
Noname manuscript No.
(will be inserted by the editor)

Free Gap Estimates from the Exponential Mechanism, Sparse
Vector, Noisy Max and Related Algorithms

Zeyu Ding1 · Yuxin Wang1 · Yingtai Xiao1 · Guanhong Wang1 ·
Danfeng Zhang1 · Daniel Kifer1

Received: date / Accepted: date

Abstract Private selection algorithms, such as the Ex-

ponential Mechanism, Noisy Max and Sparse Vector,

are used to select items (such as queries with large an-

swers) from a set of candidates, while controlling pri-

vacy leakage in the underlying data. Such algorithms

serve as building blocks for more complex differentially

private algorithms. In this paper we show that these

algorithms can release additional information related

to the gaps between the selected items and the other

candidates for free (i.e., at no additional privacy cost).

This free gap information can improve the accuracy of

certain follow-up counting queries by up to 66%. We

obtain these results from a careful privacy analysis of

these algorithms. Based on this analysis, we further pro-

pose novel hybrid algorithms that can dynamically save

additional privacy budget.

Keywords Differential Privacy · Exponential Mecha-

nism · Noisy Max · Sparse Vector

Zeyu Ding
E-mail: zyding@psu.edu

Yuxin Wang
E-mail: yxwang@psu.edu

Yingtai Xiao
E-mail: yxx5224@psu.edu

Guanhong Wang
E-mail: gpw5092@psu.edu

Danfeng Zhang
E-mail: zhang@cse.psu.edu

Daniel Kifer
E-mail: dkifer@cse.psu.edu
1Department of Computer Science and Engineering, Pennsyl-
vania State University, University Park, PA 16802, USA

1 Introduction

Industry and government agencies are increasingly adopt-

ing differential privacy [18] to protect the confidentiality

of users who provide data. Current and planned major

applications include data gathering by Google [21,7],

Apple [43], and Microsoft [13]; database querying by

Uber [28]; and publication of population statistics at

the U.S. Census Bureau [34,9,26,2].

The accuracy of differentially private data releases

is very important in these applications. One way to im-

prove accuracy is to increase the value of the privacy

parameter ε, known as the privacy loss budget, as it

provides a tradeoff between an algorithm’s utility and

its privacy protections. However, values of ε that are

deemed too high can subject a company to criticisms

of not providing enough privacy [42]. For this reason,

researchers invest significant effort in tuning algorithms

[11,47,29,1,40,22] and privacy analyses [8,38,40,20] to

provide better utility while using smaller privacy bud-

gets.

Differentially private algorithms are built on smaller

components called mechanisms [37]. Popular mecha-

nisms include the Laplace Mechanism [18], Geometric

Mechanism [24], Noisy Max [19], Sparse Vector Tech-

nique (SVT) [19,33], and the Exponential Mechanism

[36]. As we will explain in this paper, some of these

mechanisms, such as the Exponential Mechanism, Noisy

Max and SVT, inadvertently throw away information

that is useful for designing accurate algorithms. Our

contribution is to present novel variants of these mech-

anisms that provide more functionality at the same pri-

vacy cost (under pure differential privacy).

Given a set of queries, Noisy Max returns the iden-

tity (not value) of the query that is likely to have the

largest value – it adds noise to each query answer and

ar
X

iv
:2

01
2.

01
59

2v
1

 [
cs

.D
B

]
 2

 D
ec

 2
02

0

2 Zeyu Ding1 et al.

returns the index of the query with the largest noisy

value. The Exponential Mechanism is a replacement for

Noisy Max in situations where query answers have util-

ity scores. Meanwhile, SVT is an online algorithm that

takes a stream of queries and a predefined public thresh-

old T . It tries to return the identities (not values) of the

first k queries that are likely larger than the threshold.

To do so, it adds noise to the threshold. Then, as it se-

quentially processes each query, it outputs “>” or “⊥”,

depending on whether the noisy value of the current

query is larger or smaller than the noisy threshold. The

mechanism terminates after k “>” outputs.

In recent work [45], using program verification tools,

Wang et al. showed that SVT can provide additional

information at no additional cost to privacy. That is,

when SVT returns “>” for a query, it can also return

the gap between its noisy value and the noisy thresh-

old.1 We refer to their algorithm as SVT with Gap.

Inspired by this program verification work, we pro-

pose novel variations of Exponential Mechanism, SVT

and Noisy Max that add new functionality. For SVT, we

show that in addition to releasing this gap information,

even stronger improvements are possible – we present

an adaptive version that can answer more queries than

before by controlling how much privacy budget it uses

to answer each query. The intuition is that we would

like to spend less of our privacy budget for queries that

are probably much larger than the threshold (compared

to queries that are probably closer to the threshold).

A careful accounting of the privacy impact shows that

this is possible. Our experiments confirm that Adaptive

SVT with Gap can answer many more queries than the

prior versions [33,19,45] at the same privacy cost.

For Noisy Max, we show that it too inadvertently

throws away information. Specifically, at no additional

cost to privacy, it can release an estimate of the gap

between the largest and second largest queries (we call

the resulting mechanism Noisy Max with Gap). We gen-

eralize this result to Noisy Top-K – showing that one

can release an estimate of the identities of the k largest

queries and, at no extra privacy cost, release noisy esti-

mates of the pairwise gaps (differences) among the top

k + 1 queries.

For Exponential Mechanism, we show that there is

also a concept of a gap, which corresponds to the noisy

difference in utility between the selected query and the

best non-selected query. One of the challenges with the

Exponential Mechanism is that for efficiency purposes

it can use complex sampling algorithms to select the

1 This was a surprising result given the number of incorrect
attempts at improving SVT based on flawed manual proofs
[33] and shows the power of automated program verification
techniques.

chosen candidate. We show that it is possible to release

the noisy gap information even if the sampling algo-

rithms are treated as black boxes (i.e., without access

to its intermediate computations).

The extra noisy gap information opens up new di-

rections in the construction of differentially private al-

gorithms and can be used to improve accuracy of cer-

tain subsequent queries. For instance, one common task

is to use Noisy Max to select the approximate top k

queries and then use additional privacy loss budget to

obtain noisy answers to these queries. We show that

a postprocessing step can combine these noisy answers

with gap information to improve accuracy by up to 66%

for counting queries. We provide similar applications for

the free gap information in SVT.

This paper is an extension of a conference paper [14].

For this extension we have added the following results:

(a) free gap results for the Exponential Mechanism, (b)

free gap results when Noisy Max and SVT are used

with one-sided noise, which improves on the accuracy

reported in [14] for two-sided noise, (c) novel hybrid

algorithms that combine SVT and Noisy Max into an

offline selection procedure; these algorithms return the

identities of the approximate top-k queries, but only if

they are larger than a pre-specified threshold. These al-

gorithms save privacy budget if fewer than k queries are

approximately over the threshold, in which case they

also provide free estimates of the query answers (if all

k queries are approximately over the threshold, then we

obtain information about the gaps between them).

We prove most of our results using the alignment

of random variables framework [33,11,45,46], which is

based on the following question: if we change the input

to a program, how must we change its random vari-

ables so that output remains the same? This technique

is used to prove the correctness of almost all pure dif-

ferential privacy mechanisms [19] but needs to be used

in sophisticated ways to prove the correctness of the

more advanced algorithms [33,11,19,45,46]. Neverthe-

less, alignment of random variables is often used incor-

rectly (as discussed by Lyu et al. [33]). Thus a secondary

contribution of our work is to lay out the precise steps

and conditions that must be checked and to provide

helpful lemmas that ensure these conditions are met.

The Exponential Mechanism does not fit in this frame-

work and requires its own proof techniques, which we

explain in Section 8. To summarize, our contributions

are as follows:

– We provide a simplified template for writing cor-

rectness proofs for intricate differentially private al-

gorithms.

Free Gap Estimates from the Exponential Mechanism, Sparse Vector, Noisy Max and Related Algorithms 3

– Using this technique, we propose and prove the cor-

rectness of two new mechanisms: Noisy Top-K with

Gap and Adaptive SVT with Gap. These algorithms

improve on the original versions of Noisy Max and

SVT by taking advantage of free information (i.e.,

information that can be released at no additional

privacy cost) that those algorithms inadvertently

throw away. We also show that the free gap informa-

tion can be maintained even when these algorithms

use one-sided noise. This variation improves the ac-

curacy of the gap information.

– We demonstrate some of the uses of the gap infor-

mation that is provided by these new mechanisms.

When an algorithm needs to use Noisy Max or SVT

to select some queries and then measure them (i.e.,

obtain their noisy answers), we show how the gap

information from our new mechanisms can be used

to improve the accuracy of the noisy measurements.

We also show how the gap information in SVT can

be used to estimate the confidence that a query’s

true answer really is larger than the threshold.

– We show that the Exponential Mechanism can also

release free gap information. Noting that the free

gap extensions of Noisy Max and SVT required ac-

cess to the internal state of those algorithms, we

show that this is unnecessary for Exponential Mech-

anism. This is useful because implementations of Ex-

ponential Mechanism can be very complex and use

a variety of different sampling routines.

– We propose two novel hybridizations of Noisy Max

and SVT. These algorithms can release the identities

of the approximate top-k queries as long as they are

larger than a pre-specified threshold. If fewer than

k queries are returned, the algorithms save privacy

budget and the gap information they release directly

turns into estimates of the query answers (i.e., the

algorithm returns the query identities and their an-

swers for free). If k queries are returned then the

algorithms still return the gaps between their an-

swers.

– We empirically evaluate the mechanisms on a variety

of datasets to demonstrate their improved utility.

In Section 2, we discuss related work. We present

background and notation in Section 3. We present sim-

plified proof templates for randomness alignment in

Section 4. We present Adaptive SVT with Gap in Sec-

tion 5 and Noisy Top-K with Gap in Section 6. We

present the novel algorithms that combine elements of

Noisy Max and SVT in 7. We present Exponential Mech-

anism with Gap algorithms in Section 8. We present ex-

periments in Section 9, proofs underlying the alignment

of randomness framework in Section 10 and conclusions

in Section 11. Other proofs appear in the Appendix.

2 Related Works

Selection algorithms, such as Exponential Mechanism

[36,41], Sparse Vector Technique (SVT) [19,33], and

Noisy Max [19] are used to select a set of items (typi-

cally queries) from a much larger set. They have appli-

cations in hyperparameter tuning [11,32], iterative con-

struction of microdata [27], feature selection [44], fre-

quent itemset mining [6], exploring a privacy/accuracy

tradeoff [31], data pre-processing [12], etc. Various gen-

eralizations have been proposed [31,5,44,41,10,32]. Liu

and Talwar [32] and Raskhodnikova and Smith [41] ex-

tend the exponential mechanism for arbitrary sensitiv-

ity queries. Beimel et al. [5] and Thakurta and Smith

[44] use the propose-test-release framework [17] to find

a gap between the best and second best queries and,

if the gap is large enough, release the identity of the

best query. These two algorithms rely on a relaxation of

differential privacy called approximate (ε, δ)-differential

privacy [16] and can fail to return an answer (in which

case they return ⊥). Our algorithms work with pure ε-

differential privacy. Chaudhuri et al. [10] also proposed

a large margin mechanism (with approximate differ-

ential privacy) which finds a large gap separating top

queries from the rest and returns one of them.

There have also been unsuccessful attempts to gen-

eralize selection algorithms such as SVT (incorrect ver-

sions are catalogued by Lyu et al. [33]), which has sparked

innovations in program verification for differential pri-

vacy (e.g., [4,3,46,45]) with techniques such as proba-

bilistic coupling [4] and a simplification based on ran-

domness alignment [46]. These are similar to ideas be-

hind handwritten proofs [11,19,33] – they consider what

changes need to be made to random variables in order

to make two executions of a program, with different

inputs, produce the same output. It is a powerful tech-

nique that is behind almost all proofs of differential pri-

vacy, but is very easy to apply incorrectly [33]. In this

paper, we state and prove a more general version of

this technique in order to prove correctness of our algo-

rithms and also provide additional results that simplify

the application of this technique.

3 Background and Notation

In this paper, we use the following notation. D and

D′ refer to databases. We use the notation D ∼ D′ to

4 Zeyu Ding1 et al.

represent adjacent databases.2 M denotes a random-

ized algorithm whose input is a database. Ω denotes

the range of M and ω ∈ Ω denotes a specific output of

M . We use E ⊆ Ω to denote a set of possible outputs.

Because M is randomized, it also relies on a random

noise vector H ∈ R∞. This noise sequence is infinite,

but of course M will only use a finite-length prefix of

H. Some of the commonly used noise distributions for

this vector H include the Laplace distribution, the Ex-

ponential distribution and the Geometric distribution.

Their properties are summarized in Table 1.

Table 1: Noise Distributions

Symbol Support Density/Mass Mean Variance

Lap(β) R 1
2β

exp(− |x|
β

) 0 2β2

Exp(β) [0,∞) 1
β

exp(−x
β

) β β2

Geo(p) {0, 1, . . .} p(1− p)n 1
p

1−p
p2

When we need to draw attention to the noise, we

use the notation M(D,H) to indicate the execution

of M with database D and randomness coming from

H. Otherwise we use the notation M(D). We define

HM
D:E = {H |M(D,H) ∈ E} to be the set of noise vec-

tors that allow M , on input D, to produce an output

in the set E ⊆ Ω. To avoid overburdening the notation,

we write HD:E for HM
D:E and HD′:E for HM

D′:E when M

is clear from the context. When E consists of a single

point ω, we write these sets as HD:ω and HD′:ω. This

notation is summarized in Table 2.

Table 2: Notation

Symbol Meaning
M randomized algorithm

D,D′ database
D ∼ D′ D is adjacent to D′

H = (η1, η2, . . .) input noise vector
Ω the space of all output of M
ω a possible output; ω ∈ Ω
E a set of possible outputs; E ⊆ Ω

HD:E = HM
D:E {H |M(D,H) ∈ E}

HD:ω = HM
D:ω {H |M(D,H) = ω}

3.1 Formal Privacy

Differential privacy [18,15,19] is currently the gold stan-

dard for releasing privacy-preserving information about

2 The notion of adjacency depends on the application. Some
papers define it as D can be obtained from D′ by modifying
one record [18] or by adding/deleting one record [15].

a database. It has a parameter ε > 0 known as the pri-

vacy loss budget. The smaller it is, the more privacy is

provided. Differential privacy bounds the effect of one

record on the output of the algorithm (for small ε, the

probability of any output is barely affected by any per-

son’s record).

Definition 1 (Pure Differential Privacy [15]) Let

ε > 0. A randomized algorithm M with output space Ω

satisfies (pure) ε-differential privacy if for all E ⊆ Ω and

all pairs of adjacent databases D ∼ D′, the following

holds:

P[M(D,H) ∈ E] ≤ eεP[M(D′, H ′) ∈ E] (1)

where the probability is only over the randomness of H.

With the notation in Table 2, the differential privacy

condition from Equation (1) is P[HD:E] ≤ eεP[HD′:E].

Differential privacy enjoys the following properties:

– Resilience to Post-Processing. If we apply an algo-

rithm A to the output of an ε-differentially private

algorithm M , then the composite algorithm A ◦M
still satisfies ε-differential privacy. In other words,

privacy is not reduced by post-processing.

– Composition. If M1,M2, . . . ,Mk satisfy differential

privacy with privacy loss budgets ε1, . . . , εk, the al-

gorithm that runs all of them and releases their out-

puts satisfies (
∑
i εi)-differential privacy.

Many differentially private algorithms take advan-

tage of the Laplace mechanism [36], which provides a

noisy answer to a vector-valued query q based on its L1

global sensitivity ∆q, defined as follows:

Definition 2 (L1 Global Sensitivity [19]) The (L1)

global sensitivity of a query q is

∆q = sup
D∼D′

‖q(D)− q(D′)‖1 .

Theorem 1 (Laplace Mechanism [18]) Given a pri-

vacy loss budget ε, consider the mechanism that returns

q(D) +H, where H is a vector of independent random

samples from the Lap(∆q/ε) distribution. This Laplace

mechanism satisfies ε-differential privacy.

Other kinds of additive noise distributions that can

be used in place of Laplace in Theorem 1 include Dis-

crete Laplace [24] (when all query answers are integers

or multiples of a common base) and Staircase [23].

In some cases, queries may have additional struc-

ture, such as monotonicity, that can allow algorithms

to provide privacy with less noise (such as one-sided

Noisy Max [19]).

Free Gap Estimates from the Exponential Mechanism, Sparse Vector, Noisy Max and Related Algorithms 5

Definition 3 (Monotonicity) A list of queries q =

(q1, q2, . . .) with numerical values is monotonic if for

all pair of adjacent databases D ∼ D′ we have either

∀i : qi(D) ≤ qi(D′), or ∀i : qi(D) ≥ qi(D′).

Monotonicity is a natural property that is satisfied

by counting queries – when a person is added to a

database, the value of each query either stays the same

or increases by 1.

4 Randomness Alignment

To establish that the algorithms we propose are differ-

entially private, we use an idea called randomness align-

ment that previously had been used to prove the pri-

vacy of a variety of sophisticated algorithms [19,33,11]

and incorporated into verification/synthesis tools [46,

45,3]. While powerful, this technique is also easy to use

incorrectly [33], as there are many technical conditions

that need to be checked. In this section, we present re-

sults (namely Lemma 1) that significantly simplify this

process and make it easy to prove the correctness of our

proposed algorithms.

In general, to prove ε-differential privacy for an al-

gorithm M , one needs to show P[M(D,H) ∈ E] ≤
eεP[M(D′, H ′) ∈ E] for all pairs of adjacent databases

D ∼ D′ and sets of possible outputs E ⊆ Ω. In our

notation, this inequality is represented as P[HD:E] ≤
eεP[HD′:E]. Establishing such inequalities is often done

with the help of a function φD,D′ , called a random-

ness alignment (there is a function φD,D′ for every pair

D ∼ D′), that maps noise vectors H into noise vec-

tors H ′ so that M(D′, H ′) produces the same output

as M(D,H). Formally,

Definition 4 (Randomness Alignment) Let M be

a randomized algorithm. Let D ∼ D′ be a pair of adja-

cent databases. A randomness alignment is a function

φD,D′ : R∞ → R∞ such that

1. The alignment does not output invalid noise vec-

tors (e.g., it cannot produce negative numbers for

random variables that should have the exponential

distribution).

2. For allH on whichM(D,H) terminates,M(D,H) =

M(D′, φD,D′(H)).

Example 1 Let D be a database that records the salary

of every person, which is guaranteed to be between 0

and 100. Let q(D) be the sum of the salaries in D.

The sensitivity of q is thus 100. Let H = (η1, η2, . . .)

be a vector of independent Lap(100/ε) random vari-

ables. The Laplace mechanism outputs q(D) + η1 (and

ignores the remaining variables in H). For every pair

of adjacent databases D ∼ D′, one can define the cor-

responding randomness alignment φD,D′(H) = H ′ =

(η′1, η
′
2, . . .), where η′1 = η1 + q(D)− q(D′) and η′i = ηi

for i > 1. Note that q(D) + η1 = q(D′) + η′1, so the

output of M remains the same.

In practice, φD,D′ is constructed locally (piece by

piece) as follows. For each possible output ω ∈ Ω, one

defines a function φD,D′,ω that maps noise vectors H

into noise vectors H ′ with the following properties: if

M(D,H) = ω then M(D′, H ′) = ω (that is, φD,D′,ω
only cares about what it takes to produce the specific

output ω). We obtain our randomness alignment φD,D′

in the obvious way by piecing together the φD,D′,ω as

follows: φD,D′(H) = φD,D′,ω*(H), where ω∗ is the out-

put of M(D,H). Formally,

Definition 5 (Local Alignment) Let M be a ran-

domized algorithm. Let D ∼ D′ be a pair of adjacent

databases and ω a possible output of M . A local align-

ment for M is a function φD,D′,ω : HD:ω → HD′:ω (see

notation in Table 2) such that for all H ∈ HD:ω, we

have M(D,H) = M(D′, φD,D′,ω(H)).

Example 2 Continuing the setup from Example 1, con-

sider the mechanism M1 that, on input D, outputs >
if q(D) + η1 ≥ 10, 000 (i.e. if the noisy total salary is at

least 10, 000) and ⊥ if q(D) + η1 < 10, 000. Let D′ be

a database that differs from D in the presence/absence

of one record. Consider the local alignments φD,D′,>
and φD,D′,⊥ defined as follows. φD,D′,>(H) = H ′ =

(η′1, η
′
2, . . .) where η′1 = η1 + 100 and η′i = ηi for i > 1;

and φD,D′,⊥(H) = H ′′ = (η′′1 , η
′′
2 , . . .) where η′′1 = η1 −

100 and η′′i = ηi for i > 1. Clearly, if M1(D,H) =

> then M1(D′, H ′) = > and if M1(D,H) =⊥ then

M1(D′, H ′′) =⊥. We piece these two local alignments

together to create a randomness alignment φD,D′(H) =

H∗ = (η∗1 , η
∗
2 , . . .) where:

η∗1 =

η1 + 100 if M(D,H) = >

(i.e. q(D) + η1 ≥ 10, 000)

η1 − 100 if M(D,H) =⊥
(i.e. q(D) + η1 < 10, 000)

η∗i = ηi for i > 1

Special properties of alignments. Not all alignments

can be used to prove differential privacy. In this section

we discuss some additional properties that help prove

differential privacy. We first make two mild assump-

tions about the mechanism M : (1) it terminates with

probability3 one and (2) based on the output of M , we

3 That is, for each input D, there might be some random
vectors H for which M does not terminate, but the total
probability of these vectors is 0, so we can ignore them.

6 Zeyu Ding1 et al.

can determine how many random variables it used. The

vast majority of differentially private algorithms in the

literature satisfy these properties.

We next define two properties of a local alignment:

whether it is acyclic and what its cost is.

Definition 6 (Acyclic) Let M be a randomized al-

gorithm. Let φD,D′,ω be a local alignment for M . For

any H = (η1, η2, . . .), let H ′ = (η′1, η
′
2, . . .) denote

φD,D′,ω(H). We say that φD,D′,ω is acyclic if there exists

a permutation π and piecewise differentiable functions

ψ
(j)
D,D′,ω such that:

η′π(1) = ηπ(1) + constant that only depends on D, D′, ω

η′π(j) = ηπ(j) + ψ
(j)
D,D′,ω(ηπ(1), . . . , ηπ(j−1)) for j ≥ 2

Essentially, a local alignment φD,D′,ω is acyclic if

there is some ordering of the variables so that η′j is the

sum of ηj and a function of the variables that came ear-

lier in the ordering. The local alignments φD,D′,> and

φD,D′,⊥ from Example 2 are both acyclic (in general,

each local alignment function is allowed to have its own

specific ordering and differentiable functions ψ
(j)
D,D′,ω).

The pieced-together randomness alignment φD,D′ itself

need not be acyclic.

Definition 7 (Alignment Cost) Let M be a ran-

domized algorithm that uses H as its source of ran-

domness. Let φD,D′,ω be a local alignment for M . For

any H = (η1, η2, . . .), let H ′ = (η′1, η
′
2, . . .) denote

φD,D′,ω(H). Suppose each ηi is generated independently

from a distribution fi with the property that ln(fi(x)fi(y)
) ≤

ci |x− y| for all x, y in the domain of fi – this includes

the Lap(β), Exp(β), Geo(p) distributions along with

Discrete Laplace [24] and Staircase [23]. Then the cost

of φD,D′,ω is defined as: cost(φD,D′,ω) =
∑
i ci |ηi − η′i| .

The following lemma uses those properties to estab-

lish that M satisfies ε-differential privacy.

Lemma 1 Let M be a randomized algorithm with in-

put randomness H = (η1, η2, . . .). If the following con-

ditions are satisfied, then M satisfies ε-differential pri-

vacy.

1. M terminates with probability 1.

2. The number of random variables used by M can be

determined from its output.

3. Each ηi is generated independently from a distri-

bution fi with the property that ln(fi(x)/fi(y)) ≤
ci |x− y| for all x, y in the domain of fi.

4. For every D ∼ D′ and ω there exists a local align-

ment φD,D′,ω that is acyclic with cost(φD,D′,ω) ≤ ε.

5. For each D ∼ D′ the number of distinct local align-

ments is countable. That is, the set {φD,D′,ω | ω ∈
Ω} is countable (i.e., for many choices of ω we get

the same exact alignment function).

We defer the proof to Section 10.

Example 3 Consider the randomness alignment φD,D′

from Example 1. We can define all of the local align-

ments φD,D′,ω to be the same function: φD,D′,ω(H) =

φD,D′(H). Clearly cost(φD,D′,ω) =
∑∞
i=0

ε
100 |η

′
i − ηi| =

ε
100 |q(D

′)− q(D)| ≤ ε. For Example 2, there are two

acyclic local alignments φD,D′> and φD,D′⊥, both have

cost = 100 · ε
100 = ε. The other conditions in Lemma 1

are trivial to check. Thus both mechanisms satisfy ε-

differential privacy by Lemma 1.

5 Improving Sparse Vector

In this section we propose an adaptive variant of SVT

that can answer more queries than both the original

SVT [19,33] and the SVT with Gap of Wang et al. [45].

We explain how to tune its privacy budget allocation.

We further show that using other types of random noise,

such as exponential and geometric random variables, in

place of the Laplace, makes the free gap information

more accurate at the same cost to privacy. Finally, we

discuss how the free gap information can be used for

improved utility of data analysis.

5.1 Adaptive SVT with Gap

The Sparse Vector Technique (SVT) is designed to solve
the following problem in a privacy-preserving way: given

a stream of queries (with sensitivity 1), find the first k

queries whose answers are larger than a public thresh-

old T . This is done by adding noise to the queries and

threshold and finding the first k queries whose noisy an-

swers exceed the noisy threshold. Sometimes this pro-

cedure creates a feeling of regret – if these k queries

are much larger than the threshold, we could have used

more noise (hence consumed less privacy budget) to

achieve the same result. In this section, we show that

Sparse Vector can be made adaptive – so that it will

probably use more noise (less privacy budget) for the

larger queries. This means if the first k queries are very

large, it will still have privacy budget left over to find

additional queries that are likely to be over the thresh-

old. Adaptive SVT is shown in Algorithm 1.

The main idea behind this algorithm is that, given a

target privacy budget ε and an integer k, the algorithm

will create three budget parameters: ε0 (budget for the

threshold), ε1 (baseline budget for each query) and ε2

Free Gap Estimates from the Exponential Mechanism, Sparse Vector, Noisy Max and Related Algorithms 7

Algorithm 1: Adaptive SVT with Gap. The

hyperparameter θ ∈ (0, 1) controls the budget

allocation between threshold and queries.

input : q: a list of queries of global sensitivity 1
D: database, ε: privacy budget, T : threshold
k: minimum number of above-threshold

queries algorithm is able to output
1 function AdaptiveSparse (q, D, T , k, ε):
2 ε0 ← θε; ε1 ← (1− θ)ε/k; ε2 ← ε1/2

3 σ ← 2
√

2/ε2

4 η ← Lap(1/ε0); T̃ ← T + η
5 cost← ε0
6 foreach i ∈ {1, · · · , len(q)} do
7 ξi ← Lap(2/ε2); q̃i ← qi(D) + ξi
8 ηi ← Lap(2/ε1); q̂i ← qi(D) + ηi

9 if q̃i − T̃ ≥ 2σ then

10 output: (>, q̃i−T̃ , bud used = ε2)
11 cost← cost + ε2

12 else if q̂i − T̃ ≥ 0 then

13 output: (>, q̂i−T̃ , bud used = ε1)
14 cost← cost + ε1
15 else
16 output: (⊥, bud used = 0)

17 if cost > ε− ε1 then break

(smaller alternative budget for each query, ε2 < ε1).

The privacy budget allocation between threshold and

queries is controlled by a hyperparameter θ ∈ (0, 1)

on Line 2. These budget parameters are used as fol-

lows. First, the algorithm adds Lap(1/ε0) noise to the

threshold and consumes ε0 of the privacy budget. Then,

when a query comes in, the algorithm first adds a lot

of noise (i.e., Lap(2/ε2)) to the query. The first “if”

branch checks if this value is much larger than the noisy

threshold (i.e. checks if the gap is ≥ 2σ for some4 σ). If

so, then it outputs the following three items: (1) >, (2)

the noisy gap, and (3) the amount of privacy budget

used for this query (which is ε2). The use of alignments

will show that failing this “if” branch consumes no pri-

vacy budget. If the first “if” branch fails, then the al-

gorithm adds more moderate noise (i.e., Lap(2/ε1)) to

the query answer. If this noisy value is larger than the

noisy threshold, the algorithm outputs: (1′) >, (2′) the

noisy gap, and (3′) the amount of privacy budget con-

sumed (i.e., ε1). If this “if” condition also fails, then the

algorithm outputs: (1′′) ⊥ and (2′′) the privacy budget

consumed (0 in this case).

To summarize, there is a one-time cost for adding

noise to the threshold. Then, for each query, if the top

branch succeeds the privacy budget consumed is ε2, if

the middle branch succeeds, the privacy cost is ε1, and

4 In our algorithm, we set σ to be the standard deviation
of the noise distribution.

if the bottom branch succeeds, there is no additional

privacy cost. These properties can be easily seen by

focusing on the local alignment – if M(D,H) produces

a certain output, how much does H need to change to

get a noise vector H ′ so that M(D′, H ′) returns the

same exact output.

Local alignment. To create a local alignment for each

pair D ∼ D′, let H = (η, ξ1, η1, ξ2, η2, . . .) where η is the

noise added to the threshold T , and ξi (resp. ηi) is the

noise that should be added to the ith query qi in Line 7

(resp. Line 8), if execution ever reaches that point. We

view the output ω = (w1, . . . , ws) as a variable-length

sequence where each wi is either ⊥ or a nonnegative

gap (we omit the > as it is redundant), together with a

tag ∈ {0, ε1, ε2} indicating which branch wi is from (and

the privacy budget consumed to output wi). Let Iω =

{i | tag(wi) = ε2} and Jω = {i | tag(wi) = ε1}. That is,

Iω is the set of indexes where the output is a gap from

the top branch, and Jω is the set of indexes where the

output is a gap from the middle branch. For H ∈ HD:ω

define φD,D′,ω(H) = H ′ = (η′, ξ′1, η
′
1, ξ
′
2, η
′
2, . . .) where

η′ = η + 1,

(ξ′i, η′i) =

(ξi + 1 + qi − q′i, ηi), i ∈ Iω
(ξi, ηi + 1 + qi − q′i), i ∈ Jω
(ξi, ηi), otherwise

(2)

In other words, we add 1 to the noise that was added

to the threshold (thus if the noisy q(D) failed a specific

branch, the noisy q(D′) will continue to fail it because

of the higher noisy threshold). If a noisy q(D) succeeded

in a specific branch, we adjust the query’s noise so that

the noisy version of q(D′) will succeed in that same

branch.

Lemma 2 Let M be the Adaptive SVT with Gap al-

gorithm. For all D ∼ D′ and ω, the functions φD,D′,ω
defined above are acyclic local alignments for M . Fur-

thermore, for every pair D ∼ D′, there are countably

many distinct φD,D′,ω.

Proof. Pick an adjacent pair D ∼ D′ and an ω =

(w1, . . . , ws). For a given H = (η, ξ1, η1, . . .) such that

M(D,H) = ω, let H ′ = (η′, ξ′1, η
′
1, . . .) = φD,D′,ω(H).

Suppose M(D′, H ′) = ω′ = (w′1, . . . , w
′
t). Our goal is to

show ω′ = ω. Choose an i ≤ min(s, t).

– If i ∈ Iω, then by (2) we have

q′i + ξ′i − (T + η′)

= q′i + ξi + 1 + qi − q′i − (T + η + 1)

= qi + ξi − (T + η) ≥ σ.

8 Zeyu Ding1 et al.

This means the first “if” branch succeeds in both

executions and the gaps are the same. Therefore,

w′i = wi.

– If i ∈ Jω, then by (2) we have

q′i + ξ′i − (T + η′)

= q′i + ξi − (T + η + 1) = q′i − 1 + ξi − (T + η)

≤ qi + ξi − (T + η) < σ,

q′i + η′i − (T + η′)

= q′i + ηi + 1 + qi − q′i − (T + η + 1)

= qi + ηi − (T + η) ≥ 0.

The first inequality is due to the sensitivity restric-

tion: |qi − q′i| ≤ 1 =⇒ q′i − 1 ≤ qi. These two

equations mean that the first “if” branch fails and

the second “if” branch succeeds in both executions,

and the gaps are the same. Hence w′i = wi.

– If i 6∈ Iω ∪ Jω, then by a similar argument we have

q′i + ξ′i − (T + η′) ≤ qi + ξi − (T + η) < σ,

q′i + η′i − (T + η′) ≤ qi + ηi − (T + η) < 0.

Hence both executions go to the last “else” branch

and w′i = (⊥, 0) = wi.

Therefore for all 1 ≤ i ≤ min(s, t), we have w′i = wi.

That is, either ω′ is a prefix of ω, or vice versa. Let q

be the vector of queries passed to the algorithm and let

len(q) be the number of queries it contains (which can

be finite or infinity). By the termination condition of

Algorithm 1 we have two possibilities.

– s = len(q): in this case there is still enough privacy

budget left after answering s − 1 above-threshold

queries, and we must have t = len(q) too because

M(D′, H ′) will also run through all the queries (it

cannot stop until it has exhausted the privacy bud-

get or hits the end of the query sequence).

– s < len(q): in this case the privacy budget is ex-

hausted after outputting ws and we must also have

t = s.

Thus t = s and hence ω′ = ω. The local alignments

are clearly acyclic (e.g., use the identity permutation).

Note that φD,D′,ω only depends on ω through Iω and Jω
(the sets of queries whose noisy values were larger than

the noisy threshold). There are only countably many

possibilities for Iω and Jω and thus countably many

distinct φD,D′,ω.

Alignment cost and privacy. Now we establish the align-

ment cost and the privacy property of Algorithm 1.

Theorem 2 The Adaptive SVT with Gap satisfies ε-

differential privacy.

Proof. First we bound the cost of the alignment func-

tion defined by Equation (2). We use the ε0, ε1, ε2 and

ε defined in Algorithm 1. From (2) we have

cost(φD,D′,ω)

= ε0 |η′ − η|+
∞∑
i=1

(ε2
2
|ξ′i − ξi|+

ε1
2
|η′i − ηi|

)
= ε0 +

∑
i∈Iω

ε2
2
|1+qi−q′i|+

∑
i∈Jω

ε1
2
|1+qi−q′i|

≤ ε0 + ε2 |Iω|+ ε1 |Jω| ≤ ε.

The first inequality is from the assumption on sensi-

tivity: |1 + qi − q′i| ≤ 1 + |qi − q′i| ≤ 2. The second in-

equality is from loop invariant on Line 17: ε0 + ε2 |Iω|+
ε1 |Jω| = cost ≤ ε− ε1 + max(ε1, ε2) = ε.

Conditions 1 through 3 of Lemma 1 are trivial to

check, 4 and 5 follow from Lemma 2 and the above

bound on cost. Thus Theorem 2 follows from Lemma

1.

Algorithm 1 can be easily extended with multiple

additional “if” branches. For simplicity we do not in-

clude such variations. In our setting, ε2 = ε1/2 so, the-

oretically, if queries are very far from the threshold,

our adaptive version of Sparse Vector will be able to

find twice as many of them as the non-adaptive version.

Lastly, if all queries are monotonic queries, then Algo-

rithm 1 can be further improved: we can use Lap(1/ε2)

in Line 7 and Lap(1/ε1) noises in Line 8 instead.5

Choice of θ. We can optimize the budget allocation

between threshold noise and query noises by following

the methodology of [33], which is equivalent to mini-
mizing the variance of the gap between a noisy query

and the threshold. If the majority of gaps are expected

to be returned from the top branch, then we optimize

Var(q̃i − T̃) = 2
ε20

+ 8
ε22

= 2
ε2 (1

θ2 + 16k2

(1−θ)2). This variance

attains its minimum value of 2(1 +
3
√

16k2)3/ε2 when

θ = 1/(1 +
3
√

16k2). If on the other hand the majority

of gaps are expected to be returned from the middle

branch, then we optimize Var(q̂i − T̃) = 2
ε20

+ 8
ε21

=

2
ε2 (1

θ2 + 4k2

(1−θ)2). In this case, the minimum value is

2(1 +
3
√

4k2)3/ε2 when θ = 1/(1 +
3
√

4k2). If all queries

are monotone, then the optimal variance further re-

duces to 2(1 +
3
√

4k2)3/ε2 in the top branch when θ =

5 In the case of monotonic queries, if ∀i : qi ≥ q′i, then
the alignment changes slightly: we set η′ = η (the random
variable added to the threshold) and set the adjustment to
noise in the winning “if” branches to qi−q′i instead of 1+qi−
q′i (hence cost terms become |qi− q′i| instead of |1 + qi− q′i|).
If ∀i : qi ≤ q′i then we keep the original alignment but in the
cost calculation we note that |1 + qi − q′i| ≤ 1 (due to the
monotonicity and sensitivity).

Free Gap Estimates from the Exponential Mechanism, Sparse Vector, Noisy Max and Related Algorithms 9

1/(1+
3
√

4k2), and 2(1+
3
√
k2)3/ε2 in the middle branch

when θ = 1/(1 +
3
√
k2).

These allocation strategies also extend to SVT with

Gap (originally proposed in [45]). SVT with Gap can

be obtained by removing the first branch of Algorithm

1 (Line 9 through 11) or setting σ =∞. For reference,

we show its pseudocode below as Algorithm 2. In [45],

θ is set to 0.5, which is suboptimal. The optimal value

is θ = 1/(1 +
3
√

4k2).

Algorithm 2: SVT with Gap [45]

input : same as Algorithm 1
1 function GapSparse (q, D, T , k, ε):
2 ε0 ← θε; ε1 ← (1− θ)ε/k;

3 η ← Lap(1/ε0); T̃ ← T + η
4 cost← ε0
5 foreach i ∈ {1, · · · , len(q)} do
6 ηi ← Lap(2/ε1); q̃i ← qi(D) + ηi

7 if q̃i − T̃ ≥ 0 then

8 output: (>, q̃i−T̃ , bud used = ε1)
9 cost← cost + ε1

10 else
11 output: (⊥, bud used = 0)

12 if cost > ε− ε1 then break

5.2 Using Exponential or Geometric Noise.

In this section, we show that Adaptive SVT with Gap

also satisfies differential privacy if the Laplace noise is

replaced by the exponential distribution or the geomet-
ric distribution (when query answers are guaranteed to

be integers). Both of these are one-sided distributions

that result in a gap estimate with lower variance (see

Table 1 for information about those distributions). The

same result carries over to SVT with Gap [45].

Exponential noise. When using random noise from the

exponential distribution, we need to subtract off the ex-

pected value of the noise from the queries and threshold.

The details are shown in Algorithm 3. Compared with

Algorithm 1, Algorithm 3 makes the following changes:

– Line 3: the algorithm stores the expected value of

Exp(1/ε0), Exp(2/ε1), Exp(2/ε2) in b0, b1, b2 respec-

tively. It also changes the value of σ from 2
√

2/ε2,

the standard deviation of Lap(2/ε2), to 2/ε2, the

standard deviation of Exp(2/ε2).

– Lines 4, 7 and 8: change Laplace noise to exponen-

tial noise of the same scale, and then subtracts the

expected values of the noise.

If all queries are counting queries, we further reduce the

noise to Exp(1/ε2) in Line 7 and Exp(1/ε1) in Line 8,

and set b1 = 1/ε, b2 = 1/ε2, σ = 1/ε2 in Line 4.

Algorithm 3: Adaptive SVT with Gap with

exponential noise

input : same as Algorithm 1
1 function AdaptiveSparse (q, D, T , k, ε):
2 ε0 ← θε; ε1 ← (1− θ)ε/k; ε2 ← ε1/2
3 b0 ← 1/ε0; b1 ← 2/ε1; b2 ← 2/ε2; σ ← 2/ε2

4 η ← Exp(1/ε0); T̃ ← T + η − b0
5 cost← ε0
6 foreach i ∈ {1, · · · , len(q)} do
7 ξi ← Exp(2/ε2); q̃i ← qi(D) + ξi − b2
8 ηi ← Exp(2/ε1); q̂i ← qi(D) + ηi − b1
9 if q̃i − T̃ ≥ 2σ then

10 output: (>, q̃i − T̃ , bud used = ε2)
11 cost← cost + ε2

12 else if q̂i − T̃ ≥ 0 then

13 output: (>, q̂i − T̃ , bud used = ε1)
14 cost← cost + ε1
15 else
16 output: (⊥, bud used = 0)

17 if cost > ε− ε1 then break

Geometric noise. When all queries have integer val-

ues (e.g. counting queries), we could utilize geometric

noise to make sure that the gap is also an integer. To

use geometric noise we make the following changes to

Algorithm 3:

– Line 3: set b0 = 1/(1−e−ε0), b1 = 1/(1−e−ε1/2) and

b2 = 1/(1−e−ε2/2), which are the expected values of

Geo(1− e−ε0), Geo(1− e−ε1/2) and Geo(1− e−ε2/2)

respectively. Set σ = eε2/4/(eε2/2− 1), the standard

deviation of Geo(1− e−ε2/2).

– Line 4, 7 and 8: changes Exp(1/ε0), Exp(2/ε2) and

Exp(2/ε1) noise to Geo(1 − e−ε0), Geo(1 − e−ε2/2)

and Geo(1− e−ε1/2) noise respectively.

If all queries are counting queries, we further reduce the

noise to Geo(1 − e−ε2) in Line 7 and Geo(1 − e−ε1) in

Line 8, and set b1 = 1/(1−e−ε1), b2 = 1/(1−e−ε2), σ =

eε2/2/(eε2 − 1) in Line 4.

Local alignment and privacy. The alignment in Equa-

tion 2 for the Adaptive SVT with Gap with Laplace

noise also works for both exponential noise and geo-

metric noise, because η′ − η = 1 and ξ′i − ξi, η′i − ηi ∈
{0, 1 + qi − q′i}. The value 1 + qi− q′i is always ≥ 0 and

is an integer when qi, q
′
i are integers.

Recall that if f(x) is the probability density function

of Exp(β), then ln f(x)
f(y) ≤

1
β |x− y|. Similarly, if g(x) is

10 Zeyu Ding1 et al.

the probability mass function of Geo(p), then ln g(x)
g(y) =

ln p(1−p)x
p(1−p)y ≤ − ln(1−p) |x− y|. Therefore, our choice of

the parameters ensures that the alignment cost is the

same as that of Laplace noise, which is bounded by ε.

Thus both variants are ε-differentially private.

Choice of θ. As before, we choose the θ that mini-

mizes the variance of the gap to make the result most

accurate. Note that exponential distribution has half

the variance of the Laplace distribution of the same

scale. Thus, when exponential noise is used, the mini-

mum variance of the gap is (1 +
3
√

16k2)3/ε2 in the top

branch when θ = 1/(1 +
3
√

16k2), and (1 +
3
√

4k2)3/ε2

in the middle branch when θ = 1/(1 +
3
√

4k2). If all

queries are monotone, then the optimal variance fur-

ther reduces to (1 +
3
√

4k2)3/ε2 in the top branch when

θ = 1/(1 +
3
√

4k2), and (1 +
3
√
k2)3/ε2 in the middle

branch when θ = 1/(1 +
3
√
k2).

Since the geometric distribution is the discrete ana-

logue of the exponential distribution, the above results

apply to geometric noise as well. For example, when

all queries are counting queries and geometric noise is

used, then Var(q̂i−T̃) = eε0

(eε0−1)2 + eε1

(eε1−1)2 = eθε

(eθε−1)2 +

e(1−θ)ε/k

(e(1−θ)ε/k−1)2 in the middle branch. The variance of the

gap, albeit complicated, is a convex function of θ on

(0, 1). We used the LBFGS algorithm [39] from SciPy

to find the θ where the variance is minimum, and found

that those values are almost the same as those for ex-

ponential noise (See Fig. 1). Therefore, we can use the

budget allocation strategy for exponential noise as the

strategy for geometric noise too.

0 10 20 30 40 50
k

0.1

0.2

0.3

0.4

0.5

\ m
in

Curve of \ = 1
1+ 3√k2

Values of \min

Fig. 1: The blue dots are values of θmin =

argmin(eθε

(eθε−1)2 + e(1−θ)ε/k

(e(1−θ)ε/k−1)2) for k from 1 to 50. The

orange curve is the function θ = 1/(1 +
3
√
k2).

5.3 Utilizing Gap Information

When SVT with Gap or Adaptive SVT with Gap re-

turns a gap γi for a query qi, we can add to it the public

threshold T . This means γi + T is an estimate of the

value of qi(D). We can ask two questions: how can we

improve the accuracy of this estimate and how can we

be confident that the true answer qi(D) is really larger

than the threshold T?

Lower confidence interval. Recall that the randomness

in the gap in Adaptive SVT with Gap (Algorithm 1)

is of the form ηi − η where η and ηi are independent

zero mean Laplace variables with scale 1/ε0 and 1/ε∗,

where ε∗ is either ε1 or ε2, depending on the branch.

The random variable ηi− η has the following lower tail

bound:

Lemma 3 For any t ≥ 0 we have

P(ηi − η ≥ −t) =

{
1− ε20e

−ε∗t−ε2∗e
−ε0t

2(ε20−ε2∗)
ε0 6= ε∗

1− (2+ε0t
4)e−ε0t ε0 = ε∗

For proof see the Appendix. For any confidence level,

say 95%, we can use this result to find a number t.95
such that P((ηi − η) ≥ −t.95) = .95. This is a lower

confidence bound, so that the true value qi(D) is ≥ our

estimated value γi+T minus t.95 with probability 0.95.

Improving accuracy. To improve accuracy, one can split

the privacy budget ε in half. The first half ε′ ≡ ε/2 can

be used to run SVT with Gap (or Adaptive SVT with

Gap) and the second half ε′′ ≡ ε/2 can be used to pro-

vide an independent noisy measurement of the selected

queries (i.e. if we selected k queries, we add Lap(k/ε′′)

noise to each one). Denote the k selected queries by

q1, . . . , qk, the noisy gaps by γ1, . . . , γk and the inde-

pendent noisy measurements by α1, . . . , αk. The noisy

estimates can be combined together with the gaps to

get improved estimates βi of qi(D) in the standard way

(inverse-weighting by variance):

βi =

(
αi

Var(αi)
+

γi + T

Var(γi)

)/(
1

Var(αi)
+

1

Var(γi)

)
.

Note that Var(βi)
Var(αi)

= Var(γi)
Var(αi)+Var(γi)

< 1.

As discussed in Section 5.1, the optimal budget allo-

cation between threshold noise and query noises within

SVT with Gap is the ratio 1 :
3
√

4k2. Under this set-

ting, we have Var(γi) = 8(1+
3
√

4k2)3/ε2. Also, we know

Var(αi) = 8k2/ε2. Therefore,

E(|βi − qi|2)

E(|αi − qi|2)
=

Var(βi)

Var(αi)
=

(1 +
3
√

4k2)3

(1 +
3
√

4k2)3 + k2
.

Free Gap Estimates from the Exponential Mechanism, Sparse Vector, Noisy Max and Related Algorithms 11

Since lim
k→∞

(1+
3√
4k2)3

(1+
3√
4k2)3+k2

= 4
5 , the improvement in ac-

curacy approaches 20% as k increases. For monotonic

queries, the optimal budget allocation within SVT with

Gap is 1 :
3
√
k2. Then we have Var(γi) = 8(1+

3
√
k2)3/ε2

and therefore Var(βi)
Var(αi)

= (1+
3√
k2)3

(1+
3√
k2)3+k2

which is close to

50% when k is large. When the algorithm uses expo-

nential noise, the variance of the gap further reduces

to Var(γi) = 4(1 +
3
√
k2)3/ε2 and therefore Var(βi)

Var(αi)
=

(1+
3√
k2)3

(1+
3√
k2)3+2k2

which is close to a 66% reduction of mean

squared errors when k is large. Our experiments in Sec-

tion 9 confirm this improvement.

6 Improving Report Noisy Max

In this section, we present novel variations of the Noisy

Max mechanism [19]. Given a list of queries with sen-

sitivity 1, the purpose of Noisy Max is to estimate the

identity (i.e., index) of the largest query. We show that,

in addition to releasing this index, it is possible to re-

lease a numerical estimate of the gap between the val-

ues of the largest and second largest queries. This ex-

tra information comes at no additional cost to privacy,

meaning that the original Noisy Max mechanism threw

away useful information. This result can be generalized

to the setting in which one wants to estimate the iden-

tities of the top k queries - we can release (for free)

all of the gaps between each top k query and the next

best query (i.e., the gap between the best and second

best queries, the gap between the second and third best

queries, etc). When a user subsequently asks for a noisy

answer to each of the returned queries, we show how the

gap information can be used to reduce squared error by

up to 66% (for counting queries).

6.1 Noisy Top-K with Gap

Our proposed Noisy Top-K with Gap mechanism is

shown in Algorithm 4 (the function arg maxc returns

the top c items). We can obtain the classical Noisy Max

algorithm [19] from it by setting k = 1 and throwing

away the gap information (the boxed items on Lines

6 and 7). The Noisy Top-K with Gap algorithm takes

as input a sequence of n queries q1, . . . , qn, each hav-

ing sensitivity 1. It adds Laplace noise to each query.

It returns the indexes j1, . . . , jk of the k queries with

the largest noisy values in descending order. Further-

more, for each of these top k queries qji , it releases

the noisy gap between the value of qji and the value of

the next best query. Our key contribution in this sec-

tion is the observation that these gaps can be released

for free. That is, the classical Top-K algorithm, which

does not release the gaps, satisfies ε-differential privacy.

But, our improved version has exactly the same privacy

cost yet is strictly better because of the extra infor-

mation it can release. We emphasize that keeping the

Algorithm 4: Noisy Top-K with Gap

input: q: a list of n queries of global sensitivity 1
D: database, k: # of indexes, ε: privacy budget

1 function NoisyTopK (q, D, k, ε):
2 foreach i ∈ {1, · · · , n} do
3 ηi ← Lap(2k/ε); q̃i ← qi(D) + ηi

4 (j1, . . . , jk+1)← arg maxk+1(q̃1, . . . , q̃n)
5 foreach i ∈ {1, · · · , k} do
6 gi ← q̃ji − q̃ji+1

// ith gap

7 return ((j1 , g1), . . . , (jk , gk))

noisy gaps hidden does not decrease the privacy cost.

Furthermore, this algorithm gives estimates of the pair-

wise gaps between any pair of the k queries it selects.

For example, suppose we are interested in estimating

the gap between the ath largest and bth largest queries

(where a < b ≤ k). This is equal to
∑b−1
i=a gi because:∑b−1

i=a gi =
∑b−1
i=a(q̃ji − q̃ji+1

) = q̃ja − q̃jb and hence its

variance is Var(q̃ja − q̃jb) = 16k2/ε2.

The original Noisy Top-K mechanism satisfies ε-

differential privacy. In the special case that all the qi
are counting queries then it satisfies ε/2-differential pri-

vacy [19]. We will show the same properties for Noisy

Top-K with Gap. We prove the privacy property in this

section and then in Section 6.3 we show how to use this

gap information.

Local alignment. To prove the privacy of Algorithm

4, we need to create a local alignment function for

each possible pair D ∼ D′ and output ω. Note that

our mechanism uses precisely n random variables. Let

H = (η1, η2, . . .) where ηi is the noise that should

be added to the ith query. We view the output ω =

((j1, g1), . . . , (jk, gk)) as k pairs where in the ith pair

(ji, gi), the first component ji is the index of ith largest

noisy query and the second component gi is the gap in

noisy value between the ith and (i + 1)th largest noisy

queries. As in prior work [19], we will base our analy-

sis on continuous noise so that the probability of ties

among the top k + 1 noisy queries is 0. Thus each gap

is positive: gi > 0.

Let Iω = {j1, . . . , jk} and Icω = {1, . . . , n} \ Iω.

I.e., Iω is the index set of the k largest noisy queries

selected by the algorithm and Icω is the index set of all

unselected queries. For H ∈ HD:ω define φD,D′,ω(H) =

12 Zeyu Ding1 et al.

H ′ = (η′1, η
′
2, . . .) as

η′i =

ηi i ∈ Icω
ηi+qi−q′i+max

l∈Icω
(q′l+ηl)−max

l∈Icω
(ql+ηl) i ∈ Iω

(3)

The idea behind this local alignment is simple: we want

to keep the noise of the losing queries the same (when

the input is D or its neighbor D′). But, for each of the

k selected queries, we want to align its noise to make

sure it wins by the same amount when the input is D

or its neighbor D′.

Lemma 4 Let M be the Noisy Top-K with Gap algo-

rithm. For all D ∼ D′ and ω, the functions φD,D′,ω
defined above are acyclic local alignments for M . Fur-

thermore, for every pair D ∼ D′, there are countably

many distinct φD,D′,ω.

Proof. Given D ∼ D′ and ω = ((j1, g1), . . . , (jk, gk)),

for any H = (η1, η2, . . .) such that M(D,H) = ω,

let H ′ = (η′1, η
′
2, . . .) = φD,D′,ω(H). We show that

M(D′, H ′) = ω. Since φD,D′,ω is identity on compo-

nents i ∈ Icω, we have max
l∈Icω

(q′l + η′l) = max
l∈Icω

(q′l + ηl).

From (3) we have that when i ∈ Iω,

η′i = ηi + qi − q′i + max
l∈Icω

(q′l + ηl)−max
l∈Icω

(ql + ηl)

=⇒ q′i + η′i −max
l∈Icω

(q′l + ηl) = qi + ηi −max
l∈Icω

(ql + ηl)

=⇒ q′i + η′i −max
l∈Icω

(q′l + η′l) = qi + ηi −max
l∈Icω

(ql + ηl)

So, for the kth selected query,

(q′jk + η′jk)−max
l∈Icω

(q′l + η′l)

= (qjk + ηjk)−max
l∈Icω

(ql + ηl) = gk > 0

This means onD′ the noisy query with index jk is larger

than the best of the unselected noisy queries by the

same margin as it is on D. Furthermore, for all 1 ≤ i <
k, we have

(q′ji + η′ji)− (q′ji+1
+ η′ji+1

)

= (qji + ηji + max
l∈Icω

(q′l + ηl)−max
l∈Icω

(ql + ηl))

− (qji+1
+ ηji+1

+ max
l∈Icω

(q′l + ηl)−max
l∈Icω

(ql + ηl))

= (qji + ηji)− (qji+1
+ ηji+1

) = gi > 0.

In other words, the query with index ji is still the ith

largest query on D′ by the same margin. Therefore,

M(D′, H ′) = ω.

The local alignments are clearly acyclic (any per-

mutation that puts Icω before Iω does the trick). Also,

note that φD,D′,ω only depends on ω through Iω (the

indexes of the k largest queries). There are n queries

and therefore
(
n
k

)
= n!

(n−k)!k! distinct φD,D′,ω.

Alignment cost and privacy. To establish the alignment

cost, we need the following lemma.

Lemma 5 Let (x1, . . . , xm), (x′1, . . . , x
′
m) ∈ Rm be such

that ∀i, |xi − x′i| ≤ 1. Then |maxi(xi)−maxi(x
′
i)| ≤ 1.

Proof. Let s be an index that maximizes xi and let t be

an index that maximizes x′i. Without loss of generality,

assume xs ≥ x′t. Then xs ≥ x′t ≥ x′s ≥ xs − 1. Hence

|xs − x′t| = xs − x′t ≤ xs − (xs − 1) = 1.

Theorem 3 The Noisy Top-K with Gap mechanism

satisfies ε-differential privacy. If all of the queries are

counting queries, then it satisfies ε/2-differential pri-

vacy.

Proof. First we bound the cost of the alignment func-

tion defined in (3). Recall that the ηi’s are independent

Lap(2k/ε) random variables. By Definition 7

cost(φD,D′,ω) =

∞∑
i=1

|η′i − ηi|
ε

2k

=
ε

2k

∑
i∈Iω

∣∣∣∣qi − q′i + max
l∈Icω

(q′l + ηl)−max
l∈Icω

(ql + ηl)

∣∣∣∣ .
By the global sensitivity assumption we have |qi − q′i| ≤
1. Apply Lemma 5 to the vectors (ql + ηl)l∈Icω and

(q′l+ηl)l∈Icω , we have

∣∣∣∣max
l∈Icω

(q′l + ηl)−max
l∈Icω

(ql + ηl)

∣∣∣∣ ≤ 1.

Therefore,∣∣∣∣qi − q′i + max
l∈Icω

(q′l + ηl)−max
l∈Icω

(ql + ηl)

∣∣∣∣
≤ |qi − q′i|+

∣∣∣∣max
l∈Icω

(q′l + ηl)−max
l∈Icω

(ql + ηl)

∣∣∣∣ ≤ 1 + 1 = 2.

Furthermore, if q is monotonic, then

– either ∀i : qi ≤ q′i in which case qi − q′i ∈ [−1, 0] and

max
l∈Icω

(q′l + ηl)−max
l∈Icω

(ql + ηl) ∈ [0, 1],

– or ∀i : qi ≥ q′i in which case qi − q′i ∈ [0, 1] and

max
l∈Icω

(q′l + ηl)−max
l∈Icω

(ql + ηl) ∈ [−1, 0].

In both cases we have qi− q′i + max
l∈Icω

(q′l + ηl)−max
l∈Icω

(ql +

ηl) ∈ [−1, 1] so |qi−q′i+max
l∈Icω

(q′l+ηl)−max
l∈Icω

(ql+ηl)| ≤ 1.

Free Gap Estimates from the Exponential Mechanism, Sparse Vector, Noisy Max and Related Algorithms 13

Therefore,

cost(φD,D′,ω)

=
ε

2k

∑
i∈Iω

∣∣∣∣qi−q′i + max
l∈Icω

(q′l+ηl)−max
l∈Icω

(ql+ηl)

∣∣∣∣
≤ ε

2k

∑
i∈Iω

2 (or
ε

2k

∑
i∈Iω

1 if q is monotonic)

=
ε

2k
· 2 |Iω| (or

ε

2k
· |Iω| if q is monotonic)

= ε (or ε/2 if q is monotonic).

Conditions 1 through 3 of Lemma 1 are trivial to check,

4 and 5 follow from Lemma 4 and the above bound on

cost. Therefore, Theorem 3 follows from Lemma 1.

6.2 Noisy Top-K with Exponential Noise

The original noisy max algorithm also works with one-

sided exponential noise [19] with smaller variance than

the Laplace noise. In this subsection, we show that

this result extends to the Noisy Top-K with Gap al-

gorithm by simply changing Line 3 of Algorithm 4 to

ηi ← Exp(2k/ε) and privacy is maintained while the

variance of the gap decreases. However, the proof relies

on a different local alignment.

Local alignment. The alignment used in Section 6.1

will not work here because it might set our noise ran-

dom variables to negative numbers. Thus we need a new

alignment. As before, let H = (η1, η2, . . .) where ηi is

the noise that should be added to the ith query. We

view the output ω = ((j1, g1), . . . , (jk, gk)) as k pairs
where in the ith pair (ji, gi), the first component ji is

the index of ith largest noisy query and the second com-

ponent gi > 0 is the gap in noisy value between the ith

and (i+ 1)th largest noisy queries.

Let Iω = {j1, . . . , jk} and Icω = {1, . . . , n} \ Iω. I.e.,

Iω is the index set of the k largest noisy queries selected

by the algorithm and Icω is the index set of all unselected

queries. For H ∈ HD:ω we will use φD,D′,ω(H) = H ′ =

(η′1, η
′
2, . . .) to refer to the aligned noise. In order to

define the alignment, we need the following quantities:

s = argmax
l∈Icω

(ql + ηl), t = argmax
l∈Icω

(q′l + ηl)

i∗ = argmin
i∈Iω

{
qi − q′i + max

l∈Icω
(q′l + ηl)−max

l∈Icω
(ql + ηl)

}
= argmin

i∈Iω
{qi − q′i} (the other terms have no i)

δ∗ = min
i∈Iω

{
qi − q′i + max

l∈Icω
(q′l + ηl)−max

l∈Icω
(ql + ηl)

}

= qi∗ − q′i∗ + (q′t + ηt)− (qs + ηs)

Note that i∗ ∈ Iω and s, t ∈ Icω. We define the align-

ment according to the value of δ∗. When δ∗ ≥ 0, we

use the same alignment as in the Laplace version of the

algorithm:

η′i =

{
ηi i ∈ Icω
ηi + qi − q′i + (q′t + ηt)− (qs + ηs) i ∈ Iω

(4)

When δ∗ < 0 that alignment could result in a negative

η′i for some i ∈ Iω. So instead, we take that alignment

and further add the positive quantity −δ∗ in several

places so that overall we are adding nonnegative num-

bers to each ηi to get η′i (this ensures that η′i is nonneg-

ative for each i). Thus, when δ∗ < 0, define

η′i =

ηi i ∈ Icω \ {t}
ηi − δ∗ i = t

ηi+qi−q′i+(q′t+ηt)−(qs+ηs)−δ∗ i ∈ Iω

=

ηi i ∈ Icω \ {t}
ηi − δ∗ i = t

ηi + qi − q′i − qi∗ + q′i∗ i ∈ Iω
(5)

Lemma 6 Let M be the Noisy Top-K with Gap algo-

rithm that uses exponential noise. For all D ∼ D′ and

ω, the functions φD,D′,ω defined above are acyclic local

alignments for M . Furthermore, for every pair D ∼ D′,
there are countably many distinct φD,D′,ω.

Proof. First we show that ∀i, η′i ≥ ηi. Recall that δ∗ =

mini∈Iω {qi − q′i + (q′t + ηt)− (qs + ηs)}. When δ∗ ≥ 0,

we have η′i− ηi = qi− q′i + (q′t + ηt)− (qs + ηs) ≥ δ∗ ≥ 0

for all i ∈ Iω. When δ∗ < 0, we have η′t − ηt = −δ∗ > 0

and η′i − ηi = (qi − q′i) − (qi∗ − q′i∗) ≥ 0 for i ∈ Iω.

Therefore, all η′i are non-negative.

The proof that (4) is an alignment when δ∗ ≥ 0 is

the same as in the Laplace noise case. To show that

(5) is an alignment when δ∗ < 0, first note that since

t = argmaxl∈Icω (q′l + ηl) and −δ∗ > 0, we have t =

argmaxl∈Icω (q′l +η′l). Then from (5), we have that when

i ∈ Iω,

η′i = ηi + qi − q′i + (q′t + ηt)− (qs + ηs)− δ∗
=⇒ q′i + η′i − (q′t + (ηt − δ∗)) = qi + ηi − (qs + ηs)

=⇒ q′i + η′i − (q′t + η′t) = qi + ηi − (qs + ηs)

=⇒ q′i + η′i −max
l∈Icω

(q′l + η′l) = qi + ηi −max
l∈Icω

(ql + ηl)

Thus by a similar argument in Lemma 4, all relative

orders among the k largest noisy queries and their as-

sociated gaps are preserved. The facts that φD,D′,ω is

acyclic and there are finitely many φD,D′,ω are clear.

14 Zeyu Ding1 et al.

Alignment cost and privacy. Recall from Table 1 that

if f(x) is the density of Exp(β), then for x, y ≥ 0,

ln f(x)
f(y) = y−x

β ≤ |y−x|
β . When δ∗ ≥ 0, the alignment

cost computation is the same as with the Laplace ver-

sion of the algorithm. When δ∗ < 0, we have

cost(φD,D′,ω) =

∞∑
i=1

|η′i − ηi|
ε

2k

=
ε

2k
|δ∗|+

ε

2k

∑
i∈Iω

∣∣qi − q′i − qi∗ + q′i∗
∣∣

=
ε

2k
|δ∗|+

ε

2k

∑
i∈Iω\{i∗}

∣∣qi − q′i − qi∗ + q′i∗
∣∣ .

and note that there are k − 1 terms in the right-most

summation. It is clear that
∣∣qi − q′i − qi∗ + q′i∗

∣∣ ≤ 2 (or

1 if q is monotone). Also, it is shown in the proof of

Theorem 3 that

|δ∗| =
∣∣∣∣qi∗ − q′i∗ + max

l∈Icω
(q′l + ηl)−max

l∈Icω
(ql + ηl)

∣∣∣∣
≤ 2 (or 1 if q is monotone).

Therefore,

cost(φD,D′,ω)

=
ε

2k
|δ∗|+

ε

2k

∑
i∈Iω\{i∗}

∣∣qi − q′i − qi∗ + q′i∗
∣∣

(note that there are 1 + (k − 1) terms above)

≤ ε

2k
· 2 · k (or

ε

2k
· 1 · k if q is monotonic)

= ε (or ε/2 if q is monotonic).

Thus, Algorithm 4 with Exp(2k/ε) noise on Line 3 in-
stead of Lap(2k/ε) noise, satisfies ε-differential privacy.

If all of the queries are counting queries, then it satisfies

ε/2-differential privacy.

6.3 Utilizing Gap Information

Let us consider one scenario that takes advantage of the

gap information. Suppose a data analyst is interested in

the identities and values of the top k queries. A typical

approach would be to split the privacy budget ε in half –

use ε/2 of the budget to identify the top k queries using

Noisy Top-K with Gap. The remaining ε/2 budget is

evenly divided between the selected queries and is used

to obtain noisy measurements (i.e. add Lap(2k/ε) noise

to each query answer). These measurements will have

variance σ2 = 8k2/ε2. In this section we show how to

use the gap information from Noisy Top-K with Gap

and postprocessing to improve the accuracy of these

measurements.

Problem statement. Let q1,. . . , qk be the true answers of

the top k queries that are selected by Algorithm 4. Let

α1, . . . , αk be their noisy measurements. Let g1, . . . , gk−1
be the noisy gaps between q1, . . . , qk that are obtained

from Algorithm 4 for free. Then αi = qi + ξi where

each ξi is a Lap(2k/ε) random variable and gi = qi +

ηi − qi+1 − ηi+1 where each ηi is a Lap(4k/ε) random

variable, or a Lap(2k/ε) random variable if the query

list is monotonic (recall the mechanism was run with a

privacy budget of ε/2). Our goal is then to find the best

linear unbiased estimate (BLUE) [30] βi of qi in terms

of the measurements αi and gap information gi.

Theorem 4 With notations as above let q = [q1, . . . , qk]T ,

α = [α1, . . . , αk]T and g = [g1, . . . , gk−1]T . Suppose the

ratio Var(ξi) : Var(ηi) is equal to 1 : λ. Then the BLUE

of q is β = 1
(1+λ)k (Xα+ Y g) where

X =

1 + λk 1 · · · 1

1 1 + λk · · · 1
...

...
. . .

...

1 1 · · · 1 + λk

k×k

Y =

k − 1 k − 2 · · · 1

k − 1 k − 2 · · · 1

k − 1 k − 2 · · · 1
...

...
. . .

...

k − 1 k − 2 · · · 1

−

0 0 · · · 0

k 0 · · · 0

k k · · · 0
...

...
. . . 0

k k · · · k

k×(k−1)

For proof, see the Appendix. Even though this is a

matrix multiplication, it is easy to see that it translates

into the following algorithm that is linear in k:

1. Compute α =
∑k
i=1 αi and p =

∑k−1
i=1 (k − i)gi.

2. Set p0 = 0. For i = 1, . . . , k − 1 compute the prefix

sum pi =
∑i
j=1 gj = pi−1 + gi.

3. For i = 1, . . . , k, set βi = (α+λkαi+p−kpi−1)/(1+

λ)k.

Now, each βi is an estimate of the value of qi. How

does it compare to the direct measurement αi (which

has variance σ2 = 8k2/ε2)? The following result com-

pares the expected error of βi (which used the direct

measurements and the gap information) with the ex-

pected error of using only the direct measurements (i.e.,

αi only).

Corollary 1 For all i = 1, . . . , k, we have

E(|βi − qi|2)

E(|αi − qi|2)
=

1 + λk

k + λk
=

Var(ξi) + kVar(ηi)

k(Var(ξi) + Var(ηi))
.

For proof, see the Appendix. In the case of count-

ing queries, we have Var(ξi) = Var(ηi) = 8k2/ε2 and

Free Gap Estimates from the Exponential Mechanism, Sparse Vector, Noisy Max and Related Algorithms 15

thus λ = 1. The error reduction rate is k−1
2k which is

close to 50% when k is large. If we use exponential

noise instead, i.e., replace ηi ← Lap(2k/ε) with ηi ←
Exp(2k/ε) at Line 3 of Algorithm 4, then Var(ηi) =

4k2/ε2 = Var(ξi)/2 and thus λ = 1/2. In this case, the

error reduction rate is 2k−2
3k which is close to 66% when

k is large. Our experiments in Section 9 confirm these

theoretical results.

7 SVT/Noisy Max Hybrids with Gap

In this section, we present two hybrids of SVT with Gap

and Noisy Top-K with Gap. Recall that SVT with Gap

is an online algorithm that returns the identities and

noisy gaps (with respect to the threshold) of the first

k noisy queries it sees that are larger than the noisy

threshold. Its benefits are:

– Privacy budget is saved if fewer than k queries are

returned.

– The queries that are returned come with estimates

of their noisy answers (obtained by adding the pub-

lic threshold to the noisy gap).

while the drawbacks are:

– The returned queries are likely not to resemble the

k largest queries (queries that come afterwards are

ignored, no matter how large their values are).

Meanwhile, Noisy Top-K with Gap returns the identi-

ties and gaps (with respect to the runner-up query) of

the top k noisy queries. Its benefits are:

– The queries returned are approximately the top k.

– The gap tells us how large the queries are compared

to the best non-selected noisy query.

while the drawbacks are:

– k queries are always returned, even if their values

are small.

– Only gap information is returned (not estimates of

the query answers).

For users who are interested in identifying the top

k queries that are likely to be over a threshold, we

present two hybrid algorithms that try to combine the

benefits of both algorithms while minimizing the draw-

backs. Both algorithms take as input a number k, a list

of answers to queries having sensitivity 1, and a public

threshold T . They both return the subset of the top

k noisy queries that are larger than the noisy threshold

T , hence the privacy cost is dynamic and is smaller if

fewer than k queries are returned. The difference is in

the gap information.

The first hybrid (Algorithm 5) is more likely to pro-

vide accurate identity information than the second hy-

brid (Algorithm 6). That is, the queries it returns are

more likely to be the actual queries whose true val-

ues are largest (because the first algorithm adds less

noise to the query answers). However, Algorithm 6 al-

ways returns the noisy gap with the threshold (hence,

by adding in the public threshold value, this gives an

estimate of the query answer). Meanwhile, Algorithm 5

only returns the noisy gap with the threshold if fewer

than k queries are returned (if exactly k queries are

returned, it functions like Noisy Top-K with Gap and

returns the gaps with the runner up query).

In terms of how they work, Algorithm 5 adds the

public threshold to the list of queries (it becomes Query

0), adds the same noise to them (Lines 2 and 4). In line

6, it takes the top k noisy queries (sorted in decreasing

order) and their gaps with the next best query. It filters

out any that are smaller than the noisy Query 0. For the

queries that didn’t get removed, it returns their iden-

tities (recall the threshold is Query 0) and their gap

with the next best query. If the last returned item is

Query 0, this means that the gap information tells us

how much larger the other returned queries are com-

pared to the noisy threshold Query 0, and this allows

us to get numerical estimates for those query answers

by adding in the public threshold.

Algorithm 5: Hybrid Prioritizing Identity

input: q: a list of n queries of global sensitivity 1
D: database, ε: privacy budget
T : public threshold, k: # of indexes

1 function NoisyTopK (q, D, T , k, ε):
2 η0 ← Exp(2k/ε); q̃0 ← T + η0
3 foreach i ∈ {1, · · · , n} do
4 ηi ← Exp(2k/ε); q̃i ← qi(D) + ηi

5 (j1, . . . , jk+1)← arg maxk+1(q̃0, q̃1, . . . , q̃n)
6 foreach i ∈ {1, · · · , k} do
7 gi ← q̃ji − q̃ji+1

; t← i
8 if ji = 0 then
9 break

10 return ((j1, g1), . . . , (jt, gt))

Alignment and privacy cost for Algorithm 5. By replac-

ing the index sets Iω in Equations (4) and (5) with

Iω = {j1, . . . , jt}, the same formula can be used as

the alignment function for Algorithm 5. Note that since

|Iω| = t ≤ k, the privacy cost is (t/k)ε.

Lemma 7 If Algorithm 5 is run with privacy budget ε

and returns t queries (and their associated gaps), then

the actual privacy cost is (t/k)ε.

16 Zeyu Ding1 et al.

The second hybrid (Algorithm 6) is essentially SVT

with Gap applied to the list of queries that is sorted in

descending order by their noisy answers. We note that

it adds more noise to each query than Algorithm 5 but

always returns the noisy gap between the noisy query

answer and the noisy threshold, just like SVT with Gap.

Algorithm 6: Hybrid Prioritizing Estimates

input: same as Algorithm 5
1 function NoisyTopK (q, D, T , k, ε):
2 ε0 ← θε; ε1 ← (1− θ)ε/k;
3 b0 ← 1/ε0; b1 ← 2/ε1

4 η ← Exp(1/ε0); T̃ ← T + η − b0
5 foreach i ∈ {1, · · · , n} do
6 ηi ← Exp(2/ε1); q̃i ← qi(D) + ηi − b1
7 (j1, . . . , jk)← arg maxk(q̃1, . . . , q̃n)
8 t← 0
9 foreach i ∈ {1, · · · , k} do

10 if q̃ji ≥ T̃ then

11 gi ← q̃ji − T̃ ; t← i
12 else
13 break

14 return ((j1, g1), . . . , (jt, gt)) // ∅ if t = 0

Alignment and privacy cost for Algorithm 6. The align-

ment for Algorithm 6 is the same as the one for SVT

with Gap and is hence omitted here. Note that the pri-

vacy cost is ε0 + tε1 = (θ+ (t/k)(1− θ))ε where t is the

number of queries returned. As discussed in Section 5.1,

the optimal θ is 1/(1 +
3
√

4k2).

Lemma 8 If Algorithm 6 is run with privacy budget ε

and returns t queries (and their associated gaps), then

the actual privacy cost is (θ + (t/k)(1− θ))ε.

8 Improving Exponential Mechanism

The Exponential Mechanism [36] was designed to an-

swer non-numeric queries in a differentially private way.

In this setting, D is the set of possible input databases

and R = {ω1, ω2, . . . , ωn} is a set of possible outcomes.

There is a utility function µ : D×R → R where µ(D,ωi)

gives us the utility of outputting ωi when the true input

database is D. The exponential mechanism randomly

selects an output ωi with probabilities that are defined

by the following theorem:

Theorem 5 (The Exponential Mechanism [36])

Given ε > 0 and a utility function µ : D ×R → R, the

mechanism M(D,µ, ε) that outputs ωi ∈ R with proba-

bility proportional to exp(εµ(D,ωi)2∆µ
) satisfies ε-differential

privacy where ∆µ, the sensitivity of µ, is defined as

∆µ = max
D∼D′

max
ωi∈R

|µ(D,ωi)− µ(D′, ωi)| .

Unlike the Noisy Max and SVT variants, the Expo-

nential Mechanism is not an algorithm – it specifies a

sampling distribution but sampling algorithms have to

be designed on a case-by-case basis (depending on the

utility function µ). Thus, in general, we cannot make

any assumptions about the intermediate state of the al-

gorithm. This is an important observation because the

intermediate state of Noisy Max and SVT was used to

create the free gap information.

In order to derive the gap algorithm for Exponen-

tial Mechanism, we first consider a general-purpose but

inefficient implementation that uses intermediate state

of the algorithm, and then we show how to get gap

information without this intermediate state.

8.1 An Inefficient Exponential Mechanism

There is a common folklore algorithm in the differen-

tial privacy community for sampling from the Expo-

nential Mechanism. Its origins are based in the ma-

chine learning task known as sampling from a soft-

max. The algorithm is called the Gumbel-Max trick [25,

35] and is very similar to Noisy Max except that the

added noise comes from the Gumbel(0) distribution.

The Gumbel(µi) distribution with location parameter

µi has density exp(−(x−µi)−exp(−(x−µi))) over the

real line. The main idea behind the Gumbel-Max trick

is that if we have numbers µ1, . . . , µn, add independent

Gumbel(0) noise to each and select the index of the

largest noisy value, this is the same as sampling the

ith item with probability proportional to eµi . Formally,

let Cat
(

exp(µ1)∑n
j=1 exp(µj)

, . . . , exp(µn)∑n
j=1 exp(µj)

)
denote the cat-

egorical distribution that returns item ωi with proba-

bility exp(µi)∑n
j=1 exp(µj)

. The Gumbel-Max theorem provides

distributions for the identity of the noisy maximum and

the value of the noisy maximum:

Theorem 6 (The Gumbel-Max Trick [25,35]) Let

Gi, . . . , Gn be i.i.d. Gumbel(0) random variables and let

µ1, . . . , µn be real numbers. Define Xi = Gi + µi. Then

1. The distribution of arg maxi(X1, . . . , Xn) is the same

as Cat
(

exp(µ1)∑n
j=1 exp(µj)

, . . . , exp(µn)∑n
j=1 exp(µj)

)
.

2. The distribution of maxi(X1, . . . , Xn) is the same

as Gumbel(ln
∑n
i=1 exp(µi)).

Therefore, as is noted in folklore, the Exponential

Mechanism is equivalent to the following procedure:

add i.i.d. Gumbel(0) noise to εµ(D,ωi)
2∆µ

, select the i for

which this noisy value is largest, and return ωi.

Free Gap Estimates from the Exponential Mechanism, Sparse Vector, Noisy Max and Related Algorithms 17

8.2 A Naive Exponential Mechanism with Gap

Using the Gumbel-Max trick, we can propose an inef-

ficient Exponential Mechanism with Gap in a similar

way to Noisy Max with Gap: they both add i.i.d. ran-

dom noise to private values and return the identity of

the item with the largest noisy value as well as the

noisy gaps between it and the next best item. As be-

fore, the gap information can be provided without any

additional cost to the privacy budget. The details are

shown in Algorithm 7. The boxed items represent the

difference between the Exponential Mechanism and our

proposed gap version:

Algorithm 7: Naive Exp. Mech. with Gap

input: µ: utility function with sensitivity ∆µ
D: database, ε: privacy budget

1 function GapExpMech (D, µ, ε):
2 foreach i ∈ {1, · · · , n} do
3 xi ← εµ(D,ωi)/2∆µ + Gumbel(0)

4 s, t ← arg max2(x1, . . . , xn)

5 return ωs, xs − xt

Although randomness alignment can be used to prove

the privacy properties of this algorithm, we will work

directly with the Gumbel distribution to get a more

powerful result. The proof appears in Appendix A.4.

Theorem 7 Algorithm 7 satisfies ε-differential privacy.

Its output distribution is equivalent to selecting ωs with

probability proportional to exp
(εµ(D,ωs)

2∆µ

)
and then in-

dependently sampling the gap from the Logistic distribu-

tion (conditional on only sampling non-negative values)

with location parameter εµ(D,ωs)
2∆µ

− ln
∑
ω 6=ωs

exp(εµ(D,ω)2∆µ
).

Black-box Exponential Mechanism with Gap. Theorem

7 shows how we can improve Algorithm 7. We can first

sample from the traditional Exponential Mechanism as

a black box, and then independently sample a number

from a logistic distribution until it is nonnegative. The

resulting value is probabilistically equivalent to the gap.

The details are shown in Algorithm 8.

9 Experiments

We now evaluate the algorithms proposed in this paper.

9.1 Datasets

We use the two real datasets from [33]: BMP-POS,

Kosarak and a synthetic dataset T40I10D100K created

Algorithm 8: Black-box Exp. Mech. with Gap

input: same as Algorithm 7
1 function GapExpMech (D, µ, ε):
2 ω ← ExpMech(D,µ, ε)
3 while true do

4 x← Logistic
(µ(D,ω)

2∆µ
− ln

∑
ω′ 6=ω

exp(µ(D,ω
′)

2∆µ
)
)

5 if x > 0 then
6 break

7 return ω, x

by the generator from the IBM Almaden Quest re-

search group. These datasets are collections of trans-

actions (each transaction is a set of items). In our ex-

periments, the queries correspond to the counts of each

item (i.e. how many transactions contained item #23?)

The statistics of the datasets are listed below.

Table 3: Statistics of Datasets

Dataset # of Records # of Unique Items
BMS-POS 515,597 1,657
Kosarak 990,002 41,270

T40I10D100K 100,000 942

9.2 Improving Query Estimates with Gap Information

The first set of experiments is to measure how gap infor-

mation can help improve estimates in selected queries.

We use the setup of Sections 6.3 and 5.3. That is, a

data analyst splits the privacy budget ε in half. She

uses the first half to select k queries using Noisy Top-

K with Gap or SVT with Gap (or Adaptive SVT with

Gap) and then uses the second half of the privacy bud-

get to obtain independent noisy measurements of each

selected query.

If one were unaware that gap information came for

free, one would just use those noisy measurements as

estimates for the query answers. The error of this ap-

proach is the gap-free baseline. However, since the gap

information does come for free, we can use the post-

processing described in Sections 6.3 and 5.3 to improve

accuracy (we call this latter approach SVT with Gap

with Measures and Noisy Top-K with Gap with Mea-

sures).

We first evaluate the percentage reduction of mean

squared error (MSE) of the postprocessing approach

compared to the gap-free baseline and compare this im-

provement to our theoretical analysis. As discussed in

Section 5.3, we set the budget allocation ratio within

18 Zeyu Ding1 et al.

2 4 6 8 10 12 14 16 18 20 22 24
k

0

10

20

30

40

50

60

70

%
R
ed
uc
ti
on

of
M
SE

Sparse Vector w/ Measures (Laplace)
Theoretical Expected Reduction (Laplace)
Sparse Vector w/ Measures (Exponential)
Theoretical Expected Reduction (Exponential)
Sparse Vector w/ Measures (Geometric)

(a) SVT with Gap with Measures, BMS-POS.

2 4 6 8 10 12 14 16 18 20 22 24
k

0

10

20

30

40

50

60

70

%
R
ed
uc
ti
on

of
M
SE

Noisy Top-K w/ Measures (Laplace)
Theoretical Expected Reduction (Laplace)
Noisy Top-K w/ Measures (Exponential)
Theoretical Expected Reduction (Exponential)

(b) Noisy Top-K with Gap with Measures, BMS-POS.

Fig. 2: Percent reduction of Mean Squared Error on monotonic queries, for different k, for SVT with Gap

and Noisy Top-K with Gap when half the privacy budget is used for query selection and the other half is

used for measurement of their answers. Privacy budget ε = 0.7.

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
n

0

10

20

30

40

50

60

70

%
R
ed
uc
ti
on

of
M
SE

Sparse Vector w/ Measures (Laplace)
Theoretical Expected Reduction (Laplace)
Sparse Vector w/ Measures (Exponential)
Theoretical Expected Reduction (Exponential)
Sparse Vector w/ Measures (Geometric)

(a) SVT with Gap with Measures, kosarak.

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
n

0

10

20

30

40

50

60

70
%
R
ed
uc
ti
on

of
M
SE

Noisy Top-K w/ Measures (Laplace)
Theoretical Expected Reduction (Laplace)
Noisy Top-K w/ Measures (Exponential)
Theoretical Expected Reduction (Exponential)

(b) Noisy Top-K with Gap with Measures, kosarak.

Fig. 3: Percent reduction of Mean Squared Error on monotonic queries, for different ε, for SVT with Gap

and Noisy Top-K with Gap when half the privacy budget is used for query selection and the other half is

used for measurement of their answers. The value of k is set to 10.

the SVT with Gap algorithm (i.e., the budget alloca-

tion between the threshold and queries) to be 1 : k
2
3

for monotonic queries and 1 : (2k)
2
3 otherwise – such a

ratio is recommended in [33] for the original SVT. The

threshold used for SVT with Gap is randomly picked

from the top 2k to top 8k in each dataset for each run.6

All numbers plotted are averaged over 10, 000 runs.

Due to space constraints, we only show experiments

for counting queries (which are monotonic).

Our theoretical analysis in Sections 5.3 and 6.3 sug-

gested that in the case of monotonic queries, the error

reduction rate can reach up to 50% when Laplace noise

is used, and 66% when exponential or geometric noise

6 Selecting thresholds for SVT in experiments is difficult,
but we feel this may be fairer than averaging the answer to
the top kth and k + 1th queries as was done in prior work
[33].

is used, as k increases. This is confirmed in Figures 2a,

for SVT with Gap and Figures 2b, for our Top-K al-

gorithm using the BMS-POS dataset (results for the

other datasets are nearly identical). These figures plot

the theoretical and empirical percent reduction of MSE

as a function of k and show the power of the free gap

information.

We also generated corresponding plots where k is

held fixed and the total privacy budget ε is varied. We

only present the result for the kosarak dataset as results

for the other datasets are nearly identical. For SVT

with Gap, Figures 3a confirms that this improvement

is stable for different ε values. For our Top-K algorithm,

Figures 3b confirms that this improvement is also stable

for different values of ε.

Free Gap Estimates from the Exponential Mechanism, Sparse Vector, Noisy Max and Related Algorithms 19

2 4 6 8 10 12 14 16 18 20 22 24
k

0

10

20

30

40

50

60

#
of

A
bo

ve
-T
hr
es
ho

ld
A
ns
w
er
s Sparse Vector

Adaptive SVT w/ Gap (Middle)
Adaptive SVT w/ Gap (Top)

(a) BMS-POS.

2 4 6 8 10 12 14 16 18 20 22 24
k

0

10

20

30

40

50

60

#
of

A
bo

ve
-T
hr
es
ho

ld
A
ns
w
er
s Sparse Vector

Adaptive SVT w/ Gap (Middle)
Adaptive SVT w/ Gap (Top)

(b) kosarak.

2 4 6 8 10 12 14 16 18 20 22 24
k

0

10

20

30

40

50

60

#
of

A
bo

ve
-T
hr
es
ho

ld
A
ns
w
er
s Sparse Vector

Adaptive SVT w/ Gap (Middle)
Adaptive SVT w/ Gap (Top)

(c) T40I10D100K.

Fig. 4: # of queries answered by SVT and Adaptive SVT with Gap under different k’s for monotonic queries.

Privacy budget ε = 0.7 and x-axis: k.

2 4 6 8 10 12 14 16 18 20 22 24
k

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
is
io
n
an

d
F-
M
ea
su
re

Sparse Vector - Precision
Adaptive SVT w/ Gap - Precision
Sparse Vector - F-Measure
Adaptive SVT w/ Gap - F-Measure

(a) BMS-POS.

2 4 6 8 10 12 14 16 18 20 22 24
k

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
is
io
n
an

d
F-
M
ea
su
re

Sparse Vector - Precision
Adaptive SVT w/ Gap - Precision
Sparse Vector - F-Measure
Adaptive SVT w/ Gap - F-Measure

(b) kosarak.

2 4 6 8 10 12 14 16 18 20 22 24
k

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
is
io
n
an

d
F-
M
ea
su
re

Sparse Vector - Precision
Adaptive SVT w/ Gap - Precision
Sparse Vector - F-Measure
Adaptive SVT w/ Gap - F-Measure

(c) T40I10D100K.

Fig. 5: Precision and F-Measure of SVT and Adaptive SVT with Gap under different k’s for monotonic

queries. Privacy budget ε = 0.7 and x-axis: k.

9.3 Benefits of Adaptivity

In this section we present an evaluation of the budget-

saving properties of our novel Adaptive SVT with Gap

algorithm to show that it can answer more queries than

SVT and SVT with Gap at the same privacy cost (or,

conversely, answer the same number of queries but with

leftover budget that can be used for other purposes).

First note that SVT and SVT with Gap both answer

exactly the same amount of queries, so we only need

to compare Adaptive SVT with Gap to the original

SVT [19,33]. In both algorithms, the budget allocation

between the threshold noise and query noise is set ac-

cording to the ratio 1 : k
2
3 (i.e., the hyperparameter θ in

Adaptive SVT with Gap is set to 1/(1+k
2
3)), following

the discussion in Section 5.1. The threshold is randomly

picked from the top 2k to top 8k in each dataset and

all reported numbers are averaged over 10, 000 runs.

Number of queries answered. We first compare the num-

ber of queries answered by each algorithm as the param-

eter k is varied from 2 to 24 with a privacy budget of

ε = 0.7 (results for other settings of the total privacy

budget are similar). The results are shown in Figure

4a, 4b, and 4c. In each of these bar graphs, the left

(blue) bar is the number of answers returned by SVT

and the right bar is the number of answers returned

by Adaptive SVT with Gap. This right bar is bro-

ken down into two components: the number of queries

returned from the top “if” branch (corresponding to

queries that were significantly larger than the thresh-

old even after a lot of noise was added) and the num-

ber of queries returned from the middle “if” branch.

Queries returned from the top branch of Adaptive SVT

with Gap have less privacy cost than those returned

by SVT. Queries returned from the middle branch of

Adaptive SVT with Gap have the same privacy cost

as in SVT. We see that most queries are answered in

the top branch of Adaptive SVT with Gap, meaning

that the above-threshold queries were generally large

(much larger than the threshold). Since Adaptive SVT

with Gap uses more noise in the top branch, it uses less

privacy budget to answer those queries and uses the

remaining budget to provide additional answers (up to

an average of 20 more answers when k was set to 24).

20 Zeyu Ding1 et al.

Precision and F-Measure. Although the adaptive al-

gorithm can answer more above-threshold queries than

the original, one can still ask the question of whether

the returned queries really are above the threshold.

Thus we can look at the precision of the returned results

(the fraction of returned queries that are actually above

the threshold) and the widely used F-Measure (the har-

monic mean of precision and recall). One would expect

that the precision of Adaptive SVT with Gap should

be less than that of SVT, because the adaptive version

can use more noise when processing queries. In Figures

5a, 5b, and 5c we compare the precision and F-Measure

of the two algorithms. Generally we see very little dif-

ference in precision. On the other hand, since Adaptive

SVT with Gap answers more queries while maintaining

high precision, the recall of Adaptive SVT with Gap

would be much larger than SVT, thus leading to the

F-Measure being roughly 1.5 times that of SVT.

2 4 6 8 10 12 14 16 18 20 22 24
k

0
5
10
15
20
25
30
35
40
45

%
R
em

ai
ni
ng

Pr
iv
ac
y
B
ud

ge
t

BMS-POS
T40I10D100K
kosarak

Fig. 6: Remaining privacy budget when Adaptive SVT

with Gap is stopped after answering k queries using

different datasets. Privacy budget ε = 0.7.

Remaining Privacy Budget. If a query is large, Adap-

tive SVT with Gap may only need to use a small part of

the privacy budget to determine that the query is likely

above the noisy threshold. That is, it may produce an

output in its top branch, where a lot of noise (hence less

privacy budget) is used. If we stop Adaptive SVT with

Gap after k returned queries, it may still have some pri-

vacy budget left over (in contrast to standard versions

of Sparse Vector, which use up all of their privacy bud-

get). This remaining privacy budget can then be used

for other data analysis tasks. For all three datasets,

Figure 6 shows the percentage of privacy budget that

is left over when Adaptive SVT with Gap is run with

parameter k and stopped after k queries are returned.

We see that roughly 40% of the privacy budget is left

over, confirming that Adaptive SVT with Gap is able

to save a significant amount of privacy budget.

10 General Randomness Alignment and Proof

of Lemma 1

In this section, we prove Lemma 1, which was used to

establish the privacy properties of the algorithms we

proposed. The proof of the lemma requires a more gen-

eral theorem for working with randomness alignment

functions. We explicitly list all of the conditions needed

for the sake of reference (many prior works had incor-

rect proofs because they did not have such a list to fol-

low). In the general setting, the method of randomness

alignment requires the following steps.

1. For each pair of adjacent databases D ∼ D′ and

ω ∈ Ω, define a randomness alignment φD,D′ or

local alignment functions φD,D′,ω : HD:ω → HD′:ω

(see notation in Table 2). In the case of local align-

ments this involves proving that if M(D,H) = ω

then M(D′, φD,D′,ω(H)) = ω.

2. Show that φD,D′ (or all the φD,D′,ω) is one-to-one

(it does not need to be onto). That is, if we know

D,D′, ω and we are given the value φD,D′(H) (or

φD,D′,ω(H)), we can obtain the value H.

3. For each pair of adjacent databases D ∼ D′, bound

the alignment cost of φD,D′ (φD,D′ is either given

or constructed by piecing together the local align-

ments). Bounding the alignment cost means the fol-

lowing: If f is the density (or probability mass) func-

tion ofH, find a constant a such that f(H)
f(φD,D′ (H)) ≤ a

for all H (except a set of measure 0). In the case

of local alignments, one can instead show the fol-

lowing. For all ω, and adjacent D ∼ D′ the ratio
f(H)

f(φD,D′,ω(H)) ≤ a for all H (except on a set of mea-

sure 0).

4. Bound the change-of-variables cost of φD,D′ (only

necessary when H is not discrete). One must show

that the Jacobian of φD,D′ , defined as JφD,D′ =
∂ φD,D′

∂H ,

exists (i.e. φD,D′ is differentiable) and is continu-

ous except on a set of measure 0. Furthermore, for

all pairs D ∼ D′, show the quantity
∣∣∣det JφD,D′

∣∣∣ is

lower bounded by some constant b > 0. If φD,D′

is constructed by piecing together local alignments

φD,D′,ω then this is equivalent to showing the follow-

ing (i)
∣∣∣det JφD,D′,ω

∣∣∣ is lower bounded by some con-

stant b > 0 for every D ∼ D′ and ω; and (ii) for each

D ∼ D′, the set Ω can be partitioned into countably

many disjoint measurable sets Ω =
⋃
iΩi such that

whenever ω and ω∗ are in the same partition, then

Free Gap Estimates from the Exponential Mechanism, Sparse Vector, Noisy Max and Related Algorithms 21

φD,D′,ω and φD,D′,ω* are the same function. Note

that this last condition (ii) is equivalent to requir-

ing that the local alignments must be defined with-

out using the axiom of choice (since non-measurable

sets are not constructible otherwise) and for each

D ∼ D′, the number of distinct local alignments

is countable. That is, the set {φD,D′,ω | ω ∈ Ω}
is countable (i.e., for many choices of ω we get the

same exact alignment function).

Theorem 8 Let M be a randomized algorithm that ter-

minates with probability 1 and suppose the number of

random variables used by M can be determined from its

output. If, for all pairs of adjacent databases D ∼ D′,

there exist randomness alignment functions φD,D′ (or

local alignment functions φD,D′,ω for all ω ∈ Ω and

D ∼ D′) that satisfy conditions 1 though 4 above, then

M satisfies ln(a/b)-differential privacy.

Proof. We need to show that for all D ∼ D′ and E ⊆ Ω,

P[HD:E] ≤ (a/b)P[HD′:E].

First we note that if we have a randomness align-

ment φD,D′ , we can define corresponding local align-

ment functions as follows φD,D′,ω(H) = φD,D′(H) (in

other words, they are all the same). The conditions on

local alignments are a superset of the conditions on ran-

domness alignments, so for the rest of the proof we work

with the φD,D′,ω.

Let φ1, φ2, . . . be the distinct local alignment func-

tions (there are countably many of them by Condi-

tion 4). Let Ei = {ω ∈ E | φD,D′,ω = φi}. By Condi-

tions 1 and 2 we have that for each ω ∈ Ei, φi is

one-to-one on HD:ω and φi(HD:ω) ⊆ HD′:ω. Note that

HD:Ei
= ∪ω∈Ei HD:ω and HD′:Ei

= ∪ω∈Ei HD′:ω. Fur-

thermore, the sets HD:ω are pairwise disjoint for dif-

ferent ω and the sets HD′:ω are pairwise disjoint for

different ω. It follows that φi is one-to-one on HD:Ei

and φi(HD:Ei
) ⊆ HD′:Ei

. Thus for any H ′ ∈ φi(HD:Ei
)

there exists H ∈ HD:Ei
such that H = φ−1i (H ′). By

Conditions 3 and 4, we have f(H)
f(φi(H)) =

f(φ−1
i (H′))

f(H′) ≤ a

for all H ∈ HD:Ei
, and |det Jφi | ≥ b (except on a set of

measure 0). Then the following is true:

P[HD:Ei
] =

∫
HD:Ei

f(H)dH

=

∫
φi(HD:Ei

)

f(φ−1i (H ′))
1

|det Jφi |
dH ′

≤
∫
φi(HD:Ei

)

af(H ′)
1

b
dH ′ =

a

b

∫
φi(HD:Ei

)

f(H ′)dH ′

≤ a

b

∫
H

D′:Ei

f(H ′)dH ′ =
a

b
P[HD′:Ei

].

The second equation is the change of variables formula

in calculus. The last inequality follows from the contain-

ment φi(HD:Ei
) ⊆ HD′:Ei

and the fact that the density

f is nonnegative. In the case that H is discrete, simply

replace the density f with a probability mass function,

change the integral into a summation, ignore the Jaco-

bian term and set b = 1. Finally, since E = ∪iEi and

Ei ∩ Ej = ∅ for i 6= j, we conclude that

P[HD:E]=
∑
i

P[HD:Ei
]≤ a

b

∑
i

P[HD′:Ei
]=

a

b
P[HD′:E].

We now present the proof of Lemma 1.

Proof. Let φD,D′,ω(H) = H ′ = (η′1, η
′
2, . . .). By acyclic-

ity there is some permutation π under which ηπ(1) =

η′π(1)−c where c is some constant depending on D ∼ D′
and ω. Thus ηπ(1) is uniquely determined by H ′. Now

(as an induction hypothesis) assume ηπ(1), . . . , ηπ(j−1)
are uniquely determined by H ′ for some j > 1, then

ηπ(j) = η′π(j) − ψ
(j)
D,D′,ω(ηπ(1), . . . , ηπ(j−1)), so ηπ(j) is

also uniquely determined by H ′. Thus by strong in-

duction H is uniquely determined by H ′, i.e., φD,D′,ω
is one-to-one. It is easy to see that with this order-

ing, JφD,D′,ω is an upper triangular matrix with 1’s on

the diagonal. Since permuting variables doesn’t change∣∣∣det JφD,D′,ω

∣∣∣, we have
∣∣∣det JφD,D′,ω

∣∣∣ = 1 since that is

the determinant of upper triangular matrices. Further-

more, (recalling the definition of the cost of φD,D′,ω),

clearly

ln
f(H)

f(φω(H))
=
∑
i

ln
fi(ηi)

fi(η′i)
≤
∑
i

ci |ηi − η′i| ≤ ε

The first inequality follows from Condition 3 of Lemma

1 and the second from Condition 4.

11 Conclusions and Future Work

In this paper we introduced variations of SVT, Noisy

Max, and Exponential Mechanism that provide addi-

tional noisy gap information for free (without affect-

ing the privacy cost). We also presented applications

of how to use the gap information. Future work in-

cludes applying this gap information in larger differ-

entially private algorithms to increase the accuracy of

privacy-preserving data analysis.

Acknowledgements This work was supported by NSF Awards
CNS-1702760 and CNS-1931686.

22 Zeyu Ding1 et al.

References

1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B.,
Mironov, I., Talwar, K., Zhang, L.: Deep learning with
differential privacy. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 308–318. ACM (2016)

2. Abowd, J.M.: The us census bureau adopts differential
privacy. In: Proceedings of the 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data
Mining, pp. 2867–2867. ACM (2018)

3. Albarghouthi, A., Hsu, J.: Synthesizing coupling proofs
of differential privacy. Proceedings of the ACM on Pro-
gramming Languages 2(POPL), 58 (2017)

4. Barthe, G., Gaboardi, M., Gregoire, B., Hsu, J., Strub,
P.Y.: Proving differential privacy via probabilistic cou-
plings. In: IEEE Symposium on Logic in Computer Sci-
ence (LICS) (2016)

5. Beimel, A., Nissim, K., Stemmer, U.: Private learning
and sanitization: Pure vs. approximate differential pri-
vacy. Theory of Computing 12(1), 1–61 (2016)

6. Bhaskar, R., Laxman, S., Smith, A., Thakurta, A.: Dis-
covering frequent patterns in sensitive data. In: Proceed-
ings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (2010)

7. Bittau, A., Erlingsson, U., Maniatis, P., Mironov, I.,
Raghunathan, A., Lie, D., Rudominer, M., Kode, U.,
Tinnes, J., Seefeld, B.: Prochlo: Strong privacy for an-
alytics in the crowd. In: Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP ’17 (2017)

8. Bun, M., Steinke, T.: Concentrated differential privacy:
Simplifications, extensions, and lower bounds. In: Pro-
ceedings of the 14th International Conference on Theory
of Cryptography - Volume 9985 (2016)

9. Bureau, U.S.C.: On the map: Longitudinal employer-
household dynamics. https://lehd.ces.census.gov/

applications/help/onthemap.html#!confidentiality_

protection

10. Chaudhuri, K., Hsu, D., Song, S.: The large margin mech-
anism for differentially private maximization. In: Pro-
ceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 1 (2014)

11. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differen-
tially private empirical risk minimization. Journal of Ma-
chine Learning Research 12(Mar), 1069–1109 (2011)

12. Chen, Y., Machanavajjhala, A., Reiter, J.P., Barrien-
tos, A.F.: Differentially private regression diagnostics.
In: IEEE 16th International Conference on Data Mining
(ICDM) (2016)

13. Ding, B., Kulkarni, J., Yekhanin, S.: Collecting teleme-
try data privately. In: Advances in Neural Information
Processing Systems (NIPS) (2017)

14. Ding, Z., Wang, Y., Zhang, D., Kifer, D.: Free gap in-
formation from the differentially private sparse vector
and noisy max mechanisms. Proc. VLDB Endow. 13(3),
293–306 (2019)

15. Dwork, C.: Differential privacy. In: Proceedings of the
33rd International Conference on Automata, Languages
and Programming - Volume Part II, ICALP’06, pp. 1–12.
Springer-Verlag, Berlin, Heidelberg (2006)

16. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I.,
Naor, M.: Our data, ourselves: Privacy via distributed
noise generation. In: Annual International Conference
on the Theory and Applications of Cryptographic Tech-
niques, pp. 486–503. Springer (2006)

17. Dwork, C., Lei, J.: Differential privacy and robust statis-
tics. In: Proceedings of the forty-first annual ACM sym-
posium on Theory of computing, pp. 371–380. ACM
(2009)

18. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrat-
ing noise to sensitivity in private data analysis. In: The-
ory of cryptography conference, pp. 265–284. Springer
(2006)

19. Dwork, C., Roth, A.: The algorithmic foundations of dif-
ferential privacy. Foundations and Trends in Theoretical
Computer Science 9(3–4), 211–407 (2014)

20. Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan,
A., Talwar, K., Thakurta, A.: Amplification by shuffling:
From local to central differential privacy via anonymity.
In: Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019 (2019)

21. Erlingsson, Ú., Pihur, V., Korolova, A.: Rappor: Ran-
domized aggregatable privacy-preserving ordinal re-
sponse. In: Proceedings of the 2014 ACM SIGSAC con-
ference on computer and communications security, pp.
1054–1067. ACM (2014)

22. Fanaeepour, M., Rubinstein, B.I.P.: Histogramming pri-
vately ever after: Differentially-private data-dependent
error bound optimisation. In: Proceedings of the 34th
International Conference on Data Engineering, ICDE.
IEEE (2018)

23. Geng, Q., Viswanath, P.: The optimal mechanism in dif-
ferential privacy. In: 2014 IEEE International Symposium
on Information Theory (2014)

24. Ghosh, A., Roughgarden, T., Sundararajan, M.: Univer-
sally utility-maximizing privacy mechanisms. In: STOC,
pp. 351–360 (2009)

25. Gumbel, E.: Statistical Theory of Extreme Values and
Some Practical Applications: A Series of Lectures. Ap-
plied mathematics series. U.S. Government Printing Of-
fice (1954)

26. Haney, S., Machanavajjhala, A., Abowd, J.M., Graham,
M., Kutzbach, M., Vilhuber, L.: Utility cost of formal pri-
vacy for releasing national employer-employee statistics.
In: Proceedings of the 2017 ACM International Confer-
ence on Management of Data, SIGMOD ’17 (2017)

27. Hardt, M., Ligett, K., McSherry, F.: A simple and prac-
tical algorithm for differentially private data release. In:
NIPS (2012)

28. Johnson, N., Near, J.P., Song, D.: Towards practical dif-
ferential privacy for sql queries. Proc. VLDB Endow.
11(5) (2018)

29. Kotsogiannis, I., Machanavajjhala, A., Hay, M., Miklau,
G.: Pythia: Data dependent differentially private algo-
rithm selection. In: Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, SIGMOD
’17 (2017)

30. Lehmann, E., Casella, G.: Theory of Point Estimation.
Springer Verlag (1998)

31. Ligett, K., Neel, S., Roth, A., Waggoner, B., Wu, S.Z.:
Accuracy first: Selecting a differential privacy level for
accuracy constrained ERM. In: NIPS (2017)

32. Liu, J., Talwar, K.: Private selection from private candi-
dates. arXiv preprint arXiv:1811.07971 (2018)

33. Lyu, M., Su, D., Li, N.: Understanding the sparse vec-
tor technique for differential privacy. Proceedings of the
VLDB Endowment 10(6), 637–648 (2017)

34. Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J.,
Vilhuber, L.: Privacy: From theory to practice on the
map. In: Proceedings of the IEEE International Confer-
ence on Data Engineering (ICDE), pp. 277–286 (2008)

https://lehd.ces.census.gov/applications/help/onthemap.html#!confidentiality_protection
https://lehd.ces.census.gov/applications/help/onthemap.html#!confidentiality_protection
https://lehd.ces.census.gov/applications/help/onthemap.html#!confidentiality_protection

Free Gap Estimates from the Exponential Mechanism, Sparse Vector, Noisy Max and Related Algorithms 23

35. Maddison, C.J., Tarlow, D., Minka, T.: A∗ sampling. In:
Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence,
K.Q. Weinberger (eds.) Advances in Neural Informa-
tion Processing Systems 27, pp. 3086–3094. Curran As-
sociates, Inc. (2014)

36. McSherry, F., Talwar, K.: Mechanism design via differ-
ential privacy. In: Proceedings of the 48th Annual IEEE
Symposium on Foundations of Computer Science, pp. 94–
103 (2007)

37. McSherry, F.D.: Privacy integrated queries: An exten-
sible platform for privacy-preserving data analysis. In:
Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, pp. 19–30 (2009)

38. Mironov, I.: Rényi differential privacy. In: 30th IEEE
Computer Security Foundations Symposium, CSF (2017)

39. Nocedal, J., Wright, S.J.: Numerical Optimization, sec-
ond edn. Springer, New York, NY, USA (2006)

40. Papernot, N., Song, S., Mironov, I., Raghunathan, A.,
Talwar, K., Úlfar Erlingsson: Scalable private learning
with pate. In: International Conference on Learning Rep-
resentations (ICLR) (2018)

41. Raskhodnikova, S., Smith, A.D.: Lipschitz extensions for
node-private graph statistics and the generalized expo-
nential mechanism. In: FOCS, pp. 495–504. IEEE Com-
puter Society (2016)

42. Tang, J., Korolova, A., Bai, X., Wang, X., Wang, X.:
Privacy loss in apple’s implementation of differential pri-
vacy. In: 3rd Workshop on the Theory and Practice of
Differential Privacy at CCS (2017)

43. Team, A.D.P.: Learning with privacy at scale. Apple
Machine Learning Journal 1(8) (2017)

44. Thakurta, A.G., Smith, A.: Differentially private feature
selection via stability arguments, and the robustness of
the lasso. In: Proceedings of the 26th Annual Conference
on Learning Theory (2013)

45. Wang, Y., Ding, Z., Wang, G., Kifer, D., Zhang, D.: Prov-
ing differential privacy with shadow execution. In: Pro-
ceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI
2019, pp. 655–669. ACM, New York, NY, USA (2019)

46. Zhang, D., Kifer, D.: Lightdp: Towards automating differ-
ential privacy proofs. In: ACM Symposium on Principles
of Programming Languages (POPL), pp. 888–901 (2017)

47. Zhang, D., McKenna, R., Kotsogiannis, I., Hay, M.,
Machanavajjhala, A., Miklau, G.: Ektelo: A framework
for defining differentially-private computations. In: Pro-
ceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD ’18 (2018)

A Proofs

A.1 Proof of Theorem 4 (BLUE)

Proof. Let q1, . . . , qk be the true answers to the k queries se-
lected by Noisy-Top-K-with-Gap algorithm. Let αi be the es-
timate of qi using Laplace mechanism, and gi be the estimate
of the gap between qi and qi+1 from Noisy-Top-K-with-Gap.

Recall that αi = qi + ξi and gi = qi + ηi − qi+1 − ηi+1

where ξi and ηi are independent Laplacian random variables.
Assume without loss of generality that Var(ξi) = σ2 and
Var(ηi) = λσ2. Write in vector notation

q =

q1...
qk

 , ξ =

ξ1...
ξk

 ,η =

η1...
ηk

 ,α =

α1

...
αk

 , g =

 g1
...

gk−1

 ,

then α = q + ξ and g = N(q + η) where

N =

 1 −1

. . .
. . .

1 −1

(k−1)×k

.

Our goal is then to find the best linear unbiased estimate
(BLUE) β of q in terms of α and g. In other words, we need
to find a k×k matrix X and a k× (k−1) matrix Y such that

β = Xα+ Y g (6)

with E(‖β − q‖2) as small as possible. Unbiasedness implies
that ∀q, E(β) = Xq + Y Nq = q. Therefore X + Y N = Ik
and thus

X = Ik − Y N. (7)

Plugging this into (6), we have β = (Ik − Y N)α + Y g =
α− Y (Nα− g). Recall that α = q+ ξ and g = N(q+ η), we
have Nα− g = N(q + ξ − q − η) = N(ξ − η). Thus

β = α− Y N(ξ − η). (8)

Write θ = N(ξ − η), then we have β − q = α − q − Y θ =
ξ− Y θ. Therefore, finding the BLUE is equivalent to solving
the optimization problem Y = arg minΦ where

Φ = E(‖ξ − Y θ‖2) = E((ξ − Y θ)T (ξ − Y θ))

= E(ξT ξ − ξTY θ − θTY T ξ + θTY TY θ)

Taking the partial derivatives of Φ w.r.t Y , we have

∂Φ

∂Y
= E(0− ξθT − ξθT + Y (θθT + θθT))

By setting ∂Φ
∂Y

= 0 we have Y E(θθT) = E(ξθT) thus

Y = E(ξθT)E(θθT)−1. (9)

Recall that (ξθT)ij = ξi(ξj − ξj+1 − ηj + ηj+1), we have

E(ξθT)ij =

E(ξ2i) = Var(ξi) = σ2 i = j

−E(ξ2i) = −Var(ξi) = −σ2 i = j + 1

0 otherwise

Hence

E(ξθT) = σ2

1

−1
. . .

. . . 1
−1

k×(k−1)

= σ2NT .

Similarly, we have

(θθT)ij = (ξi − ξi+1 − ηi + ηi+1)(ξj − ξj+1 − ηj + ηj+1)

= ξiξj + ξi+1ξj+1 − ξiξj+1 − ξi+1ξj

+ ηiηj + ηi+1ηj+1 − ηiηj+1 − ηi+1ηj

− (ξi − ξi+1)(ηj − ηj+1)− (ηi − ηi+1)(ξj − ξj+1)

Thus

E(θθT)ij=

E(ξ2i +ξ2i+1+η2i +η2i+1) = 2(1+λ)σ2 i = j

E(−ξ2i − η2i) = −(1+λ)σ2 i = j+1

E(−ξ2j − η2j) = −(1+λ)σ2 i = j−1

0 otherwise

24 Zeyu Ding1 et al.

Hence

E(θθT) = (1+λ)σ2

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

(k−1)×(k−1)

.

It can be directly computed that E(θθT)−1 is a symmetric
matrix whose lower trianguilar part is

1

k(1+λ)σ2

(k−1) · 1 · · · · · · · · · · · ·
(k−2) · 1 (k−2) · 2 · · · · · · · · ·
(k−3) · 1 (k−3) · 2 (k−3) · 3 · · · · · ·

...
...

...
. . .

...
1 · 1 1 · 2 1 · 3 · · · 1 · (k−1)

i.e., E(θθT)−1

ij = E(θθT)−1
ji = 1

k(1+λ)σ2 · (k − i) · j for all

1 ≤ i ≤ j ≤ k − 1. Therefore, Y = E(ξθT)E(θθT)−1 =

1

k(1+λ)

k−1 k−2 · · · 1
k−1 k−2 · · · 1
k−1 k−2 · · · 1

...
...

. . .
...

k−1 k−2 · · · 1

−

0 0 · · · 0
k 0 · · · 0
k k · · · 0
...

...
. . . 0

k k · · · k

k×(k−1)

Hence

X = Ik − Y N =
1

k(1+λ)

1+kλ 1 · · · 1

1 1+kλ · · · 1
...

...
. . .

...
1 1 · · · 1+kλ

k×k

.

A.2 Proof of Corollary 1

Recall that αi = qi + ξi and gi = qi + ηi − qi+1 − ηi+1

where ξi and ηi are independent Laplacian random variables.
Assume without loss of generality that Var(ξi) = σ2 and
Var(ηi) = λσ2 as before. From the matrices X and Y in
Theorem 4 we have that βi = xi+yi

k(1+λ)
where

xi = α1 + · · ·+ (1 + kλ)αi + · · ·+ αk

= (q1 + ξ1) + · · ·+ (1 + kλ)(qi + ξi) + · · ·+ (qk + ξk)

and

yi = −g1 − 2g2 − · · · − (i− 1)gi−1

+ (k − i)gi + . . .+ 2gk−2 + gk−1

= −(q1 + η1)− (q2 + η2)− · · · − (qi−1 + ηi−1)

+ (k − 1)(qi + ηi)− (qi+1 + ηi+1)− · · · − (qk + ηk).

Therefore

Var(xi) = σ2 + · · ·+ (1 + kλ)2σ2 + · · ·+ σ2

= (k2λ2 + 2kλ+ k)σ2

Var(yi) = λσ2 + · · ·+ (k − 1)2λσ2 + · · ·+ λσ2

= (k2 − k)λσ2

and thus

Var(βi) =
Var(xi) + Var(yi)

k2(1 + λ)2
=

1 + kλ

k + kλ
σ2.

Since Var(αi) = Var(ξi) = σ2, we have

Var(βi)

Var(αi)
=

1 + kλ

k + kλ
.

A.3 Proof of Lemma 3

The density function of ηi−η is fηi−η(z) =
∫∞
−∞ fηi(x)fη(x−

z) dx = ε0ε∗
4

∫∞
−∞ e−ε∗|x|e−ε0|x−z| dx. First consider the case

ε0 6= ε∗. When z ≥ 0, we have

fηi−η(z) =
ε0ε∗

4

∫ ∞
−∞

e−ε∗|x|e−ε0|x−z| dx

=
ε0ε∗

4

(∫ 0

−∞
eε∗xeε0(x−z) dx +∫ z

0

e−ε∗xeε0(x−z) dx+

∫ ∞
z

e−ε∗xe−ε0(x−z) dx
)

=
ε0ε∗

4

(e−ε0z
ε0 + ε∗

+
e−ε∗z − e−ε0z

ε0 − ε∗
+

e−ε∗z

ε0 + ε∗

)
=
ε0ε∗(ε0e−ε∗z − ε∗e−ε0z)

2(ε20 − ε2∗)

Thus by symmetry we have for all z ∈ R

fηi−η(z) =
ε0ε∗(ε0e−ε∗|z| − ε∗e−ε0|z|)

2(ε20 − ε2∗)

and

P(ηi − η ≥ −t) =

∫ ∞
−t

fηi−η(z) dz =

∫ 0

−t
fηi−η(z) dz +

1

2

= 1−
ε20e
−ε∗t − ε2∗e−ε0t

2(ε20 − ε2∗)
.

Now if ε0 = ε∗, then by similar computations we have

fηi−η(z) = (
ε0

4
+
ε20 |z|

4
)e−ε0|z| and

P(ηi − η ≥ −t) = 1− (
2 + ε0t

4
)e−ε0t.

A.4 Proofs in Section 8 (Exp. Mech. with Gap)

We first need the following results.

Lemma 9 Let ε > 0. Let µ : D×R → R be a utility function
of sensitivity ∆µ. Define ν : D → R and its sensitivity ∆ν
as

ν(D) = ln
∑
ω∈R

e
εµ(D,ω)

2∆µ , ∆ν = max
D∼D′

|ν(D)− ν(D′)| .

Then ∆ν , the sensitivity of ν, is at most ε
2

.

Proof of Lemma 9. From the definition of ν we have

|ν(D)− ν(D′)| =

∣∣∣∣∣ln ∑
ω∈R

e
εµ(D,ω)

2∆µ − ln
∑
ω∈R

e
εµ(D′,ω)

2∆µ

∣∣∣∣∣
=

∣∣∣∣∣ln (∑
ω∈R

e
εµ(D,ω)

2∆µ
)
/
(∑
ω∈R

e
εµ(D′,ω)

2∆µ
)∣∣∣∣∣

Free Gap Estimates from the Exponential Mechanism, Sparse Vector, Noisy Max and Related Algorithms 25

By definition of sensitivity, we have

µ(D′, ω)−∆µ ≤ µ(D,ω) ≤ µ(D′, ω) +∆µ, and therefore

e−
ε

2

∑
ω∈R

e
εµ(D′,ω)

2∆µ ≤
∑
ω∈R

e
εµ(D,ω)

2∆µ ≤ e
ε

2

∑
ω∈R

e
εµ(D′,ω)

2∆µ

Thus |ν(D)− ν(D′)| ≤ ε
2

, and hence ∆ν ≤ ε
2

.

Lemma 10 Let f(x;µ) = e−(x−µ)

(1+e−(x−µ))2
be the density of the

logistic distribution, then
∣∣∣ln f(x;µ)

f(x;µ′)

∣∣∣ ≤ |µ− µ′| .
Proof of Lemma 10. Note that

∣∣∣ln f(x;µ)

f(x;µ′)

∣∣∣ =
∣∣∣ln f(x;µ′)

f(x;µ)

∣∣∣ so

without loss of generality, we can assume that µ ≥ µ′ (i.e.,
the parameter in the numerator is ≥ the parameter in the
denominator). From the formula of f we have

f(x;µ)

f(x;µ′)
= eµ−µ

′
·

(
1 + e−xeµ

′

1 + e−xeµ

)2

It is easy to see that eµ ≥ eµ
′

=⇒
1 + e−xeµ

′

1 + e−xeµ
≤ 1.

Also,
1 + e−xeµ

′

1 + e−xeµ
=
eµ
′−µ(eµ−µ

′
+ e−xeµ)

1 + e−xeµ

≥
eµ
′−µ(1 + e−xeµ)

1 + e−xeµ
= eµ

′−µ.

Therefore, eµ
′−µ = eµ−µ

′
· (eµ

′−µ)2 ≤
f(x;µ)

f(x;µ′)
≤ eµ−µ

′
.

Thus
∣∣∣ln f(x;µ)

f(x;µ′)

∣∣∣ ≤ |µ− µ′| .
Theorem 7 Algorithm 7 satisfies ε-differential privacy. Its
output distribution is equivalent to selecting ωs with proba-

bility proportional to exp
(εµ(D,ωs)

2∆µ

)
and then independently

sampling the gap from the Logistic distribution (conditional
on only sampling non-negative values) with location param-

eter εµ(D,ωs)

2∆µ
− ln

∑
ω 6=ωs

exp(εµ(D,ω)

2∆µ
).

Proof of Theorem 7. For ωi ∈ R, let µi = εµ(D,ωi)

2∆µ
and µ′i =

εµ(D′,ωi)

2∆µ
. Let Xi ∼ Gumbel(µi) and X′i ∼ Gumbel(µ′i).

We consider the probability of outputting the selected ωs
with gap γ ≥ 0 when D is the input database:

P (ωs is chosen with gap ≥ γ | D)

=

∫
R

exp(−(z + γ − µs)− e−(z+γ−µs))
∏
i6=s

P (Xi ≤ z) dz

=

∫
R

exp(−(z + γ − µs)− e−(z+γ−µs))
∏
i6=s

e−e
−(z−µi)

dz

=

∫
R
eµs−γ exp(−z − eµs−γe−z)

∏
i6=s

exp(−eµie−z) dz

=

∫
R
eµs−γ exp(−z − eµs−γe−z) exp(−eµ

∗
e−z) dz

(where µ∗ = ln(
∑
i6=s

eµi))

=

∫
R
eµs−γ exp(−z − (eµs−γ + eµ

∗
)e−z) dz

=
eµs−γ

eµs−γ + eµ∗
exp(−(eµs−γ + eµ

∗
)e−z)

∣∣∣+∞
−∞

=
eµs−γ

eµs−γ + eµ∗
=

1

1 + e−(µs−γ−µ∗)

and so

P (ωs is chosen with gap ∈ [0, γ] | D)

= P (ωs is chosen | D)− P (ωs is chosen with gap ≥ γ | D)

=
eµs

eµs + eµ∗
−

1

1 + e−(µs−γ−µ∗)

=
1

1 + e−(µs−µ∗)
−

1

1 + e−(µs−γ−µ∗)

Taking derivatives with respect to γ, we get the probabil-
ity density f(ωs, γ | D) of ωs being chosen with gap equal to
γ:

f(ωs, γ | D) =
d

dγ

(
1

1 + e−(µs−µ∗)
−

1

1 + e−(µs−γ−µ∗)

)
=

e−(µs−γ−µ∗)

(1 + e−(µs−γ−µ∗))2
1[γ≥0]

=
e(µs−γ−µ

∗)

(e(µs−γ−µ∗) + 1)2
1[γ≥0]

=
e−(γ−(µs−µ∗))

(e−(γ−(µs−µ∗)) + 1)2
1[γ≥0] (10)

=
eµs

eµs+eµ∗

(
e−(γ−(µs−µ∗))

(e−(γ−(µs−µ∗)) + 1)2
1[γ≥0]

)/ eµs

eµs+eµ∗

=
eµs

eµs+eµ∗

(
e−(γ−(µs−µ∗))

(e−(γ−(µs−µ∗)) + 1)2
1[γ≥0]

)/ 1

1+e−(µs−µ∗)

(11)

Now, in Equation 11, the term eµs

eµs+eµ
∗ = eµs

eµs+
∑
i6=s e

µi
=

eµs∑
i e

µi
is the probability of selecting ωs.

The term e−(γ−(µs−µ∗))

(e−(γ−(µs−µ∗))+1)2
1[γ≥0] is the density of the

event that a logistic random variable with location µs − µ∗
has value γ and is nonnegative.

Finally, the term 1
1+e−(µs−µ∗) is the probability that a

logistic random variable with location µs−µ∗ is nonnegative.

Thus
(

e−(γ−(µs−µ∗))

(e−(γ−(µs−µ∗))+1)2
1[γ≥0]

)/
1

1+e−(µs−µ∗) is the prob-

ability of a logistic random variable having value γ condi-
tioned on it being nonnegative.

Therefore Equation 11 is the probability of selecting ωs
and independently sampling a nonnegative value γ from the
conditional logistic distribution location parameter µ − µ∗

(i.e., conditional on it only returning nonnegative values).
Now, we apply Lemmas 10 and 9 with the help of Equa-

tion 10 to finish the proof:

| ln
f(ωs, γ | D)

f(ωs, γ | D′)
| ≤ |(µs − µ∗)− (µ′s − µ∗′)|

≤ |µs − µ′s| − | ln
∑
i6=s

eµi − ln
∑
i6=s

eµ
′
i |

≤ ε/2 + ε/2

since µi = εµ(D,i)

2∆µ
.

	1 Introduction
	2 Related Works
	3 Background and Notation
	4 Randomness Alignment
	5 Improving Sparse Vector
	6 Improving Report Noisy Max
	7 SVT/Noisy Max Hybrids with Gap
	8 Improving Exponential Mechanism
	9 Experiments
	10 General Randomness Alignment and Proof of Lemma 1
	11 Conclusions and Future Work
	A Proofs

