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Abstract With the broad adoption of mobile devices,
notably smartphones, keyword-based search for con-

tent has seen increasing use by mobile users, who are
often interested in content related to their geographi-
cal location. We have also witnessed a proliferation of

geo-textual content that encompasses both textual and
geographical information. Examples include geo-tagged
microblog posts, yellow pages, and web pages related to
entities with physical locations. Over the past decade,

substantial research has been conducted on integrat-
ing location into keyword-based querying of geo-textual
content in settings where the underlying data is as-

sumed to be either relatively static or is assumed to
stream into a system that maintains a set of continu-
ous queries. This paper offers a survey of both the re-

search problems studied and the solutions proposed in
these two settings. As such, it aims to offer the reader a
first understanding of key concepts and techniques, and
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it serves as an “index” for researchers who are inter-
ested in exploring the concepts and techniques under-

lying proposed solutions to the querying of geo-textual
data.
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1 Introduction

We have witnessed a rapid proliferation of geo-textual,
or spatio-textual, data over the last decade. One ex-

ample of such data is web pages with associated ge-
ographical information. Other examples include geo-
tagged microblog posts (e.g., geo-tagged tweets from

Twitter1) that contain both text and location infor-
mation; geo-tagged photos from social photo sharing
services (e.g., Flickr2 and Instagram3) that host pho-
tos with both descriptive tags and geographical infor-
mation; check-ins from location-based social networks
(e.g., Foursquare4); reviews of Points of Interest (POI)
on local-business websites (e.g., Yelp5 and TripAdvi-

sor6) containing both text and locations; and online
local or regional news comprising text documents and
location tags.

Such geo-textual content is available from a range
of sources [46]. By 2014, more than 40 million geo-
referenced photos were posted on Flickr, and over
one million geo-tagged articles were available on
Wikipedia [114]. More than 10 million geo-tagged

1 https://twitter.com/
2 https://www.flickr.com/
3 https://www.instagram.com/
4 https://foursquare.com/
5 https://www.yelp.com/
6 https://www.tripadvisor.com/
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2 Zhida Chen et al.

tweets are posted daily on Twitter [160], and some
8 million check-ins are submitted to Foursquare per
day [1]. By June, 2019, the cumulative number of re-
views of businesses on Yelp reached 192 million [6].
In addition to the textual and geo-spatial information,
geo-textual content may include a wide range of other
information, such as the user who posted the content,
the content creation time, content category informa-
tion, and ratings.

Next, with the proliferation of smartphones, we have
witnessed an increasing demand for easy access to geo-
textual data. Specifically, the querying of geo-textual
data has occurred in two settings: one where the data
is assumed to be relatively static, but where queries
that need to be processed arrive continuously; and one
where the data streams into the system that needs to
maintain up-to-date answers to a relatively static or
dynamic set of continuous queries.

In the first setting, updates, including insertions
and deletions, to the data occur at a relatively low

pace. A key challenge is to be able to process high vol-
umes of incoming queries with low latency. While the
queries in the first setting are conventional one-time

queries, the queries in the second setting are continu-
ous queries—queries that are registered in the system
and for which up-to-date results need to be maintained
as data streams into the system until the queries are de-

registered. Such queries are also called standing queries.

Many studies in both settings are reported in the
literature. This paper covers the specific problem defi-
nitions in these settings and also offers insight into the
solutions provided, thus offering an in-depth survey of

studies in the two settings.

Compared with previous surveys related to spatial
keyword queries [20,36,47,109,111], this study is more
comprehensive in that it covers a broader range of
queries and presents the high-level ideas underlying the
algorithms proposed for answering these queries. Pre-
vious surveys cover fewer types of queries and do not
cover the ideas of the proposed algorithms. For exam-

ple, Cao et al [20] do not cover querying in road net-
works (Section 3.2) and querying streaming data (Sec-
tion 5), Mahmood et al [111] discuss geo-textual indices
that were proposed between 2010 and 2017, but do not
cover query definitions or algorithms, Chen et al [36]
do not cover many standard query extensions (Sec-
tion 3.1.2) and localized event detection(Section 5.2),
and the book [109] does not cover many standard query
extensions (Section 3.1.2) and query modification (Sec-
tion 3.1.6).

A notable recent book [109] offers an overview of
existing centralized and distributed solutions to spa-
tial keyword querying. It classifies existing studies ac-

cording to the spatial keyword predicates used in the
queries, including spatial keyword selection predicates,
spatial keyword group predicates, spatial keyword join
predicates, continuous spatial keyword queries, and ag-
gregate spatial keyword predicates. We offer a more
complete coverage of existing work and also aim to
capture the relations and differences among existing
queries. The book puts emphasis on specific studies
and features them in case studies. In contrast, we offer
a broader high-level overview of proposed algorithms
for answering the different types of queries. We classify
studies based on the settings, i.e., whether a standard
database setting or a streaming setting is assumed. For
each setting, we separate the query definitions from the
proposed algorithms for answering the queries. This en-
ables a more complete and in-depth coverage within the
chosen scope, which brings out the relations and differ-
ences among different kinds of queries.

A recent survey by Chen et al. [36] covers spatial
keyword search over geo-textual data. It categorizes ex-

isting studies as querying individual geo-textual data
and querying connected geo-textual data. Compared
with our survey, it covers much fewer types of queries.
Furthermore, it covers the high-level ideas of algorithms

for trajectory search, not for the types of queries that
are the focus of our survey. Our survey thus covers a
broader range of queries and the high-level ideas of

the related algorithms, and it also describes the rela-
tions among the queries covered. In contrast, the sur-
vey [36] is limited to query definitions. In addition, this
survey focuses on geo-textual data with point or re-

gion locations, but does not cover geo-textual trajec-
tory data [36,65].

To summarize, the survey is designed to offer a
compact yet rich coverage of important concepts and
techniques related to the location and keyword based

querying of geo-textual data. It is comprehensive in its
coverage of different types of queries and brings out
the key concepts underlying the proposed solutions. As
such, the survey serves as an “index” for researchers
who are interested in exploring the concepts and tech-
niques underlying proposed solutions to the querying of
geo-textual data.

The reminder of the survey is organized as follows:
Section 2 covers the types of data considered as well
as the categorization framework that we adopt. Sec-
tion 3 presents problem definitions of existing studies
on the querying in the conventional setting of static
geo-textual data. We first cover problems that assume

an underlying Euclidean space and then cover prob-
lems that assume a spatial network. For each of these
spaces, we apply the categorization framework. We first
consider standard spatial keyword queries in Euclidean
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space and then consider other types of Euclidean-space
queries. We present connections between these and the
standard queries whenever possible. We end by cov-
ering the studies that assume a spatial network. Sec-
tion 4 proceeds to cover concepts and techniques under-
lying the solutions to the problems covered in Section 3.
Section 5 covers problem definitions in the setting of
streaming geo-textual data. Here, we again structure
the definitions according to the classification frame-
work. Section 6 presents the concepts and techniques
underlying the solutions to the problems covered in Sec-
tion 5. Section 7 offers conclusions.

2 Data and Classification Framework

2.1 Geo-textual Data

The geo-textual data considered in the survey comprise
a range of geo-textual objects. A geo-textual object has
a location and a textual attribute and may have addi-

tional attributes.

Location. The location attribute of a geo-textual ob-
ject can take two forms: (1) a physical location, which
specifies a location by means of GPS coordinates (e.g.,

40◦15′52′′ N, 112◦34′16′′ W); and (2) a semantic lo-
cation, which can be a sequence of hierarchically orga-
nized geo-keywords (e.g., 57E Healey St, Champion, IL,
U.S.A.) or a POI name (e.g., Eiffel Tower). Locations

are typically modeled as point locations. However, lo-
cations may also have an extent. Specifically, physical
locations are generally modeled as points, and semantic
locations are modeled either as points or regions.

Text content. The text attribute of a geo-textual
object is generally represented by a term vector or a
bag of terms.

Time attribute. In some cases, geo-textual objects

have a time attribute. The time attribute is often a
time point (e.g., 10:05:20 a.m., 30-MAY-2019), captur-
ing the time when the real-world object represented by
the geo-textual object was at the indicated location or
the time when the object was created. The literature
uses terms such as spatio-temporal document or spatio-
temporal message for such objects. Common examples
include geo-tagged tweets from Twitter (Fig. 1), check-
ins at particular Points of Interest, and location reports
by individuals who move about. Time attributes may

also include time periods (e.g., opening hours: 10:00
a.m. to 9:00 p.m., weekdays).

text time

location

user

Fig. 1 Geo-tagged Tweet

2.2 Classification Framework

Fig. 2 provides an overview of the classification scheme
adopted in the survey. Existing studies relate to one of
two settings.

Querying Static Geo-textual Data. Studies in this
setting concern the search and exploration of a col-
lection of geo-textual objects that are relatively static
and are updated infrequently. In this setting, we clas-
sify existing studies based on how the underlying space

is modeled: as an Euclidean space or a road network.
The main difference between the two types of studies
is how the distance between two spatial points is com-

puted: as Euclidean distance or network distance. We
further classify the Euclidean space studies into six cat-
egories: standard queries, standard query extensions,

group queries, region finding/analysis queries, spatio-
textual join queries, and query modification. We also
classify the road network space studies into five cat-
egories: standard queries, standard query extensions,

socially-aware queries, group queries, and route plan-
ning queries.

Example: Retrieve all objects whose text contains

food and whose location is within 3 km of the Hyatt
Regency Hotel, San Francisco, U.S.A..

Querying Streaming Geo-Textual Data. In this
setting, the data arrives at the system “continuously,”
meaning at high frequency or speed. Studies in this
setting are divided into four categories: location-based
publish/subscribe functionality, localized event detec-
tion, temporal spatial keyword queries, and location-
based term queries.

Example: A user submits a subscription query to a
publish/subscribe system to get notified of every new
tweet mentioning iphone and whose location is within

3 km of the user’s home.

As already indicated, studies on the querying of geo-
textual data model geographical space as either Eu-
clidean space or network space.

When a Euclidean space is adopted, the space is

typically two-dimensional, and object locations are typ-
ically modeled as point locations. Euclidean distance or
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Querying in 
Euclidean Space

Querying Geo-Textual Data

Querying Static
Geo-Textual Data 

Standard Queries Standard Query
Extensions

Group Queries Region Finding/
Analysis

Query Modification

Querying in 
Road Networks

Standard Queries Standard Query 
Extensions

Socially-aware Queries Group Queries

Route Planning

Querying Streaming 
Geo-Textual Data 

Publish/Subscribe
Systems

Localized Event
Detection

Temporal Spatial 
Keyword Queries

Location-based Term 
Queries

Spatio-Textual Join

Fig. 2 Geo-Textual Query Classification Framework

Squared Euclidean distance, denoted by ‖··‖ and ‖··‖2,

respectively, are used as the distance notion.

When a spatial network is adopted, the motivation

is to capture that object or user movement occurs in a

road network and that objects are reachable via a road

network. More specifically, a road network is modeled

as a spatial network. Spatial network models come in a

number of different variations. The most common one

may be that of a regular undirected or directed graph

where each vertex has a Euclidean point location and

where each edge has a weight that captures the edge’s

length. The position of a geo-textual object is often

given by an edge and a distance from the start of the

edge, or it is simply assumed that objects can only be

located at vertices, in which case a position is given by a

vertex. In spatial network models, the relevant distance

notion is spatial network distance. The distance from a

source object to a target object is then the length of

the shortest path from the source object to the target

object. In the context of spatial networks, travel time

may also be considered as the relevant distance notion.

In that case, travel times, sometimes time varying, are

associated with the edges.

3 Problem Definition for Querying Static

Geo-textual Data

3.1 Querying in Euclidean Space

We proceed to cover the problems addressed in Eu-

clidean space according to the six categories presented

in Fig. 2. The standard queries are the most common

and include Boolean range, Boolean kNN, and top-k

kNN spatial keyword queries. The standard query ex-

tensions consider additional aspects, such as temporal

aspects and social relations. The group queries consider

inter-object relations and return sets of objects that

collectively satisfy a query. The region finding/analysis

queries find sets of regions satisfying pre-defined con-

straints, or they investigate the data distribution in a

region. The work on query modification relates to the

refinement of spatial keyword queries to improve user

satisfaction with the results.

3.1.1 Standard Queries

In general, a standard spatial keyword query takes as

input a spatial parameter (s) and a textual parame-

ter (t), and it returns one or more geo-textual objects,

which can be either rank-ordered or not.

Spatial parameter. The typical spatial parameter is a

point location that models the location of the user who

issues the query, or a location of interest. The spatial

parameter can also be a set of point locations, or a

region.

Textual parameter. The textual parameter takes two

different forms: a Boolean keyword expression or a set

of keywords. A Boolean keyword expression consists of

a set of keywords connected by AND or OR operators.

It is used for finding objects whose textual content sat-

isfies the expression. The textual parameter in the form

of a set of keywords is adopted mostly in top-k queries

that rank the objects based on a function that quan-

tifies the textual relevance between the query and the

objects.

The standard spatial keyword queries either involve

only Boolean predicates on the spatial and textual

(and possibly other) object attributes, or they return

the top-k objects that satisfy optional Boolean predi-

cates according to a ranking function. Specifically, first,

a spatial keyword Boolean predicate takes the form

Pst(s, t, o), where s and t are spatial and textual pa-

rameters, and o is a geo-textual object. Such a pred-

icate can be expressed as a conjunction of a spatial
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predicate and a textual predicate: Ps(s, o) and Pt(t, o).
Range and containment predicates are common spatial
and textual predicates, respectively. The cardinality of
the result may vary from 0 to the size of the set of ob-
jects. Second, for a ranking query, the ranking function
can be any function that takes an object as an argument
and assigns a score to it.

Let D be a set of geo-textual objects. Each object
o ∈ D is defined as a pair (o.ρ, o.ψ), where o.ρ is a 2-
dimensional Euclidean point location and o.ψ is its text
content. We consider different types of queries based on
the ways they use spatial and textual predicates.

Boolean range spatial keyword (BRSK)
query [41, 45, 49, 68, 83, 102, 135, 163, 177]. A
BRSK query q = (BE, ρ, r) takes three parameters:
BE is a Boolean keyword expression that is com-
posed of a set of keywords connected by AND or
OR operators, ρ is a query location, and r is a query
region radius. A BRSK query can be considered as
the combination of a Boolean query from information
retrieval and a range query from spatial databases.
Formally, the result q(D) of q is the subset of D

satisfying

∀o ∈ q(D)(dist(o, q) ≤ q.r ∧ q.BE(o.ψ)).

Here, q.BE can be represented by q.ψ1 ∨ q.ψ2 ∨ · · · ∨
q.ψm, where q.ψi (1 ≤ i ≤ m) is a set of query keywords,
and q.BE(o.ψ) returns true if ∃1 ≤ i ≤ m(q.ψi ⊆ o.ψ).

Most existing studies (e.g., [41, 45, 49, 68, 102, 135,
177]) consider a simplified BRSK query that considers
a Boolean keyword expression composed of AND oper-

ators only. This query is given by q′ = (ψ, ρ, r), and the
result q′(D) of q′ is the subset of D satisfying

∀o ∈ q′(D)(dist(o, q) ≤ q.r ∧ q.ψ ⊆ o.ψ).

Example: Retrieve all objects whose text contains
keywords vegeterian, pizza, and quiet and whose loca-
tion is within 3 km of the Hyatt Regency Hotel, San
Francisco, U.S.A.

One study considers an approximate keyword range

query [16], which has an approximate keyword con-
straint (e.g., based on edit distance or Jaccard similar-
ity). This query finds objects that are textually more
similar to the query keywords than a threshold and be-
long to a given spatial query range.

A BRSK query may retrieve any number of ob-
jects, and the result objects are not ranked. However, a
BRSK query can be modified easily to rank the result
objects based on a scoring function, and it is easy to ex-
tend query processing algorithms to achieve this. The
extension returns up to k objects that are located in

the query region, ranked according to a ranking func-
tion. The ranking function can be a linear combina-
tion of spatial proximity and textual relevance. We call
such a query a top-k range spatial keyword (kRSK)
query [41, 103, 163, 177]. This query can be considered
as a combination of a ranking query from information
retrieval and a range query from spatial databases.

Boolean kNN spatial keyword (BkSK) query
[25, 76, 98, 133, 146, 158, 163]. A BkSK query q =
(BE, ρ, k) takes three parameters, where BE is a
Boolean keyword expression as stated in the BRSK
query, ρ is a spatial point, and k is the number of ob-
jects to retrieve. The query combines a Boolean key-
word query from information retrieval and a kNN query
from spatial databases. The result q(D) of a BkSK
query is a set of (at most) k objects, each of which
satisfies the Boolean keyword expression q.BE. The
objects are ranked according to their distances to ρ.
Formally, ∀o ∈ q(D)((@o′ ∈ D \ q(D))(dist(o′, q) <

dist(o, q)) ∧ q.BE(o.ψ)).

Example: Retrieve the k objects nearest to the Hyatt
Regency Hotel, San Francisco, U.S.A. such that each
object’s text contains the keywords sushi and ramen.

One study [163] employs a ranking function that is a
linear combination of the spatial proximity and textual
relevance between q and o.

Top-k kNN spatial keyword (TkSK) query [48,

59, 91, 122, 152, 153, 158, 163]. A TkSK query q =
(ψ, ρ, k) takes three parameters: ψ is a set of key-
words, ρ is a spatial point, and k is the number of
objects to retrieve. The query result q(D) is a set of

(at most) k objects. The objects are ranked according
to a score that takes into consideration spatial proxim-
ity and textual relevance. Formally, ∀o ∈ q(D)((@o′ ∈
D \ q(D))(ST (o′, q) < ST (o, q))), where the ranking
score ST (o, q) can be defined by STa(o, q) [48, 59, 91,
152, 158, 163] or STb(o, q) [122] that are defined as fol-
lows:

STa(o, q) = α · ss(o, q) + (1− α) · (1− st(o, q)) (1)

STb(o, q) =
ss(o, q)

st(o, q)
(2)

Here, ss(o, q) is the spatial proximity of o to q, st(o, q)
is the textual relevance of o to q, and α ∈ [0, 1) in Eq. 1
is a preference parameter that makes it possible to bal-
ance spatial proximity and textual relevance. In Eq. 2,

the combination between spatial proximity and textual
relevance is represented as a fraction, thus eliminating
the query preference parameter.

In these definitions, the spatial proximity is de-
fined as the normalized Euclidean distance: ss(o, q) =
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dist(o,q)
distmax

, where dist(·, ·) denotes Euclidean distance,
and distmax is the maximum distance between any
two objects in D. Further, the textual relevance st(·, ·)
can be computed using an information retrieval model,
such as the language model (e.g., [48]), cosine similarity
(e.g., [122]), or BM25 (e.g., [45]) that is normalized to
a scale similar to the spatial proximity.

One study [81] considers a different TkSK query
where the spatial part of an object is a region (i.e., a
rectangle or another shape) and where the spatial part
of the query is a set of rectangles. The ranking score is
computed using Eq. 1.

Example: Retrieve the k objects with the highest
ranking scores with respect to the location of the Hyatt
Regency Hotel, San Francisco, U.S.A. and the keywords
quiet , pizza, and cappuccino.

3.1.2 Standard Query Extensions

These queries extend standard queries by consider-
ing additional aspects, e.g., temporal or social aspects.

These queries can be used when users have require-
ments in addition to spatial and textual constraints.
Table 1 gives the relations between them and standard

queries.

Temporal spatial keyword query [28,113,116]. In

addition to the elements of a spatial keyword query, a
temporal spatial keyword query has a time predicate.
Considering POIs that have an interval-valued attribute

that models opening times, Chen et al. [28] study a
time-aware Boolean spatial keyword query that takes a
query region, a set of query keywords, and a time inter-

val as parameters and returns the top-k POIs that are
located in the query region, contain all the query key-
words, and have the highest ranking scores. The ranking
score takes into account the distance between the POI
and the query location and the duration of the overlap
between a query time interval and the opening time of
the POI. It is defined formally as follows.

Time-aware Boolean spatial keyword query: Consider
a set of geo-textual objects D and a query q =

(ρ, ψ, t, r, k), where ρ is a query location, ψ is a set of
keywords, t is a query time interval, and r is a spatial
radius. LetD(q.ψ) be the objects inD containing all the
query keywords. The result R of q is a subset of D(q.ψ)
that contains k objects such that ∀o ∈ R (dist(q, o) <
q.r∧∀o ∈ R (∀o′ ∈ (D(q.ψ)\R) (Φ(o) ≥ Φ(o′)))). Here,

Φ(o) =
|q.t ∩ o.t|/|q.t|

1 + α · dist(q, o)
,

where α ∈ [0, 1) is a preference parameter that controls
the importance of spatial proximity. This query extends

a BRSK query with a ranking function that considers
temporal overlap and spatial proximity.

Nepomnyachiy et al. [116] study a temporal Boolean
range spatial keyword (TBRSK) query. A TBRSK
query q = (ψ, ρ, r, τ) takes four parameters, where ψ
is a set of keywords, ρ is a spatial point, r is a query
region radius, and τ is a time interval. The result q(D)
of q is the subset of D satisfying

∀o ∈ q(D)(dist(o, q) ≤ q.r ∧ q.ψ ⊆ o.ψ ∧ o.t ∈ q.τ).

This query extends a BRSK query with temporal filter-
ing. Mehta et al. [113] study a variant of the TBRSK
query that considers moving geo-textual objects.

Socially-aware spatial keyword query [13, 77,
145]. A socially-aware spatial keyword query integrates
social network aspects into spatial keyword querying.
Three types of functionality can be distinguished.

(1) Retrieval of geo-textual objects [13, 145]: The

query q = (ρ, ψ, k, S) takes into account the social rel-
evance of query objects with respect to the query user.
Specifically, ρ is a point location, ψ is a set of keywords,
k is the number of result objects, and S denotes the so-

cial network of the user who issues q. Each object is
a triple (ρ, ψ, F ), where ρ denotes location, ψ denotes
keywords, and F denotes a set of “followers” who show

an interest in the object (e.g., liking, sharing, checking
into, or recommending the object). The query returns
the top-k objects according to a function that takes into
account spatial proximity, textual similarity, and social

relevance. The social relevance of an object o to a user
who issues a query is determined by the relationship be-
tween o’s followers, F , and the query user’s social net-

work, S. The social relevance notion proposed by Wu et
al. [145] favors objects having more followers (u) close
to the query user uq in S, while the social relevance no-
tion proposed by Ahuja et al. [13] favors objects having
more check-ins by friends of the query user. The rank-
ing functions proposed by Ahuja et al. [13] (Arankq(o))
and Wu et al. (Wrankq(o)) [145] are defined as follows,
by extending Eq. 1 and 2, respectively.

Arankq(o) = α · ss(q, o) + β · st(q, o) + γ · sd(q, o),

where α+ β + γ = 1.

Wrankq(o) =
ss(q, o)

st(q, o) · sd(q, o)
,

sd(q, o) = 1 +
∑
u∈o.F

αmindist(uq,u),

where α ∈ [0, 1) is a damping factor and mindist(uq, u)
denotes the length of the shortest path between uq and
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Query Types Acronyms Relation to Standard Queries
Boolean range SK query [41,45,49,
68,83,102,135,163,177]

BRSK n.a.

Boolean kNN SK query [25,76,98,
133,146,158,163]

BkSK n.a.

Top-k kNN SK query [48, 59, 91,
122,152,153,158,163]

TkSK n.a.

Temporal SK query [28,113,116] TBRSK Add temporal filtering or time-based ranking to the BRSK query.
Socially-aware SK query [13, 77,
145]

TkLUS Retrieval of objects: Extend the TkSK query to consider social as-
pects in the ranking function.
Retrieval of users: Extend the TkSK query to find top-k users who
create geo-tagged posts that satisfy an SK constraint.
Retrieval of terms: Extend the BRSK query to find the top-k fre-
quent terms in the geo-tagged posts of the social network friends of
a query user.

Direction-aware SK query [84] n.a. Extend the BkSK query to consider an extra direction constraint.
Preference-aware SK query [15,88,
134]

TkSKP,
LGP

Extend the TkSK query to consider a set of nearby POIs in the
ranking function.

Top-k prestige-based SK
query [23]

TkPSK Extend the TkSK query to use a ranking function that combines lin-
early prestige-based relevance (PR) and spatial proximity. PR cap-
tures the textual relevance to a query of an object and its nearby
objects.

Moving SK query [74,142,147,148] MTkSK This query can be regarded as a moving version of a TkSK query.
Reverse SK query [55, 58, 95–97,
171]

RBkSK,
RTkSK

Given a query object q, this query finds the set of objects whose
BkSK or TkSK query result includes q.

SK skyline query [86,121,128] n.a. This query finds the set of objects that are not SK dominated by
any other object. The computation of SK domination is similar to
the ranking function of a BkSK or TkSK query.

Table 1 Relations between Standard Query Extensions and Standard Queries (SK Denotes Spatial Keyword)

u in social network S. As the two queries extend the
TkSK query to cover social aspects, we refer to them
as Social TkSK.

(2) Retrieval of users [13, 77]: Given a query point
location or region and a set of query keywords, this
kind of query returns the top-k users, taking into ac-

count their proximity to the query location, the textual
similarity between their profile and the query keywords,
and, possibly, the social connectivity among the users.
In particular, Jiang et al. [77] assume a social network
S and let U denote the users in S and let O denote the
geo-tagged posts made by users in U . In this setting,
they find the top-k users who have made geo-tagged

posts relevant to the query keywords within a query
region. The top-k local user search (TkLUS) query is
given by q = (ψ, ρ, r), where ψ is a set of keywords, ρ
is a location, and r is a radius. The query is defined as
follows.

TkLUS query: Query q = (ψ, ρ, r) finds a set Uq ⊆
U of (at most) k users such that (1) ∀u ∈ Uq (∃o ∈
Ou (dist(q, o) ≤ q.r ∧ q.ψ ∩ o.ψ 6= ∅)), where Ou ⊆ O
and denotes the set of posts made by u, and (2) ∀u ∈
Uq (∀u′ ∈ (U \ Uq) (score(u′, q) ≤ score(u, q))). Here,
score(·, ·) computes the relevance of a user to a query,
taking into account both spatial proximity and textual
similarity. This query extends the TkSK query to user
retrieval.

Ahuja et al. [13] propose to find the top-k users
based on a scoring function that combines linearly (1)
the spatial proximity between the user location and the
query location, (2) the textual similarity between the

user profile and query keywords, and (3) the cardinality
of the set of friends of the user. This query extends the
TkSK query.

(3) Retrieval of terms [13]: Given a query region, a
query user, and the user’s friends, this type of query
returns terms with the highest frequency in the geo-

tagged posts that belong to the query region and are
posted by friends. This query can be used to discover
trending topics among friends in a geographic region.

Direction-aware spatial keyword query [84]. In
addition to the spatial and textual predicates, a
direction-aware spatial keyword query q contains a di-
rection constraint [α, β], which captures that the user
is only interested in geo-textual objects with direc-
tions from q in [α, β]. Thus, the query is given by
q = (ρ, ψ, k, [α, β]), where ρ, ψ, and k denotes a loca-
tion, a keyword set, and the result cardinality, respec-
tively, and [α, β] represents the query direction. Given
a set of geo-textual objects D, let D(q.ψ) denote the
subset of D that contain all keywords in q.ψ. Query q
finds a set R of (at most) k objects in D(q.ψ) such that
(1) ∀o ∈ R(∀o′ ∈ (D(q.ψ) \R)(dist(o, q) ≤ dist(o′, q))),
and (2) ∀o ∈ R(α ≤ direc(o, q) ≤ β), where direc(o, q)
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denotes the direction of o from q. We could even just
say that this query takes one more query parameter
than the BkSK query and adds (2) to the definition
of the BkSK query. Then we have defined the query
unambiguously.

Preference-aware spatial keyword query [15,88,
134]. The rationale behind this type of query is that
users are usually interested in geo-textual objects based
on the quality of other feature objects (i.e., facilities)
that are located in their neighborhoods. Feature objects
are typically described by non-spatial attributes such as
quality or rating, in addition to the textual description.

Given a set of geo-textual objects O of interest and
a set of feature geo-textual objects F , the top-k spa-
tial keyword preference (TkSKP) query takes the form
q = (ψ, r, k), where ψ is a keyword set, r is a spa-
tial selection criterion (normally a radius), k indicates
the number of results. It retrieves (at most) k objects
based on a score that combines the textual relevance
score and the non-spatial score of feature objects in
their neighborhood [15, 134]. In particular, Tsatsanifos

et al. [134] define the spatial keyword preference score
based on a predefined score for each type of feature ob-
jects. Assume that there are m types of feature objects
{F1, F2, · · · , Fm} and each Fi(1 ≤ i ≤ m) comprises

a specific type of feature objects, the preference score
of a feature object t ∈ Fi for the query keywords is
computed by Eq. 3.

s(t) = (1− λ) · t.s+ λ · st(t, q), (3)

where λ ∈ [0, 1] is a preference parameter and t.s is the
non-spatial score of t. Eq. 4 computes the preference
score of an object o for Fi.

τi(o) = max{s(t)|t ∈ Fi∧dist(o, t) ≤ q.r∧st(t, q) > 0},
(4)

where q.r is a query radius. Then the overall spatial
keyword preference score of an object o is computed by
Eq. 5:

τ(o) =
∑

1≤i≤m

τi(o). (5)

Almeida et al. [15] study an alternative definition
of the score. Their score pre-defines a set of objects as

feature objects. Then the spatial keyword preference
score of a data object o is defined based on the textual
similarity between the feature objects close to o and the
query keywords (Eq. 6).

τ(q, o) = max{st(q, t) | t ∈ F ∧ dist(o, t) ≤ q.r}, (6)

where st(q, t) denotes the textual similarity between q
and feature object t, and F denotes the set of feature
objects.

Li et al. [88] define a different preference-aware
query, the location-aware group preference (LGP)
query. The LGP query can be used when a group of
users want to find a destination POI labeled with a
specific category feature (e.g., hotel) and each user has
a preference about the POIs near the destination POI.
We introduce the location-aware preference (LP) query
and then explain the LGP query. An LP query is given
by q = (ρ, fd, Ψ), where ρ denotes a location, fd de-
notes the category feature of the result object, and
Ψ = {f0, f1, · · · , fn} denotes the set of category fea-
tures that the user wants the objects near the result
object to belong to. The LP query q returns an object
oq belonging to fd that has the largest score computed
using Eq. 7:

τ(q, o) = λ · (1− dist(q, o)

distmax
) + (1− λ) · 1

|q.Ψ |

·
∑
fi∈q.Ψ

(1− minDist(o, fi)

distmax
),

(7)

λ ∈ [0, 1] is a preference parameter and minDist(o, fi)

is a function returning the minimum distance between
o and the objects belonging to fi.

An LGP query Q = {q0, q1, · · · , qm} consists of a set

of LP queries q0, · · · , qm that all have the same category
feature of the result object (i.e., ∀qi, qj ∈ Q (qi.fd =
qj .fd)). The LGP query Q returns the object that has
the largest score computed by

∑
qi∈Q τ(q, o).

Top-k prestige-based spatial keyword (TkPSK)
query [23]. A TkPSK query q = (ρ, ψ) takes two pa-

rameters: ρ that denotes a location and ψ that denotes a
keyword set. It retrieves (at most) k geo-textual objects
ranked according to a scoring function that combines
linearly prestige-based relevance (PR) (i.e., pr(q, o))
and spatial proximity (i.e., dist(q, o)).

In particular, PR captures both the textual rele-
vance between o and q and the textual relevance be-

tween q and objects near o. To compute PR, a weighted
and undirected graph G = (V,E) is introduced. Each
vertex in V corresponds to a geo-textual object. An
edge exists between a pair of objects oi and oj iff
dist(oi, oj) ≤ γ and sim(oi, oj) ≥ ξ, where γ and
ξ are given thresholds. The weight of edge (oi, oj) is
dist(oi, oj). Eq. 8 computes the value of PR (vector p):

p = (1− α)CTp + αuQ,

uQ = [v1, ..., v|D|]
T , vi = sim(q, oi), 1 ≤ i ≤ |D|,

(8)

where CT is the normalized adjacency matrix of graph
G such that

∑
j∈V C(a, b) = 1, where C(a, b) represents
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the normalized weight of edge (a, b); and column vec-
tor uQ is the initial PR vector in which each element
is the similarity between an object and the query. Pa-
rameter α represents the probability of a random surfer
jumping to the set of initially relevant objects (vi > 0)
rather than following the edges in the graph. This pa-
rameter can be used to balance the relevance of an ob-
ject and the influence of its relevant neighbors, i.e., the
parameter allows for tuning according to user-specific
requirements. In particular, a smaller α favors objects
with nearby relevant objects, while a larger α favors
objects with high initial PR scores. This query extends
the TkSK query by considering the influence of nearby
objects.

Moving spatial keyword query [74,142,147,148].
A moving spatial keyword query is a continuous query
that takes a continuously moving spatial location and
a set of keywords as parameters. This query enables
a mobile user to be kept continuously aware of rele-

vant near-by objects as the user moves. For example, a
tourist visiting New York City may issue a “lunch spe-
cial vegetarian” query to be alerted about nearby op-
portunities for lunch, and individuals looking for enter-

tainment may issue a “happy hour free snacks” query in
the late afternoon to be alerted about bars with happy
hour deals with free snacks. The moving top-k spatial

keyword (MTkSK) query has been studied, which can
be regarded as the moving version of the TkSK query.

The MTkSK query [74, 142, 147, 148] is given by

q = (ρ, ψ, k), where ρ denotes a point location, ψ de-
notes a keyword set, and k denotes the cardinality of
the result. As the query is moving, for each new lo-
cation ρ′, its result is 〈A,R〉, where A is the top-k
result of q′ = (ρ′, ψ, k) and R is the corresponding
safe region. The safe region of q′ indicates a region
in which the top-k result of q′ remains unchanged,

which is denoted by R = {ρ ∈ S | ∀o ∈ O(∀o′ ∈
(O \ A)(score(q, o) ≤ score(q, o′)))}, where S denotes
the global spatial space. The scoring function considers
the spatial proximity and textual similarity (Eq. 1 and
Eq. 2).

Reverse spatial keyword (RSK) query [55, 58,
95–97, 171]. The RSK query comes in two variants:
monochromatic and bichromatic reverse spatial key-
word query.

For the monochromatic RSK query, the data and
query objects are of the same type. In particular, given
a set of data objects D and a query object q ∈ D, the
monochromatic RSK query finds objects in D whose
top-k most “similar” objects include q, where the simi-
larity metric combines the spatial proximity and textual
similarity. For the bichromatic RSK query, data objects

and query objects are of different types. Specifically,

given a set of data objects D, a set of query objects Q,
and a query object q ∈ Q, a bichromatic RSK query
finds objects in D whose top-k most “similar” objects
in Q include q, where the similarity metric again com-
bines the spatial proximity and textual similarity.

Each variant can be further classified into two types:
reverse Boolean kNN spatial keyword (RBkSK) query
and reverse top-k kNN spatial keyword (RTkSK) query.
The four types of reverse spatial keyword queries are
defined as follows.

Monochromatic RBkSK query [55, 58, 171]: Given a
set of data objects D and a query object q ∈ D, the
monochromatic RBkSK query retrieves objects whose
BkSK query results include q, i.e.,

RBkSK(q, k,D) = {o ∈ D | q ∈ BkSK(o.ψ, o.ρ, k)}. (9)

Monochromatic RTkSK query [95–97]: Given a set

of data objects D and a query object q ∈ D, the
monochromatic RTkSK query retrieves objects whose
TkSK query results include q, i.e.,

RTkSK(q, k,D) = {o ∈ D | q ∈ TkSK(o.ψ, o.ρ, k)}.
(10)

Bichromatic RBkSK query [171]: Given a set of data

objects D, a set of query objects Q, and a query object
q ∈ Q, the bichromatic RBkSK query retrieves objects
from D whose BkSK query results among Q include q,

i.e.,

RBkSK(q, k,D,Q) = {o ∈ D | q ∈ Q∧
q ∈ BkSK(o.ψ, o.ρ, k)}.

(11)

Bichromatic RTkSK query [44,96]: Given a set of data
objects D, a set of query objects Q, and a query object
q ∈ Q, the bichromatic RTkSK query retrieves objects
from D whose TkSK query results among Q include q,
i.e.,

RTkSK(q, k,D,Q) = {o ∈ D | q ∈ Q∧
q ∈ TkSK(o.ψ, o.ρ, k)}.

(12)

Spatial keyword skyline query [86, 121, 128]. A
spatial keyword skyline query q takes as parameters
a keyword set, a (optional) query region, and one or
more spatial points. The result comprises those objects
that are not dominated by any other objects. An object
dominates another one only if it is as good as or better

in all dimensions and better in at least one dimension.

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, 
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.  

The Version of Record is available online at: https://doi.org/10.1007/s00778-021-00661-w



10 Zhida Chen et al.

Existing studies [86,121] on the spatial keyword sky-
line query define the “dimensions” in terms of textual
similarity and spatial proximity. Li et al. [86] decom-
pose the textual similarity and regard the similarity
(measured by edit distance) in terms of each keyword
as a dimension, yielding the edit-distance-based spatial
keyword skyline. Regalado et al. [121] consider the tex-
tual similarity as a single dimension, which is called the
text-similarity-based spatial keyword skyline. The for-
mal definitions are presented as follows.

Edit-distance-based spatial keyword skyline: Given a
set of geo-textual objects D and a query object q ∈ D,
the result R of q is those objects in D that are not
dominated by any other object located in the query
region. An object o dominates another object o′ if the
maximum edit distance between each keyword in q and
the keywords in o is no larger than the maximum edit
distance between each keyword in q and the keywords
in o′.

Text-similarity-based spatial keyword skyline: Given a
set of geo-textual objects D and a query object q ∈ D,

the result R of q is those objects in D that are not dom-
inated by any other object in D located in the query
region. An object o dominates another object o′ only
if the distance between o and q is no larger than the

distance between o′ and q, and the textual similarity
between o and q is no smaller than the similarity be-
tween o′ and q.

Shi et al. [128] consider a skyline query that can

accommodate a set of spatial points as a parameter.
They compute the spatial-textual relevance score using
Eq. 2 and regard the spatial-textual relevance score be-

tween an object o and each spatial point in q as one
dimension. Specifically, they develop a spatio-textual
dominance (STD) model to define the spatial keyword
skyline query.

STD model: An object o spatio-textually dominates an-
other object o′ iff ∀qi ∈ Q (ST (o, qi) ≥ ST (o′, qi)) and
∃qi ∈ Q (ST (o, qi) > ST (o′, qi)).

STD spatial keyword skyline: Given a set of query ob-
jects Q = {q0, q1, ..., qn} and a set of data objects D,
the results D of Q consists of the objects in D that are
not spatio-textually dominated by any other object in
D.

3.1.3 Group Queries

Group queries consider inter-object relations and find
sets of objects that answer the particular query collec-
tively. Table 2 gives a brief introduction to each type of

group queries.

Group spatial keyword query [22, 24, 26, 27, 43,
50,64,94,110,130,161,162,164]. This query finds a
group of geo-textual objects G that covers the query
keywords collectively (i.e., ∀w ∈ q.ψ (∃o ∈ G (w ∈
o.ψ))) and optimizes a predefined cost function.

We classify existing studies into two categories. The
first encompasses queries that optimize a cost function
that considers inter-object distance and the distance
between objects and the query location. The second
encompasses queries that consider a cost function that
considers additional aspects beyond distance, e.g., user
ratings of keywords.

Existing studies in the first category pursue five op-
timization goals.

(1) Minimizing the maximum distance between any
pair of objects in G, as done in the m-Closest Keywords
(mCK) query [64, 161, 162]. Choi et al. [43] introduce
a variant of the mCK query that aims to minimize the
product of (|G|−1) and the maximum distance between
any pair of objects in G.

(2) Minimizing the sum of the distances between

each object in G and the query (i.e., the SUM-GSK
query [22,24,69]).

(3) Minimizing a cost function that combines lin-
early the maximum distance between any pair of ob-
jects in G and the maximum distance between an ob-

ject in G and q (i.e., the MAX+MAX GSK query [22,
24,94]). Additionally, one study [94] considers a variant
of the MAX+MAX GSK query, where the score func-
tion computes the maximum distance between any pair

of objects in G ∪ {q}.
(4) Minimizing a cost function that combines lin-

early the minimum distance between any pair of objects
in G and the maximum distance between an object in
G and q (i.e., the MIN+MAX GSK query [22]).

(5) Minimizing a generalized cost function that can
be instantiated to the above four types of cost functions
(i.e., generalized GSK query [27]).

Given a collection of geo-textual objects D, we
present the definition of each group spatial keyword
query.

mCK query: An mCK query q takes m keywords as a
parameter. It finds a group of objects G ⊆ D, each of

which contains at least one query keyword, such that
∪o∈Go.ψ ⊇ q and such that the maximum distance be-
tween any pair of objects in G is minimized.

SUM-GSK query: A SUM-GSK query q = (ρ, ψ) takes

a spatial point ρ and a set of keywords ψ as parameters.
It finds a group of objects G ⊆ D such that ∪o∈Go.ψ ⊇
q.ψ and the sum of the distances between each object
in G and q.ρ is minimized.
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Query Types Description
Group SK query [22, 24, 26, 27, 43, 50,
64,94,110,130,161,162,164]

It finds a group of objects that cover the query keywords collectively and that
minimize a cost function considering the sum of the inter-object distances.

Clue-based SK search [92] It takes as input a target object and so-called spatio-textual clues that describe
nearby objects and the spatial relations between them and the target object. It
retrieves a set of objects that have the highest SK similarity with the spatio-
textual clues.

Spatial pattern matching [56] It finds a set of objects that satisfy a spatial pattern collectively. A spatial pattern
describes the spatial relations between the objects and the keyword constraint
for each object.

Top-k spatial textual clusters
query [130,144]

It finds top-k clusters of objects that are closed to the query location and that
are textually relevant to the query keywords.

Table 2 Summary of Group Queries (SK Denotes Spatial Keyword)

MAX+MAX GSK query: A MAX+MAX GSK query
q = (ρ, ψ) takes a spatial point ρ and a keyword set ψ
as parameters. It finds a group of objects G ⊆ D such
that ∪o∈Go.ψ ⊇ q.ψ and the following cost function is
minimized:

α·maxo∈G(dist(o, q))+(1−α)·maxo1,o2∈G(dist(o1, o2)).

MIN+MAX GSK query: A query q = (ρ, ψ) takes a
spatial point ρ and a keyword set ψ as parameters. It
finds a group of objects G ⊆ D such that ∪o∈Go.ψ ⊇
q.ψ and the following cost function is minimized:

α·mino∈G(dist(o, q))+(1−α)·maxo1,o2∈G(dist(o1, o2)).

In addition, the SUM-GSK query, the MAX+MAX

GSK query, and the MIN+MAX GSK query are ex-
tended to their corresponding top-k version [22].

Generalized GSK query: A query q = (ρ, ψ) again takes
a spatial point ρ and a keyword set ψ as parame-
ters. It returns a group of objects G ⊆ D, such that

∪o∈Go.ψ ⊇ q.ψ and cost(G) is minimized. Function
cost(G) includes a distance component that is defined
as follows.

τ(G,φ1) = [
∑
o∈G

(dist(o, q))φ1 ]
1
φ1 ,

where φ1 ∈ {1,∞,−∞} is a user-provided parameter
corresponding to the summation, the maximum, or the
minimum of the distance between the objects in G and
the query location, respectively. Specifically,

τ(G,φ1) =



∑
o∈G

dist(o, q), if φ1 = 1

max
o∈G

dist(o, q), if φ1 =∞

min
o∈G

dist(o, q), if φ1 = −∞

Function cost(G) is defined as follows.

cost(G,φ1, φ2) =

{[α · τ(G,φ1)]φ2 + [(1− α) · max
o1,o2∈G

dist(o1, o2)]φ2}
1
φ2 ,

where α ∈ (0, 1) and φ1 ∈ {1,∞,−∞} and φ2 ∈ {1,∞}
are user-provided parameters.

Next, the second category of studies includes queries
that optimize a cost function involving additional as-
pects beyond distance. We still denote a collection of
geo-textual objects by D.

Inherent-cost aware GSK query: This query [26] as-

sumes that each object is associated with an inherent
cost (e.g., the entrance fee of a POI). It aims to find
a group of objects that collectively cover the query
keywords and have the smallest cost. Formally, the

inherent-cost aware GSK query q = (ρ, ψ) takes two
parameters: ρ denotes the query location and ψ denotes
a keyword set. It finds a group of objects G ⊆ D such

that ∪o∈Go.ψ ⊇ q.ψ and the following function is min-
imized:

max
o∈G

dist(o, q) ·
∑
o∈G

o.cost,

where o.cost denotes the inherent cost of o.

Level-aware GSK query: This query [164] assumes that
each object has a level vector that assigns an integer
value to each keyword. For example, a POI may have
multiple features, each of which has a score that ex-

presses its goodness. Additionally, each object has a
cost. The level-aware GSK query retrieves a group of
objects that has the minimum cost and satisfies a level
requirement for each query keyword. Formally, each ob-
ject o = (ρ, ψ, V, β) has four attributes: ρ denotes a spa-
tial location, ψ denotes a set of keywords, V denotes a
level vector that assigns an integer value to each key-

word in ψ, and β denotes the cost of o. A level-aware
GSK query q = (ρ, ψ,W, θ) takes four parameters: ρ
denotes the query location, ψ denotes a set of key-
words, W denotes a normalized weight vector whose
cardinality equals the maximum element value of the
level vector, and q.θ denotes a threshold. The query
finds a group of objects G ⊆ D such that cost(G)
is minimized and ∀w ∈ q.ψ (cov(G,w) ≥ q.θ). Here,
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cost(G) =
∑
o∈G(o.β · dist(o, q)), and cov(G,w) =∑

o∈G q.W [o.V [w]].

Best keyword cover query: The best keyword cover
(BKC) query [50] assumes that each object has a rat-
ing. The query finds a group of objects that cover the
query keywords and have the maximum score. A group
of objects G covers a set of keywords ψ if each object in
G covers exactly one keyword in ψ that is not covered
by another object. Formally, a BKC query q = (ρ, ψ)
takes two parameters: a spatial location ρ and a key-
word set ψ. It finds a group of objects G ⊆ D that
covers q.ψ and maximizes the following function:

α·(1−
maxoi,oj∈G dist(oi, oj)

maxDist
)+(1−α)·mino∈G o.rating

maxRating
,

where α ∈ [0, 1] is a user-provided parameter.

In addition, Mahmood et al. [110] propose an SQL
extension to express different types of group spatial key-
word queries. Spatial and textual building-block oper-
ators and predicates are provided for this purpose.

Clue-based spatial keyword search [92]. To han-

dle the case where a user cannot provide exact spatial
and textual information in a spatial keyword query, Liu
et al. [92] propose a clue-based spatial keyword query
that allows a user to input spatio-textual clues for the

retrieval of geo-textual objects. Such clues describe the
spatio-textual context of a target object, which includes
nearby objects and the spatial relations between them

and the target object.

Specifically, let D be a set of geo-textual objects
with category information. A clue is specified in terms
of categories of objects near the target object (called

clue objects) and the spatial relations (i.e., distance
and direction) between the clue objects and the tar-
get object. A clue-based spatial keyword query is given
by q = (oq, r,N,E), where oq ∈ D represents a target
geo-textual object, r is a query region, N is a set of
clue objects, and E represents a set of edges indicating
the connection between objects in N . The query re-
trieves (at most) k objects from D that have the same
keywords/category as oq and have the highest spatio-
textual context similarity with oq. The spatio-textual
context similarity between oq and oi, where oi ∈ D, is
defined as the extent to which oi and oq have similar
spatio-textual contexts based on a matching between N

and objects near oi with the same textual information
in terms of the distances and directions specified in E.

Spatial pattern matching [56]. Fang et al. [56] study
the following spatial pattern matching problem. Given
a set of geo-textual objects O and a spatial pattern P ,
they aim to find all subsets of O that match P . A spatial
pattern P is represented by a graph (V,E), where V

is the set of vertices and E is the set of edges. Each
vertex vi ∈ V has a keyword wi. Each edge (vi, vj) ∈ E
has a distance interval [li,j , ui,j ] and one of the signs:
vi → vj , vi ← vj , vi ↔ vj , and vi − vj . Two objects oi
and oj form an e-match of edge (vi, vj) if oi contains
wi, oj contains wj , and the distance between oi and
oj satisfies the constraint specified by [li,j , ui,j ] and the
sign on edge (vi, vj). The meanings of the signs are as
follows:

– vi → vj : There exists no object in O with keyword
wj having a distance less than li,j from oi.

– vi ← vj : There exists no object in O with keyword
wi having a distance less than li,j from oj .

– vi ↔ vj : There exists no object in O with keyword
wj (resp. wi) having a distance less than li,j from
oi (resp. oj).

– vi − vj : Allows the existence of objects besides oi
and oj in O having a distance less than li,j .

A set of objects S (S ⊆ O) matches P if (1) there

exists an e-match in S for each edge of P , and (2) S is
minimal, i.e., no subset S′ of S satisfies that for each
edge of P , there exists an e-match in S′. Given a spatial
pattern P and a collection of geo-textual objects O, the

spatial pattern matching problem is to find all S ⊆ O
that match P .

Top-k spatial textual clusters query [130, 144].
Wu and Jensen [144] investigate the problem of retriev-
ing top-k spatial textual clusters. Specifically, a top-k

spatial textual clusters (k-STC) query returns k clus-
ters that (i) are closest to the query location, (ii) con-
tain objects that have at least one query keyword, and

(iii) have a density that exceeds a threshold. Skovs-
gaard and Jensen [130] propose a top-k groups spatial
keyword query that returns k disjoint groups of objects.
The query takes a location and a set of query keywords
as parameters and returns k groups of objects such that
(i) the objects in a group are close to each other, (ii)
the group is close to the query location, and (iii) the

objects in the group are textually similar to the query
keywords. The ranking score of a group is computed
by considering the textual relevance of the group of ob-
jects to the query keyword and the distance between
the group and the query as well as the diameter of the
group.

3.1.4 (Top-k) Spatio-Textual join

The join takes two sets of geo-textual objects R =
{r0, r1, ...} and S = {s0, s1, ...}, where R and S can
be either different or the same set, as arguments. A
spatio-textual join [19,54,75,93,120,166] finds all pairs
of objects from R and S that are both spatially close
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and textually similar. Formally, given a spatial distance
threshold θs and a textual similarity threshold θt, a
spatio-textual join retrieves all pairs (x, y) with x ∈ R
and y ∈ S, such that dist(x, y) ≤ θs and sim(x, y) ≥ θt.
In some proposals [19,120,166], each object is assumed
to have a point location, and the spatial distance is de-
fined as the Euclidean distance, while in other propos-
als [54,93], each object is assumed to have a region, and
the spatial distance is defined as the overlap between
two objects. Next, a top-k spatio-textual join [75] finds
top-k pairs based on a scoring function that combines
linearly the spatial distance and textual similarity.

3.1.5 Region Finding/Analysis

Region finding/analysis queries find sets of regions sat-
isfying pre-defined constraints or investigate data dis-
tributions in regions. Table 3 gives a brief introduction
to each type of region finding/analysis queries.

Geosocial search [117]. Here, the objective is to
find geographical regions based on geo-tagged social
network posts. A geosocial search query is given by

q = (ψ, τ, k), where ψ is a set of keywords, τ is a time
interval, and k is an integer. A geo-tagged post is con-
sidered relevant to q if its textual content contains ψ
and its timestamp is within τ . Let µ be a function that

computes the score of a set of geo-tagged posts within
a region with respect to q. Given a set of regions Q,
a geosocial query q finds top-k disjoint regions R with

the highest score, i.e.,

{R |R ⊆ Q ∧ |R| = k ∧ (∀r ∈ R, r ∈ (Q \R))

(µ(r, q) ≥ µ(r, q))

∧(∀r, r′ ∈ R)(∆(r, r′) = 0)},

where function ∆ computes the area of the intersection
between two regions.

Reverse top-k keyword-based location query
[149]. This query is based on the TkSK query. A Re-
verse TkSK query q = (ψ, o, k) takes as parameters a

set of keywords ψ, an object o, and an integer k. It re-
trieves the maximum spatial region r such that for any
TkSK query q′ = (p, ψ, k) with p ∈ r and the same
parameters ψ and k as q, o is inside the result of q′.
Formally,

r = {p ∈ Ω | o ∈ S(q′) ∧ o ∈ O},

where Ω is the region in which the geo-textual objects

reside and S(q′) is the result of the TkSK query q′ =
(p, ψ, k).

Top-k most frequent terms query [12]. This query
finds the top-k most frequent terms given a region and

a time interval. Let D be a set of geo-textual objects
with a time attribute. The count of a term w for a
set of objects S is the number of objects in S whose
textual information contains w. A top-k most frequent
terms query is given by q = (R, T, k), where R denotes
a spatial region, T denotes a time interval [ts, te], and
k indicates the number of results. It returns the top-k
most frequent terms from objects in D that fall in the
spatial region and time interval.

Topic exploration [169, 170]. Zhao et al. [169] pro-
pose to explore topics over geo-textual objects within
a specified region and time interval. This query, called
Topic RT, takes as parameters a rectangular region R
and a time interval T . It returns k topics from the geo-
textual objects whose locations fall into R and whose
timestamps fall into T . The topic assignment of a geo-
textual object is based on the latent dirichlet alloca-
tion (LDA) model, a commonly used topic model. In
follow-on work [170], the Topic RT query is extended

to capture the market competition of different brands
over each topic for a category of business (e.g., coffee-
houses).

3.1.6 Query Modification

Recall that the TkSK query takes keywords, k, and
a value that balances the importance of spatial prox-

imity versus textual similarity as parameters. This in-
formation can be difficult for users to specify. Query
modification investigates how to refine queries so that

users are better served by the results. Two types of such
queries has been considered: why-not spatial keyword
queries and why-not group spatial keyword queries.
Why-not spatial keyword queries investigate how to re-
fine a TkSK (or TkSK-based) query based on a set of
objects that the user expect to appear in the query re-
sult. Why-not group spatial keyword queries extend the
why-not spatial keyword queries to consider a group of
TkSK (or TkSK-based) queries.

Why-not spatial keyword query [33, 34, 38, 39,
176]. To provide users with better results, Chen et
al. [34, 38, 39] study the problem of modifying the key-
words, the value of k, and the preference parameter α in
a TkSK query. The idea is that a user receives a result
set and finds that one or more objects expected to be in
the result are missing. This signals that the parameters
may be set inappropriately. The challenge is then how
to modify them “minimally” so that the result includes
the missing objects.

Specifically, given a set of geo-textual objects D, a
missing object set M , and an original TkSK query q,

a why-not query returns a TkSK query q′ with revised
query keywords and k [34] or revised α and k [39] such
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Query Types Description
Geosocial search [117] It finds top-k disjoint regions based on a ranking function that considers the SK

similarity between the objects in the regions and the query.
Reverse top-k keyword-based location
query [149]

It is based on the TkSK query. Given a query object, it finds the maximum
spatial region such that the result of any TkSK query within that region includes
the query object.

Top-k most frequent terms query [12] It finds the top-k most frequent terms of objects in a given region and time
interval.

Topic exploration [169,170] It explores topics over a set of objects within a specified region and time interval.
The topic assignment of each object is based on the LDA model.

Table 3 Summary of Region Finding/Analysis Queries (SK Denotes Spatial Keyword)

that the result of q′ contains the objects in M . A func-
tion is introduced that calculates the penalty costs of
q′ as a refinement of q. Then the problem is to find the
q′ with minimum penalty cost. A subsequent study [33]
aims to refine the query parameters of a direction-aware
spatial keyword query. In particular, it returns a refined
query with revised k and direction range.

Zheng et al. [176] focus on finding users’ most prefer-
able geo-textual objects by interacting with users in
multiple rounds. The query considered is basically a

TkSK query, where each query keyword has a user pref-
erence ranging from 0 to 1. The user’s preferences for all
query keywords can be represented by a preference vec-
tor w, which is merged into the scoring function of the

TkSK query. At first, a user issues a preference-aware
TkSK query with an initial preference vector w. Then
the query is processed in rounds. In each round, the sys-

tem returns at most K tuples, and the user picks their
favorite tuple. This enables adjustment of the user’s
preferences to become w′. At the end, a final set of k

objects is returned based on w′.

Why-not group spatial keyword query [174].
Zheng et al. [174] investigate the problem of refining
top-k group spatial keyword queries. Let O denote a
set of geo-textual objects, where each object o has a lo-
cation ρ and a set of keywords ψ. Assume that there are
m users and that each user u has a weight of distance

tolerance w and a location ρ. A top-k group spatial key-
word (top-k GSK) query is given by q = (Q,w, tq, k),
where Q denotes a set of user locations, w denotes a
weight vector of user tolerances to distance, tq is a query
keyword, and k is an integer. The query returns up to k
objects that contain tq and have the highest scores. The
score of an object is a linear combination of w and the

normalized Euclidean distance between user locations
and the object.

The complexity of the top-k GSK query makes it
difficult for users to choose appropriate parameters. As
before, users may find that a set M of objects that were
expected to be in a query result are missing. The why-
not group spatial keyword (WGSK) query returns a
refined top-k GSK query with the smallest modification

penalty that contains the objects in M . Let k′ (resp.
ko) denote the number of objects to be returned in the
refined (resp. original) query, and w′ (resp. wo) denote
the weight vector in the refined (original) query. The
modification penalty is based on ∆k, ∆w, and the rank
of missing objects in the original query, where ∆k =
max(0, k′ − ko) and ∆w = ||w′ −wo||2. Further, for a
missing object with rank ro in the original query, the
modification penalty is computed as λ · ∆k

ro−ko +(1−λ) ·
∆w√

1+
∑
wo[i]2

, where λ ∈ (0, 1) is a predefined parameter.

3.2 Querying over Road Networks

This line of work investigates the problems of querying
geo-textual data embedded in a road network. Here,

the spatial distance between two objects is the network
distance. We denote a road network by G = (V,E,W ),
where V is the set of vertices, E is the set of edges, and

W is a set of weights (network distance) associated with
edges. Depending on the setting, geo-textual objects
may be assigned to the vertices or edges of G. Although

similar queries exist in querying in Euclidean space, the
proposed solutions have noticeable differences. Table 4
introduce the queries and their relations to queries in
Euclidean space.

3.2.1 Standard Spatial Keyword Queries in Road

Networks

A Boolean range spatial keyword (BRSKroad)
query [101] and a top-k kNN spatial keyword
(TkSKroad) query [123] extend a BRSK query and
a TkSK query, respectively, to road networks. The
problem definitions are equivalent except in how
spatial relations are computed. To avoid repetition, we
thus skip their problem definitions.

3.2.2 Extension of Standard Spatial Keyword Queries

Moving spatial keyword query [62, 150, 175]. A
moving spatial keyword query takes a continuously
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Query Name Query Category Counterpart Description
Boolean range SK (BRSKroad)
query [101]

Standard SK queries RSK query Finds the set of objects that contain the
query keywords and that are within a query
range.

Top-k kNN SK (TkSKroad)
query [123]

Standard SK queries TkSK query Finds k objects ranked the highest according
to network distance and textual relevance.

Moving Boolean kNN SK
(MBkSKroad) query [62,150,175]

Extensions of stan-
dard SK queries

n.a. Maintains continuously the k nearest objects
to the moving query that contain the query
keywords.

Moving top-k SK (MTkSKroad)
query [62,150]

Extensions of stan-
dard SK queries

MTkSK query Maintains continuously k objects sorted in as-
cending order of a score considering spatial
proximity and textual similarity.

Reverse SK (RTkSKroad)
query [99]

Extensions of stan-
dard SK queries

RTkSK query This query is based on the TkSKroad query.
It finds the set of objects that include a query
object in their TkSKroad query results.

Reverse top-k geo-social keyword
(RkGSK) query [168]

Socially-aware
queries

n.a. This query is based on the TkGSKroad query
that extends a socially-aware SK query [13]
from Euclidean space to consider road net-
works. It retrieves a set of users such that
the TkGSKroad query result of each returned
user includes a given object.

Why-not top-k geo-social key-
word (WNGSK) query [167]

Socially-aware
queries

n.a. Returns a minimally refined TkGSKroad

query that contains a set of missing objects
in its result.

Collective SK (CSK) query [60,
172]

Group queries MAX+MAX
GSK query

This query finds a group of objects that are
close to a query location, that are near each
other and that collectively cover given query
keywords.

Spatial group keyword search
(SGKS) query [100,101]

Group queries n.a. This query retrieves a set of objects, each of
which has a set of neighbor objects that cover
the query keywords collectively. An object’s
neighbor objects must be within a distance
threshold of the object.

Group-based collective keyword
(GBCK) query [132]

Group queries n.a. This query retrieves a region such that the
objects in the region cover given query key-
words. Further, the returned region has the
minimum cost that considers the diameter of
the region and the distances between the ob-
jects and the user locations.

Diversified SK (DSK) query [159] Group queries n.a. Finds a group of objects that are both spa-
tially and textually relevant to the query and
that are diverse.

Keyword-aware route query [21,
78–80,87,90,127,154,173]

Route planning n.a. Finds a route to a target location that op-
timizes a cost function that considers spa-
tial and textual aspects of the objects on the
route.

Table 4 Summary of the SK Queries in Road Networks (SK Denotes Spatial Keyword)

moving spatial attribute and a set of keywords as pa-
rameters. It continuously maintains an up-to-date list
of k geo-textual objects (e.g., POIs) over the road net-
work. Two types of moving spatial keyword queries ex-
ist: the moving Boolean kNN and the moving top-k
spatial keyword query.

Moving Boolean kNN spatial keyword (MBkSKroad)
query [175]: The MBkSKroad query q = (lq, ψ, k) takes

three parameters: lq denotes a moving location, ψ de-
notes a set of keywords, and k is a positive integer.
Each vertex of G has a set of keywords and can be
considered as a geo-textual object. Let S(q) denote the
set of vertices in G such that ∀v ∈ S(q), v’s textual

descriptions covers ψ. Then the result of q, Sk(q) con-
sists of k vertices in S(q) such that ∀v ∈ Sk(q) (∀v′ ∈
S(q)\Sk(q) (dist(lq, v) ≤ dist(lq, v′))).

Moving top-k spatial keyword (MTkSKroad)
query [62,150]: This query extends the TkSK query to
road networks straightforwardly.

Reverse spatial keyword (RTkSKroad) query
[99]. The RTkSKroad query extends the RTkSK query
to road networks. To avoid repetition, we again skip its
problem definition.
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3.2.3 Socially-Aware Queries

Socially-aware queries assume that geo-textual objects
o ∈ O and social network users U are given that are
located in a road network G. Each object o is a tuple
(loc, key), where o.loc is a location in G and o.key is a
set of keywords. Each user u ∈ U is a tuple (F (u), CI),
where F (u) is the set of friends of u in G, and CI is a
set of check-ins of the form CIu→oi that captures the
frequency at which u checks in at oi.

Reverse top-k geo-social keyword (RkGSK)
query [168]. This query takes as parameters an ob-
ject oq ∈ O and an integer k. It retrieves a subset
of users Uq ⊆ U such that ∀u ∈ Uq, oq is in the re-
sult of the TkGSKroad query q = (u, u.loc, u.key, k).
The TkGSKroad query extends a socially-aware spatial
keyword query [13] in Euclidean space studies to con-
sider road networks. Formally, given an object oq ∈ O
and an integer k, the RkGSK query retrieve a sub-
set of users Uq ⊆ U such that ∀u ∈ Uq, oq ∈ S(u),

where S(u) denotes the result of the TkGSK query
q = (u, u.loc, u.key, k).

Why-not top-k geo-social keyword (WNGSK)
query [167]. This query takes a TkGSKroad query
and a set of missing objects as parameters. It returns a

minimally refined TkGSKroad query that contains the
missing objects in its result. Formally, given a TkGSK
query q = (u, loc, key, F, k) and a set of missing ob-

jects M , the WNGSK query returns a TkGSKquery
q′ = (u, loc, key′, F ′, k′) with a minimal penalty as com-
puted by Eq. 13 and that includes M in its result. In the
original query q, F is the set of social network friends

of u, i.e., F (u). The refined query q′ may recommend a
new set F ′ of social network friends of u.

P (q, q′) = λ1 ·
max(0, R(q′,M)− k)

R(q,M)− k
+

λ2 ·
Edit(key, key′)

MaxEdit(key,∪o∈Mo.key)
+ λ3 ·

|F ′ − F |
Hu

(13)

The penalty is composed of three weighted terms that
capture the normalized difference of q′ from the origi-
nal query q. The weights sum to 1. The first term con-
cerns the enlargement of parameter k, where R(q,M)
(resp. R(q′,M)) denotes the maximal ranking of ob-
jects among M by query q (resp. q′). The second term

captures the degree of change in the keywords, where
Edit(key, key′) denotes the number of edits required to
transform key into key′, and MaxEdit(key,∪o∈Mo.key)
denotes the maximum number of edits required to
transform key into o.key (∀o ∈ M). The last term

concerns the change in the social network friends of
u, where |F ′ − F | is the number of new friends recom-
mended in the refined query, and Hu is the maximum
number of friends that the social network system can
provide to u.

3.2.4 Group Queries

A group query returns a group of geo-textual objects
that collectively answer the query. Inter-object relations
are considered for this type of queries. These queries
rely on functions that capture the relevance of a group
of objects, usually linear combinations of spatial prox-
imity, textual relevance, and other aspects like the di-
ameter group and the diversity of the objects in the
group.

Collective spatial keyword (CSK) query [60,
172]. A CSK [60] query extends the MAX+MAX GSK
query to road networks straightforwardly.

Zhao et al. [172] study a popularity-aware CSK

query that assumes that geo-texutal objects have rat-
ing. The popularity-aware CSK query evaluates the
goodness of a group of objects based on the sum of the
objects’ ratings while ensuring that the result objects

are close to the query location and that the diameter of
the group is within a threshold. Formally, a popularity-
aware CSK query is given by q = (ρ, ψ, δ, σ), where ρ

is a query location, ψ is a set of keywords, δ is a dis-
tance threshold, and σ is a diameter threshold. The re-
sult S(q) of q satisfies that (i) S(q) = argS maxRS(S),
where S is a group of objects and RS(S) is the sum

of the rating scores of the objects in S, (ii) S(q) cov-
ers the keywords in ψ, and (iii) max

o∈S(q)
dist(o, q) ≤

δ ∧ max
oi,oj∈S(q)

dist(oi, oj) ≤ σ.

Spatial group keyword search (SGKS) query

[100, 101]. This query, given by q = (r, ψ), where r
is a distance and ψ is a set of keywords, is defined over
a set of geo-textual objects (POIs) in a road network G.
The result S(q) of q is the set of POIs that satisfies that
∀p ∈ S(q)(∃O(∀o ∈ O(dist(o, p) ≤ r) ∧ ∀w ∈ ψ(∃o ∈
O(w ∈ o.ψ)))).

Group-based collective keyword (GBCK) query
[132]. A GBCK query q = (U,ψ) takes two parameters:
U is a set of vertices of a road network, and ψ is a set
of keywords. This query assumes that POIs with tex-
tual descriptions are located at road-network vertices.
A group of users can issue a GBCK query to find a

region that comprises a subset of vertices in the road
network and that satisfies that (i) all query keywords
are covered by the textual descriptions of the POIs lo-
cated at the vertices, (ii) the user group is close to the
vertices, and (iii) the vertices are close to each other.
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The distance Dist between two vertices is the length of
the shortest path between them. For a set of user ver-
tices U ⊂ V and a region R, the distance cost between
U and R is computed as

Dist(U,R) = max{Dist(ui, vj)|ui ∈ U, vj ∈ R}.

The diameter of R is computed as

Dia(R) = max{Dist(vi, vj)|∀vi, vj ∈ R, vi 6= vj}.

The cost of R is computed as

cost(R) = α ·Dist(U,R) + (1− α) ·Dia(R), α ∈ [0, 1].

Formally, a GBCK query q = (U,ψ) returns a region
R such that R = argminRcost(R) and ∀w ∈ ψ, ∃v ∈ R,
vertex v contains a POI that contains w in its textual
description.

Diversified spatial keyword (DSK) query [159].
This query aims to find a group of objects taking into
account the relevance and the spatial diversity of the

objects. Formally, a DSK query is given by q = (r, ψ, k)
and takes as argument a set of objects located in a road
network G. Parameter r is a point in G, ψ is a set of

keywords, and k is a positive integer. The query returns
a group of objects S such that (i) |S| = k, (ii) ∀o ∈ S, o
contains all keywords in ψ, and (iii) for any other group
S′ of cardinality k, f(S) ≥ f(S′), where function f(·)
is defined as follows:

f(S) = λ · Rel(S) + (1− λ) ·Div(S),

where λ ∈ [0, 1]. Function Rel computes the relevance

of S and is defined as follows:

Rel(S) =

∑
o∈S(1− dist(o,q)

distmax
)

k
,

where dist(o, q) denotes the network distance between
o and q and distmax denotes the maximum network
distance. Finally, function Div computes the diversity
of S and is defined as follows:

Div(S) =

∑
oi,oj∈S dist(oi, oj)

k(k − 1)distmax
.

3.2.5 Route Planning

Keyword-aware route queries [21, 78–80, 87, 90,
127, 154, 173]. This type of query assumes a set of

objects (POIs) that are located in a road network G.
A query is given by q = (vs, vt, Ψ,∆, f). Here, vs and
vt are a source and a target location in G. Next, Ψ is
a visit order graph, a directed acyclic graph where ver-
tices correspond to keywords and an edge (a, b) denotes
that POI with the keyword of a must be visited before

a POI with the keyword of b. Keyword matching can
be either exact or approximate. Approximate matching
uses a string similarity (e.g., edit distance) threshold
to determine whether a term in an object matches a
term in a query. Zheng et al. [173] study a matching
strategy based on so-called clues. Specifically, a clue is
defined as µ(w, d, ε), where w is a keyword, d is a net-
work distance, and ε ∈ [0, 1] is a confidence value. A
road segment (u, v) matches a clue µ if vertex v con-
tains w and the network distance between u and v is
within [d(1− ε), d(1 + ε)]. Next, ∆ is an optional bud-
get limit (e.g., travel distance threshold). Finally, f is
a function that calculates a score of a route, e.g., route
popularity. The query returns a path R in G that starts
at vs and ends at vt optimizes f(R) while satisfying the
budget limit ∆ and passing through locations in a se-
quence given by Ψ .

Example: Find the most popular route from and to my
hotel (vs, vt) that first passes a shopping mall and a

restaurant and then a pub (ψ) and such that the time
spent on the road is within 4 hours (∆).

Table 5 categorizes the route queries based on key-
word covering types, object score, and budget score.
Note that order under Keyword Covering denotes

whether the query keywords are must be covered in
a one-after-another fashion by the POIs.

4 Querying Static Geo-textual Data -
Methodology

4.1 Indexing

The efficient processing of spatial keyword queries over
static geo-textual data typically relies on the effective
indexing of the geo-textual data and on search algo-
rithms that exploit available indices.

We present the existing indexing structures for geo-
textual data. They are based on an existing spatial in-
dex and an existing textual index and combine the two
types of indices in different ways.

4.1.1 Spatial Indexing

We classify spatial indices into three categories, namely
R-tree-based indices, grid-based indices, and space-

filling-curve-based indices.

R-tree-based. Three indices use the R-tree [66]. Most
geo-textual indices belong to this category and use the
inverted file for text indexing. In early work [177], the
R-tree-based indices combine the R-tree and inverted
files loosely to organize the spatial and text data sep-
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Literature
Keyword Covering

Objective score Budget score
order word match word weight

Sharifzadeh et al. [127] ordered exact none distance none
Zheng [173] ordered exact none distance none
Li et al. [87] partially ordered exact none distance none
Cao et al. [21] not ordered exact none non-distance distance
Li et al. [90] not ordered exact none non-distance distance
Yao et al. [154] not ordered approximate none distance none
Kanza [78] not ordered exact none distance none
Kanza [79] not ordered exact none distance distance
Kanza [80] not ordered exact yes text relevance, distance distance

Table 5 Overview of Keyword-aware Route Queries

Index Spatial part Textual part Combination Scheme Targeted Query
bR*-tree [161] R*-tree signature loosely spatial-first mCK
CIR-tree [48] R-tree inverted file tightly spatial-first TkSK
CIR+-tree [28] R-tree inverted file tightly spatial first Time-aware BSK
IF-R*-tree [177] R*-tree inverted file loosely text-first BRSK
I3 [163] Quad-tree inverted file loosely text-first BRSK, BkSK, TkSK
ILQ (disk part) [158] Quad-tree inverted file loosely text-first BkSK, TkSK
ILQ (memory part) [158] Quad-tree signature loosely spatial-first BkSK, TkSK
Inverted KD-tree [86] Kd-tree inverted file loosely spatial-first skyline
Inverted R-tree [61] R-tree inverted file loosely text-first BRSK
IR-tree [48,143] R-tree inverted file tightly spatial-first TkSK
IR-tree [91] R-tree inverted file tightly spatial-first TkSK
IR2-tree [76] R-tree signature tightly spatial-first BkSK
IUR-tree [95,97] R-tree intersection/union vector tightly spatial-first RTkSK
KR*-tree [68] R*-tree inverted file tightly spatial-first BRSK
LIR-tree [29] R-tree inverted file tightly spatial-first TkSK
RSR-tree [92] R-tree signature tightly spatial-first clue-based query
R*-tree-IF [177] R*-tree inverted file loosely spatial-first BRSK
S2I [122] R-tree inverted file loosely text-first TkSK
SF2I [41] SFC inverted file loosely spatial-first BRSK
SFC-Q [45] SFC inverted file key func(spatial, text) BRSK
SI [133] R-tree inverted file loosely text-first BkSK
SIS [55] R-tree inverted file loosely text-first RTkSK
SKI [25] R-tree signature loosely spatial-first BkSK
SKIF [81] Grid inverted file key func(spatial, text) BRSK
ST [135] Grid inverted file loosely spatial-first BRSK
ST2I [71] kd-tree signature tightly spatial-first BRSK, TkSK
STbHI [102] SFC inverted file key func(spatial, text) BRSK
TS [135] Grid inverted file loosely text-first BRSK
Virtual bR*-tree [162] R*-tree signature loosely spatial-first mCK
WIBR-tree [146] R-tree inverted bitmaps tightly spatial-first BkSK

Table 6 Comparison of Hybrid Geo-Textual Indices

arately. Subsequent indices integrate the R-tree with a
text index tightly (e.g., [48]).

Grid-based. These indices combine a grid-based in-
dex with a text index (e.g., the inverted file). The grid-
based indices divide space into a predefined number of
square or rectangular equal-sized cells. The grid index
and the text index can be either separate [135] or com-
bined tightly [81].

Space-filling-curve-based. These indices combine in-
verted files with a space filing curve, and they include
a Hilbert-curve-based index [41] and a Z-curve-based
index [45]. These indices rely on the property that the

points close to each other in the native space are also
close to each other on the space-filling curve.

Quad-tree-based. Two geo-textual indices, I3 [163]
and ILQ [158], use the Quad-tree [125] as the spatial
index. The Quad-tree is a spatial index that recursively
divides the spatial region into four congruent rectangu-
lar cells.

4.1.2 Text Indexing

Inverted file. Most geo-textual indices [45, 48, 68, 81,
91, 122, 135, 177] use the inverted file for text indexing.
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An inverted file has a vocabulary of terms, and each
term is associated with an inverted list that comprises
a sequence of postings, each of which normally contains
the identifier of an object o, whose description o.ψ con-
tains the term, along with the frequency of the term
in o.ψ. The frequency information is not included in in-
dices targeting Boolean queries. In general, the postings
in each inverted list are sorted by object ID. However,
some geo-textual indices order the postings differently,
such as ordering them by their orders in grid cells [81]
or according to a space-filling curve [45].

Signature/Bitmap. Some R-tree-based indices [25,
76, 146] use a signature file [53] to index the text in-
formation in subtrees. A Bitmap is the simplest case of
a signature. Simply put, each bit in a signature repre-
sents the presence or absence of a term in a document.
The IR2-tree [76] augments each node of the R-tree with
a signature file to capture the text information of the
objects in the node’s subtree. Another study [161] aug-

ments the nodes of the R-tree with bitmaps. Some geo-
textual indices [146] use inverted bitmaps, in which each
term corresponds to a bitmap and each bit in a bitmap

captures whether a document contains the term. In ad-
dition, ILQ [158] maintains a signature Quad-tree in
memory. Here, each cell stores a signature that indi-
cates the existence of each keyword in the cell.

4.1.3 Combination Schemes

Hybrid indexing schemes combine spatial and text in-
dexing. We categorize the indices according to how they

combine the two, e.g., text-first combination or spatial-
first combination. Table 6 summarizes existing hybrid
indices based on their spatial indexing schemes, their
text indexing schemes, and ways of combining spatial
and text indexing.

A text-first combination index usually employs the
inverted file as the top-level index and then applies a
spatial index to the postings in each inverted list, which
can be an R-tree, a grid, or a spatial-filling curve. In
contrast, the top level of a spatial-first index is a spa-

tial structure, and its nodes (resp. grid cells) contain
inverted files or bitmaps for the text information of ob-
jects contained in the nodes (resp. grid cells).

Some combinations are loose in a way that the data
is indexed by one type of index and then by the other
type of index, thus pruning the search space one after
the other during query processing. In contrast, tight

integrations enable the use of both types of informa-
tion for pruning the search space during query process-
ing (e.g., [45, 48]). More details about indices for geo-
textual data can be found in an experimental evaluation
study [32].

4.2 Querying over Euclidean Space

4.2.1 Standard Queries

An experimental evaluation study [32] already provides
a good coverage of algorithms for standard spatial key-
word queries. Here, we only give a high-level overview.
In loosely combined spatial-first indices, during the
query processing, the geo-textual objects are first fil-
tered based on the spatial index, and when the leaf level
is reached, the textual index is accessed to obtain the
objects satisfying the query. The spatial filtering stage
may generate a large number of candidate objects.

In loosely combined text-first indices, the text index
is first used to find the spatial indices relevant to the
query keywords, and the spatial indices are then used
to find the objects that are spatially relevant to the
query. The problem of this method is that an object
is contained in all spatial indices corresponding to its
keywords. Thus we may need to access multiple spatial

indices for the same geo-textual objects.

In tightly combined indices (i.e., tightly spatial-first

and key func(spatial, text) in Table 6), the BRSK query
processing algorithms usually adopt the filtering-and-
refinement paradigm. For example, for the KR*-tree,

the search algorithm first finds the R*-tree nodes that
contain the query keywords and then uses these as
candidates for subsequent search. This approach suf-

fers from unnecessary overhead when there are many
candidates. Similarly, the SFC-Q algorithm first tra-
verses the Quad-tree to obtain the object ID ranges

that contain all objects intersecting the query range.
Then the inverted lists are swept to fetch the needed
parts. The search algorithms for tightly combined in-
dices for the BkSK and TkSK queries utilize best-first

traversal. In best-first traversal, a priority queue is used
to keep track of the nodes and objects that have yet to
be visited. The priority of each node is an upper bound
(or lower bound, depending on the scoring function) of
the ranking score in terms of the query and the objects
in the node.

In addition, a proposal [83] presents a query plan
optimizer to handle BRSK queries using a spatial index
and a keyword index.

4.2.2 Standard Query Extensions

Temporal spatial keyword query [28, 113, 116].
Nepomnyachiy et al. [116] and Mehta et al. [113] inves-
tigate the TBRSK query and variants of it. They store
objects in “end” nodes of a spatial index (the leaf nodes

of an R-tree or cells of a Grid index). The difference is
how they organize the objects in an end node. Nepom-
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nyachiy et al. first use an inverted index to categorize
the objects, sorting the objects in inverted lists in as-
cending order of their timestamps. In contrast, Mehta
et al. use a KR*-tree to organize the objects. Mehta et
al. consider moving data and split the data into mul-
tiple objects each with a timespan and a set of key-
words. The KR*-tree organizes the objects based on
their timespans (each timespan can be considered as a
line in Euclidean space) and keywords.

Chen et al. [28] study the time-aware Boolean spa-
tial keyword query, which finds top-k objects using a
ranking score considering the objects’ temporal and
spatial attributes. They use a CIR+-tree to organize
the objects. When processing a query, they traverse the
CIR+-tree. The algorithm starts by putting the root
node into a max-heap based on the ranking function.
In each step, it fetches a node from the max-heap. If
a non-leaf node is obtained, its child nodes that con-
tain the query keywords are put into the max-heap. A
child node is ignored if it does not have any object that
may appear in the top-k result. When obtaining a leaf

node, the algorithm computes the ranking scores of the
contained objects and updates the top-k result accord-
ingly. The algorithm terminates when the max-heap is
empty.

Socially-aware spatial keyword query [13, 77,
145]. Ahuja et al. [13] and Wu et al. [145] employ a tree

index to organize the objects. The objects are stored in
the leaf nodes, and each intermediate node maintains
summary information on the objects in the leaf nodes

of the node’s subtree. The summary information is used
for computing a bound on the scores of the objects in
the corresponding subtree, thus enabling filtering of ir-
relevant objects without reaching the leaf nodes. Ahuja
et al. [13] use an index that is similar to a Quad-tree,
and Wu et al. [145] extend the IR-tree.

Jiang et al. [77] categorize the objects using a dis-
tributed spatial textual index and store the objects in

an HDFS [4]. They first organize the objects using a
Quad-tree and then compute a Geohash code of each
leaf node by using its space-filling-curve value. Each
pair of a Geohash code and a keyword has a posting
list of objects that are stored in HDFS. To answer a
query, they first compute the set of relevant Geohash
code and keyword pairs and then process the objects in

the corresponding posting lists.

Direction-aware spatial keyword query [84]. Li

et al. [84] propose a direction-aware index to organize
objects. Using a tree structure, the objects in the non-
leaf nodes are partitioned into sub-regions according
to their directions and distances with respect to the
bottom-left point of a Minimum Bounding Rectangle

(MBR) that covers them. When processing a query, the
index allows to prune the nodes whose objects are out-
side the query direction interval, thus enabling good
filtering.

Preference-aware spatial keyword query [15,88,
134]. Existing studies [15, 88, 134] focus on developing
indexing schemes to store feature objects and, if any,
their corresponding preference scores. The proposed in-
dices are based on the R-tree and inverted file.

Top-k prestige-based spatial keyword (TkPSK)
query [23]. Cao et al. [23] propose an exact and an ap-
proximation algorithm using an IR-tree. The high-level
idea of the exact algorithm is to consider only nearby
IR-tree nodes when propagating prestige-based rele-
vance (PR), which speeds up computing the PR score
substantially. The approximation algorithm groups ob-
jects into subgraphs based on their locations. Each sub-
graph corresponds to a leaf node of the IR-tree. The
main idea is based on the observation that the PR
scores of the nodes in a subgraph can be computed by

PR propagation within the subgraph and contributions
from border objects that connect the subgraph with
other subgraphs. Consequently, the computation of PR
scores can be done on subgraphs rather than having to

be done on the full graph.

Moving spatial keyword query [74,142,147,148].
This query has a moving location and a set of keywords.

The high-level idea of existing work is based on the
concept of safe regions. In particular, a safe region of a
query is a region that includes the query location. If a

moving query remains in the safe region, its result will
not change, meaning that it is not necessary to request a
new result from the server. The client monitors whether
the query location is inside its safe region. If not, the
client sends a request to the server. The server computes
a new result and a new safe region, and sends them to
the client.

Reverse spatial keyword queries [55,95–97,171].
Considering the RBkSK query, two studies [55,171] pro-
pose algorithms that use an inverted index and an R-
tree separately. They first use the inverted index to find
the candidate objects that contain the query keywords,
then use the R-tree to compute the degree of influence
of those candidates on the spatial dimension. To accel-
erate the procedure, they use half-planes to prune the
invalid objects and compute the influence on the query.

Considering the RTkSK query, Lu et al. [95–97]
propose an Intersection-Union-R tree and two variants

(i.e., IUR-tree, CIUR-tree, and C2IUR-tree) to compute
the query efficiently. The IUR-tree extends the IR-tree
as follows: Each non-leaf node additionally maintains
an entry that points to an intersection textual vector
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and a union textual vector where each item (dimen-
sion) corresponds to a distinct term that appears in
the objects stored in the node’s subtree. The two vec-
tors enable computing the lower and upper bounds of
the textual similarity. The variants of the IUR-tree (i.e.,
CIUR-tree, and C2IUR-tree) enrich the entry by adding
textual cluster information. This information is used to
filter irrelevant nodes when traversing the tree.

Spatial keyword skyline query [86,121,128]. Some
studies [86, 121] propose hybrid index structures to or-
ganize objects and develop corresponding pruning tech-
niques. Li et al. [86] propose an Inverted KD-tree, which
is a KD-tree where each leaf node is extended with in-
verted files. Regalado et al. [121] use an IR-tree. Both
studies employ a search algorithm that originates from
the Block Nested Loops (BNL) scheme [18], which is a
popular method for supporting the skyline operator in
relational databases.

Shi et al. [128] use an R-tree to organize objects.
To speed up computing domination relations, they ex-

ploit geometric properties of the problem to filter query
points that have no impact on the inclusion/exclusion
of any object in/from the skyline. They develop three

models for answering different spatial keyword skyline
queries, summarized as follows:

(1) Derived Dimension Augmentation (DDA) adds
textual relevance to the dimensions of spatial skylines.

(2) Keyword Boolean Filtering First (KBFF) is a
two-step processing algorithm. It first selects candidate
objects whose textual information contains at least one

of the query keywords and then computes the spatial
skyline of the candidates.

(3) Spatio-Textual Dominance (STD) converts the
spatial distance measure of the spatial skyline dimen-
sions into a combined spatio-textual relevance measure;
hence, skylines can be computed that both spatial and
textual relevance are taken into consideration.

4.2.3 Group Queries

Group spatial keyword queries [22,24,26,27,43,
50,64,94,110,130,161,162,164]. Based on their op-
timization goals, existing studies can be classified into
two categories. The first category of studies focus on op-
timizing a cost function that considers inter-object dis-
tance and the distance between objects and the query
location. The other category of studies consider a cost

function involving aspects beyond distance. We proceed
to consider each category in turn:

We observe that it is NP-hard to find an exact an-
swer to queries in the first category [22, 64]. Table 7
gives a brief overview of existing studies.

For the mCK query, Zhang et al. [161] develop an
exact algorithm based on the bR*-tree that utilize two
monotone constraints, distance mutex and keyword mu-
tex. The distance mutex is based on the observation
that if the distance between the MBRs of two nodes ex-
ceeds a value θ then these two nodes cannot give a result
with diameter better than θ. The keyword mutex has
properties similar to the distance mutex. In subsequent
work [162], the authors propose an improved version of
the bR*-tree, the virtual bR*-tree, which improves the
query efficiency. Guo et al. [64] develop three approxi-
mation algorithms for the mCK query that exploit the
virtual bR*-tree. The first algorithm is a greedy ap-
proach that has an approximation ratio of 2. The other
two algorithms find the circle with the smallest diam-
eter that encloses a set of objects that cover all query
keywords collectively, called the “smallest keywords en-
closing circle (SKEC).” They prove that SKECs enable
answering the mCK query with an approximation ratio
of 2√

3
. Thus, the query can be answered with an ap-

proximation ratio of 2√
3

+ ε (ε is an arbitrarily small

value). In addition, Guo et al. [64] develop an exact
algorthm based on SKEC.

For the SUM-GSK query, Cao et al. [24] propose an
approximation algorithm and an exact algorithm. The
former algorithm traverses the IR-tree while maintain-

ing a min-priority queue. The cost of a node is com-
puted by dividing the minimum distance between the
node and the query by the number of their common key-

words. The exact algorithm is based on dynamic pro-
gramming. An additional dynamic programming algo-
rithm is proposed in subsequent work [22]. He et al. [69]

propose a distributed, exact algorithm for the SUM-
GSK query. They partition the objects according to a
grid so that they can be processed in parallel. For each
partition, a local optimal result is computed, and then

these results are aggregated to obtain the final result.

For the MAX+MAX GSK query, Cao et al. [24]

propose one exact algorithm and two approxima-
tion algorithms, denoted by Approx1 and Approx2.
Approx1 finds the nearest object for each query key-
word and builds a group consisting of the objects found.
Approx2 improves Approx1 by utilizing the least fre-
quent query keyword (denoted by tinf ). It creates a new
query using tinf and calls Approx1 to obtain a result
R1. Then it calls Approx1 for the original query to ob-
tain a result R2. It outputs the result with the smaller
cost. The exact algorithm is equipped with a set of
prunning strategies designed for an exhaustive search
for each object to find the optimal group containing
tinf . In subsequent work [22], a new approximation al-

gorithm for the MAX+MAX GSK query is proposed,
and a new exact algorithm is also proposed that per-
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Literature Target Query Index Approach Description
Zhang et al. [161] mCK bR*-tree An exact algorithm that utilizes two monotone constraints,

distance mutex and keyword mutex, to prune irrelevant
nodes when traversing a bR*-tree.

Zhang et al. [162] mCK virtual bR*-tree A virtual bR*-tree index and associated query processing
techniques.

Guo et al. [64] mCK virtual bR*-tree Three approximation algorithms, SKEC, SKECa, and
SKECa+, and an exact algorithm based on SKECa+.

Cao et al. [22, 24] SUM-GSK IR-tree An approximation algorithm that divides the distance be-
tween a node and a query by their common keywords, and
an exact algorithm.

He et al. [69] SUM-GSK Grid A distributed, exact algorithm that parallelizes the checking
of objects in different grid cells.

Cao et al. [22, 24] MAX+MAX GSK IR-tree An exact algorithm and two approximation algorithms that
partition the objects into groups based on the query key-
words.

Long et al. [94] MAX+MAX GSK IR-tree An exact algorithm and an approximation algorithm.
Cao et al. [22] MIN+MAX GSK IR-tree An approximation algorithm.
Chan et al. [27] generalized GSK n.a. A unified cost function capturing different types of GSK

queries and an exact algorithm and an approximation algo-
rithm for the unified cost function.

Table 7 Studies on Group Queries that Consider Distance-based Cost Functions

forms better than the earlier exact algorithms [24, 94].
Long et al. [94] propose an exact algorithm and an ap-
proximation algorithm for the MAX+MAX GSK query.

The exact algorithm is based on the observation that
the maximum cost of a group is dominated by at most
three objects: the object with the largest distance to

the query and the two objects having the largest pair-
wise distance. The approximation algorithm achieves
a smaller approximation factor than do existing algo-
rithms [22, 24] with higher complexity. It recursively

searches the o-neighborhood feasible set for the objects
relevant to the query. The o-neighborhood feasible set
of an object o is the set containing o and all other ob-
jects, each of which is the t-keyword nearest neighbor
of o in R(q, o) for each t ∈ q.ψ \ o.ψ, where R(q, o) is
the circle centered at query location q that has a radius
equal to the distance between q and o. The t-keyword

nearest neighbor of o is the object nearest o that con-
tains keyword t.

For the MIN+MAX GSK query, Cao et al. [22] pro-
pose an approximation algorithm similar to Approx1

for the MAX+MAX GSK query. The difference con-
cerns how the cost of a group of objects is computed.

Chan et al. [27] consider the generalized GSK query.
They propose a unified approach that supports a uni-
fied cost function that can be instantiated to existing

cost functions. Their approach consists of an exact al-
gorithm and an approximation algorithm. The approxi-
mation algorithm provides a better approximation than
do existing solutions.

We proceed to consider the category of studies that

consider a cost function involving aspects beyond the
distance. Chan et al. [26] propose an exact algorithm

and an approximation algorithm for the inherent-cost
aware GSK query. The exact algorithm accesses ob-
jects relevant to the query in ascending order of their

distance to the query. For each relevant object o, the
algorithm constructs the best feasible group using o as
the object contributing the query-object distance in the
cost function. The approximation algorithm is similar,

except that in each iteration, it constructs a feasible
group greedily rather than exhaustively.

Zhang et al. [164] propose an exact algorithm and

an approximation algorithm for the level-aware GSK
query. The former employs a keyword hash table that
maintains the mapping from keywords to lists of ob-

jects. It recursively accesses the relevant objects and
constructs the feasible group until it finds the optimal
feasible group. The approximation algorithm conducts
search on an IR-tree where the nodes are extended to
include level and cost information.

Clue-based spatial keyword search [92]. Liu et
al. [92] propose solutions to clue-based spatial keyword
search. A clue is specified in terms of categories of ob-
jects near the target object. They present a roll-out-

star R-tree (RSR-tree) index that extends the nodes of
an R-tree with spatio-textual context information. The
query algorithm performs a best-first traversal of the
RSR-tree and computes the score of a node using the
node’s context information. The object with the largest
score is the result.

Spatial pattern matching [56]. A spatial pattern P
is a graph where each vertex represent a geo-textual
object and each edge represents the distance between

two objects. An multi-pair-join (MPJ) algorithm is pro-
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posed that finds matches for the edges of P in order. To
decide the execution order, a sampling-based method is
used to estimate the processing costs of different exe-
cution orders. An IR-tree on the collection of objects
is employed to accelerate finding edge matches. The
found matches are linked incrementally to form sub-
graphs, which are then output as results. Further, a
multi-star-join (MSJ) algorithm is proposed that im-
proves the efficiency by improved pruning.

Top-k spatial textual clusters query [130, 144].
Existing studies differ in how they find the candi-
date objects that compose a cluster. Skovsgaard and
Jensen [130] consider objects that are textually rele-
vant to the query based on a similarity function. In con-
trast, Wu and Jensen [144] only consider objects that
contain at least one query keyword. Skovsgaard and
Jensen [130] employ a group extended R-tree (GER-
tree) in which each non-leaf node maintains a com-
pressed histogram containing summary information on

its subtree. As in other top-k algorithms, they main-
tain a priority queue while traversing the GER-tree. In
each iteration, they compute a bound on nodes to facil-

itate filtering. Wu and Jensen [144] solve the query in
a different way. They use an IR-tree to find the objects
that contain at least one query keyword. They then con-
struct clusters on those objects using DBSCAN [119].

They also introduce so-called spatially gridded posting
lists to prune sparse neighborhoods while forming clus-
ters.

4.2.4 (Top-k) Spatio-textual Joins

Most studies [19, 54, 75, 93, 120] focus on the use of in-

dexing in order to efficiently find object pairs that are
spatially and textually similar. Liu et al. [54,93] design
a spatial signature and a textual signature for each ob-
ject that are then used to prune dissimilar object pairs.
Rao et al. [120] develop two spatial-first and two text-
first indexing schemes. Hu et al. [75] generate a spatio-
textual signature set for each object and leverage these
sets to prune dissimilar object pairs. Bouros et al. [19]
propose different spatial-index-based algorithms. They
also propose a batch processing mechanism that par-
titions the objects into groups based on their spatial
and textual attributes and then performs joins on the
groups. Zhang et al. [166] propose a MapReduce frame-

work to solve the join problem.

4.2.5 Region Finding/Analysis

Geosocial search [117]. Geosocial search [117] finds
geographical regions based on geo-tagged social net-

work posts in the regions. Three models are used to

quantify the relevance of a region to a query: Global Ra-
tio, Local Ratio, and Harmonic Mean. Geosocial search
is performed using a partition-aware inverted index on
the geo-tagged posts. This index partitions the space
using a grid and maintains an inverted index on the
posts in each grid cell. The relevance score of a cell to a
query is the number of relevant posts in the cell. Geoso-
cial search finds k cells with the largest relevance scores
and merges adjacent cells into polygon for visualization.

Reverse top-k keyword-based location (Re-
verse TkSK) query [149]. Xie et al. [149] propose
to use Voronoi cells to represent spatial regions. Given
a set O of spatial points, the Voronoi cell of an object
o ∈ O is the part of the space that contains all points
having o as their nearest neighbor. To compute the re-
sult of a Reverse TkSK query, i.e., a spatial region, a
Quad-tree is used for approximating the result Voronoi
cells Vq. During the construction of the Quad-tree, each

Quad-tree cell is furthered partitioned depending on its
relation with Vq. An IR-tree on the objects is employed
to accelerate the checking.

Top-k most frequent terms query [12]. Ahmed et
al. [12] use an R-tree-based index to compute the top-

k most frequent terms. In particular, four indices are
presented, which are called STL-L, STL-LI, STL-Li,
and STL-li. They all augment some nodes with sorted
term lists (STLs). A node’s STL contains aggregated

term entries based on the objects in the node’s MBR.
A term’s entry stores the term’s frequency and infor-
mation on the objects in which it occurs. Each STL is

sorted descendingly on the term frequency. After ac-
cessing candidate nodes, two popular top-k algorithms,
Random Access (RA) [52] and Non Random Access
(NRA) [115], are employed to compute the result. The
STL-L index augments the leaf nodes with STLs, while
STL-LI augments both non-leaf nodes and leaf nodes
with STLs. STL-LI allows early termination when ac-

cessing some non-leaf nodes, at the cost of increased
memory consumption. STL-Li reduces the memory con-
sumption by reducing the lengths of STLs in both non-
leaf nodes and leaf nodes.

Topic exploration [169, 170]. Zhao et al [169, 170]
organize the geo-textual data using an Octree [112].
Unlike in the conventional Octree, they present an al-
gorithm to determine cells in which to pre-train topic
models such that the memory consumption does not
exceed a threshold and the error rate is below a bound.
To support efficient exploration of topics at different

granularities, they propose efficient means of combin-
ing topic models of different cells.
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4.2.6 Query Modification

Why-not spatial keyword queries [33, 34, 38, 39,
176]. Chen et al. [33, 34, 38, 39] propose solutions to
different why-not queries. To facilitate α and k modi-
fication, they transform the candidate parameter vec-
tors into 2-dimensional vectors and classify vectors as
promoted points or degraded points. They search only
candidate vectors through promoted points to avoid ex-
haustive enumeration. They also propose a Bounded
IR-tree to prune unnecessary accesses to objects and
promoted points. To support direction modification,
they develop a linear programming algorithm. To en-
able adapting the query keywords, they propose an al-
gorithm that performs pruning using a Keyword count
R-tree, which is an R-tree that augments each node
with textual information on the indexed objects. Zheng
et al. [176] propose a 3-phase solution for interactive,
preference-aware TkSK query modification.

Why-not group spatial keyword query [174].

Zheng et al. [174] propose an approximate solution to
the why-not group spatial keyword query. They employ
an IR2-tree to retrieve objects that need to be consid-

ered when refining the query. They propose an incre-
mental sampling approach to select good weight vectors
using three heuristic strategies: a score based strategy, a

weight modification strategy, and a rank improvement
strategy. They find the vector with the lowest penalty
among the selected weight vectors.

4.3 Querying over Road Networks

4.3.1 Standard Spatial Keyword Queries on Road
Networks

Boolean range spatial keyword (BRSK)
query [101]. Luo et al. [101] propose distributed
means of computing the BRSK query. They partition
the road network into N subgraphs, i.e., N partitions,
each of which is assigned to a virtual machine (VM).
The partitioning information is stored in a compo-
nent called the partitioner. For each partition P , an

NPD-index is built that maintains information on the
distance from any node in the road network to any
node in P . To process a range keyword query, the
partitioner first identifies the partitions covering the
query range and keywords. Then the corresponding
VMs compute partial results in parallel. Finally, the
partial results are aggregated to obtain the query
result.

Top-k kNN spatial keyword (TkSK) query [123].
Rocha-Junior and Norv̊ag [123] propose indexing that
introduces a spatio-textual index (e.g., the IR-tree) into
a road network framework. In the proposal, an inverted
index maintains inverted lists with a key composed of
an edge identifier and a term. In particular, the inverted
list for an (edge, term) pair stores the set of objects ly-
ing on edge and having term in their textual descrip-
tion. A B-tree like structure is used to map keys to their
inverted lists to efficiently obtain the set of objects rele-
vant to a given (edge, term) pair. An algorithm similar
to Dijkstra’s algorithm [51] uses the indexing. To fur-
ther improve efficiency, an overlay network on top of the
road network is used for pruning regions that contain
no result objects.

4.3.2 Extensions of Standard Spatial Keyword Queries

Moving Boolean kNN spatial keyword
(MBkSKroad) query [175]. Zheng et al. [175]

preprocess a road network G to construct an index
that augments the vertices in G with distance and
keyword information. The index enables pruning of

vertices that are far from the query location or contain
no query keywords. To avoid frequent computations
caused by the changing query location, they compute
and maintain a path that is called a dominance interval

with the property that the query result remains correct
as long as the query location is in the interval. This
reduces the computation and communication overhead

significantly.

Moving top-k spatial keyword (MTkSKroad)
query [62]. Guo et al. [62] propose two algorithms
for the MTkSKroad query: a query-centric algorithm

(QCA) and an object-centric algorithm (OCA). Both
algorithms transform the problem into checking the ver-
tices of the road network, which is achieved by travers-
ing the road network. QCA starts from the end vertex
where the query resides. It recursively visits the neigh-
boring vertices until finding the top-k results. An ex-
pansion tree is maintained to prune nodes that contain
no results. OCA adopts a different strategy. It first finds
the relevant objects that contain the query keywords.
Then it traverses the road network starting from a node
where a relevant object resides. A shortest path tree is
built when traversing the road network, which can be
used to answer queries whose location resides in a node

in the tree.

Reverse spatial keyword query [99]. Luo et al. [99]
propose an algorithm that first traverses the road net-
work to obtain a set of candidate objects Oc. A priority
queue is maintained to store the unvisited edges in as-
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cending order of their distance to the query location.
For each object oc ∈ Oc, the algorithm checks whether
oq ∈TkSKroad(oc), where oq denotes the query object.
During this procedure, if an object oc has been ruled
out, several unchecked objects in Oc can be pruned. To
accelerate the checking, the algorithm exploits a Net-
work Voronoi Diagram index that maintains the infor-
mation about the distances between the objects in the
road network.

4.3.3 Socially-Aware Query

Reverse top-k geo-social keyword (RkGSK)
query [168]. Zhao et al. [168] propose an algorithm that
splits the users and objects into groups and then for
each group of users computes lower and upper bounds
of the geo-social keyword similarity with each group of
objects. These bounds are used for pruning. In the re-
finement phase, the remaining objects are used to com-

pute the result. An index is also introduced to facilitate
computing similarity values.

Why-not top-k geo-social keyword (WNGSK)

query [167]. Zhao et al. [167] enumerate different pa-
rameters of the queries to generate a set of refined
queries. Early termination techniques are employed to
reduce the search space. To compute the penalties of

refined queries, they build a PIM-tree, which integrates
a Partitioned road network, an Inverted Intersection-
Union file, and a Checkin-in&Friendship Matrix. They

create a query partition tree (QP-tree) to partition the
refined queries, and use it and the PIM-tree to prune
non-result refined queries based on penalty bounds. Fi-

nally, a refined query with the minimum penalty is ob-
tained.

4.3.4 Group Queries

Collective spatial keyword (CSK) queries [60,
172]. Gao et al. [60] prove that the CSK query is NP-
complete and propose two approximation algorithms:
a network-expansion-based (NEB) algorithm and an
iterative-NEB-based (INB) algorithm. The NEB algo-
rithm finds the edge that the query resides on and tra-
verses the road network. For each distinct query key-

word, the first found object that contains that keyword
is added to the result. The INB algorithm improves the
approximation bound of the NEB algorithm by consid-
ering both query-object distances and pairwise object
distances.

Zhao et al. [172] solve the popularity-aware CSK
query. They propose an exact algorithm that employs

an index to facilitate finding the shortest paths be-
tween vertices. They also propose a heuristic algorithm.
The road network is first partitioned into multiple sub-
graphs, and a multi-level index, called the I3ndex, is
built on them. The I3ndex contains a local index for
each subgraph and a global index. The algorithm works
by traversing the subgraphs using the I3ndex.

Spatial group keyword search (SGKS) query
[100, 101]. Luo et al. [100, 101] propose a system com-
posed of three components: a partitioner, an indexer,
and a query processor. The partitioner partitions the
road network into N subgraphs. Then the indexer
builds an NPD-index on each partition that stores the
distances between the vertices of the road network. The
query processor is deployed on a pool of virtual ma-
chines. To process a query, each query processor in-
stance first uses the NPD-index on its partition to com-
pute the set of vertices satisfying the distance constraint
for each query keyword and then intersects the result-
ing sets of vertices. Finally, the partial results are ag-
gregated to obtain the result.

Group-based collective keyword (GBCK) query
[132]. Su et al. [132] propose an exact algorithm and an
approximate algorithm. Both algorithms initially find

the first feasible region, which is achieved by check-
ing the vertices nearest to the user vertex for each
query keyword. The exact algorithm enumerates re-
gions based on the first feasible region. It recursively

selects the nearest unprocessed vertex and constructs
a new feasible region. Finally, it outputs the feasible
region having the minimum cost. The approximation

algorithm recursively selects the nearest unprocessed
vertex v to the user group and constructs a feasible v-
centralized region. The algorithm terminates if no fea-

sible v-centralized regions exist.

Diversified spatial keyword (DSK) query [159].
Zhang et al. [159] first employ incremental network ex-
pansion to retrieve candidate objects that satisfy the

spatial and keyword constraints. Then, they propose a
diversified spatial keyword search algorithm. The algo-
rithm maintains a variable θT , which records the short-
est diversification distance for the objects seen so far.
For an object o, if no other candidate object o′ satisfy-
ing θ(o, o′) ≥ θT exists, o is pruned, where θ(o, o′) de-

notes a function computing the diversification distance
between o and o′.

4.3.5 Route Planning

Keyword-aware route queries [21, 78–80, 87, 90,
127,154,173]. The problem of answering keyword-aware
route queries can be viewed as a generalized traveling
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salesman problem [21] and is NP-hard. An exception
is the clue-based route search problem [173]. Most ex-
isting studies focus on developing heuristic algorithms,
and some studies present both exact and heuristic al-
gorithms. We classify existing solutions into three cat-
egories.

(1) Exact algorithms [90, 127, 173]: The exact al-
gorithms enumerate all feasible routes to answer a
keyword-aware route query. They employ different
pruning techniques to reduce the computational costs.
For example, Li et al. [90] start by finding the short-
est path between the start and end vertices in the
query and then recursively refine the route by adding
vertices containing uncovered keywords. Sharifzadeh et
al. [127] find the optimal route by enumerating the near-
est neighbors to different point sets until reaching the
start and end vertices in the query.

(1) Heuristic algorithms without bounds [78–80, 87,
90,173]: A greedy algorithm is proposed that keeps se-
lecting the next vertex in the road network greedily by
taking into account an objective score, budget score (if

any), and keyword coverage. This procedure is repeated
until the target vertex is reached. The search order can
be reversed: it is possible to start from the target ver-

tex and conduct the greedy selection until the source
vertex is reached. The algorithm is very efficient, but it
does not offer a guaranteed approximation ratio.

(2) Approximation algorithms [21, 154]: Some stud-
ies provide approximation algorithms that have theoret-
ical guarantees. Yao et al. [154] develop a global mini-
mum path algorithm with an approximation ratio of κ,

where κ is the number of query keywords. Cao et al. [21]
scale the objective score of every edge of the road net-
work by a parameter ε to obtain a scaled graph. They

conduct a breadth-first search on the scaled graph. The
algorithm finds a route that has a score being no worse
than 1

1−ε of the optimal route.

4.4 Database Management Systems

Database management systems [5,7–9] such as MySQL,
PostgreSQL, MongoDB, and Oracle are able to support
spatial or keyword search. They use spatial and textual
indices separately to organize the geo-textual data. In
terms of spatial indexing, most of the systems support
the R-tree. In terms of textual indexing, they all sup-
port the inverted index. None of them support hybrid
geo-textual indices. Thus, existing database manage-

ment systems support spatial keyword queries by using
spatial and textual indices separately. However, they
are not as efficient as algorithms that use hybrid geo-
textual indices as they do not fully utilize the filtering
on both the spatial and textual attributes.

4.5 Other Software Libraries

Apache Lucene [2] is an open-source, full-text search en-
gine. It provides APIs to support spatial search queries
on document collections, which are similar to the stan-
dard spatial keyword queries, such as BRSK, BkSK,
and TkSK. It employs separate indices for spatial at-
tributes, including points and other shapes, and tex-
tual features. In particular, Lucene implements a KD-
tree variant called the block KD-tree, which is designed
to enable efficient IO, and Lucene also implements a
multi-level grid structure for Geohash. Next, Lucene
supports inverted files for textual attributes. Location
based services such as Google Maps and Foursquare
also support spatial queries on POIs that are similar to
the standard spatial keyword queries. It appears that
they index spatial and textual features separately. Both
services base their spatial indexing on the S2 Geome-
try Library [3], which assigns data to so-called S2 cells
and enable search on such cells. S2 cells are obtained
by mapping every point on the Earth to one of the six

faces of an enclosing cube. Each face is than partitioned
Quad-tree style into a hierarchy of cells. The cells at all
levels are enumerated using a Hilbert Curve, so that
every S2 cell has a unique identifier.

5 Problem Definition for Querying Streaming
Geo-textual Data

We organize existing studies according to four cate-

gories: publish/subscribe systems, localized event de-
tection, temporal spatial keyword queries, and location-
based term queries. Table 8 gives a brief introduction
to each type of work.

5.1 Publish/Subscribe Systems

The techniques for managing static geo-textual data
employ a user-initiated model (a.k.a. a “pull” model),
where a user issues a query and the system responds
with desired answers. However, such a model is not
always suitable for querying steaming data because it
does not provide users with real-time answers. This mo-
tivates a server-initiated model (a.k.a., a “push” model)
where users register subscriptions, also called contin-
uous or standing queries, that are evaluated continu-

ously against the streaming data so that results can be
pushed back to the users in real time. Consequently, a
high-performance scalable publish/subscribe system is
required that is able to evaluate continuously a set of
subscriptions against incoming data.
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Query Type Description
Publish/subscribe systems [10,
30, 31, 42, 72, 85, 107, 108, 138,
140,155,156]

Publish/subscribe systems allow users to submit subscriptions that specify spatial and
textual matching conditions. Such systems will notify the users in real-time when in-
coming data satisfies the matching conditions.

Localized event detection [11,
35, 57, 82, 89, 118, 124, 126, 137,
141,157,160,165]

A local event is typically a bursty activity that occurs in a local area in a specific
timespan. These studies investigate how to represent local events and extract local
events efficiently from streaming geo-textual data.

Temporal spatial keyword
queries [14]

This type of query finds objects that satisfy spatial, textual, and temporal constraints.
The queries are similar to previously covered Euclidean space queries except that they
target streaming data.

Location-based term
queries [105,131,139,151]

This type of query focuses on term frequencies in object streams. Objects are filtered
by spatial and textual constraints, upon which term frequencies are extracted from the
remaining objects.

Table 8 Summary of Studies on the Querying of Streaming Data

Publisher
Subscription 

Index

Subscription

geo-textual

object
Subscription

Subscription

Subscription

Fig. 3 Framework for a Spatial Keyword Publish/Subscribe
System.

Figure 3 illustrates the general framework of a
spatial keyword publish/subscribe system over a geo-

textual data stream. It can be modeled as a system
that manages a stream of incoming geo-textual objects
(e.g., geo-tagged Tweets) generated by a publisher (e.g.,

Twitter) and a large number of subscriptions. Each spa-
tial keyword subscription contains a spatial argument,
a textual argument, and possibly a temporal argument,
which lead to three kinds of matching conditions: (1)
spatial, (2) textual, and (3) temporal matching condi-
tions. When a new object arrives, the system sends the
object to the subscriptions whose matching conditions

are satisfied by the object.

Publish/subscribe systems for textual data have
been studied widely (e.g., [67, 104, 129]) without tak-
ing into account the location aspect. The problem of

processing spatial keyword subscriptions has been con-
sidered in a number of studies.

We proceed to classify the subscriptions based on
their matching conditions. Table 9 presents a summary
of the categorization.

Spatial matching conditions. We classify spatial
matching conditions into range matching and distance
matching. Range matching is the dominant spatial
matching condition in existing studies [10,30,42,63,85,
107, 108, 136, 140, 155, 156]. The spatial component in

these studies is a region. Consider a new geo-textual
object d in a geo-textual stream. If d has a point lo-
cation, d satisfies the spatial matching condition if its
location belongs to the query region; If d has a region
location, d satisfies the spatial matching condition if its
region overlaps with the query region [85,155,156].

Next, studies also exist that support distance
matching. When the spatial component in a subscrip-
tion is a point location, some studies [31,37,72,73,138]

use the spatial proximity between the subscription and
the location of a geo-textual object for ranking. When
the spatial component is a region, one study [156] uses
the spatial overlap between the subscription and the

region of a geo-textual object as a matching score.

The range matching corresponds to the range query
in spatial databases, while the distance matching cor-

responds to the nearest neighbor query in spatial
databases.

Textual matching conditions. Textual matching is
either treated as a Boolean condition or is used for
ranking. In Boolean matching, the new document d
of an object either matches or does not match the

textual component of a subscription q. Specifically, Li
et al. [85], Guo et al. [63], Wang et al. [140], Yu et
al. [155], Chen et al. [42], and Mahmood et al. [107]
use Boolean AND semantic, i.e., for d to match q tex-
tually, d must contain all the query keywords in q. The
frameworks developed by Chen et al. [30], Mahmood

et al. [108] and Abdelhamid et al. [10] support both
Boolean AND and Boolean OR semantics. Next, an-
other line of work [31, 37, 72, 136, 156] computes a text
similarity score for the match between q and d. The
score is combined with a spatial matching score to de-
termine whether d is a result of q.

Boolean matching corresponds to a Boolean query

in information retrieval, while the ranking matching
corresponds to a ranking query in information retrieval.

Temporal matching conditions. In addition to the

spatial and textual aspects, several proposals consider
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Literature Approach
Abbr.

Spatial Match Textual Match Temporal
Match

Query Type

Abdelhamid et al. [10] Cruncher range, distance Boolean (AND, OR) none RB, kB
Chen et al. [30] IQ-tree range Boolean (AND, OR) none RB
Chen et al. [31] TaSK distance similarity decay function DSrank,decay

Chen et al. [42] PS2Stream range Boolean (AND) none RB
Hu et al. [72] Stamp distance similarity none DSthreshold

Li et al. [85] Rt-tree range Boolean (AND) none RB
Mahmood et al. [107] FAST range Boolean (AND) none RB
Mahmood et al. [108] Tornado range, distance Boolean (AND, OR) none RB, kB
Wang et al. [138] SKYPE distance similarity sliding window DSrank,sliding

Wang et al. [140] AP-tree range Boolean (AND) none RB
Yu et al. [155] MBRTrie, PT-

Quadtree
range Boolean (AND) none RB

Yu et al. [156] Rt-tree range, distance Boolean (AND) none RB,DSthreshold

Table 9 Comparison of Existing Work on Spatial Keyword Subscription Query

temporal aspects in their matching conditions. These
proposals [31, 37, 136, 138] use either decaying schemes
or sliding windows in their temporal matching condi-
tions. Decaying schemes make it possible to take into

account the freshness of objects in rankings that aim
to maintain the k most relevant objects for a subscrip-
tion. Specifically, Chen et al. [31] apply an exponen-
tial decaying function to quantify the freshness of a

geo-textual object, which is incorporated into the rank-
ing of geo-textual objects. Next, Wang et al. [138] and
Wang et al. [136] use sliding windows in their tempo-

ral matching. In particular, they continuously maintain
top-k geo-textual objects within a sliding window based
on the spatial and textual relevance between an object

and a subscription.

Combined matching conditions. In existing propos-
als, combined spatial and textual matching scores are
usually used to determine whether a geo-textual object
matches a query. Combinations of three types of match-
ing conditions are used in the literature. First, some
studies [10, 30, 42, 85, 107, 108, 140, 155, 156] combine
range matching with Boolean matching: A geo-textual

object d matches a subscription q if d’s location belongs
to the region of q or if d’s region overlaps with the region
of q, if d’s spatial information is a region AND if d’s tex-
tual component satisfies a Boolean condition w.r.t. q’s
textual component. Next, two demonstration systems,
Cruncher [10] and Tornado [108], maintain the k near-
est geo-textual objects to each of a set of subscriptions

among those objects whose textual component satis-
fies the subscription’s Boolean matching condition. In
yet another line of work [31, 72, 138, 156], spatial dis-
tance matching and textual similarity are combined.
The combination takes two different forms: (a) Rank-
ing. The subscription query q considered by Chen et
al. [31], Wang et al. [138], and Yu et al. [156] contin-
uously maintains k most relevant geo-textual objects

based on a scoring function that combines spatial prox-
imity and textual similarity. In particular, if a new ob-
ject d is one of the k most relevant objects to a query q,
d is a match for q. (b) Threshold. Hu et al. [72] consider
a different type of subscription that finds results based

on a pre-specified threshold θ on the score. Specifically,
if the score between d and q exceeds θ, we say d matches
q.

Based on different combinations of spatial and tex-
tual matching as well as the incorporation of tempo-

ral matching, we name the existing subscription queries
as follows: (1) RB query. This query combines spatial
range matching and Boolean matching for textual com-
ponent. (2) kB query. This query combines spatial kNN

matching condition and Boolean matching for textual
component. (3) DS query. This query combines spa-
tial distance matching and textual similarity scoring.

We denote the two types of combination, i.e., ranking
and threshold, by DSrank and DSthreshold , respectively.
In the literature, DSrank queries are further combined
with the two types of temporal matching, yielding two
types of DSrank queries, denoted by DSrank ,decay and
DSrank ,sliding . We note that not all combinations of the
spatial and textual matching conditions are considered

in previous work. It might be of interests to consider the
practicality and feasibility of unexplored combinations
in future work.

Other subscription queries. Guo et al. [63] consider
the problem of continuously monitoring moving users
subscribing to streaming geo-textual data. This query
can be considered as an extension of the RB subscrip-
tion query that allows queries to move. Chen et al. [37]
extend the DSrank ,decay query by returning k clusters of
geo-textual objects, rather than k geo-textual objects.
Wang et al. [136] study subscription queries that re-

turn top-k objects over a sliding window, considering
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also the credibility and representativeness of returned
objects.

5.2 Localized Event Detection

As suggested already, a localized event is typically a
bursty activity that occurs in a local area during a spe-
cific timespan, such as a demonstration, a conference,
a sports match, or an emergency response. A host of
studies exist on the problem of detecting local events
from geo-tagged data streams. We classify these studies
based on the five aspects covered next. A summary of
the categorization can be found in Table 10.

Local event representation. Existing proposals rep-
resent a local event differently, and we classify them
into four categories.

(1) Cluster of geo-tagged micro-blog posts: A local
event is represented as a cluster of geo-tagged micro-
blog posts. Zhang et al. [157, 160, 165] represent an
event by a geo-topic cluster, which is a set of geo-tagged

micro-blog posts whose locations are close to each other
and whose text has similar meanings. The meanings
of a cluster should deviate from those of routine ac-

tivities. Watanabe et al. [141] represent an event as a
cluster of micro-blog posts that are geographically and
temporally close to each other. Sankaranarayanan et
al. [126] find local events by clustering geo-textual ob-

jects based on their spatial proximity and textual rel-
evance. Each local event is represented by a cluster of
micro-blog posts that are spatially and textually similar

to each other. Li et al. [89] represent a criminal event as
a cluster of textually similar micro-blog posts within a
specified region. Sakaki et al. [124] detect earthquakes
using groups of micro-blog posts that are posted during
a period—They build classifiers to determine whether
posts are earthquake related and whether a group of
posts corresponds to an earthquake.

(2) Vector : Quezada et al. [118] represent an event
based on the geographical distribution (over countries)
of geo-textual objects that cover a given topic. Specifi-
cally, an event is defined by a protagonism-participation
vector, where protagonism captures countries where
events originated and participation captures countries

where people talk about the events.
Feng et al. [57] represent an event as a group of

hashtags. A hashtag h is a vector that is composed of
a normalized word weight vector and a normalized tag
weight vector:

h = (α0.5hword, β
0.5htag),

hword = (w1, w2, ..., w|W |),

htag = (h1, h2, ..., h|H|),

where wi is the weight of the i-th word, |W | is the
number of words, hi is the weight of the i-th tag, and
|H| is the number of tags.

(3) Summary : Krumm et al. [82] find local events by
detecting anomalies in terms of the number of tweets at
different spatial and temporal resolutions. An anomaly
gives rise to a space-time prism (S, T ), which indicates
the location and time of a local event. Five tweets in a
prism (S, T ) are extracted as a summary representation
of the corresponding event.

(4) Terms/Tags: Yang et al. [137] represent events
as local maximal frequent keyword patterns (LMFP).
To define such patterns, we define a local frequent key-
word pattern (LFP). Given a data stream D, a region
R, and a threshold θ, a pattern P is an LFP if its local
frequency f(P,R) ≥ θ. The local frequency f(P,R) is
computed by

f(P,R) = |{o|o ∈ DR ∧ P ⊆ o.ψ}|,

where DR represents the set of objects in R and o.ψ
represents the textual information of o. An LFP P is

an LMFP if P is not the subset of any other LFP, i.e.,
@P ′ ⊃ P where P ′ is an LFP.

Abdelhaq et al. [11] use a cluster of terms occurring
in geo-textual posts that are close in spatial distance
to represent an event. Chen et al. [35] use a cluster of
tags to represent an event, where the tags are clustered

based on their co-occurrence and spatial and temporal
distributions.

Event type. We divide existing proposals into two cat-
egories: (1) detecting a particular type of local event

(e.g., an emergency or an earthquake) and (2) extract-
ing various types of event.

Real-time. We divide existing proposals into two cat-
egories: (1) detecting and monitoring local events in a
real-time fashion, denoted by “Online - yes,” and (2) ex-
tracting local events in batch mode.

Number of events. We divide existing studies into
two categories: (1) studies that perform top-k selection
to identify local events from a set of event candidates,
denoted by “Pre-specified,” and (2) studies that do not
need to specify “k” as input, which is denoted by “Un-
defined.”

Temporal constraint. Zhang et al. [157,160,165] and
Abdelhaq et al. [11] detect local events from streaming
geo-textual objects in a sliding window. Li et al. [89] ex-

tract local crime events in a specified timespan. Watan-
abe et al. [141], Quezada et al. [118], Sakaki et al. [124],
Chen et al. [35], and Krumm et al. [82] do not consider
a time constraint.
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Literature Approach Abbr. Local Event Repre-
sentation

Event Type Online # Events Temporal Const.

Abdelhaq et al. [11] EvenTweet geo-cluster of terms general yes pre-specified sliding window
Chen et al. [35] n.a. geo-temporal cluster of

Flickr tags
general no undefined none

Feng et al. [57] StreamCube vector of terms and tags general yes undefined timespan
Krumm et al. [82] Eyewitness summary general no undefined none
Li et al. [89] Tedas textual cluster within a

region
crime no undefined timespan

Quezada et al. [118] n.a. protagonism-
participation vector

general no pre-specified none

Sakaki et al. [124] n.a. tweet cluster earthquake yes undefined none
Sankaranarayanan et
al. [126]

TwitterStand geo-textual cluster general yes undefined none

Watanabe et al. [141] Jasmine geo-temporal cluster general no undefined none
Yang et al. [137] n.a. frequent keyword pat-

tern
general yes undefined sliding window

Zhang et al. [157] TrioVecEvent geo-topic cluster general yes undefined sliding window
Zhang et al. [160] GeoBurst geo-topic cluster general yes pre-specified sliding window
Zhang et al. [160] GeoBurst+ geo-topic cluster general yes undefined sliding window
Zhang et al. [165] Event-Radar geo-topic cluster general yes undefined sliding window

Table 10 Comparison of Existing Studies on Local Event Detection

5.3 Temporal Spatial Keyword Query

Almaslukh et al. [14] investigate the problem of pro-

cessing temporal spatial keyword queries over stream-
ing geo-textual data. Such queries define constraints
on the temporal, spatial, and textual attributes of the

data. Let D denote a set of streaming geo-textual ob-
jects. Each object o ∈ D is a triple (ρ, ψ, t), where o.ρ
is a spatial point, o.ψ is a set of keywords, and o.t is
a timestamp. Let Dt be the snapshot of dataset D at

time t, such that every object o ∈ Dt has o.t ≤ t. The
study considers the processing of two types of queries.

Temporal Boolean range spatial keyword
(TBRSK) query. This query uses a set of keywords

and a spatial region as filters, and it retrieves the most
recent objects with respect to the query time. Formally,
a TBRSK query q = (t, w, r, k) has four arguments: q.t
is a timestamp, q.w is a set of keywords, q.r is a spatial
region, and q.k is an integer. The result q(D) of q con-
sists of k objects from D satisfying that q(D) ⊆ q(Dt),
where ∀o ∈ q(Dt) (o.ρ ∈ q.r∧ o.ψ ∩ q.w 6= ∅∧ o.t ≤ q.t),
and ∀o ∈ q(D) (∀ô ∈ q(Dt)\q(D) (o.t > ô.t)).

Temporal Boolean top-k spatial keyword
(TBkSK) query. This query uses a set of keywords
as a textual filter and finds top-k objects according
to a score function considering spatial proximity
and temporal difference. Formally, a TBkSK query
q = (t, w, ρ, k) has four arguments: q.t is a times-
tamp, q.w is a set of keywords, q.ρ is a spatial
point, and q.k is an integer. The result q(D) of q
consists of k objects in D that satisfies q(D) ⊆ q(Dt),
where ∀o ∈ q(Dt) (o.ψ ∩ q.w 6= ∅ ∧ o.t ≤ q.t), and
∀o ∈ q(D) (∀ô ∈ q(Dt)\q(D) (F (o, q) ≤ F (ô, q)).

Here, function F (o, q) computes the spatial-temporal

relevance of an object o to q:

F (o, q) = α · dist(o.ψ, q.ρ)

Rmax
+ (1− α) · q.t− o.t

Tmax
,

where α is a weight parameter, Rmax is the maximum

spatial distance, and Tmax is the maximum temporal
difference.

5.4 Location-based Term Queries

Location-based term queries focus on the frequencies of
terms in streaming geo-textual objects. Existing studies
belong to four categories, as explained next.

Top-k most frequent terms query [131]. This
query finds top-k most frequent terms over streaming
geo-textual objects given a region and a timespan. Let

D be a stream of timestamped geo-textual objects. The
frequency of a term w for a set of objects O is the
number of objects in O whose textual information con-
tains w. A top-k most frequent terms query is given
by q = (R, T, k) where R denotes a spatial region, T
denotes a time interval [ts, te], and k is the result car-
dinality. The query returns the k most frequent terms

in the objects Oq ⊆ D that fall in R and whose times-
tamps belong to T .

Top-k most trending terms query [105]. Given
trending measure, this query finds the k most trending
terms with a region and a time interval. GeoTrend [105]
defines a query by a quadruple q = (R, T, k,Trend),
where R is a spatial region, T is a number of time units,

k is the result cardinality, and Trend is a trending mea-
sure. At each time unit, the frequency of a term w is the
number of objects whose textual information contains
w. GeoTrend finds k terms such that: (1) the terms
occur in objects that are in R, (2) the terms occur in

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, 
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.  

The Version of Record is available online at: https://doi.org/10.1007/s00778-021-00661-w



Location and Keyword Based Querying of Geo-Textual Data: A Survey 31

objects whose timestamp belongs to the T time units,
and (3) the terms are the top-k ranked terms based on
the Trend measure among all terms in objects in R and
T .

Location-based top-k term (LkT) query [151].
Given an LkT query q = (ρ, k), where ρ is a query lo-
cation and k is the result cardinality, the query finds k
terms with the highest location-aware frequency among
the terms occurring in objects in a sliding window W .
The location-aware frequency score of a term t is a
linear combination of the distances between the geo-
textual objects containing t and the query location and
t’s frequency, as formalized in Equation 14:

ST (t, q) =α · |Wt|
|W |

+

(1− α) · (1−
∑
o∈Wt

dist(q, o)

ddiag · |Wt|
),

(14)

where α (0 ≤ α ≤ 1) is a user parameter, Wt denotes
the set of objects in W containing term t, and ddiag
denotes the diagonal length of the minimum bounding
rectangle (i.e., MBR) of Wt.

Selectivity estimation [139]. Wang et al. [139] in-

vestigate the problem of estimating the cardinality of
geo-textual objects in a stream whose location falls in a
specified region and textual information satisfies a spec-

ified Boolean expression. Conjunction (AND), disjunc-
tion (OR), and negation (NOT) semantics are taken
into consideration.

6 Querying Streaming Geo-Textual Data -
Methodology

6.1 Publish/Subscribe Systems

The main challenge to enable efficient processing of

subscription queries over spatio-textual data streams is
how to organize a large number of subscription queries
to facilitate the efficient processing of incoming spatio-
textual objects. Specifically, existing location-aware
publish/subscribe proposals focus on the document-
queries matching problem, which aims to find effi-
ciently the subscription queries that match incoming
geo-textual objects.

Existing solutions can be classified into central-
ized [30, 31, 37, 63, 72, 73, 85, 107, 136, 138, 140, 155, 156]

and distributed solutions [10, 40, 42, 106, 108]. The for-
mer focus on inventing effective index structures for
subscription queries. The distributed solutions utilize
a cluster of servers and consider workload partitioning
that enables the system to achieve high performance,

e.g., large throughput. They also consider workload ad-
justment strategies that adapt to changing data distri-
bution.

6.1.1 Centralized Solutions

Existing solutions propose different indices to organize
the subscription queries based on their spatial and tex-
tual attributes. Table 11 classifies the existing subscrip-
tion query indexing schemes.

Indexing priority. Most proposals [30, 31, 37, 63, 72,
73, 85,107,136,138,156] use spatially-prioritized index-
ing schemes: subscriptions are first partitioned by their
spatial attribute and then by their textual attribute.
Specifically, they organize the subscriptions using a spa-
tial tree structure (e.g., R-tree, Quad-tree) and embed
textual indexing (e.g., inverted index) in the nodes of
the spatial index . Such spatially-prioritized indices are
more efficient for subscriptions with high spatial selec-
tivity, i.e., subscriptions with small spatial regions.

Textually-prioritized indices first organize subscrip-
tion queries by their textual attribute and then by their

spatial attribute. The only such indexing scheme is the
MBRTrie [155], a trie where each trie node is associated
with a query keyword. Textually-prioritized indices are
more efficient for subscriptions with high textual se-

lectivity, e.g., subscription queries with few and highly
selective keywords.

Going beyond the spatially- and textually-
prioritized indices, hybrid indices (e.g., AP-tree [140])
are capable of adaptively prioritizing the spatial or

textual aspects by means of a cost model.

Spatial indexing scheme. For the purpose of spatial
indexing, existing methods employ variants of popu-
lar spatial indices. Most proposals use Quad-tree-based
partitioning (e.g., [30, 31, 37, 63, 107, 138, 140]) or R-
tree-based partitioning (e.g., [72, 73, 85, 156]). Wang et

al. [136] use Grid-index-based partitioning. Overall, the
R-tree is the most powerful at pruning, while the Quad-
tree and Grid index are more efficient for update (i.e.,
inserting or deleting subscriptions). Therefore, Quad-
tree and Grid-index-based partition schemes are more
suitable for applications with frequent subscription up-
dates.

Textual indexing scheme. MBRTrie [155] is a
textually-prioritized index that uses a trie to organize
the subscription queries. Each trie node is associated
with a query keyword, and the path from the root to

any node represents a unique keyword sequence. The in-
dex imposes a global keyword order, so when inserting
a query, its keywords are considered in order to deter-
mine the next-level node; a new node is created if no
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Literature Query Index Name Indexing Priority Spatial Indexing
Scheme

Textual Indexing
Scheme

Chen et al. [30] IQ-tree Spatially-prioritized Quad-tree Inverted file
Chen et al. [31] CIQ-tree Spatially-prioritized Quad-tree Inverted file
Chen et al. [37] Quad-tree + Inverted file Spatially-prioritized Quad-tree Inverted file
Guo et al. [63] BEQ-tree Spatially-prioritized Quad-tree Inverted file
Hu et al. [72] Stamp Spatially-prioritized R-tree Inverted file, Sum-

mary file
Hu et al. [73] RI -tree Spatially-prioritized R-tree Interval tree
Li et al. [85] Rt-tree Spatially-prioritized R-tree Inverted file, Sum-

mary file
Mahmood et
al. [107]

FAST Spatially-prioritized Quad-tree EKI

Wang et al. [136] GH Spatially-prioritized Grid Inverted file, Sum-
mary file

Wang et al. [138] Quad-tree + Inverted file Spatially-prioritized Quad-tree Inverted file
Wang et al. [140] AP-tree Hybrid Quad-tree f -ary tree

Yu et al. [155]
MBRTrie Textually-prioritized MBR Trie & Inverted file
PT-Quadtree Spatially-prioritized Quad-tree Summary file

Yu et al. [156] Rt-tree Spatially-prioritized R-tree Inverted file, Sum-
mary file

Table 11 Subscription Query Indexing Schemes

matching node exists. Each query is stored in a node
such that the path from the root to that node matches

the query’s keyword sequence.

Most other proposals employ a spatially-prioritized
index that maintains an inverted index in the nodes of
the spatial index (or cells if a Grid index is used). Specif-
ically, the IQ-tree [30] and CIQ-tree [31], which are

proposed for indexing Boolean-based spatial keyword
subscriptions and similarity-based spatial keyword sub-
scriptions, respectively, are basically Quad-trees where

each node is augmented with an inverted index on the
queries assigned to the node. A cost-model-based algo-
rithm is developed for finding the node(s) in which to
store a query by considering the trade-off between the
costs of index updates and queries.

Mahmood et al. [107] propose a textual index, called
the expandable keyword index (EKI), which is inte-
grated in the nodes of a Quad-tree-based index. EKI is
based on the trie and considers the frequencies of query
keywords. Each node is labeled by a query keyword.
Queries are first stored in the top-level nodes according
to their least frequent keyword. When the size of a node

reaches a threshold, it is expanded by creating a child
node that is labeled by another query keyword.

Other spatially-prioritized indices [72,85,156] use a
summary file for the textual indexing. Such files con-
tain a set of tokens that are selected from the query

keywords, and possibly corresponding weights.

Indexing subscription queries. We use the IQ-tree
as a representative in order to explain the procedure

of indexing subscription queries. The IQ-tree targets
Boolean-based spatial keyword subscriptions. It ex-

tends a Quad-tree by augmenting each node with an
inverted index. When inserting a subscription, it uses

a cost model to identify an appropriate node or nodes
among the nodes that cover or overlap the subscrip-
tion’s range. The cost model considers the keyword dis-

tribution in the spatial range of the nodes, the goal be-
ing to achieve optimal query and update performance.
When a geo-texutal document arrives, the search for
matching subscriptions starts at the root node, and the

search procedure recursively checks the inverted indices
of the nodes that cover the document location. For each
keyword in the document, the subscriptions in the cor-

responding posting list are checked to see whether the
new document matches them.

6.1.2 Distributed Solutions

There are two main components in distributed frame-
works for querying geo-textual data streams: router and
worker. A router has a global index that partitions the
incoming workload among workers. A worker has a lo-
cal index to facilitate the matching between geo-textual
documents and subscriptions, which is similar to the
centralized solutions. The distributed solutions support
workloads composed of processing geo-textual docu-
ments and inserting and deleting subscriptions. Un-
like the centralized solutions, they focus on workload

partitioning. Multiple factors such as load balance and
network cost need to be considered. The design of the
global index is core to the workload partitioning. There-
fore, we classify existing distributed solutions based on
the global index they employ.
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KD-tree. A spatial-based partitioning strategy parti-
tions a workload based on the spatial attribute. Tor-
nado [108] and Cruncher [10] adopt a KD-tree in the
router. The KD-tree recursively partitions the space by
alternating between the x-dimension and y-dimension
at each tree level, and each leaf node is assigned to a
worker. To assign a geo-textual document d to a worker,
the router finds the leaf node that d falls into and then
sends d to the corresponding worker. To distribute a
subscription update request q (insert or delete), the
router finds the leaf nodes that q intersects and sends
q to the corresponding workers.

Augmented-Grid. A new version of Tornado [106]
adopts a structure called the Augmented-Grid (A-Grid,
for short) to partition a workload. A-Grid first splits
the space into virtual fine-grained grid cells FG. It then
partitions the space into partitions that are overlaid on
top of FG. The router assigns each such partition to a
worker and maintains a summary of the query keywords

for each worker.

Gridt. Chen et al. [42] propose a hybrid workload parti-

tioning strategy that leverages both the spatial and the
textual attribute to partition a workload. The motiva-
tion is that the data distributions in different regions
are different and that adopting textual partitioning in

some regions can enhance the filtering of the router. An
index called the gridt-tree is proposed, which is a Grid
index where cells are further partitioned by the textual

attribute.

QT-tree. Chen et al. [40] propose a hybrid index called

the QT-tree. It is a variant of the Quad-tree that allows
a node to be split based on the spatial or textual at-
tribute of the data. It aims to minimize the total work-

load while balancing the load among the workers. To
achieve this, a cost model is used to decide between
using spatial or textual partitioning when building the
QT-tree.

6.2 Localized Event Detection

Existing localized event detection proposals can be
classified into detecting general events and detecting
domain-specific events. The main difference is that for
general event detection, no knowledge of the kinds of
events to be detected is assumed in advance, while for
domain-specific event detection, the type of event to be

detected is known. Events are usually represented as
clusters of geo-textual objects. When detecting general
events, a popular scheme [57, 118, 126, 157, 160, 165] is
to first generate candidate events by clustering the ob-
jects based on their spatial and textual attributes, and

then use a classifier to eliminate non-event clusters. An-
other approach [11,35,82,137,141] is to first find regions
where abnormal patterns occur, e.g., an unexpected
spike in some words, and then cluster the objects in
those regions to obtain events. Considering the methods
for detecting domain-specific events [89,124], the main
idea is to train and use a classifier to judge whether in-
coming objects are relevant to a specific event. An event
is then characterized by its set of relevant objects.

6.2.1 General Event Detection

Some proposals find candidate events by conducting on-
line clustering and then apply filtering to remove non-
event clusters. We call this as clustering-and-filtering.
Another approach is to find regions where abnormal
patterns happen and then cluster the geo-textual ob-
jects in those regions to obtain events. We call this
as checking-and-clustering, where the checking implies
that we need to check the objects in a region to decide

whether an abnormal pattern occurs. We consider the
two approaches in turn.

Clustering-and-filtering. Studies in this category
differ in how they perform clustering: TrioVe-
cEvent [157] uses a trained model to learn multi-

modal embeddings of geo-textual objects and then per-
forms online clustering using a Bayesian mixture model.
GeoBurst [160] and Event-Radar [165] conduct online
clustering by determining a set of pivot geo-textual ob-

jects and assigning new objects to pivot objects to pro-
duce clusters. StreamCube [57] uses a hierarchical index
to categorize the geo-textual objects, forming clusters

of objects that are temporally and spatially close and
that have the same hashtag. Finally, TwitterStand [126]
represents geo-textual objects as vectors and place ob-
jects with high cosine similarity in the same cluster,
which is split into smaller clusters based on the spatial
attribute.

Checking-and-clustering. Studies in this category
differ in how to find an abnormal pattern that is used for
recognizing an event. Chen and Roy [35] detect events
from geo-tagged photos. They analyze the temporal and
location distribution of the tags and find the tags that
show significant distribution patterns (e.g., burstiness),
which are then clustered to represent events. Even-
Tweet [11] finds abnormal patterns by finding words
having a bursty frequency. For each bursty word, the
corresponding region is found, and a set of representa-
tive words in the region is used to represent the event.
Watanabe et al. [141] collect groups of geo-textual ob-
jects that are spatially and temporally close. For each

such group, co-occurring words are used to represent
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Index Name First Level Second Level
Grid-inverted Grid index Inverted index
Inverted-grid Inverted index Grid index

Inverted-quadtree Inverted index Quad-tree
Inverted-Rtree Inverted index R-tree

Quadtree-inverted Quad-tree Inverted index
Rtree-inverted R-tree Inverted index

Table 12 Six Types of Hybrid Indices

the corresponding event. Krumm and Horvitz [82] dis-
cretize space and time into space-time pieces and find
abnormal patterns by identifying pieces with an anoma-
lous spike. For each piece found, they extract tweets to
represent the corresponding event. Yang et al. [137] find
abnormal patterns by identifying local maximal fre-
quent keyword co-occurrence patterns, which are used
to represent events in different regions.

6.2.2 Domain-specific Event Detection

To detect domain-specific events, e.g., crimes or an
earthquake, existing methods train a classifier and em-
ploy it to check whether new geo-textual objects are

related to the event. They also provide methods to ex-
plore the properties of events, e.g., their spatial distri-
bution. Existing proposals differ mainly in the classifier

they used.
Sakaki et al. [124] target earthquake detection. They

devise and train a classifier using a support vector ma-
chine. The classifier is used to judge whether incoming

geo-textual tweets are relevant to an earthquake. They
design a temporal model to decide when to issue an
earthquake alert after having collected a certain amount

of earthquake relevant tweets. They also propose a spa-
tial model to estimate the location of an earthquake.
Tedas [89] is developed for detecting Crime and Disas-
ter relevant Events (CDE) from Twitter. A classifier is
employed that is trained based on Twitter- and CDE-
specific features.

6.3 Temporal Spatial Keyword Queries

Almaslukh and Magdy [14] evaluate the performance
of 10 different indices that can be employed to pro-
cess the temporal spatial keyword queries. These in-
clude three spatial indices, one textual index, and six
hybrid indices. The spatial indices are the Grid index,
the Quad-tree, and the R-tree. The only textual index is
the inverted index. The hybrid indices employ two lev-
els of indexing, spatial-based indexing and text-based

indexing. Table 12 presents an overview.

Processing TBRSK queries. Processing the
TBRSK queries involves three steps. The first step is

to use the index to access the indexing entries (e.g.,
the leaf nodes of the Quad-tree) based on a query
range or query keywords. The entries are placed in a
queue. The second step is to traverse the entries and
access the objects stored in them. An initial list L of
k objects is created. The third step is to traverse the
remaining entries in the queue and compute the final
result. During this step, L is kept up to date and is
used for temporal pruning: if the largest timestamp
of the objects in an entry is smaller than the smallest
timestamp in L, the entry can be pruned. The pruning
can be done efficiently as the objects are sorted in
ascending order of their timestamp.

Processing TBkSK queries. Again, the query pro-
cessing involves three steps. The first step is to use the
index to retrieve the indexing entries based on the query
location and keywords. An initial list L of k objects is
again created. In the second step, an upper bound on
the distance to the query location is computed based
on the scoring function and L. The entries within the
distance upper bound are then traversed and put in a

queue. The third step is to traverse the entries in the
queue to compute the final result. Here, spatial and
temporal pruning strategies can be used for pruning.

6.4 Location-based Term Queries

Top-k most frequent terms query. Skovsgaard et
al. [131] propose an Adaptive Frequent Item Aggregator
(AFIA) system to answer the top-k most frequent terms

query. AFIA employs a multi-granularity grid index.
For each granularity, it uses a grid index with a fixed cell
size. Each cell maintains counters of the most frequent

terms. The number of counters in each cell can be varied
with the time elapsed, which is achieved by aggressive
increment and relaxed decrement operations. When a
cell receives many inserts, it will perform an aggressive
increment to increase the number of counters. On the
other hand, a relaxed decrement is performed if a cell
sees little activity for a while. A query is processed by
merging the counters in the cells that the query region
overlaps with.

Top-k most trending terms query. GeoTrend [105]
employs a multi-granularity grid index to find the top-k
most trending terms in a dynamic data set. Each index
cell maintains a trending terms list, which is achieved
by storing the frequency of terms in the most recent T
time units, where T is a system parameter. To process a
trending query with a spatial region R, GeoTrend starts
at the root cell, which has the coarsest granularity,

and recursively accesses children (i.e., finer-granularity
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cells) that overlap with R. A cell is a candidate for
further processing if it is a leaf cell (i.e., a cell having
the finest granularity) or is completely covered by R.
GeoTrend merges the top-k most trending terms main-
tained in all candidate cells to compute the result. The
assumption is that the final top-k most trending terms
must have appeared in at least one top-k list in those
cells. When the assumption does not hold, the result is
inaccurate.

Location-based top-k term (LkT) query. Xu et
al. [151] use a Quad-tree-based index to solve the LkT
query. Each node in the Quad-tree maintains a sum-
mary of the term information of objects in the node.
When an object arrives, the leaf node containing the
object is found, and then the textual summary in that
node is updated. Then upward summary merging oper-
ations are performed that update the textual summary
of the parent nodes by merging the summaries stored in
the child nodes. To answer an LkT query, the Quad-tree

is traversed, and the scores of the terms are computed
based on the textual summaries. Intermediate results
are put into a priority queue, and the procedure termi-

nates when top-k results are found.

Selectivity estimation. Wang et al. [139] study the

problem of estimating the selectivity of a spatial key-
word query given by q = (R, T ), where R is a region and
T is a set of keywords. The result consists of all objects
that fall into R and that contain all keywords in T . Two

baseline algorithms are proposed: The Adaptive Space
Partitioning (ASP) Tree [70] based algorithm and the k
Minimal Values (KMV) Synopses [17] based algorithm.

Evidence is provided to the effect that the ASP-tree-
based algorithm is preferable when T contains at most
one keyword and that the KMV-based algorithm is oth-

erwise better. Wang et al. also propose the A2SP struc-
ture that combines the ASP tree with KMV synopses.
If T contains only one keyword or keywords that do not
have an ASP-tree due to low frequency, the ASP-tree-
based algorithm is used. Otherwise, a local Bayesian
network is used to learn the local correlations among
keywords in T within region R, and to derive the selec-
tivity estimate on the KMV synopses.

7 Conclusions and Future Work

This paper provides a comprehensive survey of problem
formulations and solutions of studies on the querying
of geo-textual data. It classifies studies into ones query-
ing static geo-textual data and ones querying streaming
geo-textual data, and it reviews the problem formula-
tions and solutions for these classes.

Querying static geo-textual data. This category of
studies can be categorized into querying in Euclidean
space versus in road networks, the main difference being
the way of computing distances between spatial objects.
Although the problem definitions are similar across the
two categories, the proposed solutions have notable dif-
ferences.

Not surprisingly, standard queries are the most com-
mon and are well studied: the BRSK, the BkSK, and
the TkSK queries for querying in Euclidean space, and
the BRSKroad and TkSKroad queries for querying in
road networks. To handle cases where users have re-
quirements that go beyond the spatial and textual as-
pects, studies target different extensions to the stan-
dard queries that incorporate support for, e.g., tempo-
ral or social aspects, examples including the TBRSK,
Social TkSK, and MBkSKroad queries. Going beyond
single-object granularity queries, studies also consider
group queries that take into account inter-relations
among objects to retrieve groups of objects that com-

bine to form query answers. Studies also exist that tar-
get query modifications to serve users who are unable
to provide “good” spatial keyword query parameters
up front. These studies enable the refinement of query

parameters so that users are satisfied with the query re-
sults. Additionally, studies exist on spatio-textual joins
and region finding/analysis queries. A prominent ap-

plication in road networks is route planning, where the
aim is to find an optimized route in a road network that
satisfies given spatial and textual requirements.

Querying streaming geo-textual data. We clas-
sify the studies on querying streaming geo-textual data
into four categories: publish/subscribe systems, local-
ized event detection, temporal spatial keyword queries,
and location-based term queries. Publish/subscribe sys-
tems allow users to register subscriptions that spec-
ify spatial and textual matching conditions and pos-
sibly temporal matching conditions. Users are then no-
tified when incoming data objects match the conditions

stated in their subscriptions. Studies on local event de-
tection consider the problem of detecting local events
from streaming geo-textual data. A local event can be
represented by a cluster of objects, a vector, a summary,
or a set of terms or tags. The studies on temporal spatial
keyword queries focus on TBRSK and TBkSK queries,
both of which are modifications of similar queries for
static data. Next, location-based term queries focus on
term frequencies in streams of geo-textual objects, thus
retrieving the top-k most frequent or trending terms in

a region, or retrieving top-k locally frequent terms, or
performing selectivity estimation.
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Future work. Several areas exist where there is a sub-
stantial need for research.

Evaluation for spatial keyword queries: Many types
of spatial keyword queries have been proposed to ad-
dress a variety of user needs. However, the lack of
ground-truth query results makes it an open problem to
evaluate the effectiveness of proposed spatial keyword
query functionality. An existing benchmark [32] for spa-
tial keyword queries focus on efficiency only. There is a
need for additional means that enable evaluating the ef-
fectiveness of spatial keyword queries. Such means may
include evaluation procedures based on crowd-sourcing
or benchmarks complete with ground-truth data and
evaluation metrics. With such means in place, new and
interesting research directions in spatial keyword query-
ing will materialize, e.g., how the recent progress in
deep learning for textual relevance computation can be
used to improve spatial keyword querying and, e.g., en-
able personalized spatial keyword queries.

Querying streaming geo-textual data in road net-
works: So far, few studies exist on querying streaming
geo-textual data in road networks. Possible applications

include road traffic monitoring and on-the-ride optimal
route finding. Solutions for such applications call for
high efficiency in computing the spatial proximity be-

tween subscription queries and a large-scale streaming
data, which is challenging. Further, studies generally
do not consider travel time that varies over time as the
notion of proximity, but rather consider road-network

distance. In contrast, travel time is more important in
many applications. Some studies beyond spatial key-
word querying model travel time as time-varying dis-

tributions so that the travel time from a query to an
object is a function from time to travel-time distribu-
tions. Further, depending on the application scenario
spatial proximity may need to consider aspects such as

road tolls and travel restrictions.

Systems to support spatial keyword queries: Most ex-

isting studies on spatial keyword queries focus on solv-
ing one or several specific query types in a stand-alone
setting. While this may enable important location-
based services, there are clear benefits to integrating
the proposed functionality and solutions into larger sys-
tems. Thus, the development of systems that support
broad ranges of spatial keyword queries as a first class

citizens is an important research direction. Such sys-
tems will enable reuse of functionality and will enable
applications that need to compose different types of
queries. In particular, it is of great interest to extend
existing relational database engines to support spatial
keyword queries. This is challenging because it requires
integration of spatial keyword processing techniques
into query optimization and processing. As part of this,

methods are needed that are capable of estimating the
cardinality of operations involving spatial and textual
attributes.

Machine learning for database systems supporting
spatial keyword queries: It remains an open problem to
build scalable systems that treat the support for spatial
keyword queries as a first class citizen. It remains chal-
lenging to handle streaming geo-textual data streams
at scale. Machine learning techniques have been used
to solve a variety of data management problems, such
as learning more compact and efficient indexes, select-
ing query plans more effectively, improving query op-
timization, or performing better data partitioning. It
is of interest to explore machine learning techniques
to support spatial keyword queries, particularly in the
streaming setting.
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