
ar
X

iv
:2

00
6.

04
73

0v
3

 [
cs

.L
G

]
 2

6
Ju

l 2
02

1

Picket: Guarding Against Corrupted Data in Tabular Data during
Learning and Inference

Zifan Liu
zliu676@wisc.edu
UW-Madison

Zhechun Zhou
zhechunz@Andrew.cmu.edu
Carnegie Mellon University in

Australia

Theodoros Rekatsinas
thodrek@cs.wisc.edu

UW-Madison

ABSTRACT

Data corruption is an impediment to modern machine learning de-

ployments. Corrupted data can severely bias the learnedmodel and

can also lead to invalid inferences. We present, Picket, a simple

framework to safeguard against data corruptions during both train-

ing and deployment of machine learning models over tabular data.

For the training stage, Picket identifies and removes corrupted data

points from the training data to avoid obtaining a biasedmodel. For

the deployment stage, Picket flags, in an online manner, corrupted

query points to a trained machine learning model that due to noise

will result in incorrect predictions. To detect corrupted data, Picket

uses a self-supervised deep learning model for mixed-type tabular

data, which we call PicketNet. To minimize the burden of deploy-

ment, learning a PicketNet model does not require any human-

labeled data. Picket is designed as a plugin that can increase the

robustness of any machine learning pipeline. We evaluate Picket

on a diverse array of real-world data considering different corrup-

tion models that include systematic and adversarial noise during

both training and testing. We show that Picket consistently safe-

guards against corrupted data during both training and deploy-

ment of various models ranging from SVMs to neural networks,

beating a diverse array of competing methods that span from data

quality validation models to robust outlier-detection models.

1 INTRODUCTION

Data quality assessment is critical in all phases of the machine

learning (ML) life cycle. Both in the training and deployment (infer-

ence) stages of MLmodels, erroneous data can have devastating ef-

fects. In the training stage, errors in the data can lead to biased ML

models [3, 6, 27, 42], i.e., models that learn wrong decision bound-

aries. In the deployment stage, errors in the inference queries can

result in wrong predictions, which in turn can be harmful for crit-

ical decision making systems [6, 44]. ML pipelines need reliable

data quality assessment during both training and inference to be

robust to data errors.

We focus on tabular data and seek to develop a simple, plug-

and-play approach to guard against corrupted data (including ad-

versarially corrupted data) during both training and inference in

ML pipelines. During training, our goal is to identify and filter cor-

rupted examples from the data used to train a model, while during

deployment, our goal is to flag erroneous query points to a pre-

trained ML model, i.e., points that due to noise will result in incor-

rect predictions of the ML model. This work introduces a unified

solution to guard against corrupted data for both the training and

deployment stages of ML models.

Guarding against corrupted data in ML pipelines exhibits many

challenges. First, detecting corrupted examples in the training data

can be a hard exercise that requires developing methods that go be-

yond standard outlier detection mechanisms [49]. Data poisoning

techniques [4, 27, 35, 44] attack models by adding a small fraction

of adversarially crafted poisoned data to the training set. Any re-

liable mechanism that filters corruptions from a training data set

should not only remove easy to detect outliers but also hard to

detect poisoned data.

Second, online-detection of inference queries that yield a model

misprediction due to corruption requires not only knowledge of

the data quality, but also knowledge of the tolerance of the trained

ML model to corruptions. The reason is that not all corruptions

will flip the prediction of a trained ML model and different mod-

els exhibit different degrees of robustness to corruption. Moreover,

adversarial noise may target specific subsets of the data or classes

in the ML pipeline [27]. For this reason, online-filtering of cor-

rupted inference queries requires a method that takes both the

downstream model and data quality into account.

The above challenges require rethinking the current solutions

for identifying errors in data. The majority of outlier detection

methods in the statistical literature [8, 29, 49] and error detection

methods in the database literature [20, 33] are not effective against

adversarial corruptions [27]. More advanced methods are required

to defend against adversarial corruptions [44]. However, current

methods are typically limited to real-valued data [10] and focus

either on training [11] or inference [18, 40] but not both. Finally,

recent techniques for data validation in ML pipelines that are de-

ployed in industrial settings [6, 42] rely on user-specified rule- or

schema-based quality assertions evaluated over batches of data

and it is unclear if they can support on-the-fly, single point vali-

dation, which is required during inference.

We present Picket, a framework for safeguarding against cor-

rupted data during both the training and deployment stages of ML

pipelines. Picket can be used in an offline manner to validate data

that will be used for training but can also be used in an online man-

ner to safeguard against corruptions for on-the-fly queries at in-

ference time. We empirically demonstrate that Picket outperforms

both state-of-the-art outlier detection mechanisms such as Robust

Variational Autoencoders [14], and state-of-the-art methods for de-

tection of adversarial corruption attacks during inference [18, 40].

Our work makes the following technical contributions:

Self-Attention for Tabular Data Picket is built around Picket-

Net, a new deep learning-based encoder for mixed-type tabular

data. PicketNet can model mixtures over numerical, categorical,

and even text-based entries of limited length (e.g., descriptions).

The goal of PicketNet is to learn the characteristics of the distribu-

tion governing the non-corrupted data on which the ML pipeline

operates and it is used in Picket to distinguish between clean data

http://arxiv.org/abs/2006.04730v3

Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas

points and corrupted ones. The architecture of PicketNet builds

upon the general family of Transformer networks [46] and intro-

duces a new multi-head self-attention module [46] over tabular

data. This module follows a stream-based architecture that is able

to capture not only the dependencies between attributes at the

schema-level but also the statistical relations between cell values—

it follows a schema stream and value stream architecture. We find

that compared to schema-only models, PicketNet’s two-stream ar-

chitecture is critical for obtaining accurate predictions across di-

verse data sets.

Robust Training over Arbitrary Corruptions We show how to

learn a PicketNet model without imposing any extra labeling bur-

den to the user and by operating directly on potentially corrupted

data (i.e., we do not not require access to clean data to learn the

non-corrupted data distribution). We achieve that by using a ro-

bust self-supervised training approach that is robust to corrupted

data points (including adversarial points). As with standard self-

supervision, the context captured in the data is used as the su-

pervision signal. The training procedure for PicketNet monitors

the reconstruction loss of tuples in the input data over early train-

ing iterations and uses related statistics to identify suspicious data

points. These points are then excluded from subsequent iterations

during training.

APlugin toML Pipelines We demonstrate how Picket can serve

as a “plugin” that safeguards against corrupted data in different ML

pipelines during both training and inference. We evaluate Picket

over multiple data sets with different distributional characteristics

and consider different types and magnitudes of corruption, rang-

ing from simple random noise to adversarial attacks that explic-

itly aim to harm the performance of downstream ML models. We

find that Picket provides a reliable mechanism for detecting data

corruptions in ML pipelines: Picket consistently achieves an area

under the receiver operating characteristic curve (AUROC) score

of above or close to 80 points for detecting corrupted data across

different types of noise and ML models.

2 BACKGROUND

Data Corruption Models We consider data corruption due to

random, systematic, and adversarial noise.

1. Random noise is drawn from some unknown distribution that

does not depend on the data. Random noise is not predictable and

cannot be replicated in a repeatable manner. While, manyMLmod-

els are robust to purely randomnoise during training, high-magnitude

random noise can still lead to false predictions, and hence is of in-

terest to our study.

2. Systematic noise depends on values in the data and leads to re-

peated errors in data samples. This type of noise biases the distri-

bution of the data. Systematic noise can skew the distribution of

the data, and this bias can potentially harm the performance of an

ML model depending on the importance of the corrupted features

to the downstream prediction task.

3. Adversarial noise contaminates the data to explicitly mislead ML

models and harm their performance. At training time, adversarial

noise corrupts the training points to force amodel to learn a bad de-

cision boundary; at test time, adversarial noise corrupts the input

queries in amanner that will lead to a false prediction by themodel.

It usually depends on the data and the target model, although some

types of adversarial noise may work well across different models.

Dealing with Corrupted Data in ML The most common ap-

proach to deal with corrupted data during training is to identify

corrupted samples and remove them from the training set. This

process is referred to as filtering. Given a training data set � , fil-

tering identifies a set of clean data points � ⊆ � to be used for

training. Common filtering mechanisms rely on outlier detection

methods [8, 14, 29]. In addition, recent filtering methods focus on

adversarial corruptions over real-valued data [10, 14]. Finally, there

are data validation modules for ML platforms [3, 6, 42] that rely

on user-defined rules and simple statistics to check the quality of

data batches. The statistical tests used by these methods are sub-

sumed by outlier detection methods and user-defined quality rules

are out of the scope of this work. For inference, apart from outlier

detection methods, there are methods that accept or reject infer-

ence queries by using statistical tests that compare the query to

clean data [18] or by considering variations in a model’s internal

data representation [40]. We also consider the online detection of

inference queries that result in wrong predictions due to corrup-

tion.

Self-Supervision In self-supervised learning systems [9, 45], the

learning objective is to predict part of the input from the rest of

it. A typical approach to self-supervision is to mask a portion of

the input, and then let the model reconstruct the masked portion

based on the unmasked parts. By self-supervision, a model learns

to capture dependencies between different parts of the data. Self-

supervised learning is a subset of unsupervised learning in a broad

sense since it does not need human supervision.

Multi-HeadSelf-Attention Modelswithmulti-head self-attention

mechanism learn representations for structured inputs e.g., a tuple

or a text sequence, by capturing the dependencies between differ-

ent parts of the inputs [46]. One part can pay different levels of

attention to other parts of the same structured input. For example,

consider the text sequence “the dog wears a white hat”, the token

“wears” pays more attention to “hat” than “white” although “white”

is closer in the sequence. The attention mechanism can also be ap-

plied to tuples that consist of different attributes [47]. Multi-head

self-attention takes an ensemble of different attention functions,

with each head learning one.

We provide a brief review of themulti-head self-attentionmodel [46].

Let G1, G2, . . . , G) be the embedding of a structured input with) to-

kens. Each token G8 is transformed into a query-key-value triplet

(@8 = ,&G8 , :8 = , G8 , E8 = ,+ G8) by three learnable matrices

,& ,, and,+ . The query @8 , key :8 , and value E8 are real-valued

vectors with the same dimension 3 . The output of a single head for

the 8th token is
∑)
9=1F8 9E 9 , a weighted sum of all the values in the

sequence, whereF8 9 = softmax((@)8 :1, @
)
8 :2, . . . , @

)
8 :))/

√
3) 9 . The

attention G8 pays to G 9 is determined by the inner product between

@8 and : 9 . Multiple heads share the same mechanism but have dif-

ferent transformation matrices. The outputs of all the heads are

concatenated and transformed into the final output by an output

matrix,$, which is also learnable.

Picket: Guarding Against Corrupted Data in Tabular Data during Learning and Inference

3 OVERVIEW OF PICKET

We review Picket’s functionalities during the training and infer-

ence phases of a ML pipeline. An overview diagram of Picket’s

core components and functionalities is shown in Figure 1. The cor-

responding pseudo-code is shown in Algorithm 1.

Algorithm 1: Picket in a typical ML pipeline

Training Time:

Input: dataset � , downstream model type and

configuration Iconfig;
Output: filtered dataset � , trained downstream model 5 ;

� = PicketNetTrainingAndEarlyFiltering(�,);
5 = DownstreamModelTraining(�,Iconfig);

Inference Time (Offline Phase):

Input: filtered dataset � , trained downstream model 5 ;

Output: trained PicketNet " , victim sample detectors 6;

" = PicketNetTraining(�);
augmented dataset � = DataAugmentation(", 5);
6 = VictimSampleDetectorTraining(�);

Inference Time (Online Phase):

Input: data stream (, trained downstream model 5 , trained

PicketNet " , victim sample detectors 6;

Output: final prediction ~prediction;

raw prediction ~raw = DownstreamPrediction((, 5);
~prediction = PicketVictimDetection((,~raw, ",6)

Guarding against Corrupted Data in Training

We consider a tabular data set� with# training examples. Let G be

a sample (tuple) in� with) attributes. These attributes correspond

to the features that are used by the downstream model. For each G

we denote G∗ its clean version; if G is not corrupted then G = G∗ .
We assume that � contains clean and corrupted samples and

that the fraction of corrupted samples is always less than half. The

goal of Picket is to filter out the corrupted samples in � and con-

struct a clean set of examples� ⊆ � to be used for training a down-

stream model. Without loss of generality we assume that Picket

performs filtering over � once. This process can be repeated for

data batches over time. We next describe how we construct � in

Picket.

Picket follows the next steps: First, Picket learns a self-supervised

PicketNet model" that captures how data features are distributed

for the clean samples. Picket does not require human-labelled ex-

amples of corrupted or clean data. During training, Picket records

the reconstruction loss across training epochs for all points in � .

After training of" , we analyze the reconstruction loss progression

over the first few training epochs to identify points in � that are

corrupted (see Section 5 for details). Set� is constructed by remov-

ing these corrupted points from � . We also proceed with training

" on � . The pre-trained PicketNet model " is used to detect cor-

ruptions during inference.

Guarding against Corrupted Data in Inference

We consider a trained model 5 that serves inference queries over

data points with the same) attributes as in the training phase of

the ML pipeline. We define a victim sample to be a point G such

that 5 (G∗) = ~ but 5 (G) ≠ ~, i.e., the input sample is corrupted

and it gets misclassified due to corruption. We show an example

that illustrates the difference between non-victim and victim sam-

ples according to our definition in Figure 2. The goal of Picket is

to solve the following problem: Given an already-trained classifier

5 , for each sample G that comes on the fly, we want to tell if it is a

good sample or it is a victim sample and will be misclassified due

to corruption, i.e., we want to detect if 5 (G) ≠ 5 (G∗). We assume

access to data set � and model " output by Picket for safeguard-

ing during the training phase of the ML pipeline in hand. We then

adopt a two-phase approach, offline and online phase, to solve the

aforementioned problem.

We now focus on the offline phase. Given the trained model 5 ,

data set � , and model " , we learn a victim-sample detector for

each class in the prediction task in-hand. Each victim-sample de-

tector is a binary classifier that detects if an input sample G will be

misclassified by 5 due to corruption. The victim-sample detectors

operate on an extended feature set: Beyond the original) features

of the inference query G we add) additional features correspond-

ing to the reconstruction-loss obtained by masking each feature in

turn and applying model" to predict it back.

During the online phase, we usemodel" and the victim-sample

detectors over a stream of incoming inference queries to identify

victim samples. Picket performs the following: for each incoming

point G , Picket evaluates classifier 5 on G to obtain an initial predic-

tion 5 (G). Picket also uses " to compute the reconstruction-loss

vector for the features of G . The extended feature vector contain-

ing the original features of G and the reconstruction loss features

are given as input to the victim sample detector for the class that

corresponds to the prediction 5 (G). Using this input, the detector

identifies if point G corresponds to a victim sample. If the point

is not marked as suspicious the final prediction is revealed down-

stream, otherwise the inference query is flagged.

4 THE PICKETNET MODEL

Picket uses a new two-stream multi-head self-attention model to

learn the distribution of tabular data. We refer to this model as

PicketNet. The term stream refers to a path in a neural network

that focuses on a specific view of the input data. For example, stan-

dard attention mechanism is one stream that learns value-based

dependencies between the parts of the input data (see Section 2).

Combining multiple streams, where each stream focuses on learn-

ing a different view of the data, has been shown to achieve state-of-

the-art results in natural language processing tasks [50] and com-

puter vision tasks [43] but has not been applied on tabular data.

PicketNet introduces a new two-streammodel for tabular data and

proposes a robust, self-supervised training procedure for learning

this model.

4.1 Model Architecture

PicketNet contains two streams: a schema stream and a value stream.

The schema stream captures schema-level dependencies between

Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas

Input Dataset

D

Filtered Dataset

C

Downstream

Training & Tuning

Trained Downstream

Model

ff

Data Stream

Downstream

Prediction Service

Predictions Final Decision

Picket

PicketNet Training

Loss Monitoring

Filtering

Input Dataset

C

PicketNet

Training

Trained

PicketNet MM
Data

Augmentation

ff
Augmented

Dataset

A

Victim Sample

Detectors

Training

Victim Sample

Detectors

gggg

Picket

Evaluation on

PicketNet

Victim Sample

Detectiongggg

ff

SS

Training Time

Inference Time

Offline Phase

Online Phase

Figure 1: The key components of a typical machine learning pipeline with Picket.

A

B

(a) Before Corruption

C

D

(b) After Corruption

Figure 2: An example of non-victim and victim samples. The grey line is the decision boundary of a binary classifier that

separates the red circles and the blue stars in the two-dimensional space. (a)Before corruption, some samples (e.g. point A and

B) get misclassified, but they are not victim samples because they are clean, and the misclassification is due to the limitation

of the model. Those samples should be handled by model analytics, and are out of the scope of our framework. (b) After

corruption, two samples are shifted by the noise (point C and D). C is not a victim sample since the noise injected does not

affect the correctness of classification. D is a victim sample because it gets misclassified due to noise.

attributes of the data, while the value stream captures dependen-

cies between specific data values. A design overview of Picket-

Net is shown in Figure 3 with details of the two streams. The in-

put to the network is a mixed-type data tuple G with) attributes

G1, G2, . . . , G) .

The first level of Picket obtains a numerical representation of

tuple G . To capture the schema- and value-level information for G ,

we consider two numerical representations for each attribute 8 : 1)

a real-valued vector that encodes the information in value G8 , de-

noted by �
(0)
8 , and 2) a real-valued vector that encodes schema-level

Picket: Guarding Against Corrupted Data in Tabular Data during Learning and Inference

information of attribute 8 , denoted by %
(0)
8 . For example, a tuple

with two attributes is represented as �
(0)
1 %

(0)
1 �

(0)
2 %

(0)
2 . To convert

G8 to �
(0)
8 , PicketNet uses the following process: The encoding for

each attribute value G8 is computed independently. We consider

1) categorical, 2) numerical, and 3) textual (short-text) attributes.

For categorical attributes, we use a learnable lookup table to get

the embedding for each value in the domain. This lookup table

is learned jointly with all other components of PicketNet. For nu-

merical attributes, we keep the raw value as one dimension and

pad the other dimensions with zeros. For text attributes, we train a

fastText [5] model over the corpus of all the texts and apply SIF [2]

to aggregate the embedding of all the words in a cell. The initial

embedding vectors �
(0)
8 are inputs to the value-level stream.

Each vector %
(0)
8 serves as a positional encoding of the attribute

associated with index 8 . Positional encodings are used to capture

high-level dependencies between attributes. %
(0)
8 is consistent for

attribute 8 in all examples, i.e., it does not change as the values

in different examples vary. Hence, it captures common dependen-

cies at the schema level. Each %
(0)
8 corresponds to a trainable vec-

tor that is initialized randomly and is fed as input to the schema

stream.

We now describe subsequent layers of our model. These lay-

ers consider the two attention streams and form a stack of = self-

attention layers. The output of the previous layer serves as the

input to the next layer. Self-attention layer ; takes the value vec-

tor �
(;)
8 and positional encoding %

(;)
8 to learn a further represen-

tation for attribute 8 and its value G8 . After each attention layer,

the outputs of the two streams are aggregated and fed as input to

the value-level stream of the next layer, while the schema stream

still takes as input the positional encoding. The output of the value

stream �
(;)
8 and that of the schema stream �

(;)
8 are computed as:

�
(;)
8 = MHS(& = !& (� (;)8), = ! (� (;)9=1,...,)),

+ = !+ (� (;)
9=1,...,)

))

�
(;)
8 = MHS(& = !& (% (;)8), = ! (% (;)9=1,...,)),

+ = !+ (� (;)
9=1,...,)

))

whereMHS represents the multi-head attention function followed

by a feed-forward network and !& , ! , !+ are linear transforma-

tions that transform the input into query, key, or value vectors by

the corresponding weight matrices for& , , and+ . Finally,&, ,+

are matrices formed by packing the query, key and value vectors

from their inputs.

The difference between the two streams is that the query in the

schema stream corresponds to the positional encoding, therefore

it learns higher-level dependencies. For the value stream the input

to the next level is the sum of the outputs from the two streams:

�
(;+1)
8 = �

(;)
8 + � (;)

8 ; for the schema stream the input to the next

level %
(;+1)
8 corresponds to a new positional encoding that does not

depend on the previous layers. If layer ; is the last layer,$8 = �
(;+1)
8

is the final representation for attribute value G8 .

4.2 Training Process

We learn PicketNet using the noisy data set� without any human-

labeled examples of corrupted or clean data. Training follows a

self-supervised learning objective.

Self-Supervised Training For each point in � , we mask one of

the attributes and then try to reconstruct it based on the values of

the other attributes in the same tuple. Other attributes may still

contain noisy data or missing values. The attributes are masked in

turn following an arbitrary order. The training is also multi-task

since the reconstruction of each attribute forms one learning task.

We use different types of losses for the three types of attributes

to quantify the quality of reconstruction. Consider a sampleG whose

original value of attribute 8 is G8 . If G8 is numerical, its a one-dimensional

value, and hence, the reconstruction of the input value is a regres-

sion task: We apply a simple neural network on the output$8 to get

an one-dimensional reconstruction Ĝ8 , and use the mean squared

error (MSE) loss: MSE(G8 , Ĝ8) = (G8 − Ĝ8)2.
For categorical or text-based attributeswe use the cross-entropy

loss. Consider a tuple G and its attribute 8 . For its attribute value

G8 let �
0
8 (G8) be the base-embedding before passing through the at-

tention layers of PicketNet, and $8 (Gmask) the contextual encod-

ing of value G8 after pushing tuple Gmask (with attribute 8 masked)

through PicketNet. Given tupleG , we randomly select a set of other

values /8 from the domain of attribute 8 . We consider the training

loss associated with identifying G8 as the correct completion value

from the set of possible values {G8 } ∪ /8 . To compute the training

loss we use the cosine similarity between$8 (Gmask) and the input
encoding � 08 (A) for each A ∈ {G8 } ∪ /8 , then we apply the softmax

function over the similarities and calculate the cross-entropy (CE)

loss:

CE(G, /8 ; 8, ")

= − log(
exp(sim(� (0)

8
(G8),$8 (Gmask)))

∑
A∈{G8 }∪/8

exp(sim(� (0)
8

(A),$8 (Gmask)))
)

where sim(0,1) is the cosine similarity between 0 and 1.

Loss-based Filtering to Ensure Robust Training

The data used to learn PicketNet can be corrupted, in which case

self-supervised learning might lead to a biased model due to the

presence of noise. To make learning robust to noisy input, we use a

loss-based filteringmechanism to detect and ignore corrupted data

during training of a PicketNet model. The process we use follows

the next steps:

1. Warm-start PicketNet by training over � for �1 epochs.

2. Train PicketNet over � for �2 epochs and, for each sample in G ∈
� , record the epoch-wise average loss Loss8 (G) for each attribute 8 ,

8 = 1, 2, . . . ,) .

3. For each sample, aggregate the losses attribute-wise by Loss(G) =
∑)
8=1 Loss8 (G)/Median� (Loss8 (·)) where Median� computes the

median over all points in � .

4. Put a sample into set � ′ if its aggregated loss is less than Xlow or

greater than Xhigh, where Xlow and Xhigh are pre-specified thresh-

olds; � ′ is the set of samples to be removed.

5. Train PicketNet over � = � \ � ′ until convergence.
The thresholds Xlow and Xhigh control the sensitivity of the de-

tection. In practice, we can set Xlow and Xhigh based on a relatively

Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas

I
(0)
3I
(0)
3 P

(0)
3P
(0)
3

Attribute 3

Input Embedding

I
(l)
1I
(l)
1 P

(l)
1P
(l)
1 I

(l)
2I
(l)
2 P

(l)
2P
(l)
2 I

(l)
3I
(l)
3 P

(l)
3P
(l)
3

Multi-Head Self-Attention

QQ KK VV

Feedforward Network

G
(l)
1G
(l)
1

(a) Network Overview

(b) Schema Stream

(c) Value Stream

I
(1)
1I
(1)
1 P

(1)
1P
(1)
1

H
(0)
1H
(0)
1 G

(0)
1G
(0)
1

I
(l)
1I
(l)
1 P

(l)
1P
(l)
1 I

(l)
2I
(l)
2 P

(l)
2P
(l)
2 I

(l)
3I
(l)
3 P

(l)
3P
(l)
3

Multi-Head Self-Attention

QQ KK VV

Feedforward Network

H
(l)
1H
(l)
1

I
(0)
2I
(0)
2 P

(0)
2P
(0)
2

Attribute 2

Input Embedding

I
(0)
1I
(0)
1 P

(0)
1P
(0)
1

Attribute 1

Input Embedding

I
(1)
2I
(1)
2 P

(1)
2P
(1)
2

H
(0)
2H
(0)
2 G

(0)
2G
(0)
2

I
(1)
3I
(1)
3 P

(1)
3P
(1)
3

H
(0)
3H
(0)
3 G

(0)
3G
(0)
3

Two-Stream Multi-Head Self-Attention and Feedforward Network

Two-Stream Multi-Head Self-Attention and Feedforward Network

I
(2)
1I
(2)
1

H
(1)
1H
(1)
1 G

(1)
1G
(1)
1

I
(2)
2I
(2)
2

H
(1)
2H
(1)
2 G

(1)
2G
(1)
2

I
(2)
3I
(2)
3

H
(1)
3H
(1)
3 G

(1)
3G
(1)
3

Figure 3: (a) Overview of the two-stream multi-head self-attention network. (b) An illustration of the schema stream for the

first attribute.(c) An illustration of the value stream for the first attribute.

clean validation set. A common strategy is setting their values

based on the validation set so that the false positive rate (FPR) is

under some value (e.g. 5%). When a relatively clean validation set

is not available, the thresholds can be set based on the histogram

of the reconstruction loss. Filtering out abnormal peaks and low

density tails in the histogram is a natural strategy, and we validate

the effectiveness of it in Section 6.4.

When we do the attribute-wise aggregation, we normalize the

loss of each attribute by dividing with the median of it to bring dif-

ferent types of losses to the same scale. The normalized loss charac-

terizes how large the loss is relative to the average level loss in that

attribute. We use the median since it is robust against extremely

high or low values, while the mean can be significantly shifted by

them.

The filtering is two-sided because randomly or systematically

corrupted samples and adversarially crafted (poisoned) samples

have different behaviors during the early training stage. Outliers

with random or systematic noise are internally inconsistent and

thus have high reconstruction loss in the early training stage of

PicketNet. However, poisoned samples tend to have unusually low

reconstruction loss. The reason is that poisoned data tend to be

concentrated on a few locations to be effective and appear normal,

as is pointed out by Koh et al. [27]. Such concentration forces deep

Figure 4: Distribution of the reconstruction loss (early in

training) for different types of clean and noisy samples.

networks such as PicketNet to fit quickly and therefore the recon-

struction loss in the early stage is lower than that of the clean sam-

ples. We confirm this hypothesis experimentally. Figure 4 shows

the distribution of the reconstruction loss for 1) clean, 2) randomly

and systematically corrupted, and 3)poisoned samples for a real-

world dataset. The noise used in this illustrative example follows

the procedure described in Section 6.1. The three distributions have

Picket: Guarding Against Corrupted Data in Tabular Data during Learning and Inference

notable statistical distances. Hence, we need to remove samples

with high loss to capture random or systematic corruptions, and

samples with abnormally low loss to defend against poisoning at-

tacks.

5 DETECTING DATA CORRUPTIONS

The reconstruction loss of PicketNet is the key to training time and

inference time detection. We now provide more details on these

functions of Picket.

DetectingCorruptedTrainingData Detection of corrupted train-

ing data follows directly from the training procedure of Picket-

Net described in the previous section (Section 4.2). Given an ML

pipeline that aims to learn a model 5 for a downstream task, we 1)

first train a PicketNet model over the data considered for training

and 2) only use the data points that are not filtered during the train-

ing of PicketNet to train the downstream model 5 . This approach

allows us to apply Picket to any training pipeline regardless of the

downstream model. Effectively, the pre-trained PicketNet is used

as an encoder capable to detect outlier points. As we show in Sec-

tion 6, our approach is effective across different types of ML mod-

els. For adversarially poisoned training data, we find that using

Picket as a filter before training, allows us to train downstreamML

models that exhibit similar performance to that of models trained

on non-corrupted data.

Victim Sample Detection for Inference We now describe how

we construct the victim sample detectors to safeguard against cor-

ruptions during inference for a trained classifier 5 (see Section 3).

For each class ~ in the downstream classification task, we build a

detector 6~ to identify victim samples, i.e., samples that 5 will mis-

classify due to corruption of the feature values. The detectors are

binary classifiers. In our experiments, we use logistic regression

models with regularization parameter 1.0 as detectors.

At inference time, the victim sample detectors are deployed along

with the downstream model 5 and a pre-trained PicketNet model

" . Whenever a sample G comes, the downstream model gives the

prediction 5 (G). The corresponding detector 65 (G) takes into ac-

count G and the feature-wise reconstruction loss (not aggregated)

from" and decides if G should be marked as suspicious.

We learn the victim-sample detectors by using a data set with

artificially corrupted data points. We describe this process below;

notice that no human-labeled data is required. We start from the

filtered data � output by Picket during the training phase of the

ML pipeline. We first apply the already-trained classifier 5 on all

points in � and obtain a subset of points for which 5 returns the

correct prediction, i.e., 5 (G) = ~. We denote this subset�cor. More-

over, we partition �cor into sets �
~
cor, one for each class ~ of the

downstream prediction class. For each partition, we use the points

in �
~
cor to construct artificial victim samples and artificial noisy

points for which 5 returns the correct prediction despite the injec-

tion of noise. We discuss the artificial noise we inject in detail in

Section 6.1. Let+(~ and#(
~
cor be the set of artificial victim samples

and the set of noisy but correctly classified sample generated from

�
~
cor respectively. To construct these two data sets we select a ran-

dom point G∗ from�
~
cor and inject artificial noise to obtain a noisy

version G ; we then evaluate 5 (G) and if 5 (G) = 5 (G∗) = ~ we assign
the generated point G to #(

~
cor otherwise we assign it to+(~ . We

iteratively perform the above process for randomly selected points

in �
~
cor until we populate sets +(

~ and #(
~
cor with enough points

such that |�~cor | = |#(~cor | = 0.5 × |+(~ |. Given these three sets,

we construct a new augmented data set �~ = �
~
cor ∪ #(

~
cor ∪+(~ .

We extend the feature vector for each point in G ∈ �~ by concate-

nating it with the reconstruction loss vector obtained after passing

each point through the trained PicketNet " . We also assign to it a

positive label (indicative that we will obtain a correct prediction)

if it originated from �
~
cor or #(

~
cor and a negative label (indicating

that we will obtain a wrong prediction) if it originated from +(~ .

The output of this procedure is the training data for the victim

sample detector 6~ . We repeat the above process for each class ~.

Ideally, the artificial noise that we inject should have the same

distribution as that in the real-world case. However, it is impos-

sible to know the exact noise distribution in advance. A practical

solution is injecting mixed-type artificial noise to help the detec-

tors learn an approximate boundary between good and victim sam-

ples. As mentioned we discuss the artificial noise we consider in

Section 6.1. We validate the effectiveness of mixed-type artificial

noise in Section 6.4.

6 EXPERIMENTS

We evaluate how effective Picket and a diverse array of compet-

ing methods are on detecting different types of corruption in ML

pipelines during the training and inference phases.We also provide

several micro-benchmarks over different design choices in Picket.

Finally, we report the runtime and discuss the scalability.

6.1 Experimental Setup

Datasets We consider six datasets with different mixtures of nu-

merical, categorical, and text-based attributes. These datasets are

obtained from the UCI repository [13] and the CleanML bench-

mark [28]. All datasets focus on binary classification tasks. The

characteristics of these datasets are summarized in Table 1. A de-

tailed description of the datasets is as follows.

• Wine:The dataset consists of statistics about different types

of wine based on physicochemical tests. The task is to pre-

dict if the quality of a type of wine is beyond average or not.

The features are purely numerical.

• Adult: The dataset contains a set of US Census records of

adults. The task is to predict if a person makes over $50,000

per year. The features are a mixture of categorical and nu-

merical attributes.

• Marketing: The dataset comes from a survey on household

income consisting of several demographic features. The task

is to predict whether the annual gross income of a house-

hold is less than $25,000. The features are purely categori-

cal.

• Restaurant:The dataset contains information of restaurants

from Yelp. The task is to predict if the price range of a restau-

rant is “one dollar sign” on Yelp. The features are a mixture

of categorical values and textual description,

• Titanic: The dataset contains personal and ticket informa-

tion of passengers. The task is to predict if a passenger sur-

vives or not. The features are a mixture of numerical, cate-

gorical and textual attributes.

Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas

Table 1: Properties of the datasets in our experiments.

Dataset Size
Numerical

Attributes

Categorical

Attributes

Textual

Attributes

Wine 4898 11 0 0
Adult 32561 5 9 0
Marketing 8993 0 13 0
Restaurant 12007 0 3 7
Titanic 891 2 5 3
HTRU2 17898 8 0 0

• HTRU2: The dataset contains statistics about a set of pul-

sar candidates collected in a universe survey. The task is to

predict if a candidate is a real pulsar or not. The features are

purely numeric.

The last dataset, i.e., HTRU2, is purely numerical and we use

it in the context of adversarial noise. The datasets above are the

ones we use for most of our experiments. In addition, we use Food

labeled by [20] for real noise, and Alarm [21] for the study of scal-

ibility. We consider downstream ML pipelines over these datasets

that use 80% of each dataset as the training set, and the rest as test

data. To reduce the effect of class imbalance, we undersample the

unbalanced datasets where over 70% of the samples belong to one

class. The numerical attributes are normalized to zero mean and

unit variance before noise injection.

Noise Models In our experiments, we consider different types of

noise: 1) random, 2) systematic, 3) adversarial noise, and 4) com-

mon errors in real-world datasets.

Random and systematic noise are model agnostic and only take

into account the dataset. For random and systematic noise, we cor-

rupt V fraction of the cells in the noisy samples. We now provide

a detailed description of the random and systematic noise genera-

tion process we consider.

Random Noise: For a categorical or textual attribute, the value of

a corrupted cell is flipped to another value in the domain of that

attribute. For a numerical attribute, we add Gaussian noise to the

value of a corrupted cell, with zero mean and standard deviation

of f1, where f1 is a constant.

Systematic Noise: For categorical and textual data, we randomly

generate a predefined function q which maps the value G∗8 of the

cell to be corrupted to another value G8 in the same domain. The

mapping function depends on both the original value in that at-

tribute and that in another pre-specified attribute, i.e., G8 = q (G∗8 , G
∗
9)

where 9 ≠ 8 . For a numerical attribute, we add a fixed amount of

noise f2 to the value of a corrupted cell, where f2 is a constant.

We consider three settings with respect to the fraction of cor-

rupted cells in the noisy samples (and themagnitude of error in the

case of numerical values) for random and systematic noise, which

we refer to as High (V = 0.5, f1 = f2 = 5), Medium (V = 0.3,

f1 = f2 = 3) and Low (V = 0.2, f1 = f2 = 1).

For adversarial attacks, we use methods that take into account

specific ML models. Specifically, we use data poisoning techniques

at training, and evasion attack methods at inference. For the part

of our evaluation that focuses on training time, we generate poi-

soned samples using the back-gradient method [35]. Since, this

type of poisoning is specific to different downstream models we

consider different dataset-model combinations in our evaluation.

For the part of our evaluation that focuses on inference time, we

use the projected gradient descent (PGD) attack [31], a popular and

effective white-box evasion attack method, to generate adversarial

test samples. We use the implementation of PGD attack from [36].

The corruption injected by the PGD attack is bounded by an infin-

ity norm of 0.2. The step size is 0.1 and the number of iterations is

100.

For common errors in real-world datasets, we consider missing

values that cannot be detected during pre-processing (e.g. 99999

instead of NaN), multiplicative scaling of attributes (e.g. due to ac-

cidental changes of units), and typos in textual or categorical at-

tributes. We synthesize this kind of noise as follows:

(1) If the corrupted cell is numerical, with probability 1/3 it will

be 10 times larger, and with the same probability it will be

10 times smaller. Otherwise, the cell will contain a missing

value.

(2) If the corrupted cell is categorical or textual, with probabil-

ity 1/2 one of the character will be replaced by a random

character. Otherwise, the cell will contain a missing value.

For this kind of noise, we set the fraction of corrupted cells in the

noisy samples as V = 0.3. We also include Food, a dataset that con-

tains real-world errors with manually labeled ground truth [20]. It

has 3 numerical, 6 categorical and 5 textual attributes. Out of its

3000 samples, 30.3% are corrupted.

As discussed in Section 5, we use artificially generated noise

to create the training data for learning the victim-sample detec-

tors. We now describe the type of noise we consider. Recall that

we consider access to the set of clean sample � and we augment

this set with artificially corrupted data. We emphasize that the

noise is always different than the noise considered in the train-

ing data. Since we assume that the type of noise in the test set is

unknown in advance, the artificial noise contains a mixture of dif-

ferent levels of random noise ((V = 0.4, f1 = 4), (V = 0.25, f1 = 2),
(V = 0.15, f1 = 1.5)). We additionally augment � with samples

corrupted by random noise (V = 1, f1 = 0.25) and adversarial sam-

ples generated by Fast Gradient Sign Method (FGSM) [17](noise

bounded by an infinite norm of 0.1) to defend against adversar-

ial noise. This corruption is different from the PGD attack consid-

ered during inference to ensure that we evaluate against a different

noise distribution during online inference.

DownstreamMLModels Weconsider the following downstream

models: 1) A Logistic regression (LR) model with regularization

parameter 1.0; 2) A Support Vector Machine (SVM) with a linear

kernel and regularization parameter 1.0; 3) A fully-connected neu-

ral network (NN) with 2 hidden layers of size 100. We use a small

model with 1 hidden layer of size 10 when we perform poisoning

attacks due to the runtime complexity of the attack algorithm. The

downstream models we choose cover different optimization objec-

tives (logistic/hinge loss and convex/non-convex optimization ob-

jectives) and exhibit different robustness. Numerical attributes are

encoded as their raw values for downstream models. Categorical

and textual attributes are encoded in the same way as in Picket.

Training-Time Baselines We compare against three unsuper-

vised outlier detectionmethods as follows: 1) Isolation Forest (IF) [29],

Picket: Guarding Against Corrupted Data in Tabular Data during Learning and Inference

an approach similar to Random Forests but targeting outlier de-

tection, 2) One-Class SVM (OCSVM) [8] with a radial basis func-

tion kernel, and 3) Robust Variational Autoencoders (RVAE) [14],

a state-of-the-art generative model used for outlier detection on

mixed-type tabular data. For IF, we use 100 base estimators in the

ensemble. For RVAE, we use the default hyperparameter recom-

mended by Eduardo et al. [14], which has 972,537 parameters. Note

that the capacity of the RVAE model used in our experiments is

larger than PicketNet, which has 382,722 parameters. The detailed

hyper-parameters we use for PicketNet is reported inAppendixA.1.

Inference-TimeBaselines Wecompare against: 1) victim-sample

detectors based, 2) naïve confidence-based, and 3) adversarial data

detection methods.

Methods based on per-class victim sample detectors follow the

same strategy as Picket but use different features. We consider: 1)

Raw Feature (RF), the binary classifiers only use the raw features of

the data; 2) RVAE, the binary classifiers use only the cell-level prob-

ability of being outliers provided by RVAE as features; 3) RVAE+,

the classifiers use a combination of the features from the twometh-

ods above.

We also consider the next naïve methods: 1) Calibrated Confi-

dence Score (CCS), which assumes that the predictions of the down-

stream model have lower confidence for victim samples than clean

samples. We calibrate the confidence scores of the downstream

models using temperature scaling [19]. 2):-Nearest Neighbors (KNN),

which assumes that a victim sample has a different prediction from

its neighbors. We use different distances for different types of at-

tributes. For numerical attributes, the distance is 3/0.05 if3 ≤ 0.05,

where 3 is the difference between two normalized values; the dis-

tance is 1 if 3 > 0.05. For categorical attributes, we use the Ham-

ming distance and for text attributes the cosine distance. We set :

to 10.

We consider two methods of adversarial sample detection: The

Odds are Odd (TOAO) [40], which detects adversarial samples based

on the change in the distribution of the prediction logit values after

the injection of random noise. It adds Gaussian, Bernoulli, and Uni-

form noise of different magnitude and takes the majority vote of

all noise sources. 2) Model with Outlier Class (MWOC) [18], which

assumes that the feature distribution of adversarial samples is dif-

ferent from that of benign samples and adds a new outlier class to

the downstream model to characterize the distribution of adversar-

ial samples.

For a fair evaluation of baselines against Picket, we also reveal

the augmented version of� used to learn the victim-sample detec-

tors in Picket to competing methods so that they fine-tune their

models to noise (RF, RVAE, RVAE+, MWOC, Picket), or use it to

find a good threshold (CCS, KNN, TOAO).

Metrics For training-time outlier detection, we report the area

under the receiver operating characteristic curve (AUROC). We use

AUROC since it is an aggregate measure of performance across all

possible threshold settings. We also consider the test accuracy of

downstream models. For victim sample detection, we report the

�1 scores of the classification between correctly classified samples

and victim samples.

IF OCSVM RVAE Picket

A
U
R
O
C

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Wine Adult Marketing Restaurant Titanic

Figure 5: AUROC of outlier detection for random noise. The

error bars represent the standard errors. Picket is signifi-

cantly better (with p value less than 0.05) than the others

on Wine, Adult, Marketing and Restaurant.

IF OCSVM RVAE Picket

A
U
R
O
C

0.4

0.6

0.8

1.0

Wine Adult Marketing Restaurant Titanic

Figure 6: AUROC of outlier detection for systematic noise.

The error bars represent the standard errors. Picket is signif-

icantly better (with p value less than 0.05) than the others on

Wine, Adult, Restaurant and Titanic.

EvaluationProtocol All experiments are repeated five timeswith

different random seeds that control train-test split and noise injec-

tion; themean is reported.We also performone-sided paired t-tests

when we compare the examined methods. A method is considered

significantly better than another one if the p value is less than 0.05.

In addition, we provide a cross-validation-based evaluation in Ap-

pendix A.3 that examine the performance of outlier detection on

unseen data.

6.2 Training-Time Evaluation

We evaluate the performance of different methods on detecting er-

roneous points in the training data. We then evaluate how these

methods affect the performance of downstream models. We also

provide a study on synthetic datasets in Appendix A.2 to see how

these outlier detection methods perform when certain aspects of

the data and noise vary.

Detecting Corrupted Training Examples Figures 5, 6, and 7

show the AUROC obtained by the methods for different types of

Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas

IF OCSVM RVAE Picket

A
U
R
O
C

0.4

0.6

0.8

1.0

Wine-LR Wine-SVM Wine-NN HTRU2-LR HTRU2-SVM HTRU2-NN

Figure 7: AUROC of outlier detection for poisoned samples.

The error bars represent the standard errors. Picket is signif-

icantly better (with p value less than 0.05) than the others on

all the combinations except Wine-SVM.

noise, when 20% of the samples are corrupted. The results for ran-

dom and systematic noise correspond to Medium level noise. Re-

sults for Low and High levels are reported in Appendix A.5. For

Figure 7, note that the poisoned samples are model-specific and

hence we report the dataset model combination on the x-axis. Due

to data poisoning being limited to numerical data, we only eval-

uate on Wine and HTRU. As shown, Picket is the only approach

that consistently achieves an AUROC of close to or more than 0.8 for

all datasets and for all noise settings. Other methods achieve com-

parable performance in some settings but they are not consistent

across diverse settings. IF and OCSVM perform poorly on datasets

with textual attributes (Restaurant and Titanic) due to their lim-

ited capacity to handle text-based attributes. RVAE works quite

well under random noise, but its performance drops a lot when it

comes to systematic noise, which shows that it is not robust against

noise that introduces bias. In the presence of poisoned data, we find

that IF performs well on Wine but poorly on HTRU2, but OCSVM

shows the opposite. A possible reason is that the two datasets ex-

hibit different types of correlation between attributes, and the two

methods are good at capturing only one of them. RVAE shows poor

performance for both datasets.

For common errors in the real world, the results are shown in

Figure 8. We add synthetic errors of this type to Titanic and Restau-

rant, where 20% are corrupted. We choose these two because they

contain textual attributes for typos. We also report the results on

Food with real-world noise. We can see that on Restaurant and

Titanic, Picket outperforms the others by more than 6 points. On

Food, all the methods perform poorly. This is because the noise

level in Food is very low, and therefore hard to detect. In fact, the

real noise contained in Food does not have a significant effect on

the downstream models (as is shown in Table 22).

We also study how the fraction of corrupted samples affects the

performance of detection (see Appendix A.4). We find that Picket

keeps a relatively consistent performance when the fraction of cor-

rupted samples varies.

Effect on DownstreamModels We also study the effect of differ-

ent filtering methods on the downstreammodels. For each method,

we filter 20% of the samples with highest outlier scores, and train

different downstreammodels on the resulting training set. For each

dataset, the test set is fixed and contains only clean data. As refer-

ence points, we also include the test accuracy when 1) the training

IF OCSVM RVAE Picket

A
U
R
O
C

0.4

0.6

0.8

1.0

Restaurant Titanic Food

Figure 8: AUROC of outlier detection for common errors in

the real world. The error bars represent the standard errors.

Picket is significantly better (with p value less than 0.05)

than the others on all the datasets.

Table 2: Test accuracy of downstream models under adver-

sarial poisoning attacks and different filteringmethods. The

numbers are made bold when the corresponding method is

significantly better (with p value less than 0.05) than all the

others.

Dataset DM* IF OCSVM RVAE Picket CL NF

Wine
LR 0.7261 0.6976 0.7051 0.7312 0.7349 0.6745
SVM 0.7286 0.6933 0.7082 0.7310 0.7386 0.6727
NN 0.7210 0.6894 0.7035 0.7320 0.7365 0.6722

HTRU2
LR 0.8884 0.9015 0.8811 0.9067 0.9396 0.8799
SVM 0.8884 0.8979 0.8887 0.9232 0.9424 0.8832
NN 0.8671 0.8707 0.8643 0.9000 0.9280 0.8646

*DM = Downstream Model.

data is clean without corruption (CL), and 2) the training data is

corrupted but no filtering (NF) is performed. Note that in the CL

and NF cases, the sample size is different from the rest since there

is no filtering in these two. As a side effect of filtering, the decrease

in sample size will also affect the performance of the downstream

model. We want to include such an effect in our comparison, so we

use CL and NF with no sample filtered out as baselines.

First, we consider the case of data poisoning since this type of

corruption has the most significant effect on the downstream mod-

els. We measure the test accuracy of the downstream models when

poisoned data are injected into the training stage. The results are

shown in Table 2. If we compare CL with NF we see an average

drop of six accuracy points if corruptions are ignored and no filter-

ing is applied. We find that all methods reduce the negative impact

of the poisoned data and bring up the test accuracy. Nevertheless

that Picket outperforms all competing baselines and yields test time

accuracy improvements of more than three points in some cases. We

see that Picket is able to recover most of the accuracy loss for all

models in theWine dataset and comes very close to CL for HRTU2.

All other methods exhibit smaller accuracy improvements and do

not exhibit consistent behavior across datasets.

We also consider the cases of random and systematic noise, as

well as common errors in the real world. These types of noise

do not directly attack the downstream model. Moreover, most ML

Picket: Guarding Against Corrupted Data in Tabular Data during Learning and Inference

models are somewhat robust to these types of noise. As a result,

we expect to see a small gap in the test accuracy between CL and

NF, and all methods to perform comparably. We report the results

in these setups in Appendix A.6 for completeness.

6.3 Inference-Time Evaluation

We evaluate the different methods on victim sample detection un-

der different types of noise. The �1 scores under random (Medium

level), systematic (Medium level), adversarial noise and common

errors in the real world are reported in Table 3, 4, 5 and 6. Food

with real-world noise is not reported since we cannot find enough

victim samples from it. We report results for High and Low noise

in Appendix A.7.

From the tables, we can see that Picket has the best performance

in most cases. By comparing RF and our method, we show that the

reconstruction loss features provided by PicketNet are good signals to

help identify victim samples. Such signals are better than those pro-

vided by RVAE since our method outperforms RVAE+ most of the

time. TOAO performs consistently poorly since the assumption it

relies on does not hold for the downstreammodels and datasets we

consider. It works for image classification with complex convolu-

tional neural networks under adversarial settings since adding ran-

dom noise to images could eliminate the effect of adversarial noise.

However, for tabular datasets and models which are not that com-

plex, especially when the noise is not adversarial, adding random

noise does not make a big difference. Another method from the

adversarial learning literature (MWOC) works well in some cases

even if the noise is not adversarial.

6.4 Micro-Benchmarks

We perform a series of micro-benchmarks to evaluate different de-

sign decisions related to Picket.

Effectiveness of the Two-Stream Self-Attention

We perform an ablation study to validate the effectiveness of the

two-stream self-attention. We evaluate the performance of outlier

detection with only one stream and with both. The results are de-

picted in Figure 9. In the case of one stream, we simply let the

output of self-attention layer ; be either �
(;)
8 for the value stream,

or�
(;)
8 for the schema stream instead of �

(;)
8 +� (;)

8 , where 8 is the

index of the attribute. For fair comparison, we expand the dimen-

sion of all the vectors involved in the computation of multi-head

self-attention functions and feed-forward networks by a factor of√
2 in the one-stream cases, so that the network capacity (number

of parameters) remains the same after the pruning of one stream.

We use three setups: Wine with poisoning attack on NN, Adult

with systematic noise (Medium level), and Marketing with random

noise (Medium level).

From Figure 9, we see that for Adult and Marketing, PicketNet

with two streams outperforms both one-stream options. For Wine,

the value stream itself works fine, but a combination of the two

streams does not impair the performance of the model. Neither

of the two one-stream options demonstrates obvious superiority

over the other one, since there are cases that the value stream per-

forms better than the schema stream, and cases that the opposite

happens.

Schema Stream Value Stream Both Streams

A
U

R
O

C

0.6

0.7

0.8

0.9

1.0

1.1

Wine Adult Marketing

Figure 9: Outlier detection under different stream settings.

The error bars represent the standard errors.

Filtering at Early Stage

Filtering after Convergence

A
U

R
O

C

0.6

0.7

0.8

0.9

1.0

1.1

Wine Adult Marketing

Figure 10: Early vs. after-convergence filtering. The error

bars represent the standard errors.

Effectiveness of the Early Filtering Mechanism

We validate the effectiveness of early filtering by comparing the

performance of outlier detection at the early stage of PicketNet’s

training to that after convergence. The results are shown in Fig-

ure 10. We use the setup from the previous micro-benchmark.

Figure 10 shows that filtering at early stages consistently out-

performs filtering after convergence. The reason is that in the early

stage of training, the model is less likely to overfit to the input, and

therefore the reconstruction loss of the outliers differs from that of

the clean samples more.

Histogram-Based Threshold Selection We validate the effec-

tiveness of the histogram-based threshold selection strategy men-

tioned in Section 4.2. To better illustrate how it affects the down-

stream accuracy, we use Wine and HTRU2 with poisoning attacks

(20% of the samples are poisoned) where corruption has a signifi-

cant effect on the downstream models. For each dataset and down-

stream model combination, we plot the histogram of the Picket

reconstruction loss in Figure 11, and select the thresholds Xlow and

Xhigh accordingly so that the abnormal peaks and low-density tails

are filtered out. We report the downstream accuracy after filtering

with this strategy (Picket-Hist) in Table 7. Same as Section 6.2, we

also report the downstream accuracy under CL and NF as refer-

ence points. The results show that Picket-Hist gets very close to

CL where the data is clean, and much better than NF where no fil-

tering is applied, which verifies the effectiveness of this threshold-

selection strategy.

Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas

Table 3: �1 scores of victim sample detection at inference time under random noise (Medium level). The numbers are made

bold when the corresponding method is significantly better (with p value less than 0.05) than all the others.

Dataset DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Wine
LR 0.7690 0.7786 0.8172 0.6667 0.6686 0.6813 0.7150 0.8094
SVM 0.7812 0.7859 0.8254 0.6667 0.6750 0.6858 0.7622 0.8223
NN 0.7125 0.7470 0.7833 0.5896 0.6669 0.5107 0.6988 0.7631

Adult
LR 0.8352 0.7403 0.8489 0.6692 0.7866 0.2224 0.6725 0.8602
SVM 0.8434 0.7416 0.8553 0.6688 0.8060 0.4696 0.6215 0.8658
NN 0.8131 0.7127 0.8315 0.5117 0.6891 0.3216 0.7132 0.8411

Restaurant
LR 0.7726 –# – 0.7403 0.6456 0.6457 0.7459 0.8266
SVM 0.6854 – – 0.6796 0.6628 0.6596 0.5580 0.7618
NN 0.7605 – – 0.6994 0.6609 0.6110 0.7025 0.8203

Marketing
LR 0.8366 0.6623 0.8403 0.7567 0.7815 0.6666 0.7996 0.8549
SVM 0.8461 0.6689 0.8501 0.7527 0.7886 0.5133 0.8109 0.8607
NN 0.7931 0.6650 0.8029 0.6588 0.7050 0.6648 0.7265 0.8162

Titanic
LR 0.8257 – – 0.6990 0.6562 0.1409 0.7736 0.8424
SVM 0.8482 – – 0.6658 0.6436 0.4652 0.7932 0.8528
NN 0.8393 – – 0.6631 0.6387 0.2575 0.7566 0.8483

*DM = Downstream Model. #RVAE is not applicable to text attributes.

Table 4: �1 scores of victim sample detection at inference time under systematic noise (Medium level). The numbers are made

bold when the corresponding method is significantly better (with p value less than 0.05) than all the others.

Dataset DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Wine
LR 0.6883 0.4987 0.6619 0.6667 0.6499 0.3152 0.7937 0.7046
SVM 0.6785 0.5056 0.6630 0.6667 0.6325 0.3399 0.7957 0.6973
NN 0.6760 0.6134 0.5689 0.6865 0.6659 0.3765 0.7190 0.6034

Adult
LR 0.8281 0.6960 0.8342 0.6695 0.7488 0.1864 0.7430 0.8501
SVM 0.8414 0.6729 0.8428 0.6694 0.7900 0.3617 0.6646 0.8643
NN 0.8108 0.6534 0.8245 0.5439 0.6808 0.2195 0.7850 0.8336

Restaurant
LR 0.7773 –# – 0.7419 0.6524 0.6496 0.7487 0.8255
SVM 0.7275 – – 0.7093 0.6475 0.6356 0.6125 0.7845
NN 0.7628 – – 0.7010 0.6579 0.6051 0.7003 0.8126

Marketing
LR 0.8358 0.6504 0.8403 0.7623 0.7770 0.6090 0.8068 0.8514
SVM 0.8501 0.6575 0.8552 0.7716 0.7817 0.6185 0.8208 0.8638
NN 0.8036 0.6355 0.8098 0.6649 0.7074 0.6635 0.7035 0.8118

Titanic
LR 0.8376 – – 0.7349 0.6493 0.4076 0.7901 0.8438
SVM 0.8224 – – 0.6674 0.6387 0.5592 0.7593 0.8412
NN 0.8112 – – 0.6660 0.6333 0.3139 0.7462 0.8159

*DM = Downstream Model. #RVAE is not applicable to text attributes.

Table 5: �1 scores of victim sample detection at inference time under adversarial noise. The numbers are made bold when the

corresponding method is significantly better (with p value less than 0.05) than all the others.

Dataset DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Wine
LR 0.7899 0.6758 0.7905 0.8233 0.6660 0.5030 0.8287 0.8197
SVM 0.7951 0.6791 0.8004 0.8119 0.6660 0.5743 0.8324 0.8291
NN 0.7400 0.6922 0.7347 0.6815 0.6663 0.6620 0.3980 0.7442

HTRU2
LR 0.8727 0.0160 0.8699 0.6667 0.6654 0.5123 0.8389 0.8757
SVM 0.9409 0.3436 0.9399 0.6667 0.6623 0.6456 0.2211 0.9438
NN 0.9103 0.3007 0.9164 0.7258 0.6656 0.2873 0.7726 0.9201

*DM = Downstream Model.

Table 6: �1 scores of victim sample detection at inference time under common errors in the real world. The numbers are made

bold when the corresponding method is significantly better (with p value less than 0.05) than all the others.

Dataset DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Restaurant
LR 0.7335 –# – 0.7420 0.6527 0.5003 0.7330 0.7445
SVM 0.6948 – – 0.7168 0.6415 0.6104 0.6189 0.6928
NN 0.7716 – – 0.6818 0.6633 0.5470 0.6762 0.7713

Titanic
LR 0.5633 – – 0.3350 0.6792 0.5934 0.4740 0.8905
SVM 0.6304 – – 0.4412 0.6798 0.4374 0.5706 0.8651
NN 0.6100 – – 0.4140 0.6816 0.6855 0.8093 0.8205

*DM = Downstream Model. #RVAE is not applicable to text attributes.

Picket: Guarding Against Corrupted Data in Tabular Data during Learning and Inference

0 50 100 150 200
Reconstruction Loss

0.00

0.01

0.02

0.03

0.04

D
e
n
s
it

y

δlow = 8

δhigh = 100

(a) Wine-LR

0 50 100 150 200
Reconstruction Loss

0.00

0.01

0.02

0.03

D
e
n
s
it
y

δlow=10

δhigh=100

(b) Wine-SVM

0 "� 100 1#� 200
%�������	
��
� ����

0.00

0.01

0.02

0.03

0.04

D
e
n
s
it

y

δlow =7

δhigh=100

(c) Wine-NN

0 �� 100 1�� 200
��������� !$&' ()*+

0.00

0.01

0.02

0.03

0.04

D
e
n
s
it

y

δlow = 1,

δhigh=100

(d) HTRU2-LR

0 -. 100 1/0 200
Re12345689:;<= >?@A

0.00

0.01

0.02

0.03

0.04

0.05

D
e
n
s
it

y
δlow = 15

δhigh = 100

(e) HTRU2-SVM

0 50 100 150 200
Reconstruction Loss

0.00

0.02

0.04

0.06

D
e
n
s
it
y

δlow=14

δhigh=100

(f) HTRU2-NN

Figure 11: Histograms of the reconstruction loss under different dataset-model combinations and the thresholds Xlow, Xhigh.

Table 7: Test accuracy of downstream models after filtering

based on the histogram of reconstruction loss (Picket-Hist).

Dataset Downstream Model Picket-Hist CL NF

Wine
LR 0.7500 0.7551 0.6846
SVM 0.7459 0.7530 0.6836
NN 0.7133 0.7204 0.6561

HTRU2
LR 0.9344 0.9435 0.8810
SVM 0.9375 0.9435 0.8856
NN 0.9207 0.9207 0.8720

Effectiveness of Per-Class Victim Sample Detectors We com-

pare the performance of our per-class detectors against a unified

detector and a score-based detector. The unified detector uses one

single logistic regression model over the same features to distin-

guish between good and victim samples regardless of the down-

stream predictions. The score-based detector follows the logic of

the training time outlier detector, i.e., it aggregates the reconstruc-

tion losses attribute-wise, and considers samples with high loss as

victims. We perform the comparison on three datasets with all of

the three downstream models: Wine with adversarial noise, Adult

with systematic noise (Medium level) and Marketing with random

noise (Medium level).

The result is shown in Table 8. Per-Class Detectors outperform

the other two, which validates the effectiveness of having one de-

tector per-class. The unified detector performs poorly because the

victim samples in one class differ from those in the other statis-

tically, in which case one class may suffer from corruption in one

group of attributes, while the other classmay suffer from that in an-

other group of attributes. The score-based detector does not work

well since it only has access to the noise level of the samples but

Table 8: A comparison between the per-class detectors, the

unified detector, and the score-based detector on inference

time victim sample detection.

Dataset
Downstream

Model

Per-Class

Detectors

Unified

Detector

Score-based

Detector

Wine
LR 0.8188 0.7023 0.6885
SVM 0.8287 0.7152 0.7261
NN 0.7444 0.4027 0.6594

Adult
LR 0.8489 0.6710 0.7197
SVM 0.8634 0.6983 0.7297
NN 0.8336 0.6785 0.7225

Marketing
LR 0.8553 0.7740 0.7343
SVM 0.8618 0.7774 0.7361
NN 0.8152 0.7370 0.7174

does not consider the connection between corruptions and the down-

stream prediction.

Effectiveness of Mixed Artificial Noise We validate the effec-

tiveness of our artificial noise setting (Mixed) by comparing it to

the setting where the artificial noise is generated in the same way

as the test time noise (Exact). The results are shown in Table 9. We

use the same datasets and test time noise as the previous micro-

benchmark. We find that with mixed artificial noise, the perfor-

mance of Picket is comparable to the setting where the exact noise

distribution is known under random (see Marketing) and system-

atic noise (see Adult). Under adversarial noise (see Wine), Exact is

better than Mixed but the gap is not excessively large.

6.5 Fairness of Outlier Detection

We compute the equality of opportunity between majority and mi-

nority groups to check the fairness of outlier detection. Specifically,

the opportunity WG for each group G is defined as the fraction of

Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas

Table 9: F1 scores of Picket on victim sample detectionunder

different artificial noise settings.

Dataset
Downstream

Model
Mixed Exact

Wine
LR 0.8197 0.8646
SVM 0.8291 0.8812
NN 0.7442 0.7790

Adult
LR 0.8501 0.8372
SVM 0.8643 0.8562
NN 0.8336 0.8157

Marketing
LR 0.8549 0.8544
SVM 0.8607 0.8592
NN 0.8162 0.8120

clean examples in that group that are kept after filtering:

WG = #
kept
G /# clean

G

where # clean
G is the number of clean examples in group G, and

#
kept
G is the number of clean examples in G that are not filtered

out. We report the difference of opportunity ΔW = WG<
− WG"

,

where G" is the majority group and G< is the minority. ΔW closer

to 0 indicates better fairness.

We choose two demographic datasets, Adult and Marketing, to

verify the fairness of the outlier detectionmethods. For each dataset,

we pick one sensitive attribute at a time, and divide its value do-

main into majority and minority groups as follows:

(1) Sort the values by their frequency in descending order.

(2) Add values in order to the majority group until it covers

more than 80% of the examples.

(3) Add the rest of the values into the minority group.

We inject random and systematic noise of medium magnitude to

20% of the examples, filter out 20%, and report the difference of op-

portunity for each dataset-attribute combination in Table 10. We

can see that for most of the sensitive attributes, the difference of

opportunity is less than 0.05 if the data are filtered by Picket. How-

ever, for certain attributes (e.g. Marketing-Marital and Marketing-

Language), the difference is quite large, which shows potential risk

of unfairness. The other models also show bias towards the ma-

jority group for certain attributes. We defer the improvement of

fairness as a future direction to explore.

6.6 Runtime and Scalability

We report the training time of PicketNet for each dataset in Ta-

ble 12. The device we use is a single NVIDIA Tesla V100-PCIE GPU

with 32GB memory. Note that the current runtime has not been

fully optimized.

We also study the attribute-wise scalibilty of PicketNet using

synthetic datasets. The datasets have a different number of attributes

ranging from 2 to 20with a increase step of one, while the other set-

tings are the same (the dimension of �
(;)
8 and %

(;)
8 is fixed to 8). We

report the training time of 100 epochs in Figure 12. The growth

of the runtime is roughly quadratic as the number of attributes

increases. This is expected since the dependencies between one

attribute and all the others yield quadratic complexity. When the

number of attributes is excessively large, we can apply simplemeth-

ods like computing the correlations between attributes to split the

Training Time

T
ra

in
in

g
 T

im
e

 (
s
e

c
)

0

500

1000

1500

Number of Attributes

0 5 10 15 20

Figure 12: Attribute-wise scalibility of PicketNet

attributes into groups, where only the attributes within the same

group exhibit correlations. Then, we can apply PicketNet to learn

the structure for each of the groups. We evaluate the effectiveness

of this strategy on the Alarm dataset [21] which contains 36 at-

tributes and 1000 records. The functional dependencies in Alarm

is known. We split the attributes into three groups based on the

functional dependencies. Each group contains 12 of them. We run

Picket outlier detection on the three groups independently, and

then aggregate the reconstruction loss across groups. We inject

random and systematic noise of medium magnitude to 20% of the

records, and report the AUROC of outlier detection in Table 11.

The results show that Picket provides high-quality outlier detec-

tion under the aforementioned strategy.

We report the inference time overhead (runtime of PicketNet

loss computing and victim sample detectors) as long as the run-

time of downstream prediction of each dataset in Table 13, when

the data come in batches of 100. We can see that the overhead of

PicketNet loss computing dominates the runtime, but it is still no

more than a few seconds. As the downstreammodel becomesmore

complex, the relative overhead introduced by Picket would be re-

duced.

7 RELATED WORK

Data Validation Systems for ML TFX [3, 6] and Deequ [42] pro-

pose data validation modules that rely on user-defined constraints

and simple anomaly detection. CleanML [28] studies how the qual-

ity of training data affects the performance of downstream models.

These works focus on simple constraints such as data types, value

ranges, and one-column statistics and ignore the structure of the

data. NaCL [25] and CPClean [24] propose algorithms to deal with

missing entries, and the effect of missing entries are analyzed the-

oretically in [30]. These works are orthogonal to ours since they

only consider missing entries.

Learning Dependencies with Attention Mechanisms Atten-

tion mechanisms have been widely used in the field of natural lan-

guage processing to learn the dependencies between tokens [46,

50]. Recently, AimNet [47] demonstrates that attentionmechanisms

are also effective in learning the dependencies between attributes

in structured tabular data. AimNet employs the attention techniques

to impute the missing values in tabular data and achieve state-of-

the-art performance. AimNet is rather simplistic and it only cap-

tures schema-level dependencies. Furthermore, AimNet requires

clean training data and does not employ any robust-training mech-

anism to tolerate noise.

Picket: Guarding Against Corrupted Data in Tabular Data during Learning and Inference

Table 10: Difference of opportunity when 20% of the examples are filtered out.

Noise

Type
Dataset-Attribute IF OCSVM RVAE Picket

Random
Marketing-Marital -0.0469 -0.0821 -0.0196 -0.1400
Marketing-Age 0.0720 -0.0071 0.0019 0.0216

Marketing-Education -0.0436 -0.0521 -0.0192 0.0174
Marketing-Live -0.1131 -0.1242 -0.0488 -0.0242
Marketing-Dual -0.0226 -0.0737 -0.0357 -0.0089

Marketing-Hometype -0.0865 -0.1581 -0.0634 -0.0458
Marketing-Ethnic -0.1762 -0.2258 -0.0760 -0.0610

Marketing-Language -0.5625 -0.4739 -0.0753 -0.3739
Adult-Workclass -0.1290 -0.0259 -0.0277 -0.0042

Adult-Marital-status -0.3111 -0.0676 -0.0013 -0.0706
Adult-Relationship -0.2545 0.0027 0.0081 -0.0188

Adult-Race -0.4452 -0.0326 -0.0259 -0.0515

Systematic
Marketing-Marital -0.0541 -0.1178 -0.0418 -0.2031
Marketing-Age 0.0902 -0.0051 0.0097 0.0270

Marketing-Education -0.0366 -0.0509 -0.0164 0.0142
Marketing-Live -0.0781 -0.1333 -0.0640 -0.0090
Marketing-Dual -0.0275 -0.0757 -0.0224 -0.0244

Marketing-Hometype -0.0995 -0.1892 -0.1182 -0.0528
Marketing-Ethnic -0.1919 -0.2465 -0.1388 -0.0777

Marketing-Language -0.5981 -0.5397 -0.1555 -0.4791
Adult-Workclass -0.1819 -0.0079 -0.0287 -0.0012

Adult-Marital-status -0.3158 -0.0690 0.0026 -0.2519
Adult-Relationship -0.2444 -0.0148 0.0067 -0.0635

Adult-Race -0.4124 -0.0560 -0.0088 -0.0719

Table 11: AUROC scores of outlier detection on the Alarm

dataset. The attributes are split into three groups for Picket.

Noise Type IF OCSVM RVAE Picket

Random 0.8848 0.8835 0.9357 0.9579
Systematic 0.7410 0.7283 0.7957 0.7967

Table 12: Training time of PicketNet for each dataset.

Dataset Wine Adult Restaurant Marketing Titanic HTRU2

Training

Time (sec)
1953 8256 3794 4581 1693 189

Outlier Detection Methods Outlier detection for tabular data

has been studied for years, and many rule-based methods have

been proposed [15, 23, 39]. Learning-based outlier detection has

become popular recently and focuses on semi-supervised or unsu-

pervised approaches. Semi-supervised methods such as the ones

proposed in [20, 33, 49] still need human in the loop to explicitly

label some data. Isolation Forest [29] and One-Class SVM [8] are

simple unsupervised methods that are widely used. Autoencoder-

based outlier detectionmethods [1, 14, 41] are most relevant to our

work since they also rely on the reconstruction of the input, and

among them RVAE [14] works best for mixed-type tabular data.

Adversarial Attacks and Defenses Training time attacks [4, 27,

35] add poisoned samples to corrupt the target model. Filtering-

based defenses [11, 44] remove suspicious samples during train-

ing based on training statistics. Inference time attacks [7, 31, 34]

add small perturbation to test samples to fool the classifier. Ef-

forts have been made to improve the robustness of the model by

training data augmentation [16, 32] or making modifications to

the model [37, 38, 48]. Those works focus on robustness from the

model perspective without assessment of data quality. Hence, they

are orthogonal to ours. Another group of defenses trying to detect

adversarial samples at inference time are more directly related to

our work. Roth et al. [40] and Hu et al. [22] add random noise to

input samples and detect suspicious ones based on the changes in

the logit values. Grosse et al. [18] assume that adversarial samples

have different distributions from benign samples and add another

class to the classifier to detect them.

8 CONCLUSION

We introduced Picket, a first-of-its-kind system that safeguards

against data corruptions for machine learning pipelines over tabu-

lar data either during training or deployment. To design Picket, we

introduced PicketNet, a novel self-supervised deep learning model

that corresponds to a Transformer network for tabular data. Picket

is designed as a plugin that can increase the robustness of any ma-

chine learning pipeline.

REFERENCES
[1] Jinwon An and Sungzoon Cho. 2015. Variational autoencoder based anomaly

detection using reconstruction probability. Special Lecture on IE 2, 1 (2015).
[2] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2019. A simple but tough-to-beat

baseline for sentence embeddings. 5th International Conference on Learning
Representations, ICLR 2017 ; Conference date: 24-04-2017 Through 26-04-2017.

[3] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria
Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen Koo,
Lukasz Lew, Clemens Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti
Ramesh, Sudip Roy, Steven Euijong Whang, Martin Wicke, Jarek Wilkiewicz,
Xin Zhang, and Martin Zinkevich. 2017. TFX: A TensorFlow-Based Production-
Scale Machine Learning Platform. In Proceedings of the 23rd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (Halifax, NS,
Canada) (KDD ’17). Association for Computing Machinery, New York, NY, USA,
1387–1395. https://doi.org/10.1145/3097983.3098021

[4] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning Attacks against
Support Vector Machines. In Proceedings of the 29th International Coference on
International Conference on Machine Learning (Edinburgh, Scotland) (ICML’12).
Omnipress, Madison, WI, USA, 1467–1474.

[5] Piotr Bojanowski, Edouard Grave, Armand Joulin, and TomasMikolov. 2017. En-
richingWord Vectors with Subword Information. Transactions of the Association
for Computational Linguistics 5 (2017), 135–146.

[6] Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin
Zinkevich. [n.d.]. Data validation for machine learning. In MLSys-19.

[7] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness
of neural networks. In 2017 ieee symposium on security and privacy (sp). IEEE,

https://doi.org/10.1145/3097983.3098021

Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas

Table 13: Inference overhead of Picket and runtime of downstream prediction.

Dataset Wine Adult Restaurant Marketing Titanic HTRU2

PicketNet Loss
Computing (sec)

0.1512 0.4303 0.3003 0.4048 0.2892 0.0316

Victim Sample
Detectors (sec)

0.0006 0.0009 0.0012 0.0009 0.0008 0.0004

Downstream
Prediction (LR) (sec)

0.0003 0.0010 0.0016 0.0011 0.0006 0.0003

Downstream
Prediction (SVM) (sec)

0.0003 0.0021 0.0012 0.0012 0.0006 0.0003

Downstream
Prediction (NN) (sec)

0.0004 0.0021 0.0030 0.0014 0.0005 0.0004

39–57.
[8] Yunqiang Chen, Xiang Sean Zhou, and Thomas S Huang. 2001. One-class SVM

for learning in image retrieval. In Proceedings 2001 International Conference on
Image Processing (Cat. No. 01CH37205), Vol. 1. IEEE, 34–37.

[9] JacobDevlin,Ming-Wei Chang, Kenton Lee, andKristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805 (2018).

[10] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and
Alistair Stewart. 2017. Being robust (in high dimensions) can be practical. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org, 999–1008.

[11] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Jacob Steinhardt,
and Alistair Stewart. 2018. Sever: A robust meta-algorithm for stochastic opti-
mization. arXiv preprint arXiv:1803.02815 (2018).

[12] Thomas G Dietterich. 1998. Approximate statistical tests for comparing super-
vised classification learning algorithms. Neural computation 10, 7 (1998), 1895–
1923.

[13] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml

[14] Simão Eduardo, Alfredo Nazábal, Christopher K. I. Williams, and Charles Sutton.
2020. Robust Variational Autoencoders for Outlier Detection in Mixed-Type
Data. In The 23rd International Conference on Artificial Intelligence and Statistics.

[15] Wenfei Fan and Floris Geerts. 2012. Foundations of data quality management.
Morgan & Claypool Publishers.

[16] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[17] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. CoRR abs/1412.6572 (2015).

[18] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and
Patrick McDaniel. 2017. On the (statistical) detection of adversarial examples.
arXiv preprint arXiv:1702.06280 (2017).

[19] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian QWeinberger. 2017. On calibration
of modern neural networks. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70. JMLR. org, 1321–1330.

[20] Alireza Heidari, Joshua McGrath, Ihab F Ilyas, and Theodoros Rekatsinas. 2019.
Holodetect: Few-shot learning for error detection. In Proceedings of the 2019 In-
ternational Conference on Management of Data. 829–846.

[21] Edward Herskovits. 1992. Computer-Based Probabilistic-Network Construction.
Ph.D. Dissertation. Stanford, CA, USA. UMI Order No. GAX92-05646.

[22] Shengyuan Hu, Tao Yu, Chuan Guo, Wei-Lun Chao, and Kilian Q Weinberger.
2019. A New Defense Against Adversarial Images: Turning a Weakness into a
Strength. In Advances in Neural Information Processing Systems. 1633–1644.

[23] Ihab F Ilyas and Xu Chu. 2015. Trends in cleaning relational data: Consistency
and deduplication. Foundations and Trends in Databases 5, 4 (2015), 281–393.

[24] Bojan Karlaš, Peng Li, Renzhi Wu, Nezihe Merve Gürel, Xu Chu, Wentao Wu,
and Ce Zhang. 2020. Nearest Neighbor Classifiers over Incomplete Information:
From Certain Answers to Certain Predictions. arXiv:2005.05117 [cs.LG]

[25] Pasha Khosravi, Yitao Liang, YooJung Choi, and Guy Van den Broeck. 2019.
What to Expect of Classifiers? Reasoning about Logistic Regression with Miss-
ing Features. In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19. International Joint Conferences on Artificial
Intelligence Organization, 2716–2724. https://doi.org/10.24963/ijcai.2019/377

[26] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[27] Pang Wei Koh, Jacob Steinhardt, and Percy Liang. 2018. Stronger data poisoning
attacks break data sanitization defenses. arXiv preprint arXiv:1811.00741 (2018).

[28] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2019.
CleanML: A Benchmark for Joint Data Cleaning and Machine Learning [Exper-
iments and Analysis]. arXiv preprint arXiv:1904.09483 (2019).

[29] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008
Eighth IEEE International Conference on Data Mining. IEEE, 413–422.

[30] Zifan Liu, Jongho Park, Nils Palumbo, Theodoros Rekatsinas, and Christos
Tzamos. 2020. Robust Mean Estimation under Coordinate-level Corruption.
arXiv:2002.04137 [cs.LG]

[31] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. 2018. Towards Deep Learning Models Resistant to
Adversarial Attacks. In International Conference on Learning Representations.
https://openreview.net/forum?id=rJzIBfZAb

[32] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. 2018. Towards Deep Learning Models Resistant to
Adversarial Attacks. In International Conference on Learning Representations.
https://openreview.net/forum?id=rJzIBfZAb

[33] Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel Mad-
den, Mourad Ouzzani, Michael Stonebraker, and Nan Tang. 2019. Raha: A
Configuration-Free Error Detection System. In Proceedings of the 2019 Inter-
national Conference on Management of Data (Amsterdam, Netherlands) (SIG-
MOD ’19). Association for Computing Machinery, New York, NY, USA, 865–882.
https://doi.org/10.1145/3299869.3324956

[34] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
Deepfool: a simple and accurate method to fool deep neural networks. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2574–
2582.

[35] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C Lupu, and Fabio Roli. 2017. Towards poisoning of deep
learning algorithms with back-gradient optimization. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security. 27–38.

[36] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish
Rawat, Martin Wistuba, Valentina Zantedeschi, Nathalie Baracaldo, Bryant
Chen, Heiko Ludwig, Ian Molloy, and Ben Edwards. 2018. Adversarial Robust-
ness Toolbox v1.2.0. CoRR 1807.01069 (2018). https://arxiv.org/pdf/1807.01069

[37] Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen, and Jun
Zhu. 2020. Rethinking Softmax Cross-Entropy Loss for Adversar-
ial Robustness. In International Conference on Learning Representations.
https://openreview.net/forum?id=Byg9A24tvB

[38] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. 2019. Improv-
ing adversarial robustness via promoting ensemble diversity. arXiv preprint
arXiv:1901.08846 (2019).

[39] Erhard Rahm and Hong Hai Do. 2000. Data cleaning: Problems and current
approaches. IEEE Data Eng. Bull. 23, 4 (2000), 3–13.

[40] Kevin Roth, Yannic Kilcher, and Thomas Hofmann. 2019. The Odds are Odd:
A Statistical Test for Detecting Adversarial Examples. In Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA (Proceedings of Machine Learning Research), Ka-
malika Chaudhuri and Ruslan Salakhutdinov (Eds.), Vol. 97. PMLR, 5498–5507.
http://proceedings.mlr.press/v97/roth19a.html

[41] Mohammad Sabokrou, Mahmood Fathy, and Mojtaba Hoseini. 2016. Video
anomaly detection and localisation based on the sparsity and reconstruction er-
ror of auto-encoder. Electronics Letters 52, 13 (2016), 1122–1124.

[42] Sebastian Schelter, Felix Biessmann, Dustin Lange, Tammo Rukat, Phillipp
Schmidt, Stephan Seufert, Pierre Brunelle, and Andrey Taptunov. 2019. Unit
Testing Data with Deequ. In Proceedings of the 2019 International Con-
ference on Management of Data (Amsterdam, Netherlands) (SIGMOD ’19).

http://archive.ics.uci.edu/ml
https://arxiv.org/abs/2005.05117
https://doi.org/10.24963/ijcai.2019/377
https://arxiv.org/abs/2002.04137
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1145/3299869.3324956
https://arxiv.org/pdf/1807.01069
https://openreview.net/forum?id=Byg9A24tvB
http://proceedings.mlr.press/v97/roth19a.html

Picket: Guarding Against Corrupted Data in Tabular Data during Learning and Inference

Association for Computing Machinery, New York, NY, USA, 1993–1996.
https://doi.org/10.1145/3299869.3320210

[43] Karen Simonyan and Andrew Zisserman. 2014. Two-stream convolutional net-
works for action recognition in videos. In Advances in neural information pro-
cessing systems. 568–576.

[44] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. 2017. Certified defenses
for data poisoning attacks. In Advances in neural information processing systems.
3517–3529.

[45] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and
Jifeng Dai. 2020. VL-BERT: Pre-training of Generic Visual-Linguistic
Representations. In International Conference on Learning Representations.
https://openreview.net/forum?id=SygXPaEYvH

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in neural information processing systems. 5998–6008.

[47] Richard Wu, Aoqian Zhang, Ihab F Ilyas, and Theodoros Rekatsinas. 2020.
Attention-based Learning for Missing Data Imputation in HoloClean. Proceed-
ings of Machine Learning and Systems (2020), 307–325.

[48] Chang Xiao, Peilin Zhong, and Changxi Zheng. 2019. Resisting Adversarial At-
tacks by :-Winners-Take-All. arXiv preprint arXiv:1905.10510 (2019).

[49] Zhenxia Xue, Youlin Shang, and Aifen Feng. 2010. Semi-supervised outlier de-
tection based on fuzzy rough C-means clustering. Mathematics and Computers
in simulation 80, 9 (2010), 1911–1921.

[50] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. 2019. Xlnet: Generalized autoregressivepretraining for language
understanding. InAdvances in neural information processing systems. 5754–5764.

https://doi.org/10.1145/3299869.3320210
https://openreview.net/forum?id=SygXPaEYvH

Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas

A APPENDIX

A.1 Hyper-parameters of PicketNet

PicketNet is not sensitive to hyper-parameters in most cases. The

default hyper-parameters we use in the experiments is shown in

Table 14. For purely numerical datasets, we reduce the dimension

of �
(;)
8 and %

(;)
8 to 8, and for HTRU2, we reduce the number of

self-attention layers to 1. In the other datasets, we always use the

default hyper-parameters. We use the Adam optimizer [26] with

V1 = 0.9, V2 = 0.98 and n = 10−9 for training. The learning rate

;A = 0.53−0.5min(B−0.5, 300−1.5B), where 3 is the dimension of �
(;)
8

and %
(;)
8 , B is the index of the training step. ;A increases in the first

few steps and then decreases. Typically, PicketNet takes 100 to 500

epochs to converge, depending on the datasets.

A.2 Outlier Detection on Synthetic Data

We evaluate the performance of outlier detection on synthetic datasets

to understand the effects of several aspects about the data and

noise, including the strength of structure, data dimension, noise

level and magnitude of extreme outliers. Here the term structure

means dependencies or correlations between attributes.

We generate synthetic datasets as follows. Each synthetic data

point G = [G1, G2, . . . , G)]) is generated by G = �I, where I ∈
R
' and � ∈ R)×' . Each entry of I is sampled from the standard

Gaussian distribution, and each entry of � is sampled uniformly

from −1 to 1. Unless otherwise specified, we inject random noise

with V = 0.2 and f1 = 1 to 20% of the samples by default.

Effect of Structure By performing outlier detection over syn-

thetic datasets that exhibit different strength of structure, we show

that the advantage of Picket over the other outlier detection meth-

ods is its ability to capture the structure of the data. We fix) = 10

and vary ' to change the strength of structure. Smaller ' indicates

stronger structure and more redundancy across attributes. The re-

sults are shown in Figure 13. Picket performs better when the struc-

ture is strong, while the performance of the other methods is not

affected by the strength of structure, which indicates that Picket is

able to capture the structure of the data and benefit from it.

Effect of Data Dimension We vary the the data dimension)

to study how it affects the performance. The hidden dimension

' is set to) so that the attributes are independent. The results

are shown in Figure 14. The performance of all methods increases

as the data dimension gets larger. The reason is that there are

more corrupted cells in corrupted samples when the dimension

increases, making them easier to be detected. Note that RVAE per-

forms quite well in this setting, which is not surprising since it is

built exactly on the assumption that the data come from Gaussian

distributions.

Effect of Noise Level We study the effect of noise level, including

the fraction of corrupted samples, the fraction of corrupted cells

in corrupted samples (V) and the magnitude of the random noise

(f1). Each time we vary one of the factors and fix the others. The

data dimension) is fixed to 10, and ' is fixed to 5. As is shown

in Figure 15, when we vary the fraction of corrupted samples, the

performance of all methods keeps stable. Figure 16 and 17 show

that the performance of all methods increases as we increase the

fraction of corrupted cells in corrupted samples or the magnitude

of the randomnoise. These results show that the corruption level of

the corrupted samples have a more significant effect on the outlier

detection performance than the fraction of corrupted samples.

Effect of Extreme Outliers We study how the models behave

under extreme outliers with different magnitude. We corrupt 20%

of the samples, and among those samples 20% of the cells are mul-

tiplied by a scaling factor. We vary the value of the scaling factor

and report the detection performance in Figure 18. As the scaling

factor gets larger, the performance of all methods increases. This is

expected since more extreme values deviate more from the normal

distribution.

IF OCSVM RVAE Picket

A
U
R
O
C

0.60

0.65

0.70

0.75

0.80

0.85

R

1 2 3 4 5 6 7 8 9 10 11

Figure 13: Training time outlier detection over synthetic

datasets that exhibit different strength of structure.

IF OCSVM RVAE Picket

A
U

R
O

C

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Dimension of the Synthetic Data

0 5 10 15 20 25 30 35 40 45

Figure 14: Training time outlier detection over synthetic

datasets that have different dimensions.

A.3 Outlier Detection with Cross-Validation

We evaluate the ability to detect outliers for unseen data during

training using cross-validation. We use 5 iterations of 2-fold cross-

validation with a modified t-test recommended by Dietterich and

Thomas [12]. Specifically, in each iteration, we randomly split the

dataset into two folds. Then we use one fold to train the outlier de-

tectionmodels, and the other to validate their performance. The re-

sults are reported in Table 15. The results shows that Picket achieves

the best performance among the examined methods on all dataset-

noise combinations for unseen data at training time. In some cases,

Picket is significantly better than all competing methods.

Picket: Guarding Against Corrupted Data in Tabular Data during Learning and Inference

Table 14: Default hyper-parameters for PicketNet.

Hyper-Parameter Value

Number of Self-Attention Layers 6

Number of Attention Heads 2

Dimension of �
(;)
8

and %
(;)
8

64

Number of Hidden Layers in Each Feedforward Network 1

Dimension of the Hidden Layers in Feedforward Networks 64

Dropout 0.1

Size of the Negative Sample Set /8 4

Warm-up Epochs �1 for Loss-Based Filtering 50

Loss Recording Epochs �2 20

IF OCSVM RVAE Picket

A
U

R
O

C

0.60

0.65

0.70

0.75

0.80

0.85

Fraction of Corrupted Samples (%)

5 10 15 20 25 30

Figure 15: Training time outlier detection over synthetic

datasets under different fractions of corrupted samples.

IF OCSVM RVAE Picket

A
U

R
O

C

0.6

0.7

0.8

0.9

Fraction of Corrupted Cells in Corrupted Samples (%)

0 10 20 30 40 50 60 70 80 90 100 110

Figure 16: Training time outlier detection over synthetic

datasets under different fractions of corrupted cells in cor-

rupted samples.

A.4 Performance of Training Time Outlier
Detection under Different Fraction of
Corrupted Samples

We vary the fraction of corrupted samples, and report the corre-

sponding AUROC of training time outlier detection in Figure 19.

The datasets we use are Wine with poisoning attack on NN, Adult

with systematic noise, and Marketing with random noise. The ran-

dom and systematic noise is in the Medium level.

From the resultswe can see that the detection performance could

either increase or decrease as the fraction of corrupted samples

grows, depending on the type of noise and detection method. One

IF OCSVM RVAE Picket
A

U
R

O
C

0.6

0.7

0.8

0.9

Magnitude of Random Noise

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Figure 17: Training time outlier detection over synthetic

datasets under different noise magnitudes.

IF OCSVM RVAE Picket

A
U

R
O

C

0.6

0.7

0.8

0.9

1.0

Scaling Factor

1 2 3 4 5 6 7 8 9 10 11

Figure 18: Training time outlier detection over synthetic

datasets under different levels of extreme values.

one hand, the outliers are easier to detect when they form a larger

cluster; one the other hand, more corrupted samples may mislead

the learning of the clean distribution. Nevertheless, Picket keeps

a relatively consistent performance with either large or small frac-

tion of corrupted samples, while other methods may have a large

gap when the fraction varies.

A.5 Performance of Training Time Outlier
Detection under Low/High Level
Random/Systematic Noise

We depict the AUROC of training time outlier detection under

low/high level random/systematic noise in Figure 20, 21, 22, 23,

Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas

IF OCSVM RVAE Picket

A
U

R
O

C

0.80

0.85

0.90

0.95

1.00

Fraction of Corrupted Samples (%)

5 10 15 20 25 30

(a) Wine under Poisoning Attack

IF OCSVM RVAE Picket

A
U

R
O

C

0.75

0.80

0.85

0.90

0.95

Fraction of Corrupted Samples (%)

5 10 15 20 25 30

(b) Adult under Systematic Noise (Medium)

IF OCSVM RVAE Picket

A
U

R
O

C

0.75

0.80

0.85

0.90

Fraction of Corrupted Samples (%)

5 10 15 20 25 30

(c) Marketing under Random Noise (Medium)

Figure 19: AUROC of outlier detection under different fractions of corrupted samples.

Table 15: AUROC of outlier detection from cross-validation.

The numbers are made bold when the corresponding

method is significantly better (p value less than 0.05) than

all the others.

Dataset Noise Type IF OCSVM RVAE Picket

Wine

Random-Medium 0.8876 0.8886 0.9170 0.9252
Systematic-Medium 0.9537 0.8971 0.9123 0.9669

Poison-LR 0.9756 0.9054 0.9061 0.9781
Poison-SVM 0.9761 0.9047 0.9025 0.9787
Poison-NN 0.9877 0.8696 0.9356 0.9921

Adult
Random-Medium 0.7800 0.8260 0.9019 0.9240

Systematic-Medium 0.8048 0.8217 0.8530 0.9180

Restaurant
Random-Medium 0.4814 0.4431 0.6985 0.9281

Systematic-Medium 0.4805 0.4449 0.6596 0.8778
Real* 0.5514 0.5116 0.4558 0.8978

Marketing
Random-Medium 0.7539 0.7804 0.8688 0.8646

Systematic-Medium 0.6746 0.6632 0.7787 0.7810

Titanic
Random-Medium 0.6014 0.6933 0.5819 0.7709

Systematic-Medium 0.5811 0.7037 0.5557 0.7691
Real 0.5851 0.6472 0.5000 0.7314

Food Real 0.5094 0.5210 0.5180 0.5506

*Real is short for common errors in the real world.

when 20% of the samples are corrupted. The observation is quite

similar to the case ofmedium level noise. The performance of Picket

is quite good and consistent across different datasets and noise set-

tings. RF and OCSVM perform poorly on the datasets that contain

textual attributes. RVAE is competitive in some cases but fails in

the others. Note that low level noise is much harder to detect than

high level noise. The reason is that samples with high level noise

tend to deviate a lot from the clean distribution,while sampleswith

low level noise look quite similar to the clean ones and may not be

detectable in some cases. However, low level noise will not affect

the downstream model as much as high level noise, unless it is

adversarially crafted.

IF OCSVM RVAE Picket

A
U
R
O
C

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Wine Adult Marketing Restaurant Titanic

Figure 20: AUROC of outlier detection for random noise

(Low level). The error bars represent the standard errors.

A.6 Accuracy of Downstream Models under
Random/Systematic Noise with Different
Filtering Methods

Wealso studyhow the accuracy of the downstreammodels changes

when we apply different filtering methods under random and sys-

tematic noise.We first focus on randomnoise. The results are shown

in Tables 16, 17, 18. As expected, in the presence of random noise,

the performance of the downstream models drops in some cases

and remains roughly the same in the other cases if we look at CL

and NF. In the cases when the downstream accuracy drops, we can

see that filtering helps most of the time.

Picket: Guarding Against Corrupted Data in Tabular Data during Learning and Inference

IF OCSVM RVAE Picket
A
U
R
O
C

0.4

0.6

0.8

1.0

Wine Adult Marketing Restaurant Titanic

Figure 21: AUROC of outlier detection for random noise

(High level). The error bars represent the standard errors.

IF OCSVM RVAE Picket

A
U
R
O
C

0.4

0.6

0.8

Wine Adult Marketing Restaurant Titanic

Figure 22: AUROC of outlier detection for systematic noise

(Low level). The error bars represent the standard errors.

IF OCSVM RVAE Picket

A
U
R
O
C

0.4

0.6

0.8

1.0

Wine Adult Marketing Restaurant Titanic

Figure 23: AUROC of outlier detection for systematic noise

(High level). The error bars represent the standard errors.

If we compare the performance of Picket and NF in Table 17 for

Neural Networks, we see that for Adult, Titanic, and Restaurant

Picket exhibits slightly worse test accuracy. These results are attrib-

uted to the selected thresholds for filtering in Picket (see Section 5).

In Figure 24, we show the test accuracy of the downstream neural

network for different levels of the Picket threshold.We can see that

for some datasets, random noise serves as regularization and im-

proves the performance of the downstream model. Therefore, we

need to tune the threshold to achieve the best performance.

We then turn our attention to systematic noise. The results are

shown in Table 19, 20, 21. Picket performs the best in most cases,

but still the numbers are quite close. Under common errors in the

real world, CL and NF are also quite close, and filtering does not

help.

Table 16: Test accuracy of downstream models under ran-

dom noise (Low level) and different filtering methods.

Dataset DM* IF OCSVM RVAE Picket CL NF

Wine
LR 0.7429 0.7435 0.7427 0.7429 0.7457 0.7443
SVM 0.7447 0.7437 0.7486 0.7465 0.7465 0.7453
NN 0.7857 0.7800 0.7849 0.7941 0.8051 0.7922

Adult
LR 0.8207 0.8211 0.8127 0.8233 0.8240 0.8190
SVM 0.8181 0.8196 0.8075 0.8212 0.8238 0.8187
NN 0.7818 0.7800 0.7803 0.7816 0.7909 0.7836

Restaurant
LR 0.7318 0.7347 0.7361 0.7352 0.7375 0.7378
SVM 0.6922 0.7078 0.7123 0.6972 0.7116 0.7060
NN 0.7128 0.6982 0.7099 0.7135 0.7306 0.7182

Marketing
LR 0.7622 0.7661 0.7642 0.7663 0.7672 0.7691
SVM 0.7649 0.7668 0.7655 0.7678 0.7681 0.7708
NN 0.7362 0.7282 0.7302 0.7265 0.7261 0.7300

Titanic
LR 0.7810 0.7777 0.7832 0.7844 0.7877 0.7821
SVM 0.7799 0.7866 0.7788 0.7877 0.7888 0.7888
NN 0.7654 0.7542 0.7531 0.7654 0.7743 0.7709

*DM = Downstream Model.

Table 17: Test accuracy of downstream models under ran-

dom noise (Medium level) and different filtering methods.

Dataset DM* IF OCSVM RVAE Picket CL NF

Wine
LR 0.7410 0.7396 0.7410 0.7398 0.7457 0.7280
SVM 0.7441 0.7457 0.7443 0.7431 0.7467 0.7259
NN 0.7743 0.7776 0.7816 0.7776 0.7973 0.7761

Adult
LR 0.8140 0.8220 0.8233 0.8224 0.8240 0.8111
SVM 0.8109 0.8200 0.8219 0.8207 0.8238 0.8082
NN 0.7856 0.7795 0.7830 0.7850 0.7934 0.7883

Restaurant
LR 0.7342 0.7321 0.7313 0.7366 0.7375 0.7349
SVM 0.7111 0.7083 0.6898 0.6858 0.7185 0.6872
NN 0.7059 0.7064 0.7062 0.7157 0.7298 0.7210

Marketing
LR 0.7645 0.7624 0.7642 0.7656 0.7672 0.7665
SVM 0.7654 0.7639 0.7654 0.7665 0.7681 0.7669
NN 0.7267 0.7360 0.7301 0.7344 0.7311 0.7310

Titanic
LR 0.7799 0.7821 0.7777 0.7877 0.7877 0.7754
SVM 0.7810 0.7765 0.7788 0.7933 0.7888 0.7821
NN 0.7575 0.7665 0.7408 0.7765 0.7944 0.7844

*DM = Downstream Model.

Table 18: Test accuracy of downstream models under ran-

dom noise (High level) and different filtering methods.

Dataset DM* IF OCSVM RVAE Picket CL NF

Wine
LR 0.7410 0.7406 0.7398 0.7418 0.7457 0.6861
SVM 0.7441 0.7414 0.7427 0.7453 0.7469 0.6806
NN 0.7865 0.7839 0.7896 0.7806 0.7941 0.7780

Adult
LR 0.8047 0.8196 0.8218 0.8224 0.8240 0.8002
SVM 0.8024 0.8196 0.8207 0.8205 0.8238 0.7971
NN 0.7853 0.7763 0.7867 0.7861 0.7982 0.7863

Restaurant
LR 0.7380 0.7369 0.7335 0.7327 0.7375 0.7416
SVM 0.7161 0.7060 0.7154 0.7126 0.7053 0.6872
NN 0.7147 0.7172 0.7155 0.7206 0.7251 0.7247

Marketing
LR 0.7653 0.7649 0.7641 0.7668 0.7672 0.7671
SVM 0.7660 0.7660 0.7659 0.7699 0.7681 0.7686
NN 0.7255 0.7265 0.7284 0.7271 0.7245 0.7295

Titanic
LR 0.7877 0.7777 0.7799 0.7799 0.7877 0.7877
SVM 0.7922 0.7810 0.7855 0.7799 0.7888 0.7844
NN 0.7609 0.7687 0.7709 0.7765 0.7866 0.7832

*DM = Downstream Model.

A.7 Test Time Victim Sample Detection under
Low/High Level Random/Systematic Noise

In Table 23, 24, 25, 26, we show the F1 scores of victim sample

detection under low/high level random/systematic noise. The arti-

ficial noise setting is the same as described in Section 6.3. We can

see that Picket outperforms all the other methods in most cases.

Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas

Wine

Adult

Marketing

Restaurant

Titanic

A
c
c
u

ra
c
y

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Removed Fraction

0 0.05 0.10 0.15 0.20

Figure 24: Changes in test accuracy of a neural network

when filtering different fraction of the points; randomnoise

(Medium level).

Table 19: Test accuracy of downstreammodels under system-

atic noise (Low level) and different filtering methods.

Dataset DM* IF OCSVM RVAE Picket CL NF

Wine
LR 0.7418 0.7424 0.7478 0.7473 0.7457 0.7408
SVM 0.7422 0.7453 0.7498 0.7492 0.7473 0.7484
NN 0.7876 0.7890 0.7882 0.7976 0.8045 0.7939

Adult
LR 0.8224 0.8205 0.8209 0.8189 0.8240 0.8200
SVM 0.8203 0.8196 0.8165 0.8170 0.8238 0.8186
NN 0.7816 0.7746 0.7748 0.7779 0.7955 0.7815

Restaurant
LR 0.7336 0.7339 0.7359 0.7336 0.7375 0.7356
SVM 0.7063 0.6863 0.7035 0.7082 0.7108 0.7047
NN 0.7113 0.7072 0.7079 0.7160 0.7301 0.7201

Marketing
LR 0.7639 0.7630 0.7616 0.7644 0.7672 0.7668
SVM 0.7658 0.7634 0.7614 0.7683 0.7681 0.7676
NN 0.7316 0.7305 0.7329 0.7312 0.7324 0.7325

Titanic
LR 0.7866 0.7888 0.7799 0.7989 0.7877 0.7821
SVM 0.7899 0.7866 0.7754 0.8022 0.7888 0.7911
NN 0.7575 0.7520 0.7564 0.7598 0.7944 0.8011

*DM = Downstream Model.

Table 20: Test accuracy of downstreammodels under system-

atic noise (Medium level) and different filtering methods.

Dataset DM* IF OCSVM RVAE Picket CL NF

Wine
LR 0.7414 0.7388 0.7435 0.7445 0.7457 0.7316
SVM 0.7441 0.7384 0.7459 0.7463 0.7461 0.7316
NN 0.7959 0.7933 0.7918 0.7953 0.8000 0.7855

Adult
LR 0.8136 0.8156 0.8207 0.8171 0.8240 0.8098
SVM 0.8103 0.8142 0.8178 0.8159 0.8238 0.8080
NN 0.7822 0.7839 0.7843 0.7837 0.7931 0.7869

Restaurant
LR 0.7305 0.7315 0.7351 0.7383 0.7375 0.7372
SVM 0.7070 0.7008 0.7107 0.7077 0.7136 0.6964
NN 0.7198 0.7154 0.7175 0.7228 0.7346 0.7215

Marketing
LR 0.7642 0.7640 0.7660 0.7673 0.7672 0.7664
SVM 0.7670 0.7658 0.7655 0.7686 0.7681 0.7686
NN 0.7272 0.7311 0.7251 0.7281 0.7277 0.7295

Titanic
LR 0.7877 0.7821 0.7799 0.7866 0.7877 0.7877
SVM 0.7922 0.7777 0.7821 0.8022 0.7888 0.7911
NN 0.7464 0.7508 0.7464 0.7553 0.7866 0.7777

*DM = Downstream Model.

MWOC performs quite well for the Wine dataset, but it fails com-

pletely under high random noise (the F1 score is 0.33). Similar to

the case of medium noise, we observe that the reconstruction loss

from PicketNet provides extra signals that improve the detection

of victim samples (see the comparison between RF and Picket).

Table 21: Test accuracy of downstreammodels under system-

atic noise (High level) and different filtering methods.

Dataset DM* IF OCSVM RVAE Picket CL NF

Wine
LR 0.7437 0.7359 0.7443 0.7447 0.7457 0.7100
SVM 0.7457 0.7365 0.7476 0.7455 0.7467 0.7041
NN 0.7961 0.7961 0.7990 0.8008 0.7992 0.8031

Adult
LR 0.8071 0.8055 0.8193 0.8079 0.8240 0.8011
SVM 0.8039 0.8038 0.8175 0.8060 0.8238 0.8002
NN 0.7843 0.7800 0.7834 0.7822 0.7961 0.7885

Restaurant
LR 0.7329 0.7332 0.7346 0.7371 0.7375 0.7361
SVM 0.7155 0.7051 0.7041 0.7187 0.6726 0.6925
NN 0.7100 0.7032 0.7132 0.7111 0.7232 0.7124

Marketing
LR 0.7653 0.7655 0.7638 0.7636 0.7672 0.7656
SVM 0.7656 0.7661 0.7646 0.7640 0.7681 0.7678
NN 0.7292 0.7304 0.7256 0.7258 0.7303 0.7294

Titanic
LR 0.7777 0.7788 0.7821 0.7799 0.7877 0.7877
SVM 0.7799 0.7855 0.7855 0.7799 0.7888 0.7866
NN 0.7553 0.7598 0.7654 0.7441 0.7855 0.7832

*DM = Downstream Model.

Table 22: Test accuracy of downstream models under com-

mon errors in the real world and different filteringmethods.

Dataset DM* IF OCSVM RVAE Picket CL NF

Restaurant
LR 0.7388 0.7351 0.7328 0.7351 0.7404 0.7395
SVM 0.7028 0.6937 0.6922 0.7072 0.6959 0.7112
NN 0.7187 0.7176 0.7204 0.7137 0.7118 0.7215

Titanic
LR 0.7464 0.7497 0.7732 0.7475 0.7799 0.7609
SVM 0.7363 0.7363 0.7609 0.7520 0.7542 0.7598
NN 0.7274 0.7251 0.7285 0.7318 0.7095 0.7207

Food
LR 0.6628 0.6960 0.6917 0.6978 0.7163 0.6868
SVM 0.6529 0.6849 0.6720 0.6794 0.7095 0.7108
NN 0.6505 0.6443 0.6431 0.6560 0.6609 0.6597

*DM = Downstream Model.

Table 23: �1 scores of victim sample detection at inference

time under random noise (Low level).

Dataset DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Wine
LR 0.7408 0.6910 0.7523 0.6667 0.6626 0.4971 0.8084 0.7824
SVM 0.7440 0.6918 0.7558 0.6667 0.6638 0.6016 0.8004 0.7828
NN 0.6882 0.6318 0.6456 0.6770 0.6656 0.5231 0.7202 0.6713

Adult
LR 0.8393 0.6563 0.8486 0.6696 0.7834 0.1968 0.7902 0.8685
SVM 0.8456 0.6743 0.8535 0.6691 0.8131 0.4602 0.7114 0.8714
NN 0.8017 0.5429 0.8052 0.6635 0.6806 0.1900 0.7965 0.8267

Restaurant
LR 0.7870 –# – 0.7586 0.6702 0.6441 0.7649 0.8328
SVM 0.6370 – – 0.6895 0.6351 0.6634 0.5538 0.7123
NN 0.7609 – – 0.7066 0.6643 0.6071 0.7075 0.8119

Marketing
LR 0.8503 0.6340 0.8565 0.7771 0.7913 0.6630 0.8227 0.8662
SVM 0.8590 0.6324 0.8635 0.7789 0.8034 0.6636 0.7748 0.8720
NN 0.7917 0.6197 0.7986 0.6809 0.7134 0.6665 0.7128 0.8125

Titanic
LR 0.8281 – – 0.7060 0.6487 0.4377 0.7917 0.8451
SVM 0.8547 – – 0.6750 0.6544 0.6489 0.7738 0.8731
NN 0.8343 – – 0.6678 0.6432 0.1717 0.7798 0.8544

*DM is short for Downstream Model. #RVAE is not applicable to textual attributes.

Picket: Guarding Against Corrupted Data in Tabular Data during Learning and Inference

Table 24: �1 scores of victim sample detection at inference

time under random noise (High level).

Dataset DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Wine
LR 0.7525 0.7867 0.7950 0.6657 0.6727 0.5901 0.5860 0.8059
SVM 0.7496 0.7898 0.7984 0.6633 0.6815 0.7256 0.7295 0.8030
NN 0.6805 0.7697 0.7887 0.4560 0.6668 0.5752 0.3301 0.7803

Adult
LR 0.7969 0.7725 0.8149 0.6570 0.7593 0.2408 0.5033 0.8273
SVM 0.8035 0.7765 0.8201 0.6580 0.7700 0.4737 0.4909 0.8312
NN 0.7952 0.7781 0.8124 0.3089 0.6988 0.4284 0.4234 0.8214

Restaurant
LR 0.7457 –# – 0.7075 0.6506 0.6504 0.7111 0.8137
SVM 0.6948 – – 0.6704 0.6553 0.6567 0.5964 0.7824
NN 0.7437 – – 0.6788 0.6642 0.6119 0.6852 0.8135

Marketing
LR 0.8118 0.7044 0.8146 0.7052 0.7566 0.6645 0.7590 0.8244
SVM 0.8111 0.7022 0.8156 0.6994 0.7527 0.6652 0.7486 0.8247
NN 0.7934 0.7068 0.7999 0.6085 0.7042 0.6630 0.7042 0.8038

Titanic
LR 0.8134 – – 0.6437 0.6457 0.4383 0.7153 0.8227
SVM 0.8113 – – 0.6533 0.6354 0.6444 0.6815 0.8105
NN 0.7993 – – 0.6516 0.6328 0.2824 0.6505 0.8058

*DM is short for Downstream Model. #RVAE is not applicable to textual attributes.

Table 25: �1 scores of victim sample detection at inference

time under Systematic noise (Low level).

Dataset DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Wine
LR 0.6826 0.5225 0.6632 0.6667 0.6474 0.4203 0.8063 0.7039
SVM 0.6658 0.5252 0.6566 0.6667 0.6328 0.4835 0.7933 0.6915
NN 0.6741 0.6010 0.5601 0.6856 0.6661 0.4980 0.6985 0.6058

Adult
LR 0.8146 0.6291 0.8176 0.6696 0.7463 0.1842 0.7412 0.8317
SVM 0.8360 0.6277 0.8418 0.6694 0.7952 0.3382 0.6374 0.8589
NN 0.8100 0.5607 0.8208 0.6026 0.6763 0.1878 0.7740 0.8262

Restaurant
LR 0.7951 –# – 0.7725 0.6274 0.6460 0.7770 0.8269
SVM 0.7080 – – 0.6524 0.6585 0.6488 0.5976 0.7321
NN 0.7633 – – 0.7143 0.6588 0.6080 0.7043 0.7897

Marketing
LR 0.8540 0.6090 0.8606 0.7855 0.7923 0.6615 0.8274 0.8724
SVM 0.8597 0.6214 0.8590 0.7939 0.7936 0.6629 0.7828 0.8676
NN 0.7892 0.5557 0.7899 0.6864 0.7142 0.6658 0.6819 0.7972

Titanic
LR 0.8064 – – 0.7235 0.6409 0.3751 0.7684 0.8300
SVM 0.8563 – – 0.6778 0.6361 0.6498 0.7867 0.8656
NN 0.8314 – – 0.6679 0.6462 0.1507 0.7667 0.8434

*DM is short for Downstream Model. #RVAE is not applicable to textual attributes.

Table 26: �1 scores of victim sample detection at inference

time under Systematic noise (High level).

Dataset DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Wine
LR 0.6866 0.3982 0.6697 0.6667 0.6440 0.3612 0.7826 0.6918
SVM 0.6784 0.4293 0.6712 0.6667 0.6175 0.4102 0.7688 0.6878
NN 0.6701 0.6127 0.5913 0.6876 0.6656 0.5009 0.7536 0.5967

Adult
LR 0.8100 0.7619 0.8120 0.6699 0.7234 0.1846 0.7431 0.8370
SVM 0.8156 0.7507 0.8174 0.6694 0.7463 0.3736 0.6833 0.8313
NN 0.8086 0.7341 0.8186 0.4264 0.6883 0.2859 0.7701 0.8285

Restaurant
LR 0.7552 –# – 0.7156 0.6475 0.6525 0.7221 0.8136
SVM 0.7017 – – 0.6693 0.6626 0.6594 0.5877 0.7705
NN 0.7523 – – 0.6853 0.6667 0.6123 0.7003 0.8149

Marketing
LR 0.8232 0.6981 0.8285 0.7423 0.7620 0.6634 0.7864 0.8406
SVM 0.8361 0.6703 0.8387 0.7138 0.7701 0.6653 0.7433 0.8483
NN 0.7896 0.6960 0.7991 0.6413 0.7066 0.6623 0.7176 0.8092

Titanic
LR 0.8255 – – 0.6843 0.6298 0.4501 0.7830 0.8270
SVM 0.7945 – – 0.6517 0.6120 0.6686 0.6815 0.7972
NN 0.8240 – – 0.6665 0.6349 0.2243 0.7519 0.8347

*DM is short for Downstream Model. #RVAE is not applicable to textual attributes.

	Abstract
	1 Introduction
	2 Background
	3 Overview of Picket
	4 The PicketNet Model
	4.1 Model Architecture
	4.2 Training Process

	5 Detecting Data Corruptions
	6 Experiments
	6.1 Experimental Setup
	6.2 Training-Time Evaluation
	6.3 Inference-Time Evaluation
	6.4 Micro-Benchmarks
	6.5 Fairness of Outlier Detection
	6.6 Runtime and Scalability

	7 Related Work
	8 Conclusion
	References
	A Appendix
	A.1 Hyper-parameters of PicketNet
	A.2 Outlier Detection on Synthetic Data
	A.3 Outlier Detection with Cross-Validation
	A.4 Performance of Training Time Outlier Detection under Different Fraction of Corrupted Samples
	A.5 Performance of Training Time Outlier Detection under Low/High Level Random/Systematic Noise
	A.6 Accuracy of Downstream Models under Random/Systematic Noise with Different Filtering Methods
	A.7 Test Time Victim Sample Detection under Low/High Level Random/Systematic Noise

