
Noname manuscript No.
(will be inserted by the editor)

A Cost Model for Random Access Queries in Document Stores

Moditha Hewasinghage1 · Alberto Abelló1 · Jovan Varga1 · Esteban
Zimányi2

Received: date / Accepted: date

Abstract Document stores have become one of the
key NoSQL storage solutions. They have been widely

adopted in different domains due to their ability to store
semi-structured data and expressive query capabilities.
However, implementations differ in terms of concrete

data storage and retrieval. Unfortunately, a standard
framework for data and query optimization for docu-
ment stores is nonexistent, and only implementation-
specific design and query guidelines are used. Hence,

the goal of this work is to aid automating the data de-
sign for document stores based on query costs instead
of generic design rules. For this, we define a generic

storage and query cost model based on disk access and
memory allocation that allows estimating the impact of
design decisions.

Since all document stores carry out data operations
in memory, we first estimate the memory usage by con-
sidering characteristics of the stored documents, their
access patterns, and memory management algorithms.

Then, using this estimation and metadata storage size,
we introduce a cost model for random access queries.
We validate our work on two well-known document
store implementations: MongoDB and Couchbase. The

Moditha Hewasinghage1

E-mail: moditha@essi.upc.edu

Alberto Abelló1

E-mail: aabello@essi.upc.edu

Jovan Varga1

E-mail: jvarga@essi.upc.edu

Esteban Zimányi2

E-mail: ezimanyi@ulb.ac.be

1Universitat Politècnica de Catalunya, BarcelonaTech
Barcelona, Spain
2Université Libre de Bruxelles 1050 Bruxelles, Belgium

results show that the memory usage estimates have the
average precision of 91% and predicted costs are highly

correlated to the actual execution times. During this
work, we have managed to suggest several improve-
ments to document storage systems. Thus, this cost

model also contributes to identifying discordance be-
tween document store implementations and their theo-
retical expectations.

Keywords Document stores · Cost model · Query ·
NoSQL

1 Introduction

In the last couple of decades, NoSQL systems were
introduced as an alternative storage mechanism to
traditional Relational Database Management Systems

(RDBMS). As of today, there are more than 100
NoSQL implementations, categorized into four main
types, namely, key-value stores, document stores, col-
umn stores, and graph stores [3]. Among these, docu-

ment stores have been one of the most popular, mainly
because of the schema flexibility they provide.

Traditional RDBMS arrange data in tables with a
fixed schema, and each tuple within the table adheres
to it. Similarly, document stores arrange data in col-
lections, and as the name suggests, they use document
formats such as XML or JSON as the unit of storage.
However, in contrast to RDBMS tables, the schema of a
collection is not fixed and allows semi-structured data.
This means the documents within a collection need not
be homogeneous, and in extreme cases, one might have
a collection containing documents that are entirely dif-
ferent from one another.

Motivated by various commercial needs, the indus-
try drives most of the document store development. The

This is a post-peer-review, pre-copyedit version of an article published in The VLDB Journal.
The final authenticated version is available online at: http://dx.doi.org/10.1007/s00778-021-00660-x

2 Moditha Hewasinghage et al.

semi-structured storage nature of document stores en-

ables end-users to follow a data-first approach rather

than a schema-first one. This can reduce the time and

effort of defining the schema, especially for cases where

there is some uncertainty about the data structure

and content. However, in contrast to RDBMS, there

is no formal standard, such as SQL and normaliza-

tion theory for document stores. Instead of a formal

data and query design, existing document stores pro-

vide guidelines for implementation-specific optimiza-

tions [13]. Furthermore, all document stores use prim-

itive approaches to determine the optimal query exe-

cution plan. For example, MongoDB tries to execute

all viable query plans that use indexes in parallel to

finally choose the winning option. Here, rather than

performing all the query plans, some plans that take

more work units (execution time or the number of doc-

uments examined) than the currently leading one are

discarded prematurely as an optimization. The winning

plan is cached and used on similar subsequent queries.
1 Therefore, it is crucial to have a better schema design

to support this query execution model.

There are no existing methodologies to evaluate the

viable document store schema designs (referred to as

design from now on), but only through expensive trial

and error one could determine which is the best de-

sign. Here, a formal cost model would allow end-users

to estimate how different design decisions affect perfor-

mance rather than relying on their intuition. Relational

cost models [14, 18, 25] are per-query and based on the

current state of the DBMS at the time of query execu-

tion. The primitive approaches of document store query

planners do not even rely on such information. Exist-

ing cost models in RDBMS are based on disk access as

the number of disk accesses will always dominate the

execution time of a query. Moreover, as a result of hard-

ware cost reduction in recent times, most of the data

is pushed into the memory for faster performance, and

the cost models have adjusted accordingly [20]. Thus,

most document stores encourage having the working

dataset in memory to achieve higher throughput and

lower response time. Deciding on which fraction of the

data should be in memory depends on access patterns

and memory allocation policies. Nevertheless, both of

these systems need to persist data into the disk (there

are in-memory systems that are out of the scope of our

paper), and in most of the cases during the actual op-

erations, most of the data does not fit into the available

memory. Therefore, it is highly probable that the data

is accessed from both memory and disk simultaneously.

Hence, in our work, we aim to predict the behaviour

1 https://docs.mongodb.com/manual/core/query-plans

of the document store memory and its effect on query

execution depending on data design decisions.

In this paper, we present a generic cost model for

random access in document stores based on storage

metadata and memory usage. Both these parameters

are specific for different document store implementation

decisions. Metadata can be easily obtained from the

data stores and depends on the disk storage structures.

However, memory usage depends on memory mapping,

associativity, and eviction policies, and each of them

consists of several possibilities (e.g., pre-determined or

shared associativity). Therefore, we introduce formulas

for different possibilities and depending on the underly-

ing document store, we pick the corresponding formu-

las to estimate the memory usage. Finally, we use these

memory estimates in our generic cost model. We use

Couchbase Server and MongoDB as two exemplars with

different memory usage patterns to validate our cost

model. Couchbase Server has pre-determined memory

associativity per collection and maps individual doc-

uments into memory, whereas MongoDB has a single

memory shared among the collections governed by a

Least Recently Used (LRU) cache eviction policy and

maps disk blocks to memory.

The objective of our work is not to predict an exact

runtime, but rather to obtain a relative cost for a spe-

cific query under a fixed memory, workload, and varying

design decisions (e.g., average document size, number

of documents, and access frequency). Thus, the main

contribution of this work is a generic cost model for

document stores for random access queries, which in-

cludes a detailed memory distribution estimation model

for different memory management choices. Based on ex-
periments, we show that we are able to estimate mem-

ory distribution within an average precision of 91% and

successfully predict the relative cost of queries concern-

ing the most relevant parameters. To the best of our

knowledge, this is the first attempt at a cost model,

allowing us to predict the design impact in document

stores. Even though it is possible to introduce this cost

model into the native query processing of the document

store implementation, it may introduce significant over-

head hindering the performance. The simplicity of the

current primitive query processing approaches is one of

the many reasons behind the performance gains in doc-

ument store or NoSQL systems in general compared to

traditional RDBMS. Thus, we instead intend to use this

cost model as a tool to enhance the schema design pro-

cess, which is mostly rule-based. Using our approach,

we can calculate a relative cost for a particular design

under a predefined workload. This value can then be

used as a measure of optimality together with other

contradicting requirements such as storage space of a

A Cost Model for Random Access Queries in Document Stores 3

collection on each of the viable designs to select the best

one. Thus, this is an initial step towards optimizing re-

source usage using a systematic data design. We have

already implemented DocDesign [12], a decision aid sys-

tem to determine optimal document store schema using

the cost model discussed here. DocDesign is capable of

evaluating alternative schemas for a particular use case

and workload. Determining the relative query perfor-

mance is a key component of DocDesign, and this cost

model is essential for its functionality.

Document stores attract users who engage in rapidly

changing requirements taking away the burden of fixing

a database schema. Following this trend, the SQL:2016

standard has incorporated JSON into the specification

allowing RDBMS to have unstructured data in a single

attribute [22]. Therefore, data design for RDBMS also

goes beyond strict normalization and might require a

cost-based schema design and could benefit from our

cost model as well. We were also able to identify sev-

eral inconsistencies of existing document store imple-

mentations and propose how to improve them. There-

fore, this work can also be used to identify discordance

of document store implementation behavior against a

theoretical expectation.

This paper is organized as follows. First, in Sect. 2,

we explain the necessary background on cost models

and discuss related work. We introduce and formalize

the cost model together with generic and specific com-

ponents in Sect. 3. In Sect. 4, we apply the cost model

using MongoDB and Couchbase Server as examples.

Then, we validate our cost model and memory estima-

tion with extensive experiments in Sect. 5. Finally, we

conclude our work in Sect. 6.

2 Background and Related Work

Most database system has its own cost model to deter-

mine query costs and make execution plans accordingly.

RDBMS have been around for more than three decades

and have well-established cost models and query plan-

ning capabilities [14, 18, 25]. These cost models mainly

depend on the disk I/O as it is the most costly resource

compared to other factors such as CPU calculations and

memory access. The main considerations of these cost

models are physical data structures, access paths, and

the algorithms used.

Several works have been carried out on optimiza-

tions and cost models for XML databases [9,16] as well

as for object-oriented databases [2,8]. Moreover, Mane-

gold et al. proposed a generic technique to create cost

functions for database operations in hierarchical mem-

ory systems in [20]. This approach claims to be exten-

sible to include disk I/O. As this hierarchical memory

model approach is most comparable to ours, we use it

as a baseline for comparison with details in Sect. 5.4.

Contrary to classical RDBMS systems, in-memory

databases do not depend on accessing data from the

disk. Consequently, the cost models depend exclusively

on CPU cycles, memory capacity, line size, and asso-

ciativity [7]. As mentioned before, document stores uti-

lize both disk and memory for optimized performance.

Between the two, the disk access cost is several mag-

nitudes higher than of the memory. Thus, the deter-

mining factor for the performance of a query will al-

ways be disk I/O when the data does not fit in memory

(most of the cases). Hence, we base our cost model on

the RDBMS approach due to the similarity in storage

structures used in the observed document stores and the

maturity of the approach. Furthermore, our cost model

incorporates memory distribution in the calculation as

needed for overall design optimization.

Data in a typical RDBMS is stored with a primary

index that utilizes B-tree as the data structure when

storing data in the disk. The internal nodes of the B-

tree contain the indexed values, and the leaf nodes

contain either data or pointers to data depending on

the type of index (clustered and non-clustered). These

nodes are stored as fixed-size blocks in the disk. The

total size of a table depends on the record size, the

number of records, and the indexing mechanism used.

The data access paths can be identified as a table scan,

random access, searching for one or several tuples, in-

sertion, and deletion of a tuple.

A given query can have multiple execution plans

subject to the access path to the tuples, index struc-

tures, and the order and execution algorithm for join

operations. RDBMS use a cost-based estimation where
alternative query plans are generated, and intermedi-

ate result sizes and cardinalities are estimated from the

available statistics. Next, a cost is estimated for each

plan based on blocks read and written to choose the

best one. For example, in PostgreSQL, each of the op-

erations has predefined cost value2 and the alternatives

are evaluated through genetic optimization.3

Caching is an essential concept in modern disk-

based computer systems that refers to keeping already

used data in memory so that the information can be

served faster for future requests. The retained data orig-

inates from a prior request or calculation. When the

data is fetched from the cache, it is considered a cache

hit or, in the opposite case, a cache miss. In the case of a

cache miss, the data needs to be fetched from the disk,

which increases the latency. Thus, higher cache hit rates

2 https://www.postgresql.org/docs/12/static/runtime-
config-query.html
3 https://www.postgresql.org/docs/12/geqo-pg-intro.html

4 Moditha Hewasinghage et al.

lead to better performance [27]. However, the cache

is generally smaller than the information that needs

to be retrieved by an application. Therefore, cached

data needs to be replaced over time. There are several

eviction policies such as first-in-first-out, last-in-first-

out, least recently used, etc [21]. Different cache poli-

cies have their strengths and weaknesses, and they are

used depending on the application requirements [28].

In any case, it is essential to know the hit rate to an-

alyze the performance of end-user applications. How-

ever, this is not trivial due to the complex nature of

the cache, the replacement policies, and the access pat-

terns. Frank King III introduced a Markov-chain-based

cache hit rate approximation using the independent ref-

erence model [17]. Based on this approach, several other

works have been conducted on approximating the cache

miss and hit ratios for different cache policies [10,15,31].

These approaches provide an approximation of hit rate

and cache usage not only for a single application but

also for shared cache among several applications [6]. In

our work, we followed a probability-based approach to

have a simple model with lower runtime complexity.

The structure of the data also plays a vital role when

implementing a cost model. Although document stores

and RDBMS maintain structured data, they differ in

several ways. Data in RDBMS is stored in and conforms

to a user-defined structure (table), and a single real-

world object may often span several tables. Document

stores keep documents in a collection, but the structure

of the documents within it can differ from one to an-

other. Moreover, document stores support nested data

structures and encourage denormalization, so that all of

the information for a real-world object can be a single

document in the database. Similar to key-value storage,

data in document stores are kept with a primary iden-

tifier. However, unlike in key-value storage, the internal

structure of data is not entirely hidden to the document

store. Consequently, document stores provide more ex-

tensive query capabilities for the end-user.

RDBMS satisfy ACID properties and use ap-

proaches such as write-ahead logging to guarantee va-

lidity even in the event of errors. However, despite the

fact that the data is still stored in the disk, document

stores encourage keeping the working set in memory,

so all the updates are done in transient storage and

only periodically synchronized to the disk (most of the

NoSQL systems use a similar approach to improve per-

formance at the expense of reliability). Document stores

have begun to include mechanisms such as logging pro-

tocols and transaction management to ensure reliabil-

ity. How data is stored, what additional metadata is

used, and the memory usage differs from one document

store to another. Thus, we focus our study on two repre-

sentative document store platforms: Couchbase Server

and MongoDB.

Several works have been carried out on cost-based

schema design for NoSQL systems. In NoSE, the au-

thors evaluate alternative designs for column stores

(Cassandra) using the cost of accessing different column

families to answer the queries [23]. However, when it

comes to document stores, estimating the cost becomes

more complex due to the introduction of secondary in-

dexes. The work by Vajk et al. [30] generates multi-

ple alternative schema sketches using denormalization,

starting with 3NF. These schemas are then evaluated

based on the storage and the number of transactions

to choose optimal cloud-based storage solutions. Mor-

tadelo [5] uses a meta-modeling approach to generate

database implementations from a high-level conceptual

model for document and column stores. A query merg-

ing approach is used to optimize the access patterns to

determine the optimal designs.

Regarding document stores, some work has been

carried out on optimizing the data storage in Solid State

Drives [26], storage-specific data models [32], and use

case comparisons [11], but to the best of our knowl-

edge, not much work has been done regarding the cost

models especially for JSON-based storage systems. For

example, MongoDB has a query planner for optimiz-

ing complex queries that consider multiple execution

paths as explained before, and caches the winning plan

for subsequent queries. Nevertheless, a server restart or

adding/deleting an index will clear the cached query

plans. Therefore, the present paper proposes a cost

model that predicts not only relative execution time but

also memory usage patterns independent from query

plan caching that can be used to guide document de-

sign. In this context, our DocDesign [12] is a design

support system that uses the cost model discussed in

this work. The end-user can evaluate several candidate

schemas for a given use case and workload in terms of

storage size and query performance to determine the

optimal one. The cost model is the most crucial com-

ponent in determining the query performance under a

given memory limit and query frequencies.4

3 Formalization of the Cost Model

In this section, we present our cost model based on

the data storage and query mechanism of document

stores. The cost model consists of a generic and a spe-

cific component. The generic component is based on

three parameters, as shown in Fig. 1. First, the type of

4 A demonstration of DocDesign is available in
https://www.essi.upc.edu/dtim/tools/DocDesign

A Cost Model for Random Access Queries in Document Stores 5

Fig. 1: Overview of the cost model for document stores

access affects cost. It can be random access through a

primary or secondary index, or a sequential one where

the entire collection is read. Second, the storage meta-

data characterizes the available data in terms of storage

structure, indexes, and their sizes. Finally, the mem-

ory usage affects query performance, too. Among these

parameters, the storage metadata and memory usage

are directly affected by the underlying document store

specifics. Therefore, we introduce the document store

specific component consisting of three segments (stor-

age structure, memory mapping, and memory associa-

tivity) to calculate and provide the two parameters to

the generic component.

In our work, we focus on random access, which refers

to accessing a document in a collection via physical

disk location as these are the majority of the queries

used on document stores (owing to the support of sec-

ondary indexes). The capital letters in italic correspond

to the concepts in Fig 1. The storage size of a collec-

tion and its indexes mainly depend on the physical stor-

age structures, which is the first segment of the specific

component. These could be B-trees (T), hash buck-

ets (B), or heap files (F) [18, 25]. In our validation,

we use MongoDB and Couchbase Server in which B-

trees are used. When bringing the data from the disk,

it is directly mapped (D) into the memory following the

structure as in the disk (MongoDB). However, Couch-

base Server uses a hash-based mapping (H) where each

document in the disk is brought and identified in the

memory through a hash value indicating an in-memory

bucket. Hence, we introduce memory mapping as the

second segment of the implementation-specific compo-

nent. The memory associativity in the presence of dif-

ferent collections can be: Pre-determined if the amount

of memory used by each of the collections is also pre-

determined (fixed by the user in Couchbase); or shared

if the usage of each collection determines how much

memory is devoted to it (MongoDB). The proportion

of documents in memory can be easily calculated in the

case of pre-determined associativity (P). However, with

shared associativity (S), this proportion is affected by

the probability of accessing a collection and its storage

metadata as well as the eviction policy being used. The

eviction policy can be LRU (L), FIFO (Q), Random

(R), etc.

We introduce an encoding for the external parame-

ter configurations for the sake of convenience. The en-

coding contains three to four letters, each represent-

ing a segment in the order of storage structure, mem-

ory mapping, memory associativity, and eviction policy

(only under shared memory). In this work, we introduce

cost formulas for a B-tree based disk storage (T) under

direct memory mapping (TD) with pre-defined asso-

ciativity (TDP) or shared associativity under an LRU

eviction policy (TDSL), and hashed memory mapping

(TH) with pre-defined associativity (THP) or shared

associativity under an LRU eviction policy (THSL). We

validate our model using Couchbase Server (THP) and

MongoDB (TDSL), introducing specific details regard-

ing their implementation. As such, we can include other

document stores in our cost model, depending on their

configuration.

3.1 Generic Component

We assume that the data is retrieved from the disk to

the cache and served for processing from the cache. Fur-

thermore, the disk and the cache are accessed in fixed-

size blocks, and the costs of reading a block from the

cache or the disk are different but constant. The main

focus of the present work is to estimate the cost for data

6 Moditha Hewasinghage et al.

Table 1: Variables of the Cost Model

M
Total memory available for the document
store

Bif (C) Total index size on field f in blocks

f Indexed field of a collection Reqf (C) Total number of requests to an indexed field

Bsized Block size for data Pd(C)
Probability of queried data block being in
the cache

Bsizei Block size for index Pif (C)
Probability of queried index block on field f
being in the cache

Md(C)
Memory blocks used for the data of a collec-
tion

CostRand Relative cost for a random read

Mif (C)
Memory blocks used for the index of a col-
lection

Repf (C) Number of repetitions of an indexed field

Tm/d Time to read a block from cache/disk Malloc(C) Memory allocated to a collection

Q Workload P (C, q)
Probability of querying a collection by a
query q

N Number of collections |Q| Overall number of queries in an eviction cy-
cle

C A collection SFf (C)
Probability of a document being requested
using field f

Sized(C) Average document size of a collection P req
d (C)

Probability of data block in cache being re-
quested

Sizeif (C)
Average index entry size of a collection (on
field f)

P req
if

(C)
Probability of index block in cache being re-
quested

|C| Number of documents of a collection M sat
d (C)

Memory blocks used for the documents of a
collection at saturation point

F Fill factor of the B-tree M sat
if

(C)
Memory blocks used for the index of a col-
lection at saturation point

Rd(C) Average number of documents in a block K Total size of non-leaf nodes of all the B-trees

Ef (C)
Number of unique requests to an indexed
field

P block
d

The probability that any of the documents
in a leaf block being requested

Rint(C)
The average number of reference entries in
an internal B-tree block

P block
d

The probability that any of the documents
in a leaf block being requested

Rif (C)
Average number of entries in a block for an
index over field f

Shotsind (C)
Number of queried data blocks that are in
memory within a time window (hits)

Bd(C) Total collection size in blocks Shotsoutd (C)
Number of queried data blocks that are not
in memory within a time window (misses)

Bsizeint(C) Internal B-tree block size Sizeint(C) Internal B-tree reference entry size

Multif (C) Multiplying factor of a secondary index Muser(C)
Memory allocated by the user for a collection
C in pre-defined memory associativity

access via the primary or secondary index of a collec-

tion (random access). We exemplify our approach on

B-tree storage used by both Couchbase and MongoDB.

For the sake of simplicity, we assume that the inter-

nal nodes of the B-trees are never removed from the

cache in the calculations. Nevertheless, in case that the

size of the internal nodes is relevant compared to the

amount of memory available, extending the formulas to

include them is straightforward (detailed explanation in

Sect. 4).

Data distribution plays a vital role in document

stores. Our estimations are intended for a single in-

stance of a document store. However, they can be ex-

tended into a distributed environment. Assuming that

the data has a uniform distribution among the nodes,

we can estimate the size of the collections and indexes

lying on each node by merely dividing the number of

documents by the number of nodes. Therefore, the for-

mulas can be directly applied to each of the nodes in-

dependently, just considering that distribution intro-

duces an additional network cost. Existing work has

added this cost together with the I/O cost as a weighted

sum [24]. The network cost can be estimated by the size

of data that needs to be moved between the nodes de-

pending on the query. For example, if a query contains

a shard key in MongoDB it will execute it only on the

relevant nodes, but if it does not, the query needs to be

performed on all the nodes, and the results need to be

A Cost Model for Random Access Queries in Document Stores 7

aggregated.5 Random access queries can hardly benefit

from data distribution, as the end result is accessing a

single piece of data in a given machine through a given

path. We compared the runtime of a sharded cluster

against a single instance for the experiments carried

out in this work. In all the cases, the runtime of the

distributed system was more than that of the single in-

stance due to the added network cost, except for those

instances that can accommodate all the data in memory

with more machines.

Table 1 lists the variables used in the cost model

equations. We define the number of cached data blocks

as Md(C) and cached index blocks as Mi(C). These

numbers and their behavior vary depending on the

type of document store and the access pattern of a

collection, but we assume that the index entry and

the document sizes are smaller than the block size

(Sizeif (C),Sized(C) � Bsized,Bsizei) and the blocks

are filled in the average up to a percentage F . Thus,

the average number of documents in a document block

of collection C, Rd(C), and the average number of in-

dex entries in an index block (on a particular field f)

Rif (C) can be defined as follows.

Rd(C) = F ·
⌊ Bsized

Sized(C)

⌋
Rif (C) = F ·

⌊ Bsizei
Sizeif (C)

⌋
(1)

Now, we can define the total data leaf blocks of a

collection Bd(C) and the total index leaf blocks of the

collection Bif (C) dividing the number of documents by

the respective number of documents and index entries

that fit in a block as follows. For a secondary index,

the leaf level entries depend on how many documents
are being pointed by a single index entry, specified by

a multiplying factor Multif (C).

Bd(C) =
⌈ |C|
Rd(C)

⌉
Bif (C) =

⌈ |C| ∗Multif (C)

Rif (C)

⌉
(2)

If there are Md(C) data blocks and Mif (C) index

blocks in memory for collection C, by using Eq. 3,

we define the probabilities of the block containing the

queried document and the block containing the index

entry being in the cache (Pd(C) and Pif (C)) as propor-

tions of the total number of data and index blocks. In

the case of hashed memory mapping, these proportions

can be taken with the document or index sizes as there

is no block structure in memory (detailed description

in Sect. 3.2.1).

Pd(C) =
Md(C)

Bd(C)
Pif (C) =

Mif (C)

Bif (C)
(3)

5 https://docs.mongodb.com/manual/core/distributed-
queries

Next, we define the cost function for random ac-

cess through an indexed field using the above equations.

First, the relevant block containing the index of the doc-

ument needs to be fetched. This block could reside in

the cache with probability Pif (C) or should be retrieved

from disk with probability 1− Pif (C). Next, the block

containing the document needs to be retrieved, and this

could be from the cache with a probability of Pd(C) or

the disk with a probability of 1− Pd(C). Thus, the to-

tal cost is the average of retrieving the index and the

document blocks as follows.

CostRand =
Tm ∗ Pif (C) + Td ∗ (1− Pif (C))

2

+
Tm ∗ Pd(C) + Td ∗ (1− Pd(C))

2

(4)

If the indexed field is that of a typical primary index

of a B-tree, the index components can be omitted as the

index is contained in the internal nodes (this is not the

case in the current MongoDB, refer Sect. 4.2). Now, if

we assume that the cost of reading a block from the

cache can be neglected compared to the cost of reading

from the disk (Tm � Td), we can simplify the cost to
Td∗(2−(Pif

(C)+Pd(C)))

2 . Moreover, considering that block

sizes are constant in the system, by replacing Pif (C)

and Pd(C) from Eq. 3, we can infer that the cost of

random access is negatively correlated with the size of

the memory allocated to the index and data, and posi-

tively on the collection size (i.e., the size of the B-tree).

The collection size is a product of the number of docu-

ments and the average document size divided by the fill

factor (F in Table 1). We define the memory allocated

to a particular collection as the sum of memory used

by data and all the indexes (I).

Malloc(C) = Md(C) ∗ Bsized +

I∑
k=0

Mik(C) ∗ Bsizei (5)

Finally, our generic cost model uses memory usage

as an external parameter specific to the underlying

technology.

3.2 Specific Component

The specific component consists of three segments,

namely, storage structure, memory mapping, and mem-

ory associativity. Both Couchbase Server and Mon-

goDB use a B-tree structure to store data and indexes.

Since the estimation of B-tree size is a familiar pro-

cess [18,25], we focus on memory mapping and memory

associativity in detail.

8 Moditha Hewasinghage et al.

When the document store is started, the cache is

assumed to be empty (i.e., cold start). Thus, all the re-

quests sent involve fetching data from disk and caching

them in memory. This will continue until the cache be-

comes full, and the cache eviction starts to release some

of the blocks to allow new ones to be cached. As shown

by previous work, the cache becomes stable in terms of

the memory allocated to the different collections and

indexes after a certain point, and its state can conse-

quently be approximated [4, 10, 15, 31]. However, this

approximation depends on the specific approaches used

for managing the memory.

3.2.1 Memory Mapping

There are two forms of memory mapping that we ex-

plore in our work: direct and hashed. First, we define

the unique queries issued in the workload Q as a set of

triples. Each triple consists of a collection C, indexed

field f , and the probability of using that indexed field

P (C, f).

Direct (D) In direct memory mapping, both data and

index are stored, retrieved, and managed in memory as

blocks. Thus, the formulas used from this point onwards

apply to both the data B-tree and the (secondary) in-

dex B-tree. We define the number of repetitions of the

indexed field f of a collection C as the ratio between

the total number of leaf level entries and the number

of distinct values of f as follows. When the value is a

primary index or has a unique constraint, Repf (C) = 1

(which is used in Eq. 11).

Repf (C) =
|C| ∗Multif (C)

distinct(f)
(6)

We assume that just before the eviction starts, there

have been |Q| issued queries and we define this state as

the saturation point. These queries are from all the col-

lections that are being accessed. Thus, each collection

has Reqf (C) number of document requests from each

field f , which is proportional to its access frequency.

Reqf (C) = |Q| · P (C, f) (7)

However, the same document or the index can be re-

quested more than once. Therefore, we estimate the

number of unique requests Ef (C) as the expected value

after issuing Reqf (C) requests out of the total number

of distinct values with replacements.

Ef (C) = distinct(f) ∗
(

1−
(distinct(f)− 1

distinct(f)

)Reqf (C)
)

(8)

Then, we define the selectivity factor in a collection

C, with respect to a field f as SFf (C), which is the

probability of a document being requested through the

index on f . Using Eq. 8, we define this as
Ef (C)

distinct(f) .

However, there could be multiple queries that access the

same collection through different indexes. Therefore, we

aggregate the selectivity factor of a collection by using

the formula for the probability of union on n events

as follows. The number of all the queries issued on the

document store is denoted by |Q|.

SF (C) =

|Q|∑
i=1

(−1)i+1

(∑
16<k1...<ki6|Q|

(SFfk1
(C) ∧ ... ∧ SFfki

(C))
) (9)

If a data block is in the cache, at least one of the

documents in the data block must have been requested.

So, the probability of a document not being requested is

1−SF (C), and the probability of none of the documents

in a data block being requested is (1 − SF (C))Rd(C).

Hence, the probability of a data block being requested

by a query P req
d (C) is the complement of none of its

documents being requested by that query. In turn, the

index B-tree has the same SF (C) as it needs to be ac-

cessed in order to access the document. Even though

the selectivity factor of the secondary index and the

data B-tree is the same, there is one crucial difference

between the physical storage of the two structures. The

secondary index B-tree is sorted by the indexed value

while the data B-tree is not. On account of this, the

probability of a leaf node of the secondary index not

being requested is that of none of the unique index val-

ues within the index block being requested. The index

block contains Rif (C) index entries and the number of

unique values within the block is
Rif

(C)

Repf (C) .

P req
d (C) = 1− (1− SF (C))Rd(C) (10)

P req
if

(C) = 1− (1− SFf (C))

Rif
(C)

Repf (C) (11)

Consequently, at the saturation point, just before

the eviction starts, the size of cached data M sat
d (C) and

index Mi(C) can be stated as follows.

M sat
d (C) = Bd(C) ∗ P req

d (C) (12)

M sat
if

(C) = Bi(C) ∗ P req
if

(C) (13)

Hashed (H) In a hashed memory mapping system,

memory is managed per document. The document is

brought into memory with its metadata. Here, when

there is enough memory for all metadata, only docu-

ments are evicted while the metadata remains in mem-

ory. Since the relationship between the blocks and the

documents are lost in hashing. Thus, we only estimate

A Cost Model for Random Access Queries in Document Stores 9

the size of documents in the cache instead with Eqs. 14

and 15.

Mif
(C) = Sizeif (C) ∗ |C| (14)

Md(C) = Malloc(C)− Sizeif (C) ∗ |C| (15)

In the case of not having enough memory to allocate

all metadata, a full eviction mode could be used. In

this case, the metadata is evicted when the document

is evicted from memory. Here, the total memory used

by a collection is divided proportionately to the size of

the document and metadata, as in Eqs. 16 and 17.

Md(C) = Malloc(C) · Sized(C)

Sizeif (C) + Sized(C)
(16)

Mif
(C) = Malloc(C) ·

Sizeif (C))

Sizeif (C) + Sized(C)
(17)

With regard to Eq. 3, hashed memory mapping loses

the block information. Thus, we use values from Eqs. 14

to 17 as the numerator and the size of the collection as

the denominator (e.g. Rd(C)
F) to get the proportion of

what is in memory out of the overall collection/index.

3.2.2 Memory Associativity

Memory associativity describes how memory is allo-

cated between the collections. Here, we allocate a con-

stant overhead K as extra memory used for parameters

that are not considered in the formula. For example,

it could be the internal nodes of the B-trees. More-

over, not all the memory is used by the collections and

indexes and an upper memory limit is set. The evic-

tion takes place once this limit is reached. We introduce
this upper limit as a percentage denoted by u. In pre-

determined (P) associativity the memory is decided

by the user.

Malloc(C) + K = Muser(C) (18)

In shared (S) associativity, the overall memory is

shared between different collections which can be for-

malized as follows.

N∑
i=1

Malloc(Ci) + K = uM (19)

3.2.3 Cache Eviction Policy

A Cache and its eviction policy is applicable when there

is shared memory associativity. We introduce the for-

mulas for a B-tree based, LRU (L) cache eviction pol-

icy as it is considered to be fair in most of the use cases.

When eviction cycles start, the least recently used

blocks are removed from memory. Suppose a document

(resp. index entry) is accessed with a probability Pdoc.

In that case, the likelihood of a leaf block in the data

B-tree (resp. index B-tree) being accessed is the prob-

ability that some of the documents in that block are

requested, which is 1− (1−Pdoc)
Rd(C), noted as P block

d .

To evict an internal block in the data B-tree (resp. in-

dex B-tree), all the leaf blocks pointed by that internal

block need to be evicted. Hence, the probability of one

of the leaf blocks not being referred is 1 − P block
d , and

consequently the probability of some of these leaf blocks

is referred is 1−(1−P block
d)Rint(C) noted as P inter

d . Since

they depend one on another and Rint(C) � Rd(C), it

is clear that P inter
d � P block

d , and we can safely assume

that the internal data blocks are hardly evicted (only in

extreme cases). The same reasoning can be done for an

index B-tree (notice that the probability of accessing a

document is the same as the probability of accessing its

corresponding index entry, so we would similarly obtain

P block
i and P inter

i). Therefore, for the sake of simplicity,

we only consider the eviction of leaf nodes and assume

that all the internal nodes of the data and the index

B-trees are pinned to the cache and take constant K

memory as explained above. Their eviction will only

become significant when there is a substantial number

of blocks in the leaves. If so, refer to Appendix A for a

detailed calculation and extension of Eq. 10 to include

the eviction of internal B-tree blocks.

We use the term reference entry to name an entry

of an internal block which points to a leaf block, and

define the average number of reference entries in an

internal block Rint(C), in terms of internal block size

Bsizeint(C), reference entry size Sizeint(C) and the cor-

responding fill factor. For index B-trees, the reference

entry size depends on the field f .

Rint(C) = F ·
⌊ Bsizeint

Sizeint(C)

⌋
(20)

Thus, the value of K can be easily obtained by it-

eratively moving up on the B-trees, starting from the

leaves and calculating the number of blocks at each

level by dividing the previous by Rd(C) (or Ri(C) or

Bsizeint(C) depending on the kind of B-tree and level).

Then, by solving the system of Eqs. 7–13 under the

condition that the sum of memory used equals the to-

tal memory available as shown by Eq. 19, we obtain the

memory distribution just before the eviction, M sat
d (C)

and M sat
if

(C).

When the cache is stable, the probability of bring-

ing in a new data block of a collection P in
d (C) should be

equal to the probability of evicting a data block from

the same collection P out
d (C) and the same can be ap-

plied for the index B-tree. Thus, solving the following

system of equations, together with Eq. 19 we can obtain

the stable state of the memory.

10 Moditha Hewasinghage et al.

∀Cj : P in
d (Cj) = P out

d (Cj), ∀f ∈ Cj : P in
if

(Cj) = P out
if

(Cj)

(21)

We define Shotsd(C) as the number of queried data

blocks at a given time window for a collection at the

stable state. Among these queried blocks, Shotsind (C)

number of blocks are already residing in the memory

and Shotsoutd (C) blocks need to be fetched from the disk

into the memory. Thus, the number of queries whose

documents are found in the cache is proportional to

the number of blocks already in the cache and the ratio

of cached blocks.

Shotsind (C) = M sat
d (C) · Md(C)

Bd(C)
(22)

Shotsinif (C) = M sat
if

(C) ·
Mif (C)

Bif (C)
(23)

The evictable data blocks of a collection Ed(C) are

those blocks that have not been accessed in the last

eviction cycle (i.e., those least recently used).

Ed(C) = Md(C)− Shotsind (C) (24)

Therefore, the evictability of a certain block in memory

is
Ed(C)
Md(C) . Now, we can define the probability of evicting

a data block from a collection (similarly for the index)
as being a weighted average as in Eq. 25.

P
out
d (C) =

Wd(C) · Ed(C)

Md(C)∑N
j=1

(
Wd(Cj) ·

E
d
(Cj)

Md(Cj)
+
∑N

j=1

(
Wi(Cj) ·

E
if

(Cj)

Mif (Cj)

))
(25)

We introduce the weight Wd(C) mainly due to the

implementation specifics of the underlying document

stores. For an ideal LRU cache eviction policy system

where it can determine the exact least recently used

blocks to be evicted, the value should be 1. Since track-

ing all the blocks in memory is expensive, different doc-

ument store implementations enforce approximations of

the least recently used blocks.
We define the probability of a block containing the

requested document being in the cache as Pd(C) =
Md(C)
Bd(C) . Thus, we define the probability of bringing a

new block of a collection to the cache with regard to all
the collections that are being used.

P
in
d (C) =

M sat
d (C) · (1 − Pd(C))∑N

j=1

(
M sat

d (Cj) · (1 − Pd(Cj)) + (
∑I

f=1 M sat
if

(Cj) · (1 − Pif
(Cj)))

)
(26)

4 Applying the cost model

We introduced the generic and the specific cost model

components in the previous section. Depending on the

document store, the relevant specific component formu-

las can be used to determine the memory distribution.

However, each document store can have its own imple-

mentation decisions that need to be taken into account.

In this section, we take two document store implemen-

tations in detail and discuss how to apply the formulas

introduced above.

4.1 Couchbase Server (THP)

Couchbase Server is a distributed multi-modal data

store that provides scalability, low latency, and high

throughput for key-value and JSON document storage.

Couchbase Server manages data using buckets, which

are a logical grouping of physical resources. It offers

two types of buckets, namely Memcached and Couch-

base, but we focus our work on the latter because it

stores data both in memory and on disk (Memcached

only uses memory).

The documents in the disk are stored in a B-tree

structure (T). Buckets operate on these documents only

when loaded into memory. If the requested document is

not currently in memory, it is automatically brought in

from the disk individually together with its metadata as

a hash (H). A bucket has a quota of dedicated memory

which is configured at creation time (P). When a bucket

reaches 85% of the allocated memory, an item is evicted.

Each document stored in Couchbase Server has a fixed

metadata size (i.e., 56 bytes). If a document is being

used, its metadata and id need to be in memory. By de-

fault, Couchbase recommends all the metadata to be in

memory. In this scenario we can apply Eqs. 14 and 18

with u = 0.85.6 However, this requires more memory

when the number of documents grows. Fig. 2 shows

the memory is allocated to data and metadata with the

two different eviction approaches. Eviction of metadata

is supported only from version 3.2 onwards. With de-

fault eviction policy, all metadata entries (i.e., |C|) will

always be in memory, and x documents will use the

rest. When evicting metadata is enabled, there will be

y documents and the corresponding y metadata entries

in memory (x ≤ y). The metadata is evicted together

with the document. Thus, we can apply Eqs. 16, 17

and 18 with u = 0.85.

Fig. 3 shows the distribution of the memory quota

among metadata and the documents in five different

6 https://docs.couchbase.com/server/5.1/architecture/db-
engine-architecture.html (High water mark)

A Cost Model for Random Access Queries in Document Stores 11

Fig. 2: Couchbase Server bucket usage

buckets with the same memory quota but different doc-

ument sizes. Each of the buckets’ average document size

increases by a factor, but documents in all the buckets

have the same index entry size. Therefore, the metadata

size per document is the same. The chart shows that the

memory ratio between data and metadata is affected

by the document size. When the document size grows,

few documents fit in the memory. Since the metadata in

memory is only those of the documents also in memory,

fewer metadata entries are leading to smaller memory

usage.

 0

 20

 40

 60

 80

 100

40 80 160 320 640

C
a

c
h

e
 a

llo
c
a

ti
o

n
 (

M
B

)

Average document size (bytes)

Data
Metadata

Fig. 3: Memory utilization in Couchbase Server

4.2 MongoDB (TDSL)

MongoDB stores data in BSON (binary JSON) format

and supports ad-hoc queries such as field, range, reg-

ular expressions, and aggregation. The documents are

stored in collections, have a primary identifier, and also

support secondary indexes. It has a pluggable architec-

ture where the end-user can select which storage engine

to use. At the moment of writing, there are three main

engines: MMAPv1, WiredTiger, and in-memory stor-

age. From now on, we focus on WiredTiger as it is the

default and more complex one.

Fig. 4: MongoDB B-tree usage for primary key

The storage structure of WiredTiger is a B-tree or

LSM-tree with a B-tree memory structure (T). How-

ever, as of MongoDB 4.2, only the B-tree storage struc-

ture is being used, and the LSM structure is not con-

figurable. Moreover, in the current implementation of

MongoDB, because of backward compatibility, the in-

ternal nodes of the B-tree do not contain the user-

configurable external identifier (id). Instead, as shown

in Fig. 4, the documents are stored in a B-tree (data B-

tree from now on) indexed by an internal system iden-

tifier. Then, there is a second B-tree (index B-tree from

now on) where the leaf nodes contain the system identi-

fiers of the data B-tree indexed by the user-configurable

external identifier. Thus, the id field behaves similar to

a typical secondary index. The size of leaves is not fixed

but capped with a maximum. All the collections and

their indexes share a pre-defined cache memory zone

(S), where all documents are brought in blocks (D).

When the cache is full, the blocks are evicted to leave

room for new blocks to be brought in. WiredTiger uses

an LRU-like cache eviction policy (L) to evict under-

used blocks. Since the index and the documents are in

two different B-trees, they behave independently in the

WiredTiger cache eviction policy.

We carried out different experiments on a sin-

gle MongoDB instance, randomly accessing documents

from various collections changing different parame-

ters. However, tests revealed inconsistencies concern-

ing MongoDB specification. In particular, we identi-

fied that the cache eviction policy implementation was

surprisingly prioritizing the eviction based on the col-

lection’s name. This is shown in Fig. 5, which depicts

memory allocation for five identical collections with the

same access frequency, being collection name the only

difference (the average cache distribution is measured

12 Moditha Hewasinghage et al.

 0

 5

 10

 15

 20

 25

 30

movies1 movies2 movies3 movies4 movies5

C
a

c
h

e
 a

llo
c
a

ti
o

n
 (

M
B

)

Collection name

Fig. 5: MongoDB cache policy prioritizing the name

after 50,000 queries). The authors informed MongoDB

about this issue and proposed a bug fix.7

Once the bug was solved (fixed in WiredTiger Re-

lease 3.2.1), we found three factors that affect the distri-

bution of the cache among the collections and their in-

dexes, namely access frequency, average document size,

and the number of documents. Fig. 6 shows the distri-

bution of the cache among different collections and their

primary indexes after several queries, once the cache

is full and stabilized after several eviction cycles (we

capped the memory of MongoDB to 256 MB, issued

50,000 random access queries on different collections

and took the measures by reading the cache metadata

of every collection at the end).

Figs. 6a–6c show the effects of the access frequency,

document size, and count on the cache distribution,

respectively. It is visible that the frequency of access

affects the distribution of the cache the most (as ex-

pected), while the impact of the document size and

count is smaller. As shown in Fig. 6b, the memory allo-

cated to the index decreases compared to that allocated

to data when the documents get larger. On the contrary,

when the document count changes, the memory used by

the index increases while the memory of data drops as

depicted by Fig. 6c.

We can apply Eqs. 7–13 under Eq. 19 with u = 0.808

for the saturation of the memory and Eqs. 21–26 to-

gether with Eq. 27 under Eq. 19 for the eviction in

MongoDB. Yet, MongoDB only keeps track of 300 pages

as eviction candidates in a queue. Each B-tree in use

is walked to fill out this queue. The number of pages

picked to fill this queue from a B-tree is proportional

to the current memory occupation of the tree. Hence,

Wd(C) in Eq. 25 is proportional to the size of the mem-

ory occupation. A running example of applying these

7 https://jira.mongodb.org/browse/WT-4732
8 http://source.wiredtiger.com/3.2.1/tune cache.html

(eviction target)

equations is presented in Appendix B.

Wd(C) =
picksd(C)

queue size

picksd(C) = queue size · Md(C) · Bsized
M

∴ Wd(C) =
Md(C) · Bsized

M
(27)

Other document stores can be included in our cost

model with an analysis of their specific design decisions.

For example, RethinkDB is a TDSL system similar to

the one of MongoDB.9

5 Experiments

In this section, we validate our cost model through ex-

periments with Couchbase Server and MongoDB. All

experiments were carried out on a single node with

Intel Xeon E5520, 24 GB of RAM running on De-

bian 4.9. Couchbase Server Community Edition version

5.1.1 was used with 1 GB dedicated to all the buckets.

We used MongoDB Community Edition version 4.2, al-

ready modified to fix the bug explained above7. We also

disabled the parallel execution of the eviction policy

to obtain more stable results with fewer repetitions of

the experiments. All experiments were conducted using

MongoDB Java driver 3.8.2 and Couchbase Java client

version 2.6.2. We conducted the experiments with hot

cache for both Couchbase Server and MongoDB varying

the frequency of access for MongoDB, bucket memory

quota for Couchbase Server, average document size, and

the number of documents for both. We generated syn-

thetic data with flat documents for our experiments.10

Despite nesting being relevant in evaluating different

designs (it would generate different document sizes, ac-

cess patterns and frequencies), it does not change the

cost model itself, but only its parametrization. We used

GEKKO Optimization Suite [1] to solve the systems of

equations for cache distribution.

We measured the runtime individually for 50,000

random access queries (accessing documents through an

index) in nanoseconds after the memory became stable

for each of the experiments and took the average. Then,

using the Pearson correlation coefficient, we measured

how our estimates are related to the actual runtime val-

ues. However, the query cost estimation formulas intro-

duced in Sect. 3 produce values without any unit. The

actual runtime requires a multiplication factor which

depends on external factors (i.e., hardware, operating

9 https://rethinkdb.com/
10 The data generation and the experimental setup can be
found in https://github.com/modithah/MongoExperiments

A Cost Model for Random Access Queries in Document Stores 13

 0

 10

 20

 30

 40

 50

0.1 0.2 0.3 0.4

C
a
c
h

e
 a

llo
c
a

ti
o

n
 (

M
B

)

Probability of access

Data
Index

(a) Access frequency

 0

 10

 20

 30

 40

 50

40 80 160 320 640

C
a
c
h

e
 a

llo
c
a

ti
o

n
 (

M
B

)

Average document size (bytes)

Data
Index

(b) Document size

 0

 10

 20

 30

 40

 50

2 4 8 16 32 64

C
a

c
h
e

 a
llo

c
a
ti
o

n
 (

M
B

)

Document count (*10
6
)

Data
Index

(c) Document count

Fig. 6: Effect of different parameters on cache distribution in MongoDB

system). Thus, to compare and plot the unitless es-

timated cost against the actual run time, we first do

a min-max normalization on the two series separately.

Then, the normalized series are shown in the same line

chart. This is a common approach used to compare in-

comparable data by making them dimensionless [29].

The schema used for all of the experiments is shown in

Listing 1. We used two integer fields for the primary

(id) and secondary index (s index) fields. The range of

the s index values is used to change the repetitions with

regard to Eq. 6, and the load field is used to adjust the

size of the document depending on the experiment.

Listing 1: Schema used for experiments

{
” id”: <int>,
”s index”: <int{range}>,
”load”: <String(n)>
}

5.1 Couchbase Server

The retrieval of the documents through the

primary index is done using the java client’s

bucket.get({randomid}) command. As discussed

in Sect. 4, Couchbase Server has fix-sized memory

quota per bucket. Therefore, the access frequency

does not affect the memory distribution. According

to Eqs. 1, 2, 16, and 17 the memory distribution

within a bucket depends on the average size of the

documents. Fig. 7a compares our estimate of the

memory distribution within a bucket using Eqs. 16

and 17 to the actual one. It is visible that the memory

used by the data increases as the size of the documents

grows.

Next, we used the memory distribution values in

our cost model in Eqs. 3 and 4. We changed the size

of the bucket and the average size of the stored doc-

uments and measured the average runtime for queries

with random access through the primary index. Fig. 7b

plots the estimated cost against the actual run time

for different bucket sizes. Our estimation shows that

there is a linear decrement of the run time when the

bucket size is increased. This is also visible through the

trend obtained by the actual runtime values. As shown

in Fig. 7c, the runtime gradually increases with the size

of the documents.

5.2 MongoDB

Our formulas for predicting memory distribution in

MongoDB involve estimating two key factors:

a) The number of queries required to saturate the

cache (by solving the system of equations Eqs. 7

to 13 under Eq. 19)

b) The distribution of the cache among different col-

lections and indexes (by solving the system of equa-

tions Eqs. 21 to 26 together with Eq. 27 under Eq. 19

replacing |Q| from saturation formulas).

For all of the experiments, we executed 50,000 ran-

dom access queries, measured the cache distribution af-

ter every 100 queries, and obtained the average of 10

runs (the system was restarted after each run to reset

the cache). We had to measure after every 100 queries

because more frequent cache status requests affected

the cache policy and the final memory distribution. We

scrutinize the values of accessing a single collection and

two collections. We varied the number of documents N ,

average document size Sized(C), frequency of accessing

a collection P (C, q), and the repetitions of the indexed

value Repv(C) as parameters of concern.

For a single collection, we included four tests:

Test 1 Fix the number of documents (13 million) and

repetitions (1) while changing the average doc-

ument size.

Test 2 Fix the average document size (80 B) and rep-

etitions (1) while changing the number of docu-

ments.

Test 3 Fix the overall collection size and repetitions (1)

while changing both document size and count at

the same time.

14 Moditha Hewasinghage et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

40 80 160 320 640

M
e
m

o
ry

 (
M

B
)

Document Size (bytes)

Data
Metadata

Data−pred
Metadata−pred

(a) Couchbase cache usage
prediction

 0

 0.2

 0.4

 0.6

 0.8

 1

100 150 200 250 300

N
o
rm

a
liz

e
d
 v

a
lu

e

Bucket size (MB)

Estimate
Actual Runtime

(b) Time estimate with dif-
ferent bucket size

 0

 0.2

 0.4

 0.6

 0.8

 1

40 80 160 320 640

N
o
rm

a
liz

e
d
 v

a
lu

e

Document size (bytes)

Estimate
Actual Runtime

(c) Time estimate with different
document size

Fig. 7: Estimating the memory and time estimation in Couchbase Server

 0

 1000

 2000

 3000

 4000
 5000

 6000

 7000

 8000

 9000

40 80 160 320 640

N
u

m
b

e
r

o
f

Q
u

e
ri
e

s

Size (bytes)

Actual
Estimated

(a) Document size

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

2 4 8 16 32 64

N
u

m
b

e
r

o
f

Q
u

e
ri
e

s

Count (millions)

Actual
Estimated

(b) Document count

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

40 80 160 320 640

13000 6500 3250 1625 812.5

N
u

m
b

e
r

o
f

Q
u

e
ri
e

s

Count (*1000)

Size (bytes)

Actual
Estimated

(c) Size and count

Fig. 8: Predicting saturation for a single collection with different parameters in MongoDB

Test 4 Fix both the average document size (80 B) and

the number of documents (13 million) while

changing the repetitions (secondary index).

For two collections, we conducted three other tests:

Test 5 Fix the document count (13 million), repetitions

(1), and the frequency (50%) while changing the

average size of the documents.

Test 6 Fix the average document size (320 B), repeti-

tions (1), and the frequency (50%) while chang-

ing the number of documents.

Test 7 Fix the average document size (1 kB), repeti-

tions (1), and the number of documents (1 mil-

lion) while changing the frequency.

Using the java client we issued collection.find

-One(new BasicDBObject(" id", {random id})) for

tests using primary indexes (Tests 1, 2, 3, 5, 6, and

7) and collection.findOne(new BasicDBObject

("s index", {randomvalue})) for Test 4 involving

the secondary indexes.

Predicting Saturation We used Eqs. 7–13 under

Eq. 19 to estimate the saturation point (|Q|) and com-

pared it with the average number of queries (different

runs) before eviction starts.

Fig. 8 illustrates the behavior of the saturation point

of a single collection. Fig. 8a demonstrates that the

saturation point is almost constant, with a slight de-

crease when the size of the documents grow on con-

ducting Test 1. This is because the documents are ac-

cessed in blocks, and before saturation, there are many

cache misses leading to bringing new blocks into mem-

ory. The number of requests remains almost constant

because the probability of a miss is close to one in all

cases, given the huge number of documents being used.

As shown in Fig. 8b, with Test 2, it takes fewer queries

to saturate the cache when the number of documents

grows. This is due to both index and data B-trees being

bigger with the higher number of documents, leading to

fewer cache hits and resulting in fewer queries needed to

saturate the cache. The impact of the document count

is more significant than that of the document size as

depicted in Fig. 8c, which shows that more queries are

needed to saturate as the number of documents grows,

and the document size shrinks in Test 3. This is be-

cause, the smaller the number of documents in the col-

lection, the higher the hit rate, consequently higher the

number of queries required.

We can also see how many queries are required

to saturate the cache when accessing two collections

(Fig. 9). The result of Test 5 is shown in Fig. 9a, where

we clearly see that a few more queries are needed to

saturate the cache (there is a slight downward trend)

when the document size difference is higher to saturate

A Cost Model for Random Access Queries in Document Stores 15

 3000

 4000

 5000

 6000

 7000

 8000

[40,1024] [80,640] [160,320]

N
u

m
b

e
r

o
f

Q
u

e
ri
e

s

Size (bytes)

Actual
Estimated

(a) Document size

 3000

 4000

 5000

 6000

 7000

 8000

[1,64] [2,32] [4,16] [8,8]

N
u

m
b

e
r

o
f

Q
u

e
ri
e

s

Count (millions)

Actual
Estimated

(b) Document count

 3000

 4000

 5000

 6000

 7000

 8000

0.005 0.01 0.02 0.04 0.08 0.16 0.32

N
u

m
b

e
r

o
f

Q
u

e
ri
e

s

Frequency

Actual
Estimated

(c) Access frequency

Fig. 9: Predicting saturation for two collections with different parameters for MongoDB

 0

 50

 100

 150

 200

40 80 160 320 640

M
e
m

o
ry

 (
M

B
)

Size (bytes)

Data
Index

Data−pred
Index−pred

(a) Document size

 0

 50

 100

 150

 200

2 4 8 16 32 64

M
e
m

o
ry

 (
M

B
)

Count (millions)

Data
Index

Data−pred
Index−pred

(b) Document count

 0

 50

 100

 150

 200

40 80 160 320 640

13000 6500 3250 1625 812.5

M
e
m

o
ry

 (
M

B
)

Size (bytes)

Count (*1000)

Data
Index

Data−pred
Index−pred

(c) Size and count

Fig. 10: Predicting cache distribution for a single collection with different parameters in MongoDB

 0

 20

 40

 60

 80

 100

[40,1024] [80,640] [160,320]

M
e
m

o
ry

 (
M

B
)

Size (bytes)

Data1
Index1
Data2

Index2

Data1−pred
Index1−pred
Data2−pred

Index2−pred

(a) Document size

 0

 20

 40

 60

 80

 100

[1,64] [2,32] [4,16] [8,8]

M
e
m

o
ry

 (
M

B
)

Count (millions)

Data1
Index1
Data2

Index2

Data1−pred
Index1−pred
Data2−pred

Index2−pred

(b) Document count

 0

 50

 100

 150

 200

 250

0.01 0.02 0.04 0.08 0.16 0.32

M
e
m

o
ry

 (
M

B
)

Frequency (Collection 1)

Data1
Index1
Data2

Index2

Data1−pred
Index1−pred
Data2−pred

Index2−pred

(c) Access frequency

Fig. 11: Predicting cache distribution for two collections with different parameters in MongoDB

the cache due to the higher hit rate of smaller docu-

ment sizes. The saturation point is a bit lower than of

the single collection, because of the space taken by the

internal nodes pushing the memory to fill earlier (i.e., K

is bigger). We noticed that the effect of the document

size is more evident when there is a smaller number

of documents (1 million). The effect of the document

count (Test 6) is also negligible, demonstrated through

Fig. 9b, whose values are comparable to the ones of sin-

gle collections (Fig. 8b) beyond 16 million documents

(notice that the sum of both collections is always above

that). The only remarkable difference is that the satu-

ration point is lower than that of a single collection due

to more internal nodes being pinned. Finally, Fig. 9c

shows the results of the saturation point of Test 7. We

can see that more queries are needed to saturate the

cache when the access frequency is low. The real reason,

however, is that there is an opposite collection which is

accessed with complementary frequency for each of the

points (e.g., 0.995 for 0.005). The opposite collection

has obviously more documents in the cache due to the

higher access frequency leading to higher hit rates, and

as a result, more queries are required to saturate the

cache. Thus, the more balanced the frequencies of col-

lections, the fewer queries are needed to saturate the

cache.

Predicting the Cache Distribution Once we know

when the memory saturates and starts being stable, we

can analyze how memory is distributed among collec-

tions and indexes.

16 Moditha Hewasinghage et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

40 80 160 320 640

N
o
rm

a
liz

e
d
 v

a
lu

e

Size (bytes)

Actual Runtime
Estimate
Baseline

(a) Document size

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32 64

N
o
rm

a
liz

e
d
 v

a
lu

e

Count (millions)

Actual Runtime
Estimate
Baseline

(b) Document count

 0

 0.2

 0.4

 0.6

 0.8

 1

0.04 0.08 0.16 0.32 0.68 0.84 0.92 0.96

N
o
rm

a
liz

e
d
 v

a
lu

e

Frequency

Actual Runtime
Estimate
Baseline

(c) Access frequency

Fig. 12: Time estimation comparison for different parameters in MongoDB

The outcome of the memory distribution for Test 1

is shown in Fig. 10a. When increasing the document

size, the amount of memory devoted to data blocks

grows while the memory for index blocks decreases.

This happens because the data B-tree becomes larger

with larger document sizes, and it occupies more mem-

ory, but the index B-tree size remains the same. How-

ever, the effect is minimal. Fig. 10b shows the results

of Test 2 in measuring the effect of the number of doc-

uments on the memory distribution. The size of both

B-trees grows with the number of documents. However,

the index B-tree grows slower than the data B-tree, re-

sulting in higher hit rates and more memory. The in-

ternal blocks of the B-tree increases as the number of

documents increase. These internal blocks could also be

getting evicted in the experiments whereas we assume

them to be pinned in the cache. Thus, our estimation

error gets higher as the number of documents increase.

When we change both the size and the number of docu-

ments, keeping constant the collection size as per Test 3,

we observe the trend augmented as shown in Fig. 10c

(note that the axis of the number of documents is re-

versed due to the inverse relationship between the docu-

ment count and the document size as we try to maintain

the same overall collection size), because both factors

favor the growth of memory used for the data (i.e., the

less and bigger documents the more memory devoted

to data and the less to index). When the repetitions

increase in Test 4, a single index entry points to multi-

ple documents, thus increasing the memory used by the

data and decreasing the index. Our cost model is able

to predict the memory distribution with a maximum

error of 4%.

Fig. 11 illustrates in the corresponding subfigures

the effect of the document size, number of documents,

and the access frequency when accessing two collec-

tions. The gap between the memory used by the data

decreases when the average document sizes are closer

in Test 5, while the memory used by the index remains

constant (Fig. 11a). Fewer documents fit in memory

when the documents are larger, resulting in more cache

misses and more data blocks need to be brought into

the cache. When looking at Fig. 11b (Test 6), the mem-

ory used by the index of the first collection (index-1)

increases while the one for data of the second collec-

tion (data-2) decreases when the difference between

the number of documents of the two collections de-

creases. The memory used by data-1 slightly increases

and index-2 decreases and align with data-2 and index-

1 when the counts become identical. When a collection

has more documents, there are more pinned internal

nodes, and there are more cache misses requiring to

bring more data and index blocks into the memory.

When the collections are identical, the memory usage is

similar. With regard to Fig. 11c (Test 7), the memory

used by both data and index increases with the access

frequency. When a collection is accessed with a higher

rate, the evictability of a block becomes lower, resulting

in more blocks residing in memory.

Query Cost Estimation Finally, once we have the

memory distribution, we can analyze the performance

of the system in a stable state using the generic cost

functions. As illustrated by Fig. 12a (Test 1), the run-

time increases as the size of the documents increases.

Since the memory size is fixed, the number of docu-

ments that fit in the cache gets smaller resulting in

more cache misses, leading to fetching more documents

from the disk and increasing the runtime. As shown in

Fig. 12b (Test 2), in the case of fixed-document size

increasing the document count, the probability of a

cache hit is higher on smaller document counts, and the

runtime rises with the number of documents. The run-

time gets lower as the frequency of access gets higher,

as demonstrated by Fig. 12c (Test 7). This is because

the collections with higher access frequency have more

memory, which creates higher hit rates and lower run-

times. We calculated the miss rates of the hieracical

cost model of Manegold et al. [20] and plotted the es-

timated costs as a baseline in Figs. 12a and 12b for

A Cost Model for Random Access Queries in Document Stores 17

different document sizes and counts, respectively. We

also include a horizontal line at 0.5 in the approxima-

tion in Fig 12c as all the cost estimations of Manegold

et al. coincide in this case (an in depth discussion of

that approach can be found in Sect. 5.4).

5.3 Accuracy of Prediction

Regarding our memory predictions, on looking at

Fig. 7a, we see that our estimated trend is identical

to the actual memory distribution of Couchbase Server

with an average error of 3%. For MongoDB, this is a

bit more complex, since we need the number of queries

required to saturate the memory (Figs. 8 and 9), which

is in general slightly overestimated, for an average error

of 3% and a correlation of 0.995. By using it in solving

the corresponding system of equations, we can predict

memory usage of the data and indexes and accurately

find the trend in all the cases with an under-estimation

of the data while over-estimating the index, for an av-

erage error in all the scenarios of 6% for index and 5%

for the data. As shown in Figs. 10a–11c, the estimates

of the memory usage are highly correlated (0.995) with

the actual values. With regard to Figs. 11a and 11b,

prediction for index-1 and data-1 are almost perfect,

but we underestimate data-2 and overestimate index-2.

The highest error we encountered is with the predic-

tion of the data-2 when changing the document size.

When looking into Fig. 11c, we can see that the error

increases for the number of data pages when increasing

the probability of accessing the collection.

Overall, we have successfully predicted the alloca-
tion of the memory with a maximum error in all the

experiments of 13% and an average error of 9% for

the different number of documents, average document

sizes, probability of access, and available memory. How-

ever, when it comes to the runtime estimates, the ef-

fect of this error becomes negligible. Regarding run-

time predictions, we manage to find the runtime trend

in Couchbase Server with a high correlation (0.93) be-

tween all our estimates and the actual values (values

from Figs. 7b and 7c). The correlation is even higher

(0.94) for MongoDB (values from Figs. 12a–12c). There

is a slight difference between our estimate and the ac-

tual value when the access frequency is very low and

very high (Fig. 12c), because the measured runtime val-

ues are very close to each other in extreme cases (three

milliseconds). Thus, our approach enables us to iden-

tify the overall effect of the design decisions on runtime.

This runtime, together with other parameters such as

storage space and heterogeneity of a collection, can be

used to evaluate design alternatives.

5.4 Comparison to Other Approaches

To the best of our knowledge, this work is the first

generic cost model for document stores. However, we

can compare our cost estimations against a generic cost

model for hierarchical memory systems (hereinafter re-

ferred as the hierarchical cost model) [20]. This cost

model is based on in-memory database systems and

can be extended to the disk I/O layer. However, un-

like the database system discussed in the hierarchical

cost model, which relies only on the operating system

cache, document stores have their own cache manage-

ment system. Our cost model has the capacity to han-

dle these implementation-specific cache policies, and we

have shown it by applying them on two different docu-

ment stores, Couchbase Server and MongoDB.

Random access in the hierarchical cost model is

equivalent to the random access queries discussed in

this paper. Nevertheless, it requires the number of ran-

dom accesses performed to model the cost, which is

not required in our approach that only relies on the

stability of the cache. Moreover, the Sterling numbers

and the factorials used in the calculations quickly grow

quite large making the calculations almost impossible

for large numbers (the largest Sterling number the au-

thors have used in their experiments is 1024 which cor-

responds to the number of L1 cache lines [19]) unless

you make mathematical approximations on the formu-

las, thus increasing the error. Therefore, the approach

used in the hierarchical cost model is not scalable to

the experiments that we have carried out as database

caches are larger than 1024 blocks. However, we sub-

stituted Eq. 8 for the expected value whose result for

small values exactly coincide.

The concurrent execution formulas in the hierarchi-

cal cost model assume that the cache contains a fraction

of data regions involved proportional to their footprint

size (i.e., the size of the collection). However, our exper-

imental results show otherwise, especially with differ-

ent access frequencies (see Fig. 6) and eviction policies.

The pattern is even more complex when it comes to sec-

ondary indexes where a sequential accesses on the index

are followed by multiple random accesses to the docu-

ments. The comparison results in Figs. 12a–12c further

confirm that a estimation specific for document stores,

is clearly superior to a generic approach for caching.

6 Conclusions

Document stores have now become one of the most

widely adopted NoSQL stores. However, the schema de-

sign concepts in them allows the end users to have mul-

tiple designs depending on their needs. These choices

18 Moditha Hewasinghage et al.

are based on generic rules and guidelines [13], as op-

posed to a formal methodology like normalization in

RDBMS. However, the lack of standards or cost models

makes it challenging to determine which design would

perform better than the others. Thus, we introduced

a generalized cost model for document stores, with a

pluggable component for storage structures and mem-

ory management decisions. The model is applicable to

a B-tree based disk storage with hashed or direct mem-

ory mappings with pre-determined or shared memory

associativity with LRU cache eviction policy.

We evaluated our formal model using MongoDB and

Couchbase server as exemplars with different implemen-

tation details in the memory management under a fixed

workload, and estimated memory usage with a mini-

mum precision of 13% and an average precision of 91%

overall. Nevertheless, the effect of this error on the fi-

nal query cost is minimal, and our estimates are highly

correlated (0.953 considering both systems) to the ac-

tual execution times. By using this same model, we also

managed to find flaws in existing implementations and

suggested the corresponding improvements, that have

already been accepted by the corresponding communi-

ties of developers.

As future work, we plan to extend the cost model

into native JSON storage in RDBMS. Through this,

we will be able to evaluate the performance of hav-

ing storage solutions in RDBMS, thus enabling data

design techniques beyond normalization theory. More-

over, the cost model formulas can be further enhanced

to other document stores with different memory and

storage implementations. By having such a cost model,

we can estimate the cost of a given design and query

workload. We have already implemented DocDesign, a

tool to determine the optimal schema design for doc-

ument stores using the cost model discussed here to-

gether with other parameters such as storage require-

ments for a specific use case and workload [12]. Using

approaches such as multi-criteria optimization together

with this cost model, will facilitate the automation of

the design rather than manually applying generic rules.

Acknowledgements This research has been funded by the
European Commission through the Erasmus Mundus Joint
Doctorate Information Technologies for Business Intelligence
- Doctoral College (IT4BI-DC)

References

1. L. D. R. Beal, D. C. Hill, R. A. Martin, and J. D. Heden-
gren. GEKKO Optimization Suite. Processes, 6(8):106–
131, 2018.

2. E. Bertino and P. Foscoli. On Modeling Cost Functions
for Object-Oriented Databases. IEEE Transactions on
Knowledge and Data Engineering, 9(3):500–508, 1997.

3. R. Cattell. Scalable SQL and NoSQL data stores. SIG-
MOD Record, 39(4):12–27, 2010.

4. A. Dan and D. Towsley. An Approximate Analysis of
the LRU and FIFO Buffer Replacement Schemes. SIG-
METRICS Performance Evaluation Review, 18(1):143–
152, 1990.

5. A. de la Vega, D. Garćıa-Saiz, C. Blanco, M. E. Zor-
rilla, and P. Sánchez. Mortadelo: Automatic generation
of NoSQL stores from platform-independent data models.
Future Generation Computer Systems, 105, 2020.

6. R. Fagin. Asymptotic Miss Ratios Over Independent
References. Journal of Computer and System Sciences,
14(2):222–250, 1977.

7. H. Garcia-Molina and K. Salem. Main Memory Database
Systems: An Overview. IEEE Transactions on Knowl-
edge and Data Engineering, 4(6):509–516, 1992.

8. G. Gardarin, J. Gruser, and Z. Tang. A Cost Model for
Clustered Object-Oriented Databases. In International
Conference on Very Large Data Bases, pages 323–334,
1995.

9. G. Gou and R. Chirkova. Efficiently Querying Large
XML Data Repositories: A Survey. IEEE Transactions
on Knowledge and Data Engineering, 19(10):1381–1403,
2007.

10. F. Guo and Y. Solihin. An Analytical Model for Cache
Replacement Policy Performance. SIGMETRICS Per-
formance Evaluation Review, 34(1):228–239, 2006.

11. R. Hecht and S. Jablonski. NoSQL Evaluation: A Use
Case Oriented Survey. In IEEE International Conference
on Cloud and Service Computing, pages 336–341, 2011.

12. M. Hewasinghage, A. Abelló, J. Varga, and E. Zimányi.
DocDesign: Cost-Based Database Design for Document
Stores. In International Conference on Scientific and
Statistical Database Management (SSDBM), 2020.

13. A. A. Imam, S. Basri, R. Ahmad, J. Watada, M. T.
Gonzalez-Aparicio, and M. A. Almomani. Data Modeling
Guidelines for NoSQL Document-Store Databases. In-
ternational Journal of Advanced Computer Science and
Applications, 9(10):544–555, 2018.

14. Y. E. Ioannidis. Query Optimization. ACM Computing
Surveys, 28(1):121–123, 1996.

15. B. Jiang, P. Nain, and D. Towsley. LRU Cache under
Stationary Requests. SIGMETRICS Performance Eval-
uation Review, 45(2):24–26, 2017.

16. J. Kim, W. Lee, and K. Lee. The Cost Model for XML
Documents in Relational Database Systems. In IEEE
International Conference on Computer Systems and Ap-
plications, pages 185–187, 2001.

17. W. F. King III. Analysis of Demand Paging Algorithms.
In IFIP Congress (1), pages 485–490, 1971.

18. S. Lightstone, T. J. Teorey, and T. P. Nadeau. Phys-
ical Database Design: the database professional’s guide
to exploiting indexes, views, storage, and more. Morgan
Kaufmann, 2007.

19. S. Manegold, P. Boncz, and M. Kersten. Generic
database cost models for hierarchical memory systems.
[INS]. CWI., (Technical Report INS-R0203), Jan. 2002.

20. S. Manegold, P. A. Boncz, and M. L. Kersten. Generic
Database Cost Models for Hierarchical Memory Systems.
In International Conference on Very Large Data Bases,
pages 191–202, 2002.

21. N. Megiddo and D. S. Modha. Outperforming LRU with
an Adaptive Replacement Cache Algorithm. IEEE Com-
puter, 37(4):58–65, 2004.

A Cost Model for Random Access Queries in Document Stores 19

22. J. Michels, K. Hare, K. Kulkarni, C. Zuzarte, Z. H. Liu,
B. Hammerschmidt, and F. Zemke. The New and Im-
proved SQL: 2016 Standard. ACM SIGMOD Record,
47(2):51–60, 2018.

23. M. J. Mior, K. Salem, A. Aboulnaga, and R. Liu. NoSE:
Schema design for NoSQL applications. IEEE Transac-
tions on Knowledge and Data Engineering, 29(10), 2017.

24. M. T. Özsu and P. Valduriez. Principles of Distributed
Database Systems 4th ed. Springer Science & Business
Media, 2020.

25. R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw-Hill, Third edition, 2003.

26. J. Schindler. I/O Characteristics of NoSQL Databases.
Proceedings of the VLDB Endowment, 5(12):2020–2021,
2012.

27. A. J. Smith. Cache Memories. ACM Computing Surveys,
14(3):473–530, 1982.

28. A. J. Smith. Cache Evaluation and the Impact of Work-
load Choice. SIGARCH Computer Architecture News,
13(3):64–73, 1985.

29. N. Vafaei, R. A. Ribeiro, and L. M. Camarinha-Matos.
Data normalisation techniques in decision making: case
study with TOPSIS method. International Journal of
Information and Decision Sciences, 10(1):19–38, 2018.

30. T. Vajk, L. Deák, K. Fekete, and G. Mezei. Automatic
NoSQL schema development: A case study. In Artificial
Intelligence and Applications, 2013.

31. C. Waldspurger, T. Saemundsson, I. Ahmad, and
N. Park. Cache Modeling and Optimization using Minia-
ture Simulations. In USENIX Annual Technical Confer-
ence, pages 487–498, 2017.

32. J. Yao. An Efficient Storage Model of Tree-Like Struc-
ture in MongoDB. In IEEE International Conference on
Semantics, Knowledge and Grids, pages 166–169, 2016.

A Calculating Internal B-tree Blocks

We calculated the probability of a leaf block of data B-tree
in memory being requested P req

d (C) as 1− (1−SF (C))Rd(C),
in Eq. 10. . Hence, we continue the calculation of the internal
nodes of the data B-tree as follows.

If a document is in the cache, the data block containing
the document and the internal block containing the reference
entry to that data block must be in the cache. On the con-
trary, if an internal block is not in the cache, none of the
data blocks pointed by the reference entries in it can be in
the cache. Therefore, for an internal block not to be in the
cache, all of the reference entries of the block should refer-
ence blocks, not in the cache. Thus, since the probability of
a single reference entry referring to a leaf block not in the
cache is 1 − P req

d (C), and there are Rint(C) reference entries
in a single internal block, the probability of an internal block
in memory being requested can be defined as follows.

P req
int (C) = 1− (1− P req

d (C))Rint(C) (28)

Moreover, we estimate the number of internal blocks pointing
to the leaves, Inter(C) as follows.

Inter(C) =

⌈
d |C|
Rd(C)

e

Rint(C)

⌉
(29)

Finally, we can state the cached internal blocks Mint(C) as
follows.

Mint(C) = Inter(C) ∗ P req
int (C) (30)

B Cost Calculation Examples for MongoDB

We present the application of our cost model in MongoDB
with two examples. First, a single collection accessed through
primary index with complete set of equations and calcula-
tions. Second, we present a real world usecase with only the
initial calculation of the inputs because the complexity and
the number of equations increase in such scenario.

B.1 Single Collection with Primary Index

Let us take an scenario with Test 1 (13 million documents)
and average document size of 40 bytes. First, we calculate the
average number of documents and index entries in a block,
together with the total number of data and index blocks as
follows (by applying Eqs.1 and 2).

|C| = 13 ∗ 106 Bsized = 32Kb Bsizei = 32Kb

Sized(C) = 40b Sizei id
(C) = 22b F = 0.7

Rd(C) = 0.7 ·
⌊32768

40

⌋
= 573

R id(C) = 0.7 ·
⌊32768

22

⌋
= 1042

Bd(C) =
⌈13 ∗ 106

573

⌉
= 22676 K = 10Mb M = 256Mb

B id(C) =
⌈13 ∗ 106 ∗ 1

1042

⌉
= 12473 u = 0.80

Since we have only the primary index, Rep id = 1,
P (C, id) = 0.5, and P (C) = 0.5. Now, applying Eqs. 7–13
together with Eqs. 4 and 19, we come up with the following
set of equations.

Req id(C) = |Q| · 0.5

E id(C) = 13 ∗ 106 ∗
(

1−
(13 ∗ 106 − 1

13 ∗ 106

)Req id(C)
)

SF id(C) =
E id(C)

13 ∗ 106
=

(
1−

(13 ∗ 106 − 1

13 ∗ 106

)Req id(C)
)

SF (C) = SF id(C) =

(
1−

(13 ∗ 106 − 1

13 ∗ 106

)Req id(C)
)

P req
d (C) = 1− (1− SF (C))573

P req
id (C) = 1− (1− SF id(C))1042

M sat
d (C) = 22676 ∗ P req

d (C) M sat
id (C) = 12473 ∗ P req

id (C)

M sat
d (C)∗32768+M sat

id (C)∗32768 = ((0.8∗256)−10)∗10242

By solving the above set of equations, we obtain the values for
|Q| = 4242.85, M sat

d (C) = 3038.98, and M sat
id (C) = 2847.82.

Using these values at the memory saturation point, we can
come up with the following set of equations by applying Eqs.
21–27 together with Eqs. 4 and 19.

P in
d (C) = P out

d (C) P in
id(C) = P out

id (C)

Shotsind (C) = 3038.98 ·
Md(C)

22676

Shotsinid(C) = 2847.82 ·
M id(C)

24962

Ed(C) = Md(C)− Shotsind (C)

E id(C) = M id(C)− Shotsinid(C)

20 Moditha Hewasinghage et al.

Wd(C) =
Md(C) · 32768

((0.8 ∗ 256)− 10) ∗ 10242

W id(C) =
M id(C) · 32768

((0.8 ∗ 256)− 10) ∗ 10242

P out
d (C) =

Wd(C) · E
d
(C)

Md(C)

Wd(C) · E
d
(C)

Md(C)
+ W id(C) · E

id
(C)

M id(C)

P out
id (C) =

W id(C) · E
id
(C)

M id(C)

Wd(C) · E
d
(C)

Md(C)
+ W id(C) · E

id
(C)

M id(C)

P in
d (C) =

3038.98 · (1− 0.5)

3038.98 · (1− 0.5) + 2847.82 · (1− 0.5)
= 0.52

P in
id(C) =

2847.82 · (1− 0.5)

3038.98 · (1− 0.5) + 2847.82 · (1− 0.5)
= 0.48

Md(C) ∗ 32768 + M id(C) · 32768 = ((.8 ∗ 256)− 10) ∗ 10242

By solving the above equations we obtain Md(C) = 2847.82
and M id(C) = 3038.98. By applying these values on Eqs. 3
and 4 we get a relative cost for a query through id as follows.

Pd(C) =
2847.82

22676
= 0.12 Pd(C) =

3038.98

12473
= 0.24

CostRand = 2− (0.24 + 0.12) = 1.64

B.2 Multiple Collections

Let us take a use-case of storing the data of authors and their
books. Let’s assume that we chose to have a reference to the
authors inside each of the books (as shown in Listing 2) out
of the possible design choices. Moreover, let us also assume
that each author has 5 books and each book has 3 authors
on average.

Listing 2: Example schema of a document store

”Books”:{
” id”: <int>,
”B NAME”: <varchar>,
”Authors”: [”A ID”: <int>]

},
”Authors”:{

” id”: <int>,
”A NAME”: <varchar>

}
In this scenario, we have two collections and three indexes

(two primary on each of the collections and one secondary
index on A ID in Books). We calculate the number of docu-
ments/indexes in a block and the total number of blocks for
each of these five B-trees as follows.

|Books| = 4 ∗ 106 |Authors| = 2.5 ∗ 106 Bsized/i = 32Kb

Sized(Books) = 265b Sized(Authors) = 150b F = 0.7

Sizei(Books/Authors) = 22b Rd(Authors) = 152

Rd(Books) = 89 Bd(Authors) = 16448

Bd(Books) = 44944

R id(Books) = RA ID(Books) = R id(Authors) = 1042

B id(Books) = 3843 B id(Authors) = 2402

MultA ID(Books) = 5 BA ID(Books) = 19213

The following queries are executed with equal probability
(0.25) on our documents store.

Q1 Find the author name by id
Q2 Find the book name by id
Q3 Find all the book names with a given id of an author
Q4 Find all the author names with a given id of a book

Since our cost model depends on the access probability
on each of the B-tree structures, we calculate them as shown
in Table 2. In Q3, we have single access to the secondary
index on A ID and five access to the data B-tree. Q4 involves
two queries, first, one to retrieve a book through its id and
then on average, there would be 3 A IDs which need to be
retrieved as three independent requests through id of the
Authors collection.

Table 2: Calculating the access probability of the B-

trees

Index usage Collection usage
Book Author

Book Author
id A ID id

Q1 - - 0.25 - 0.25
Q2 0.25 - - 0.25 -
Q3 - 0.25 5*0.25 -
Q4 0.25 - 3*0.25 0.25 0.75

Total 0.5 0.25 1 1.75 1
Probability 0.111 0.056 0.222 0.389 0.222

Now, we have the final input for our cost model, together
with RepA ID(Books) by applying Eq. 6, as follows:

P (Book) = 0.389 P (Book, id) = 0.111

P (Book,A ID) = 0.056

P (Author) = 0.222 P (Author, id) = 0.222

RepA ID(Books) =
5 ∗ 2.5 ∗ 106

4 ∗ 106
= 3.125

Now, we can apply Eqs. 7–13 together with Eqs. 4 and 19
on the inputs to obtain the values for memory distribution at
the saturation point. Then, using these results on Eqs. 21–
27 together with Eqs 4 and 19, we obtain the following final
memory distribution. These calculations are similar to the
example in Appendix B.1, but we omit listing them out due
to their extensiveness.

Md(Books) = 2532 M id(Books) = 638

MA ID(Books) = 351

Md(Authors) = 1401 M id(Authors) = 935

Finally, we calculate the miss rates and the relative cost
of each of the queries as follows.

Pd(Books) =
2532

44944
= 0.056 P id(Books) =

638

3843
= 0.166

PA ID(Books) =
351

19213
= 0.018 Pd(Authors) =

1401

16448
= 0.08

P id(Authors) =
935

2402
= 0.38

Cost(Q1) = 2− (0.38 + 0.08) = 1.54

Cost(Q2) = 2− (0.166 + 0.056) = 1.778

Cost(Q3) = 1− 0.018 + 5 ∗ (1− (0.056)) = 5.702

Cost(Q4) = 2− (0.166 + 0.056) + 3 ∗ (2− (0.38 + 0.08))

= 6.398

