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Abstract
Micro-architectural behavior of traditional disk-based online transaction processing (OLTP) systems has been investigated
extensively over the past couple of decades. Results show that traditional OLTP systems mostly under-utilize the available
micro-architectural resources. In-memory OLTP systems, on the other hand, process all the data in main-memory and,
therefore, can omit the buffer pool. Furthermore, they usually adopt more lightweight concurrency control mechanisms,
cache-conscious data structures, and cleaner codebases since they are usually designed from scratch. Hence, we expect
significant differences in micro-architectural behavior when running OLTP on platforms optimized for in-memory processing
as opposed to disk-based database systems. In particular, we expect that in-memory systems exploit micro-architectural
features such as instruction and data caches significantly better than disk-based systems. This paper sheds light on the
micro-architectural behavior of in-memory database systems by analyzing and contrasting it to the behavior of disk-based
systems when running OLTP workloads. The results show that, despite all the design changes, in-memory OLTP exhibits
very similar micro-architectural behavior to disk-based OLTP: more than half of the execution time goes to memory stalls
where instruction cache misses or the long-latency data misses from the last-level cache (LLC) are the dominant factors in
the overall execution time. Even though ground-up designed in-memory systems can eliminate the instruction cache misses,
the reduction in instruction stalls amplifies the impact of LLC data misses. As a result, only 30% of the CPU cycles are
used to retire instructions, and 70% of the CPU cycles are wasted to stalls for both traditional disk-based and new generation
in-memory OLTP.
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1 Introduction

Recent years have witnessed the rise of in-memory or main-
memory optimized OLTP systems [10,33,56]. Traditional
OLTP engines are disk-based since they are designed in an
era where the main-memory size was in megabytes. Today,
however, a server hardware with 1TB main-memory is a
commodity. Therefore, the database management systems
(DBMS) are able to process the data working set of most
OLTP applications in-memory. This has led various ven-
dors and researchers to design brand-new OLTP engines
optimized for the case where the dataset resides in memory
[23,26,27,52].

In-memory OLTP systems have significant differences
compared to disk-based systems. First, since the data work-
ing set resides mostly in memory, in-memory OLTP systems
omit the buffer pool component, which acts as the virtual
memory of a DBMS and is, therefore, essential for the disk-
based systems. Then, they tend to adopt more lightweight
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concurrency control mechanisms to avoid the scalability bot-
tlenecks that arise due to traditional centralized locking. They
also opt for cache-conscious indexes instead of the disk-
optimized B-trees. Finally, since their codebases are written
from scratch, they tend to have lighter storage engines in
terms of the instruction footprint.

OLTP benchmarks are famous for their suboptimal micro-
architectural behavior. There is a large body of work that
characterizes OLTP benchmarks at the micro-architectural
level [5,12,22,41,50,53,54]. They all conclude that OLTP
exhibits high stall time (> 50% of the execution cycles)
and a low instructions-per-cycle (IPC) value (< 1 IPC on
machines that can retire up to 4 instructions in a cycle) [12].
The instruction cache misses that mainly stem from the large
instruction footprint of transactions are the main source of
the stall time, while the next contributing factor is the long-
latency data misses from the last-level cache (LLC) [53].

All the previous workload characterization studies, how-
ever, run the OLTP benchmarks on a disk-based OLTP
engine. Considering the lighter components, cache-friendly
data structures, and cleaner codebase of in-memory systems,
one expects them to exhibit better cache locality (especially
for the instruction cache) and less memory stall time. Due
to the distinctive design features of the in-memory systems
from the disk-based ones, however, it is not straightforward
to extrapolate how OLTP benchmarks behave at the micro-
architectural level when run on an in-memory engine solely
by looking at the results of previous studies.

In this paper, we perform a detailed analysis of the micro-
architectural behavior of the in-memory OLTP systems.
More specifically, we compare three in-memory OLTP sys-
tems (an in-memory OLTP engine of a popular commercial
vendor, a ground-up designed in-memory OLTP system, and
an open-source OLTP engine, Silo [55]) to two disk-based
OLTP systems (a popular commercial DBMS and an open-
source OLTP engine, Shore-MT [43]). We examine CPU
cycles breakdowns while running simple micro-benchmarks
as well as the more complex TPC benchmarks (TPC-B and
TPC-C) [1]. Our analysis demonstrates the following:

– Despite all the design differences, in-memory OLTP
spends more than half of the execution cycles in mem-
ory stalls, either due to instruction or data cache misses,
similar to disk-based OLTP.

– Popular commercial OLTP systems that rely on legacy
codebases mainly suffer from instruction cache misses
due to their large and complex instruction footprint,
regardless the system is disk-based or in-memory. Even
though the in-memory optimized DBMS components
reduce the total instruction footprint at the storage man-
ager side, the instruction footprint and code complexity
of the rest of the components overshadow the benefits of
these optimizations at the micro-architectural level.

– Ground-up designed in-memory OLTP systems do not
suffer from instruction cache misses thanks to their rela-
tively shorter and simpler instruction footprint compared
to the popular commercial systems relying on legacy
codebases. However, ground-up designed in-memory
OLTP systems spend more than half of their execution
time in data cache miss stalls due to the random data
accesses the OLTP workloads do. As a result, their CPU
utilization characteristics remain close to the popular
commercial OLTP systems relying on legacy codebases.

This paper revisits [48] by using the methodology pro-
posed by [49] on a later generation Intel processor. The newly
used methodology allows end-to-end execution time profil-
ing rather than merely relying on cache miss counts. The
newgeneration of Intel processor reveals a significant change
in the micro-architectural behavior of the OLTP systems. In
particular, themain performance bottleneck of the disk-based
andground-updesigned in-memoryOLTPsystemshifts from
instruction cachemiss stalls to data cachemiss stalls thanks to
the improvements in the core micro-architecture. We update
the contributions and the text according to the newly seen
micro-architectural behavior. Furthermore, we compare and
contrast Intel’s two successive processor generations and rea-
son about the significant change in the micro-architectural
behavior. We use Silo kernel OLTP engine instead of HyPer,
asHyPer is not publicly available anymore.Using Silo allows
assessing the complexity of the core of an in-memory OLTP
system and hence making the difference between an end-to-
end OLTP system and an OLTP kernel engine. Finally, we
analyzememorybandwidth and commonly available acceler-
ation features—hyper-threading, turbo-boost, and hardware
prefetchers—completing the hardware–software interaction
analysis of OLTP on modern processors.

The rest of the paper is organized as follows. Sec-
tion 2 gives an overview of the in-memory OLTP systems-
and surveys-related work on workload characterization and
micro-architectural analysis studies. Section 3 describes the
experimentalmethodology. Sections 4 and 5 present the anal-
ysis results with a micro-benchmark and TPC benchmarks,
respectively. Section 6 analyzes the effects of transaction
compilation, index structures, and data types, whereas Sect. 7
investigates the impact of multi-threading on the micro-
architectural behavior. Section 8 presents the analysis of the
memory bandwidth consumptions. Section 9 analyzes the
acceleration features such as hyper-threading, turbo-boost,
and hardware prefetchers. Section 10 compares two latest
generations of Intel’s successivemicro-architectures. Finally,
Sect. 11 discusses the results and Sect. 12 concludes.
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2 Background and related work

In-memory DBMS gained a lot of popularity in the last
decade. In Sect. 2.1, we detail the underlying factors for
this trend and the main design characteristics of in-memory
OLTPsystems.Then, inSect. 2.2,wegoover the recentwork-
load characterization studies that focus onOLTP applications
and highlight why they are not representative for in-memory
OLTP systems.

2.1 In-memory OLTP

Commodity servers of the last decade follow two funda-
mental trends: (1) main-memory becoming cheaper and (2)
number of cores increasing exponentially. Simply increasing
buffer pool size and number of worker threads to exploit the
large main-memory and all the available cores, respectively,
lead to marginal gains. Therefore, these two hardware trends
have triggered alternative architectures for new-generation
DBMS.

As DRAM prices become cheap enough to buy 1TB
main-memory for ∼$30 K, today it is possible for most
OLTP applications to keep all of their data working set in
main-memory. This has led to the development of various in-
memory or main-memory optimized OLTP systems. These
systems either manage all the data in main-memory or make
sure that the hot data resides in main-memory. Since they
manage to eliminate/minimize the disk I/O for the data page
accesses, the overheads associated with managing the buffer
pool overweigh its benefits [16]. Therefore, the in-memory
OLTP systems omit the buffer pool component even though
it is essential for the traditional disk-based DBMS.

On the other hand, in step with Moore’s law, the hardware
vendors keep providingmore andmore opportunities for par-
allelism. Modern servers tend to have multiple multi-core
processors in the same machine and allow OLTP systems
to handle increasing number of transactional requests in
parallel. However, the traditional concurrency control mech-
anisms using a centralized lock manager and two-phase
locking are designed at an era where the server hardware
were uniprocessors. Therefore, they do not scale on multi-
cores preventing OLTP systems from exploiting the sheer
number of cores available to them [37,61].

In order to achieve better scalability, in-memory OLTP
systems adopt alternative concurrency control mechanisms.
These mechanisms can be broadly grouped into two cate-
gories based on whether they partition the data or not. The
ones that partition the data use one data partition for each
core and a single worker thread for each partition. Systems
like VoltDB [52] (or its ancestor H-Store [51]) and the ini-
tial version of HyPer [23] deploy this approach. As a result,
they avoid any form of locking within a partition and need to
coordinate worker threads only when a transaction is multi-

partition. The systems that prefer avoiding any kind of data
partitioning, likeHekaton [26], SAPHANA [27], or the latest
version of HyPer [36], rely on optimistic and multi-version
concurrency control [7].

In addition to alternative concurrency control mecha-
nisms, in-memory database systems also deploy cache-
conscious index structures. They align the index page sizes
to the size of a cache line as opposed to the size of a
disk page and/or adopt lock-free index page access mech-
anisms rather than using traditional page latches [28,55].
Moreover, the in-memory OLTP systems tend to depend on
pre-determined stored procedures instead of ad hoc queries
[23,26,52] and apply efficient compilation optimization tech-
niques that optimize the instruction stream for a particular
transaction [26,35]. Finally, the new-age in-memory OLTP
systems have codebases that are implemented from scratch.
Therefore, they are expected to have a cleaner codebase
compared to the traditional disk-based systems where the
codebase consists of many branch statements and obsolete
code paths due to different release versions spanning several
decades of development.

Overall, in-memory OLTP engines deploy lighter storage
manager components compared to the traditional disk-based
systems aiming to utilize the resources of the modern server
hardware in a more effective way.

2.2 OLTP at themicro-architectural Level

There is a large body of related work analyzing the micro-
architectural behavior of OLTPworkloads. Barrosso et al. [5]
investigate the memory system behavior of OLTP and DSS
styleworkloads both on a realmachine andwith a full-system
simulation. They argue that these two types of workloads
would benefit from different architectural designs in terms
of the memory system. Ranganathan et al. [41] perform a
similar analysis. However, they only focus on the effective-
ness of out-of-order execution on SMPs while running these
workloads in a simulation environment. On the other hand,
Keeton et al. [22] and Stets et al. [50] experiment only with
OLTP benchmarks (TPC-B and TPC-C) on real hardware.
All of these studies agree that OLTP workloads utilize the
underlying micro-architectural resources very poorly.

Ailamaki et al. [2] examine where the time goes on
four commercial DBMS using a micro-benchmark to have
a fine-grain understanding of the memory system behavior
on multi-processors, whereas Hardavellas et al. [15] ana-
lyze TPC-C and TPC-H on both in-order and out-of-order
machines in a simulation environment. These studies focus
on the implications for the DBMS rather than the hardware
to achieve better hardware utilization.

More recent workload characterization studies [12,54]
additionally analyze the TPC-E benchmark and show that
micro-architecturally TPC-E behaves very similarly to the
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TPC-B and TPC-C benchmarks. These studies also corrob-
orate the findings of the previous studies in terms of the
inefficient use of the memory hierarchy when running OLTP.
They highlight that the L1-I stalls are the dominant factor
in the overall stall time followed by the long-latency data
misses. Sirin et al. [46] have analyzed Online Analytics Pro-
cessing (OLAP) workloads. The study has shown that OLAP
workloads spend most of the CPU cycles to data cache miss
stalls, either due to saturation of the memory bandwidth or
long-latency data cache misses. Our experimental methodol-
ogy while measuring various hardware events using counters
on real hardware is very similar to themethodologies of these
studies.

Yasin et al. [59] examine Naive-Bayes algorithm and its
hardware behavior in anHadoop execution environment. The
study shows that software stack, such as the used JVM, and
application code efficiency has a significant impact on the
overall performance. Kanev et al. [20] examine collective
of machines in a Google datacenter running collective of
Google datacenter applications. The study shows that the
datacenter workload collection spends most of the time on
waiting for dependent data cache accesses due to the data-
intensive nature of the datacenter workloads. Beamer et al.
[6] presents a graph workload analysis and highlights that
graph workloads severely under-utilize the memory band-
width. These studies are complementary to our work as they
focus on workloads with different data and instruction access
patterns.

Harizopoulos et al. [16] demonstrate that traditionalOLTP
systems spend more than half of their execution time within
the buffer pool, latching, locking, and logging components.
On the other hand, Wenisch et al. [57] and Tozun et. al [53]
tie the micro-architectural behavior of the disk-based OLTP
into specific code modules by presenting the breakdown of
the cache misses into specific code parts of the traditional
OLTP software stack at different code granularities.

As Sect. 2.1 explains, the in-memoryOLTP systems either
remove or simplify most of the traditional disk-based OLTP
components. Therefore, the micro-architectural behavior of
OLTP workloads when run on disk-based systems cannot be
representative for the in-memory systems. Even worse, the
previous findings might mislead researchers and develop-
ers that aim to improve utilization at the micro-architectural
level when runningOLTPworkloads using in-memoryOLTP
systems. Therefore, the focus of this paper is to perform
a workload characterization study for OLTP benchmarks
running on in-memory OLTP systems to understand the low-
level differences between in-memory and disk-based OLTP,
and based on these findings, provide valuable insights for
OLTP systems’ design.

3 Setup andmethodology

The experiments presented in this paper are executed on
real hardware. The rest of this section details the setup and
methodology for our study.
Hardware We run experiments on a modern commodity
server with Intel’s Broadwell processors. Table 1 shows the
architectural details of this server. To collect numbers about
various hardware events and break down the time spent in
specific code modules, we use Intel VTune Amplifier XE
2018 [17], which provides an API for lightweight hardware
counter sampling. We disable hyper-threading and turbo-
boost to obtain more precise hardware sampling values and
increase predictability in measurements.
OS & Compiler We use Ubuntu 16.04.6 LTS and gcc 5.4.0
on the Broadwell server.
Benchmarks We run two types of benchmarks: micro-
benchmarks and TPC benchmarks [1]. Our goal is to perform
sensitivity analysis and have a more detailed understanding
of the systems using the micro-benchmark, while the experi-
ments using the TPC benchmarks serve to give an idea about
the behavior of the systems when running well-known real-
world applications.

The micro-benchmark uses a randomly generated table
with two columns (key and value) of the type Long. It
has two versions: read-only and read-write. The read-only
version reads N random rows from the table, whereas the
read-write version updates N random rows. Both versions
use an index lookup operation on the randomly picked key
value to reach the row to be read or updated. We also use
a modified version of the micro-benchmark where we use
strings of 50 bytes for both columns to quantify the impact
of data type on micro-architectural utilization in Sect. 6.2.

As for the TPC benchmarks, we use TPC-B and TPC-
C. We omit the TPC-E benchmark since recent workload
characterization studies demonstrate that TPC-E exhibits
similar micro-architectural behavior to the TPC-B and TPC-
C benchmarks [12,54].
Analyzed systems We analyze three in-memory OLTP sys-
tems: the in-memory OLTP engine of a closed-source
commercial vendor (DBMS M), an open-source commercial
OLTP system (DBMS N), and an open-source OLTP engine
(Silo [55]).

We pick these three systems as they are well known in
the community and their design characteristics represent
a good variety among today’s in-memory OLTP systems.
While DBMS M adopts multi-versioned concurrency con-
trol, DBMS N uses physical data partitioning, and Silo uses
optimistic concurrency control. DBMS M implements both
hash index and a variant of cache-conscious B-tree index
similar to [28,29].DBMSN uses a variant of a self-balancing
binary search tree, red-black tree. Silo implements Masstree,
a highly parallel in-memory index structure [32]. For DBMS
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Table 1 Server Parameters Processor Intel(R) Xeon(R) CPU E5-2680 v4 (Broadwell)

#Sockets 2

#Cores per socket 14

Hyper-threading Off

Turbo-boost Off

Clock Speed 2.40GHz

Bandwidth (per socket) 66GB/s

L1I / L1D (per core) 32 KB / 32 KB 16-cycle miss latency

L2 (per core) 256 KB 26-cycle miss latency

LLC (shared) 35 MB 160-cycle miss latency

Memory 256 GB

M, we use the B-tree index. Moreover, DBMS M use trans-
action compilation techniques for the stored procedures,
whereas DBMS N and Silo do not. We evaluate DBMS M
always having its transaction compilation feature turned on
in our analyses, except in Sect. 6.1, where we evaluate the
transaction compilation feature.

In order to gain better insights about the differences
between the in-memory and disk-based OLTP systems, we
also include two disk-based systems: a popular, commercial
system (DBMS D) and the open-source Shore-MT [43] stor-
age manager.

To implement benchmarks, we use the SQL frontend of
the commercial systems, DBMS D, DBMS M, and DBMS N,
and Silo’s benchmarks in C++ and Shore-MT ’s Shore-Kits
suite that provides an environment to implement benchmarks
for Shore-MT in C++.

For all the systems, we use asynchronous logging. There-
fore, there is no delay due to I/O in the critical path of the
transaction execution.
Measurements We populate the databases from scratch
before each experiment and the data remains memory-
resident throughout the experiment. In the following sections,
we indicate the database sizes used in each experiment before
discussing the results. In our experiments, both the database
server process executing the transactions and the client pro-
cesses generating the transactions run on the same machine.
We first start the server process, populate the database, and
then start the experiment by simultaneously launching all
clients that generate and submit transactional requests to the
database server.

We profile the database server process by attachingVTune
to it during a 120-second benchmark run following a 60-
second warm-up period. We repeat every experiment three
times and report the average result.

In terms of micro-architectural efficiency, our goal is to
observe how well each system exploits the resources of a
single core regardless of the parallelism in the system. There-

fore, all the experiments except for the ones in Sects. 7 and 8
use a single worker thread executing the transactions.

The choice of a single worker thread also eliminates con-
tention due to several threads trying to access the shared data
in the case of non-partitioned systems anddistributed transac-
tions in the case of partitioning-based systems. This way we
avoid possible misleading micro-architectural conclusions.
For example, high contention for a shared data page could
lead tomultiple threads spinning on a latch for that data page,
thus artificially increasing the cache hit ratio.

We use one client to generate request in the single-
threaded experiments. Shore-MT, DBMS D, Silo, andDBMS
M assign one worker thread per client.DBMS N, on the other
hand, generates one worker thread per data partition, so we
configure it to have only one partition. From VTune, we fil-
ter the hardware counter results particularly for the identified
worker thread excluding the other threads that are responsi-
ble for background tasks, e.g., communication between the
server and client, parsing transactions, etc.

In multi-threaded experiments (Sects. 7 and 8), we use
multiple clients to generate requests for all systems. For
DBMS N, we also use multiple data partitions and ensure
that all transactions access only a single partition. For each
system, we gradually increase the number of clients, and
profile the execution with the number of clients that give the
highest aggregate throughput. From VTune, we filter hard-
ware counter results for each worker thread separately and
report their average.
VTune We use Intel VTune 2018. We use VTune’s built-
in general-exploration analysis for the breakdown of the
CPU cycles per the Top-down Micro-architecture Analysis
Method. We use VTune’s built-in memory-access analy-
sis to measure the consumed memory bandwidth. As we
numa-localize our experiments on a single socket, we report
average bandwidth per-socket values. We use VTune’s built-
in advanced-hotspots analysis to perform function call trace
breakdown.
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Fig. 1 Breakdowns of the CPU cycles as we increase the database size when running the read-only micro-benchmark

VTune’s general-exploration provides the breakdown of
the CPU cycles [49,58]. We use a simplified version of
VTune’s original CPU cycles categorization to be able to
interpret the results more easily. We follow the same simpli-
fied categorization used in our previous work [46]. In Table
18, Section C of the “Appendix”, we provide how each indi-
vidual CPU cycles component that VTune reports maps to
the CPU cycles category that we use.

Each CPU pipeline slot is categorized into one of two
components: retiring and stalling. A retiring cycle is a cycle
where the processor finishes the execution of an instruction,
i.e., retires an instruction. A stalling cycle is a cycle where
the processor has to wait, i.e., stall, (e.g., to perform a read
from the caches). In an ideal scenario, all CPU cycles would
be retiring. Stalling cycles can be further decomposed into
five components: (i) branch misprediction, (ii) Icache, (iii)
decoding, (iv)Dcache, and (v) resource/dependency. Today’s
processors use a hardware unit called branch predictor; it
predicts the outcome of a branch instruction (i.e., an if()
statement) and speculatively executes instructions per the
predicted branch direction and/or target. If the processor then
realizes the prediction is not correct, it undoes whatever it
has been doing and starts executing the correct set of instruc-
tions. This cost is defined as the branch misprediction and
can be very costly, as it requires canceling a large amount of
work. Icache defines the cost of instruction cache and instruc-
tion translation lookaside buffer misses. Decoding defines
the cost of sub-optimal micro-architectural implementation
of the instruction decoding unit. Dcache defines the cost of
data-cache misses. Resource/dependency defines the cost of
executing instruction that has resource and/or data dependen-
cies. For example, if two instructions require using the same
arithmetic-logic unit, one has towait for the other. This time is
identified as the resource dependency time. Or, if an instruc-
tion’s operand depends on the result of another instruction,
the instruction with the dependent operand has to wait for the
other instruction to finish. This time is identified as the data
dependency time.

4 Micro-benchmark

Before performing an analysis using the community standard
TPC benchmarks, we devise a sensitivity study using the
micro-benchmark. The goal of this study is to answer the
following questions:

– Where do CPU cycles go when running in-memory
OLTP?Are theywasted onmemory stalls or used to retire
instructions?

– Where do memory stalls come from? Are they mainly
due to instructions or data for in-memory OLTP?

– What is the impact of the database size on the above
metrics?

– Does the amount of work done per transaction affect the
results and, if yes, how?

To answer these questions, we break the analysis into two
parts. The first part (Sect. 4.1) varies the database size by
varying the number of rows in the table while keeping the
amount of work done per transaction constant. On the other
hand, the second part (Sect. 4.2) varies the amount of work
done per transaction by increasing the number of rows read
in a transaction while keeping the database size constant.

4.1 Sensitivity to data size

To investigate the impact of database size on the micro-
architectural behavior, we populate databases of size 1MB,
10MB, 10GB, and 100GB.DBMSM has a 32GBof data size
limitation. Hence, we use maximum of 10GB of database
for DBMS M. The micro-architectural behavior of DBMS M
does not significantly change as the data size varies (see Fig.
1 and Table 2). Hence, we rely on 10GB of data to inter-
pretDBMSM’s micro-architectural behavior for a large data
size. Then, we collect hardware events as the systems run
the micro-benchmark with a single transaction type that just
reads/updates one randomrowafter an indexprobeoperation.
While the results for the read-only version of the micro-
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Table 2 Normalized throughput as we increase the database size

1MB 10MB 10GB 100GB

DBMS D 1 1 1 1

Shore-MT 3.0 2.9 2.1 1.6

DBMS M 2.8 3.0 3.0 –

DBMS N 7.8 7.8 6.4 3.9

Silo 75.4 62.9 27.5 19.3

benchmark are in the following subsections, the results for
the read-write version of the micro-benchmark are in Section
A.1 of the “Appendix”.

4.1.1 CPU cycles breakdown

Figure 1 shows the CPU cycles breakdowns as the database
size is increased. The retiring cycles ratios are similar for
databases of sizes 1MB and 10MB since the data working
set mainly fits in the last-level cache (LLC). As we increase
the database size to 10GB and 100GB, the retiring cycles
ratios are decreased since the data working set no longer
fits in caches and the long-latency data misses become more
significant. All the retiring cycles ratios are less than 30%
for a database of size 10GB and 100GB for all the systems.
Hence, in-memory OLTP systems spend most of their CPU
cycles to stalls similar to disk-based systems.

Shore-MT is bound by Dcache and resource/dependency
stalls. Shore-MT is a disk-based system known to have a
large and complex instruction footprint. Existing work on
Shore-MT has long shown that Shore-MT is Icache-stalls-
bound [48,49,53,54]. All machines used in the existing work
is Intel’s, version 2, Ivy Bridge micro-architecture. We,
on the other hand, use a later-generation version 4 micro-
architecture, Broadwell, which is the slightly improved
version of the version 3Haswell micro-architecture. Intel has
announced an importantmicro-architectural improvement on
the instruction fetch unit of the Haswell micro-architecture
[14]. As Hammarlund et al. [14] specifies, “State-of-the-art
advances in branch prediction algorithms enable accurate
fetch requests to run ahead of micro-operation supply to hide
instruction TLB and cache misses.”. Hence, instruction fetch
unit keeps supplying instructions even though there is an
instruction cachemiss, which allows overlapping the instruc-
tion cache miss latency with useful work. As a result, Shore-
MT, being a long-standing-Icache-stalls-bound system, has
become Dcache- and resource/dependency-stalls-bound. We
compare Ivy Bridge and Broadwell in Sect. 10.

The instruction footprint of disk-based systems is large
and complex due to the complex relationships among vari-
ous individual components such as buffer manager and lock
manager. Shore-MT not suffering from Icache stalls shows

that today’s processors are powerful enough to mitigate the
Icache stalls caused by the large and complex the instruction
footprint of disk-based systems. We summarize our findings
on Icache stalls in terms of database software and hardware
development in Sect. 11.

Shore-MT spends 40% of its time on Dcache and
resource/dependency stalls even when the data size is small.
We examine Shore-MT ’s call stack and observe that most of
the Dcache and resource/dependency stalls are due to buffer
manager and centralized locking & latching operations such
as looking into the hash table that keeps track of the buffer
pool pages and acquiring a lock. As the data size exceeds the
LLC size, Shore-MT becomesmore andmoreDcache-bound
due to its working set not fitting into the LLC and suffering
from expensive LLC misses.

DBMS D and DBMS M suffer from high Icache stalls.
DBMS D, despite being a popular commercial, disk-based
OLTP system, relies on a legacy codebase whose instruc-
tion footprint is large and complex. DBMS M, being the
in-memory OLTP engine of DBMS D, borrows legacy code
modules fromDBMSD. As a result, its instruction footprint is
also large and complex, and it mainly suffers from the Icache
stalls. Nevertheless, DBMS M’s throughput is three times of
DBMS D (see Table 2). Hence, the optimizations DBMS M
adopts help in reducing the instruction and data footprints of
DBMS D. Nevertheless, both DBMS D and M mainly suffer
from Icache stalls showing the severe effect of using legacy
code modules both for disk-based and in-memory OLTP sys-
tems.

Unlike DBMS M, DBMS N does not suffer from Icache
stalls. This is because DBMS N is a ground-up designed in-
memory system. It does not rely on legacy code modules as
DBMSM does. As a result, its instruction footprint is smaller
and less complex thanDBMSM, and hence, it does not suffer
from Icache stalls.

Our previous work [48,49] shows that VoltDB, a similar
ground-up designed system toDBMSN, is instruction-bound
rather than data-bound as we present here. The reason is,
once again, the improved micro-architecture of the machine
(Broadwell) we use compared to the machine used by
[48,49] (Ivy Bridge). The improved instruction fetch unit of
Broadwell eliminates the Icache stalls and makes DBMS N
data-bound. Section 10 discusses this issue inmore detail.We
summarize our findings on Icache stalls in terms of database
software and hardware development in Sect. 11.

DBMS N is an in-memory system, which eliminates the
heavy disk-based system components such as buffer pool and
lock manager. Nevertheless, it suffers significant amount of
Dcache and resource/dependency stalls for small data sizes,
similar to Shore-MT. We examine DBMS N’s call stack and
observe that the Dcache and resource/dependency stalls are
largely due to the cost of setting up and instantiating the trans-
actions. As the data size is increased,DBMSN becomesmore
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(a) (b)

Fig. 2 Execution time and Dcache stalls breakdown for Shore-MT and DBMS N for 1MB of database size

andmoreDcache-bound due to its working set not fitting into
the LLC and suffering from expensive LLC misses.

Silo has high retiring cycles for small data sizes. Silo is an
in-memory system eliminating the costly buffer manager and
centralized locking & latching components that disk-based
systems use. Moreover, Silo is a kernel OLTP engine that has
transactions hard-coded in C++. Hence, it does not suffer
from the cost of instantiating and scheduling user request as
DBMS N does. As a result, it does not suffer from Dcache
stalls when the data size is small, and it has high retiring
cycles ratio for small data sizes. As the data size exceeds
the LLC size, Silo becomes Dcache-bound such that Silo’s
retiring cycles are the lowest among all the systems.

In addition to the Dcache stalls, Silo also suffers from sig-
nificant amount of branch misprediction. This is due to the
in-node searches that Silo performs during the index traver-
sal 1. While all the systems perform an index traversal during
their transaction processing, it only surfaces up on Silo thanks
to its lean codebase and efficient data structure it uses. Other
systems suffer from other overhead such as complex instruc-
tion footprint as in DBMS D and M, large data footprint as
in Shore-MT, or inefficient index structure as in DBMS N.

We observe that all the systems suffer 10–15% decoding
stalls. Decoding stalls are the stalls due to the inefficiencies
in the micro-architectural implementation of the instruc-
tion decoding unit of the processor. As Intel relies on a
Complex Instruction Set Computer (CISC) type ofmicropro-
cessor design, it requires decoding instructions into micro-
operations. It is known that Intel’s instruction decoding unit
is a legacy micro-architecture and has several penalties [18].
To avoid these penalties, Intel has introduced a Decoded
Stream Buffer (DSB), which is a micro-operation cache
inside the pipeline that allows side-stepping the decoding
unit and providing already decoded instructions to the pro-
cessor. However, DSB is small (1.5 KB). If the workload’s

1 Silo uses linear search as its in-node search algorithm.

instruction working set does not fit into the DSB, it has to
pass through the legacy decoding unit and suffer from the
penalties of the legacy decoding unit. As OLTP workloads’
instruction footprint is large and complex, they pass through
the legacy decoding unit and suffer the decoding stalls. Nev-
ertheless, the caused penalties are relatively small, 10-15%,
and hence do not constitute a significant problem.

4.1.2 Throughput

Table 2 shows normalized throughputs for each system as
the database size is increased. The throughput values are
normalized to DBMS D for each database size individually.
The relative performance between DBMS D and M remains
stable. This is because both DBMS D andM are instruction-
bound. Hence, the increased data size does not significantly
affect their performance. Shore-MT,DBMS N, and Silo’s rel-
ative performance, on the other hand, is decreased as the data
size is increased. This is because Shore-MT, DBMS N and
Silo are data-bound, i.e., Dcache and resource/dependency-
stalls-bound. The increased data size results in a more
substantial drop in their throughput than DBMS D and M.
As a result, their throughputs get close to DBMS D andM as
the data size increases.

All the in-memory systems are faster than the disk-based
systems for all the data sizes. This shows that the optimiza-
tions that in-memory systems implement significantly help
improving the throughput. DBMS M, despite its large and
complex instruction footprint, is faster than Shore-MT for
10GBof database.As Shore-MT mainly suffers fromDcache
stalls, this shows the severe negative effects of disk-based
systems’ data overhead, such as large index and buffer pool
pages.

DBMS N is faster than DBMS M thanks to its smaller and
simpler codebase.DBMS N is a ground-up designed system.
Hence, it does not borrow any legacy codebase as DBMS M
does. As a result, it does not suffer from Icache stalls, and it
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Fig. 3 Breakdowns of the CPU cycles for Transaction setup and Index
lookup for DBMS N and Silo

is significantly faster thanDBMSM. Silo is the fastest system
we have profiled. One reason for that is Silo is a kernel OLTP
engine, which does not suffer from the cost of setting up and
instantiating the transactions. DBMS N, on the other hand,
is an end-to-end SQL-based OLTP system. Another reason
is that Silo uses an efficiently implemented index structure,
Masstree [32]. Hence, its data footprint is also succinct. As a
result, it is 4.9x faster than DBMS N for 100GB of database.
We examine the inefficient index structure issue of DBMS N
in Sects. 4.1.3 and 4.2.1 in more detail.

4.1.3 DBMS N versus Silo

Silo is ∼ 5× faster than DBMS N as shown by Table 2 for
100GB of database. We examine the call stack of DBMS N
and Silo.DBMS N spends∼ 33% of its time while setting up
and instantiating the transactions, fromwhich Silominimally
suffers due to being a kernel OLTP engine. Hence, 33% of
the 5× difference is due to the transaction setup and instanti-
ation work that DBMS N performs. These are functions like
processInitiateTask(), xfer() (dequeues user
requests) and coreExecutePlan Fragments().

DBMS N spends most of the remaining 67% of its time in
index lookup. In particular,DBMSN spends∼44%of its time
in index lookup and ∼19% of its time in various small-sized
functions each taking less than 1% of the execution time. Silo
spends∼75% of its time in index lookup. Therefore, most of
the remaining 67% of the 5× throughput difference between
DBMS N and Silo is due to Silo using a more efficient index
structure than DBMS N.

We examine the micro-architectural behavior of the trans-
action setup and index lookup components of DBMS N
separately in Fig. 3 for 100GB of database. The figure
shows that transaction setup component only modestly suf-
fers from Dcache stalls, whereas the lookup component
is exclusively Dcache-stalls-dominated. The overall micro-
architectural behavior of DBMS N is the composition of
these two micro-architectural behavior. We also examine the
micro-architectural behavior of the index lookup component

of Silo. Similar toDBMS N, the micro-architectural behavior
of the index lookupoperation ofSilo is exclusively dominated
by Dcache stalls. As Silo’s execution time dominated by the
index lookup operation, 67%of the 5× throughput difference
betweenDBMS N and Silo is due to the used index structure.
Therefore, DBMS N can significantly improve its perfor-
mance by using a more efficient index structure. We describe
DBMS N and Silo’s used index structures in Sect. 4.2.1 in
more detail.

4.1.4 Shore-MT versus DBMSN

Shore-MT and DBMS N spend a significant portion of their
time inDcache stalls for small data sizes (as shown by Fig. 1).
We examine the execution time andDcache stalls breakdown
for Shore-MT andDBMSN for small and large data sizes.We
identify five components for Shore-MT at the software level:
(i) B-tree, (ii) buffer manager, (iii) locking and latching, (iv)
transaction setup, and (v) rest. We identify four components
for DBMS N at the software level: (i) Transaction setup, (ii)
Index lookup, (iii) Post-lookup, and (iv) Rest. Figure 2 shows
the results for 1MB of data.

Shore-MT spends most of the execution time process-
ing disk-based system components such as buffer manager
and centralized locking & latching components. Simi-
larly, most of Shore-MT ’s Dcache stalls are coming from
the locking & latching and buffer manager components.
DBMS N is an in-memory system. It does not use a
buffer manager component, and it uses a partitioning-based,
lightweight concurrency control mechanism. However, as
it is a real-life OLTP system, it performs the necessary
work to setup and instantiate transactions using functions
like processInitiateTask(), xfer() (dequeues
user requests) and coreExecutePlanFragments().
DBMS N spends most of the execution in transaction setup,
and most of DBMS N’s Dcache stalls are coming from the
transaction setup component.

Wealso examineShore-MT andDBMSN’s execution time
and Dcache stalls breakdowns for 100GB of database. Fig-
ure 4 shows the results.Shore-MT, being a disk-based system,
spendsmost of the execution time in buffermanager and lock-
ing & latching components. However, unlike it is for 1MB
of database, buffer manager component consumes a signifi-
cantly larger portion of the execution time than the locking&
latching component. As the data size is increased, there are
larger and larger number of buffer pool pages.Hence, the data
footprint is increased, and the amount of time spent inside
buffer manager is increased. Similarly, Shore-MT ’s Dcache
stalls are mostly due to the buffer manager components for
100GB of database as shown by Fig. 4b. Our findings for
Shore-MT corroborates with the findings of Harizopoulos et
al. [16].
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(a) (b)

Fig. 4 Execution time and Dcache stalls breakdown for Shore-MT and DBMS N for 100 GB of database size

DBMS N spends significantly less time on setting up the
transactions for 100GB of database compared to 1MB of
database. As the data size is increased, the amount of work
that the transactions perform is increased. As a result, trans-
action setup time is reduced from ∼60% to ∼33%, and the
index lookup time is increased from ∼10% to ∼44%.

Shore-MT ’s disk-based system overhead is persistent
across different data sizes due to the fundamental architec-
tural reasons. Most of the execution time is spent inside the
disk-based system components such as locking & latching
andbuffermanager, although the systemcomponent that con-
sumes the largest portion of the execution time shifts from
the locking & latching to the buffer manager component as
the data size is increased from 1MB to 100GB.

DBMSN’s transaction setup overhead depends on the data
size. As the data size is increased, the amount of work that
transactions perform is increased. As a result, the transaction
setup consumes smaller and smaller portion of the execution
time as the amount of work per transaction is increased.

Therefore, Shore-MT requires a major architectural re-
design to reduce the data footprint and deliver as high
throughput as in-memory OLTP systems deliver. DBMS N
spends the large portion of its execution time inside theOLTP
engine for large data sizes. Hence, it can highly benefit from
optimizing internals of theOLTP engine such as using amore
efficient index structure as shown in Sect. 4.1.3.

4.1.5 Summary

Relative throughput of OLTP systems widely vary among
different categories of OLTP systems. However, CPU cycles
utilization of all the OLTP systems are low. DBMS D and
M, relying on legacy codebases, suffers from Icache stalls.
Shore-MT, DBMS N and Silo, being either OLTP kernels
having transactions hard-coded in C++, and/or a ground-up
designed in-memory system, eliminate the Icache stalls. The
reduced Icache stalls cause Dcache stalls to surface, which

Shore-MT, DBMS N and Silo suffer from. The Dcache stalls
are largely due to the random-data-access nature of the work-
load, in addition to the cost of buffer manager and locking &
latching overhead for Shore-MT and the small cost of trans-
action setup for DBMS N. As a result, Shore-MT, DBMS
N and Silo spend only 30% of the CPU cycles for retiring
instructions similar to DBMS D and M.

4.2 Sensitivity to work per transaction

To investigate the impact of the amount of work per trans-
action on the micro-architectural behavior, we increase the
number of rows that a transaction accesses from 1 to 10
and then to 100. We perform these experiments with 100GB
dataset for all the systems exceptDBMSM. We use 10GB of
database forDBMSM due to its 32GB ofmaximumdatabase
size limitation. In the following sub-sections, we present the
results for the read-only version of themicro-benchmark. The
results for the read-write version of themicro-benchmark can
be found in Section A.2 of the “Appendix”.

Figure 5 shows the CPU cycles breakdowns as the amount
of work per transaction is increased. DBMS D and M suffer
less and less from Icache stalls as we increase the amount
of work per transaction. The repetitive behavior within a
transaction leads to a better instruction cache locality. As
a result, the code for the other layers of the system that sur-
round a transaction’s execution (e.g., the code outside the
storage manager) is executed less frequently since the trans-
actions get longer as we increase the amount of work done
per transaction. For example, where probing 100 rows per
transaction stresses purely the storage manager component,
probing 1 row also stresses the other layers such as query
parsing, work done while starting/ending a transaction, etc.
As a result, Icache stalls are decreased as the amount of work
per transaction is increased.

DBMS D and M’s Dcache stalls are increased as we
increase the work done per transaction. As we read more
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Fig. 5 Breakdowns of the CPU cycles as we increase the amount of work done per transaction with a database of size 100GB (10GB for DBMS
M)

random rows per transaction, we make more frequent ran-
dom data accesses, which leads to a higher data miss rate
and hence higher Dcache stalls.

Shore-MT, DBMS N and Silo have slightly increased
Dcache stalls as the amount of work per transaction is
increased. Shore-MT, DBMS N and Silo’s instruction foot-
print is small and simple enough when the number of rows
read per transaction is 1. Hence, the increased instruction
locality does not make a significant difference in terms of
their micro-architectural behavior.

Table 3 shows the normalized throughputs. DBMS D and
DBMS M are instruction-stalls-bound as shown in the previ-
ous section. Therefore, their delivered throughput does not
drop significantly as the data size is increased.DBMSD’s nor-
malized throughput for 1MB,10MB,10GB, and100GB is: 1,
0.93, 0.84, and 0.81. The throughput of DBMS D drops only
by3%as the data size is increased from1MBto100GB.Sim-
ilarly, DBMS M’s normalized throughput for 1MB, 10MB,
and 10GB is: 1, 1.01, and 0.89.DBMSM’s throughput drops
by only 11%as the data size is increased from1MB to 10GB.
Therefore, we assume thatDBMSM’s throughput for 100GB
is similar to its throughput for 10GB, and we useDBMSM’s
throughput for 10GB in Table 3.

DBMSM’s relative throughput is increased as the number
of rows per transaction is increased.DBMSM becomes even
faster than DBMS N as the number of rows per transaction
is increased to 10 and 100. This because of the increased
instruction locality thatDBMSM benefits from. As the num-
ber of rows read per transaction is increased, DBMS M
executes the in-memory OLTP engine more and more. As a
result, it suffers less and less from the legacy codebase that it
borrows fromDBMS D. This shows that the core in-memory
OLTP engine of DBMS M is efficiently implemented and
benefits from the in-memory systems optimizations.

Shore-MT, DBMS N, and Silo’s relative throughput to
DBMS D is decreased as the number of rows per transac-
tion is increased. This is because DBMS D benefits from

Table 3 Normalized throughput as we increase the amount of work
done per transaction with a database of size 100GB (10GB for DBMS
M)

1 row 10 rows 100 rows

DBMS D 1 1 1

Shore-MT 1.6 0.7 0.7

DBMS M 3.0 3.7 3.9

DBMS N 3.9 2.1 1.7

Silo 19.3 8.0 6.0

the increased instruction locality as the number of rows is
increased.

DBMS N’s relative throughput with respect to Silo is
decreased as the number of rows is increased. DBMS N’s
relative throughput with respect to Silo is: 4.9, 3.8, and 3.5
for 1, 10, and 100 rows, respectively. This is because DBMS
N executes less and less the code to setup and instantiate
the transactions as the amount of work per transaction is
increased. As a result, its throughput gets closer and closer to
Silo, whichminimally suffers from thework required to setup
and instantiate the transactions. Nevertheless, Silo is 3.5×
faster than DBMS N even when DBMS N largely eliminates
the transaction setup overhead. We examine this throughput
difference in more detail in the following section.

4.2.1 Code modules breakdown

To better understand the impact of legacy code, as well as
components outside the storage manager, we quantify the
percentage of the execution time spent in the OLTP engine
as the amount of work per transaction is increased for the
disk-based systemDBMS D, and in-memory systemsDBMS
M andDBMS N. While performing this breakdown, we have
done a best-effort categorization based on the code modules
reported by VTune as part of the worker thread execution of
each system. Figure 6 shows the results.
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Fig. 6 The percentage of the time spent inside the OLTP engine as we
increase the amount of work done per transaction with a database of
size 100GB for DBMS D and DBMS N, and 10GB for DBMS M

We observe that DBMS D and M systems spend only 35
to 45% of their time inside OLTP engine showing the domi-
nance of the legacy code overhead both systems suffer. The
amount of time spent inside the OLTP engine increases as
the number of rows read increases. This increase is less pro-
nounced for the disk-based system DBMS D showing the
higher overhead of the code outside the OLTP engine. For
DBMS M, when we increase the number of rows from 1 to
10, the percentage inside the OLTP engine is significantly
increased showing the reduced effect the legacy code over-
head that DBMS M borrows from the traditional disk-based
OLTP system it belongs to. These results explain better why
DBMSD andM’s relative throughput (shown in Table 3) gets
higher and higher as the number of rows read per transaction
is increased.

DBMS N is a ground-up designed in-memory system. As
a result, it does not suffer from a legacy codebase asDBMSD
andM do. However, as being an end-to-end system, it spends
certain amount of time to setup, instantiate and finalize the
transactions. In Fig. 6, the amount of time thatDBMSN does
not spend inside the OLTP engine corresponds to this instan-
tiation and finalization. This time is ∼33% for reading 1 row
per transaction since the transaction is short. As the number
of rows per transaction increases to 10 and 100, the amount
of time spent for setting up and instantiating the transactions
is reduced to ∼10% and 5%, respectively. This shows that,
depending on the amount of work per transaction, the work
required for setting up and finalizing the transaction can be
significant.

On the other hand, despite the large amount of work per
transaction and reduced overhead of transaction setup and
finalization, DBMS N is still 3.5× slower than Silo for 100
rows per transaction (see Table 3). We break the execu-
tion time of DBMS N and Silo down to their function call
stack to see this difference better. We use the same execution
time breakdown at the software level used for DBMS N in
Sect. 4.1.3. Figure 7 shows the results for 100 rows.

Fig. 7 Function call trace breakdown for DBMS N and Silo when run-
ning the micro-benchmark that reads 100 rows per transaction

Both systems spend most of their time performing the
index lookup. Therefore, themain reason for the performance
difference between DBMS N and Silo is the inefficient index
structure of DBMS N. We examined DBMS N’s index data
structure. We saw that DBMS N uses red-black tree as its
index structure. Red-black trees are self-balancing binary
search trees, where the number of elements per node is 1.
Hence, at every level of the tree, red-black tree performs a
single comparison. As every node of the tree is in a random
memory location, red-black tree is subject to a data cache
miss at every level during the index traversal.

Silo, on the other hand, usesMasstree, which is a variant of
B-tree. As all the B-trees, Masstree’s nodes have a particular
node size and fanout. It is 15 for Silo. Hence, instead of 1, it
keeps 15 elements per node. As the tree depth drops exponen-
tially with the node size, Silo’s index is much more shallow
than DBMS N’s red-black tree. Therefore, Masstree is sub-
jected to a significantly less number of data cache misses.
Furthermore, Masstree software prefetches the node’s data
blocks by injecting a software prefetch instruction during
the index traversal. As a result, Silo is subject to a single data
cache miss for the entire node it accesses at every level of
the tree, making Silo significantly faster than DBMS N. This
shows that, despite the overhead of a real-life system, the
efficiency of the used index structure is still the most cru-
cial factor in defining the performance characteristics of an
in-memory OLTP system.

Finally, DBMS N’s rest component is significantly higher
than that of Silo. This is because DBMS N, being a real-life
system, executes more functions to provide the end-to-end
response.

5 TPC benchmarks

Section 4 performs a sensitivity analysis using a simple
micro-benchmark to gain a fine-grained understanding of the
the micro-architectural behavior of the OLTP systems. This
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section investigates the behavior of the same systems while
running the more complex and community standard TPC-B
(Sect. 5.1) and TPC-C (Sect. 5.2) benchmarks. All the exper-
iments in this section use a database of size 100GB, except
DBMS M for which we use the maximum allowed database
size of 32GB. Similar to Sect. 4, we analyze the CPU cycles
breakdowns and normalized throughput values.

DBMS D and DBMS M are instruction-stalls-bound.
Therefore, their delivered throughput does not drop signifi-
cantly as the data size is increased as described in Sect. 4.2,
andwe assume thatDBMSM’s throughput for 100GB is sim-
ilar to its throughput for 32GB both for TPC-B and TPC-C.

5.1 TPC-B

TPC-B is an update-heavy benchmark that simulates a
banking system. AccountUpdate is its only transac-
tion type, which updates one row each in three tables,
Branch, Teller, and Account, and appends a row to
the History table.

Figure 8 shows the CPU cycles breakdowns and Table 4
shows normalized throughputs for TPC-B. DBMS D, Shore-
MT, DBMS N, and Silo suffer less from Dcache stalls
compared to the micro-benchmark that reads 1 row per trans-
action (see Fig. 1). This is mainly because TPC-B has a better
data locality compared to the micro-benchmark. When run-
ning the micro-benchmark, we randomly probe rows from
a 100GB table, which includes more than one billion rows.
On the other hand, TPC-B first probes one of the ∼ 20K
Branches randomly. Then, it probes one of the ∼ 200K
Tellers and one of the ∼ 2 billion Accounts. Finally, it
inserts on row into the History table. Hence, the proba-
bility of re-accessing the same branch or teller as well as the
same History table page is quite high compared to that of
the micro-benchmark’s single large table.

DBMS M suffers less from Icache stalls and more from
Dcache stalls for TPC-B compared to the micro-benchmark.
DBMS M relies on a multi-version concurrency control
mechanism, where the updates are kept in deltas. Each new
version of the data is written to a newmemory location called
delta, and the pointer to the record is updated to point to the
location of the delta. Multiple versions are kept in multi-
ple deltas that are chained one-after-the-other. Occasionally,
the deltas are consolidated. As TPC-B is an update-heavy
benchmark,DBMSM requires creating a new delta for every
transactions and hence perform more random data accesses
during the traversal and/or consolidation of the delta chain.
This results in higher degree ofDcache stalls for TPC-B com-
pared to the read-only micro-benchmark. We confirm this
hypothesis by the read-write version of the read-only micro-
benchmark discussed in Section A.1 in the “Appendix”.

Thenormalized throughput values followa similar trend to
the micro-benchmark. All the in-memory systems are faster

Fig. 8 Breakdowns of the CPU cycles while running TPC-B

than the disk-based systems. Among the in-memory systems,
DBMSN is faster thanDBMSM thanks to not suffering from
the legacy code modules, and Silo is faster than DBMS N
thanks to its efficient engine components and not suffering
from the cost of setting up and instantiating the transactions.

5.2 TPC-C

After investigating the TPC-B benchmark, this section
focuses on the more complex TPC-C benchmark. TPC-C
models a wholesale supplier with nine tables and five trans-
action types (2 of which are read-only and form 8% of
the benchmark mix). In terms of the database operations,
the TPC-C transactions contain probes, inserts, updates, and
joins covering a richer set of operations than TPC-B. There-
fore, we expect a different behavior for TPC-C than TPC-B.

Figure 9 shows the CPU cycles breakdowns and Table 4
showsnormalized throughputs. Themicro-architectural behav-
ior follows a similar trend to the micro-benchmark and TPC-
B.WhileDBMSD andM are Icache-stalls-bound, Shore-MT,
DBMS N, and Silo are Dcache- and resource/dependency-
stalls-bound. All the systems suffer less from the Dcache
stalls compared to the micro-benchmark thanks to the work-
load locality that TPC-C has. As a result, they have slightly
higher retiring cycles ratio than the micro-benchmark.

Thenormalized throughput values followa similar trend to
the micro-benchmark. All the in-memory systems are faster
than the disk-based systems. Among the in-memory systems,
Silo is faster than DBMS M and DBMS N.

DBMS N’s relative throughput is less for TPC-C com-
pared to the micro-benchmark and TPC-B. We examined
DBMS N’s call stack. DBMS N’s time spent in serializ-
ing/deserializing tuples is significantly increased for TPC-C
compared to the micro-benchmark. DBMS N keeps every
tuple in its own format (byte array) and deserializes/serializes
the data during transaction processing.AsTPC-C requires in-
transaction processing of the tuples, such as incrementing the
order ID for the new order transaction, DBMS N’s relative
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Fig. 9 Breakdowns of the CPU cycles while running TPC-C

Table 4 Normalized throughput
for TPC-B and TPC-C with a
database of size 100GB (32GB
for DBMS M)

TPC-B TPC-C

DBMS D 1 1

Shore-MT 1.7 1.2

DBMS M 2.2 3.1

DBMS N 5.4 2.7

Silo 18.5 20.0

throughput is decreased when running complex benchmark
compared to when running a simple micro-benchmark.

Shore-MT ’s relative throughput is less for TPC-C com-
pared to the micro-benchmark and TPC-B. We examined
Shore-MT ’s call stack. Shore-MT ’s time spent on B-tree
search and lockmanager are significantly increased for TPC-
C than for themicro-benchmark. This highlights Shore-MT ’s
index structure and locking & latching processing overhead
becoming more prominent for a complex benchmark. This is
also visible inTable 3,where Shore-MT ’s throughput is lower
than DBMS D for probing 10 and 100 rows per transaction.

6 Index and compilation optimizations, and
data types

This section analyzes the impact of index and compilation
optimizations the in-memory systems adopt, as well as the
impact of the data types, at the micro-architectural level.
Among the systems used in this study, DBMS M is the only
one that allows enabling/disabling the compilation optimiza-
tions and using two different index structures: hash index and
a variant of cache-conscious B-tree index similar to [28,29].
Therefore, while we use DBMS M for analyzing the impact
of index and compilation optimizations, we experiment with
all the three in-memory systems (DBMS M, DBMS N, and
Silo) to quantify the effect of different data types.

Fig. 10 Breakdowns of the CPU cycles for different index structures
with and without compilation optimizations while running the micro-
benchmark for DBMS M

Table 5 Normalized throughput for different index structures with and
without compilation for DBMS M

Micro-bench. TPC-C

B-tree w/o comp. 1 1

B-tree w/ comp. 5 5

Hash w/o comp. 1.5 1

Hash w/ comp. 9 5

6.1 Impact of index type and compilation

To quantify the impact of the type of index and compila-
tion on the micro-architectural utilization, we start with the
read-only variant of the micro-benchmark where we access
10 rows per transaction from the 10GB dataset. Figure 10
presents theCPUcycles breakdowns, andTable 5presents the
normalized throughput values. The results for the read-write
version of the micro-benchmark can be found in Section B
of the “Appendix”. Transaction compilation has a significant
effect on the instruction stalls, resulting in ∼ 50% reduction
in the Icache stalls regardless of the index type. Transaction
compilation enables many optimizations in the instruction
stream. It can eliminate the virtual function calls. It can inline
templated function calls. It can eliminate type checkings and
certain branches. Lastly, it allows the compiler to employ its
own optimizations more aggressively as it reduces the whole
task into a generated code file. As a result, transaction com-
pilation reduces the length and complexity of the instruction
footprint.

Table 5 shows the transaction compilation improves the
throughput by 5–6×. We observe that B-tree has more
Dcache stalls than the Hash index when transactions are not
compiled. This is expected as B-tree requires multiple levels
of random lookups, whereas Hash index usually requires one
or two random lookups.When the transactions are compiled,
B-tree and Hash index have similar ratios of Dcache stalls.
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Fig. 11 Breakdowns of the CPU cycles for different index structures
with and without compilation while running TPC-C for DBMS M

However, as Table 5 shows, throughput with Hash index is
80% higher than throughput with B-tree.

We repeat the experiment above using the TPC-C bench-
mark. Figure 11 shows the CPU cycles breakdown, and
Table 5 shows the normalized throughput values. Once
again, compilation optimizations reduce instruction stalls
significantly for both index types. Moreover, transaction
compilation improves DBMS M’s throughput by 5× for
both B-tree and Hash index types. For Dcache stalls, since
the TPC-C benchmark requires fewer random data reads
compared to the micro-benchmark, we do not observe a sig-
nificant difference inDcache stalls for B-tree andHash index.

6.2 Impact of data type

To quantify the impact of different data types on micro-
architectural utilization, we use the read-only version of
the micro-benchmark where we probe 1 row per transaction
over a 100GB database (10GB for DBMS M). The results
for the read-write version of the micro-benchmark can be
found in Section B of the “Appendix”. Wemodify the micro-
benchmark to use two 50 bytes string columns instead of two
long columns in the table and compare the two versions.

Figure 12 presents the CPU cycles breakdown.DBMSM’s
Dcache stalls are higher for string than they are for long. We
examined the modules breakdown ofDBMSM for string and
long. We observed that the increased Dcache stalls are due to
the legacy string processing code thatDBMSM borrows from
its legacy codebase. As string processing operations usually
have high spatial locality, the increased Dcache stalls high-
light an inefficient string processing implementation such as
carrying high memory overheads for the string objects.

DBMS N suffers less from Dcache stalls for string com-
pared to long. This is expected as string processing operations
usually have high spatial locality. We examined DBMS N’s
function call stack and observed that string comparison code
constitutes a larger fraction of the execution time with less
Dcache stalls.

Fig. 12 Breakdowns of the CPU cycles for string and long data types
while running the micro-benchmark

Table 6 Normalized throughput
for string and long data types
while running the
micro-benchmark

Long String

DBMS M 1 0.7

DBMS N 1 1

Silo 1 0.7

Silo has a similar micro-architectural behavior for long
and string data types. This is because Silo’s index structure,
Masstree, combines B-tree and trie index structures, where
every node of the trie structure is a separate B-tree. Masstree
slices the keys into pieces of eight bytes and does a separate
B-tree search for every eight bytes of the key,while traversing
the overall trie structure. As a result, using a long, 50-byte of
string key does not make a significant difference in terms of
the data access pattern during the key comparisons.

Keeping B-tree within a trie structure allows skipping the
upper levels of the trie structure for keys with long common
prefixes (such as http URLs). The keys we use do not have
such a feature.Hence,Masstree search boils down tomultiple
levels of B-tree searches.

Table 6 presents the throughput values for the string data
type that is normalized to the long data type. The results show
that DBMS M and Silo deliver lower throughput for string
than they deliver for long. This is expected as the amount of
work required to process the longer-sized string data type is
larger than it is for the long data type. DBMS N’s through-
put remains the same for the long and string data type. This
is because, unlike DBMS M and Silo, DBMS N is able to
exploit the spatial locality of string processing. As a result,
the increased work due to using strings is balanced out with
the higher spatial locality of string search.

7 Impact of multi-threading

This section analyzes the effect of running multiple server
side threads on the micro-architectural behavior. The single-
threaded experiments aim to present an idealized case since it
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Fig. 13 Breakdowns of the CPU cycles for the multi-threaded experi-
ments while running the micro-benchmark

avoids cache invalidations due to data sharing across different
worker threads or misleading artificially high IPC values due
to threads spinning under possible contention. On the other
hand, multi-threaded experiments aim to investigate a more
realistic scenario where systems are loaded with multiple
threads executing transactions from multiple clients.

Figures 13 and 14 show the CPU cycles breakdownswhile
running the read-only version of the micro-benchmark when
reading 1 row and TPC-C benchmark, respectively. We use a
database of size 100GB in both of the experiments for all
the systems except DBMS M. We use 10GB of database
for the micro-benchmark, and 32GB of database for the
TPC-C benchmark forDBMSM. We observe that the micro-
architectural behavior of the individual systems is similar
to the single-threaded executions when running the micro-
benchmark. DBMS D mainly suffers from the Icache stalls,
whereas Shore-MT, DBMS N and Silo majorly suffer from
the Dcache stalls. DBMS M suffers less from the Icache
stalls compared to the single-threaded execution. We exam-
ined the code modules breakdown ofDBMSM and observed
that the amount of time it spends inside the OLTP engine
remains the same across the single- and multi-threaded exe-
cutions. However, the amount of time DBMS M spends in
different modules that are outside the OLTP engine changes
significantly across the single- and multi-threaded execu-
tions. Hence, the reduced Icache stalls in the multi-threaded
execution is likely due to the higher instruction locality of
the code modules that are more active during multi-threaded
execution.

Micro-architectural behavior follows similar trends for
TPC-C for the multi-threaded execution compared to the
single-threaded execution. DBMS D largely suffers from
Icache stalls, and Shore-MT,DBMSN, and Silomainly suffer
from Dcache stalls. DBMS M, once again, suffers less from
the Icache stalls than it does for the single-threaded execu-
tion. This is, once again, likely due to the instruction locality
of themodules that are more active during themulti-threaded
execution.

Fig. 14 Breakdowns of the CPU cycles for the multi-threaded experi-
ments while running TPC-C

Table 7 Consumed bandwidth in GB/s as we increase the database size
for multi-threaded execution when reading 1 row per transaction

1MB 10MB 10GB 100GB

DBMS D 0 0 0 0

Shore-MT 0 0 2 2

DBMS M 0 0 1 -

DBMS N 5.2 5.1 6.2 6.2

Silo 0 0 8.2 8.3

8 Memory bandwidth consumption

This section presents the consumed memory bandwidth for
the sensitivity to data size and to work per transaction micro-
benchmarks and TPC-C benchmark. We measured both
single- and multi-threaded consumed memory bandwidth.
We observed that the consumed single-threaded bandwidth
is always less than 1 GB/s for all the systems. Hence, we
omit the single-threaded bandwidth results, and focus on the
multi-threaded ones.

8.1 Data size micro-benchmark

Table 7 presents the consumed bandwidth for increasing data
size. All the systems consume significantly lower memory
bandwidth than the maximum available bandwidth. While
the maximum available bandwidth is 66GB/s, the maximum
consumed bandwidth is 8.3GB/s by Silo for 100GB of data
size.

DBMSD, Shore-MT, andDBMSM consume significantly
lower bandwidth thanDBMSN and Silo.DBMSD andM suf-
fers from Icache stalls, which prevents them from stressing
thememory bandwidth. Shore-MT suffers fromDcache stalls
for 10GB and 100GB. As being a disk-based system, it nev-
ertheless has a significantly larger instruction footprint and
is significantly slower (see Table 2) than DBMS N and Silo.
As a result, it stresses the memory bandwidth only modestly.
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Table 8 Consumed bandwidth in GB/s as we increase the amount of
work per transaction for multi-threaded execution for a database of size
100GB (10GB for DBMS N)

1 row 10 rows 100 rows

DBMS D 0 2 3

Shore-MT 2 2 2.5

DBMS M 1 7 11

DBMS N 6.2 8.5 8.4

Silo 8.3 8.3 8.4

DBMS N has relatively high bandwidth consumption for
1 and 10MB of data. This is due to DBMS N’s transaction
setup processing. As the data size is increased the consumed
bandwidth is also increased. As DBMS N spends more time
on index lookup when the data size is increased, it consumes
more memory bandwidth.

Silo consumes no memory bandwidth for 1 and 10MB of
data as the data is mostly cache-resident. Silo consumes the
highest bandwidth among the systems we analyze for 10 and
100GB of data. Silo eliminates the overheads of disk-based
systems and also does not suffer from the cost of transaction
setup and instantiation. As a result, it delivers the highest
relative throughput (see Table 2) and stresses the memory
bandwidth the highest. Nevertheless, Silo’s maximum con-
sumed bandwidth is significantly less than the maximum
available bandwidth of 66GB/s. This shows that OLTP sys-
tems generate only modest amount of memory traffic and
hence severely under-utilize the memory bandwidth.

8.2 Work per transactionmicro-benchmark

Table 8 shows the consumed bandwidth as we increase the
amount of work per transaction. We use 100GB of database
for all the systems, except DBMS M and 10GB of database
for DBMS M. The consumed bandwidth is increased as the
amount of work per transaction is increased for all the sys-
tems. This increase is more pronounced for DBMS M. As
the amount of work per transaction is increased DBMS M
suffers less and less from the legacy code modules that it
borrows from DBMS D. Hence, it suffers less and less from
the Icache stalls. As a result, it’s relative throughput and con-
sumed bandwidth is significantly increased.

The increase is also observable forDBMSD andDBMSN.
BothDBMSD andDBMS N suffer from the code outside the
storage manager. As the number of rows read per transaction
is increased, the effects of the code outside the storage man-
ager is reduced. Hence, the stress on the memory bandwidth
is increased.

The increase in the consumed bandwidth is significantly
less for DBMS D than it is for DBMS M. DBMS D’s legacy
codebase overheads are heavier than they are for DBMS M.

Table 9 Consumed bandwidth
in GB/s for TPC-C benchmark
for multi-threaded execution

TPC-C

DBMS D 0

Shore-MT 2.6

DBMS M 0

DBMS N 2.6

Silo 5.3

As a result, the increased amount of work inside the transac-
tion mitigates the overheads of the code outside the storage
manager only partially. This effect is more clean in Fig. 6. As
the figure shows, DBMS D spends ∼35% of its time outside
the storage manager when reading 100 rows per transaction.

Shore-MT and Silo’s consumed bandwidths are onlymod-
estly increased. This is because Shore-MT and Silo hard code
transactions in C++. Hence, the increased amount of work
per transaction stresses the memory bandwidth at a similar
level per unit of a time. As a result, the consumed bandwidth
remains mostly stable as the amount of work per transaction
is increased.

Overall, despite the increased amount of work per trans-
action, all the OLTP systems we examine consume only a
modest fraction of the maximum available bandwidth.While
the maximum available bandwidth is 66GB/s, the maximum
consumed bandwidth is 11GB/s by DBMS M when reading
100 rows per transaction.

8.3 TPC-C

In this section, we examine the amount of consumed band-
width for TPC-C benchmark for a database of size 100GB,
except forDBMSM. We use 32GB of database forDBMSM.
Table 9 shows the results. The consumed bandwidth values
are less for all the systems compared to themicro-benchmark.
This is expected as TPC-C transactions are more complex
withmore workload locality, and hence requiremore on-chip
computation rather than stressing memory.

DBMS D andM, being Icache-stalls-bound systems, con-
sume very lowmemory bandwidth. Shore-MT,DBMSN, and
Silo, being Dcache- and resource/dependency-stalls-bound,
consume certain amount of memory bandwidth. Silo, being
the fastest OLTP system we analyze, consumes the highest
amount ofmemory bandwidth. Unlike themicro-benchmark,
DBMS N consumes a similar amount of bandwidth to Shore-
MT. This is due to DBMS N’s increased time spent on tuple
serializing/deserializing, preventing DBMS N from creat-
ing higher memory traffic. Nevertheless, all the systems we
analyze consume bandwidth that is significantly below the
maximum available bandwidth. While maximum available
bandwidth is 66GB/s, the highest consumed bandwidth is
5.3GB/s by Silo.
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Table 10 Normalized throughput values for hyper-threading evaluation

Micro-bench. TPC-C
ST MT ST MT

DBMS M 1.2 1.3 1.2 1.3

Silo 1.4 1.6 1.4 1.7

9 Acceleration features

In this section, we examine three popular acceleration
features that today’s processors provide: hyper-threading,
turbo-boost, and hardware prefetchers. We present normal-
ized throughput values.

We use DBMS M and Silo when running the read-only
micro-benchmark while probing 1 row per transaction, and
when running the TPC-C benchmark for single- and multi-
threaded executions.We use 10GBof database for themicro-
benchmark and 32 GB of database for TPC-C when profiling
DBMS M. We use 100GB of database for Silo.

9.1 Hyper-threading

Table 10 shows normalized throughput values for hyper-
threading evaluation. For single-threaded execution, the
normalized throughput shows the throughput improvement
when running two threads on the same physical core com-
pared to running a single thread on a single physical core. For
multi-threaded execution, the normalized throughput shows
the throughput improvement when running 28 threads on 14
physical cores compared to running 14 threads on 14 physical
cores (assuming that 14 threads deliver the highest through-
put). We use the DBMS’s and/or OS’s relevant configuration
interface to bind the threads to a single socket and allocate
memory locally.

We observe that hyper-threading is modestly useful for
DBMS M, whereas it is significantly useful for Silo. Hyper-
threading is the most useful when there are long-latency data
stalls that can easily be overlapped. As Silo highly suffers
from Dcache stalls, hyper-threading provides a more signif-
icant speedup for Silo. We also observe that the improved
throughput is higher for multi-threaded execution than it is
for single-threaded both forDBMSM and Silo. This is likely
due to the increased sharing of the data structures at the last-
level cache when running concurrently on the multiple cores.

9.2 Turbo-boost

Table 11 showsnormalized throughput values for turbo-boost
evaluation. We present the throughput values with turbo-
boost turned on normalized to the ones with turbo-boost
turned off.

Table 11 Normalized throughput values for turbo-boost evaluation

Micro-bench. TPC-C
ST MT ST MT

DBMS M 1.3 1.1 1.2 1.2

Silo 1.2 1.1 1.2 1.1

Table 12 Normalized throughput values for prefetcher evaluation

Micro-bench. TPC-C
ST MT ST MT

DBMS M 1.0 1.0 1.0 1.0

Silo 1.0 1.0 1.0 1.0

We observe that both DBMS M and Silo modestly benefit
from turbo-boost. Turbo-boost provides the highest speedups
when the computation is arithmetic-operation-heavy rather
than memory-access-bound as it is the case for OLTP. As a
result, both systems only modestly benefit from turbo-boost
feature.

9.3 Hardware prefetchers

Table 12 shows normalized throughput values for prefetcher
evaluation. We present the throughput values with prefetch-
ers disabled normalized to the ones with prefetchers enabled.
There are four hardware prefetchers that today’s server pro-
cessors provide: L1 next line, L1 streamer, L2 next line, and
L2 streamer prefetchers [18]. We disable them all and enable
them all.

We observe that prefetchers have no visible effect on the
OLTP system performance. OLTP workloads are random-
data-access-bound and have low spatial locality. As a result,
the streamer prefetchers might not be providing a visible
performance gain when enabled. DBMS M mainly suffers
from Icache stalls. Hence, the improvement that the next
line prefetchers bring is likely to be negligible. Silo uses
software prefetching to prefetch consecutive cache lines that
belong to the same index node, during its index traversal.
Hence, the disabled next line prefetcher is likely not creating
an observable effect on Silo’s throughput.

10 Ivy Bridge versus Broadwell

In this section, we compare two Intel generations in terms of
their micro-architectural behavior when running the micro-
benchmark that randomly reads 1 row and the TPC-C
benchmark. We use 100GB of database. We use 10GB of
a database for the micro-benchmark and 32GB of a database
for TPC-C for DBMS M. We examine the Intel Xeon v2 line
Ivy Bridge micro-architecture and Intel Xeon v4 line Broad-
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Fig. 15 Breakdowns of the CPU cycles for successive Intel micro-architectures when running micro-benchmark

Fig. 16 Breakdowns of the CPU cycles for successive Intel micro-architectures when running TPC-C

well micro-architecture. We choose these two generations
as there is major micro-architectural change from the Ivy
Bridge to the Haswell micro-architecture, especially in the
instruction fetch unit of the processors [14] (see Sect. 4.1.1,
paragraph 2). Broadwell is slightly improved version of the
Haswell micro-architecture. As OLTP systems are known to
severely suffer from Icache stalls, we examine how effective
the instruction fetch unit improvement for OLTP systems.

Figures 15 and 16 show the results. We observe that there
is a significant change in the micro-architectural behavior
of the OLTP systems across the two processor generations.
On the Ivy Bridge micro-architecture, all the systems except
for Silo mainly suffer from Icache stalls. On the Broadwell
micro-architecture, Shore-MT and DBMS N’s main micro-
architectural bottlenecks shift from Icache stalls to Dcache
stalls. Similarly, DBMS D and M suffer significantly less
from the Icache stalls on the Broadwell micro-architecture
compared to the Ivy Bridge micro-architecture. This shows
that the advances in the instruction fetch unit of the processor
significantly help for reducing the Icache stalls.

Our finding on Ivy Bridge vs. Broadwell corroborates the
recent work of Yasin et al. [60] where SPEC benchmarks
are evaluated across Ivy Bridge and Skylake (the generation
after Broadwell) micro-architectures. Yasin et al. also show
that the improvement on the Skylake micro-architecture,

Table 13 Throughput on Broadwell normalized to throughput on Ivy
Bridge

Micro-bench. TPC-C

DBMS D 2.0 1.6

Shore-MT 1.6 1.6

DBMS M 2.5 1.4

DBMS N 1.6 1.5

Silo 1.1 1.3

which inherits the improvements from the Broadwell micro-
architecture, significantly reduces the Icache stalls.

Table 13 shows the throughput of the Broadwell machine
normalized to the throughput of the Ivy Bridge machine.
As expected, the Broadwell machine delivers significantly
higher throughput than the Ivy Bridge machine thanks to its
micro-architectural improvements.

Existing work on micro-architectural analysis of OLTP
systems has mostly used an Ivy Bridge or an earlier micro-
architecture generation. As a result, their conclusions were
mostly referring to the instruction overheads of disk-based
and in-memory OLTP systems [48,49,53,54]. In this paper,
we take the existing work one step ahead and provide
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conclusions on one of the latest generations of Intel micro-
architectures.

11 Lessons learned

This section summarizes the highlights of our work. In-
memory OLTP systems implement a series of optimizations
to reduce the instruction footprint and improve cache uti-
lization. Despite all of the optimizations, they severely
under-utilize the micro-architectural features similarly to the
traditional disk-based systems.

Instruction stalls DBMS D andM incur the highest num-
ber of instruction stalls due to the large amount of legacy
code they use. Hence, OLTP systems relying on legacy code
modules should first optimize their instruction footprint.
Transaction compilation is a promising technique that can
be used to reduce the instruction footprint size and complex-
ity of an OLTP system as shown by [34,48] (see Sect. 6.1).

Shore-MT, despite being a disk-based system, does not
suffer from instruction cache miss stalls. Hence, today’s pro-
cessors are powerful enough to fetch and execute instruction
stream of complex disk-based systems without stalling the
instruction fetch unit.DBMSN andSilodonot suffer from the
instruction stalls either. This shows that ground-up designed
OLTP systems’ instruction footprint is simple enough for
today’s processors to fetch instructions without stalling in
the instruction cache (see Sect. 4.1.1).

Data stalls DBMS N and Silo mainly suffer from data
cache stalls. DBMS M suffers from data stalls only when
the instruction cache misses are mitigated by an increased
instruction locality in their instruction stream (see Sect. 4.2).
The data cache misses for DBMS N and Silo are mostly due
to the random data accesses made during the index traver-
sal. Hence, ground-up designed in-memory systems should
firstly optimize their index structures. We have seen that
Masstree [32] used by Silo significantly outperforms the red-
black tree used by DBMS N (see Sect. 4.1.3, 4.2.1).

While using an efficient index structure improves the per-
formance, its execution time is still dominated by data cache
misses caused by the random data accesses during the index
traversal. Hence, ground-up designed in-memory OLTP sys-
tems should adopt techniques that can mitigate the negative
performance effect of random data accesses (see Sect. 4.2.1).

Mitigating data stalls One promising way to mitigate the
random data accesses is using co-routines. Co-routines is a
cheap thread interleavingmechanism that allows interleaving
long-latency data stalls with computation. Psaropoulos et al.
[38–40] and Jonathan et al. [19] have shown that co-routines
can successfully be used to improve index join and index
lookup.

Another promising technique to mitigate the random data
accesses is usingmachine learning to learn the distribution of

the keys and jump to the index location that the key belongs
to without actually performing the index traversal. Kraska et
al. [25], Sirin et al. [30], and Ding et al. [11] have shown that
machine-learned indexes can successfully replace/accelerate
the index search operation.

Row- versus column-oriented storage All the systems
we profile use the row-oriented storage format. However,
recently, several systems adopted the column-oriented stor-
age, mostly to use a single format for both transactional and
analytical processing [36]. Using column-oriented storage
as opposed to row-oriented storage requires making multiple
random data accesses per row access, as different attributes
of the same row will be spread around the main-memory.

Today’s processors are capable of overlapping random
data accesses if their locations in the instruction stream are
close to each other. Hence, making multiple random data
accesses might not hurt the performance, if the data access
primitives are well-implemented.

Alternatively, today’s processors have the software prefetch-
ing capability. Programs can prefetch those memory blocks
ahead of the access such that the memory access times are
overlapped with useful work. Developers can use software
prefetching tomitigate the negative effect ofmakingmultiple
random data accesses.

On the other hand, bringing multiple cache lines to the
processor cache might result in inefficiently using the pro-
cessor caches. If an attribute is 8 bytes and we access four
attributes of the same row, we bring 64 × 4 = 256 bytes (as
each cache line is 64 bytes), instead of 8×4 = 32 bytes. The
256−32 = 224 bytes of the data that is brought to the cache
pollutes the cache, which can hurt the overall performance
of the system.

Hardware In this study, we conclude that software-level
optimizations do not directly translate into more efficient
utilization of micro-architectural resources, and might even
hinder it, on modern processors. One needs to optimize
the hardware and software together as the next step putting
micro-architectural utilization as a high priority goal.

Exhibiting low instruction- andmemory-level parallelism,
OLTP workloads are unable to utilize the wide-issue, com-
plex out-of-order cores. Most of the time goes to the memory
stalls for bringing either instructions or data items from the
memory. Instruction cache sizes have been unchanged for the
last decade due to the strict latency limitations, and we can-
not expect them to increase. On the other hand, improved
instruction fetch units can make a significant change in
the micro-architectural behavior of the OLTP systems (see
Sect. 10). Further advancements at the micro-architectural
level, especially at the instruction fetch unit, can still have fur-
ther potential impact to improve OLTP system performance,
as popular OLTP systems such as DBMS D and M that we
profiled still highly suffer from Icache stalls. Profile-guided
(i.e., feedback-directed) optimization via the compiler and
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hardware support for software code prefetching are shown to
be effective for reducing Icache stalls for server workloads,
which also significantly suffer from Icache stalls [4,8,59].

As ground-up designed OLTP systemsmainly suffer from
long-latency data cache stalls, hardware designers can invest
more on hardware mechanisms that can overlap long-latency
data stalls.Hyper-threading improves performanceup to70%
in a carefully designed and implemented in-memory OLTP
system (see Sect. 9.1). Turbo-boost and hardware prefetchers
are modestly useful for OLTP workloads, as OLTP work-
loads are memory-latency-bound (see Sects. 9.2, 9.3). As
the processor’s power budget is limited, hardware designers
can invest more power budget on the features that would
overlap long-latency data stalls such as larger number of
hyper-threads per physical core.

On the other hand, whatever the size of the last-level cache
(LLC) is, megabytes of LLC will not be enough to keep
the gigabytes of the data footprint of most standard OLTP
benchmarks. Hence, instead of using beefy and complex
out-of-order cores consuming large amount of energy, using
simpler cores with intelligent hyper-threading mechanisms
can improve the throughput of OLTP applications with a
smaller power budget [12,13,31]. Sirin et al. [47] have shown
that low-power ARM processor can provide 1.7 to 3 times
lower throughput with 3 to 15 times less power consumption
than a state-of-the-art Intel Xeon processor, achieving up to
9 times higher energy efficiency.

With that said, Kanev et al. [20] have shown that server
workloads partially benefit from the wide-issue out-of-order
execution. Hence, the use of wimpy cores with narrow-issue
execution engines might produce a suboptimal performance
and may not satisfy some application requirements. Simi-
larly, Sirin et al. [47] have shown that ARM processors’
quantified latency can be up to 11 times higher than Intel
Xeon towards the tail of the latency distribution,whichmakes
IntelXeonmore suitable for tail-latency-critical applications.

GPU/FPGA-based acceleration of database systems is
another line of research that allows improving database per-
formance by using alternative computing devices to power-
hungry processors. [9,42,45] present techniques on using
GPUs for accelerating analytical processing queries such as
hash join.Kimet al. [24] haveproposed a transaction process-
ing engine architecture that exploits the wide-parallelism.
Alonso et al. [3] present an open-source hardware-software
co-design platform for database systems, which uses CPU
and FPGA as the main building blocks. [21,44] present
techniques on integrating FPGAs into common database
operations such as data partitioning and regular expression.
These studies highlight the opportunities to enrich the tra-
ditional computing space of database systems by alternative
computing devices such as FPGAs and GPUs. As these com-
puting devices providemassive parallelismand/or low-power
consumption, they allow investigating the energy-efficiency

space and potentially serve as the processors of the future
database systems.

12 Conclusion

In this paper, we perform a detailed micro-architectural
analysis of the in-memory OLTP systems contrasting them
to the disk-based OLTP systems. Our study demonstrates
that in-memory OLTP systems spend most of their time in
stalls similarly to the disk-based OLTP systems despite all
the design differences and lighter storage manager compo-
nents of the memory-optimized systems. The lighter storage
manager components reduce the instruction footprint at the
storage manager layer, but the overall instruction footprint
of an in-memory OLTP system is still large if the code base
relies on legacy code modules. This leads to a poor instruc-
tion locality and high number of instruction cache misses.
Ground-up designed in-memory OLTP systems can elim-
inate the instruction cache misses. In the absence of the
instruction cache misses, the impact of long-latency data
misses surfaces up, resulting in spending ∼70% of the exe-
cution time in stalls.
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Appendix A: Read-write micro-benchmark

In this appendix, we present the evaluation of the read-write
version of the micro-benchmark.

A.1 Sensitivity to data size

In this section, we perform the sensitivity analysis for the
database size. Figure 17 shows the CPU cycles breakdowns.
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Fig. 17 Breakdowns of the CPU cycles as we increase the database size when running the read-write micro-benchmark

All the systems follow similar trends to what we observed for
the read-only micro-benchmark, except Shore-MT. Shore-
MT suffers significantlymore fromDcache stalls for the read-
write micro-benchmark than it is for the read-only micro-
benchmark. We examined the function call trace of Shore-
MT. The increased Dcache stalls are due to the logging costs
that Shore-MT does for update queries, but not read-only
queries. Being a disk-based system, Shore-MT uses a heavy
data structure to keep a large amount of log information.
DBMS N, on the other hand, uses command logging where
only the invoked transaction and its parameters are logged.
Hence, DBMS N suffers less from the logging operations.

DBMS M has higher Dcache stalls compared to the read-
only micro-benchmark. This is likely due to that DBMS M
uses a multi-version concurrency control mechanism, where
updates are kept in deltas. Each new version of the data
is written to a new memory location called delta, and the
pointer to the record is updated to point to the location of
the delta. Multiple versions are kept in multiple deltas that
are chained one-after-the-other. Occasionally, the deltas are
consolidated. Chain traversal/consolidation requires more
random data accesses and hence more Dcache stalls.

DBMS N and Silo has less Dcache stalls compare to the
read-onlymicro-benchmark. This is due to that update opera-
tion has a higher data locality than the read, as update requires
reading from and writing to the same data block. As a result,
it results in less Dcache stalls.

Table 14 shows the normalized throughputs for the
read-write micro-benchmark. We normalize the values with
respect to the read-only micro-benchmark, as the nor-
malization across the systems provides similar results to
Table 2. Read-write micro-benchmark is always slower. This
is because the update operation requires more work for con-
currency control and logging than the read-only operation.
Shore-MT ’s relative throughput is the lowest among the
system. This highlights Shore-MT ’s inefficient locking and
logging mechanisms.

As the data size increases, read-write micro-benchmark’s
throughput gets closer to the read-only micro-benchmark.

Table 14 Normalized throughput for the read-write micro-benchmark.
Throughput is normalized to the throughput values of the read-only
micro-benchmark

1MB 10MB 10GB 100GB

DBMS D 0.7 0.7 0.8 0.8

Shore-MT 0.5 0.5 0.6 0.6

DBMS M 0.7 0.7 0.7 –

DBMS N 0.7 0.7 0.7 0.8

Silo 0.8 0.8 0.8 0.9

This is because of the higher data locality of the read-write
micro-benchmark. As the data size is increased, data locality
matters more and more for the micro-benchmark’s through-
put. Nevertheless, read-only micro-benchmark’s throughput
is 20% to 50% higher than the read-write micro-benchmark.

A.2 Sensitivity to work per transaction

In this section, we perform the sensitivity analysis for
the amount of work per transaction. Figure 18 shows the
CPU cycles breakdowns. We observe similar trends to
the read-only micro-benchmark As the number of rows
updated per transaction is increased DBMS D and M’s
Icache stalls are decreased, and they become more and more
Dcache-stalls-bound. Shore-MT, DBMS N and Silo, being
already Dcache-stalls-bound systems, have similar micro-
architectural behavior across the varied amount of work per
transaction.

Table 15 shows the normalized throughputs.Wenormalize
the values with respect to the read-only micro-benchmark, as
the normalization across the systems provides similar results
to Table 3. We observe that read-write transaction through-
put is decreased as the amount of work per transaction is
increased for DBMS D andM. This is because the read-only
micro-benchmark benefits more from the increased amount
of work per transaction compared to the read-write micro-
benchmark. The read-write micro-benchmark requires more
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Fig. 18 Breakdowns of the CPU cycles as we increase the amount of work per transaction when running the read-write micro-benchmark

Table 15 Normalized throughput for the read-write micro-benchmark.
Throughput is normalized to the throughput values of the read-only
micro-benchmark

1 row 10 rows 100 rows

DBMS D 0.8 0.8 0.7

Shore-MT 0.6 0.8 0.8

DBMS M 0.7 0.5 0.5

DBMS N 0.8 0.8 0.8

Silo 0.9 0.9 0.9

work and hence more instructions than the read-only micro-
benchmark. As a result, the increased instruction locality is
less useful to the read-write micro-benchmark than the read-
only micro-benchmark.

Appendix B: Index, compilation, and data
type

In this section, we evaluate the index, compilation and data
type for the read-write micro-benchmark. Figure 19 presents
CPU cycles breakdowns for different index types having
compilation turned on and off. Compilation reduces the
Icache stalls significantly similar to the read-only micro-
benchmark. Table 16 presents the normalized throughput
values.Compilation improves the throughput by5–7.7× sim-
ilar to the read-only micro-benchmark, showing how useful
it is to reduce the instruction and the data footprint of DBMS
M.

Figure 20 shows the CPU cycles breakdowns for long and
string data types. Unlike the read-only micro-benchmark,
DBMS M has similar amounts of Dcache stalls for long
and string data types. The reason is the read-write micro-
benchmark’s increased Dcache stalls for the long data type.
As a result, the overall CPU cycles breakdowns remains the
same for the long and string data types. DBMS N and Silo
present similar results to the read-only micro-benchmark.

Fig. 19 Breakdowns of the CPU cycles for different index structures
with and without compilation optimizations while running the read-
write micro-benchmark

Table 16 Normalized throughput for different index structureswith and
without compilation when running the read-write micro-benchmark

Micro-bench.

B-tree w/o comp. 1

B-tree w/ comp. 5

Hash w/o comp. 1.5

Hash w/ comp. 11.5

Fig. 20 Breakdowns of the CPU cycles for string and long data types
while running the read-write micro-benchmark

123



664 U. Sirin et al.

Table 17 Normalized
throughput for string and long
data types while running the
read-write micro-benchmark

Long String

DBMS M 1 0.6

DBMS N 1 0.9

Silo 1 0.6

DBMS N has less Dcache stalls for the string data type,
whereas Silo has similar amount of Dcache stalls for the
string and long data types.

Table 17 shows the normalized throughput values for
string and long data types. The results are similar to the read-
only micro-benchmark. WhileDBMSM and Silo have lower
throughput for string due to the increased amount of work for
string, DBMS N has similar throughput thanks to utilization
of the workload locality for the string data type.

Appendix C: CPU cycles categorization

In this section, we present how we map each CPU cycles
category that VTune provides to the individual categories
that we use. Table 18 presents the mapping.

Table 18 The mapping between VTune’s original and our simplified
CPU cycles categorization

VTune’s original category Mapped category

Back-End, Memory Dcache

Back-End, Core Resource/dependency

Front-End, Front-End Latency,
ICache Misses

Icache

Front-End, Front-End Latency,
ITLB Overhead

Icache

Front-End, Front-End Latency,
Branch Resteer

Branch misprediction

Front-End, Front-End Latency,
DSB Switches

Decoding

Front-End, Front-End Latency,
Length Changing Prefixes

Decoding

Front-End, Front-End Latency, MS
Switches

Decoding

Front-End, Front-End Bandwidth Decoding

Bad Speculation Branch misprediction

Retiring Retiring
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