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Abstract
We present a novel approach for the specification and enforcement of authorizations that enables controlled data sharing for
collaborative queries in the cloud. Data authorities can establish authorizations regulating access to their data distinguishing
three visibility levels (no visibility, encrypted visibility, and plaintext visibility). Authorizations are enforced accounting for
the information content carried in the computation to ensure no information is improperly leaked and adjusting visibility of
data on-the-fly. Assignment of operations to subjects takes into consideration the cost of operation execution as well as of the
encryption/decryption operations needed to make the assignment authorized. Our approach enables users and data authorities
to fully enjoy the benefits and economic savings of the competitive open cloud market, while maintaining control over data.

Keywords Authorization model · Collaborative query evaluation · Plaintext and encrypted visibility · Implicit attributes ·
Equivalent attributes · Relation profile

1 Introduction

Today’s ICT (Information and Communication Technology)
scenarios are seeing an ever-growing explosion of data col-
lection, sharing, and collaborative processing, as well as an
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ever-increasing need to efficiently perform extensive data
analysis tasks over data produced and controlled by different
parties (e.g., in medical or genomic data applications). The
evolution of technology, and especially of the cloud comput-
ing paradigm, offering a variety of storage and computation
providers with different costs and performance guarantees,
well responds to such demands and needs. Multi-provider
applications can leverage the richness and diversity of the
cloud market by involving different parties depending on
specific needs and economic benefit. Users and companies
can then enjoy clear social and economic benefits in terms
of convenient, scalable, and elastic availability of services.
At the same time, however, data could be sensitive, propri-
etary, or simply subject to access restrictions that can affect
the possibility of relying on external cloud providers for their
management and processing [30]. Addressing security con-
cerns over data exposure by restricting processing within the
premises of each individual data authority (i.e., the entity
controlling the data) or at the user side, can hinder the ability
to fully benefit from the rich and diverse cloud market offer-
ing. This represents a significant barrier toward the evolution
of the market and the related economic growth.

In this paper, we address this problem and propose a novel
approach enabling collaborative and distributed query execu-
tion with the controlled involvement of cloud providers that
might be not fully trusted to access the data content. Our goal
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is twofold: first, to allow data authorities to make their data
available for possible collaborative processing, while main-
taining control over them; second, to allow users accessing
such data to leverage the rich and diverse offer of the cloud
market, by relying on cloud providers for performing queries
over such data.

The core of our proposal is a simple, yet flexible, autho-
rizationmodel that enjoys the great advantage of simplicity of
specification andmanagement. Eachdata authority can estab-
lish authorizations regulating the release of data under its
control to other subjects (i.e., users, providers, and other data
authorities). Authorizations are specified by each authority
independently (no cross-domain authorization or collabora-
tive administration is required) and selectively grant visibility
on the data to other subjects. Visibility can be granted either
plaintext or encrypted. Subjects authorized for encrypted
visibility over some data can perform computations (e.g.,
evaluate conditions or perform joins) over the data without
accessing the actual data values. Leveraging the availability
of solutions that support operations on encrypted data (e.g.,
CryptDB [23] and the SEEED framework over the SAPHana
DBMS [16]), this feature increases the spectrum of potential
providers towhich operationswithin a query can be assigned.
Query execution can then selectively involve, in the different
steps of the computation, different data authorities and cloud
providers as deemed desirable for economic or performance
reasons. Encryption/decryption operations are injected in
the query process and enforced on-the-fly as needed to dis-
able/enable data visibility as demanded by authorizations and
operation requirements. Authorization enforcement entails
controlling not only direct data access, or release, but also
accounting for information implicitly conveyed as a result of
a computation.

Running example For concreteness, but without loss of
generality, we frame our work in the context of relational
database systems. We consider queries of the general form
“select from where group by having” that can
include joins among distinct relations under control of dif-
ferent data authorities. We also support renaming operations
on attributes and queries that combine the results of other
queries of the general form above through set operators (i.e.,
union, intersection, difference). Execution of queries is per-
formed according to a query plan established by the query
optimizer. The query plan is represented as a tree T(N),
with N the set of nodes in the tree, whose leaves are base rela-
tions and whose non-leaf nodes are operations to be executed
to perform the query. We assume the query plan to be pro-
duced with classical optimization criteria and, in particular,
we assume that projections and selections are pushed down
to avoid retrieving data that are not of interest for the query.
Graphically, we represent a leaf node as a square box that
contains (the projection of) a source relation. We refer to leaf

(a) (b)

Fig. 1 An example of a query plan (a) and of authorizations on relations
Hosp and Ins (b)

nodes as base relations. In this paper,we consider as a running
example two data authorities: a hospital H, storing relation
Hosp(S,B,D,T), reporting SSN, Birth, Disease, and Treat-
ment of hospitalized patients; and an insurance company
I storing relation Ins(C,P), reporting, for each Customer,
the insurance Premium. We assume a user U who submits
a query, and three cloud providers X,Y,Z offering computa-
tional power. Our running example considers the execution,
on behalf of user U, of query “select T, avg(P) from Hosp
join Ins on S =CwhereD= ‘stroke’ group byT having
avg(P)>100” retrieving, for each treatment given to patients
hospitalized for stroke, the average insurance premium (if
greater than US$ 100). Figure 1a illustrates a query plan for
our query. For simplicity, in the figure and in the remainder
of this paper, we denote a set of attributes simply with the
sequence of the attributes composing it, omitting the curly
brackets and commas (e.g., SBDT stands for {S,B,D,T}).

OutlineThe remainder of this paper is organized as fol-
lows. Section 2 presents our authorization model. Section 3
describes the concept of relation profile, capturing the infor-
mative content of a relation. Section 4 shows how protection
requirements stated by authorizations must be considered
to ensure that data are properly protected in query execu-
tion. Section 5 describes the use of on-the-fly encryption and
decryption for protecting data in a computation, based on
the assignment of query operations to subjects. Section 6
shows how to compute an assignment that enjoys minimum
cost. Section 7 illustrates key management and query dis-
patch to the subjects involved in a query execution. Section 8
presents experimental results. Section 9 discusses related
work. Finally, Sect. 10 concludes the paper. The proofs of
theorems can be found in Appendix A.
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2 Authorizationmodel

We assume a simple, yet expressive, authorization model in
which each data authority specifies authorizations regulat-
ing the release of its data. Authorizations are defined at the
fine-grained level of attribute specifying, for each attribute,
whether a subject (i.e., a user, a data authority, or a cloud
provider) can have:

– plaintext visibility: the subject has complete visibility on
the values of the attribute;

– encrypted visibility: the subject cannot view the plaintext
values of the attribute, but can view an encrypted version
of them;

– no visibility: the subject cannot view the values of the
attribute at all (neither plaintext nor encrypted).

While plaintext and no visibility do not require explana-
tion, since they correspond to traditional ways of regulating
access, the encrypted visibility, which represents a character-
istic and strength of our proposal, deserves someclarification.
The reason behind the consideration of the encrypted visi-
bility is to provide a subject with the ability to operate on
an attribute for performing joins with other relations or for
evaluating conditions on encrypted values (supported by the
kind of encryption used), while not releasing to the subject
the actual values of the attribute. In the authorization model,
we do not distinguish among different encryption schemes,
so to leave the model simple and the approach flexible. In
fact, expressing the encryption scheme in the authorizations
would introduce considerable complexity in the specifica-
tions, without providing an actual advantage in the end. As
the experience of null values shows, it is important to main-
tain specifications simple and intuitive (the introduction of
multiple null values in SQL-92 was quickly deprecated). The
distinction among encryption schemes will be made by the
query optimizer in the generation of the query plan, depend-
ing also on the operations that the query performs on the
encrypted data (Sect. 7).

Consistently with standard security practice, we assume a
“closed” policy for the specification of authorizations, mean-
ing that only accesses explicitly authorized are allowed (i.e.,
“no visibility” does not need to be specified, as it applies
whenever the other two do not). Authorizations are then
defined as follows.

Definition 1 (Authorization) Let R be a relation and S be
a set of subjects. An authorization is a rule of the form
[P, E]→S, where P⊆R and E⊆R are subsets of attributes
in R such that P∩E=∅, and S∈S ∪{any}.

Authorization [P, E]→S states that subject S can view
attributes P in plaintext and attributes E encrypted. Sets P
and E are required to be disjoint. However, we note that an

authorization that permits a subject S to access an attribute
a in plaintext also allows S to access the encrypted version
of the attribute. We assume that, for each relation, a sub-
ject can hold at most one authorization (the consideration
of multiple authorizations would not increase expressivity).
Since the set of subjects who might be involved in a query,
and for whom release of data may be requested, may not
be completely known a priori, a default authorization can be
specified, which applies to all subjects for which no explicit
authorization already exists for the interested relation. This is
accommodated by the consideration of value “any” as subject
of the authorization.

We expect users to have authorizations that include plain-
text attributes only, since users need to be able to access the
queries’ responses and manage keys for attributes encrypted
in the computation. We also expect the data authority storing
a relation to hold an authorization for accessing its content
in plaintext (i.e., S storing R(a1, . . . , an) holds authoriza-
tion [{a1, . . . , an}, _]→S). Cloud providers and other data
authorities may instead have authorizations that also include
encrypted attributes, allowing them to operate on these
attributes without viewing their plaintext values. Figure 1b
illustrates an example of authorizations for our running
example.

3 Relation content model

To determine whether the release of a relation to a subject
should be accepted according to authorizations, we introduce
the concept of relation profile capturing the informative con-
tent of a, base or derived (i.e., computed by a query), relation.
In the following, we first illustrate how attributes that do not
belong to a relation schema can influence the definition of its
profile, and then formally define relation profiles.

3.1 Implicit, equivalent, and renamed attributes

A relation resulting from a computation can convey infor-
mation on attributes not explicitly appearing in its schema.
This may happen due to the evaluation of a selection condi-
tion, of a rename or grouping operation, or of a user-defined
function (udf) on attributes that are then removed from the
relation schema through a projection. As a simple example,
the relation resulting from “select A from R where B =
‘10’,” while containing only A in its schema, indirectly leaks
information on the values of attribute B as well, and should
therefore not be visible to subjects not authorized to see either
A or B. A similar observation holds for the relation result-
ing from “select A from R1 join R2 on A=B” which,
while including only attribute A in its schema, conveys also
information on B, as A and B satisfy the equality predicate
(hence, granting visibility on A implies leaking also B). Sim-
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ilarly, the relation resulting from “select B AS A from
R”, while including only A in its schema, releases the values
of attribute B, hence the relation should be visible only to
subjects authorized for B. Note that, in this case, authoriza-
tion control cannot be performed against A itself, since it is
not in the schema of any base relation.

Capturing the informative content of a relation R (result-
ing from a computation) requires then to take into account
such indirect information leakage and relationships among
attributes, which we characterize through the concepts of
implicit, equivalent, and renamed attributes.

Implicit attributes Implicit attributes are attributes not nec-
essarily appearing in a relation schema but that have been
taken into account in the computation of the relation. Basi-
cally, implicit attributes for a relation R are all those attributes
that appear in a selection condition or grouping operation
in the (sub-)query producing R. The information indirectly
conveyed differs depending on the selection condition con-
sidered. For instance, a selection condition “B = 10” leaks
the fact that all the tuples in the result have value of B equal
to 10, disclosing B precisely even if it is not explicitly visible
in the relation. A selection condition “B > 10” leaks instead
the fact that the tuples appearing in the relation have a value
for B greater than 10, but without leaking B’s actual val-
ues. The evaluation of a group by clause over B is similar
to the evaluation of equality condition “B = value”, where
value may be unknown. Consistently with the fact that we
operate at the schema level, we do not distinguish among the
degrees of leakage and assume an attribute to be implicitly
visible in a relation (i.e., indirectly exposed) if the attribute
was taken into account—in some way—in the computation
of the relation. The concept of implicit visibility applies to
both plaintext and encrypted attributes.

Equivalent attributesEquivalence among attributes cap-
tures the fact that some attributes have been connected in
a computation (i.e., some conditions among them have been
applied) and therefore visibility of one attribute indirectly
leaks the other(s). Like for implicit attributes, the degree of
such a leakage can depend on the condition enforced. For
instance, condition “A = B” implies precise leakage of the
values of B from the visibility of A, while condition “A >

B” entails a partial leakage, as a subject viewing A can only
infer the fact that B has a value lower than the one visible
for A. Again, we do not distinguish among different degrees
of leakage (which would introduce considerable complex-
ity and fuzziness in the approach, with limited advantages
in the enforcement of authorizations), but simply capture
such a connection between the attributes, considering them
as equivalent from the point of view of authorization enforce-
ment (as visibility of one entails some visibility of the other).
Given a relation R, we say that two attributes are equivalent
if the (sub-)query producing R involves a condition com-

paring them. The equivalence relationship is symmetric and
transitive. Different sets of equivalent attributes can exist for
a given relation. The equivalence relationship can apply to
both explicit as well as implicit attributes, and to plaintext as
well as encrypted attributes.

Renamed attributesRenamed attributes are attributes that
do not appear in the schema of base relations as they result
from a change in the name of original attributes through a
rename operation. The release of a relation with a renamed
attribute clearly discloses the original attribute, even if such
attribute does not appear in the relation schema. For instance,
query “select B as A from R” reveals the values of
attribute B under attribute name A, but no authorization reg-
ulates the release of A. Clearly, the authorizations originally
defined over Bmust apply also to A, since B is just a different
name for A. We refer to A as the renamed version of B. The
concept of renamed attribute applies to both explicit as well
as implicit attributes, and to plaintext as well as encrypted
attributes.

3.2 Relation profile

We are now ready to define the profile of a relation, captur-
ing the informative content carried by the relation in terms
of attributes explicitly as well as implicitly visible and tak-
ing into account information conveyed by equivalent and
renamed attributes. In the following, we refer to attributes
explicitly visible in a relation as visible attributes, and to
those implicitly leaked as implicit. In addition, attributes can
be plaintext or encrypted.

Definition 2 (Relation Profile) Let R be a relation. The pro-
fileof R is a 6-tuple of the form [Rvp, Rve, Rip, Rie, R�, R�]
where: Rvp and Rve are the visible attributes appearing in
R’s schema in plaintext (Rvp) or encrypted (Rve) form; Rip

and Rie are the implicit attributes conveyed by R, in plaintext
(Rip) or encrypted (Rie) form; R� is a disjoint-set data struc-
ture representing the closure of the equivalence relationship
implied by attributes connected in R’s computation; and R�

is a set of attribute pairs [a′, a] denoting the renaming of a
as a′.

The profile of a base relation has all the elements but
empty, since it is assumed accessible in plaintext and does
not carry any implicit content or equivalence/renaming rela-
tionship. (Note that plaintext accessibility of a relation does
not imply that it is stored in plaintext but only that it is
accessible in plaintext by the data authority storing it.) For-
mally, the profile of a base relation R(a1, . . . , an) is then
[{a1, . . . , an}, _, _, _, _, _].

The profile of the relation resulting from a query depends
on the profile of the operand relations and on the operators
involved in its computation. Every operator only operates on
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visible attributes (i.e., attributes in Rvp and Rve, which belong
to the schema of the operand relation R), but it may affect
also implicit attributes in the profile of the resulting relation.
In the following, we illustrate the profile resulting from the
application of projection, selection, Cartesian product, join,
group-by, rename, union, intersection, difference, and udf
operators as well as encrypt/decrypt operators. In the treat-
ment, with a slight abuse of notation, we will use symbol
∪ to denote the insertion into R� of the equivalence rela-
tionship among a set A of attributes. In other words, R�∪A
adds A to R� if no set in R� intersects A; it merges all
the sets intersecting A as well as A in a single set in R�,
otherwise. R�

i ∪R�
j implies inserting into R�

i all the equiva-
lence sets in R�

j (or, equivalently, vice versa). Also, given an
attribute a′ and component R�, function ω(a′, R�) returns
a if R� includes a pair [a′, a]; it returns a′, otherwise. We
use ω(A, R) to denote the application of function ω to each
attribute in A on R�. In other words, function ω returns the
original names of the attributes on which it applies (if any)
or the attributes themselves.

Graphically, we represent the profile of a relation as a
tag attached to the relation’s node (or the node of the oper-
ator producing it in case of a derived relation), with four
components: v (visible attributes Rvp and Rve), i (implicit
attributes Rip and Rie), � (sets of equivalent attributes R�),
and � (pairs of attributes involved in renaming operations
R�). Within visible and implicit attributes, we distinguish
the encrypted ones (i.e., Rve and Rie) by representing them
on a gray background. We represent an encryption operation
as a gray box, containing the attributes to be encrypted, on
top of the operand relation. We represent a decryption opera-
tion as a white box, containing the attributes to be decrypted,
below the node representing the operator. Figure 2 illustrates
the graphical representation of the profiles resulting from
relational and udf operations, reporting, for each operator,
the general formula (on the left) and an example (on the
right). Similarly, Fig. 3 illustrates the graphical representa-
tion of the profiles resulting from encryption and decryption
operations. For the sake of readability, in the figures and in
the paper, we omit the � component in the graphical repre-
sentation of relation profiles, reporting it only for the rename
operator. Indeed, only the rename operator has an effect on
component R�, while R� of the result is the same as R� of
the operand(s) for all the other unary operators and it is the
union of them in case of binary operators. We now discuss
the profile resulting from the application of each operator.

Projection (π) It returns a subset of the attributes in the
schema of its operand. The profile of the resulting relation
simply contains, in the visible attributes, only those attributes
that have been projected. The implicit and renamed attributes

Fig. 2 Graphical representation of the profiles resulting from relational
and udf operations
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Fig. 3 Graphical representation of the profiles resulting from encryp-
tion/decryption operations

as well as the equivalence sets are the same as the ones of the
operand.

Selection (σ ) It returns a subset of the tuples of its operand,
based on the evaluation of a condition on visible attributes.
Since a selection does not have any effect on the schema
of the operand relation, the result has the same visible and
renamed attributes as the operand. The other components of
the profile depend on the kind of condition to be evaluated.
For conditions of the form “a op x”, with x a value, attribute
a is added to the implicit attributes (either encrypted or plain-
text, consistently with how a is visible in the operand). For
conditions of the form “ai op a j”, equivalence {ai , a j } is
added to the equivalence set. Note that attributes ai and a j

must be either both visible plaintext or both visible encrypted
for the evaluation of condition “ai op a j”.

Cartesian product (×) It returns the Cartesian product of
twooperand relations Rl and Rr , that is, all possible combina-
tions of their tuples. The plaintext/encrypted attributes visible
or implicit in the resulting relation, renamed attributes, and
the sets of equivalent attributes are then simply the union of
the corresponding sets in the profiles of the operands.

Join (��) It returns a relation that contains the concatena-
tion of the tuples of the operands Rl and Rr that satisfy a
join condition C , which is a Boolean formula of basic con-
ditions of the form “ai op a j”. It is then equivalent to a
selection operating on the Cartesian product of the operands
(i.e., σC (Rl × Rr )). The profile of the result reflects then the
information conveyed by both these operators. Also in this
case, for each pair {ai ,a j} of attributes appearing together
in a condition C , ai and a j must be both plaintext or both
encrypted for the evaluation of the join condition.

Group by (γ ) It groups the operand relation by a given set
of (plaintext or encrypted) attributes A, then evaluating an
aggregate function f on an attribute a. For simplicity, we
consider the attribute resulting from f (a)with the same name

as a. The case where f (a) takes a different name can be
accommodated with the rename operator. The profile of the
resulting relation contains, in the visible attributes, only those
attributes on which the grouping (A) and aggregate function
(a) operate (when f (a) is count(∗), only attributes in A are
maintained). Attributes appearing in the grouping function
(A) are added to the implicit attributes (to capture the possible
information leakage from their grouping).

Rename (ρ) It changes the name of a subset of the (plaintext
or encrypted) visible attributes of its operand. The only effect
of the operator is the different name of the renamed attributes
in the visible component. The implicit attributes and equiv-
alence sets do not change. For each renamed attribute a′
resulting from the application of the rename operator over
attribute a, pair [a′, ω(a, R�)] is added to the set R� of
renamed attributes. Note that the use of function ω in the
added pair ensures that the rename component R� keeps
always track of the correspondence between a renamed
attribute and the corresponding attribute appearing in a base
relation, enabling transitive closure of chains of rename oper-
ations.

Union, intersection, difference (∪,∩, \) They are binary
operators that apply to operand relations Rl and Rr charac-
terized by the same number of visible attributes, which need
to be of compatible domains and represented in the same
form (i.e., the i-th attributes in Rl and Rr must be both plain-
text or both encrypted for the evaluation of set operators). Set
operators return all the tuples that are in: Rl or Rr (union ∪);
both Rl and Rr (intersection ∩); Rl but not in Rr (difference
\). The visible attributes of the resulting relation correspond
to the visible attributes of the first operand (Rl ). The implicit
attributes, the sets of equivalent attributes and of the renamed
attributes are the union of the corresponding components in
the profiles of the operands. The fact that the i-th attribute
ali appearing in the resulting relation is derived from the i-
th attributes ali and ari in the operand relations Rl and Rr

is represented through the addition of a pair {ali , ari } in the
equivalence set of the result.

User-defined function (μ) It performs a time-consuming
procedural computation (e.g.,machine learning and data ana-
lytics [8]) over the operand relation, elaborating the values of
a set A of attributes (all plaintext or encrypted) in its schema.
We assume a general udf operator with a set (A) of attributes
as input and an attribute (a) as output. For simplicity, we
assume the attribute in output to have the same name as one
of the attributes in input. The case where the result assumes
a different name can be accommodated using the rename
operation. The profile of the resulting relation has, as visible
attributes, the attribute returned as output together with the
visible attributes of the operand on which the udf does not
operate. The implicit and renamed attributes are the same
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as the ones in the operand. The equivalence relationship is
obtained from the one in the operand by adding the set of
attributes on which the udf operates. This reflects the fact
that the attribute in output depends on all the attributes on
which the udf has operated.

Encryption It changes a relation by encrypting some of its
plaintext attributes. The result has the same profile as the
operand, apart from the fact that the attributes on which
encryption is applied are moved from visible plaintext to
visible encrypted.

Decryption It changes a relation by decrypting some of its
encrypted attributes. The result has the same profile as the
operand, apart from the fact that the attributes on which
decryption is applied are moved from visible encrypted to
visible plaintext.

While relations in the query plans, and their profiles, can
contain renamed attributes, authorizations are defined over
attributes appearing in base relations only and do not regu-
late the release of attributes with different (new) names. To
determine whether a relation can be released, we need to
reconstruct the correspondence between renamed attributes
in its profile and attributes in the base relations. In other
words, for each relation R, each component in R’s pro-
file must be closed (possibly implying recursively chasing
a sequence of rename operations) against the relationships
in R�. To maintain the notation simple, instead of repeating
such a closure throughout the model, we simply (and equiv-
alently) assume profiles to be closed against the renaming
relationship so to refer to attributes in the base relations. For-
mally, the closed profile of a relation is defined as follows.

Definition 3 (Relation Profile—Closed) Let R be a rela-
tion and [Rvp, Rve, Rip, Rie, R�, R�] be its relation profile
(Def. 2). The closed profile of R is a 5-tuple of the form
[Rvp

� , Rve
� , Rip

�, Rie
�, R�

�] where Rvp
� = ω(Rvp, R�), Rve

� =
ω(Rve, R�), Rip

� = ω(Rip, R�), Rie
� = ω(Rie, R�), and

R�
� = ω(R�, R�).

The closed profile of a relation is equivalent to its pro-
file, since it simply replaces attribute names assigned by
rename operations with the corresponding ones in base rela-
tions. In the following, we will use the term profile to refer
to the closed profile of a relation (Definition 3), and notation
[Rvp, Rve, Rip, Rie, R�] to denote the (closed) profile of R.

Figure 4 illustrates the profiles of the relations resulting
from the operations of our running example. Each node has,
on its left, the user and a set of cloud providers (we will
elaborate on this in the next section). Also, note that there are
no encryption/decryption operations, as they do not appear
in the original query plan; we will illustrate how and why the
query plan is extended with them in Sect. 5. In the following,
given a query plan, we use the term node to denote one of
its components (a base relation or an operation) and the term

Fig. 4 Query plan with profiles and authorized assignees

relation to denote either a base relation or the result of an
operation (represented by an internal node). Given a node nx ,
representing an operation, Rx denotes the relation resulting
from it.

Profiles allow us to capture the informative content of a
relation resulting fromacomputation. The following theorem
proves that in a query plan: i) attributes appearing in the
profile of the relation resulting from an operation survive in
the profiles of relations resulting from subsequent operations
(i.e., they never disappear from the profile, they can only
move from one component to another), and ii) equivalence
sets can only increase going up in the query plan (i.e., when
an attribute is inserted into an equivalence set, it is never
removed from it).

Theorem 1 Let T(N) be a query plan. ∀nx , ny ∈ N with

profile [Rvp
x , Rve

x , Rip
x , Rie

x , R�
x ]and [Rvp

y , Rve
y , Rip

y , Rie
y , R�

y ],
respectively, s.t. ny is a descendant of nx :

i) (Rvp
y ∪ Rve

y ∪ Rip
y ∪ Rie

y ∪{A | A ∈ R�
y }) ⊆ (Rvp

x ∪ Rve
x ∪

Rip
x ∪ Rie

x ∪ {A | A ∈ R�
x })

ii) ∀A ∈ R�
y : ∃A′ ∈ R�

x , A ⊆ A′.

4 Authorized visibility and assignment

The definition of relation profile, capturing the informative
content carried by a relation, allows us to regulate query
execution ensuring obedience to authorizations. Such regula-
tions concern both visibility of relations as well as execution
of operations in the query plan. Since a computation might
involve different base relations, different authorization sets
(and authorities) might be involved in the control for the
release of a derived relation. We will elaborate on this in
Sect. 7. In this section, for simplicity, we assume an over-
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Fig. 5 Authorizations and corresponding overall views for the subjects
of our running example

all view of the authorizations and we use notation PS (ES ,
resp.) as a short-hand for the abstract concept summarizing
the attributes that subject S is authorized to access in plain-
text (encrypted, resp.) form. In other words, PS = {a∈ P |
[P, E]→S} and ES = {a∈ E | [P, E]→S}. Figure 5 shows
the authorizations for our running example and the corre-
sponding overall views for the different subjects.

The following definition captures the authorization con-
trol on a relation (based on its profile) to determine whether
releasing it to a subject obeys authorizations, taking into
account also information leakage caused by implicit
attributes and equivalence relationships.

Definition 4 (Authorized Relation) Let R be a relation with
profile [Rvp, Rve, Rip, Rie, R�]. A subject S ∈ S is autho-
rized for R iff:

1. Rvp∪Rip ⊆ PS (authorized for plaintext);
2. Rve∪Rie ⊆ PS∪ES (authorized for encrypted);
3. ∀A∈R�, A⊆PS or A⊆ES (uniform visibility).

According to Definition 4, a subject S is authorized to
access a relation R iff all the following three conditions
hold: 1) S is authorized to access in plaintext all the (vis-
ible or implicit) attributes represented in plaintext in R; 2) S
is authorized to access in plaintext or in encrypted form all
the (visible or implicit) attributes represented in encrypted
form in R; 3) S is authorized to access in the same form
(either plaintext or encrypted) all the equivalent attributes,
that is, attributes that appear together in an equivalence set
in R�.

Conditions 1 and 2 correspond to a simple enforcement
of authorizations, taking into account both the visible and
implicit attributes. Also, Condition 2 considers the fact that
subjects authorized for plaintext visibility over an attribute
can also have encrypted visibility over the same (since
the encrypted representation conveys less information than
the plaintext one). Condition 3 enforces control on indi-
rect information leakage caused by equivalence relationships
established in query computation, to prevent unauthorized
exposure of information. It requires the subject to have the
authorizations for the attributes in equivalence sets, since the

relation implicitly carries information about them. In other
words, since they leave a trace in the computation result, all
attributes in equivalence sets are always treated as implicit
attributes. Condition 3 also imposes that, within each equiv-
alence set, the authorizations be the same (either plaintext or
encrypted) for all attributes in the set. In fact, equivalence
relationships in a profile express the fact that some attributes
have been related in a computation (e.g., an equi-join opera-
tion) and therefore visibility of one attribute in an equivalence
set leaks information on the other attributes in the same set.
Imposing uniform visibility allows us to account for such
inference channels, blocking them when not consistent with
the authorizations. Note that uniform visibility must be sat-
isfied for all attributes in an equivalence set, regardless of
whether they belong to the relational schema (i.e., they are
visible).

Example 1 Consider the authorizations in Figure 5 and a rela-
tion R with profile [P,BSC, _, _, {SC}]:

– Y is authorized for R;
– H is not authorized for R (condition 1, attribute P);
– U is not authorized for R (condition 2, attribute B);
– I is not authorized for R (condition 3, attributes SC).

Note that the enforcement of uniform visibility entails a
possibly counter-intuitive result: a subject could be not autho-
rized for a relation due to the subject’s plaintext visibility
over some attributes, while another subject that, on these
attributes, has only encrypted visibility could be authorized
for the relation. For instance, with reference to Example 1,
I is not authorized for R because it has plaintext visibility
over C and encrypted visibility over S (and the equivalence
between C and S could leak S to I), while Y is authorized
for R since it has only encrypted visibility over C and S, and
therefore cannot draw any inference from R.

Definition 4 states when a subject can be authorized for
a relation, based on its authorizations and on the relation
profile. Another aspect involved in the enforcement of autho-
rizations concerns regulating the assignment of operations
within a query plan to authorized subjects. An operation of
the query plan, corresponding to a non-leaf node in the tree,
operates on one or two operand relations, and produces a
relation as output. A subject can be authorized for the exe-
cution of an operation if and only if it is authorized for all
the relations involved: the operand(s) as well as the result.
The authorized visibility for the operand(s) is needed since
otherwise the subject could not access them. The authorized
visibility for the result enforces the control over the informa-
tion entailed by the execution of the operation itself. This is
captured by the following definition.

Definition 5 (Authorized Assignee) Let T(N) be a query
plan, n∈N be a non-leaf node, nl ,nr∈N be its children (if
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any) producing relations Rl and Rr , and S be a set of sub-
jects. Subject S∈S is an authorized assignee of n over Rl and
Rr iff S is authorized for Rl , for Rr , and for the relation pro-
duced by n , according to Definition 4. Function λ : N → S
is said to be an authorized assignment function for T(N)iff
∀n ∈ N, λ(n) is an authorized assignee of n .

Subjects appearing on the left-hand side of each node in
Fig. 4 are authorized assignees for the node. Leaf nodes do
not have any assignee since they remainwith the party storing
the corresponding base relation.

5 Extended plans and encryption/decryption

Given a query plan, our goal is to produce an authorized
assignment of operations to subjects. While the definitions
in Sect. 4 accounted for the possible presence of encrypted
attributes, the original query plan, including only operations
requested by the query computation, does not include any
encryption/decryption operation. Encryption and decryption
operations are inserted on-the-fly by our approach to adjust
visibility of attributes as required by operation requirements
or authorizations. Encryption protects attributes so to permit
the assignment of operations to subjects that could not be con-
sidered otherwise. Decryption permits accessing plaintext
values of encrypted attributes when needed in the com-
putation. For instance, assume that, for the query plan in
Fig. 4, all operations but the final selection (σavg(P)>100)
could be performed on encrypted values. If all attributes were
encrypted at their source (and avg(P) decrypted only for the
last operation),more subjects could be considered for execut-
ing operations in the query. Figure 6 illustrates the query plan
in Fig. 4 extended to consider such encryption and decryp-
tion operations, reporting on the left-hand side of each node
the subjects that could now be considered for the execution
of the node’s operation. The specific encryption scheme to
apply for the encryption of each attribute is decided by the
query optimizer in the analysis of the query plan, depending
on the kind of operations to be supported over such attributes
(Sect. 7). For instance, deterministic symmetric encryption
can be used to efficiently support evaluation of equality con-
ditions in joins and selections, while not disclosing plaintext
data values.

A query plan T′ that is obtained by inserting encryption
and decryption operations into another query plan T is called
an extended query plan for T and is defined as follows.

Definition 6 (Extended Query Plan) Let T(N) be a query
plan. A query plan T′(N) is an extended query plan for T
iff T′ is T enriched with some encryption and decryption
operations.

In the following, the set of extended query plans for T is
denoted T . As said, encrypting attributes enables the consid-

Fig. 6 An extended query plan

eration, for the assignment of an operation, of subjects not
otherwise authorized for the execution of the operation.How-
ever, the encryption needed to make assignments authorized
eventually depends on the actual subjects to which opera-
tions are assigned (e.g., P would need to be encrypted for
assigning the execution of the join to X, but could remain
in plaintext if the join is assigned to Y). There are basi-
cally two opposite approaches that can be followed in the
insertion of encryption/decryption operations in the query
plan, corresponding to maximizing or minimizing visibility
of attributes. Maximizing visibility corresponds to always
leave plaintext visibility of data, applying encryption only
when strictly needed for protecting attributes visibility from
the subject executing a specific operation. Minimizing vis-
ibility corresponds to always apply encryption by default,
decrypting attributes only when needed for operation exe-
cution. Each of the two extremes has some pros and cons.
Maximizing visibility by default can avoid unnecessary
encryption/decryption operations and allows for operating
as much as possible on plaintext data, but could reduce the
number of subjects to which an operation can be assigned.
For instance, suppose that attribute D is not encrypted for the
execution of the selection operation (σD=′stroke′), since such
an operation is assigned to H, which can see D in plaintext.
Then, provider Z cannot be considered for the join since it
does not have the authorization for plaintext visibility of D.
In fact, encrypting D only for the join would not protect it
from the possible leakage caused by the prior evaluation of
the condition (as a matter of fact, D would remain in the
implicit plaintext component of the profile of all relations
computed after the selection over plaintext attributeD).Max-
imizing visibility of attributes at a given step may then rule
out the consideration of possible subjects in subsequent steps
of the query plan. Minimizing visibility, while not affecting
the choice of subjects for subsequent operations in the query
plan, could result in executing more encryption/decryption
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operations than actually needed. For instance, encrypting D
before the execution of the selection operation may even-
tually result unnecessary if Z were not the best choice for
the join anyway, implying an overhead for query execution
(encryption and possible less efficient evaluation of the con-
dition) which could have been avoided.

To avoid predetermining one of the possible scenarios
above,we adopt amore flexible approach byfirst determining
the candidate subjects for the operations in the plan, and then
injecting encryption and decryption only as needed, depend-
ing on the decided assignment of operations to subjects.
The query optimizer can then decide assignments of oper-
ations based on costs and performance aspects. Of course,
assignment of operations to subjects must be bounded by
the authorizations and the operation requirements, which can
limit the application of encryption (as some operations need
to access some attributes in plaintext for execution). With
respect to authorizations, for example, while it is desirable
for the execution of the join operation to possibly consider X

(since S and C could be encrypted for that), it does not make
sense to consider I since, as already noted, its non-uniform
visibility over S and C (it is authorized to view C in plaintext
but S only in encrypted form) rules it out from considera-
tion (Condition 3 of Definition 4). With respect to operation
requirements, an attribute should not be encrypted if the oper-
ation to be executed on it requires accessing the attribute’s
plaintext values. For instance, if the encryption scheme avail-
able for P does not support range conditions, the possibility
of encrypting avg(P) for assigning the last selection operation
should be excluded. For operations that are not supported by
cryptographic techniques (not existing or not available to the
application), we assume the optimizer to specify the need for
maintaining data in plaintext for execution of the operation.
For each node we then have a set Ap of attributes that are
needed in plaintext.

To define the potential candidates for an operation, we first
need to characterize the operation requirements, which may
limit the application of encryption. We capture this by defin-
ing the minimal visibility needed over an operand to allow
the evaluation of an operator. For instance, in our running
example, we assume that the execution of the last selection
in the query plan needs to view avg(P) in plaintext, while all
other attributes can be encrypted. Intuitively, the minimum
required view over an operand for the execution of an opera-
tion is the operand relation where all the (visible) attributes,
except those that need to be in plaintext for operation execu-
tion, are encrypted.This is formally capturedby the following
definition.

Definition 7 (MinimumRequired View) LetT(N) be a query
plan, n∈N be a non-leaf node, ny be one of its children, pro-
ducing relation Ry , and Ap be the set of attributes of Ry

that must be in plaintext for the execution of n . The mini-

Fig. 7 Minimum required views and assignment candidates

mum required view over ny for the execution of n is relation
R̂y=decrypt(Ap,encrypt(Rvp

y \ Ap, Ry)).

In the definition above and in the following, encrypt
(A, R) denotes the encryption of attributes A in R and
decrypt(A, R) denotes the decryption of attributes A in R.
Figure 7 illustrates (in boxes on the arcs from the operands to
the operations) the profiles of the minimum required views
for our running example. The profiles associated with nodes
are those that result assuming as operands such minimum
required views. For instance, the minimum required view
over Ins for the execution of the join has all attributes (CP)
visible and encrypted.

Minimum required views allow us to take into account the
visibility requirements for operation execution: only subjects
authorized for the minimum required views can be candi-
dates for the assignment (since for them the operands can be
protected with encryption without affecting operation execu-
tion). This is captured by the following definition.

Definition 8 (Assignment Candidates) Let T(N) be a query
plan, n∈ N be a non-leaf node, nl ,nr∈ N be its children (if
any), and S be a set of subjects. A subject S∈S is a candidate
for the execution of n iff S is an authorized assignee of n over
R̂l and R̂r according to Definition 5. Candidate assignment
function � : N → 2S associates with each n ∈ N the set of
candidates for the execution of n .

Figure 7 illustrates assignment candidates for the opera-
tions of our running example.

The set of candidates along a query plan T(N) enjoys a
nice monotonic behavior. For each n ∈ N, the set of candi-
dates of n’s ancestors is a subset of the set of n’s candidates.
This applies to any node representing an operation that does
not need to operate on plaintext attributes or that, doing so,
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leaves an implicit trace of such attributes (i.e., causes them to
be included in the implicit attributes of the result’s profile).
In fact, all such attributes will also remain implicit plaintext
in the profile of the minimum required view of any node nx
ancestor of n , and therefore, by definition, any candidate for
nx is certainly also a candidate for n . This is formalized by
the following theorem.

Theorem 2 Let T(N) be a query plan, n∈ N be a non-leaf
node nl ,nr∈ N be its non-leaf children, if any. R̂vp

l ∪ R̂vp
r ⊆

R̂ip 
⇒ �(nx ) ⊆ �(n),∀nx ancestor of n.
This monotonic behavior can be easily observed in Fig. 7,

where the set of candidates for each node decreases going up
in the query plan.

Intuitively, the set of candidates for a node are all and
only those subjects that can be made authorized assignees
(Definition 5), assuming to extend the query plan with
encryption/decryption operations, as stated by the following
theorem.

Theorem 3 Let T(N) be a query plan, and� be a candidate
assignment function for it:

i) ∀T′ ∈ T , λ, and n ∈ N, if T′ is an extended query plan for
T and λ is an authorized assignment for T′, then λ(n) ∈
�(n).

ii) ∀λ, if ∀n ∈ N, λ(n) ∈ �(n), then there exists an
extended query plan T′ for T such that λ is an autho-
rized assignment for T′.

In other words: i) any assignment that can be made autho-
rized by inserting some encryption and decryption operations
is included in �, and ii) any assignment included in �

can be made authorized by inserting some encryption and
decryption operations. For instance, Fig. 8a, b illustrates two
extended query plans for our running example, assuming
operations allocated to the subject indicated on the left-hand
side of each node. For convenience of the reader, sets P and
E of each subject (copied from Fig. 5) are repeated in Fig. 8c.
In the plan in Fig. 8a: S, C, and P are encrypted before being
passed to X, since X cannot access them in plaintext. In the
plan in Fig. 8b, P is encrypted before being passed to Z,
since Z cannot access it in plaintext, while D is encrypted
before executing the selection (i.e., the condition on D will
have to be dispatched formulated on encrypted values) so
not to leave an implicit plaintext trace in the computation
given that Z, executing subsequent steps, cannot access D
in plaintext.1 In both plans, avg(P) is decrypted before the

1 Note that this does not necessarily imply the evaluation of the condi-
tion in encrypted form. Since H is the authority over D and it knows the
encryption key (it encrypts D itself), H can operate on plaintext values
and encrypt D afterward.

execution of the final selection that needs to access plaintext
values. Encryption and decryption operations are assigned
to the same subjects as the nodes they complement. Indeed,
the subject authorized for a node is also clearly authorized
for the preceding decryption (of attributes that are needed in
plaintext for the operation) and for the following encryption
(of attributes available in plaintext).

Given a query plan T, we are interested in identifying
an assignment λ and an extended query plan T′ that makes λ

authorized.Anextendedqueryplan thatmakes an assignment
authorized is defined as follows.

Definition 9 (ExtendedAuthorizedQueryPlan) LetT(N)be
a query plan,� be a candidate assignment function for it, and
λ be a function λ : N → S such that ∀n ∈ N : λ(n) ∈ �(n).
An extended authorized query plan of T for λ is an extended
query plan T′ ∈ T such that λ is an authorized assignment
for T′ (Definition 5).

For instance, Fig. 8a–b illustrates two extended authorized
query plans for our running example.

Given a query plan, there are a number of possible autho-
rized assignments in the candidate assignment function �.
Also, for each possible authorized assignment function λ

such that ∀n ∈ N : λ(n) ∈ �(n), there are different ways
in which encryption and decryption could be inserted in T to
make λ authorized. For instance, enforcing all encryptions
corresponding to the minimum required views (as in Fig. 7)
could work. Among these extended authorized query plans,
the user can choose the one optimizing a parameter of her
interest such as cost or performance. In particular, we expect
the economic cost to be the driving factor in the choice of the
assignment of operations to candidates. Given a query plan
T and a cost function γ , we aim at identifying an assign-
ment λ′ and an extended authorized query plan T′ for λ′ that
minimizes the economic cost γ (λ′,T′) for the evaluation of
T′ according to assignment λ′. Formally, our minimization
problem is as follows.

Problem 1 (Minimum Cost Assignment) Given a query plan
T(N), a candidate assignment function � for it, the set T
of extended query plans for T, and a cost function γ : � ×
T → R, determine an assignment function λ′ such that ∀n ∈
N, λ′(n) ∈ �(n), and an extended query plan T′ ∈ T such
that:

1. T′ is an extended authorized query plan of T for λ′;
2. ∀λ′′ such that ∀n ∈ N, λ′′(n) ∈ �(n), and ∀T′′ ∈ T such

that T′′ is an extended authorized query plan of T for λ′′,
γ (λ′,T′) ≤ γ (λ′′,T′′).

The economic cost must clearly take into account the
cost of executing computation, the cost of transferring data
between different subjects involved in the computation, and
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Fig. 8 Extended authorized
query plans (a, b) and
authorized attributes (c) for the
plan in Fig. 1

(a) (b) (c)

the cost of the enforcement of the encryption and decryption
operations that need to be injected in the plan. In the next
section, we illustrate our approach to model and solve the
minimum cost assignment problem.

6 Computing aminimum cost assignment

The results of the previous section prove that, for any
operation in the query plan, only subjects in the opera-
tion’s candidate set need to be considered (Theorem 3, i).
Also, any of them would do, since any assignment taken
from the candidate set can be made authorized by insert-
ing encryption and decryption operations (Theorem 3, ii). At
the same time, however, each authorized assignment may
result in different costs and require injection of different
encryption/decryption operations.Also, since encryption and
decryption operations themselves bear a cost, the computa-
tion of a minimum cost assignment needs to consider also
possible encryption/decryption that would be required for
the selected candidates to be authorized for the operations
assigned to them.

To compute a minimum cost assignment for a query plan
T(N), we operate in two steps:

1. compute the candidate assignment function � for T(N),
that is, identify the set of candidate subjects for the exe-
cution of each node in N;

2. determine the assignment λ in � (i.e., such that ∀n ∈
N : λ(n) ∈ �(n)) such that the extended query plan T′
making λ authorized has minimum cost.

The first step restricts the evaluation of possible assignees
for each node to the subjects who can be authorized for its
execution. The second step determines, among all possible
assignments, the one for which the total cost for evaluating
the query (including the cost of encryption/decryption oper-
ations that need to be injected to make the selected assignees
authorized) is minimum.

The computation of candidate assignment function �

(step 1) is relatively straightforward and can be performed
by simply executing a post-order visit of the query plan,

also leveraging monotonicity of the candidates along the
tree (Theorem 2). The identification of the minimum cost
assignmentλ (step 2) requires instead solving aminimization
problem.Wemodel such a problem as a binary programming
problem that can be then solved with off-the-shelf solvers.
A binary programming problem is formulated as follows:
given a set of variables that can take values in {0, 1}, a
set of constraints over them, and an objective function, find
an assignment of values to variables that satisfies all the
constraints and that minimizes (or maximizes) the value of
the objective function. In the remainder of this section, we
describe how our optimization problem (Problem 1, step 2)
canbe translated into a binary programmingproblemby illus-
trating the correspondingvariables, constraints, andobjective
function.

6.1 Variables

Figure 9 summarizes the variables of our binary program-
ming problem. It distinguishes between output variables,
which represent the solution to the problem, and input vari-
ables, which represent its input.

Output variables They model the solution of our minimiza-
tion problem. In particular, given a query plan T(N), the
output variables model an authorized assignment function λ

for T(N), and the format (plaintext or encrypted) of the, vis-
ible or implicit, attributes in the relation profile associated
with each node n ∈ N.

– Assignments. For each subject s ∈ S and each node n ∈
N, there is a binary variable λs ,n that is equal to 1 if node
n is assigned to subject s for evaluation; it is 0, otherwise.

– Profiles. For each attribute a ∈ A and each node n ∈ N,
there are four binary variables vpa ,n , vea ,n , i pa ,n , and
iea ,n . Variable vpa ,n (vea ,n , i pa ,n , iea ,n , resp.) is equal
to 1 if a is a visible plaintext (visible encrypted, implicit
plaintext, implicit encrypted, resp.) attribute in the profile
of node n ; it is 0, otherwise.
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Fig. 9 Variables of the binary programming problem

Input variables They model the input of the problem,
namely: the query plan tree, the candidates for each node
(step 1), the attributes involved in the evaluation of each
node (needed to guarantee uniform encrypted/plaintext rep-
resentation of attributes that need to be compared and to set
the implicit component in the node profile), the authoriza-
tions (needed to determine possible encryption that has to be
enforced on some attributes to make candidates authorized
for the nodes they have been assigned), and the profiles of
nodes over minimum required views (needed to guarantee
the correctness of node profiles in terms of the completeness
of the set of visible and implicit attributes and to ensure the
operation feasibility through the plaintext representation in
the profiles of the attributes needed for the operation’s eval-
uation). For readability, in the remainder of this section, we
denoteminimum required viewswithMRVs and,when refer-
ring to the profile resulting from executing the operation of
a node on the MRVs over its children (i.e., with reference to
our running example, to the profiles in Fig. 7), we will omit
“over its children.”

– Tree structure. For each pair of nodes n̄ ,n∈N, there is a
variable πn̄ ,n that is set to 1 if n̄ is the parent of n in the
tree; it is 0, otherwise.

– Candidates. For each subject s ∈ S and each node n ∈
N, there is a variable cs ,n that is set to 1 if subject s is a
candidate for n ; it is 0, otherwise.

– Attributes involved in operations. For each attribute a ∈
A and each node n ∈ N, there is a variable ιa ,n that is
set to 1 if the operation represented by node n inserts a
into the implicit component of the relation profile of n ;

it is 0, otherwise. Furthermore, for each node n ∈ N and
each pair of attributes a and ā, there is a variable êqa ,ā ,n
that is set to 1 if the operation represented by node n
defines an equivalence relationship between a and ā; it
is 0, otherwise.

– Authorizations. For each subject s ∈ S and each attribute
a ∈ A, there are two variables, auth_ps ,a and auth_es ,a .
Variable auth_ps ,a (auth_es ,a , resp.) is set to 1 if sub-
ject s is authorized to access attribute a in plaintext
(encrypted, resp.) form; it is 0, otherwise.

– Profiles over minimum required views. For each attribute
a ∈ A and each node n ∈N, there are four variables v̂pa ,n ,

v̂ea ,n , ˆi pa ,n , and ˆiea ,n . Variable v̂pa ,n (v̂ea ,n , ˆi pa ,n ,
ˆiea ,n , resp.) is set to 1 if a belongs to the visible plaintext
(visible encrypted, implicit plaintext, implicit encrypted,
resp.) component of the profile of n on the MRVs; it is 0,
otherwise. Note that for each leaf node n (representing
a base relation), these four variables correspond to the
minimum required view over n for the execution of the
parent node n̄ .

6.2 Constraints

Constraints restrict the combination of values for the output
variables described in Sect. 6.1 to guarantee that the solution
computed for our binary programming problem represents a
minimum cost assignment for the query plan given in input.
Such constraints are formulated as follows.

Authorized assignment This set of constraints guarantees
that the values of variablesλs ,n represent an assignment func-
tion that is compliant with the candidate assignment function
and the authorizations.

– Each node in the query plan is assigned to exactly one
subject.

∀n ∈ N :
∑

s∈S
λs ,n = 1 (1)

Intuitively, for each node n , the constraint sums λs ,n over
all the subjects in S. If the sum is equal to 1, then there
exists only one subject s such that λs ,n is equal to 1,
meaning that there exists only one subject to which n has
been assigned.

– Assignees are candidates for nodes they have been
assigned.

∀n ∈ N :
∑

s∈S
λs ,n ·cs ,n = 1 (2)

123



S. De Capitani di Vimercati et al.

The product λs ,n ·cs ,n is equal to 1 only if the operation
at node n is assigned to subject s (λs ,n = 1) and s is a
candidate for n (cs ,n = 1).

– The extended query plan ensures assignees are autho-
rized for the nodes they have been assigned. Assigning a
node to one of its candidates guarantees that the assignee
has sufficient authorization for executing the operation
(Theorem 3), which however can be provided extend-
ing the query plan with encryption to cover attributes the
assignee cannot access plaintext. The profile of the nodes
in the extended query plan returned should then be com-
pliant with authorizations. In other words, the assignee
of a node must be authorized for all the attributes in the
profile of the node and visibility (plaintext or encrypted)
should be compliant with authorizations.

∀a ∈ A,∀n ∈ N,∀s ∈ S :
vpa ,n ·λs ,n ≤ auth_ps ,a (3)

i pa ,n ·λs ,n ≤ auth_ps ,a (4)

vea ,n ·λs ,n ≤ auth_ps ,a+auth_es ,a (5)

iea ,n ·λs ,n ≤ auth_ps ,a+auth_es ,a (6)

The products vpa ,n ·λs ,n and i pa ,n ·λs ,n (vea ,n ·λs ,n ,
iea ,n·λs ,n , resp.) are equal to 1 if the operation at node n is
assigned to s and attribute a is visible plaintext or implicit
plaintext (visible encrypted or implicit encrypted, resp.)
in the profile of the relation resulting from the evaluation
of n . If the product is equal to 1, the constraint is satisfied
only if also auth_ps ,a = 1 (auth_ps ,a+auth_es ,a = 1,
resp.) and hence s is authorized to access a in plaintext
(in plaintext or encrypted, resp.). If the product is equal
to 0 the constraint is always satisfied, independently from
authorizations.

Integrity of the profiles This set of constraints guarantees
integrity of the profiles, meaning that they capture the infor-
mative content of base and derived relations as discussed in
Sect. 3.2.

– Attribute representation in schema. An attribute cannot
appear in each node more than once (i.e., in both the
plaintext and encrypted component).

∀a ∈ A,∀n ∈ N : vpa ,n +vea ,n ≤ 1 (7)

If an attribute is represented both in plaintext and
encrypted in a node, both vpa ,n and vea ,n are equal to 1,
hence their sum is 2 violating the constraint.

– Attribute representation in implicit component. An
attribute cannot appear in the implicit component more
than once (i.e., in both the implicit plaintext and implicit

encrypted component).

∀a ∈ A,∀n ∈ N : i pa ,n +iea ,n ≤ 1 (8)

If an attribute is represented both in plaintext and
encrypted in a node, both i pa ,n and iea ,n are equal to
1, hence their sum is 2, violating the constraint.

– Base relations have all their attributes in plaintext and
have no implicit attributes. The profile of a base rela-
tion R includes all and only the attributes in the relation
schema in plaintext. The implicit component is empty
and no attribute is encrypted. This specific format of the
relation profile translates in the following constraints that
need to be satisfied by the relation profiles associatedwith
nodes representing base relations.

∀n ∈ {n ∈ N : πn ,n̄ = 0,∀n̄ ∈ N} :
vpa ,n = 1,∀a ∈ R (9)

vpa ,n +vea ,n = 0,∀a /∈ R (10)

i pa ,n +iea ,n = 0,∀a ∈ A (11)

Here, R is the relation represented by node n , and set
{n ∈ N : πn ,n̄ = 0,∀n̄ ∈ N} contains all leaf nodes in N.
Constraints above require then that: each attribute a in the
schema of a base relation (i.e., a ∈ R) is visible plaintext
in its profile; for each attribute a that does not appear in
the visible component of R, variables vpa ,n and vea ,n are
set to 0 (i.e., modeling the fact that the attribute does not
belong to R); and for all attributes a ∈ A, variables i pa ,n

and iea ,n are both set to 0 (i.e., the implicit component
in the profile of base relations is empty).

Support for query evaluationThis set of constraintsmodels
the requirements that impose the plaintext/encrypted repre-
sentation of attributes in the profile of nodes to support the
execution of the nodes’ operations. In fact, for the execu-
tion of an operation, some attributes might be required to be
represented in plaintext (e.g., for the evaluation of a selec-
tion condition) or be represented in the same form (e.g., both
plaintext or encrypted for comparing their values).

– Operation feasibility. For each node, attributes that are
requested to be in plaintext for supporting the execution
of the operation at the node appear plaintext in the node,
as dictated by the profile of the node on the MRVs.

∀a ∈ A,∀n ∈ N : vpa ,n ≥ v̂pa ,n (12)

If an attribute a is plaintext in the profile of node n on
the MRVs, v̂pa ,n is equal to 1. In this case, the constraint
imposes that also the value of vpa ,n is equal to 1, that is,
the attribute must be in plaintext also in the node profile
of the computed solution.
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– Comparison feasibility. In each node, attributes that need
to be used together (i.e., compared or input to an udf)
must appear in the same (either plaintext or encrypted)
form.

∀a, ā ∈ A,∀n ∈ N :
(êqa ,ā ,n ·vpa ,n ·vpā ,n )+(êqa ,ā ,n ·vea ,n ·veā ,n ) = êqa ,ā ,n

(13)

For each node n, the constraint is specified for each pair
of attributes a and ā that are used together in the node,
expressed by input variable êqa ,ā ,n equal to 1. The prod-
uct êqa ,ā ,n ·vpa ,n ·vpā ,n is equal to 1 iff a and ā are
compared and are both visible plaintext in the profile
of n . Analogously, the product êqa ,ā ,n ·vea ,n ·veā ,n is
equal to 1 iff a and ā are used together and are both
visible encrypted. Note that the sum of such products is
constrained to be equal to êqa ,ā ,n , meaning that if the
attributes are used together (i.e., êqa ,ā ,n=1), then they
are either both plaintext or both encrypted.

Profile correctness This set of constraints specifies cor-
rectness criteria on the profile of nodes associated with the
extended query plan of the solution. It captures correctness
of each node’s profile, which must take into account all
attributes of its operands (as expressed in the MRVs), and
the correct computation of implicit information, which must
take into account implicit attributes carried by the operands
as well as new implicit information originated by the node’s
operation.

– CompliancewithMRVs.For each node, all attributes visi-
ble (implicit, resp.) in the profile of the node on theMRVs
must be visible (implicit, resp.) in the node. Intuitively,
such compliance dictates that no attribute can be lost or
added in the node profile.

∀a ∈ A,∀n ∈ N :
vpa ,n +vea ,n = v̂pa ,n +v̂ea ,n (14)

i pa ,n +iea ,n = ˆi pa ,n + ˆiea ,n (15)

Note that, for each node, only one of the variables at any
side of the equality can be equal to 1, as an attribute can-
not appear both encrypted and plaintext in the schema
of a node (or in the implicit component). This mutual
exclusion is guaranteed for the attributes in the profile of
the node on the MRVs as they are provided as input, and
for the attributes in the solution’s profile by the attribute
representation constraints (Constraints 7 and 8 ). The
equalities above then require attributes in the profile of a
node to be all and only the attributes in the profile of the
node on theMRVs. Note that the constraints only impose

that attributes do not appear or disappear from the schema
(or the implicit component), but they do not impose that
attributes must be in the same form (i.e., encrypted or
plaintext) as this depends on the specific assignment of
the solution (which might need—or not need—to inject
encryption to cover attributes that the assignee cannot
access in plaintext).

– Correctness of the implicit component. For each node,
the (plaintext/encrypted) implicit component in the pro-
file must include all the (plaintext/encrypted) implicit
attributes carried by the children (i.e., in the implicit
components of the children) as well as all (plain-
text/encrypted) attributes involved in a selection or group
by operation in the node.

∀a ∈ A,∀n, n̄ ∈ N :
i pa ,n ≥ i pa ,n̄ ·πn ,n̄ (16)

iea ,n ≥ iea ,n̄ ·πn ,n̄ (17)

∀a ∈ A,∀n ∈ N :
i pa ,n ≥ ιa ,n ·vpa ,n (18)

iea ,n ≥ ιa ,n ·vea ,n (19)

The first two constraints require i pa ,n (iea ,n , resp.) to be
1 whenever i pa ,n̄ (iea ,n̄ , resp.) is 1 in at least a child
of n ; enforcing propagation in n’s profile of the implicit
attributes of its children.The latter twoconstraints require
i pa ,n (iea ,n , resp.) to be equal to 1 for any attribute
a such that vpa ,n=1 (vea ,n=1, resp.), meaning that the
attribute is in the schema of node n , and the attribute
has been involved in a selection or group by operation
in n (i.e., ιa ,n is 1). These constraints then impose n’s
implicit component to include the attributes that affected
n’s computation (i.e., attributes that leave a trace in the
result).

6.3 Objective function

The objective function of the binary programming problem
models the economic cost of the evaluation of the extended
authorized query planT’(N) for λ′, with λ′(n) = λs ,n ,∀n ∈
N. The cost is computed as the sumof three components: i) the
computational cost OP_EXEC of evaluating each node in the
query plan; ii) the encryption/decryption cost ENC_DEC of
enforcing encryption and decryption operations; and iii) the
transmission cost TRANSF of data among subjects. Formally,
the objective function is defined as:

min(OP_EXEC+ENC_DEC+TRANSF)

We now describe each of the three cost components. Fig-
ure 10 summarizes the cost parameters that will be used in
such cost components.
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Fig. 10 Cost parameters

Operation executionThe cost of executing the operations in
the query plan is the sum of the costs of executing the differ-
ent nodes’ operations at the subject to which they have been
assigned. For each node n ∈ N, such a cost depends on the
CPU usage cost costs of the subject s to which the node has
been assigned (i.e., for which λs ,n is equal to 1), multiplied
by the computational effort eval_e f fn required for the exe-
cution, which depends on the operation to be executed and
on the size of the input to be processed. The computational
cost of the query is then computed as:

OP_EXEC =
∑

n∈N,s∈S
(λs ,n ·costs ·eval_e f fn )

Encryption/decryption Encryption and decryption opera-
tions must be executed whenever the representation of a
visible attribute changes from a node n to its parent n̄
(from visible plaintext to visible encrypted or vice versa),
as dictated by the extended query plan determined from the
solution of the minimization problem. A change from plain-
text to encrypted requires the execution of an encryption
operation by the child node(s)’ assignee(s) before data are
transmitted to the parent node’s assignee. A change from
encrypted to plaintext requires the execution of a decryption
operation by the parent node’s assignee upon reception of
data from the child(ren) assignee(s). The costs considered
for the operation are therefore the computational cost (costs )
of the subject performing the operation (i.e., subject s for
which λs ,n=1 for encryption and λs ,n̄=1 for decryption), the
computational effort of such operation (ee f fa and de f fa ,
resp.), which depends on the encryption scheme used for the
attribute involved, and the size of the data to be encrypted
(decrypted, resp.). This latter is computed, for each attribute
involved in the operation, as the size (si zea for encryption
and esi zea for decryption) of the attribute multiplied for the
cardinality of the operand (ocardn ), where the distinction
between si zea and esi zea takes into account the fact that
encryption can increase the size of the attribute. The cost of
the execution of encryption and decryption operations is then

computed as:

ENC_DEC =
∑

n∈N,n̄∈N,s∈S,a∈A

(λs ,n ·πn̄ ,n ·vpa ,n ·vea ,n̄·

costs ·ee f fa ·si zea ·ocardn ) + (λs ,n̄ ·πn̄ ,n·
vpa ,n̄ ·vea ,n ·costs ·de f fa ·esi zea ·ocardn )

The first part of this formula computes the cost of encryp-
tion operations, and the second one computes the cost of
decryption operations. Note that, product πn̄ ,n ·vpa ,n ·vea ,n̄

(πn̄ ,n · vpa ,n̄ · vea ,n , resp.) is equal to 1 only if a appears
plaintext in n and encrypted in the parent node n̄ (or vice
versa).

Data transfer The cost of data transfer refers to the cost
involved for transferring data fromone subject to another that
occurs whenever a node n in the query plan and its parent n̄
are assigned to different subjects. Since inbound data transfer
is usually free, we consider only the outbound data transfer
cost, that is, the cost for the assignee s of the child node (such
thatλs ,n=1) to send out its results. The cost of such operation
is the transfer cost tr_costs of such subject s multiplied by
the amount of data to be transferred, which is in turn given
by the cardinality of the relation multiplied by the size of the
attributes. The latter is the plaintext size (si zea ) if the attribute
is transmitted plaintext, that is, it appears plaintext in both
n and n̄ profiles (i.e., vpa ,n ·vpa ,n̄ is 1); it is the encrypted
size (esi zea ) if the attribute is transmitted encrypted, that
is, it either appears encrypted in n (i.e., vea ,n is equal to 1)
or it appears plaintext in n but encrypted in n̄ (i.e., vpa ,n ·
vea ,n̄ is equal to 1), meaning that the attribute has to be
encrypted before transmission. The cost of transferring data
is then computed as:

TRANSF =
∑

n∈N,n̄∈N,s∈S,a∈A

λs ,n ·(1 − λs ,n̄ )·πn̄ ,n·

tr_costs ·ocardn ·((si zea ·vpa ,n ·vpa ,n̄ )+
(esi zea ·(vea ,n +(vpa ,n ·vea ,n̄ ))))

Here, product λs ,n ·(1−λs ,n̄ )·πn̄ ,n is equal to 1 whenever
nodes n and n̄ , with n̄ parent of n (i.e., for which πn̄ ,n is
equal to 1) are such that the assignee s of n (i.e., for which
λs ,n is equal to 1) is not the assignee of n̄ (i.e., λs ,n̄ is equal
to 0).

Note that the cost of data transfer must also include the
cost for sending the query result to the user (which might
not be the assignee of the root of the query tree plan). We
model such a cost by adding a node at the root of the query
tree plan. Such a node does not correspond to any operation
and has the same profile as the original root, except for the
fact that all the visible attributes appear in plaintext since the
assignee is forced to be the user who submitted the query.
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This extra node permits to keep into consideration the cost
of transferring the query result to the user as well as the cost
of the decryption operations performed by the user on the
encrypted attributes in the query result.

Figure 11 summarizes the formulation of our binary pro-
gramming problem for computing a minimum cost assign-
ment. The solution gives a value to the output variables in
Fig. 9, modeling assignment of nodes’ operations to subjects
(value of variables λs ,n ), and the attributes that appear in the
visible and implicit component of the profiles alongwith their
plaintext/encrypted representation (value of variables vpa ,n ,
vea ,n , i pa ,n , and iea ,n ). This induces the natural injection of
encryption and decryption in the query plan, resulting in an
extended authorized query plan, thus solving Problem 1.

7 Computing and distributing assignments

In this section, we discuss some aspects related to encryption
and authorization enforcement in the actual execution of the
extended query plan.

KeydistributionQueryoperation assignment entails, besides
assigning operations to candidates, also establishing and dis-
tributingkeys for attributes that need tobe encrypted/decrypted
in the query plan execution. The only constraint on key
establishment is that attributes involved in some conditions
comparing them in encrypted form need to be encrypted with
the same key. To ensure this, we simply require attributes
appearing together in an equivalence set to be encrypted with
the same key (even if they are encrypted after they have been
compared, using the same keywould not provide any leakage
as they are equivalent). As per Theorem 1, it is sufficient to
look at the equivalence sets in the profile of the root to deter-
minewhich attributes should be encryptedwith the same key.
For instance, consider the extended authorized query plans
in Fig. 8. Attributes S and Cmust be encrypted with the same
key since they belong to the equivalence set of the profile of
the root node. We then define the keys to be established for
a query plan execution as follows.

Definition 10 (Query Plan Keys) Let T(N) be an extended
authorized query plan, nT be its root, and Ak be the set of
attributes involved in encryption operations. LetA = {{Ak ∩
A j } | A j ∈ R�

T } ∪ {{a} | a ∈ Ak, �A j ∈ R�
T , a ∈ A j }.

The set KT of keys for T is KT = {kA|A ∈ A}, with kA an
encryption key.

In the definition, the set of sets A clusters attributes to be
encrypted based on the equivalence sets in the root profile
(attributes appearing together in an equivalence set belong
to the same set in A, while attributes not belonging to any
equivalence set appear as singletons). The key associated
with an attribute (or set thereof) will be distributed only to

Fig. 12 Functionality of encryption schemes

the subjects in charge for its (their) encryption, and possi-
ble decryption. Since such subjects are authorized for the
encryption/decryption operation (i.e., they are authorized for
plaintext visibility of the attributes to be encrypted/decrypted
in the operand relation), key distribution obeys authoriza-
tions. For instance, for the query plan in Fig. 8a,A = {SC,P},
resulting in kSC distributed to H and I, and kP distributed to
I and Y. For the query plan in Fig. 8b, A = {D,P}, resulting
in kD distributed to H, and kP distributed to I and Y.

Encryption algorithm As stated in Sect. 2, our authoriza-
tion model does not distinguish among different encryp-
tion schemes. The query optimizer should however choose
the scheme (e.g., deterministic or randomized encryption)
depending on the operation that has to be executed on the
resulting encrypted values [13,29]. As a matter of fact, the
ability to operate on encrypted data (Fig. 12) comes with
possible exposure to inference as well as with a cost. For
instance, direct encryption can be exposed to frequency
attacks, while order preserving encryption leaks order rela-
tionships of data. We propose to adopt, for each attribute,
the scheme providing the highest protection, while support-
ing the operations to be executed on the attribute’s encrypted
values. For instance, if for an attribute no operation needs
to be executed on encrypted values, randomized encryption
is used, while if equality conditions need to be evaluated,
deterministic encryption is used. Similarly, additive homo-
morphic (e.g., Paillier) or multiplicative homomorphic (e.g.,
ElGamal) schemes are applied when only sums or products
need to be executed over attribute values. Each attribute can
be encrypted with a different encryption scheme and with a
different key, the only constraint is that attributes that are
involved together in some operations (i.e., attributes that
belong to the same set in the equivalence set of the root’s
profile) need to be encrypted with the same key to enable the
execution of the operations.
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Fig. 11 Binary programming for computing a minimum cost assignment

Query dispatch The query dispatch operates according to
classical
approaches, with the only difference that subjects may be
communicated keys and theymayneed to execute, in addition
to operations requested by query computation, also encryp-
tion and decryption operations. We assume each subject S
involved in a query plan to have a private (priS), public
(pubS) key pair. The communication to each subject will be
signed with the private key of the user and encrypted with
the subject’s public key. Having a sub-query signed allows
the recipient to verify its authenticity and integrity. Encrypt-
ing a sub-query with the public key of the recipient supports
confidentiality of the communication. Note, however, that
the correctness of our approach does not depend on the sim-
ple protection of the communication. As a matter of fact,
the definition of profiles does not make any assumption on
the confidentiality of the query, which could potentially be
known (of coursewith conditions operating on encrypted val-
ues when demanded by encryption operations in the plan).
Figure 13 illustrates the query dispatch for the plan in Fig. 8a.
In the figure, term reqS =[[qS ,(A1,k1),. . .,(An ,kn)]priU]pubS
represents the request (signed with priU and encrypted with
pubS) sent to subject S, where qS is the sub-query and
(A1,k1), . . . , (An ,kn) is the list of attributes that subject S
must encrypt/decrypt with the corresponding key. The plan

Fig. 13 Query dispatch for the plan in Fig. 8a

starts with the request fromU toY (reqY), which will call the
sub-query at X (reqX), which in turn will call the sub-queries
at H (reqH) and I (reqI).

Authorization enforcementOur approach relies on the cor-
rect enforcement of authorizations throughout the query plan.
Since the definition of the query plan is outside the con-
trol of the involved data authorities, the query optimizer has
to be trusted for such an enforcement. Each data author-
ity will perform a control at its side, before releasing the
data to a third party, to check that the user is authorized
for the released data. In fact, a user requesting query exe-
cution must be authorized to access all data that are input
to the query, which correspond to the base relations. The
user is then trusted to involve other authorized subjects. With
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respect to the authorization enforcement, in the description
of our approach, for simplicity, we have assumed the con-
trol of the authorizations holding for a given subject simply
as a check against the set PS (ES , resp.) summarizing the
attributes that subject S is authorized to access plaintext (in
encrypted form, resp.).While the realization of such a control
directly against a global repository storing PS and ES , for all
subjects, can be possible, in real applications we can expect
authorizations over the different relations to be stored in a
distributed manner, like the relations are, and remain under
the control of the respective data authorities. This distributed
storage and management of authorizations is completely in
line with our approach. As a matter of fact, a major advan-
tage of the consideration of authorizations holding only on
specific relations (no cross-relations/cross-authority autho-
rizations) is that it simplifies authorizations specification and
management andmakes our solution completely independent
from the approach adopted for storing and managing autho-
rizations. For instance, a data authority can: i) publish its
access control policy (which would then result publicly vis-
ible), or ii) respond to explicit authorization requests. The
first approach can facilitate access to the policy, but entails
its complete exposure. The second approach has instead the
advantage of maintaining the whole policy confidential, pro-
viding only the responses to individual authorization checks.
Our proposal is independent of the specific approach adopted
and can work with both of them.

8 Experimental results

Our authorizationmodel, supporting andenforcing encrypted
visibility to external authorities and providers, enables the
delegation of intensive computation to external parties in a
way that produces the greatest advantage in the query execu-
tion. Such ability to delegate computation to providers with
the lowest cost among those trusted to access (in plaintext
or encrypted form) the involved data can bring considerable
advantages since even small reductions in price lead to a
reduction in the economic costs associated with the execu-
tion of queries. To evaluate the economic benefits of our
approach in distributed query execution, which enables to
fully enjoy the economic benefit of the open cloud market,
we realized a tool implementing the two steps illustrated in
Sect. 6 for computing aminimumcost assignment for a query
plan and performed a series of experiments.We implemented
the first step, computing the candidate assignment function
�, in Java and the second step, computing the minimum cost
assignment, using LINGO2 for solving our binary program-
ming problem. Our tool receives in input a relational schema,

2 LINGO https://www.lindo.com/index.php/products/lingo-and-
optimization-modeling.

Fig. 14 Query plans for the use-case

a query plan, the price lists of each subject (i.e., user, data
authorities, and cloud providers) for cpu usage and data trans-
fer, and the authorizations. It provides as output a minimum
cost assignment of operations in the query plan to subjects,
and the corresponding extended authorized query plan, intro-
ducing the encryption and decryption operations needed to
make the computed assignment authorized and enable the
evaluation of operations.

Queries Aiming at considering a scenario with queries
explicitly using udf functionalities (which are not used in
existing benchmarks), we considered queries representative
of a use-case provided by a large manufacturing company
that applies data analysis to extract information from produc-
tion data combined with customers data and data provided
by external agencies. These analyses typically require the
execution of udfs. The queries operate on four relations, dis-
tributed among three data authorities. The query plans differ
in: 1) the number of relations involved (ranging from 2 to
4), and 2) the position in the query tree plan where the udf
operates (i.e., close to a base relation, and hence operating on
the data owned by a single authority, or up in the query plan,
and hence operating on the result of computations combining
data of different authorities). Figure 14 provides a high-level
representation (omitting attributes and operation parameters)
of the query plans. In particular, query q1 involves two rela-
tions and has no udf; q2 involves three relations and the udf
operates close to the root; q3 involves four relations and the
udf operates close to the root; q4 involves two relations and
the udf operates close to a base relation; and q5 involves
three relations and the udf operates close to a base relation.
We estimated the size of processed data, the increase in size
that may derive from the application of encryption, and the
computational costs of relational operators and of encryp-
tion/decryption operations based on the estimates produced
by query optimizers and on common benchmarks.

Authorization scenarios We considered different autho-
rization scenarios with increasing visibility over data by
authorities and external providers.
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– UA: authorizations allow the user to access all data and
data authorities to access their own base relations.

– UAenc: enriches theprevious scenariowith authorizations
allowing each data authority to access, in encrypted form,
all the attributes in the base relations owned by the other
data authorities.

– UAmixPenc: enriches the previous scenario with autho-
rizations that allow authorities to access in plaintext some
of the attributes in the base relations owned by the other
authorities, and cloud providers to access, in encrypted
form, all the attributes of all the base relations.

– UAmixPmix: enriches the previous scenario with autho-
rizations allowing cloud providers to access in plaintext
some of the attributes that were only accessible in
encrypted form in UAmixPenc scenario.

These scenarios enable increasing involvement of authori-
ties and computational providers in performing computation,
hence leveraging authorizations supported by our model for
delegating computational intensive portions of the query and
enjoy cost-saving opportunities. The baseline for compari-
son is given by considering the case, which we denote as U,
in which the query is executed completely by the user itself.

Cost configurations and economic benefitsWe set the cost
values input to the experiments considering, as it is to be
expected in the scenarios that motivate this research, a rela-
tively high cost for the direct involvement of the user and of
data authorities. In particular, also based on considerations
from our use-case and on the listings of the most common
cloud providers on the market (e.g., Amazon AWS, Google
Cloud Platform), we assumed the cpu usage and data transfer
costs of the user from 2 to 10 times that of data authorities,
and from20 to 100 times that of cloud providers.We then per-
formeddifferent experiments for different cost combinations,
having confirmation from each of them of cost-saving in the
adoption of our approach. Figures 15a, b illustrates the results
in the twoconfigurations at the extremeof our considered cost
ranges where cost-saving is lowest (i.e., 2–20 scenario) and
highest (i.e., 10–100 scenario).Given the heterogeneity of the
different queries and their cost, we report the cost in a nor-
malized form considering, for each query, a unitary cost for
U (reported by the continuous horizontal line in the figure).
As expected, compared with the base scenario (U) where
only the user can perform computations, the involvement
of data authorities and providers enables significant savings.
Indeed, our approach permits to partially delegate operations
running on encrypted data to cloud providers with econom-
ically convenient price lists, even if they are not trusted to
access plaintext data. As it is to be expected, the more per-
missive the authorizations, the larger the potential savings,
which reach already considerable levels when providers are
allowed to access data only in encrypted form. As a matter

(a)

(b)

Fig. 15 Normalized cost for evaluating different queries under different
authorization profiles

of fact, as visible from the figure, for the 2–20 configura-
tion cost reduction ranges and from 69% (q1 in UAmixPenc)
to 94% (q4 in UAmixPmix). For the 10–100 configuration,
cost reduction ranges from 92% (q1 in UAmixPenc) to 98%
(q4 in UAmixPmix). The higher cost reductions in the 10–
100 configuration, with respect to the 2–20 configuration,
are clearly due to the impact of the difference in cost savings
(higher in the former and lower in the latter), which has its
effect throughout query execution. The reason for the differ-
ent cost reductions can be interpreted observing that in q4
and q5 (which show a higher cost reduction) the udf calls
are closer to the leaves (and therefore operate on more data),
while in q2 and q3 udf calls are closer to the root. Also, q1,
which sees a lower (with respect to the other queries) cost
reduction for the 2–20 configuration, involves a lower com-
putational effort (q1 does not call any udf).

We close this section with a note on the improvement
brought by the constraint-modeling formulation presented
with respect to the modeling in [10], where operation assign-
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ment did not take into account the cost of encryption
and decryption operations that the assignment would have
entailed. Considering such cost in computing the assignment
allows us to rule out a solution if the cost needed for encryp-
tion/decryption would eventually make it more expensive
than alternatives. Figure 16 compares the (normalized) costs
of the extended query plans generated by our approach for
the considered five queries and the ones computed according
to the heuristics in [10]. The figure has been obtained con-
sidering the UAmixPmix authorization scenario, since it is
the most general authorization scenario. As expected, in the
tested configurations, our assignment presents higher eco-
nomic benefits compared with the assignment computed by
the heuristics in [10] (up to 29% for the 2–20 configuration
and up to 42% for the 10–100 configuration). In both configu-
rations, the higher cost reductions observable in q2 and q3 are
motivated by the fact that these queries see the involvement
of (and return) more data—compared to the other queries—
which need to be encrypted and subsequently decrypted for
enabling the involvement of the providers chosen by the
heuristics in [10]. The presented constraint-modeling for-
mulation is able to consider these costs, hence producing a
different assignment that, while seeing the involvement of
providers that are not the most economic for computation
and transfer costs, require less encryption and decryption,
ensuring a reduction in the cost for the overall execution.

9 Related work

The problem of managing queries in distributed scenarios
has been extensively studied, but traditional solutions (e.g.,
[19,21]) as well as modern approaches that consider big data
analytics (e.g., [2,4,25]) do not take into consideration access
restrictions. In the relational database context, access restric-
tions can be supported by views (e.g., [9,17,26]), access
patterns (e.g., [3,6]), or data masking (e.g., [20]). Such pro-
posals however do not consider encryption.

Work closest to ours has addressed the problem of pro-
tecting data confidentiality in distributed computations (e.g.,
[11,22,27,32]). In [32] the authors present an approach to
collaboratively execute queries on data subject to access
restrictions, considering different join evaluation strategies.
In [27] the authors propose an operator placement approach
aimed at satisfying privacy constraints, while maximizing
performance in query evaluation. The proposed solution
relies on programming language techniques for regulating
and controlling information flows. In [11] the authors provide
a solution for restricting access and sharing of distributed
data, which supports the explicit consideration of join paths
in the authorizations. The proposal in [22] aims at protecting
computations in hybrid clouds, preventing flows of sensitive
information to the public cloud. These works confirm the

(a)

(b)

Fig. 16 Normalized cost for evaluating different queries with our solu-
tion and the solution in [10]

relevance of the problem, but focus on different aspects. In
particular, the approach in [32] considers only data explicitly
exchanged among providers and do not take into consid-
eration implicit information disclosure. While providing a
more expressive authorization model, the approach in [11]
requires collaborative specification of authorizations. None
of the proposals considers the possibility of protecting data
with encryption. Our proposal takes then a novel approach
supporting different visibility levels over data and flexibly
injecting encryption on-the-fly to protect data and enable the
controlled involvement of cloud providers in query compu-
tation. In [15] the authors address a complementary problem
allowing users to specify confidentiality requirements in
query evaluation to protect the objective of their queries to
some providers. The idea of specifying different visibility
levels over data has been first proposed in [10]. The approach
in [14] integrates this authorization model in a distributed
query optimizer. In this paper, we considerably extend the
prior work in [10] by enriching it with the support for addi-
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tional operators (i.e., rename and set operators), providing
formal proofs of theorems, and introducing a novel approach
for identifying a minimum cost assignment, also taking into
consideration the cost of encryption and decryption opera-
tions.

Other related work has investigated leveraging Trusted
Execution Environments (e.g., Intel SGX) for storing or
processing sensitive data, in an otherwise non fully trusted
scenario or host [24,28,31]. These works are complementary
to ours and the consideration of trusted execution environ-
ments for delegating part of the computation in our model
can represent an interesting direction of investigation.

Several works (e.g., [1,18,23,29]) have investigated the
use and support of encryption for the protection of data in
storage or query execution. Other approaches (e.g., [5,7])
proposed solutions for using secure multiparty computation
in query evaluation, to keep both the input operands and the
result secret to the party in charge of query evaluation. Spe-
cific works (e.g., [12]) have designed techniques to verify the
integrity of query results computed by potentially untrusted
providers. All these solutions are complementary to our pro-
posal.

10 Conclusions

We leverage the availability of emerging solutions supporting
computation over encrypted data to provide a novel flexible
approach enabling controlled query execution in the cloud.
Our approach allows independent data authorities to make
their data available for access and collaborative query exe-
cution, and enables users to execute queries over such data
with selective and controlled involvement of external cloud
providers. A main advantage of our approach is the flex-
ibility in the assignment of query operations to providers
as most economically convenient, with on-the-fly insertion
of encryption and decryption to adjust visibility of data as
dictated by the authorizations. The experimental evaluation
confirms the benefits provided by our proposed authoriza-
tion model. Our work leaves room for extensions, among
which we mention two in particular. The first extensions can
be the inclusion in the authorization specification of encryp-
tion schemes. In other words, authorizations could support
different encryption “levels,” for instance limiting encrypted
visibility only to certain “types” of encryption. With respect
to its impact on the model, this would imply the non-validity
of encrypted visibility (i.e., ineffectiveness of authorizations
on an encrypted attribute) if the encryption required for the
execution of the operation is not allowed by the authorization.
A second interesting direction of investigation is the con-
sideration of Trusted Execution Environments. Intuitively,
TEEs on board of computational providers can be captured
assuming the presence of an additional provider, modeling

the trusted execution environment, characterized by its own
set of authorizations and price list. However, the authoriza-
tions of the TEE and the computational provider hosting it
cannot be completely independent since communication to
the TEE passes through the hosting environment. Basically,
the authorizations of a TEE should be at least as permissive
as the ones of its hosting environment, and as a matter of
fact more permissive (e.g., a TEE can be authorized a plain-
text access to attributes that its hosting environment can view
only in encrypted form). However, since communication to
the TEE passes through the hosting environment, attributes
going to the TEEs need to be accessible (even if in more
restrictive form) to the hosting environment. With respect to
operation assignments, computational cost to be considered
is the one of the TEE and the communication cost is the one
of its hosting environment.

A Proofs of theorems

Theorem 1 Let T(N) be a query tree plan. ∀nx , ny ∈ Nwith

profile [Rvp
x ,Rve

x ,Rip
x , Rie

x ,R
�
x ]and [Rvp

y , Rve
y , Rip

y , Rie
y , R�

y ],
respectively, s.t. ny is a descendant of nx :

i) (Rvp
y ∪ Rve

y ∪ Rip
y ∪ Rie

y ∪{A | A ∈ R�
y }) ⊆ (Rvp

x ∪ Rve
x ∪

Rip
x ∪ Rie

x ∪ {A | A ∈ R�
x })

ii) ∀A ∈ R�
y , ∃A′ ∈ R�

x , A ⊆ A′.

Proof Weseparately prove the two conditions of the theorem.
i) Let us first analyze the case in which nx is the direct ances-
tor of ny . Assume, by contradiction, that ∃a ∈ {Rvp

y ∪ Rve
y ∪

Rip
y ∪Rie

y ∪{A | A ∈ R�
y }} s.t.a /∈ {Rvp

x ∪Rve
x ∪Rip

x ∪Rie
x ∪{A |

A ∈ R�
x }}. This would imply that attribute a is removed from

the profile of Rx by the execution of the operation represented
by nx . According to the operations in Figs. 2 and 3 , projec-
tion, group-by, udf, and rename operations remove attributes
from relation profiles (and, more precisely, from the visi-
ble components of profiles). However, the attributes removed
from thevisible components by renameoperation are inserted
into the renamed attributes component and, from there, into
the components of the relation profilewhere the new attribute
name appears. The attributes removed from the visible com-
ponents by projection, group-by, and udf operations already
belong to Rip

x ∪Rie
x ∪{A | A ∈ R�

x }. In fact, since projections
have been pushed down inT(N), the first projection removes
all attributes that are neither involved in operations in the
query plan, nor returned in the query result. Therefore, for
each relation, only the attributes explicitly appearing in the
clauses of the query survive in the profile of the relation corre-
sponding to the projection pushed down at each relation. The
attributes removed can only be the attributes on which opera-
tions have already been evaluated, since otherwise the query
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could not be evaluated correctly. The operations in which an
attribute a, removed by the projection, the group-by, or the
udf at nx , have possibly been involved (as illustrated in Fig. 2)
are: selection (a would be in Rip

x , Rie
x , or R

�
x ); join (a would

be in R�
x ); group-by (a would be in Rip

x or Rie
x ); a set oper-

ator (a would be in R�
x ); and udf (a would be in R�

x ). Note
that the Cartesian product does not specifically operate on
any attribute. Also, attributes involved in aggregations will
be subject to operations or will belong to the query result.
Encryption/decryption operations are instead functional to
query evaluation. Hence, no attribute is removed from the
profile of Rx , contradicting our hypothesis.

Since ∀nx , ny s.t. ny is a direct descendant of nx , (Rvp
y ∪

Rve
y ∪ Rip

y ∪ Rie
y ∪ {A | A ∈ R�

y }) ⊆ (Rvp
x ∪ Rve

x ∪ Rip
x ∪

Rie
x ∪ {A | A ∈ R�

x }), by the transitivity of operator ⊆ the
first condition of the theorem holds.
ii) Let us first analyze the case in which nx is the direct
ancestor of ny and assume, by contradiction, that ∃A ∈ R�

y
s.t. �A′ ∈ R�

x , A ⊆ A′. The sets of attributes included in
R�
y are impacted only when the operation in nx is one of the

operations described in the following.
ii.1) nx is a Cartesian product. The Cartesian product com-
bines R�

y with R�
z , with Rz the other operator of nx (i.e.,

R�
x = R�

y ∪ R�
z ). Then, if A ∈ R�

y and ∃Ai ∈ R�
z s.t.

A ∩ Ai �= ∅, then A′ = A ∪ Ai is inserted into R�
x in place

of A. Otherwise, A belongs to the R�
x . This contradicts our

hypothesis.
ii.2) nx is a selection or join with condition ai op a j . The
selection/join operations cause R�

x = R�
y ∪ R�

z ∪ {ai , a j },
which inserts equivalence {ai ,a j} in the result of R�

y ∪ R�
z .

Then, it merges the set Ai ∈ (R�
y ∪ R�

z ) s.t. ai∈ Ai with the
set A j ∈ (R�

y ∪ R�
z ) s.t. a j ∈ A j , producing a new set Ai j =

Ai ∪ A j , if such sets exist; it inserts a j into Ai if A j does not
exist (and vice versa), producing a new set Ai j = Ai ∪ {a j }
(or Ai j = A j ∪ {ai }) in place of Ai or A j , respectively. It
creates set Ai j = {ai , a j } if neither Ai nor A j exist. The set
R�
x is then obtained as R�

x = R�
y ∪ R�

z \ {Ai , A j } ∪ {Ai j }.
Therefore, if ai /∈ A and a j /∈ A (remember that A ∈R�

y ),
then A ∈ R�

x . Otherwise, Ai j ∈ R�
x and A ⊂ Ai j . This

contradicts our hypothesis.
ii.3) nx is a set operator. Any set operator causes R�

x =
R�
y ∪ R�

z ∪ {ayi , azi }, which inserts equivalence {ayi ,azi},
for i = 1, . . . , |Rvp

y ∪ Rve
y |, in the result of R�

y ∪ R�
z . The

insertion of each pair {ayi ,azi} into the result of R�
y ∪ R�

z
operates as illustrated above for the selection/join operation.
Hence, if ayi /∈ A and azi /∈ A (remember that A ∈R�

y ), then
A ∈ R�

x , else Ayizi ∈ R�
x and A ⊂ Ayizi . This contradicts

our hypothesis.
ii.4) nx is a udf operating over a set Ax of attributes. The udf
operation causes R�

x = R�
y ∪ Ax , which inserts equivalence

Ax into R�
y . Then, it merges the set Ai ∈ R�

y s.t. Ai ∩Ax �= ∅
with the set Ax , producing a new set Aix = Ai ∪ Ax , if such

set exists, and inserts Aix into R�
y in place of Ai . It creates

set Ax otherwise. Therefore, if Ax ∩ A = ∅, then A ∈ R�
x .

Otherwise, Aix ∈ R�
x and A ⊂ Aix . This contradicts our

hypothesis.
Renaming does not have impact on the second condition

of the theorem, since renamed attributes are substituted by
the corresponding original attribute names when the profile
is closed (Definition 3). Since ∀nx , ny s.t. ny is a direct
descendant of nx , ∀A ∈ R�

y , ∃A′ ∈ R�
x s.t. A ⊆ A′, for

the transitivity of operator ⊆, the second condition of the
theorem holds.

��

Theorem 2 Let T(N) be a query tree plan, n∈ N be a non-
leaf node nl ,nr∈ N be its non-leaf children, if any. R̂vp

l ∪
R̂vp
r ⊆ R̂ip 
⇒ �(nx ) ⊆ �(n),∀nx ancestor of n.

Proof Let us first analyze the case in which nx is the direct
ancestor of n in T(N) and assume, by contradiction, that
∃S ∈ �(nx ) s.t. S /∈ �(n). By Definition 8, this implies that
S is authorized for relation Rx produced by nx over operands
R̂ and possibly R̂w, with nw the other direct descendant of
nx if nx represents a binary operation, and S is authorized
for R̂ and R̂w (if it is the case). At the same time, S is not
authorized for R, R̂l , and/or R̂r . By Theorem 1, all attributes
in the profile of a node also belong to the profiles of its ances-
tors. Then, S could be authorized for Rx and not for R only
if there exists an attribute a ∈ ES s.t. a appears plaintext
(visible and/or implicit) in the profiles of R̂l , R̂r , or R and is
included encrypted in the profiles of R̂, R̂w, and Rx . Let us
separately analyze the cases in which a is visible plaintext
and implicit plaintext. If a appears implicit plaintext in the
profile of R or of an operand of n (meaning in R̂l or R̂r ),
since no operation removes attributes from an implicit com-
ponent of a profile (see Fig. 2), then a will also be included in
the implicit plaintext component of the profiles of all ances-
tors of n , including nx . Therefore, S /∈ �(nx ), contradicting
our hypothesis. Let us now analyze the case in which a is
visible plaintext in the profile of R̂l , R̂r , or R. In all these
cases, by Definition 7, a is needed plaintext for the execution
of the operation in n (as otherwise it would be encrypted in
R̂l , R̂r , and then also in the profile of the relation resulting
from n). However, by hypothesis R̂vp

l ∪ R̂vp
r ⊆ R̂ip. Then,

a would be included in the implicit plaintext components of
the ancestors of n , thus making S /∈ �(nx ), contradicting
our hypothesis. Since ∀n, nx s.t. nx is the direct ancestor of
n , R̂vp

l ∪ R̂vp
r ⊆ R̂ip 
⇒ �(nx ) ⊆ �(n), for the transitivity

of operator ⊆, the theorem holds. ��

Theorem 3 Let T(N) be a query plan, and� be a candidate
assignment function for it:
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i) ∀T′ ∈ T , λ, and n ∈ N, if T′ is an extended query plan for
T and λ is an authorized assignment for T′, then λ(n) ∈
�(n).

ii) ∀λ, if ∀n ∈ N, λ(n) ∈ �(n), then there exists an
extended query plan T′ for T such that λ is an autho-
rized assignment for T′.

Proof To clearly distinguish between nodes of the original
tree T(N) and the same nodes in the extended tree T’(N),
we will denote with n′ the counterpart in T’(N) of node n
in T(N). We now separately prove the two conditions of the
theorem.
i) Suppose, by contradiction, that ∃S = λ(n′) s.t. S /∈ �(n),
meaning that S is authorized for n′, n′

l , and n
′
r and not for n ,

R̂l , and R̂r . This can occur in two scenarios.
i.1) ∃a in the profiles of n , R̂l , and/or R̂r s.t. a does not belong
to the profiles of n′, n′

l , and n′
r , and a /∈ PS ∪ ES .

Theorem 1 states that all attributes in the profile of a rela-
tion belong to the profile of its ancestor. Therefore, if a does
not belong to the profile of n (n′, resp.), then a belongs to
the profiles of neither nl nor nr (n′

l nor n
′
r , resp.). On the

other hand, if a belongs to the profile of n (n′, resp.), then
a certainly belongs to the profiles of either nl or nr (n′

l or
n′
r , resp.). Therefore, we can focus on the profiles of n and

n′. The profile of n is computed assuming operands R̂l and
R̂r . According to Definition 7, the computation of minimum
required views does not change which attributes are included
in the profile of a node. This implies that the attributes in the
profile of n be the same of n′, contradicting our hypothesis.
i.2) ∃a appearing plaintext in the profiles of n , R̂l , and/or R̂r

s.t. a is encrypted in the profiles of n′, n′
l , and n

′
r , and a ∈ ES .

Let us first analyze the case in which a is visible plaintext
in the profile of n , R̂l , and/or R̂r . In all these cases, by Defini-
tion 7, a is needed plaintext for the execution of the operation
in n but then it should also be represented in the clear also in
n′, n′

l , and n′
r to ensure computability of the operation, thus

contradicting our hypothesis.
Let us now analyze the case inwhich a is implicit plaintext

in the profile of n , R̂l , or R̂r . This can occur only if an oper-
ation over a has been executed by (at least) one descendant
nd of n and left a trace in the implicit component. Since nd ,
being in T(N), operates on the minimum required view(s)
of its descendant(s), it left a trace in the implicit plaintext
component of the profile of nd only if the operation required
to operate on the plaintext representation of a. However, the
same operation is to be evaluated also by n′

d in T’(N), and
therefore a appears in the implicit plaintext component of the
profiles of n′, n′

l , and/or n
′
r , thus contradicting our hypothesis.

ii) Suppose, by contradiction, that ∀n, S = λ(n) ∈ �(n)

and that �T’(N) s.t. T’(N) is an extended plan for T(N)
for which λ is an authorized assignment. This can occur in
two scenarios.

ii.1) ∃a in the profiles of n′, n′
l , and/or n

′
r s.t. a does not

belong to the profiles of n , R̂l , R̂r , and a /∈ PS ∪ ES .
As previously shown, the sets of attributes in the profile

of a node in T(N) and of its counterpart in T’(N) include
the same set of attributes.
ii.2) ∃a plaintext in the profiles of n′, n′

l , and/or n
′
r s.t. a is

encrypted in the profiles of n , R̂l , and R̂r , and a ∈ ES .
Let us first analyze the case in which a is visible plain-

text in the profiles of n′, n′
l , and/or n

′
r . Since a appears in

encrypted form in the profiles of the original query plan,
plaintext visibility over a is not required to execute the oper-
ation in n′. Then,T’(N) can be extended encrypting a before
n′.

Let us now analyze the case inwhich a is implicit plaintext
in the profiles of n′, n′

l , and/or n
′
r . In this case, an operation

inserting a into the implicit component of a profile has been
carried out over the plaintext representation of a in (at least)
one descendant n′

d of node n′ in T’(N). However, since a
belongs to the implicit plaintext component of the profiles
of neither R̂l , nor R̂r , this operation can also be evaluated
over the encrypted representation of a. Hence, T’(N) can be
extended with an encryption operation over a preceding n′

d .
This includes a in the implicit encrypted component in the
profile of n′

d and of its ancestors, rather than their implicit
plaintext component. Indeed, no operation moves attributes
out from implicit components (see Figs. 2 and 3 ). ��
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