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Abstract Existing systems dealing with the increasing vol-
ume of data series cannot guarantee interactive response
times, even for fundamental tasks such as similarity search.
Therefore, it is necessary to develop analytic approaches
that support exploration and decision making by provid-
ing progressive results, before the final and exact ones have
been computed. Prior works lack both efficiency and accu-
racy when applied to large-scale data series collections. We
present and experimentally evaluate ProS, a new probabilis-
tic learning-based method that provides quality guarantees
for progressive Nearest Neighbor (NN) query answering.
We develop our method for k-NN queries and demonstrate
how it can be applied with the two most popular distance
measures, namely, Euclidean and Dynamic Time Warping
(DTW). We provide both initial and progressive estimates of
the final answer that are getting better during the similarity
search, as well suitable stopping criteria for the progressive
queries. Moreover, we describe how this method can be used
in order to develop a progressive algorithm for data series
classification (based on a k-NN classifier), and we addition-
ally propose a method designed specifically for the classifi-
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cation task. Experiments with several and diverse synthetic
and real datasets demonstrate that our prediction methods
constitute the first practical solutions to the problem, sig-
nificantly outperforming competing approaches. This paper
was published in the VLDB Journal (2022).

Keywords Data Series, Similarity Search, k-NN Classifi-
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1 Introduction

Data Series. Data series are ordered sequences of values
measured and recorded from a wide range of human activ-
ities and natural processes [98], such as seismic activity, or
electroencephalography (EEG) signal recordings. The anal-
ysis of such sequences1 is becoming increasingly challeng-
ing as their sizes often grow to multiple terabytes [9, 45, 46,
96].

Data series analysis involves pattern matching [76, 82,
145], anomaly detection [13–15,17–19,26,36,54,54,85,86,
99,101,120,140], frequent pattern mining [53,84,112], clus-
tering [69, 80, 100, 114, 115, 135], and classification [10, 16,
30, 87, 119, 133, 141]. Several algorithms relevant to these
tasks rely on data series similarity. The data-mining com-
munity has proposed several techniques, including many
similarity measures (or distance measure algorithms), for
calculating the distance between two data series [39, 92,
102], as well as corresponding indexing techniques and al-
gorithms [46, 47, 97], in order to address scalability chal-
lenges.

1 If the dimension that imposes the ordering of the sequence is time
then we talk about time series. Though, a series can also be defined over
other measures (angle in radial profiles, frequency in infrared spec-
troscopy, etc.). We use the terms time series, data series, and sequence
interchangeably.
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Fig. 1: Progression of 1-NN distance error (Euclidean dist.)
for 4 example queries (seismic dataset), using iSAX2+ [23].
The points in each curve represent approximate (intermedi-
ate points) or exact answers (last point) given by the algo-
rithm. Lines end when similarity search ends. Thick gray
line represents average trend over a random sample of 100
queries.

Data Series Similarity. We observe that data series simi-
larity is often domain- and visualization-dependent [12,56],
and in many situations, analysts depend on time-consuming
manual analysis processes. For example, neuroscientists
manually inspect the EEG data of their patients, using visual
analysis tools, so as to identify patterns of interest [56, 66].
In such cases, it is important to have techniques that oper-
ate within interactive response times [95], in order to enable
analysts to complete their tasks easily and quickly.

In the past years, several visual analysis tools have com-
bined visualizations with advanced data management and
analytics techniques (e.g., [74, 111]), albeit not targeted to
data series similarity search. Moreover, we note that even
though the data series management community is focusing
on scalability issues, the state-of-the-art indexes currently
used for scalable data series processing [23,72,82,134,146]
are still far from achieving interactive response times [43,
47].

Progressive Results. To allow for interactive response times
when users analyze large data series collections, we need
to consider progressive and iterative visual analytics ap-
proaches [8, 57, 126, 143]. Such approaches provide pro-
gressive answers to users’ requests [52, 93, 123], some-
times based on algorithms that return quick approximate an-
swers [38,50]. Their goal is to support exploration and deci-
sion making by providing progressive results. A progressive
result is an intermediate answer that iteratively converges to
the final, correct solution.

Most of the above techniques consider approximations
of aggregate queries on relational databases, with the excep-
tion of Ciaccia et al. [31, 32], who provide a probabilistic
method for assessing how far an approximate answer is from
the exact answer. Nevertheless, these works do not con-

sider data series that are high-dimensional2. We note that the
framework of Ciaccia et al. [31,32] does not explicitly target
progressive similarity search. Furthermore, the approach has
only been tested on datasets with up to 275K vectors with
dimensionality up to 100, while we are targeting data series
vectors in the order of hundreds of millions (in our experi-
ments we provide results with up to 267M series), and with
dimensionality that can exceed 1000 (in our experiments we
provide results with up to 1280). Our experiments show that
the probabilistic estimates that their methods [31, 32] pro-
vide are inaccurate and cannot support progressive similar-
ity search.

In this study, we demonstrate the importance of provid-
ing progressive similarity search results on large time se-
ries collections. Our results show that there is a gap between
the time the 1st Nearest Neighbour (1-NN) is found and the
time when the search algorithm terminates. In other words,
users often wait without any improvement in their answers.
We further show that high-quality approximate answers are
found very early, e.g., in less than one second, so they can
support highly interactive visual analysis tasks.

Figure 1 presents the approximate results of the iSAX2+
index [23] for four example queries on a 100M data series
collection with seismic data [122], where we show the evo-
lution of the approximation error as a percentage of the exact
1-NN distance. We observe that the algorithm provides ap-
proximate answers within a few milliseconds, and those an-
swers gradually converge to the exact answer, which is the
distance of the query from the 1-NN. Interestingly, the 1-NN
is often found in less than 1 sec (e.g., see yellow line), but it
takes the search algorithm much longer to verify that there
is no better answer and terminate. This finding is consistent
with previously reported results [32, 57].

Several similarity-search algorithms, such as the
iSAX2+ index [23] and the DSTree [134] (the two top per-
formers in terms of data series similarity search [47]), pro-
vide very quick approximate answers. In this paper, we ar-
gue that such algorithms can be used as the basis for sup-
porting progressive similarity search. Unfortunately, these
algorithms do not provide any guarantees about the quality
of their approximate answers, while our goal is to provide
such guarantees.

Proposed Approach. We develop ProS, the first progressive
approach for sequence search and classification with prob-
abilistic quality guarantees, which is scalable to very large
data series collections. Our goal is to predict how much im-
provement is expected when the algorithms are still running.
Communicating this information to users will allow them to
terminate a progressive analysis task early and save time.

2 The dimensionality of a data series is the length, or number of
points in the series [47]. In our context, by high-dimensional, we refer
to series with dimensionality in the order of hundreds-thousands.
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Fig. 2: A query example from the seismic dataset showing the evolution of estimates based on our approach. The thick black
lines show the distance of the current approximate answer. The red error bars represent 95% prediction intervals. The green
line over the predicted distribution of distance errors shows the real error – it is unknown during the search and is shown
here for illustration purposes. Estimates are based on a training set of 100 queries, as well as 100 random witnesses for initial
estimates. We use the iSAX2+ index.

Figure 2 showcases our approach with an example on
real data. An analyst enters a seismic pattern as a query (in
red) and immediately (response times reported at the top of
the figure) receives progressive approximations of its 1-NN
(in blue). In addition to these progressive answers, the sys-
tem also provides estimates of the current distance error: the
blue distributions [110] estimate the absolute distance error;
while the yellow distributions estimate the relative distance
error. Observe that the initial distance estimate is rather un-
certain, but estimates become precise at the early stages of
the search. The system can further communicate a probabil-
ity of whether the current answer is exact and predict when
the exact answer is expected with a certain confidence level.
In this example, the query terminates after 75.2sec, but the
above predictions can give confidence to the user that the
current answer is very close to the 1-NN much earlier (i.e.,
almost one order of magnitude faster). The user can then
decide to stop the query.

The challenge is how to derive such predictions. If we
further inspect Figure 1, we see that similarity search an-
swers progressively improve, but improvements are not rad-
ical. The error of the first approximate answer (when com-
pared to the final exact answer) is on average 16%, which
implies that approximate answers are generally not very far
from the 1-NN. We show that this behavior is more gen-
eral and can be observed across different datasets and differ-
ent similarity search algorithms [134,146]. We further show
that the distance of approximate answers can help us pre-
dict the time that it takes to find the exact answer. Our ap-
proach describes these behaviors through statistical models.
We then use these models to estimate the error of a progres-
sive answer, assess the probability of an early exact answer,
and provide upper bounds for the time needed to find the
k-NN. We also explore query-sensitive models that predict
a probable range of the k-NN distance before the search al-
gorithm starts, and then is progressively improved as new
answers arrive. We further provide reliable stopping criteria

for terminating searches with probabilistic guarantees about
the distance error or the number of exact answers.

In addition to similarity search, we address the prob-
lem of k-NN classification. We show how the early termi-
nation of k-NN similarity search can be employed to lead to
time savings for k-NN classification. Moreover, we propose
probabilistic guarantees for the exact class itself, as well,
which allows us to achieve even larger savings.

We note that earlier approaches [31,32] do not solve the
problem, since they support bounds only for distance errors,
they do not update their estimates during the course of query
answering, and they do not scale with the data size.

Contributions. Our key contributions are as follows.

– We formulate the problem of progressive data series
similarity search, and provide definitions specific to the
context of data series.

– We investigate statistical methods, based on regression
(linear, quantile, and logistic) and multivariate kernel
density estimation, for supporting progressive similarity
search based on a small number (50 - 200) of training
queries. We show how to apply them to derive estimates
for the k-NN distance (distance error), the time to find
the k-NN, and the probability that the progressive k-NN
answer is correct.

– We further develop stopping criteria that can be used to
stop the search long before the normal query execution
ends. These criteria make use of distance error estimates,
probabilities of exact answers, and time bounds for ex-
act answers. We show how our criteria can be applied
with the two most popular data series distance measures,
namely, Euclidean and Dynamic Time Warping (DTW).

– Moreover, we describe how our approach extends to data
series k-NN classification. In particular, we derive prob-
abilistic guarantees and develop stopping criteria for the
exact class of a progressive k-NN classification.

– We perform an extensive experimental evaluation with
several and diverse synthetic and real datasets. The re-
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sults demonstrate that our solutions dominate the previ-
ous approaches, provide accurate probabilistic bounds,
and lead to significant time improvements with well-
behaved guarantees for errors. Source code and datasets
are publicly available [1].

This paper extends our previous work [55] in the follow-
ing directions:

– We extend the original method that was designed for 1-
NN similarity queries to support k-NN queries.

– In addition to the Euclidean distance measure, we now
also study in detail the Dynamic Time Warping (DTW)
distance in the context of progressive data series similar-
ity search.

– Apart from pattern matching using similarity search, we
now propose methods for progressive classification, as
well, which is a very popular analysis task for data series
collections.

– We expand the empirical evaluation of our methods by
adding five new synthetic and real datasets, as well as
several new experiments and discussions.

– We expand the discussions of the related work, which
helps draw a more complete picture of the research area
relevant to our work.

Paper Structure. The rest of this paper is organized as
follows. Section 2 summarizes related work on data series
similarity search and progressive visual analytics, and Sec-
tion 3 presents background terminology. In Section 4, we
define progressive similarly search and introduce the main
concepts for supporting prediction with probabilistic guar-
antees. Then, in Section 5, we describe our methods for es-
timating a k-NN distance before and during the execution of
a similarity search query, and in Section 6 the correspond-
ing methods for k-NN classification. Section 7 presents an
extensive evaluation of all proposed methods. Finally, we
conclude in Section 8, where we also propose directions for
future work.

2 Related Work

Similarity Search. Several measures have been proposed
for computing similarity between data series [39, 92].
Among them, Euclidean Distance (ED) [49], which per-
forms a point-by-point value comparison between two time
series, is one of the most popular. ED can be combined
with data normalization (often z-normalization [59]), in or-
der to consider as similar patterns that may vary in am-
plitude or value offset. In our work, we focus on ED be-
cause it is effective, and leads to efficient solutions for
large datasets [39, 47]. We also extend our approach to
DTW [113], which is very popular in practice, and more

suitable than ED for certain applications, especially in clas-
sification tasks [10].

The human-computer interaction community has fo-
cused on the interactive visual exploration and querying of
data series. These querying approaches are visual, often on
top of line chart visualizations [125], and rely either on the
interactive selection of part of an existing series (e.g., [21]),
or on sketching patterns to search for (e.g., [34, 89]). This
line of work is orthogonal to our approach, which consid-
ers approximate and progressive results from these queries
when interactive search times are not possible.

Optimized and Approximate Similarity Search. The data-
base community has optimized similarity search methods by
using index structures [22, 27, 28, 33, 49, 72, 73, 82, 83, 132,
134,139,146] or fast sequential scans [112]. Recently, Echi-
habi et al. [47,48] compared the efficiency of these methods
under a unified experimental framework, showing that there
is no single best method that outperforms all the rest. In this
study, we focus on the popular centralized solutions, though,
our results naturally extend to parallel and distributed solu-
tions [44, 78, 104–108, 138, 139], since these solutions are
based on the same principles and mechanisms as their cen-
tralized counterparts. Moreover, we focus on (progressive
answers for) exact query answering. Given enough time, all
answers we produce are exact, which is important for sev-
eral applications [98]. In this context, progressive answers
help to speed-up exact queries by stopping execution early,
when it is highly probable that the current progressive an-
swer is the exact one. Note that several data series simi-
larity search methods support approximate query answer-
ing that can produce increasingly more accurate answers as
time goes by [23,51,73,83,134,146], though, none of them
provides quality guarantees on the answers. In this work,
we focus on the iSAX2+ [23] and DSTree [134] methods,
which exhibit superior performance at the similarity search
task [47, 48].

In parallel to our work, Li et al. [79] proposed a machine
learning method, developed on top of inverted-file (IVF [64]
and IMI [7]) and k-NN graph (HNSW [88]) similarity search
techniques, that solves the problem of early termination of
approximate NN queries, while achieving a target recall. In
contrast, our approach employs similarity search techniques
based on data series indices [48], and with a very small train-
ing set (up to 200 training queries in our experiments), pro-
vides guarantees with per-query probabilistic bounds along
different dimensions: on the distance error, on whether the
current answer is the exact one, and on the time needed to
find the exact answer.

k-NN Classification. Similarity-based classification (e.g.,
k-NN Classifier) is a supervised task consisting of assigning
a label to a new item based on the majority vote of its neigh-
bors among the set of labeled training samples. It is used in a
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variety of domains, such as bioinformatics for protein clas-
sification [4], computer vision for object recognition [30],
text mining for web page categorization [75], remote sens-
ing [109], and social media for image classification [40]. We
note that, even though lots of work has been dedicated into
developing data series classification algorithms, the k-NN
classifier remains a strong baseline [10] and the only viable
solution in use-cases with (limited hardware resources and)
very large amounts of data [109].

To the best of our knowledge, the idea of progressive
classification has not been carefully studied before. Previ-
ous work has looked at the problem of classifying images
at multiple resolutions [24], but does not propose a progres-
sive query answering framework, nor does it provide quality
guarantees.

Progressive Visual Analytics. Fekete and Primet [50] pro-
vide a summary of the features of a progressive system;
three of them are particularly relevant to progressive data
series search: (i) progressively improved answers; (ii) feed-
back about the computation state and costs; and (iii) guar-
antees of time and error bounds for progressive and final
results. Systems that support big data visual exploration in-
clude Pangloss [93] that provides quick approximate results
of aggregation queries, Falcon [94] that prefetches data for
brushing and linking actions, and IncVisage [111] that pro-
gressively reveals salient features in heatmap and trendline
visualizations.

Systems that provide progressive results are appreciated
by users due to their quick feedback [8, 143]. Nevertheless,
there are some caveats. Users can be mislead into believ-
ing false patterns [93, 126] with early progressive results.
It is thus important to communicate the progress of on-
going computations [3, 121], including the uncertainty and
convergence of results [3] and guarantees on time and er-
ror bounds [50]. Previous work provides such uncertainty
and guarantees in relational databases and aggregation type
queries [61, 65, 137].

Closer to the context of data series, Ciaccia and Patella
[32] studied similarity search queries over general multi-
dimensional spaces and proposed a probabilistic approach
for computing the uncertainty of partial similarity search re-
sults. We discuss their approach in the following section.

3 Preliminaries and Background

A data series S(p1, p2, ..., p`) is an ordered sequence of
real-valued points with length `. A data series of length `
can also be represented as a single point in an `-dimensional
space. For this reason, the values of a data series are often
called dimensions, and its length ` is called dimensional-
ity. We use S to denote a data series collection (or dataset).
We refer to the size n = |S| of a data series collection as

cardinality. In this paper, we focus on datasets with a very
large number of regularly sampled data series, with no un-
certainty in the values [6, 35, 36, 118, 142], and no missing
values [11, 136], which means that we do not need to en-
code the attribute describing the dimension of the sequence
(e.g., the timestamps when the dimension is time). While
the techniques used in this paper are designed for series of
equal length, our models could be extended to support series
of variable length (e.g., following the ideas proposed by the
ULISSE index [83]).

Distance Measures. A data series distance d(S1, S2) is a
function that measures the dissimilarity of two data series S1

and S2, or alternatively, the dissimilarity of two data series
subsequences. As mentioned in Sec 2, we chose Euclidean
Distance (ED) as a measure due to its popularity and effi-
ciency [39].

Similarity Search Queries. Given a dataset S, a query se-
ries Q, and a distance function d(·, ·), a k-Nearest-Neighbor
(k-NN) query identifies the k series in the dataset with the
smallest distances toQ. The 1st Nearest Neighbor (1-NN) is
the series in the dataset with the smallest distance to Q.

Similarity search can be exact, when it produces answers
that are always correct, or approximate, when there is no
such strict guarantee. A δ-ε-approximate algorithm guaran-
tees that its distance results will have a relative error no more
than ε with a probability of at least δ [47]. We note that only
a couple of approaches [5,32] provide such guarantees. Yet,
their accuracy has never been tested on the range of dimen-
sions and dataset sizes that we examine here.

Similarity Search Methods. Most data series similarity
search techniques [22, 33, 49, 72, 82, 97, 107, 134, 139, 146]
use an index, which enables scalability. The index can offer
quick approximate answers by traversing a single path of the
index structure to visit the single most promising leaf, from
where we select the best-so-far (bsf) answer: this is the can-
didate answer in the leaf that best matches (has the smallest
distance to) the query. The bsf may, or may not be the final,
exact answer: in order to verify, we need to either prune, or
visit all the other leaves of the index. Having a good first bsf
(i.e., close to the exact answer) leads to efficient pruning.

In the general case, approximate data series similarity
search algorithms do not provide guarantees about the qual-
ity of their answers. In our work, we illustrate how we
can efficiently provide such guarantees, with probabilistic
bounds.

We focus on index-based approaches that support both
quick approximate, and slower but exact, similarity search
results. In this work, we adapt the state-of-the-art data series
indexes iSAX2+ [23] and DSTree [134], which have been
shown to outperform the other data series methods in query
answering [47], and we demonstrate that our techniques are
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applicable to both indexes. We provide below a succinct de-
scription of the iSAX2+ and DSTree approaches.

The iSAX2+ [23] index organizes the data in a tree struc-
ture, where the leaf nodes contain the raw data and each in-
ternal node summarizes the data series that belong to its sub-
tree using a representation called Symbolic Aggregate Ap-
proximation (SAX) [81]. SAX transforms a data series using
Piecewise Aggregate Approximation (PAA) [68] into equi-
length segments, where each segment is associated with the
mean value of its points, then represents the mean values
using a discrete set of symbols for a smaller footprint.

DSTree [134] is also a tree-based index that stores raw
data in the leaves and summaries in internal nodes. Contrary
to iSAX2+, DSTree does not support bulkloading, inter-
twines data segmentation with indexing and uses Extended
Adaptive Piecewise Approximation (EAPCA) [134] instead
of SAX. With EAPCA, a data series is segmented using
APCA [25] into varying-length segments, then each seg-
ment is represented with its mean and standard deviation
values.

Since the query answering time depends on the data dis-
tribution [147], and both iSAX2+ and DSTree can produce
unbalanced index trees, we provide below an index-invariant
asymptotic analysis on the lower/upper bounds of the query
runtime. As we consider large on-disk datasets, the query
runtime is I/O bound; thus we express complexity in terms
of I/O [62,67], using the dataset size n, the index leaf thresh-
old th and the disk block size B. Consider an index over a
dataset of size n such that each index leaf contains at most
th series (th � n). We count one disk page access of size
B as one I/O operation (for simplicity, we use B to denote
the number of series that fit in one disk page). Note that both
the iSAX2+ and DSTree indexes fit the entire index tree in-
memory; the leaves point to the raw data on-disk.

Best Case. The best case scenario occurs when one of
the children of the index root is a leaf, containing one data
series. In this case, the approximate search will incur Θ(1)

I/O operation. In the best case, exact search will prune all
other nodes of the index and thus will also incur Θ(1) disk
access.

Worst Case. Approximate search always visits one leaf.
Therefore, the worst case occurs when the leaf is the largest
possible, i.e., it contains th series, in which case approx-
imate search incurs Θ(th/B) I/O operations. For exact
search, the worst case occurs when the algorithm needs to
visit every single leaf of the index. This can happen when
the index tree has n− th+ 1 leaves (i.e., each leaf contains
only one series, except for one leaf with th series), as a re-
sult of each new series insertion causing a leaf split where
only one series ends up in one of the children. Therefore, the
exact search algorithm will access all the leaves, and will in-
cur Θ(N) I/O operations. (Note that this is a pathological
case that would happen when all series are almost identical:

in this case, indexing and similarity search are not useful
anyways.)

Baseline Approach. We briefly describe here the proba-
bilistic approach of Ciaccia et al. [31–33]. Based on Ciaccia
et al. [33], a dataset S (a data series collection in our case)
can be seen as a random sample drawn from a large popu-
lation U of points in a high-dimensional space. Being a ran-
dom sample, a large dataset is expected to be representative
of the original population. Given a query Q, let fQ(x) be
the probability density function that gives the relative like-
lihood that Q’s distance from a random series drawn from
U is equal to x. Likewise, let FQ(·) be its cumulative prob-
ability function. Based on FQ(·), we can derive the cumu-
lative probability function GQ,n(·) for Q’s k-NN distances
in a dataset of size n = |S|. For 1-NN similarity search, we
have:

GQ,n(x) = 1− (1− FQ(x))n (1)

We now have a way to construct estimates for 1-NN dis-
tances. Unfortunately, fQ(·), and thus FQ(·), are not known.
The challenge is how to approximate them from a given
dataset. We discuss two approximation methods:

1. Query-Agnostic Approximation. For high-dimensional
spaces, a large enough sample from the overall distribution
f(·) of pairwise distances in a dataset provides a reason-
able approximation for fQ(·) [33]. This approximation can
then be used to evaluate probabilistic stopping-conditions
by taking sampling sizes between 10% and 1% (for larger
datasets) [32].

2. Query-Sensitive Approximation. The previous method
does not take the query into account. A query-sensitive
approach is based on a training set of reference queries,
called witnesses. Witnesses can be randomly drawn from the
dataset, or selected with the GNAT algorithm [20], which
identifies the nw points that best cover a multidimensional
(metric) space based on an initial random sample of 3nw
points. Given that close objects have similar distance dis-
tributions, Ciaccia et al. [31] approximate fQ(·) by using a
weighted average of the distance distributions of all the wit-
nesses.

The above methods have major limitations. First, since
their 1-NN distance estimates are static, they are less ap-
propriate for progressive similarity search. Second, a good
approximation of FQ(·) does not necessarily lead to a good
approximation of GQ,n(·). This is especially true for large
datasets, as the exponent term n in Equation 1 will inflate
even tiny approximation errors. Note that GQ,n(·) can be
thought of as a scaled version of FQ(·) that zooms in on the
range of the lowest distance values. If this narrow range of
distances is not accurately approximated, the approximation
of GQ,n(·) will also fail. Our own evaluation demonstrates
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Table 1: Table of symbols

Symbol Description
S, Q data series, query series

` length of a data series
S data series collection (or dataset)

n = |S| number of series in S
R(t) progressive answer at time t
cQ(t) class of k-NN classification at time t

k-NN, knn(Q) kth Nearest Neighbor of Q
dQ,R(t), d(Q,R(t)) distance between Q and R(t)

dQ,knn, d(Q, knn(Q)) distance between Q and its k-NN
εQ(t) relative distance error of R(t) from k-NN
εfQ(t) relative family-wise distance error
pQ(t) probability that R(t) is exact (i.e., the k-NN)
pcQ(t) probability that the class cQ(t) is exact

tQ time to find the k-NN
τQ,φ time to find the k-NN with probability 1− φ
τQ,θ,ε time for which εQ(t) < ε with confidence 1− θ

•̂ estimate of •
IQ(t) information at time t

hQ,t(x) probability density function of Q’s distance
from its k-NN, given information IQ(t)

HQ,t(x) cumulative distribution function of Q’s
distance from its k-NN, given IQ(t)

fQ(x) probability density function of Q’s distance
from a random series in S

FQ(x) cumulative distribution function of Q’s
distance from a random series in S

GQ,n(x) cumulative distribution function of Q’s
distance from its k-NN

W set of witness series
nw = |W| number of witnesses in |W|

this problem. Third, they require the calculation of a large
number of distances. Since the approximation of GQ,n(·)
is sensitive to errors in large datasets (see above), a rather
large number of samples is required in order to capture the
frequency of the very small distances.
k-NN Classification. Given a training dataset S with indi-
vidual data series allocated to a class in C = {c1, c2..., cL}
and a new data series Q, a k-NN classifier assigns to Q the
most common class cQ ∈ C among its k nearest neighbors
in the training dataset. As a consequence, k-NN classifica-
tion fully relies on k-NN similarity search, and therefore,
there exists a direct link with all the methods that we de-
scribe below.

4 Progressive Similarity Search

We define progressive similarity search for k-NN queries3.
(Table 1 summarizes the symbols we use in this paper.)

Definition 1 Given a k-NN queryQ, a data series collection
S, and a time quantum q, a progressive similarity-search
algorithm produces results R(t1), R(t2), ..., R(tz) at time
points t1, t2, ..., tz , where ti+1 − ti ≤ q, such that
d(Q,R(ti+1)) ≤ d(Q,R(ti)).

We borrow the quantum q parameter from Fekete and Primet
[50]. It is a user-defined parameter that determines how fre-

3 We define the problem using k-NN, but for simplicity use k = 1
in the rest of this paper. We defer the discussion of the general case to
future work.

quently users require updates about the progress of their
search. Although there is no guarantee that distance results
will improve at every step of the progressive algorithm, the
above definition states that a progressive distance will never
deteriorate. This is an important difference of progressive
similarity search compared to other progressive computa-
tion mechanisms, where results may fluctuate before they
eventually converge, which may lead users to making wrong
decisions based on intermediate results [29, 50, 60].

Clearly, progressive similarity search can be based on
approximate similarity search algorithms – a progressive re-
sult is simply an approximate (best-so-far) answer that is up-
dated over time. A progressive similarity search algorithm is
also exact if the following condition holds:

lim
t→∞

d(Q,R(t)) = d(Q, knn(Q)) (2)

where knn(Q) represents the k-NN of the query series Q.
According to the above condition, the progressive algo-

rithm will always find an exact answer. However, there are
generally no strong guarantees about how long this can take.
Ideally, a progressive similarity search algorithm will find
good answers very fast, e.g., within interactive times, and
will also converge to the exact answer without long delays.
Even so, in the absence of information, users may not be
able to trust a progressive result, no matter how close it is to
the exact answer.

In this paper, we investigate exactly this problem.
Specifically, we seek to provide guarantees about: (i) How
close is the progressive answer to the exact answer? (ii)
What is the probability that the current progressive answer
is the exact answer? (iii) When is the search algorithm ex-
pected to find the exact answer?

4.1 Progressive Distance Estimates

Given a progressive answer R(t) to a k-NN query at time t,
we are interested in knowing how far from the k-NN this an-
swer is. For simplicity, we will denote the k-NN distance to
the query as dQ,knn ≡ d(Q, knn(Q)) and the distance be-
tween R(t) and the query as dQ,R(t) ≡ d(Q,R(t)). Then,
the relative distance error is εQ(t) =

dQ,R(t)
dQ,knn(t) − 1. Given

that this error is not known, our goal is to find an estimate
ε̂Q(t). However, finding an estimate for the relative error is
not any simpler than finding an estimate d̂Q,knn(t) of the
actual k-NN distance. We concentrate on this latter quan-
tity for our analysis below. Though, since dQ,R(t) is known,
deriving the distance error estimate ε̂Q(t) from the k-NN
distance estimate d̂Q,knn(t) is straightforward:

ε̂Q(t) =
dQ,R(t)

d̂Q,knn(t)
− 1 (3)

We represent progressive similarity-search estimates as
probability distribution functions.
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Definition 2 Given a k-NN queryQ, a data series collection
S, and a progressive similarity-search algorithm, a progres-
sive k-NN distance estimate d̂Q,knn(t) of the k-NN distance
at time t is a probability density function:

hQ,t(x) = Pr{dQ,knn = x | IQ(t)} (4)

This equation gives the conditional probability that dQ,knn
is equal to x, given information IQ(t).

We expect that progressive estimates will converge to
dQ,knn (i.e., ε̂Q(t) will converge to zero). Evidently, the
quality of an estimate at time t depends on the information
IQ(t) that is available at this moment. In Section 5, we in-
vestigate different types of information we can use for this.

Given the probability density function in Equation 4, we
can derive a point estimate that gives the expected k-NN
distance, or an interval estimate in the form of a prediction
interval (PI). Like a confidence interval, a prediction inter-
val is associated with a confidence level. Given a confidence
level 1 − θ, we expect that approximately (1 − θ) × 100%

of the prediction intervals we construct will include the true
k-NN distance. Note that although a confidence level can be
informally assumed as a probability (i.e., what is the likeli-
hood that the interval contains the true k-NN distance?), this
assumption may or may not be strictly correct. Our experi-
ments evaluate the frequentist behavior of such intervals.

To construct a prediction interval with confidence level
1− θ over a density distribution function hQ,t(·), we derive
the cumulative distribution function:

HQ,t(x) = Pr{dQ,knn ≤ x | IQ(t)} (5)

From this, we take the θ/2 and (1−θ/2) quantiles that define
the limits of the interval.

4.2 Guarantees for Exact Answers

Users may also need guarantees about the exact k-NN. We
investigate two types of probabilistic guarantees for exact
answers. First, at any moment t of the progressive search,
we assess the probability pQ(t) that the exact answer has
been found, given information IQ(t):

pQ(t) = Pr{dQ,R(t) = dQ,knn | IQ(t)} (6)

Second, we estimate the time tQ it takes to find the ex-
act k-NN. As we already discussed, this time can be signif-
icantly faster than the time needed to complete the search.
Let t̂Q be its estimate. We express it as a probability density
function:

rQ,t(x) = Pr{tQ = x | IQ(t)} (7)

which expresses the conditional probability that tQ is equal
to x, given information IQ(t). From this, we derive its cu-
mulative distribution function RQ(·). Then, given a confi-
dence level 1 − φ, we can find a probabilistic upper bound
τQ,φ such thatRQ(τQ,φ) = 1−φ; φ represents the probabil-
ity that the progressive answer at time τQ,φ is not the exact,
i.e., the proportion of bounds that fail to include the exact
answer.

4.3 Stopping Criteria

Based on the provided estimates, users may decide to trust
the current progressive result and possibly stop their search.
Which stopping criterion to use is not straightforward and
depends on whether users prioritize guarantees about the k-
NN distance, about the relative error of the current progres-
sive result, or about the exact answer itself.

An analyst may choose to stop query execution as soon
as the prediction interval of the k-NN distance lies above a
low threshold value. Unfortunately, this strategy raises some
concerns. Previous work on progressive visualization [90]
discusses the problem of confirmation bias, where an an-
alyst may use incomplete results to confirm a “preferred
hypothesis”. This is a well-studied problem in sequential
analysis [129]. It relates to the multiple-comparisons prob-
lem [144] and is known to increase the probability of a Type
I error (false positives). We evaluate how such multiple se-
quential tests affect the accuracy of our methods, but dis-
courage their use as stopping criteria, and instead propose
the following three.

A first approach is to make use of the relative distance
error estimate ε̂Q(t) (see Eq. 3). For instance, the analyst
may decide to stop the search when the upper bound of the
error’s interval is below a threshold ε = 1%. An error-based
stopping criterion offers several benefits: (i) the choice of a
threshold does not depend on the dataset, so its interpreta-
tion is easier; (ii) this criterion does not inflate Type I errors
as long as the threshold ε is fixed in advance; (iii) the error
εQ(t) monotonically converges to zero (the same holds for
the bounds of its estimates), thus there is a unique point in
time τQ,θ,ε at which the bound of the estimated error reaches
ε, where 1−θ is our confidence level (here, θ determines the
proportion of times for which the relative distance error of
our result will be greater than ε).

A second approach is to use the τQ,φ bound (see Sec-
tion 4.2) to stop the search, which provides guarantees about
the proportion of exact answers, rather than the distance er-
ror. It also depends on a single parameter, rather than two.
To avoid the multiple-comparisons problem, we provide a
single estimate of this bound at the very beginning of the
search, allowing users to plan ahead their stopping strategy.

A third approach is to bound the probability pQ(t).
Specifically, we stop the search when this probability ex-
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ceeds a level 1 − φ, where φ here represents the probabil-
ity that the current progressive answer is not the exact. We
experimentally assess the tradeoffs of these three stopping
criteria.

4.4 Family-wise Error in Progressive k-NN Queries

A k-NN similarity search query aims to identify k data series
as answers (not simply the k-th NN of Q). In most practical
scenarios, an analyst is thus interested in stopping criteria
that apply to all the progressive answers of a k-NN query.

We observe that similarity search algorithms always find
the exact i-NN to a query before its exact (i+1)-NN. There-
fore, our second (τQ,φ) and third (pQ(t)) stopping criteria
naturally apply to all k answers of a k-NN query. If the k-th
answer is exact when the search stops, then we also know
that answers of a rank lower are also exact.

In contrast, our first criterion on the relative distance er-
ror is optimistic. Stopping when the relative distance error
εQ(t) of the k-th answer is lower than ε does not provide
any guarantee about the relative distance error of lower-rank
answers. To deal with this problem, we focus instead on the
relative family-wise distance error, defined as follows:

εfQ(t) =
dQ,R(t)

dfQ,knn(t)
− 1 (8)

where the distance term dfQ,knn(t) ≤ dQ,knn represents a
k-NN distance that is corrected for the family-wide error at
time t, such that:

dfQ,knn(t) =
dQ,knn

max
1≤i≤k

{dQ,Ri(t)/dQ,inn}
(9)

Our goal now is to find an estimate d̂fQ,knn(t).

5 Prediction Methods

We now present our approach, called ProS. We use 1 syn-
thetic and 3 real datasets (i.e., seismic, SALD, and deep1B)
from past studies [47, 146] to showcase our methods. We
further explain and use these datasets in Section 7 (see Ta-
ble 2 for a summary of their characteristics) to evaluate our
methods.

Our goal is to support reliable prediction with small
training sets of queries. We are also interested in express-
ing the uncertainty of our predictions with well-controlled
bounds, as discussed in the previous section. We thus focus
on statistical models that capture a small number of generic
relationships in the data. We first examine methods that as-
sume constant information (IQ(t) = IQ). They are useful
for providing an initial estimate before the search starts. We
distinguish between query-sensitive methods, which take

into account the query series Q, and query-agnostic meth-
ods, which provide a common estimate irrespective of Q
(IQ = I). Inspired by Ciacca et al. [31, 33], these meth-
ods serve as baselines to compare to a new set of progres-
sive methods. Our progressive methods update information
during the execution of a search, resulting in considerably
improved predictions.

To simplify our analysis, we focus on 1-NN similarity
search. At the end of the section, we explain how our analy-
sis naturally extends to k-NN search.

5.1 Initial 1-NN Distance Estimates

We first concentrate on how to approximate the distribution
function hQ,0(x) (see Equation 4), thus provide estimates
before similarity search starts.

As Ciaccia et al. [31], we rely on witnesses, which are
“training” query series that are randomly sampled from a
dataset. Unlike their approach, however, we do not use the
distribution of raw pairwise distances FQ(·). Instead, for
each witness, we execute 1-NN similarity queries with a fast
state-of-the-art algorithm, such as iSAX2+ [23], or DSTree
[134]. This allows us to derive directly the distribution of 1-
NN distances and predict the 1-NN distance of new queries.

This approach has two main benefits. First, we use the
tree structure of the above algorithms to prune the search
space and reduce pre-calculation costs. Rather than calcu-
lating a large number of pairwise distances, we focus on the
distribution of 1-NN distances with fewer distance calcula-
tions. Second, we achieve reliable and high-quality approx-
imation with a relatively small number of training queries
(≈ 100 − 200) independently of the dataset size (we report
and discuss these results in Section 7).

Query-Agnostic Model (Baseline). Let W = {Wj |j =

1..nw} be a set of nw = |W| witnesses randomly drawn
from the dataset. We execute a 1-NN similarity search for
each witness and build their 1-NN distance distribution. We
then use this distribution to approximate the overall (query-
independent) distribution of 1-NN distances gn(·) and its
cumulative probability function Gn(·). This method is com-
parable to Ciaccia et al. [33] query-agnostic approximation
method and serves as a baseline.

Query-Sensitive Model. Intuitively, the smaller the dis-
tance between the query and a witness, the better the 1-NN
of this witness predicts the 1-NN of the query. We capture
this relationship through a random variable that expresses
the weighted sum of the 1-NN distance of all nw witnesses:

dwQ =

nw∑
j=1

(aQ,j · dWi,1nn) (10)

Similar to Ciacca et al. [31], we use weights aQ,j that de-
crease exponentially to the distance between the query Q
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Fig. 3: Linear models (red lines) predicting the real 1-NN
distance dQ,1nn based on the weighted witness 1-NN dis-
tance dwQ for exp = 5. All models are based on nw = 200

random witnesses and nr = 100 queries, and tested on 500
queries (in orange). The blue dashed lines show the range of
their 95% prediction intervals.

and the jth witness:

aQ,j =
d(Q,Wj)

−exp

nw∑
i=1

d(Q,Wi)−exp
(11)

Our tests have shown optimal results for exponents exp that
are close to 5. For simplicity, we use exp = 5 for all our
analyses. Additional tests have shown that the fit of the
model becomes consistently worse if witnesses are selected
with the GNAT algorithm [20, 31] (we omit these results
for brevity). Therefore, we only examine random witnesses
here.

We use dwQ as predictor of the query’s real 1-NN dis-
tance dQ,1nn and base our analysis on the following linear
model:

dQ,1nn = β · dwQ + c (12)

Figure 3 shows the parameters of instances of this model
for the four datasets of Table 2. We conduct linear regres-
sions by assuming that the distribution of residuals is normal
(Gaussian) and has equal variance.

Since the model parameters (β and c) and the variance
are dataset specific, they have to be trained for each indi-
vidual dataset. To train the model, we use an additional ran-
dom sample of nr training queries that is different from the
sample of witnesses. Based on the distance of each training
query Qi from the witnesses, we calculate dwQi (see Equa-
tion 10). We also run similarity search to find its 1-NN dis-
tance dQi,1nn. We then use all pairs (dwQi , dQi,1nn), where
i = 1..nr, to build the model. The approach allows us to
construct both point estimates (see Equation 10) and predic-
tion intervals (see Figure 3) that provide probabilistic guar-
antees about the range of the 1-NN distance.

5.2 Progressive 1-NN Distance Estimates

So far, we have focused on initial 1-NN distance esti-
mates. Those do not consider any information about the
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Fig. 4: Linear models (red solid lines) predicting the real 1-
NN distance dQ,1nn based on the first approximate answer
distance of iSAX2+ and DSTree. All models are trained with
200 queries. The 500 (orange) points in each plot are queries
out of the training set. Green (solid) lines (y = x) are hard
upper bounds, set by the approximate answer. Blue lines
show the range of one-sided 95% prediction intervals that
form probabilistic lower bounds.

partial results of a progressive similarity-search algorithm.
Now, given Definition 1, the distance of a progressive result
dQ,R(ti) will never deteriorate and thus can act as an upper
bound for the real 1-NN distance. The challenge is how to
provide a probabilistic lower bound that is larger than zero.

Our approach relies on the observation that the approxi-
mate answers of index-based algorithms are generally close
to the exact answers. Figure 4 illustrates the relationship be-
tween the true 1-NN distance and the distance of the first
progressive (approximate) answer returned by iSAX2+ [23].
(The results for the DSTree index [134] that follows a com-
pletely different design from iSAX2+ are very similar; we
omit them for brevity). We observe a strong linear relation-
ship for both algorithms, especially for the DSTree index.
We can express it with a linear model and then derive proba-
bilistic bounds in the form of prediction intervals. As shown
in Figure 4, the approach is particularly useful for construct-
ing lower bounds. Those are clearly greater than zero and
provide valuable information about the extent to which a
progressive answer can be improved or not.

Since progressive answers improve over time and tend
to converge to the 1-NN distance, we could take such in-
formation into account to provide tighter estimates as sim-
ilarity search progresses. To this end, we examine different
progressive prediction methods. They are all based on the
use of a dataset of nr training queries that includes infor-
mation about all progressive answers of a similarity search
algorithm to each query, including a timestamp and its dis-
tance.

Linear Regression. Let t1, t2, ..., tm be specific moments of
interest (e.g., 100ms, 1s, 3s, and 5s). Given ti, we can build
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a time-specific linear model:

dQ,1nn = βti · dQ,R(ti) + cti (13)

where dQ,R(ti) is Q’s distance from the progressive answer
at time ti. As an advantage, this method produces models
that are well adapted to each time of interest. On the down-
side, it requires the pre-specification of a discrete set of time
points, which may not be desirable for certain application
scenarios. However, building such models from an exist-
ing training dataset is inexpensive, so reconfiguring the mo-
ments of interest at use time is not a problem.

The above model can be enhanced with an additional
term β · dwQ (see Equation 10) that takes witness informa-
tion into account. However, this term results in no measur-
able improvements in practice, so we do not discuss it fur-
ther.

Kernel Density Estimation. A main strength of the previ-
ous method is its simplicity. However, linearity is a strong
assumption that may not always hold. Other assumption vi-
olations, such as heteroscedasticity, can limit the accuracy
of linear regression models. As alternatives, we investigate
non-parametric methods that approximate the density distri-
bution function hQ,t(·) based on multivariate kernel density
estimation [41, 130].

As for linear models, we rely on the functional relation-
ship between progressive and final answers. We represent
this relationship as a 3-dimensional density probability func-
tion kQ(x, y, t) that expresses the probability that the 1-NN
distance from Q is x, given that Q’s distance from the pro-
gressive answer at time t is y. From this function, we derive
hQ,t(x) by setting y = dQ,R(t).

We examine two approaches for constructing the func-
tion kQ(·, ·, ·). As for linear models, we specify discrete mo-
ments of interest ti and then use bivariate kernel density es-
timation [131] to construct an individual density probability
function kQ(·, ·, ti). Alternatively, we construct a common
density probability function by using 3-variate kernel den-
sity estimation. The advantage of this method is that it can
predict the 1-NN distance at any point in time. Nevertheless,
this comes with a cost in terms of precision (see Section 7).

The accuracy of kernel density estimation highly de-
pends on the method that one uses to smooth out the con-
tribution of points (2D or 3D) in a training sample. We use
gaussian kernels, but for each estimation approach, we se-
lect bandwidths with a different technique. We found that
the plug-in selector of Wand and Jones [131] works best for
our bivariate approach, while the smoothed cross-validation
technique [41] works best for our 3-variate approach.

Measuring Time. So far, we have based our analysis on
time. Nevertheless, time (expressed in seconds) is not a re-
liable measure for training and applying models in practice.

The reason is that time largely depends on the available com-
putation power, which can vary greatly across different hard-
ware settings. Our solution is to use alternative measures
that capture the progress of computation without being af-
fected by hardware and computation loads. One can use ei-
ther the number of series comparisons (i.e., the number of
distance calculations), or the number of visited leaves. Both
measures can be easily extracted from the iSAX2+ [23],
the DSTree [134], or other tree-based similarity-search algo-
rithms. Our analyses in this paper are based on the number
of visited leaves (Leaves Visited). We should note that for
a given number of visited leaves, we only consider a single
approximate answer, which is the best-so-far answer after
traversing the last leaf.

5.3 Estimates for Exact Answers

We investigate two types of estimates for exact answers
(see Section 4.2): (i) progressive estimates of the probability
pQ(t) that the 1-NN has been found; and (ii) query-sensitive
estimates of the time tQ that it takes to find the exact answer.
We base our estimations on the observation that queries with
larger 1-NN distances tend to be harder, i.e., it takes longer
to find their 1-NN. Now, since approximate distances are
good predictors of their exact answers (see previous subsec-
tion), we can also use them as predictors of pQ(t) and tQ.

Probability Estimation. Let t1, t2, ..., tm be moments of in-
terest, and let dQ,R(ti) be the distance of the progressive re-
sult at time ti. We use logistic regression to model the prob-
ability pQ(ti) as follows:

ln
pQ(ti)

1− pQ(ti)
= βti · dQ,R(ti) + cti (14)

Again, we can use the number of visited leaves to represent
time. Figure 5 presents an example for the seismic dataset,
where we model the probability of exact answers for four
points in time (when 64, 256, 1024, and 4096 leaves are vis-
ited). We observe that over time, the curve moves to the right
range of distances, and thus, probabilities increase.

Note that we have considered other predictors as well
(such as the time passed since the last progressive answer),
but they did not offer any predictive value.

Time Bound Estimation. As we explained in Section 4.3,
we provide a single estimate for tQ at the very beginning
of the search. Figure 6 (top) illustrates the relationship be-
tween the distance of the first approximate answer and the
number of leaves (in logarithmic scale) at which the 1-NN
is found. We observe that the correlation between the two
variables is rather weak. However, we can still extract mean-
ingful query-sensitive upper bounds, shown as green lines.
To construct such bounds, we use quantile regression [71].
This method allows us to directly estimate the 1−φ quantile



12 Karima Echihabi et al.

5 10 15 20

.0
.2

.4
.6

.8
1.

0

5 10 15 20

.0
.2

.4
.6

.8
1.

0

5 10 15 20

.0
.2

.4
.6

.8
1.

0

5 10 15 20

.0
.2

.4
.6

.8
1.

0
5 10 15 20

.0
.2

.4
.6

.8
1.

0

5 10 15 20

.0
.2

.4
.6

.8
1.

0

5 10 15 20

.0
.2

.4
.6

.8
1.

0

5 10 15 20
.0

.2
.4

.6
.8

1.
0

P
ro

ba
bi

lit
y 

(is
 e

xa
ct

) 64 leaves 256 leaves 1024 leaves 4096 leaves

Distance of Current Progressive Answer (iSAX2+)

P
ro

ba
bi

lit
y 

(is
 e

xa
ct

)

10-NN 10-NN 10-NN 10-NN

 (1
-N

N
)

 (5
0-

N
N

)

Fig. 5: Estimating the probability of exact answers with 100
training queries based on the current 1-NN (top) and 50-NN
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Fig. 6: Upper time bounds (φ = .05) for 1-NN (top) and
50-NN (bottom) answers. Bounds (in green) are constructed
from 100 random queries through quantile regression, where
we estimate the 95% quantile of the logarithm of leaf visits
as a function of the distance of the 1st approximate answer.

of the time needed to find the exact answer, i.e., derive the
upper bound τQ,φ. As a shortcoming, the accuracy of quan-
tile regression is sensitive in small samples. Nevertheless,
we show that 100 training queries are generally enough to
ensure high-quality results.

Example. Figure 2 presents an example that illustrates how
the above methods can help users assess how far from the
1-NN their current answers are. We use a variation of pi-
rate plots [110] to visualize the 1-NN distance estimate
d̂Q,1nn(t) and the relative error estimate ε̂Q(t) by showing
their probability density distribution and their 95% predic-
tion interval. We also communicate the probability pQ(ti)

and a probabilistic bound τQ,φ (φ = .05) after the first vis-
ited leaf. The initial distance estimate based on witnesses
is rather wide. However, prediction intervals become tighter

as soon as search starts. In particular, the upper bound of
the error estimate drops below 10% within 1.1sec, while the
probability that the current answer is exact is estimated as
98% after 15.7sec (total query execution time for this query
is 75.2sec). In this example, the 1-NN is found in 3.8sec.

5.4 Progressive Estimates for k-NN Similarity Search

The predictions methods presented above naturally extend
to the general case of k-NN search. As Figure 5 shows, ex-
act answers for larger k ranks are found later in time. Still,
distance is a good predictor of whether a progressive an-
swer is exact. We observe that at earlier steps, uncertainty is
higher for large k ranks, but as more leaves are visited, the
prediction quality of the logistic model improves.

Figure 5 (bottom) presents how upper time-bound esti-
mation extends to 50-NN. We can still derive useful bounds
based on the distance of the very first approximate answer.
Interestingly, the correlation between this distance and the
logarithm of visited leaves is stronger now. We could even-
tually use this behavior to construct meaningful lower time
bounds for k-NN search.

For k-NN search, we evaluate the family-wise error of
distance estimates ε̂fQ(t) based on Equation 8. We apply the
same prediction methods (see Section 5.2) but our depen-
dent variable is now dfQ,knn (rather than dQ,1nn). We use
Equation 9 to calculate dfQ,knn for our training dataset.

5.5 Dynamic Time Warping (DTW)

The data series indexes we employ, i.e., iSAX2+ and
DSTree, originally supported only the Euclidean distance.
We modified their query answering algorithms to provide
support for DTW based on the ideas proposed in [70].

First, we find U and L, the upper and lower envelopes
that bound the query Q according to the Sakoe-Shiba con-
straint [117] using the algorithm proposed in [77]. Then, for
each index, we calculate Û and L̂ the summarizations of U
and L, and we derive MinDist(Q,N), the lower bound-
ing distance between the summarized envelopes Û and L̂ of
the query Q and an index node N . Note that we probe the
index using the summarized envelopes Û and L̂ rather than
the query Q itself. The distance MinDist(Q,N) is guaran-
teed to lower bound LBKeogh4, which itself lower bounds
DTW .

LBKeogh(Q,C) =

√√√√√ n∑
i=1

(ci − Ui)2 if ci > Ui

(Li − ci)2 if ci < Li

0 otherwise

(15)

4 We note that other lower bounds for DTW can be used as well,
such as LB Improved [77]. Even though LB Improved can produce
tighter bounds, previous experiments have resulted in higher query an-
swering times due to the additional computations it involves [105].
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We do not calculate LBKeogh directly because it is also
computationally expensive. As Equation 15 and Figure 7a
indicate, it requires calculating distances between the indi-
vidual n high-dimensional points of the candidate C and the
envelopes U and L (if some points of the candidate fall in-
side the query envelope, then their distance is zero). On the
other hand, MinDist(Q,N) is faster to compute because
it consists of the distances between the segments of a node
N and the segments of the summarized envelopes. We use
C̄, Q̄, Û and L̂ to refer to the summaries of C, Q, L and U
respectively. The specific representation used for the sum-
maries can be inferred from the context.
iSAX2+. Since iSAX2+ is based on PAA, we use the
same formulas as those in [70] to derive Û and L̂ (Equa-
tions 16-17), the special piecewise aggregate approxima-
tions of U and L for the ith segment of Q̄, and calculate
MinDistPAA(Q,N) (Equation 18). We consider a PAA
summarization using M segments.

Ûi = max(U( nM )(i−1)+1, . . . , U( nM )(i)) (16)

L̂i = max(L( nM )(i−1)+1, . . . , L( nM )(i)) (17)

LBPAA(Q, C̄) =

√
n

M

√√√√ M∑
i=1

{
(c̄i − Ûi)2 if c̄i > Ûi
(L̂i − c̄i)2 if c̄i < L̂i
0 otherwise

(18)

MinDistPAA(Q,N) =

√
n

M

√√√√ M∑
i=1

{
(li − Ûi)2 if li > Ûi
(L̂i − hi)2 if hi < L̂i
0 otherwise

(19)

Such that li and hi are the lower and higher endpoints of
the major diagonal ofR, the smallest rectangle that spatially
contains the ith segment of all data series in N . Figure 7b
illustrates the LBPAA distance between Q and C̄.

DSTree. For DSTree, we propose new upper and lower
bounding envelopes, Û and L̂, and a new lower bounding
distance MinDistEAPCA(Q,N). Given an EAPCA repre-
sentation with M segments and mi is the right endpoint of
segment i (m1 < ... < mi < ... < mM = n), the upper
and lower EAPCA envelopes of segment i of Q̄ are defined
as follows:

Ûi = max(Umi−1+1, Umi−1+2, . . . , Umi) (20)

L̂i = min(Lmi−1+1, Lmi−1+2, . . . , Lmi) (21)

The EAPCA lower bounding distance between Q and C̄
is defined as:

LBEAPCA(Q, C̄) =

√√√√ M∑
i=1

(mi −mi−1) ai (22)

Where:

ai =

(c̄i − Ûi)2 if c̄i > Ûi

(L̂i − c̄i)2 if c̄i < L̂i

0 otherwise

(23)

Figure 7c shows the LBEAPCA distance betweenQ and
C̄. The proof that LBEAPCA(Q, C̄) ≤ LB Keogh(Q,C)

is a straightforward extension of the proof in Proposition 1
in [70].

Consider an EAPCA index node N containing a
set of data series Y1, . . . , Yl with synopsis Z =

(z1, z2, . . . , zM ) where zi = (µmini , µmaxi ) where µmini =

min(µY1
i , . . . , µ

Yl
i ) and µmaxi = max(µY1

i , . . . , µ
Yl
i ). Then,

the lower bounding distance between Q and node N is de-
fined as:

MinDistEAPCA(Q,N) =

√√√√ M∑
i=1

(ri − ri−1)(LBi) (24)

Such that

LBi =

(µmini − Ûi)2 if µmini > Ûi

(L̂i − µmaxi )2 if µmaxi < L̂i

0 otherwise

(25)

The proof that MinDistEAPCA(Q,N) ≤
LBEAPCA(Q, Ȳj) ∀ 1 ≤ j ≤ l is a straightforward exten-
sion of the proof in Theorem 2 in [134].

Note that although the DSTree exploits the standard de-
viation of the points in each segment to produce a tighter
lower bound between a query Q and a node N , we only use
the mean. The reason is that the standard deviations of the
points belonging to each segment of the EAPCA upper and
lower envelopes are zero, and thus cannot contribute to the
lower bound.

6 Progressive k-NN Classification

For k-NN classification, we can use again a progressive sim-
ilarity search algorithm. At any given time, we take its pro-
gressive answer and use it to infer the progressive class.
However, since we are now interested in the class of the data
series that serves as query, the notion of “approximation”
is not relevant anymore – the class can be either correct or
wrong. A progressive answer in this case is only interesting
if it returns the correct class, or alternatively, if it returns the
same class (correct or not) as the non-progressive algorithm,
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Fig. 7: Envelopes U and L of query Q with warping size 10%. Each dark gray vertical line contributes to the lower bounding
distance between Q and a candidate answer C. Distances are calculated by taking the square root of the sum of the squares
of the lengths of the gray lines. In the case of LBPAA and LBEAPCA, the squares of the lengths are scaled by the number
of points in each segment.

i.e., the final, answer. In this case, we say that the class is the
exact class.

Our goal is now to provide guarantees for this class,
rather than for the distance of the progressive answer. More
formally, given a data series Q as query, we run again a pro-
gressive k-NN search. At each time t, we take the most com-
mon class cQ(t) among the progressive k nearest neighbors
of Q. We then assess the probability pcQ(t) that the class cQ
of the exact answer is found, where as for k-NN similarity
search, we use information IQ(t):

pcQ(t) = Pr{cQ(t) ≡ cQ | IQ(t)} (26)

Extending our ProS approach, we describe two solutions on
how to either bound, or directly estimate this quantity.

6.1 Bounding the Probability of Exact Class

We can easily infer that pcQ(t) ≥ pQ(t) (see Equation 14),
i.e., the probability that the current progressive class is exact
is at least as high as the probability that the current progres-
sive k-NN is exact. In other words, although the similarity
search algorithm may have not yet found the exact answer to
the k-NN similarity search query, the class can be the exact.

A direct implication of the above is that the exact-answer
probabilistic guarantees that we presented in Section 4.2
can be also considered as guarantees for the exact class.
Likewise, the probability and time-bound stopping criteria
presented in Section 4.3 can also apply as stopping criteria
for k-NN classification. Nevertheless, they are stricter, more
conservative and result in reduced time savings. Instead, we
update the stopping criteria by simply replacing the param-
eter φ by φc, where φc represents the probability that the
current progressive class is not the exact.

6.2 Estimating the Probability of Exact Class

We consider again m moments of interest t1, t2, ..., tm. At
each moment ti, we estimate pcQ(ti) by using three predic-
tors: (i) the distance dQ,R(ti) of the k-NN, (ii) the current

class cQ(ti), and (iii) the extent to which the current k an-
swers agree on this class. The latter is quantified as follows:

a(ti) =
ncQ(ti) − 1

k − 1
(27)

where ncQ(ti) is the number of occurrences of cQ(ti) among
the k nearest neighbors returned by the progressive search
(k > 1). We can the use these predictors to build a linear
logistic regression model as in Equation 14.

Note that not all three predictors are always relevant. For
example, if the number of available classes is large, informa-
tion about the current class has no predictive value unless we
use a much larger set of training queries. We have tested ad-
ditional variables, such as the ones that evaluate the stability
of cQ(ti) over time, but we did not find them to be good
predictors.

7 Experimental Evaluation

Environment. All experiments were run on a Dell T630
rack server with two Intel Xeon E5-2643 v4 3.4Ghz CPUs,
512GB of RAM, and 3.6TB (2 x 1.8TB) HDD in RAID0.

Implementation. Our estimation methods were imple-
mented in R. We use R’s lm function to carry our linear re-
gression, the ks library [42] for multivariate kernel density
estimation, and the quantreg library [2] for quantile regres-
sion. We use a grid of 200 × 200 points to approximate a
2D density distribution and a grid of 60× 180× 180 points
to approximate a 3D density distribution. Source code and
datasets are in [1].

Datasets. For the evaluation of the progressive similarity
search techniques, we used 1 synthetic and 3 real datasets
from past studies [47, 146], as well as an additional real
dataset, PhysioNet [58]. All datasets are 100GB in size with
cardinalities and lengths reported in Table 2. For our experi-
ments with DTW, however, we used a smaller subset of these
datasets (10GB in size), since running them on the original
datasets was extremely expensive.
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Table 2: Experimental datasets for similarity search.

Name Description Num of series Series length
1. synthetic random walks 100M/10M 256
2. seismic [122] seismic records 100M/10M 256
3. SALD [127] MRI data 200M/20M 128
4. deep1B [128] image descriptors 267M/27M 96
5. PhysioNet [58] ECG recordings 20M/10M 256

Synthetic data series were generated as random walks
(cumulative sums) of steps that follow a Gaussian distribu-
tion (0,1). This type of data has been extensively used in
the past [23, 49, 147] and models the distribution of stock
market prices [49]. The IRIS seismic dataset [122] is a col-
lection of seismic instrument recordings from several sta-
tions worldwide (100M series of length 256). The SALD
neuroscience dataset [127] contains MRI data (200M series
of length 128). The image processing dataset, deep1B [128],
contains vectors extracted from the last layers of a convolu-
tional neural network (267M series of length 96). The Phy-
sioNet dataset [58] contains ECG data (20 million series of
length 256).

The above datasets are not annotated. In order to eval-
uate the progressive k-NN classification techniques, we use
the datasets in Table 3.

The Cylinder-Bell-Funnel (CBF) dataset [116] is a syn-
thetic dataset that has been used extensively in the data series
classification community, consisting of data series belong-
ing to one of three classes: cylinders, bells and funnels. In-
stances of each class are generated randomly with Gaussian
noise added, such that each series has a fixed length of 128,
but the onset and duration of each pattern varies randomly.
An amplitude parameter is also used to control the difficulty
of the dataset, where the smaller the amplitude, the less dis-
tinct the data series in different classes, thus the harder the
classification task. We used the amplitude values 1 and 3
to generate the CBF1 and CBF3 datasets, respectively. We
used subsets of the CBF1 dataset ranging from 2M to 200M
series and two CBF3 subsets of 20M and 200M series each.

The SITS dataset [103] is a remote sensing dataset (i.e.,
derived from sensor measurements by satellites orbiting
Earth) containing 1M series of size 46 points each, and 24
classes. Each series corresponds to 1 pixel of satellite images
of the earth, taken at 46 time instances. We drop the last data
point for every time series so that we have series of length
45, which can be more efficiently indexed by iSAX2+ with
9 segments of length 5 (remember that all SAX segments
should have equal length).

For ImageNet [37], image embeddings were generated
using a pre-trained EfficientNetB1 [124] neural network. We
applied a global average pooling to the last layers of the net-
work to produce a single vector of 1280 real values per im-
age. The dataset contains a total of 1361 distinct classes. For
our experiments, we use the vectors of ImageNet’s training
images (≈ 1.3M images) as the series dataset and the vec-

Table 3: Experimental datasets for k-NN classification

Name Description Num of series Length Classes
CBF 1 synthetic 2M-200M 128 3
CBF 3 synthetic 20M / 200M 128 3
SITS satellite images 1M 45 24

ImageNet image embeddings 1.3M 1280 1361 / 30

tors of its testing images (50K images from 1000 classes) to
sample our queries. To also test our methods on a smaller
number of classes, we used WordNet’s [91] hierarchical
structure and grouped the original classes (“synsets”) to 30
larger classes that correspond to the leaf nodes of the hierar-
chy used by Huang et al. [63].

Measures. We use the following measures to assess the es-
timation quality of each method and compare their results:

Coverage Probability: It measures the proportion of the time
that the prediction intervals contain the true 1-NN distance.
If the confidence level of the intervals is 1− θ, the coverage
probability should be close to 1− θ. A low coverage proba-
bility is problematic. In contrast, a coverage probability that
is higher than its nominal value (i.e., its confidence level) is
acceptable but can hurt the intervals’ precision. In particu-
lar, a very wide interval that always includes the true 1-NN
distance (100% coverage) can be useless.

Prediction Intervals Width: It measures the size of predic-
tion intervals that a method constructs. Tighter intervals are
better. However, this is only true if the coverage probabil-
ity of the tighter intervals is close to or higher than their
nominal confidence level. Note that for progressive distance
estimates, we construct one-sided intervals. Their width is
defined with respect to the upper distance bound dQ,R(t).

Root-Mean-Squared Error (RMSE): It evaluates the quality
of point (rather than interval) estimates by measuring the
standard deviation of the true 1-NN distance values from
their expected (mean) values.

To evaluate the performance of our stopping criteria, we
further report on the following measures:

Time Savings: Given a load of queries and a stopping crite-
rion, it measures the time saved as a percentage of the total
time needed to complete the search without early stopping.

Exact Answers: It measures the number of exact answers
as a percentage of the total number of queries. For k-NN
classification, we report on exact classes, where we assess
the percentage of queries for which the progressive class is
the final one.

Accuracy Ratio: We also measure the ratio of the accuracy
of k-NN classification with early stopping to the accuracy of
exact k-NN classification.

Validation Methodology. To evaluate the different meth-
ods, we use a Monte Carlo cross-validation approach that
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Fig. 8: Distribution (over 100 queries) of the number of
leaves visited (in log2 scale) until finding the 1-NN (light
blue) and completing the search (yellow). The thick black
lines represent medians.

consists of the following steps. For each dataset, we ran-
domly draw two disjoint sets of data seriesWpool and Tpool
and pre-calculate all distances between the series of these
two sets. The first set serves as a pool for drawing random
sets of witnesses (if applicable), while the second set serves
as a pool for randomly drawing training (if applicable) and
testing queries. At each iteration, we draw nw witnesses
(nw = 50, 100, 200, or 500) and/or nr training queries
(nr = 50, 100, or 200) fromWpool and Tpool, respectively.
We also draw nt = 200 testing queries from Tpool such that
they do not overlap with the training queries. We train and
test the evaluated methods and then repeat the same proce-
dure N = 100 times, where each time, we draw a new set
of witnesses, training, and testing queries. Thus, for each
method and condition, our results are based on a total of
N × nt = 20K measurements.

For all progressive methods, we test the accuracy of their
estimates after the similarity search algorithm has visited 1

(20), 4 (22), 16 (24), 64 (26), 256 (28), and 1024 (210) leaves.
Figure 8 shows the distributions of visited leaves for 100
random queries for all four datasets.

7.1 Results on Prediction Quality

Previous Approaches. We first evaluate the query-agnostic
and query-sensitive approximation methods of Ciaccia et
al. [31, 32]. To assess how the two methods scale with and
without sampling, we examine smaller datasets with cardi-
nalities of up to 1M data series (up to 100K for the query-
agnostic approach). Those datasets are derived from the ini-
tial datasets presented in Table 2 through random sampling.
Such smaller dataset sizes allow us to derive the full distri-
bution of distances without sampling errors, while they are
sufficient for demonstrating the behavior of the approxima-
tion methods as datasets grow.

Figure 9 presents the coverage probabilities of the meth-
ods. The behavior of query-agnostic approximation is espe-
cially poor. Even when the full dataset is used to derive the
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Fig. 9: Coverage probabilities of query-agnostic (left) and
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95% confidence level. We use 500 witnesses for the query-
sensitive methods. We show best-case results (with the best
exp: 3, 5, 12, or adaptive).
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Fig. 10: Real distribution of 1-NN distances and its query-
agnostic approximation based on Ciaccia and Patella [32].
All datasets contain 100K series.

distribution of distances, the coverage tends to drop below
10% for larger datasets (95% confidence level). This demon-
strates that the approximated distribution of 1-NN distances
completely fails to capture the real one. Figure 10 compares
the real to the approximated distributions for datasets of
100K series. We observe that the method largely underes-
timates the 1-NN distances for all four datasets.

Results for the query-sensitive method are better, but
coverage is still below acceptable levels. Figure 9 presents
results for nw = 500 witnesses. Note that our further tests
have shown that larger numbers of witnesses result in no or
very little improvement, while Ciacca et al. [31] had tested a
maximum of 200 witnesses. To weight distances (see Equa-
tion 11), we tested the exponent values exp = 3, 5, and
12, where the first two were also tested by Ciacca et al. [31],
while we found that the third one gave better results for some
datasets. We also tested the authors’ adaptive technique. Fig-
ure 9 presents the best result for each dataset, most often
given by the adaptive technique.

We observe that the GNAT method results in clearly
higher coverage probabilities than the fully random method.
This result is somehow surprising because Ciacca et al. [31]
report that the GNAT method tends to become less accurate
than the random method in high-dimensional spaces with
more than eight dimensions. Even so, the coverage probabil-
ity of the GNAT method is largely below its nominal level.
In all cases, it tends to become less than 50% as the cardi-
nality of the datasets increases beyond 100K, while in some
cases, it drops below 20% (synthetic and seismic).
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Fig. 11: Coverage probabilities of our estimation methods for 95% and 99% confidence levels. We show averages for the
four datasets (synthetic, seismic, SALD, deep1B) and for 25, 50, 100, and 200 training queries.
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Fig. 12: The mean width of the 95% PI for the witness-
based query-sensitive method in relation to the number of
witnesses and training queries.

For much larger datasets (e.g., 100M data series), we
expect the accuracy of the above methods to become even
worse. We conclude that they are not appropriate for our
purposes, thus we do not study them further.

Quality of Distance Estimates. We evaluate the coverage
probability of 1-NN distance estimation methods for confi-
dence levels 95% (θ = .05) and 99% (θ = .01). Figure 11
presents our results. The coverage of the Baseline method
reaches its nominal confidence level for nw = 200 to 500

witnesses. In contrast, the Query-Sensitive method demon-
strates a very good coverage even for small numbers of wit-
nesses (nw = 50) and training queries (nr = 25). However,
as Figure 12 shows, more witnesses increase the precision
of prediction intervals, i.e., intervals become tighter while
they still cover the same proportion of true 1-NN distances.
Larger numbers of training queries also help.

The coverage probabilities of progressive estimates
(Figure 11-Right) are best for the 2D kernel density ap-
proach, very close to their nominal levels. Linear regression
leads to lower coverage, while the coverage of the 3D kernel
density approach is more unstable. We observe that although
the accuracy of the models drops in smaller training sets,
coverage levels can still be considered as acceptable even if
the number of training queries is as low as nr = 25.

Figure 13 compares the quality of initial and early
(i.e., based on first approximate answer) estimates provided
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Fig. 13: Violin plots showing the distribution of the width
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RMSE of expected 1-NN distances (bottom). We use nw =

500 (baseline and query-sensitive method) and nr = 100

(query-sensitive method and 2D kernel model for the 1st ap-
proximate answer).

by different techniques: (i) Baseline, (ii) Query-Sensitive
method, (iii) 2D kernel density estimate for iSAX2+, and
(iii) 2D kernel density estimate for DSTree. For all com-
parisons, we set nw = 500 and nr = 100. For these pa-
rameters, the coverage probability of all methods is close to
95%. We evaluate the width of their 95% prediction intervals
and RMSE. We observe similar trends for both measures,
where the query-sensitive method outperforms the baseline.
We also observe that estimation based on the first approxi-
mate answer (at the first leaf) leads to radical improvements
for all datasets. Overall, the DSTree index gives better esti-
mates than iSAX2+.

As shown in Figure 14, progressive answers lead to fur-
ther improvements. The RMSE is very similar for all three
estimation methods, which means that their point estimates
are equally good. Linear regression results in the narrowest
intervals, which explains the lower coverage probability of
this method. Overall, 2D kernel density estimation provides
the best balance between coverage and interval width.
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Fig. 14: Progressive models: Mean width of 95% prediction
intervals of 1-NN distance estimates and RMSE. Results are
based on nr = 100 training queries.
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Fig. 15: (a) Effect of 3 and 5 sequential tests on the cover-
age of 95% and 99% prediction intervals. We use 2D kernels
with nr = 100. (b) Coverage of exact answers for time up-
per bounds (95% and 99% conf. levels).

Sequential Tests. We assess how multiple sequential tests
(refer to Section 4) affect the coverage probability of 1-NN
distance prediction intervals. We focus on 2D kernel density
estimation (nr = 100), which gives the best coverage (see
Figure 11). We examine the effect of (i) three sequential tests
when visiting 1, 512, and 1024 leaves, and (ii) five sequen-
tial tests when visiting 1, 256, 512, 768, and 1014 leaves. We
count an error if at least one of the three, or five progressive
prediction intervals do not include the true 1-NN distance.

As results for DSTree and iSAX2+ were very close, we
report on their means (see Figure 15(a)). The coverage of
95% prediction intervals drops from over 95% to about 90%

for five tests (higher for seismic and lower for deep1B).
Likewise, the coverage of their 99% prediction intervals
drops to around 95%. These results provide rules of thumb
on how to correct for multiple sequential tests, e.g., use a
95% level in order to guarantee a 90% coverage in 5 se-
quential tests. Notice, however, that such rules may depend
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Fig. 16: Evaluation of the stopping criterion that bounds the
distance error (εQ < ε). We use 95% prediction intervals
(θ = .05) and nr = 100 training queries.

on the estimation method and the time steps at which com-
parisons are made. An in-depth study of this topic is part of
our future work.

Time Bounds for Exact Answers. We are also interested
in the quality of time guarantees for exact answers (refer to
Section 4.2). We evaluate the coverage of our time bounds
for 50, 100, and 200 training queries for confidence levels
95% (φ = .05) and 99% (φ = .01). Figure 15(b) summa-
rizes our results. We observe that coverage is good for train-
ing samples of nr ≥ 100, but drops for nr = 50.

7.2 Results on Time Savings

We compare our stopping criteria (see Section 4.3) and as-
sess the time savings they offer. Figure 16 shows results for
our first criterion that bounds the distance error. We con-
sider 16 discrete and uniform moments ti, where t16 is cho-
sen to be equal to the maximum time it takes to find an ex-
act answer in the training sample. For each ti, we train an
individual 2D kernel density and use 95% prediction inter-
vals (θ = .05) for estimation. The coverage (ratio of queries
for which εQ < ε) exceeds its nominal level (95%) for all
datasets, which suggests that results might be conservative.
The reason is that stopping could only occur at certain mo-
ments. For higher granularity, one can use a larger number
of discrete moments. The ratio of exact answers is close to
95% for ε = .01 but becomes unstable for ε = .05, drop-
ping to as low as 70% for the seismic dataset. On the other
hand, this results in considerable time savings, especially
for DSTree: higher than 90% for the synthetic, SALD, and
deep1B datasets.

Figure 17 compares the two stopping criteria that con-
trol the ratio of exact answers. For the probability crite-
rion, we consider again 16 discrete moments to stop the
search, as above. The time-bound criterion results in mean
exact answer ratios that are very close to nominal levels,
while the probability criterion is rather conservative. How-
ever, the time gains of the two techniques are comparable.
For iSAX2+, the probability criterion achieves both a higher
accuracy and higher time savings than the probability crite-



ProS: Data Series Progressive k-NN Similarity Search and Classification with Probabilistic Quality Guarantees 19

iSAX2+ DSTree

.01 .05 .10 .01 .05 .10
85

90

95

100

E
xa

ct
 A

ns
w

er
s 

(%
)

iSAX2+ DSTree

.01 .05 .10 .01 .05 .10
85

90

95

100
iSAX2+ DSTree

.01 .05 .10 .01 .05 .10

40

60

80

100

Ti
m

e 
S

av
in

gs
 (%

) iSAX2+ DSTree

.01 .05 .10 .01 .05 .10

40

60

80

100

φ φ φ φdeep1BSALDseismicsynthetic

   time-bound criterion    probability criterion    time-bound criterion    probability criterion

Fig. 17: Evaluation of stopping criteria that bound (φ) the probability/ratio of non-exact answers. We measure their ratio of
exact answers and their time savings (%). For all conditions, we use nr = 100 training queries.

0

20

40

60

80

0 200 400 600
Queries

Ti
m

e 
(h

ou
rs

)

ϵ

no stopping

n  = 100 n  = 50

distance-error criterion (θ = .05)

ϵ = .05ϵ = .01

0

20

40

60

80

0 200 400 600
Queries

Ti
m

e 
(h

ou
rs

)

no stoppingφ = .05φ = .01

0 200 400 600
Queries

no stopping

  time-bound   probability  time-bound  probability

φ = .05φ = .01

n  = 100 n  = 50r r r r

Q
<

(%
)

E
xa

ct
 A

ns
w

er
s 

(%
)

94

96

98

100

.01 .05

94

96

98

100

.01 .05

nominal

ϵ φ φ
94

96

98

100

.01 .05 .01 .05

E
xa

ct
 A

ns
w

er
s 

(%
)

nom
inal

nom
inal

Fig. 18: Performance of our stopping criteria for a real workload of 600 queries (deep1B dataset and DSTree). We draw
nr = 50 or 100 random queries for training. We then apply a criterion to the remaining queries. Answers with εQ < ε and
exact ones (%) are measured for those “testing” queries. (We report means over 100 repetitions.)

rion. In contrast, both criteria lead to similar time savings
for DSTree, reducing query times by up to 95%.

Training Costs vs. Gains. Training linear models with 100

queries is instantaneous, while learning 16 − 20 density
functions with 2D kernel density estimation takes no more
than 4-6 seconds on a regular laptop. Of course, our ap-
proach requires the full execution of the training queries.
For a detailed analysis of the costs of exact similarity search
with iSAX2+ and DSTree, we refer the reader to the re-
sults of Echihabi et al. [47]. Depending on the size and
type of the dataset, processing 100 queries can take some
dozens of minutes (50 GB datasets), or several hours (250

GB datasets). Nevertheless, the higher this initial training
cost, the higher the benefit is when users later execute their
queries.

Figure 18 shows the results for the first 600 queries
extracted from a real query workload that comes with the
deep1B dataset. (Experiment conducted on a server with two
Intel Xeon E5-2650 v4 2.2GHz CPUs, 75GB of RAM.) Re-
sults are based on 100 repetitions; each time we draw at
random 50, or 100 queries for training. We then apply our
stopping criteria to accelerate the remaining queries.

The results show that our approach leads to significant
performance improvements, while coverage (exact answers,
or answers with εQ < ε) is very close to, or higher than the
nominal levels, even with training sizes of only 50 queries.
For example, this workload of 600 queries would normally
take 76 hours to execute with the DSTree index, but we can
execute it in less than 20 hours (probability criterion; in-

cluding training time), while achieving an average coverage
of more than 95% exact answers. Finally, we note that, as
the trends in the graphs show, the time savings and speedup
offered by our progressive similarity search techniques will
increase as the size of the query workload increases.

7.3 Results for k-NN Similarity Search

We evaluate how well our approach generalizes to k-NN
similarity search. We follow the same experimental method
but focus on the performance of our stopping criteria. In ad-
dition to the four datasets that we used earlier, we also test
our approach on the 20M-series PhysioNet dataset (reported
in Table 2). Figure 19 summarizes our evaluation results. We
first show the average savings in time if stopping was opti-
mally performed by an oracle that knows when a k-NN is
found (Figure 19a). We observe that optimal time savings
deteriorate as k increases. This is especially the case for the
seismic dataset, e.g., savings reduce from 87% (k = 1) to
45% (k = 100) when iSAX2+ is used.

For the distance-error criterion, we report results for
θ = .05 and ε = .05 (Figure 19b), where we now control
and evaluate the relative family-wise distance error εfQ (see
Equation 8). For iSAX2+, time savings are stable and high
(above 70%) across the full range of k values. This comes at
the cost of a decreasing ratio of exact answers. For DSTree,
time savings drop for k = 5, but stay constant after, with the
exception of the seismic dataset, where time savings stay
constant but the ratio of exact answers significantly drops.
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Overall, the distance-error stopping criterion provides a way
for quickly finding low-error answers that may not be exact.

Figure 19c presents results for the time-bound and prob-
ability criteria. The probability criterion has a better ratio of
exact answers but time savings for both criteria are very sim-
ilar and drop as k increases. Time savings become as low as
10% for the seismic dataset and k ≥ 50 (iSAX2+).

7.4 Results for k-NN Similarity Search with DTW

We now repeat the same experiments for DTW, where we
apply the bounding envelopes we presented in Section 5.5.
In this case, we use the smaller versions of the datasets in
Table 2, because similarity search with DTW is extremely
expensive for larger datasets. For similar performance rea-
sons, we also study similarity search for k ≤ 25. We present
our results in Figure 20.

Compared to the results for ED (refer to Figure 19), we
observe that time savings are now lower for all stopping cri-
teria. This loss of performance is due to the wider lower
bound distances that we need to use during query answer-
ing. The exact answer is also found much later. This is espe-
cially the case for the seismic and deep1B datasets (see Fig-
ure 20a). For these two datasets, the time-bound and prob-
ability stopping criteria result in marginal savings (around
10% for k = 1), which tend to disappear as k increases (see
Figure 20c). For the distance-error criterion, which does not
require exact answers, time savings are more pronounced.
For seismic, synthetic, SALD, and PhysioNet, we observe
savings in the range of 30 − 60%, independently of k (see
Figure 20b). Thus, we conclude that our approach is still
valuable when using DTW, but with less impressive results,
due to the fact that the use of DTW renders the problem
harder.

7.5 Results for k-NN Classification

As mentioned earlier, we use a different set of annotated
datasets to evaluate our prediction methods for k-NN clas-
sification. Table 4 presents the % accuracy of exact k-NN
classification for the datasets and conditions that we evalu-
ate. It is worth noting that for some datasets, higher accu-
racy is achieved with a small number of nearest neighbors.
Experiments on DTW are conducted with smaller synthetic
datasets (up to 20M series)5. However, we investigate the
role of the dataset size in detail. We note also that the ac-
curacy of k-NN classification for ImageNet is considerably
lower than the accuracy (> 80%) of state-of-the-art neural

5 When using DTW, k-NN search becomes computationally very
expensive, and the time required to run all experiments with the origi-
nal, large dataset sizes was prohibitive.

Table 4: Ground truth (% accuracy) of the exact k-NN clas-
sification for the main datasets that we evaluate in our ex-
periments.

Dataset 1-NN 3-NN 5-NN 10-NN 20-NN

E
uc

lid
ea

n CBF1 (200M) 67.0 70.2 69.7 70.7 70.8
CBF3 (200M) 91.0 91.2 89.8 90.8 90.8

SITS 85.0 85.0 84.0 83.9 82.5
ImageNet 31.0 32.1 33.0 32.4 33.3

ImageNet (30 cl.) 57.0 58.6 58.3 56.9 56.9

D
T

W

CBF1 (20M) 66.3 70.7 72.3 74.1 75.4
CBF3 (20M) 96.7 97.1 97.2 97.5 97.4

SITS 84.3 83.9 83.3 82.6 81.5

network architectures [124]. DTW is not meaningful for Im-
ageNet image embeddings while it is very expensive, thus
we do not include it in our evaluation.

We present an overview of how k-NN similarity search
and classification (k = 10) evolve in the case of Euclidean
distance in Figure 21a. The top graphs show the percent-
age of queries for which the 10-NN is found, while the the
bottom graphs show the percentage of queries for which the
current class is the exact. We observe that for CBF3 and
SITS, the exact class is generally found very early, e.g., at
the very first leaf. ImageNet turns to be significantly harder
– exact answers arrive much later during the k-NN search.
In summary, there is no guarantee that a quick approximate
answer will return the exact class.

Figure 21b presents results for the naive probability cri-
terion that controls for the ratio of the exact k-NNs (φ =

.05). As expected, this criterion is extremely conservative:
when k ≥ 3, the ratio of exact answers becomes higher than
99% for all datasets. As a consequence, time savings drop
as k increases and become especially low for the harder
datasets. Observe that the accuracy ratio is strictly higher
than ratio of exact classes and is often higher than 100%. Al-
though this result may seem counter-intuitive, we note that
an exact answer (i.e., the answer of the non-progressive k-
NN classifier) is not necessarily correct. In this case, it may
happen that the non-exact progressive (approximate) answer
is the correct one, and this is more likely to occur when the
number of alternative classes is small, as it is the case for
the two CBF datasets. Still, one might expect that the cor-
rect class would coincide more frequently with the final ex-
act answer. Interestingly, this is not always the case, which
suggests that our model predictors can often help to opti-
mally stop, e.g., when consensus among the class of nearest
neighbors is high.

Figure 21c presents results for our exact class probability
criterion. The average ratio of exact answers is close to or
higher than its nominal level of 95% (φc = .05) for most
cases but deteriorates when k ≤ 3. The accuracy ratio is
again high, ranging between 97% and 103%. Time savings
are especially high for iSAX2+, greater than 65% and up to
95% for CBF3. Overall, these results demonstrate that our
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approach can achieve huge time improvement with no or
with minimal cost in terms of classification accuracy.

Finally, we evaluate our exact class probability criterion
(φc = .05) with DTW. Results are presented in Figure 22a.
For CBF3 and SITS, time savings are again at similar lev-
els as with Euclidean distance (see Figure 21c). In contrast,
savings are now more modest for CBF1 but they grow as k
increases. Of course, the size of CBF1 is smaller now. How-
ever, as we see in Figure 22b, the size of the dataset (i.e.,
the number of series) does not seem to have any clear ef-
fect on savings. It also becomes clear that for this harder
dataset, our approach leads to relatively larger benefits with
Euclidean distance than with DTW.

8 Conclusions

In this work, we argue that two important research questions
are how to provide progressive answers for similarity search
queries on very large data series collections, and how to cou-
ple these answers with probabilistic quality guarantees. Pro-
viding progressive answers for data series similarity search
queries along with probabilistic quality guarantees is an im-
portant research problem. It eliminates wasted time and re-
duces user waiting times, in cases where improvement in the
final answer is not possible.

In this context, we studied the problems of k-NN simi-
larity search and classification for the Euclidean and DTW
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Fig. 21: Results for k-NN classification (Euclidean distance). (a) Evolution of answers to 10-NN classification queries for
random sample of 1000 queries per dataset. We show the percentage of queries for which the current 10-NN is exact (top) and
the percentage of queries for which the current class is exact (bottom). (b) Results for our conservative stopping criterion that
assesses the probability that the current k-NN is exact. (c) Results for our class-level criterion that assesses the probability
that the current class is exact. We use nr = 100 training queries.
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Fig. 22: Evaluation of the exact class probability criterion (φc = .05) for k-NN classification: (a) with DTW and (b) with
DTW and Euclidean distance when varying the number of data series for CBF1. We use nr = 100 training queries.

distance measures. We described our approach, ProS, which
comprises the first scalable and effective solutions to these
problems, and demonstrated its applicability, effectiveness
and significant time savings using several synthetic and real
datasets from diverse domains.

As part of our future work, we are going to study in de-
tail how and when such probabilistic measures help humans
to effectively complete their visual analysis tasks, as well
as which visualization and human-computer interaction ap-
proaches are the most suitable in this context. Given the in-
creasing popularity of data series analysis tasks, these re-
search directions are both relevant and important, offering
exciting research opportunities.
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