM size is less pronounced on larger datasets
as the engines spend more time in the steady state. The merge
step introduces an overhead; however, it comes at a fixed
price. This cost depends solely on the key cardinality because
aggregation reduces the initial input into a constant number
of streams which should be merged. Hence, as the size of the
relation grows the merge step overhead gets amortized.
FPGA resources utilization Table 3 shows the resource uti-
lization (registers, LUTs, and BRAMs used) for the two MTP
aggregation designs (multiplexed, FGL) as the number of
engines is scaled up. The biggest drivers of resource usage in
these engines are the CAMs. The CAMs are the largest com-
ponents in the engines and dictate size and timing constraints.
It is interesting to note that the 8 engine FGL design is com-
parable to the previous design, showing that the increased
complexity of the lower level locks is not too complex to
implement in hardware. We were also able to save signifi-
cantly in BRAM usage as well. The aggregation design uses
only 62% of the available resources showing there is still
room to incorporate other relational operations on the FPGA
fabric.
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6 Related work

Acceleration of database operations Commercial in-memory
database systems include SAP HANA [23] which relies on
multi-core CPUs, large main memory and caches as well as
data compression. IBM BLU [8] attempts to keep data on
the processor and its caches so as to reduce DRAM access as
much as possible. MS SQL Hekaton [21] provides a lock-free
data structure to provide high level of concurrency. Oracle’s
TimesTen [40] relies heavily on caches hierarchies. There
are also academic research prototypes such as Peloton [47]
which provides autonomous tuning for relational databases.
GPU-based solutions have also been proposed such as [31],
while other are a hybrid of CPU and FPGA architectures have
been proposed to mitigate long memory latencies [52].

Many recent works have considered the in-memory imple-
mentation of join and aggregation relational operators (hash-
or sort-based). Sort-merge joins on modern CPUs were ini-
tially considered by Kim et al. [35]. This implementation
explored the use of SIMD operations and hypothesized that
sort-merge join performance will surpass the hash-based
algorithms, given wider SIMD registers. Subsequent work
[2] implemented a NUMA-aware sort-merge algorithm that
scaled almost linearly with the number of computing cores.
This algorithm did not use any SIMD parallelism, but it was
reported to be already faster than its hash join counterparts.
Balkesen et al. [5] reconsidered the issue and found that
hash joins still have an edge over sort-merge implementa-
tions even with the latest advance in width of SIMD registers
and NUMA-aware algorithms. There has been a recent inter-
est in tuning the join for specialized processing units such as
Intel Xeon Phi [15]. PolyHJ [34] proposes a hybrid hash join
paradigm that can dynamically execute different hash join
models and tackle size skew. The proposed algorithm adapts
behavior based on input relation and hardware characteris-
tics.

In addition to joins, group-by aggregation operator, rely-
ing on multi-threaded architectures to boost its performance,
was also extensively researched. One of the earliest works
[16] explores different aggregation implementations on chip
multiprocessors (CMPs) and concludes that performance
largely depends on input characteristics like key cardinality,
thus opting for adaptive strategy based on sampling.

Follow-up work from the same authors [17] specifically
explores the partitioning step of hash aggregation in the same
CMP environment and, in line with [43], emphasizes the
thread coordination as a key component of this step. The
work by Ye et al. [59] considers both partitioning-based
and non-partitioned aggregation implementations and pro-
poses several hybrid approaches, which outperform previous
implementations on Intel Nehalem architecture. In this work,
we focus mainly on non-partitioned versions of algorithms.
Wang et al. [56] describes novel NUMA-aware partitioned
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in-memory hash aggregation algorithm, which avoids cache
coherency misses and minimizes locking costs. Finally, more
recent work has shown the improvements of using novel
CPU hardware. Cheng et al. [15] demonstrated a highly
parallel in-memory join on the 64-core Intel Knight’s Land-
ing platform. Pohl et al. [48] have shown how HBM (high
bandwidth memory) can be used as another layer in the stor-
age hierarchy to improve performance. Hash- and sort-based
aggregation is evaluated in [46]. The findings show that both
approaches have the same complexity in terms of cache line
transfers. An adaptive algorithmic framework based on sort-
ing by hash value enables switching between hashing and
sorting approaches during run-time based on a criterion of
locality. The framework is cache-efficient and can be tuned
depending on the hardware.

While the software community has examined both hash
and sort-merge for join and aggregation operators, the FPGA
community has concentrated on sort-merge approaches. The
reasons for this are twofold. Firstly, sorting and merging
implementations are easily parallelized on FPGA archi-
tectures. For example, sorting networks like bitonic-merge
[32] and odd-even sort [39] are well-established designs for
FPGAs; Casper et al. [13] developed a multi-FPGA sort-
merge algorithm, while other works [50,58] used sort-merge
as part of a hardware database processing system. Secondly,
building an in-memory hash table efficiently is non-trivial
task because of the required synchronization.

An FPGA-accelerated implementation of group-by aggre-
gation was first considered by Mueller et al. [45]. This work
also utilized CAMs in the implementation of the aggregation
operator, but in a very narrow scope, i.e., using CAMs to
match an incoming tuple with the appropriate group. Hence,
the work continued long tradition of using CAMs to answer
set-membership queries (previously explored in applications
like click-fraud, online intrusion detection [7]). Our design
also uses CAMs, but is different from previous approaches in
two ways: (i) In addition to the key, we store and update the
aggregate value locally in the CAM, and (ii) we use CAMs
as a synchronization primitive to resolve conflicts during
updates.

Recently, we used the MTP execution to accelerate the
selection operator [11] by masking long memory latencies
and managing thousands of threads concurrently without
using any caches, as opposed to software CPU-based imple-
mentations, which require effective caching to limit memory
requests. Using the MTP approach to implement a given
database operator requires a design specific to the operator’s
characteristics. For example, the selection operator applies
the query predicate to all the tuples in a relation. This oper-
ation is thus partitionable, meaning that each tuple could
be processed independently of the others. Hence, checking
a predicate on a given tuple is an independent thread [11];
as a result, there is no need for inter-thread synchronization
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which is an important characteristic for both hash-join and
group-by aggregation.

Kim et al. proposed BionicDB [36], an FPGA accelera-

tor for OLTP workloads. Similar to our fine-grained locks,
they used locks (implemented in BRAM) on the towers of
jump-lists to improve throughput. Ma et al. [42] demonstrate
a similar multithreaded FPGA model in the area of graph
workloads.
Content addressable memories A CAM is a memory where
every bit is paired with a comparator allowing concurrent
matching to a search word. Its ability to perform a search in
unit time comes at a high cost of area, energy, and long clock
cycle time.

As the number of entries in the CAM increases, the achiev-
able clock frequency of the circuit drops. This limitation
either restricts the size of the CAM or increases the number
of cycles it takes to perform a search or an update opera-
tion. Nonetheless, CAMs have proven to be very useful in
domains such as networking (e.g., implementing an IP table
in a network router). Recently, we explored how CAMs can
be used to accelerate the breadth first search algorithm [57].

In a streaming environment, CAMs can maintain a cache
of recently seen unique items and allow quick access to
them without stalling the pipeline. This fast cache look-up
mechanism can also be used as a fine-grained address-based
synchronization primitive, which avoids long latency trips to
main memory and does not require special hardware. Con-
sider the case when a CAM is assigned to guard a particular
memory partition. It can be configured to hold the addresses
of the values that need synchronized access. If all memory
requests within a partition are first submitted to the CAM,
before being routed to the memory, the accesses to identical
addresses are serialized locally in the CAM. In this case, a
CAM entry serves as an exclusive lock, which gets released
(flushed from the CAM) after the request(s) completion. In
[1], we discuss how to use this approach for synchronization
in the multithreading group-by aggregation algorithm.

To the best of our knowledge, all previous FPGA imple-
mentations relied on specialized platform features to provide
synchronization primitives. In our previous work [28], we
used atomic operations provided by the now discontinued
Convey MX architecture [18]. Each word in memory main-
tains a locking bit that can be set by a specialized test-and-set
memory instruction. Leveraging CAMs for synchronization
increases the portability of our design by moving all syn-
chronization operations to the FPGA. In addition, this design
provides more selective fine-grained synchronization prim-
itives in comparison with the Convey-MX, which places a
lock on all FPGA-memory communication channels.

It was shown that implementing fully associative matching
logic for CAMs on both Altera and Xilinx FPGAs introduces
a 60x space overhead compared to regular BRAMs [60].

Dhawan et al. [20] explored various designs of CAMs and
introduced a trade-off between CAM size and update time.

7 Conclusion

In this paper, we implemented and evaluated hash-join and
hash-based group-by aggregation, using hardware multi-
threading techniques on FPGA hardware accelerators. The
data structures are kept in global memory, which increases
the access latency compared to on-chip BRAMs, but allows
us to tackle much larger problem sizes. Multithreading allows
the MTP design to mask the longer latency by issuing hun-
dreds of threads across four FPGAs.

A hash join design for key/value store databases has
been presented. Throughput experiments over three datasets,
ranging from uniform to slightly skewed, showed that the
MTP design outperforms the best currently available soft-
ware implementations by 2 x to 3.4 x. However, on extremely
skewed datasets the MTP design’s performance suffered
compared to software approaches.

Our hash join design was also extended to support wider
tuples, and larger key sizes. We tested out implementation on
join queries from the TPC-H benchmark suite. Throughput
results dropped compared to the key/value design for both
the MTP design and software. However, the MTP design
outperformed the non-partitioned CPU results by 1.3x to
1.5x. The MTP design outperformed the partitioned CPU
results by over 4 x.

The same multithreading techniques are also used to
implement a group-by aggregation function on the two MTP
designs. Aggregation is a more complex operation because
threads can either update an existing node or create a new
node. Compared to hash join, where every thread in the build
relation creates a new node, every thread in the probe relation
only reads the data structures. We evaluate the FGL MTP
design against five software approaches (both partitioned
and non-partitioned) over five different datasets. Experi-
ments show a sharp decline in performance for the software
approaches as the cardinality increases. The FGL MTP
design’s throughput is unaffected by the benchmark’s car-
dinality and can sustain between 500 and 1500 MTuples/sec
depending on the key distribution, achieving an average of
3.3x speedup over all CPU implementations. Due to the
limited clock frequency, memory bandwidth, and limited
on-chip memory of the FPGA platform relative to state-of-
the-art multi-core CPUs, we cannot demonstrate superior raw
throughput. However, this proof-of-concept work demon-
strates throughput improvements achieved by efficient mem-
ory bandwidth utilization using latency-masking threads.
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