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Abstract
With an escalating arms race to adopt machine learning (ML) in diverse application domains, there is an urgent need to
support declarative machine learning over distributed data platforms. Toward this goal, a new framework is needed where
users can specify ML tasks in a manner where programming is decoupled from the underlying algorithmic and system
concerns. In this paper, we argue that declarative abstractions based on Datalog are natural fits for machine learning and
propose a purely declarative ML framework with a Datalog query interface. We show that using aggregates in recursive
Datalog programs entails a concise expression of ML applications, while providing a strictly declarative formal semantics.
This is achieved by introducing simple conditions under which the semantics of recursive programs is guaranteed to be
equivalent to that of aggregate-stratified ones. We further provide specialized compilation and planning techniques for semi-
naive fixpoint computation in the presence of aggregates and optimization strategies that are effective on diverse recursive
programs and distributed data platforms. To test and demonstrate these research advances, we have developed a powerful and
user-friendly system on top of Apache Spark. Extensive evaluations on large-scale datasets illustrate that this approach will
achieve promising performance gains while improving both programming flexibility and ease of development and deployment
for ML applications.

Keywords Datalog · Declarative machine learning · Apache spark · Scalability

1 Introduction

The past decades havewitnessed a booming demand for large
scale data analysis in diverse application domains, such as
online advertisement, news recommendation, driverless cars
and voice-controlled devices. As machine learning (ML) has
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achieved widespread success for many data-driven analyti-
cal tasks, demand for scaling ML algorithms to ever larger
datasets became inevitable. Recently, researchers from both
academia and industry have devoted great efforts to build-
ing powerful distributed data processing platforms, such
as Hadoop and Apache Spark, which utilize and extend
the Map-Reduce computation model. The availability of
such platforms provides a great opportunity for scaling up
ML applications due to their natural in-memory support of
advanced big-data applications. Many scalable ML libraries
based on different high-level programming languages have
been provided by these platforms. A number of remarkable
projects underscore the significant progress of systems and
applications in this area, includingMLlib [1],Mahout [2] and
MADlib [3]. Although these systems and libraries ease the
burden of implementing ML applications, they still impose
strict requirements on developers. Specifically, it often takes
considerable efforts to develop new or customize existing
ML algorithms, since developers must manage details of
the distributed implementations of ML algorithms over the
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underlying platforms, without having full control on how and
when the data is accessed.

In order to make better use of the computing resources
and simplify the development and deployment, a declarative
ML framework is needed where programming can be decou-
pled from the underlying algorithmic and system concerns.
In other words, a framework is needed that allows users to
focus on the data flow instead of low-level interfaces. We
believe that Datalog is a particularly attractive choice for
expressingMLalgorithms because its natural support for rea-
soning and recursion simplifies ML applications. Recently,
a renaissance of interest has focused on Datalog because of
its succinct and declarative expression of a wide spectrum
of data-intensive applications, including data mining [4],
knowledge reasoning [5], data center management [6] and
social networks [7]. A common trend in the new generation
of Datalog applications is the usage of aggregates in recur-
sion, since they enable the concise expression and efficient
support ofmuchmore powerful programs than those express-
ible by ones that are stratified w.r.t. negation and aggregates.
Recent theoretical advances [8–10] allow us to provide for-
mal declarative semantics to the powerful recursive queries
that use aggregates in recursion. These findings outline the
promising blueprints of a declarative ML framework using
Datalog.

In this paper, we propose a declarative framework for effi-
ciently expressing a broad range of ML applications. Unlike
the previous studies that rely on user-defined functions
(UDF) [11] and those that employ a hybrid imperative and
declarative framework [12–14], our framework uses purely
declarative programs which only uses the basic logic-based
constructs of Datalog. The success of a framework criti-
cally depends on the ability of the underlying engine to turn
declarative queries and programs into efficient and scalable
executions. To this end, we implement our ML framework as
an extension of BigDatalog [15], which is a shared-nothing
Datalog engine built on top of Apache Spark, to take advan-
tage of its power in dealing with iterative computation on
massive datasets. Compared with simpler recursive appli-
cations, ML applications require recursions involving more
complex structures, e.g., mutual and nonlinear recursion, and
multiple aggregates. This calls for optimized semi-naive fix-
point computation techniques not tackled in previous studies.
To address these issues, we propose a series of compilation
and planning techniques to support these powerful Datalog
programs. Moreover, we further provide a number of novel
optimizations to improve the overall performance for ML
workloads. Note that our proposed techniques are platform-
independent and cannot limited to the BigDatalog system.

The effectiveness of Datalog in expressing ML appli-
cations is due to the great expressive power achieved by
allowing the use of aggregates satisfying particular condi-
tions in recursions. This basic idea was first proposed in

[8,9], and proved quite effective at expressing a rich set
of graph and data mining algorithms [10,16]. The formal
semantics of such queries lies in the fact that programs sat-
isfying the Pre-Mappability (PreM) property [9] can be
transformed into equivalent aggregate-stratified programs.
Unfortunately, while the notions in [9] work well for the
min and max constraints used in simple recursive queries,
they proved insufficient to dealwith the classicalMLapplica-
tions which, along with extrema, also make extensive usage
of other aggregates, such as sum, count and average.
In this paper, we find that ML applications tend to apply
aggregates over sets of relations whose cardinality could
be pre-computed ahead of time, whereby the computation
of all kinds of aggregates becomes monotonic. Following
this route, we provide formal semantics for ML applications
expressed in Datalog from fixpoint computation.

As a result of these advances, this paper makes the fol-
lowing contributions:

– We devise a declarative ML framework with Datalog
query interface. We implement our system on top of
Apache Spark and, to enhance its usability, we provide
DataFrame APIs that are similar to, and actually more
general than, those of Apache MLlib.

– We propose a series of compilation and planning tech-
niques to enable the efficient expression and execution
of ML applications (Sect. 5). We further develop several
optimizations for the recursive plans of ML workloads
(Sect. 6).

– We provide the formal semantics of Datalog programs
for ML applications (Sect. 4).

– We evaluate our framework on several popular bench-
marks. Experimental results show that our framework
outperforms, by an obviousmargin, existingML libraries
on Spark and other special-purpose ML systems as well.

The rest of the paper is organized as follows: Sect. 2
reviews the basics about Datalog language and machine
learning. Section 3 discusses how ML applications can be
expressed in Datalog and the advantages of this approach.
Section 4 provides the formal semantics of the above ML
queries. Section 5 presents the system implementation and
proposes necessary techniques to support complicated Data-
log programs for ML applications. Section 6 further presents
several optimizations ranging from planning to execution.
Section 7 discusses important issues such as usability and
generality. Section 8 reports and discusses the experimental
results. Section 9 surveys the related work. Finally, Sect. 10
concludes the whole paper.
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2 Preliminary

2.1 Datalog and its evaluation

ADatalog program P consists of a finite set of rules operating
on sets of facts described by database-like schemas. A rule r
has the form h ← r1, r2, ..., rn , where h is the head of rule,
r1, r2, ..., rn is the body and the comma separating atoms in
the body is logical conjunction (AND). The rule head h and
each ri are atoms having form p(t1, t2, ..., tk), where p is a
predicate and t1, t2, ..., tk are terms which can be variables or
constants.Onoccasions,weuse the terms predicate, table and
relation interchangeably. A rule defines a logical implication:
if all predicates in the body are true, then so is the head h.
There are two kinds of relations: (i) the base relations are
defined by tables in the EDB (extensional database) and (ii)
the derived relations are defined by the heads of rules and
form the IDB (intentional database).

Example 1 Query 1 - Transitive Closure (TC)

r1,1 : tc(X,Y) ← arc(X,Y)

r1,2 : tc(X,Y) ← tc(X,Z),arc(Z,Y)

An example of recursive Datalog program is shown above
in the Transitive Closure program in Query 1. Next, we will
illustrate some Datalog concepts and terminology with the
help of it.

Query 1 derives the IDB relation tc from the EDB table
arc representing the edges of a graph. Since the predicate tc
is contained in both the head and the body of rule r1,2, tc is a
recursive predicate and r1,2 is a recursive rule. The recursive
predicate tc is also the head predicate for r1,1 which is non-
recursive and therefore provides the base rule in the fixpoint
definition and computation of the recursive predicate. In fact
the process of query evaluation first initializes tc using r1,1
and then uses r1,2 to recursively produce new tc facts from
the conjunction of tc facts generated in previous iterations
and the arc relation. Since at most one recursive relation is
included in the body of any rule, Query 1 represents a case
of linear recursion; the term non-linear recursion denotes
instead the case where some rules contain multiple recursive
relations.

The state-of-the-art method for evaluating a Datalog pro-
gram is the semi-naive (SN) evaluation [17]. SN performs
the differential fixpoint computation of Datalog programs in
a bottom-up manner. It starts with the application of the base
rule and then iteratively applies recursive delta rules until a
fixpoint is reached. The core idea of the SN optimization is
that, instead of using the original rules, the evaluation can use

delta rules that are based on the facts which were generated
in the previous iteration step.

Algorithm 1: Semi-naive Evaluation of Query 1

begin1

δtc = arc(X ,Y );2

tc = δtc;3

do4

δtc′ = ΠX ,Y (δ tc(X , Z) �� arc(Z ,Y )) − tc;5

tc = tc ∪ δtc′;6

δtc = δtc′7

while δtc �= ∅ ;8

return tc;9

end10

For example, consider how the Transitive Closure pro-
gram of Query 1 is evaluated byAlgorithm 1. The semi-naive
evaluation starts by applying the base rule r1,1 (line: 2) and
then iterates over the recursive rule r1,2 (line: 4-8) until fix-
point is reached.We use tc and tc′ to denote the set of facts in
the recursive relation tc at the beginning and end of the cur-
rent iteration, respectively. Then, the set of facts generated
in the current iteration could be calculated as δtc = tc′ − tc
(line: 5). And the contents of tc and tc′ are updated for the
next iteration of evaluation (line: 6–7). During the evaluation
of r1,2 in the next iteration, instead of using the whole rela-
tion tc(X , Z), SN just joins δtc(X , Z) with arc(Z ,Y ). The
termination condition of Datalog evaluation is defined by its
fixpoint semantics. In this example, the fixpoint is reached
when δtc = ∅ (line: 8). SN has been widely applied in evalu-
ating recursive Datalog programs and simple SN extensions
for recursive queries with aggregates have been proposed
for the single-node [18], multi-core [19] and distributed [15]
environments.

2.2 Basics of machine learning

Generally speaking, the ML problem can be formalized as
follows:Given a training setDwithn instances, each instance
consists of a d-dimensional feature vector Xi (i ∈ [1, n])
with the jth dimension as xi j and a numeric target yi . For the
regression problems, we have yi ∈ R, while for classification
problems, we have yi ∈ {−1, 1}. The process of discover-
ing the model can be formalized as an optimization problem
using the given D. We are given a function f (θ; X) that
makes prediction with a given model θ on the unseen data.
The objective is to find a set of parameters θ∗ that minimizes
the loss function L on f , i.e., θ∗ = argminθ L( f (θ; X), Y ).
This can be achieved with the family of first-order gradient
optimization methods, namely gradient descent (GD).

There are different ways to compute the gradient depend-
ing on the portion of training instances that is used to update
the model at each iteration, namely batch gradient descent
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(BGD), stochastic gradient descent (SGD) and mini-batch
gradient descent (MGD). As is shown in the practice of
Google’s SQML project [20], BGD is widely adopted in
modern ML on relational engines. In this paper, we start our
discussion from BGD, which computes the gradients by per-
forming a complete pass on the training data at each iteration.
BGD starts from an initial model θ0 and iterates with Eq. (1)
by the increasing number of iterations k until convergence is
reached.

θk+1 = θk −
∑

(X ,y)∈D
∇L( f (θk; X), y) + Ω(θk) (1)

where L is the loss function,∇ is the gradient function based
on L and Ω is the regularization.

2.3 Terminology for recursive queries

To describe the recursive queries expressed in Datalog, we
introduce some necessary terminologies from [17] and [21].

The monotonicity property for the rules defining a recur-
sive predicate ensures that the fixpoint procedure previously
described produces a unique result that is the least fixpoint
of the mapping defined by the rules.

Rules that do not use negation or aggregates are mono-
tonic: these rules can be implemented using union, select,
projection, Cartesian product, natural join, i.e., the mono-
tonic constructs of relational algebra. However, rules using
negation are non-monotonic and cannot be used in recursive
queries. Rules using aggregates are only monotonic is some
special cases, such as those discussed in Sect. 4 where the
aggregates are applied to relations that are completely known
or can be computed prior to the processing of the recursive
rules.

Given a Datalog program P , its dependency graph GP

can be constructed as following: Every rule is a vertex, and
an edge 〈ri , r j 〉 appears in the graph whenever the head of
ri appears in the body of r j . If non-monotonic constructs
are applied before ri , the node corresponding to it in Gp is
a negated node. With the help of its dependency graph, the
stratification of a Datalog program can be formally stated by
Definition 1.

Definition 1 By applying topological sorting over Gp, its
node can be partitioned into n strata S1, ..., Sn with larger i
in a lower stratum. The program P is stratified when ∀ edges
〈ri , r j 〉 ∈ Gp where ri ∈ Sy and r j ∈ Sx we have that: (i)
y ≥ x if ri corresponds to a non-negated node and, (ii) y < x
if ri corresponds to a negated one.

3 Datalog for machine learning

In this section, we express ML applications with Datalog
and provide the formal semantics of such programs. We first
describe how to write Datalog queries for ML applications
in Sect. 3.1. Then, we further cover the issues of supporting
generalized gradient descent and identifying the stop condi-
tion in Sects. 3.2 and 3.3, respectively.

3.1 ExpressingML applications

We will next discuss how to express ML applications with
Datalog. As data sparsity is ubiquitous in ML applica-
tions, many training sets are represented in the verticalized
format to save space, such as those in the famous LIB-
SVM benchmark [22]. For each training instance X =
〈I d,Y , x1, · · · , xd〉, the verticalization process would pro-
duce at most d instances 〈I d,Y , k, xi 〉 (k ∈ [1, d]) as dimen-
sions with value 0 will be omitted. When writing the Datalog
programs, we use a verticalized view vtrain(Id,C,V,Y) to
denote the training set, where Id denotes the id of a training
instance; Y denotes the label; C and V denote the dimension
and the value along that dimension, respectively.

With such a verticalized relation, we can now write the
Datalog query to describe the training process with BGD
using three recursive relations:

– model represents the trained model in verticalized form,
where each tuple contains the following three attributes:
J is the iteration counter; C is a dimension in the model;
and P is the value of parameter in that dimension.

– gradient represents the results of gradient computed at
each iteration by the three attributes G, C and J: G is the
gradient value of the Cth dimension in the Jth iteration.

– predict represents the intermediate prediction results
with model in the current iteration for each training
instance. Its schema has three attributes: J is the iter-
ation counter; Id is the id of the training instance; YP is
the predicted y value for the training instance.

Among these steps, the gradient computation and predic-
tion with the current model can be easily represented with
aggregates in recursion. Therefore, the iterative training pro-
cess can be expressed with a recursive Datalog program
Query 2. Firstly, the model is initialized according to some
predefinedmechanisms in r2,1 (Here we use all 0.01 as exam-
ple). Then, the function f is used to make prediction on all
training instances according to the model obtained in the
previous iteration in r2,4. Next the gradient is computed by
the function g (derived according to the loss function L)
using the predicted results in r2,3. Finally, in r2,2 the model is
updated w.r.t the gradients (and optional regularization Ω).
Here lr denotes the learning rate and n is the number of train-
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Table 1 Settings for ML algorithms

Algorithm Predict function f Loss function L Gradient g = �P L ∂Regularizer Ω

Linear regression Y P = V ∗ P (Y P − Y )2 2 ∗ (Y P − Y ) ∗ V N/A

Logistic regression Y P = 1

1 + e−V∗P

{ − log(Y P), Y = 1

− log(1 − Y P), Y = 0
(Y P − Y ) ∗ V N/A

SVM Y P = V ∗ P max(0, 1 − Y ∗ Y P)

{ − Y ∗ V , if Y ∗ Y P < 1

0, otherwise
N/A

L2 regularized SVM Y P = V ∗ P max(0, 1 − Y ∗ Y P)

{ − Y ∗ V , if Y ∗ Y P < 1

0, otherwise
μ ∗ P

Lasso regression Y P = V ∗ P (Y P − Y )2 2 ∗ (Y P − Y ) ∗ V μ ∗ sgn(P)

Ridge regression Y P = V ∗ P (Y P − Y )2 2 ∗ (Y P − Y ) ∗ V μ ∗ P

For SVM, we append an extra 1/-1 for each instance to save the bias parameter; μ is a hyper-parameter which controls the weight of regularization
term. Meanwhile, we use a sign function to deal with the derivative near 0 of L1 regularization in Lasso regression

ing instances. And the training process moves on to the next
iteration (Increase J by 1).

Query 2 - Batch Gradient Descent (BGD)

r2,1 : model(0,C,0.01) ← vtrain(_,C, _, _).
r2,2 : model(J1,C,NP) ← model(J,C,P),

gradient(J,C,G),

NP = P − lr ∗ (G/n + (P)),

J1 = J + 1.

r2,3 : gradient(J,C,sum〈G0〉) ← vtrain(Id,C,V,Y),

predict(J,Id,YP),

G0 = g(YP,Y,V).

r2,4 : predict(J,Id,sum〈Y0〉) ← vtrain(Id,C,V, _),
model(J,C,P),

Y0 = f(V,P).

The advantage of Query 2 lies in its generality: by varying
the set of functions ( f , g,Ω), it can support a wide spectrum
ofML algorithms 1, whereby an incomplete list of ML appli-
cations that can be expressed by Query 2 is shown in Table 1.
Besides, the Mini-batch Gradient Descent (MGD) can also
be expressed with Datalog queries with minor changes on
Query 2 (details in Sect. 3.2).

The output of Query 2 is the trained model. Other neces-
sary steps in machine learning, i.e., validation and test, can
be easily implemented in a similar way. Take the evaluation
on a test set as example: this can be accomplished by join-
ing a verticalized test set vtest with the table model using a
process that is similar to Query 2. Furthermore, Query 2 can
be easily extended to memorize the evaluation result of each
training instance in a table, which can be used to calculate
other metrics such as AUC, precision, recall and accuracy.
To support validation sets, a verticalized vvalidate table can
be created to compute the loss after updating the model with
r2,2 in each iteration.

1 In this paper, we limit our discussion to the linear models and leave
the issue of deep learning models as future work.

We further show a concrete example of training the Linear
Regression model with Batch Gradient Descent as Query 3.
We will use this as the running example to demonstrate our
proposed techniques in the following sections.

Query 3 - BGD for Linear Regression

r3,1 : model(0,C,0.01) ← vtrain(_,C, _, _).
r3,2 : model(J1,C,NP) ← model(J,C,P),

gradient(J,C,G),

NP = P − lr ∗ G/n,
J1 = J + 1.

r3,3 : gradient(J,C,sum〈Id,G0〉) ← vtrain(Id,C,V,Y),

predict(J,Id,YP),

G0 = 2 ∗ (YP − Y) ∗ V.

r3,4 : predict(J,Id,sum〈C,Y0〉) ← vtrain(Id,C,V, _),
model(J,C,P),

Y0 = V ∗ P.

To demonstrate the benefits of ML applications written
in Datalog, we will compare them with Scala programs that
perform direct manipulations on RDDs. Figure 1 shows a
fragment of a Scala program that expresses the very process
of Query 3 by manipulating and directly transforming the
RDDs.We can observe from this process that compared with
such a Scala program, theDatalog program shown inQuery 3
ismore succinct and simpler to define since it does not require
the programmer to: (i) know the details of query evaluation;
(ii) specify the physical plan of dataflow and make lower-
level optimizations.

3.2 Supportingmini-batch gradient descent

Previously we discussed how BGD can be expressed with
Datalog. Here, we further show how to support Mini-batch
Gradient Descent (MGD). A major challenge is due to the
fact thatMGD requires the training data to be randomly shuf-
fled before every iteration, and this can be expensive in a
distributed environment. To tackle this issue, we adopt the
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1 var data = sc.parallelize(input, numParts)
2 .map(d => (d.label, d.feature))
3 var weights = Vectors.dense(initW.toArray)
4 var n = weights.size
5 var converged = false
6 var i = 1
7 while (!converged && i <= numIterations) {
8 val bcWeights = data.context.broadcast(weights)
9 val seqOp = (grad, (label, feature)) => {

10 var diff = dot(feature, bcWeights.value) -
label

11 grad += dot(diff, feature)
12 grad
13 }
14 val combOp = (c1, c2) => {c1 += c2}
15 val gradientSum = data.treeAggregate(

DenseVector.zeros(n))(seqOp, combOp)
16 weights += dot(stepSize, gradientSum / data.size)
17 prevWeights = currWeights
18 currWeights = Some(weights)
19 converged = isConverged(prevWeights.get,

currWeights.get, tol=1e-6)
20 i += 1
21 }
22 weights

Fig. 1 Snippet Scala code: BGD for linear regression

trade-off proposed in [11]: instead ofmaking random shuffles
before each iteration step, the dataset is optimally shuffled
once at the beginning. Then, the training data is split into
batches and MGD can be expressed in a way that is similar
to BGD.

As described above, we need to randomly shuffle the train-
ing data before the query begins. Actually, most parts of
MGD are the same as in Query 2; the only difference comes
from the way in which the predict relation is computed and
used to calculate the gradient in the current iteration. To opti-
mize decisions, here we need the hyper-parameters of (i)
batch size bs and (ii) cardinality of training set n. The total
number of batches in the training set can be calculated as
n/bs. We can recognize the batch of training instances that
will be involved in each iteration in the following way: Sup-
pose at iteration J , the Bth batch instead of the whole dataset
is used for training. Then, given the Id of a training instance,
we can identify the batch it belongs to as I d % (n/bs). For
the Jth iteration, only training instances belonging to the Bth
batch, where B = J % (n / bs), should be involved when
calculating the table predict. Therefore, the computation of
Mini-batch Gradient Descent can be realized by replacing
r2,4 with the following rule:

r2,4′ : pred(J,Id,sum〈Y0〉) ← vtrain(ID,C,V, _),
model(J,C,P),

Y0 = f(V,P),

Id%(n/bs) == J%(n/bs).

3.3 Termination condition

Finally, we discuss the termination condition of Query 2. In
recursive Datalog programs, evaluation terminates when the
Datalog program reaches a fixpoint, producing a unique min-
imal model. However, this model could be infinite, in which
case the fixpoint computation would never terminate. For
example, in Query 2 the temporal argument J ranges over
an infinite time domain. As J denotes the number of itera-
tions, increasing J by 1 means training for a new iteration.
In this case, the delta relation of model relation will always
be non-empty.

To address this issue, we add conditions that terminate
the iterative computation when at least one of the following
conditions is satisfied:

– The number of iteration reaches a predefined maximum
number max J .

– The difference between training losses of two adjacent
iterations is smaller than a predefined value ε.

Popular ML libraries, such asMLlib, enable users to spec-
ify hyper-parameters to control termination and limit the
number of iteration in a similar manner. In our programs,
we can limit the number of iterations by specifying max J
and adding the condition J ≥ max J to r3,2 inQuery 3,which
now becomes:

r3,2′ : model(J1,C,NP) ← model(J,C,P),grad(J,C,G),

NP = P − lr ∗ G/n,
lesser(MaxJ,J + 1,J1).

Although IF-THEN-ELSE is a built-in construct in many
Datalog systems that could be used to express lesser, it
cannot be applied here to replacelesser. The reason is that
the semantics of IF-THEN-ELSE is defined using negation,
whichwould take us back to the depths of the non-monotonic
conundrum. As a result, the formal semantics of the program
will no longer hold. Therefore, we use thelesser predicate
defined as follows in these rules:

lesser(MJ,I,I) ← I < MJ.

lesser(MJ,I,MJ) ← I ≥ MJ.

Similar revisions of our rules will also allow us to ter-
minate the SN computation when the difference between
training losses in two successive iterations becomes smaller
than a predefined value ε.
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4 Formal semantics

In this section, we define the formal semantics for our
recursive queries. We introduce the requirement of formal
semantics in Sect. 4.1. Next, we describe the PreM prop-
erty as a partial solution to this problem in Sect. 4.2. Finally,
we extend this solution by introducing the Pre-Computable
Cardinality (PCC) property in Sect. 4.3.

4.1 Requirement

We have proposed the use of aggregates in recursion to
express important procedures in the training process, such as
making prediction, computing gradient and updating model.
To guarantee the correctness of these procedures on different
systems and execution platforms, we need to provide a rig-
orous formal semantics for such queries. For basic Datalog
programs consisting of Horn clauses the least fixpoint [21]
provides an ideal formal semantics because of its equivalence
with the proof-theoretic and model-theoretic semantics of
logic, and its amenability to efficient implementation via the
semi-naive fixpoint procedure [21]. However, the semantics
Datalog programs that uses negation or aggregates in recur-
sion are faced with difficult on-monotonic semantics issues
that have been the topic of much previous research [23,24].

Currently, many Datalog systems and the SQL3 standards
only allow the use of negation and aggregates in stratified
programs (see Definition 1). Stratified programs are easily
identify from their PCG, and implemented by a standard pro-
cedure called iterated fixpoint which produces the canonical
minimal model for the program [21]. However, to express
complex algorithms such as those discussed in this paper, we
need programs that are not stratified since they use aggre-
gates in recursion. Now, although these programs can be
characterized under powerful formal semantics [25], such
as stable model semantics, we are still lacking efficient algo-
rithms to compute their canonical minimal model(s) (more
than one can exist for each program) and deciding whether
stablemodels exist for a given program is also difficult. Fortu-
nately, recent research has identified two classes of programs
which combine formal semantics with efficient computation
of their canonical minimal models and apply to our algo-
rithms. These are discussed next.

4.2 The PreM property

The Pre-Mappability(PreM) property [9] provides formal
conditions for pushing extrema aggregates, i.e., max and
min, into recursion while preserving the semantics of the
original stratified program. As shown in Definition 2, its def-
inition is based on viewing a Datalog program as a mapping
T (R) where T is a relational algebra expression, and R is
the vector of relations used in the expression.

Definition 2 (PreM) Given a function T (R1, . . . Rk) defined
by relational algebra and a constraint γ , γ is said to be Pre-
Mappable to T if the following property holds:

γ (T (R1, . . . , Rk)) = γ (T (γ (R1), . . . , γ (Rk))).

For instance, if T denotes the union operator, and γ denotes
the min or max constraint, we can pre-map (i.e., push) γ to
the relations taking part in the union.

In fact, if extrema in recursive programs satisfy the PreM
property, those programs produce the same results as their
equivalent aggregate-stratified version, for which they just
provide an optimized implementation obtained by “pushing”
the min and max aggregates into recursion. Thus, the SN
fixpoint of the program simply provides amore efficient real-
ization of the aggregate-stratified semantics already adopted
by Datalog systems and SQL3 standards.

Query 5 - All Pair Shortest Path

r5,1 : spath(X,Y,D) ← arc(X,Y,D).

r5,2 : spath(X,Y,min〈D〉) ← spath(X,Z,D1),arc(Z,Y,D2),

D = D1 + D2.

For example, Query 5 expresses the ‘All Pairs Short-
est Path’ computation which identifies the shortest paths
between all pairs of nodes in the graph. In rule r5,1, arc
denotes the edges in the graph, while D is the distance from
node X to nodeY . The rule r5,2 takes arcsoriginating in Z and
appends them to the previously produced paths terminating
at Z , whereby the length of the new arc is D = D1+ D2. In
this process, it is safe to pre-map the min aggregate to D as it
only filters out tuples in spath that will produce non-minimal
values for D. Consequently, the performance of the query is
much more efficient than in the stratified version that only
applies the min filter at the end of the recursive iterations.
More details regarding the ability of PreM to optimize graph
queries have been demonstrated in [26,27], where efficient
techniques for testing the validity of PreM for the applica-
tions at hand were also discussed. Regarding techniques for
proving PreM, the interested readers can find more details
in [9,28]. However, the PreM property only applies to con-
straints with min and max aggregates. This is not the case
for sum, count (when represented in unary as a collec-
tion of facts), average and other aggregates. To resolve
such issues, we need to propose new approaches to deal with
them in unstratified programs containing such aggregates.

4.3 Extension to completed aggregates

4.3.1 Motivation and definition

While extrema could be viewed as constraints premappable
into recursive queries, allowing count, sum and average
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in recursive computations requires a different approach.
Thus, we propose an approach that exploits the incremen-
tal computation by which these aggregates can be defined in
Datalog. For instance, the computation of average con-
sists of two phases: in the first phase, monotonic rules are
used to compute a pair 〈num, total〉 by increasing the num
by 1 (as in continuous count) and adding to the current sum
the new value (as in continuous sum). This monotonic phase
completes when all elements in the set have been processed,
In the second phase, the maximum value of num and the
value of total associated with it are extracted and the ratio
of the latter over the former is returned as the answer. Thus,
the decision that the first phase is completed enables us con-
clude that the current count is the max value of num, and this
represents the quintessential non-monotonic decision taken
in the implementation of such aggregates. But when the car-
dinality of the set involved is known or can be pre-computed
before we enter into the recursive computation, this infor-
mation could simply be passed to the fixpoint computation
that follows and used to set the value of num whereby no
non-monotonic decision will be taken. Moreover, whether
we actually pre-compute num or let it be derived as the final
step in the recursive computation the results are the same and
they can be computed efficiently by a semi-naive fixpoint.
Thus, the average aggregate expressed using monotonic
constructs can be used freely in recursion.Moreover, to com-
pute the sum we can still compute the pair 〈num, total〉 in
order to achieve monotonicity, but then only return the value
of total as the result. Remarkably, this Pre-Countable Car-
dinality (PCC) condition occurs in many programs of great
practical significance of Datalog [29]. We will now formally
provide the PCC idea in Definition 3.

Definition 3 (PCC) Let R be a recursive relation in Datalog,
and let δRi denote the delta values of R obtained at each iter-
ation i during the SN fixpoint computation. Then, R satisfies
the PCC condition when:

(i) The cardinality of δRi is nonzero and is the same for each
i ;

(ii) The cardinality of δRi can be known ahead of time before
the SNfixpoint computation begins and stays unchanged.

4.3.2 Semantics provided by PCC

As previously described, the non-monotonic aggregate sum
can be computed by incrementally computing the pair
〈num, total〉 and returning the total value associated with
the num value that is equal to the cardinality pre-computable
before the recursive computation. In this way, the computa-
tion process will involve only monotonic constructs, since
the incremental computation of continuous count and sum
is monotonic. In other words, the program with sum aggre-

gates in recursion is equivalent to stratified programs where
the cardinality is pre-computed at a lower stratum, which
precedes the SN computation of the equivalent program that
only usemonotonic constructs2. Observing that similar prop-
erties also hold for other aggregates, we can summarize our
finding in Theorem 1, which is a summary of the high level
idea of [29].

Theorem 1 If the PCC property is satisfied by a recursive
Datalog program P that uses sum, avg and count in
recursion, then there exists an equivalent aggregate-stratified
program which defines its formal semantics.

4.3.3 Semantics of programs for ML

Wecan thus show that the semi-naive fixpoint computation of
Query 2 indeed realizes the formal semantics defined above.
In fact, the first J in Query 2 coincides with the successive
steps of the semi-naive fixpoint, and the cardinality of argu-
ments of the sum aggregate remains the same at each step,
and can in fact be pre-computed before the recursive com-
putation starts. Here the value n is the cardinality of training
set, i.e., vtrain. In the process of recursive computation, a
step of the semi-naive computation terminates after process-
ing exactly the same number n of input values for each value
of J. Thus, the SN computation for Query 2 realizes the for-
mal fixpoint semantics of the equivalent stratified where the
cardinality is pre-computed before the semi-naive fixpoint
computation begins.

Then, we formally conclude these findings with the fol-
lowing Theorem 2. We can use the similar techniques
proposed in [26] for testing PreM to enable automatically
testing of the PCC property.

Theorem 2 The results produced by Query 2 are equivalent
to the same results produced with a query that is stratified
with respect to the sum aggregate.

5 Query evaluation

In this section, we introduce the query evaluation and opti-
mization techniques that enabled the superior performance of
our framework. In this paper,we focus onproviding a detailed
description of their implementation on BigDatalog along
with the extensive experiments that prove their effective-
ness. However, it is clear the techniques and their promising
performance can be generalized to different shared-nothing
Datalog systems. We first briefly introduce the background
knowledge of BigDatalog system which our framework is
built on (Sect. 5.1). Then, we introduce the new techniques

2 If this program contains min and max, a third stratum is needed on
top of these two to defined its formal stratified semantics.
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to deal with complex recursions (Sect. 5.2) and query execu-
tion (Sect. 5.3).

5.1 The BigDatalog system

BigDatalog [15] is a Datalog language implementation on
Apache Spark. It supports relational algebra, aggregation
and recursion, as well as a host of declarative optimiza-
tions.BigDatalog uses and extends Spark SQLoperators, and
also introduces several operators implemented in the Cata-
lyst framework so that its planning features can be used on
the recursive plans of Datalog programs.

The input processed by the BigDatalog compiler includes
the Data Definition Language (DDL) to specify the database
schema and the Datalog program for expressing particular
applications. The compiler analyzes the input query and cre-
ates a logical plan from it. To resolve recursion, the compiler
recognizes recursive tables and switches from the task of
building the operator tree for non-recursive queries to the
specialized task required by recursive queries. Thus, after
recognizing the recursive references, the compiler produces
the Predicate Connection Graph (PCG) [30] to identify the
dependency of relations within the program.

The logical plan maps the PCG to a tree containing
standard relational operators and recursion operators. Such
recursion operators are used in the logical and physical plan
to process the recursive query. The plan actually consists of
the following two parts: (i) The base plan specifies the base
case of the recursion which starts the iterations; and (ii) the
recursive plan defines behaviors within each iteration. In this
process, the aggregates and group-by columns are automati-
cally identified for each sub-query.

The physical plan is generated by analyzing the logical
plan with the Spark SQL analyzer and applying rules defined
in the optimizer. The BigDatalog operators use Spark SQL
row type much in the same way in which Spark SQL uses the
standard relational operators [15]. In order to support recur-
sion, our system introduces specialized recursion and shuffle
operators into the physical plan. The proper settings for shuf-
fle operators are identified by calling onCatalyst optimizer of
Spark SQL. Finally, the query plan is executed by the Spark
engine using the RDDs and transformation operators such as
distinct, union and subtract.

5.2 Supporting complex recursions

5.2.1 Challenges

Compared with the simpler applications now supported by
BigDatalog, such as those discussed in [10,15], ML appli-
cations require much more complex recursive queries than
those discussed in [10,15]. This is illustrated by the depen-
dency graph between the four relations of Query 3 shown in

Fig. 2.We can see that the plan involves two kinds of complex
recursions:

– Mutual recursion occurs when multiple recursive rela-
tions rely on each other to compute the result. For
example, in rules r3,2 through r3,4, the recursive relations
model, gradient and predict rely on each other and thus
create a cycle which denotes a mutual recursion in Fig. 2.

– Nonlinear recursion means that there are more than one
recursive relation in the body of a rule. For example, rule
r3,2 involves two recursive relations model and gradient.

By analyzing the PCG, the compiler recognizes these two
kinds of recursion and marks the rules with special tags.
These tags identify the particular recursion types and the dif-
ferent techniques used to process them, which are described
next.

5.2.2 New recursion operator

To support mutual recursion, we define a special recursion
operator named Mutual Recursion Operator (MRO). It pro-
vides a major extension to the basic Recursion Operator
(RO) of BigDatalog that cannot be used for mutual recur-
sion since it only allows one recursive relation in the recursive
plan. MRO instead allows mutual references amongmultiple
recursive relations by including them in the recursive plan in
a cascading manner. For each set of mutually recursive rela-
tions, only one MRO has the base plan, since the base case
for other MROs is provided by the operator that precedes
them in the plan.

Example 2 The logical plan for Query 3 is shown in Fig. 3.
The root of the plan is an MRO with both base and recur-
sive plan. The left child is the base plan with only the vtrain
relation representing rule r3,1, which provides the base case

Fig. 2 Dependency between Tables in Query 3
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Fig. 3 Logical plan of Query 3

of the mutual recursion. The right child is the recursive plan
representing rules r3,2 through r3,4. Each MRO represents a
rule within the mutual recursion. We can see that all MROs
belonging to the recursive plan have aNULLbase plan (omit-
ted in Fig. 3).

The corresponding physical plan is shown in Fig. 4. It con-
sists of operators translated from the logical plan along with
the shuffle operators and their partitioning information. For
example, in the recursive plan, when the join between recur-
sive relationsmodel and gradient is computed, both operands
must be shuffled according to their join keys J and C . The
recursive plan in Fig. 4 also shows that this join operation
is followed by two more joins, each of which requires two
shuffle operations. Therefore, a total of six shuffle operations
are performed at each iteration.

5.2.3 Distributed semi-naive evaluation

To evaluate the program in a distributed environment, the
physical plan assigns each MRO to the master node where it
executes and becomes responsible for driving the distributed
query evaluation. The most important step is the scheduling
of shuffle operators that are injected between successive steps
of the physical plan presiding to the distributed evaluation.
The shuffle operators are used to re-partition the dataset in all
cases where the output produced by an operator is different
from that of the operator using it as input according to the
execution plan. Then, the BigDatalog engine utilizes fixpoint
computation to drive the iterative evaluationprocess using the
distributed version of semi-naive (DSN) evaluation.

model

vtrain

vtrain model

gradient

predict

MRO

MRO

[J,C,P]

[J,C,G]

[J,Id,YP]

[J,C]

[Id]

[C]

model MRO

Recursive Plan:

Base Plan:

[J,C,P]

vtrain

Base
Plan

Recursive
Plan

Shuffle Shuffle
[J,C] [J,C]

Shuffle Shuffle
[Id] [Id]

Shuffle Shuffle
[C] [C]

Fig. 4 Physical Plan of Query 3

The execution of DSN in the MapReduce framework
requires the recursive relations and base relations within one
stage to be co-partitioned on a given key K . After that, the
execution goes through Map and Reduce stages. Results of
the current iteration are generated in the Map stage, while
the new delta and the relations needed in the next iteration
are generated in the Reduce stage. Algorithm 2 describes the
process inmore details. The algorithm first defines two auxil-
iary functions to specify theMap (line 3–5) and Reduce (line
6–10) stages, respectively. In the map stage, the join opera-
tion between base and delta relations on the specified join key
K is performed on each mapper generating the intermediate
results that are allocated to reducers (line 4–5). Here we can
also perform selection or projection operations based on the
requirement of the Datalog program, which is denoted as F .
In the reduce stage, the distributed semi-naive evaluation is
then performed. Specifically, each reducer first generates the
result D of the current iteration (line 8), which will be emit-
ted later (line 10). Then, the recursive relation R is updated
for the next iteration (line 9).

The main process of distributed semi-naive starts at line
11, where the recursive relation is initialized. For each itera-
tion, the algorithm first generates the intermediate results of
the map stage (line 14) and then performs shuffle operations
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to allocate the results to reducers (line 15). Then, the results
of each iteration are computed as the union of results pro-
duced by all reducers (line 16). The distributed semi-naive
will terminate when the fixpoint is reached (line 17), and the
results of R are returned at this point (line 18).

Algorithm 2: DSN Evaluation (B, K )
Input: B: The Base Relation, K : The partition key
Output: R: All results in the recursive table
begin1

// δR, δR′: Recursive relation (Delta)2
Map Stage(δR, B)3
foreach partition pair of (δR, B) do4

emit F(δR ��δR.K=B.K B)5

Reduce Stage(δR′, R)6
foreach partition pair of (δR′, R) do7

D ← δR′ − R8
R ← δR′ ∪ R9
emit D10

δR ← Results of Base Case, R ← ∅11
repeat12

i ← i + 113
MapOutput ← MapStage(δR, B)14
δR′ ← ShuffleExchange(MapOutput, key = K )15
δR ← ReduceStage(δR′, R)16

until δR == ∅ ;17
return R;18

end19

However, since programs for ML applications include
non-linear and mutual recursion, we must revise the eval-
uation approach described above. For mutual recursion, the
solution is relatively easy: One recursive relation is regarded
as the driver for DSN, e.g., themodel relation in Fig. 4, while
the others are evaluated by the MROs in the recursive plan.
These extensions do not impact the techniques currently used
for linear recursion.

A more complex solution is required for non-linear recur-
sion. In fact, let X and Y denote two recursive relations that
are involved in a non-linear recursion since they appear as
goals in the body of the same rule. Then, the SN evalua-
tion should be performed by enumerating the combination
of delta relations as shown in Eq. (2):

δ(X �� Y �� B) = (δX �� Y �� B) ∪
(X �� δY �� B) ∪
(δX �� δY �� B)

(2)

where B is a base relation that is optional in this process.
Therefore, unlike the case of linear recursion, we need to
keep the whole recursive relations rather than just deltas in
order to support non-linear recursion in DSN.

To integrate this optimization into Algorithm 2, the steps
described in line 7 –11 of it should be replacedwith the opera-

tions defined Eq. (2) in order to support non-linear recursion.
Similar observations also apply when computing aggregates
in recursion.

Example 3 For the example at hand, we can see that non-
linear recursion appears in rule r3,2 of Query 3 where the
model relation in the head is obtained by joining model and
gradient on the keys J and C . Then, the delta relation of r3,2
should be computed as the union of model �� δgradient ,
δmodel �� gradient and δmodel �� δgradient . Therefore,
as shown in Fig. 4, it keeps the whole relation instead of only
the delta in our physical plans.

5.3 Execution

To avoid data redundancy in the process of SN evaluation,
BigDatalog [15] extended the Resilient Distributed Datasets
(RDDs) [31] in Spark and adopted the SetRDD mechanism
for executing recursive queries in Spark. SetRDD stores dis-
tinct rows of data into a HashSet data structure to optimize
the execution of set operators in the DSN. Thus, SetRDD is
made mutable under the union operation, which saves sys-
tem memory by not copying redundant data from up-stream
RDDs. However, this optimization may not work when deal-
ing with nonlinear recursion: According to the mechanism
of SetRDD, when a recursive relation is referenced in one
rule, its corresponding RDD would be modified by the set
union and set difference operations. However, in the case of
non-linear recursion, a recursive relation can be referenced
more than once within each iteration. Thus, if the recursive
relation has been modified by one rule and it is also evalu-
ated by another rule in the same iteration, then its RDD is no
longer the same as it was before the first evaluation, whereby
the execution results would be incorrect.

To address this issue, we propose a smart strategy to divide
the RDDs into Intra-Iteration and Inter-Iteration ones. Thus,
for non-linear recursion, we are able to identify when the
RDDs will be re-used in the same iteration. If so, we classify
it as Intra-Iteration RDD and treat it as immutable, i.e., we
generate a newRDDby copying data from the up-streamone.
But when an RDD will only be used in the next iteration,
we classify it as an Inter-Iteration RDD and process it as
SetRDD to save memory.

Example 4 Figure 5 shows the series of RDDs generated in
the execution step of Query 3. In Query 3 the recursive rela-
tion model is involved in the nonlinear query and we require
to create both Intra-Iteration and Inter-Iteration RDDs for it.
Here the green rectangles denote Intra-Iteration RDDs, while
the blue dashed ones denote Inter-Iteration ones. We are
aware that in the i th iteration, model is updated by rule r3,2,
whichwould be used in the i + 1th iteration.Meanwhile, this
table is also used in rule r3,4 that updates predict. Therefore,
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Iterations

i th

iteration

copy

Input from i - 1th iteration

Output of i th iteration

join
join (update)

operation operation

Intra-iter
RDD

Inter-iter
RDD

Fig. 5 Intra- versus Inter-Iteration RDDs: To guarantee the correctness
of non-linear recursion, we need to create two RDDs for relationmodel:
The green one is intra-iteration which is mutable and used in another
rule within the same iteration, while the blue one is inter-iterationwhich
will be immutable and used in the next iteration

theRDDofmodel generated by r3,2 should be Inter-Iteration,
while that used in r3,4 should be Intra-Iteration.

6 Performance optimization

In this section,wepresent several techniques that have proven
to be quite effective in optimizing the performance of our
framework.

6.1 Eliminating unnecessary evaluation

For programs with nonlinear recursions, we need to enu-
merate the combinations of delta relations as shown in
Eq. (2) when performing semi-naive evaluations. As a result,
the DSN could be significantly more expensive than that
with only linear recursions. An example can be observed
in Query 3 where the non-linear recursion is used in r3,2
when updating the model with the gradient computed in cur-
rent iteration. The evaluation would require using the whole
recursive relations model and gradient in the physical plan
as shown in Fig. 4.

As our investigation progressed from formal semantics
to operational semantics, we find that while the textbook
techniques for SN optimization of nonlinear queries remain
valid, they can be further optimized for specific ML queries.
Take again Query 3 as our example: When adopting Eq. (2)
to evaluate the query, we need to consider the items in
model �� δgradient , δmodel �� gradient and δmodel ��
δgradient and thus need to include the full relations model
and gradient . However, note that the join key between
model and gradient is 〈J ,Col〉. In the Jth iteration, since
tuples inmodel are from the J − 1th iteration, while those in
δgradient are from the Jth iteration, we have that model ��

δgradient = ∅ due to mismatched values of J . Similarly,
δmodel �� gradient = ∅ also holds. Therefore, we only
need to evaluate the item δmodel �� δgradient . As a result,
the items model and gradient can be replaced with δmodel
and δgradient in the physical plan, which significantly
reduces the computational overhead and the network trans-
mission caused by shuffle operations. Since this optimization
is based on the execution process of gradient descent, it can be
applied for training all linear models with BGD and MGD.
Figure 6 shows the physical plan after applying optimiza-
tions: the full relationsmodel and gradient are replaced with
delta ones.

6.2 Join optimization with replica

For programs with linear recursion, it is often better to use
broadcast join between the delta recursive relation and the
base relation in the physical plan by loading the base relation
into a lookup table and shared by all workers via broadcast-
ing. Since the overhead of broadcasting can be amortized
over the recursion, this approach is rather effective for graph
queries where the base table is usually much smaller than the
intermediate results [15]. However, the characteristics ofML
workloads are totally different from those of graph queries:
the size of intermediate results that participates in the com-
putation and must be kept in memory is independent from

δmodel
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vtrain δmodel
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Fig. 6 Optimized physical plan
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the number of iterations and is relatively small: the size of
predict is 2n where n is the size of training data; the size of
gradient andmodel is 2d in both cases, where d is the dimen-
sion of a training instance 3. By contrast, the base relation,
i.e., the training set, tends to be very large.Moreover, the size
of base relation always exceeds the maximum memory of a
single worker, making the broadcast join not applicable. As
a result, the broadcast joins that proved so effective on graph
queries will encounter serious problem on ML workloads.
Consequently, there would be multiple shuffle operations per
iteration on the base relation, causing significant overhead
for the overall performance. As previously observed, shuffle
operations on the base relation happenwhen the base relation
is joined with recursive ones on different keys. For example,
in r3,3 vtrain must be joined with predict on the key Id; and
in r3,4 the join key between vtrain and model becomes C.
Thus, the vtrain relation will be shuffled twice.

To address this issue, our framework instead adopts a
smart-replica optimization approach that relies on careful
trade-offs between memory usage and join performance. We
find that the shuffle operations can be avoided by making
replicas of the base relation partitioned by different keys on
the sameworker. Specifically, in above examplewe justmake
two different replicas of the vtrain relation on all workers:
one is partitioned by the key Id and the other is partitioned by
C 4. Then, the former will be used in r3,3, while the latter will
be used in r3,4. The green dotted items in Fig. 6 are relations
where the shuffle operations can be avoided by making repli-
cas of vtrain.Here the number of replica, as well the number
of shuffle operations it could save, is equivalent to that of the
different join keys the base relation gets involved. As we can
see, two shuffle operations could be saved compared with the
original physical plan in Fig. 4.

We also want to point out that the space overhead brought
by replicas is tolerable. The essence of broadcast join is to
trade the memory for join performance. Since the whole base
relation is transmitted, the memory overhead on each worker
would be the size of the base relation. Meanwhile, the mem-
ory overhead of our replica mechanism is the size of base
table divided by the number of workers on average. This
offers similar benefit as broadcast join does and it avoids
its shortcoming of memory consumption. Furthermore, the
decision of making replicas can be made automatically: The
fact that the base relation need to participate in join opera-
tions on different keys can be recognized in the process of
formalizing the logical plan. Thus, the usage of replicas will
be decided before the actual physical plan is generated. Note

3 The total size of intermediate results would be nJ for predict and d J
for gradient andmodel. Results from older iterations would be dumped
into disk for the sake of crash recovery.
4 The distribution of replicas partitioned by different keys might be
different on the same worker

that the SparkAPIs cannotmake such optimizations since the
program is directly expressed in terms of physical operations.

6.3 Scheduling optimization

As illustrated in [32], recursive queries that can be compiled
into decomposable plans will potentially benefit from a well-
chosen partition strategy. In such cases, the produced RDDs
preserve the original partition of input recursive table. Then,
the executor on the same partition can continue to work
without global synchronization. Consequently, the shuffle
operations could be saved. The correctness of this property
can be guaranteed by the replica mechanism on base rela-
tions even if the join key will change for the next operator.
The blue dashed items in Fig. 6 are the shuffle operations that
can be saved by the scheduling optimizations. For rule r3,2,
the shuffle operation can be removed since delta of the recur-
sive relation model can be acquired locally for each worker.
Similarly, in rule r3,4, the recursive relation model comes
from r3,2, which has already been partitioned by the same
key C. Therefore, the shuffle operation on model can also be
removed.

7 Discussion

In this section,we discuss the usability issues of our proposed
framework. Therefore, wewill first raise our vantage point by
discussing in Sect. 7.1 how to express ML applications with
SQL queries that are equivalent to the Datalog ones. Then,
in Sect. 7.2 we briefly describe how our library of Datalog
queries for ML has been fully integrated with DataFrame
APIs to achieve usability and interoperability with other
Apache Spark application libraries. Finally, in Sect. 7.3, we
discuss deep neural networks and themany opportunities and
challenges that our framework will encounter in such appli-
cations.

7.1 Equivalent SQL queries

SQL has delivered great benefits in relational DBMS and big
data platforms due to its declarative nature and portability.
We show here that SQL can support many ML applications
by providing SQL queries that have equivalent semantics
to the Datalog ones introduced above. This represents, an
important extension to the RaSQL language and its system
[26] which supported aggregates in recursion by introduc-
ing a simple extension in the syntax of the SQL:2003 SQL
standards. Specifically,RaSQL supports basic aggregates, i.e.,
min, max, sum, count, in recursion by minimal extensions of
the Common Table Expressions (CTE) used by current SQL
standard with the basic syntax shown below.
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WITH [recursive] VIEW1 (v1_column1,
v1_column2, ...)

AS (SQL-expression11) UNION
(SQL-expression12) ...,

[recursive] VIEW2 (v2_column1, v2_column2,
...)

AS (SQL-expression21) UNION
(SQL-expression22) ...

SELECT ... FROM VIEW1 | VIEW2 | ...

The WITH RECURSIVE construct of RaSQL

The CTE starts with the keyword “WITH RECURSIVE”,
which is followed by definitions of the recursive view. The
view content is defined by a union of sub-queries, which
define the base table and recursive table. This is similar to
the base and recursive relations of Datalog. Here a table is the
base table if its FROM clause definition does not refer to any
recursive CTE; otherwise it is a recursive table. The RaSQL
query that is equivalent with Query 3 is shown in Query 4.

Query 4 - RaSQL: BGD for Linear Regression

Base tables: vtrain(Id: int, C: int, V:
double, Y: double)

WITH recursive model (J, C, P) AS
(SELECT 0, vtrain.C, 0.01 FROM vtrain)
UNION
((SELECT 1+m.J, m.C, m.P+2.0/n*LR*g.G
FROM model AS m, gradient AS g
WHERE m.C = g.C and m.J = g.J),
recursive gradient(J, C, sum() AS G) AS
(SELECT p.J, t.C, (t.Y - p.YP)*t.V
FROM vtrain AS t, predict AS p
WHERE p.Id = t.Id),
recursive predict(J, Id, sum() AS YP) AS
(SELECT m.J, t.Id, m.P*t.V
FROM vtrain AS t, model AS m
WHERE t.C = m.C)),
SELECT * FROM model

Such RaSQL queries for ML applications can be com-
piled into Spark SQL operators and recursive operators in
a similar way to that discussed in Sect. 5. Moreover, such
RaSQL queries can be encapsulated into a library called by
DataFrame operations as MLlib did.

7.2 Usability: supporting DataFrame APIs

To improve usability and attract a wide participation by data
scientists, we further encapsulate the Datalog queries for
ML algorithms in a more elegant and succinct library using
DataFrame APIs. Currently, such a library can support all
queries introduced inSect. 3.1.With the help of such a library,
users can express the whole process of machine learning
using theDatalog queries introduced above where the hyper-
parameters and data source can be specified in a similar way
asMLlib does. Next, we illustrate the basic usage of our API
with a running example in Fig. 7.

1 val session = DatalogMLlibSession.builder()
2 .appName(”LR”) .master(”local[∗]”)
3 .getOrCreate()
4 // Import data.
5 var Vschema =
6 StructType(List(StructField(”Id”, IntegerType, true),
7 StructField(”C”, IntegerType, true),
8 StructField(”V”, DoubleType, true),
9 StructField(”Y”, IntegerType, true)))

10 var df = spark.read.format(”csv”)
11 .option(”header”, ” false”).schema(Vschema)
12 . load(”dataDTrain”)
13 // Training on the input relation df .
14 import edu.ucla.cs .wis.bigdatalog.spark.DatalogMLlib.
15 {DL LogisticRegression,

DL LogisticRregressionTransformer}
16 val lr = new DL LogisticRegression().setMaxIter(10)
17 val lrModel = lr. fit (df , session)
18 // Testing with pre−trained model.
19 var test = spark.read.format(”csv”)
20 .option(”header”, ” false”).schema(Vschema)
21 . load(”dataDTest”)
22 val lrPredict = new

DL LogisticRregressionTransformer()
23 val prediction = lrPredict.transform(lrModel, test ,

session)

Fig. 7 Snippet code for DataFrame API: logistic regression

The example in Fig. 7 expresses the process of training
a Logistic Regression classifier on the training data dataD-
Train, andmaking prediction on the test data,dataDTest. The
two datasets are stored in a verticalized view with Vschema
(Id, C, V, Y) as introduced in Sect. 3.1. To make use of the
Datalog programs for machine learning, we first construct
a working environment, i.e., DatalogMLlibSession for our
library of machine learning algorithm (line: 1–3). Then, we
load the training data to a Dataframe df. After importing
the required training and predicting functions for Logistic
Regression (line: 14 –15), we can build executable objects for
training lr (line 16) and predicting lrPredict (line: 22). The lr
object wraps all the logical rules and required relations (e.g.,
parameters with default value 0) of theDatalog implementa-
tion for Logistic Regression. When initializing lr, users can
exploit the built-in functions to set the hyper-parameters that
control the maximum number of iterations, the method used
for parameter initialization, andmany others. After fitting the
model to df, the lrPredict object could make predictions on
the testing instances with the pre-trained model, lrModel. In
both the fitting and predicting processes, the information of
Datalog execution runtime can be obtained by using session
as an input argument, which is same as the practice of MLlib.

For the sake of comparison, we also show how Apache
Spark MLlib will be used to implement the above example.
The snippet code is shown in Fig. 8. The pipeline of func-
tionalities is very similar to that of our APIs; this will make
it much easier using the DataFrame APIs in our library for
those who are already familiar with MLlib. Although there
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are minor differences in the aspects of data formatting and
usage of some public functions, e.g., transform and assem-
bler, the expression of MLlib and our library are very similar
and both user-friendly.

7.3 Expressing deep learning applications

In this section, we show that it is also possible to express deep
neural network models with Datalog and briefly discuss the
opportunity to support them with our framework. First of all,
unlike linear models which are vectors, the parameters to be
learned in deep neural networks are usually matrices, which
can be expressed as that in Sect. 3.1.Given amatrixM withm
rows and n columns, each element can be represented by the
row and column it belongs to and its value. Then, the matrix
can be expressed with a set of quadruples 〈I d, M, N , V ,Y 〉,
whereM and N are the rowand columnnumber, respectively.
There will be no more than m ∗ n such quadruples as we just
store the nonzero elements.

Query 5 - Feed Forward Neural Network (BGD)

r5,1 : model(0,0,C,HC,0.01) ← vtrain(_,C, _),
hidden(HC).

r5,2 : model(0,1,HC,1,0.01) ← hidden(HC).

r5,3 : pred(J,0,Id,HC,sum〈HV〉) ← vtrain(Id,C,V),

model(J,0,C,HC,W),

HV = V ∗ W.

r5,4 : pred(J,1,Id,1,sum〈Y′〉) ← pred(J,0,Id,HC,HV),

model(J,1,HC,1,W),

Y′ = Œ(HV) ∗ W.

r5,5 : error(J,1,Id,HC,1, 1) ← ylabel(Id,Y),

pred(J,1,Id,1,Y′),
1 = 2 ∗ (Y′ − Y).

r5,6 : error(J,0,Id,C,HC, 0) ← error(J,1,Id,HC,1, 1)

model(J,1,HC,1,W),

pred(J,0,Id,HC,HV),

0 = W ∗ 1 ∗ Œ′(HV).

r5,7 : grad(J,1,HC,1,sum〈G1〉) ← error(J,1,Id,HC,1, 1)

pred(J,0,Id,HC,HV),

G1 = 1 ∗ Œ(NV).

r5,8 : grad(J,0,C,HC,sum〈G0〉) ← error(J,0,Id,C,HC, 0)

vtrain(Id,C,V),

G0 = 0 ∗ V.

r5,9 : model(J1,L,Ci,Co,W) ← model(J,L,Ci,Co,W′),
grad(J,L,Ci,Co,G),

W = W′ − lr ∗ (G/n),
J1 = J + 1.

Then, Query 5 shows how to express the training process
of a feed-forward neural network with BGD. For simplicity
of presentation, we just display the training process for a two-
layer neural network, with Mean Squared Deviation as the
loss function and ignore the regularization items.We use φ to
denote the activation function and φ′ to denote its derivative.
For instance, if φ(z) = tanh(z), then φ′(z) = 1 − φ2(z).
Furthermore, to simplify the query, we separate the datasets

1 val session = SparkSession.builder().appName(”LR”)
2 .master(”local [∗] ”).getOrCreate()
3 // Import data.
4 var schema = StructType(List(StructField(”X1”,

IntegerType, true), StructField(”X2”, IntegerType
, true),

5 StructField(”X3”, DoubleType, true),
6 StructField(”label”, IntegerType, true)))
7 var df = spark.read.format(”csv”).option(”header”, ”

false”).schema(schema).load(”dataSTrain”)
8 // Training on the input relation df .
9 import org.apache.spark.ml.Pipeline

10 import org.apache.spark.ml. classification .
LogisticRegression

11 import org.apache.spark.ml.feature.VectorAssembler
12 val assembler = new VectorAssembler()
13 .setInputCols(Array(”X1”, ”X2”, ”X3”))
14 .setOutputCol(”features”)
15 val lr = new LogisticRegression() .setMaxIter(10)
16 val pipeline = new Pipeline().setStages(Array(

assembler, lr))
17 val lrModel = pipeline. fit (df)
18 // Testing with pre−trained model.
19 var test = spark.read.format(”csv”).option(”header”,

”false”).schema(schema).load(”dataSTest”)
20 val prediction = lrModel.transform(lrModel, test)

Fig. 8 Snippet code: implementation with MLlib

into two relations, i.e., vtrain(Id, C, V) (the input data) and
ylable(Id, Y) (the corresponding labels). The relation hid-
den(HC) just contains numbers from 1 to the number of
features in the hidden layer, used to initialize the relation
model.

The relation model(J, L, Ci , Co, W) stores all parameters
for neural networks, where each tuple denotes the value of
weight W associated with the connection between unit Ci in
layer L, and unit Co in layer L+1. I nQuery 5,wefirst initialize
themodel in r5,1 and r5,2. To train our network, we need to do
forward propagation in r5,3 and r5,4. The activation on HV of
hidden layer is moved to r5,4 considering the sum semantics.
Next, for each record and each feature in layer 0 and 1, we
would like to compute an error term in r5,5 and r5,6 that
measures the errors each feature was responsible for in the
output generated by back propagation. Then, we compute the
desired gradientswhich are just the partial derivatives of the
model parameter and summarize the gradients contributed
by different records Id in r5,7 and r5,8. Finally, we average
the summed gradient, update it on the model and move to the
next iteration in r5,9. To support neural networks with more
layers,we can simply extend the query by incorporatingmore
rules to calculate different layers of pred, error and grad.

Actually as discussed above in Sect. 7.2, our framework is
developed in contrast withApache Spark’s inheritedmachine
learning library MLlib, which also does not aim at support-
ing deep learning applications. From the above example, we
conclude that it is possible to express deep learning applica-
tions with Datalog. Therefore, exploring how to efficiently

123



874 J. Wang et al.

support deep learning applications expressed byDatalog pro-
grams represents an interesting direction for future research.

8 Experiments

8.1 Experimental setup

8.1.1 Workloads and datasets

We evaluate the performance of our framework on the task of
training linear models via gradient descent optimizers. As is
stated before, we mainly focus on BGD. But we also report
the results of MGD using the method described in Sect. 3.2.
Specifically, we use Linear Regression, Logistic Regression
and SVM as benchmark models in this paper.

The datasets used in the experiments are summarized in
Table 2, where cardinality means the number of training
instances, while “# Features” means the number of dimen-
sions in each training instance. We conduct experiments on 4
public datasets provided by LIBSVM [22], a popular bench-
mark for evaluating linear models: URL [33] is a dataset for
identifying malicious URLs. KDD10 comes from Carnegie
Learning and DataShop that was used in KDD Cup 2010.
KDD12 [34] is a CTR prediction task from KDD Cup 2012.
Webspam [35] is a dataset of email spams. Currently, we
are focusing on training linear models to learn from sparse
datasets, which occur frequently in real-life applications, and
indeed all the above-selected datasets are from real world
scenarios. Results on dense datasets are presented later in
Sect. 8.6. Considering the memory available at each node
and in the overall system, the cardinality of these datasets
provide a good basis for evaluation. Besides the dataset, the
memory must hold the intermediate results and system run-
time, and the same is true for baseline systems used in our
comparisons.

8.1.2 Baselines andmetrics

As BigDatalog is implemented on top of Apache Spark,
we mainly compare it against two Spark-based competitors:
MLlib 2.3.0 and SystemML 1.2.0, whereMLlib [1] is the offi-

Table 2 Statistics of datasets

Name Cardinality # Features Size (GB)

URL 2,396,130 3,231,961 2.1

KDD10 19,264,097 29,890,095 4.8

KDD12 149,639,105 54,686,452 21.1

Webspam 350,000 16,609,143 23.3

cial Spark package for machine learning 5. As MLlib comes
with an implementation with MGD, we implement BGD by
setting the batch size as the cardinality of the training set.
SystemML [36] is a state-of-the-art ML system on top of
Spark using a declarative R-like language 6. We implement
the training process with BGD and MGD using its script
language following the official documentation. We are also
aware that there are several special-purposed machine learn-
ing systems, including TensorFlow, PyTorch, MXNet and
Petuum. Due to the space limitation, we just select PyTorch 7

as the representative for comparison. Other studies published
on Datalog for machine learning [37] and [14] do not pro-
vide a good basis for comparison. This is because simple
query interfaces rather than end-to-end systems are provided
in [37] and [14], and no publicly available implementation is
available for [38].

Note that the main purpose of this work is not to claim
that the implementation of our proposed framework is fun-
damentally more efficient than other special purposed ML
systems, or to argue that Datalog is more suitable than the
math-like syntax interfaces have provided in other ML plat-
forms. Instead, we aim at demonstrating that it is possible
to optimize a general recursive query engine to achieve the
competitive or even better performance than special-purpose
ML systems in a family of ML applications.

We use execution time as the evaluation metric in the
experiments. Since BGD uses all training instances in one
iteration, the results regarding accuracy/loss are the same for
all systems. Therefore, we only report the end-to-end query
execution time for models trained with BGD. For MGD we
report the results of training loss vs. training time as it was
done in many previous studies of ML systems. To ensure
fairness, we allocate the same number of workers/servers and
sufficient memory to guarantee the performance for different
platforms. We ensure that algorithms on different platforms
are equivalent in terms of workload and convergence by con-
figuring the implementation on all systems with exact the
same parameters.

In the experiments, the original LIBSVM data format
can be supported by our approach and also by MLlib and
PyTorch. For SystemML, we converted our data format into
their supported binary format following the instructions in
SystemML’s official documentation, and we did not include
this preprocessing time into the total query time.

8.1.3 Environment

The experiments of all the four systems are conducted on a
cluster with 16 node: one node acts as the master and other

5 https://spark.apache.org/mllib/
6 https://systemml.apache.org/
7 https://pytorch.org/
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15 nodes as workers. For the distributed computing, since
our Datalog framework, SystemML and MLlib are all based
on Apache Spark, they use the bulk synchronous parallel
architecture. Meanwhile, PyTorch runs under the parame-
ter server architecture. All nodes are connected with 1Gbit
network. Each node runs Ubuntu 14.04 LTS and has an Intel
i7-4770 CPU (3.40GHz, 4 core/8 thread), 32GBmemory and
a 1 TB 7200 RPM hard drive. Each worker node is allocated
30 GB RAM and 8 CPU cores (120 total cores) for execu-
tion. BigDatalog is built on top of Spark 2.0 and Hadoop 2.2.
All systems are activated with in-memory computation by
default. Since hype-parameter tuning is outside the scope of
this paper, the hyper-parameter settings are the same for all
systems: the learning rate is 10−2 and the number of itera-
tions for BGD is 100.

8.2 End-to-end performance

To begin with, we report the end-to-end execution time of
the three models trained with BGD. The results are shown
in Fig. 9, where our approach is denoted as Datalog. Note
that some results of SystemML and PyTorch are denoted by
the word “OOM” in red, since they run out of memory under
those settings. One thing we would like to clarify is that for
PyTorchwe directly use the GD implementation provided by
the lib itself. Nevertheless, there might be some better ways
to optimize the implementation and avoid the OOM issue,
such as by additive gradient updates on mini-batches. Since
such optimizations on PyTorch are out of scope of this paper,
we just report results with its default implementation.

From the results, we canmake the following observations:
Firstly, Datalog consistently outperforms the other two

Spark-based systems MLlib and SystemML for all three
models. SystemML has the worst performance as its opti-
mizations focus on physical-level computation within one
iteration rather than thewhole iterative training process. Such
results make sense since the strong point of SystemML lies in
directly computing the ML models by matrix operations. As
the bottleneckof the training processwithBGD is not compu-

tation over largematrices but recursive gradient computation,
SystemML cannot benefit from above optimizations. MLlib
outperforms SystemML because it adopts a tree aggregate
mechanism to accelerate the gradient computation in dis-
tributed environment; however,Datalog is approximately 2X
to 4X faster than MLlib. Our preliminary investigations sug-
gest that performance gains of our approach overMLlib come
from higher-level logical optimizations, which were partic-
ularly successful in reducing shuffle operations.

Secondly, the performance ofDatalog is comparable with
that of PyTorch, one of the most popular special-purposed
ML systems. On some datasets, such as the KDD10 dataset,
Datalog even outperforms PyTorch by up to 2 times. This
must be credited to our system’s success in optimizing each
computation step from planning to execution to fully harness
the potential of the Spark engine. We also see that PyTorch
requires much more memory: it runs out of memory on the
large datasets KDD12 and Webspam. A possible reason for
that is that PyTorch needs additional memory to make a
replica of gradients and parameters for each thread rather
than each node. For large sparse dataset, PyTorch will run
out of memory when broadcasting after an iteration.

Lastly, the advantage of Datalog over other competitors
is more obvious on larger datasets. On the smallest dataset
URL, the performance is comparable for all four systems.
When it scales up to KDD10, MLlib and SystemML are
approximately 2X and 5X slower thanDatalog, respectively.
For example, on theKDD10 dataset, the total execution time
for Linear Regression on PyTorch, MLlib, and SystemML is
3889, 4689, 11351 seconds, respectively, whileDatalog only
takes 2338 seconds. We believe that is because, for small
datasets the computation time of each iteration is relatively
short. As a result, the communication time between workers
will dominant the end-to-end execution time and the differ-
ence between different systems is not obvious. Meanwhile,
for larger dataset the computation time becomes the bottle-
neck and thus the effect of our optimizations ismore obvious.
Finally for KDD12, SystemML runs out of memory andDat-
alog outperforms MLlib by 5X. A possible reason for which
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Fig. 9 Performance comparison: training with batch gradient descent
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SystemML runs out of memory could be that it conducts
the ML application in the way in which matrix operations
are optimized. Thus, even for sparse datasets, SystemML
requires large volumes of memory to keep the intermediate
results.

Figure 11 shows the results of adding L2 regularization
on the three ML applications for KDD10, respectively. We
can see that the trend of results with regularization is similar
to that in Fig. 9.

8.3 Results for mini-batch GD

Next, we report the experimental results on training the three
MLmodels with theMGDoptimizer.We set the batch size as
8,192 empirically. Due to space limitations, we only report
the results on KDD10 dataset. On the other datasets without
memory issues, the results have similar trends. For experi-
ments with MGD, we do not fix the number of iterations.
Instead, the training process will terminate when conver-
gence is reached (when the difference of training losses
between two adjacent iterations is smaller than 10−3 or the
maximum 25,000 iterations is reached).

As we can see from Fig. 10, PyTorch has the best per-
formance under most settings. This is not surprising since
specializedML systems have implemented several optimiza-
tions and improvements designed specifically for training
with MGD. As it has been widely shown in previous stud-
ies, BGD ismore suitable forML systems based on relational
engines, e.g., Spark and relational DBMS. Note that themain
contribution claimed in this paper is to propose a purely
declarativeML framework by taking advantage of the charac-
teristics of Datalog, rather than implementing an ML system
that provides richer and more efficient ML functions than
other systems. Consequently, the main purpose of evaluation
is to show that with the aggregates-in-recursion mechanism
supported by sound optimization techniques, the ML work-
loads can be expressed by Datalog and its implementation
can outperform other Spark-based systems. Remarkably,
our implementation of MGD with trade-off did show very
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Fig. 11 Performance comparison with L2 regularization

promising results in the quality of training. The training loss
thatDatalog achieves at convergence for Linear Regression,
Logistic Regression and SVM is 0.418, 0.372 and 0.376,
respectively, while that of PyTorch is 0.407, 0.363 and 0.365,
respectively.

Moreover, we can see that Datalog converges faster than
the other two Spark-based competitors while achieving simi-
lar training loss as PyTorch. For example, for the SVMmodel,
Datalog requires only about 5,000 iterations to convergewith
530 ms per iteration. Meanwhile, the results for SystemML
are about 6,000 iterations with 1,048 ms per each iteration.
Finally, MLlib had not reached converge after 20,000 sec-
onds, which is beyond the x-axis of Fig. 10. A reason MLlib
performs worst here might be that it does not exploit all the
MGD optimization steps used in SystemML.

8.4 Scalability

In a final set of experiments, we test the performance of
BGD on different systems when scaling up the size of the
training data. For thatweused the synthetic datasets proposed
in the previous study [39]. We vary the size of the dataset
from 10GB to 40GB. Other detailed settings of the synthetic
data are the same as that discussed in Sect. 6. Using the

(a) Linear Regression (b) Logistic Regression (c) SVM

Fig. 10 Performance comparison: training with mini-batch gradient descent
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Fig. 12 Scalability

charts shown in Fig. 12, we discover that Datalog achieves
nearly linear scalability for all three ML algorithms trained
with BGD. This demonstrates the great potential of applying
our approach to the workloads generated by larger training
datasets.

Furthermore, we can also observe that Datalog con-
sistently outperforms MLlib and SystemML for increasing
cardinalities of the training sets. For example, for the Linear
Regression model, Datalog outperformsMLlib by 2X to 6X
and outperforms SystemML by up to one order of magni-
tude. Note that when the size of the dataset exceeds 20GB,
PyTorch and SystemML run out of memory. Thus, many
data points are missing for these systems in the figures. This
further demonstrates the advantage of our framework over
other Spark-based ML systems. Moreover, our Datalog also
achieves comparable performance with the special-purposed
ML system PyTorch in scalability.

8.5 Evaluate optimization techniques

To measure the effectiveness of each optimization proposed
in Sect. 6, we use the Datalog programs to train Lin-
ear Regression (Linear), Logistic Regression (Logistic) and
SVM with BGD on a synthetic dataset. The data generator
used here is the one proposed in a previous experimental
study for ML applications [39]. We use the option of sparse
data with density 1.67× 10−6. The total size of training set is
40 GB. The training process of BGD is conducted over 100
iterations.

The effect of eliminating unnecessary evaluations
(Sect. 6.1) is shown in Table 3. The results show that this

Table 3 Nonlinear recursion optimization

Time (s) Linear Logistic SVM

w/elimination 7196.4 7582.9 6814.6

w/o elimination 10358.1 11319.5 10166.7

optimization for the SN evaluation of nonlinear recursive
programs for ML is quite substantial, which achieves up to
about 1.5× performance gain. This is hardly a surprise given
that the full relations are replaced by the delta ones at every
iteration of the SN computation.

The effects of applying the replica mechanism (Sect. 6.2)
are shown in Table 4. We can see that with the help of replica
mechanism, it achieves a performance gain of 3X to 3.4X.
This underscores the considerable amount of shuffle oper-
ations that are removed from all iterations because of our
carefully designed replica mechanism.

Table 5 shows the effect of scheduling optimizations
(Sect. 6.3). The overall performance is improved over the
un-optimized approach by approximately 1.2X. Actually the
elimination of shuffle operations in r3,4 can be done auto-
matically once the replica mechanism is applied. Therefore,
the performance gain brought by scheduling optimization is
not so obvious compared with the other two optimizations
described above.

8.6 Results on dense datasets

To include the whole spectrum of datasets and make a com-
prehensive evaluation, we also conduct experiments on a

Table 4 Effect of replica

Time (s) Linear Logistic SVM

w/replica 7196.4 7582.9 6814.6

w/o replica 22664.9 26312.3 20660.0

Table 5 Effect of scheduling optimization

Time (s) Linear Logistic SVM

w/optimization 7196.4 7582.9 6814.6

w/o optimization 7961.0 8339.2 7719.7
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Fig. 13 Performance comparison on dense dataset

dense synthetic dataset. We continue using the synthetic
datasets proposed in [39] but set the density as 0.5.

We set the cardinality of dataset as 30 GB to make sure
that all systems will not run out of memory 8.

There is no doubt that PyTorch has much better perfor-
mance than Datalog, MLlib and SystemML on dense data
since it is optimized for supporting deep learning models,
which involve many computations between dense matrices.
Therefore, here we only show the results of comparing with
the other two Spark-based systems SystemML and MLlib.

The results are shown in Fig. 13. We can see that Data-
log still achieves comparable performance with SystemML
andMLlib. Although our proposed framework is designed for
applications with sparse vectors, it still has reasonable per-
formance on dense ones. Indeed, Datalog-ML is optimized
for applications on sparse training data, where the majority
of dimensions are zeroes in one training instance. For dense
datasets, the benefits of proposed optimizations are far from
obvious and thus the resulting performance is not as good as
that obtained in previous experiments. Therefore, we have
included this last experiment to provide a more comprehen-
sive and balanced view of characteristics of our proposed
framework.

9 Related work

9.1 Datalog for machine learning

Previous efforts in expressing ML applications with Data-
log include the following ones. Borkar et al. [40] proposed a
declarative workflow system, which also supports ML func-
tionalities. Bu et al. [38] developed a Datalog query interface

8 Note that in previous experiments with sparse dataset, SystemMLwill
run out of memory as it needs to convert the dataset into its own data
format, which would be much larger than the original sparse dataset
as it might add some information to complement the omitted zero-
dimensions

for it. MLog [14] provided a set of imperative Datalog-
style ML libraries over the TensorFlow system. LogiQL
[37] proposed to express ML applications with Datalog and
script-like constructs. These studies focus on using Datalog
as part of the query interface. The work describe in this paper
addresses the whole spectrum of advances needed to support
effectively ML applications in Datalog and other declara-
tive query languages such as SQL. These include (i) formal
declarative semantics for the query language, (ii) efficient
system implementations with very effective optimization on
parallel platforms and (iii) enhancements providing usability
and interoperability in a data frame environment.

9.2 Recursive query processing

A long stream of database research work on recursive query
processing has sought to provide formal declarative seman-
tics for the usage of aggregates in recursion [23,41,42]. In
particular, Ross et al. [43,44] used semantics based on spe-
cialized lattices to express the use of min, max, count and
sum, while Ganguly et al. [45] sought to optimize programs
with extrema. More recently, Mazuran et al. [8] showed that
continuous count and sum, are monotonic and thus can be
used freely in recursion. Monotonic aggregates have been
implemented in the Datalog system named DeALS [18]
and scaled up to distributed systems [15] and multi-core
machines [19]. Recently, [9] introduced the Pre-mappability
(PreM) property under which programs using min and max
in recursion are equivalent to aggregate-stratified programs.
The extension of SQL with extrema in recursion based on
PreM [26,46] based on PreM proved quite effective on
graph applications. New opportunities for reducing staleness
and communication costs in distributed data processing were
studied in [28]. Past work has also recognized that Data-
log is well-suited for large-scale analytical queries due to
its amenability to data parallelism and the great expressive
power of its recursive queries. In fact, Generalized Pivoting
[47] and Parallel Semi-naive [48] techniques enable parallel
evaluation of Datalog programs. OverLog [49] and NDlog
[50] proved effective at providing declarative networking.
Systems that use Datalog to support data analytics in dis-
tributed environments include SociaLite [51], LogicBlox
[52], Myria [53] and GraphRex [6]. However, the challenges
ofML applicationswere not tackled by these systems. There-
fore, they cannot support the queries expressed in this paper.

9.3 Large-scale machine learning

Supporting large-scale machine learning applications has
become a hot topic in the database community. Several
research works aim at optimizing the performance of lin-
ear algebra, which provides a common formal representation
language for machine learning algorithms [39,54–57]. Many
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previous studies focus on in-database machine learning. The
basic idea is to formalizeML operators as optimization prim-
itives anddevise an engine on topof relationalDBMS to solve
the ML problem using such primitives [11,58]. SimSQL [59]
employs a hybrid imperative and declarative framework to
express linear models [12,60], Bayesian learning [61] as well
as deep neural networks [13]. While most previous solutions
requiremany additional primitives, our framework is a purely
declarative one that can be realized using basic constructs of
Datalog, or a simple relaxation of current SQL standards.

To take advantage of distributed data platforms, manyML
frameworks were developed over Apache Spark as exten-
sions. MLBase [62] proposes a declarative ML framework
by providing APIs of high level programming languages.
Anderson et al. [63] integrates Spark with MPI to improve
the performance of graph andML applications. KeystoneML
[64] and Helix [65] provide more effective pipelines for ML
workload. ML4all [66] optimizes computation of gradient
descent algorithms. PS2 [6] integrates the parameter server
with Apache Spark. Our work shows that the ML applica-
tions supported by such works can be expressed efficiently
via Datalog by generalizing the existing query optimization
and data parallelism techniques.

9.4 Machine learning and big data systems

Apache Spark [31] has been one of the most popular dis-
tributed data processing platforms which provides APIs
for relational queries, graph analytics, data streaming and
machine learning. DryadLINQ [67], REX [68] and Naiad
[69] provide effective interfaces to support large-scale work-
loads with iterations. Distributed graph systems provide
vertex-centric APIs for graph analytics workloads. Typical
examples include Graphlab [70], Pregel [71] and GraphX
[72].

Recently, many ML systems have emerged to efficiently
support different kinds of ML algorithms in distributed envi-
ronments. The parameter server architecture [73] opens up a
new pathway to distributed model training. Examples adopt-
ing parameter servers include PyTorch [74], TensorFlow
[75], Petuum [76] and MXNet [77]. SystemML [36] is a
declarative ML framework with plan optimizations on top of
Apache Spark. LMFAO [78] aims at optimizing the analytic
workloads with batched aggregation, including the Linear
Regression queries. Ray [79] provides a unified interface that
supports multiple tasks and settings.

10 Conclusion

This paper has presented a powerful, declarative ML frame-
work on top of Apache Spark with Datalog query interfaces.
Thanks to the great expressive power of Datalog, users

can write queries to express a series of ML algorithms
trained by gradient descent optimizerswithout involving new
constructs. The power of allowing aggregates in recursive
Datalog programs is illustrated by the fact that it can be
used for both expressing ad hoc queries and for producing
a library of ML functions, i.e., a task for which procedural
languages are normally required. We formally demonstrated
that the training process expressed with Datalog programs
has formal semantics by showing the Pre-Countable Car-
dinality property. Then, we proposed several planning and
optimization techniques to efficiently support the evaluation
of Datalog programs with complex recursions, which are
essential to support ML applications. We also provided an
equivalent SQL-based implementation with a very succinct
syntax based on current SQL standard. Experiments on large-
scale real-world benchmarks demonstrated the superiority of
our proposed framework over existing ML systems.

As future work, we plan to extend our framework to cover
more machine learning algorithms, such as deep neural net-
works. Besides, we also plan to extend our system to GPU
settings and further optimize the performance.
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