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Abstract
In this paper, we study the problem of (p, q)-biclique counting and enumeration for large sparse bipartite graphs. Given
a bipartite graph G = (U , V , E) and two integer parameters p and q, we aim to efficiently count and enumerate all (p,
q)-bicliques in G, where a (p, q)-biclique B(L, R) is a complete subgraph of G with L ⊆ U , R ⊆ V , |L| = p, and |R| = q.
The problem of (p, q)-biclique counting and enumeration has many applications, such as graph neural network information
aggregation, densest subgraph detection, and cohesive subgroup analysis. Despite the wide range of applications, to the best
of our knowledge, we note that there is no efficient and scalable solution to this problem in the literature . This problem
is computationally challenging, due to the worst-case exponential number of (p, q)-bicliques. In this paper, we propose a
competitive branch-and-bound baseline method, namely BCList, which explores the search space in a depth-first manner,
together with a variety of pruning techniques. Although BCList offers a useful computation framework to our problem, its
worst-case time complexity is exponential to p + q. To alleviate this, we propose an advanced approach, called BCList++.
Particularly, BCList++ applies a layer-based exploring strategy to enumerate (p, q)-bicliques by anchoring the search on either
U or V only, which has a worst-case time complexity exponential to either p or q only. Consequently, a vital task is to choose
a layer with the least computation cost. To this end, we develop a cost model, which is built upon an unbiased estimator
for the density of 2-hop graph induced by U or V . To improve computation efficiency, BCList++ exploits pre-allocated
arrays and vertex labeling techniques such that the frequent subgraph creating operations can be substituted by array element
switching operations.We conduct extensive experiments on 16 real-life datasets, and the experimental results demonstrate that
BCList++ significantly outperforms the baseline methods by up to 3 orders of magnitude. We show via a case study that (p,
q)-bicliques optimizes the efficiency of graph neural networks. In this paper, we extend our techniques to count and enumerate
(p, q)-bicliques on uncertain bipartite graphs. An efficient method IUBCList is developed on the top of BCList++, together
with a couple of pruning techniques, including common neighbor refinement and search branch early termination, to discard
unpromising uncertain (p, q)-bicliques early. The experimental results demonstrate that IUBCList significantly outperforms
the baseline method by up to 2 orders of magnitude.
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1 Introduction

As a natural data structure to model relationships between
two different types of entities [8,26], bipartite graph has
been used in many real-world applications, such as online
customer-product networks [50], gene co-expression net-
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Fig. 1 An example bipartite graph G

works [56], author-paper networks [15], graph neural net-
works [21], etc. Formally, a bipartite graph G = (U , V , E)

consists of two disjoint vertex sets U and V , where an edge
e ∈ E connects a vertex in U and another in V . An example
bipartite graph is shown in Fig. 1. Recently, a lot of research
efforts have been devoted to many fundamental problems in
analyzing bipartite graphs, such as (α, β)-core query [16,30],
maximal biclique enumeration [2,31,56], butterfly counting
[40,51,52], fraud detection [22,50], to name just a few.

In this paper, we introduce the concept of (p, q)-biclique.
Given a bipartite graph G = (U , V , E), a biclique B(L, R)

is a complete subgraph of G, where L ⊆ U , R ⊆ V , that is
∀(u, v) ∈ L × R, (u, v) ∈ E(G), and B(L, R) is called a (p,
q)-biclique if |L| = p and |R| = q. We study the problem
of (p, q)-biclique counting and enumeration for large sparse
bipartite graphs, given two integer parameters p and q.

Motivations.Many real-world bipartite graphs are very large
and sparse, such as those listed in Table 3. A special case of
(p, q)-biclique (where p = 2 and q = 2) called butterfly
[40,51,52] has demonstrated great importance in defining
basic metrics such as the clustering coefficient in a bipartite
graph [29,37]. However, in many graph-based tasks, (p, q)-
bicliques, where p and q are not fixed to 2, are needed. Below
are a small list of examples.

(1) GNN Information Aggregation. Graph neural network
(GNN) has received much research interests in recent
years [21,49,55] and has numerous applications. A piv-
otal operation in a GNN is to recursively aggregate
information from vertices’ neighbors in graph. A naive
method simply propagates information on each pair of
vertices separately, which leads to redundant computa-
tions, since vertices in a graph may often share many
neighbors. Interestingly, we remark that (p, q)-biclique
enumeration can optimize the task of GNN information
aggregation. Our case study results in Sect. 7.4 report
that our (p, q)-biclique-based method achieves the most
efficient when (p, q) settings are (5, 10) and (4, 10)
on two datasets IMDB and PPI, respectively, which are
employed to evaluate the state-of-the-art algorithm HAG
[25]. The results show that our method achieves near an
order of magnitude of performance improvement over

existing methods. Details about how to apply (p, q)-
bicliques to GNN information aggregation are illustrated
in our case study in Sect. 7.4.

(2) Densest Subgraph Detection.Recently, Mitzenmacher et
al.[35] formulate the concept of (p, q)-biclique density.
For a subgraph S in a bipartite graph, its (p, q)-biclique
density is defined as the ratio between the number of (p,
q)-bicliques in S and the size of S. Based on the (p, q)-
biclique density, they study the problem of finding the (p,
q)-biclique densest subgraph in a bipartite graph. They
point out that (p, q)-biclique enumeration is a required
procedure in their methods.

(3) Cohesive Subgroup Analysis. Borgatti et al. [8] study the
problem of identifying cohesive subgroups in bipartite
graphs. They consider using (p, q)-biclique to identify
cohesive subgroups in a bipartite graph, where p and q
are greater than or equal to 3. For example, in a social
event bipartite graphwith 18 guests and 14 events, (3, 3)-
bicliques can reveal two basic groups together with some
outsiders, which matches the ground truth well.

To the best of our knowledge, the problem of (p, q)-
biclique counting and enumeration on large sparse bipartite
graphs has not been thoroughly investigated. The closest
related work is the work of finding (p, q)-biclique dens-
est subgraph [35], where (p, q)-biclique enumeration is a
necessary step. The performance of their solution is not yet
satisfactory, since it is developed on top of costly maximal
biclique enumeration. (2, 2)-biclique- and (3, 3)-biclique-
based densities are adopted to make their solution more
practical. However, even under the setting p = q = 3, their
solution cannot finish in 10 hours on a medium-sized bipar-
tite graph (with 18k vertices and 92k edges).

Challenges. The problem of (p, q)-biclique counting and
enumeration is computationally challenging. Given a bipar-
tite graph G = (U , V , E), a straightforward solution is to
enumerate all

(|U |
p

)(|V |
q

)
combinations of vertex sets and ver-

ifywhether eachof them is a biclique.However, this approach
is obviously cost-prohibitive, because the number of (p, q)-
bicliques in a bipartite graph can be much larger than the size
of the bipartite graph. Assuming |U | = |V | = n, then the
number of (p, q)-bicliques could be up to O(

(|U |
p

)(|V |
q

)
) ≈

O(n p+q). This shows that our problem is more difficult than
other related counting problems, such as butterfly count-
ing [40,52] and bi-triangle counting [54]. For example, the
datasetTwitter contains 2.06×108 butterflies and 1.61×1012

bi-triangles, but 1.45 × 1019 (6, 2)-bicliques.
Besides, we aim to support queries with arbitrary p and

q values, which makes our problem even harder. For prob-
lems such as butterfly counting and bi-triangle counting,
where the answers are small and fixed patterns, one may
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build many intermediate structures (e.g., wedges) to facili-
tate query processing. This is infeasible to our problem since
the intermediate result size would be extremely huge even
for slightly larger p and q values. Last but not least, we aim
to support both counting and enumerating (p, q)-bicliques,
which is generally more difficult than counting only.

Contributions. To tackle the computation challenges, we
propose efficient queryprocessing techniques. In thedatabase
research community, algorithms that combine backtracking
with branch-and-bound techniques are widely adopted to
deal with graph-based problems, such as maximal biclique
enumeration [2,56]. Inspired by these, we propose a com-
petitive branch-and-bound baseline method, namely BCList,
which explores the search space in a depth-first manner.
Specifically, BCList maintains a partial biclique and recur-
sively adds the candidate vertices into the partial biclique
to generate (p, q)-bicliques. To improve the performance of
BCList, we propose new efficient pruning techniques, such
as 2-hop neighbors to reduce candidate size, size pruning to
terminate search branch early, and vertex ordering to avoid
redundant computation.

BCList provides a promising computation framework to
solve our problem. However, observe that BCList utilizes a
vertex-based exploring strategy, which has a time complexity
of O((|U | + |V |)(dmax + d2max)

p+q−2), where dmax and
d2max are the maximum degree and 2-hop degree of a vertex
in G, respectively. It is still time costly for BCList to handle
queries when p and q are large.

Toalleviate these issues,wepropose an advanced approach,
called BCList++. In particular,BCList++ applies a layer-based
exploring strategy to enumerate (p, q)-bicliques by anchor-
ing the search on eitherU or V only. This exploring strategy
leads to a time complexity of O(a(H)p−2|E(H)|dmax + �)

if the left layerU is selected, where H is the 2-hop graph con-
structed onU , E(H) is the edges in H , a(H) is the arboricity
of H [12], dmax is the maximum degree of a vertex in U ,
and � is the result size. Compared to BCList, BCList++ is
more efficient w.r.t the values of p and q. It should also be
remarked that many real bipartite graphs are unbalanced in
practice (e.g., Edit-en and Edit-fr in Table 3), and the values
of p and q may be quite different as well. Hence, the per-
formance of BCList++ could be significantly influenced by
the choice of the search layer (i.e., U or V ). Consequently,
a vital task is to choose a layer with the least computation
cost. To this end, we develop a new cost model, built upon
an unbiased estimator for the density of 2-hop graph H , to
efficiently estimate the computation cost. We theoretically
analyze the effectiveness of the cost model.

We use pre-allocated arrays and vertex labelling tech-
niques to implement BCList++ such that the frequent sub-
graph creating operations can be substituted by array element

switching operations. To further accelerate the computation,
we introduce useful graph reduction techniques and extend
our approach to a parallel environment, where multiple
threading is available. Empirical study shows that BCList++
can significantly outperform the baseline method BCList and
other competitors by up to 3 orders of magnitude. The cost
model is clearly effective. A case study about our techniques
for optimizing the efficiency of GNN information aggrega-
tion is presented.

In some applications, edges in the graph may exist with
a probability. For instance, in a gene co-expression net-
works [56], the edge existential probability is the score
of co-expression level between genes and conditions. In
a recommendation user-item network, the edge existential
probability is the likelihood that a user would enjoy or
purchase an item [58]. A network with uncertain edges
is called uncertain (bipartite) graph, which has also been
studied among many related problems, such as cohesive sub-
graph decomposition [7,24,59], maximal clique enumeration
[4,5,13], and motif counting [23,32,47,58]. In this paper, we
also study the problem of (p, q)-biclique counting and enu-
meration on uncertain bipartite graphs. Below are a couple
of concrete examples.

(1) Biclustering of Gene Expression Data Given a gene co-
expression network consisting of genes and conditions,
an important task is to find groups of co-regulated genes.
As one of the main techniques to deal with this task,
biclustering considers to find the clusterings of genes
and conditions simultaneously [11,33,36]. We observe
that our uncertain (p, q)-biclique model offers a pos-
sible solution for this task. First, in an uncertain (p,
q)-biclique, any pair of gene and condition are connected,
which implies that the genes co-express under each con-
dition. Second, the probability guarantees the expression
confidence level. By setting different size values and
probability threshold, we are able to find different biclus-
tering results for the co-expression data, which provide
hints for further exploring of the data. We present a case
study about COVID-19 blood samples gene expression
data in Sect. 7.6.

(2) Item Recommendation On a movie rating platform such
as Netflix, the rating score denotes how much a user
enjoys a movie. By normalizing the rating scores into
region [0, 1],we can model the rating platform as an
uncertain bipartite graph, in which the edge probability
denotes how much a user enjoys a movie. By analyz-
ing a (p, q)-biclique with high probability, we can find a
group of usersU that are likely to be interested in a set of
movies. Suppose there is a new movie v that is watched
and given high probabilities by all users inU but u. Then,
we can recommend movie v to user u, because u is likely
to be interested in v.
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In Sect. 6, we first formally introduce and formulate
the problem of (p, q)-biclique counting and enumeration
on uncertain bipartite graphs. Then, we develop a base-
line method, namely UBCList, which is built on top of
BCList++, considering its superior performance on determin-
istic graphs. Observe that the UBCList needs to enumerate
and verify all (p, q)-bicliques on the backbone graph, which
is inefficient when a lot of them do not meet the uncer-
tainty threshold. To improve the computation performance,
we propose an improved method, namely IUBCList, which
is equipped with a couple of pruning techniques, including
common neighbor refinement and search branch early ter-
mination. Thanks to these pruning techniques, we are able
to discard some unpromising (p, q)-bicliques earlier before
enumerating them completely. The performance studies sug-
gest that IUBCList can significantly outperform UBCList by
up to 2 orders of magnitude.

The preliminary version is published in [53]. The main
contributions of this work are summarized as follows.

– This is the first work to systematically study the problem
of (p, q)-biclique counting and enumeration for large
sparse bipartite graphs. We propose BCList which com-
bines backtracking with branch-and-bound techniques,
together with a variety of pruning techniques.

– We propose a layer-based approach BCList++, where a
cost model is used to guide the selection of the layer with
the least computation cost. To improve efficiency fur-
ther, we implement BCList++ using pre-allocated arrays
and vertex labelling techniques such that the frequent
subgraph creating operations can be substituted by array
element switching operations.

– We extend our techniques to deal with the problem of
(p, q)-biclique counting and enumeration for uncertain
bipartite graphs. To resolve this problem efficiently, we
propose amethod IUBCList, which can discard unpromis-
ing (p, q)-bicliques early by using a couple of pruning
techniques.

– The comprehensive performance evaluation on real data
demonstrates the efficiency of our new techniques pro-
posed in this paper.

Roadmap. The rest of this paper is organized as follows: In
Sect. 2, we introduce basic concepts and problem definition.
In Sect. 3, we propose a baseline method. In Sect. 4, we pro-
pose an advanced approach. Two optimizations are proposed
in Sect. 5. In Sect. 6, we extend our techniques to handle the
problem on uncertain bipartite graphs. We conduct extensive
experiments in Sect. 7. Section8 reviews the relatedwork and
Sect. 9 concludes the paper.

Table 1 Frequently used notations

Notation Meaning

G A bipartite graph

U (G), V (G) A set of vertices in G

E(G) A set of edges in G

u, v, w A vertex in a bipartite graph

(u, v) An edge in a bipartite graph

u → v An directed edge from u to v

N (u,G) The neighbors of u in G

d(u,G) The degree of u in G

N2(u,G) The 2-hop neighbors of u in G

B(L, R) A biclique in a bipartite graph

r(u) The rank of u

H The 2-hop graph of a bipartite graph

N (u, H) The neighbors of u in a 2-hop graph H

G(G, P) An uncertain bipartite graph

2 Preliminaries

In this section, we introduce basic concepts and defini-
tions used in this paper. Table 1 summarizes some notations
frequently used throughout this paper. We consider an
unweighted and undirected bipartite graph G = (U , V , E),
where U (G) and V (G) denote two disjoint vertex sets, i.e.,
U (G) ∩ V (G) = ∅, and E(G) ⊆ U (G) × V (G) denotes
the edge set of G. An edge in G is denoted by either (u, v)

or (v, u). For each vertex u ∈ U (G), the neighbors of u is
denoted as N (u,G) = {v|(u, v) ∈ E(G)}. The degree of
u, denoted as d(u,G), is the number of neighbors of u, i.e.,
d(u,G) = |N (u,G)|. We have symmetrical definitions for
vertices in V (G). For presentation simplicity, in the rest of
the paper, we omit G in the notations when the context is
self-evident.

Definition 1 (Biclique) Given a bipartite graph G = (U , V ,

E), a biclique B(L, R) is a complete subgraph of G, where
L ⊆ U (G) and R ⊆ V (G), i.e., ∀(u, v) ∈ L × R, (u, v) ∈
E(G).

In this paper, we call L and R the left and right side (or
layer) of vertices in a biclique B(L, R), respectively.

Definition 2 ((p, q)-Biclique)Given a bipartite graphG, and
two integer parameters p and q, a (p, q)-biclique B(L, R) is
a biclique of G with |L| = p and |R| = q.

Problem statement.Given abipartite graphG = (U , V , E),
and two integer parameters p and q, we study the problem
of counting and enumerating (p, q)-bicliques in G.

Example 1 Consider the bipartite graph in Fig. 1. Assuming
p = 2 and q = 3, there are two (p, q)-bicliques. They are
({u1, u2}, {v1, v2, v3}) and ({u2, u3}, {v2, v3, v4}).
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In the rest of the paper, we focus on the enumeration
problem and we show how to extend our techniques to the
counting problem.

3 The baseline solution

A brute-force solution for our problem is to enumerate all(|U |
p

)(|V |
q

)
combinations of vertex sets and verify whether

each of them is a biclique, which is cost-prohibitive. In
the database research community, algorithms that combine
backtracking with branch-and-bound techniques are widely
adopted to deal with graph-based problems, such as maxi-
mal biclique enumeration [2,56]. Inspired by these, in this
section, we propose a competitive branch-and-bound base-
line method, called BCList. In the following, we first give the
main idea of BCList together with some important pruning
techniques and then present the overall algorithm.

3.1 Solution overview

We begin with the concept of partial biclique.

Definition 3 (Partial Biclique) Given a pair of integers p
and q, a partial biclique B(L, R) is biclique with |L| ≤ p
and |R| < q, or |L| < p and |R| ≤ q.

Main idea. In a nutshell, BCList maintains a partial biclique
and recursively adds the candidate vertices into the partial
biclique to generate full bicliques, i.e., (p, q)-bicliques.More
specifically, BCList operates on the following four dynami-
cally changing vertex sets: (i) L , a subset ofU containing the
left side of vertices in a partial biclique; (ii) R, a subset of
V containing the right side of vertices in a partial biclique;
(iii) CL , a subset of U containing the candidate vertices that
may be added to L; (iv) CR , a subset of V containing the
candidate vertices that may be added to R. In each iteration,
BCList chooses one vertex from CL or CR to expand the par-
tial biclique. The four vertex sets are utilized and maintained
in a depth-first traversal of a recursion search tree to generate
(p, q)-bicliques.

Clearly, to improve the computation efficiency, the key is
to reduce the search space, i.e., the size of recursion search
tree. In the following, we aim to develop efficient pruning
and query processing techniques.

3.2 Pruning techniques

Lemma 1 Given a partial biclique B(L, R), the candidate
sets CL and CR only contain the vertices that are common
neighbors of vertices in R and L, respectively.

(1) If u ∈ CL, then ∀v ∈ R : (u, v) ∈ E; and
(2) If v ∈ CR, then ∀u ∈ L : (u, v) ∈ E.

Proof The lemma is immediate. ��
Based on Lemma 1, we can substantially reduce the

number of candidate vertices by only considering the com-
mon neighbors. In particular, when the partial bicliques are
expanded, CL and CR are contracted. We have the following
corollary based on Lemma 1.

Corollary 1 Given a partial biclique B(L, R), and the cor-
responding candidate sets CL and CR,

(1) if |L| = p and |R| + |CR | ≥ q, then L forms a (p,
q)-biclique with each q-sized subset of R ∪ CR; and

(2) if |R| = q and |L| + |CL | ≥ p, then R forms a (p,
q)-biclique with each p-sized subset of L ∪ CL.

Lemma 1 provides an efficient way to reduce the number
of candidate vertices on the opposite side when a new vertex
is added into the partial biclique. Next, we explore to reduce
the number of candidate vertices on the same side as well.
Before that, we introduce the important concept of 2-hop
neighbor.

Definition 4 (τ -strength 2-Hop Neighbor)Given a bipartite
graph G = (U , V , E) and an integer τ , for a vertex w in G,
the τ -strength 2-hop neighbors of w, denoted as N τ

2 (w,G),
contains all vertices inG, each of them has at least τ common
neighbors with w, i.e., N τ

2 (w,G) = {w′|w′ ∈ U ∪ V and
|N (w,G) ∩ N (w′,G)| ≥ τ }.

For presentation convenience, given a bipartite graphG =
(U , V , E), and two integers p and q, for each u ∈ U , we
define the 2-hop neighbors of u, denoted as N2(u,G), to
be the q-strength 2-hop neighbors of u, i.e., N2(u,G) =
Nq
2 (u,G). Similarly, for each v ∈ V , N2(v,G) = N p

2 (v,G).

Example 2 Consider u3 in the bipartite graph in Fig. 1 again.
We assume p = 2 and q = 3. Since u2 is the only 3-strength
2-hop neighbor of u3 with common neighbors v2, v3, and v4,
we have N2(u3,G) = {u2}.
Lemma 2 Given a partial biclique B(L, R), the candidate
sets CL and CR only contain the vertices that are common
2-hop neighbors of L and R, respectively.

(1) If u ∈ CL, then ∀w ∈ L: u ∈ N2(w,G); and
(2) If v ∈ CR, then ∀w ∈ R: v ∈ N2(w,G).

Proof We only prove (1), as we can prove (2) similarly.
Given a certain vertex u ∈ CL , we prove that ∀w ∈ L:
u ∈ N2(w,G) by contradiction. Suppose that ∃w ∈ L s.t.
u /∈ N2(w,G), which implies that |N (w,G) ∩ N (u,G)| <
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Algorithm 1: Collect2HopNeighbors(G, p, q)
Input : G : a bipartite graph

p, q : two parameters
for each u ∈ U ∪ V do1

Initialize hashmap C with zero;2
for each v ∈ N (u,G) do3

for each w ∈ N (v,G) do4
if u �= w then5

C[w] ← C[w] + 1;6

for each w ∈ C do7
if u ∈ U and C[w] ≥ q or u ∈ V and C[w] ≥ p then8

N2(u,G) ← N2(u,G) ∪ {w};9

q. This contradicts with the fact that any two vertices in left
side of a (p, q)-biclique must have at least q common neigh-
bors, i.e., |N (w,G) ∩ N (u,G)| ≥ q. Therefore, the lemma
holds. ��
Example 3 Following Example 2, suppose L = {u3}. Based
onLemma2,wehave that the candidate setCL ⊆ N2(u3,G),
which implies that we only need to consider u2 as the
candidate vertex to expand L , rather than all vertices in
{u0, u1, u2, u4}.

Collecting 2-hop neighbors. Algorithm 1 illustrates the
details of collecting the 2-hop neighbors of vertices in a bipar-
tite graph. For each vertex u in G, we use a hashmap C to
keep the 2-hop neighbors of u alongwith the number of com-
mon neighbors (Line 2). In the algorithm, we first search the
neighbors of u (Line 3), and then search the 2-hop neighbors
(Line 4). If the possible 2-hop neighbor is a vertex rather than
u itself, we increase the entry in C by 1 (Lines 5–6). After
processing all neighbors of u, we check the candidate 2-hop
neighbors and only keep the q-strength (resp. p-strength)
2-hop neighbors if u ∈ U (resp. u ∈ V ) (Lines 7–9).

Theorem 1 The time complexity of Algorithm 1 is
O(

∑
u∈U d(u,G)2 + ∑

v∈V d(v,G)2).

Proof The time complexity is clearly dominated by Lines 1–
6. Consider the fact that each middle vertex v is searched by
each of its neighbors (Lines 1–3) and also searched all its
neighbors (Line 4). This theorem is then immediate. ��

Size pruning. During the search processing, when the size
of vertex set is relatively small, we may stop exploiting the
current branch without missing any results.

Lemma 3 Given a partial biclique B(L, R), and the candi-
date sets CL and CR, if |L| + |CL | < p or |R| + |CR | < q,
the four sets L, R, CL , and CR cannot generate any (p, q)-
bicliques.

Table 2 The neighbor and 2-hop neighbor structure

Vertex Id N (u,G) N2(u,G)

u0 :
u1 : v3, v1
u2 : v2, v3, v4, v1, v0 u3, u1
u3 : v2, v3, v4, v5
u4 : v5

v0 :
v1 :
v2 : u1, u0 v3, v4, v1
v3 : v4, v1
v4 : u4 v5

v5 :

Proof The lemma is immediate since a (p, q)-biclique con-
tains p vertices in the left side and q vertices in the right.
��

Vertex ordering. As a frequently considered factor to
improve the efficiency of many graph search algorithms
[12,14,52], vertex ordering can be utilized to avoid gener-
ating duplicate results and thus save computation cost. In
the literature, the degree ordering [12,52] and core order-
ing [14] are two widely adopted vertex ordering strategies.
Our experimental studies in Sect. 7 show that the two order-
ings achieve comparable performance. Next, we introduce
the degree ordering since it ismore computationally efficient.

Definition 5 (Vertex Rank) Given a bipartite graph G =
(U , V , E), for a vertex u in G, the vertex rank r(u) is an
integer where r(u) ∈ [1, |U ∪ V |]. For two vertices u, v ∈
U ∪ V , r(u) > r(v) if

– d(u) > d(v), or
– d(u) = d(v) and u.id < v.id.1

Graph transformation. Given a bipartite graphG, let η be a
degree ordering on G. We say the directed bipartite graph

−→
G

is induced by the ordering η, if U (
−→
G ) := U (G), V (

−→
G ) :=

V (G), and there is an edge u → v in
−→
G if r(u) > r(v) and

(u, v) ∈ E(G).
In the rest of the paper, we slightly abuse the notation of

G to denote its induced directed graph
−→
G , unless otherwise

specified. For a vertex u inG, N (u,G) only keeps the neigh-
bors of u with a lower vertex rank than u. We have similar
changes for d(u,G) and N2(u,G). Besides, we sort vertices
inU (G), V (G), N (u,G), and N2(u,G) in descending order
of their ranks by preprocessing.

1 We assume u.id < v.id if u ∈ U and v ∈ V .
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Algorithm 2: BCList(G, p, q)
Input : G: a bipartite graph

p, q: two parameters
Output : B: all (p, q)-bicliques
Collect2HopNeighbors(G, p, q);1
Compute the rank r(u) for each u ∈ U (G) ∪ V (G);2
G ← directed version of G, where u → v if r(u) > r(v);3
VertexBasedListing(∅, ∅, U (G), V (G));4
return B;5

procedure VertexBasedListing(L , R, CL , CR)6
if |L| ≥ p and |R| + |CR | ≥ q or |R| ≥ q and |L| + |CL | ≥ p7
then

if |L| ≥ p then8
for each S ⊆ R ∪ CR : |S| = q do9

B ← B ∪ {(L, S)};10

else11
for each S ⊆ L ∪ CL : |S| = p do12

B ← B ∪ {(S, R)};13

else if |L| + |CL | < p or |R| + |CR | < q then14
return /* Lemma 3 */;15

else16
L ′ ← L , R′ ← R;17
i ← j ← 0;18
while i < |CL | and j < |CR | do19

u ← CL [i], v ← CR[ j];20
if r(u) > r(v) then21

L ′ ← L ′ ∪ {u};22
C ′
L ← CL [i + 1 :] ∩ N2(u,G); /* Lemma 2 */;23

C ′
R ← CR ∩ N (u,G); /* Lemma 1 */;24

VertexBasedListing(L ′, R′, C ′
L , C

′
R);25

L ′ ← L ′ − {u};26
i ← i + 1;27

else28
R′ ← R′ ∪ {v};29
C ′
R ← CR[ j + 1 :] ∩ N2(v,G); /* Lemma 2 */;30

C ′
L ← CL ∩ N (v,G); /* Lemma 1 */;31

VertexBasedListing(L ′, R′, C ′
L , C

′
R);32

R′ ← R′ − {v};33
j ← j + 1;34

Example 4 Following the example in Fig. 1. Assume p = 2
and q = 3. The sorted vertex order is as follows: u2, u3, v2,
u1, v3, v4, u4, v1, v5, u0, v0. Table 2 shows the neighbor and
2-hop neighbor structure of each vertex after graph transfor-
mation. Take u1 as example. Although it has 3 neighbors,
namely v1, v2, and v3, we only keep v3 and v1 in N (u1,G).
This is because v2 has a higher rank than u1. Note that ver-
tices in N (u,G) and N2(u,G) are sorted in descending order
of their ranks.

3.3 The overall algorithm of BClist

Based on the above observations, we are ready to present
BCList (Algorithm 2). We first collect the 2-hop neighbors
for vertices inG (Line 1), which is described in Algorithm 1.

Then,we compute the vertex rank for each vertex in the graph
(Line 2) and construct the induced directed graph (Line 3).
Finally, we enumerate all (p, q)-bicliques using the proce-
dure VertexBasedListing (Line 4).

In the procedure VertexBasedListing, we maintain four
vertex sets, i.e., L , R, CL , and CR , which are initialized as
∅, ∅, U (G), and V (G), respectively. During the processing
of VertexBasedListing, we first check if the current branch
can generate answers based on Corollary 1 (Line 7). For
example, if |L| ≥ p and |R| + |CR | ≥ q, we can collect
(p, q)-bicliques from L and each q-sized subset S of R∪CR

(Lines 8–10). Similarly,wemight also obtain (p,q)-bicliques
in Lines 11–13. Otherwise, we check if the current branch
can be pruned by applying Lemma 3 (Line 14). Lastly, we
search the sub-spaces (Lines 16–34).

More specifically, we iteratively select the vertices in CL

andCR to expand the partial biclique, i.e., L and R (Lines 19–
34). At each step, we choose from CL and CR the vertex
with the highest rank (Line 20). Say u (i.e., CL [i]) has a
higher rank than v (i.e., CR[ j]) (Lines 21–27). Then, L ′ is
updated by adding u to L (Line 22). Based onLemma2,C ′

L is
updated by computing the intersection of CL and N2(u,G).
Note here that we need only to consider the last |CL | − i
vertices in CL since the first i vertices have already been
checked in previous iterations (Line 23). Meanwhile, based
on Lemma 1, we can update C ′

R (Line 24). After that, we
enter the new search space formed by the vertex sets L ′, R′,
C ′
L , and C

′
R (Line 25). After finishing the new search space,

we should remove u from L ′ before going to next iteration
(Line 26). Lines 28–34 describe the symmetrical case where
r(CL [i]) ≤ r(CR[ j]).

Example 5 Following Example 4, we illustrate the overall
running process of BCList. Figure2 depicts the recursion tree
of the entire search space. Note that a recursion tree contains
three types of tree nodes: (i) open node marked by a dashed
rectangle, which we have to explore further, e.g., s0, s1, s3,
and s8; (i i) answer node marked by a green solid rectangle,
where we find (p, q)-bicliques, e.g., s2 and s4; (i i i) closed
node marked by a red solid rectangle, which can be pruned
safely, e.g., s5, s6, s7, and s9. Clearly, both answer and closed
nodes are leaf nodes, while open node is an inner node.

We start from the root node s0 and iteratively search
the sub-spaces in a depth-first manner by selecting vertices
from the candidate sets following the vertex rank order. By
selecting u2, we enter node s1, where the candidate vertex
sets are updated accordingly. In particular, we have CL =
CL ∩ N2(u2,G) = {u3, u1} and CR = CR ∩ N (u2,G) =
{v2, v3, v4, v1, v0} based on Lemma 2 and Lemma 1, respec-
tively. Clearly, we cannot prune s1 by Lemma 3 or generate
answers by Corollary 1. Therefore, we expand node s1, and
enter the child node s2, where a (p, q)-biclique is found
according to Corollary 1, i.e., ({u2, u3}, {v2, v3, v4}). Con-
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Fig. 2 (Partial) Recursion tree of the running example of BCList in Fig. 1 (p = 2 and q = 3)

tinuing this processing, we can find another result node s4
with a (p,q)-biclique ({u1, u2}, {v1, v2, v3}), while all closed
nodes can be pruned by Lemma 3.

3.3.1 Analysis of BCList

Below we first show the correctness of BCList and then ana-
lyze the time and space complexity of BCList.

Theorem 2 BCList enumerates (p, q)-bicliques correctly.

Proof We prove the correctness of BCList according to the
following three aspects, namely soundness, completeness,
and no duplication. Soundness BCList only collects answers
in Line 10 and Line 13, where the soundness is guaranteed
by Corollary 1. Completeness Consider an arbitrary (p, q)-
biclique B(L, R) inG.We prove that B(L, R) is contained in
an answer node s in the recursion tree. Let u and v be the last
vertex in L and R, respectively. Let s′ = (L ′, R′,C ′

L ,C ′
R) be

a tree nodewith L ′ = L−{u} and R′ = R−{v}. As long as s′
is in the recursion tree, s must be in the tree. This is because
B(L, R) is a biclique and we have u ∈ C ′

L and v ∈ C ′
R , and

therefore, s must be expanded from s′ by selecting any of
the two vertices u and v. Now, we repeat this process until
reaching the root node (∅,∅,U (G), V (G)). Thus, B(L, R)

must be returned by BCList.No duplicationConsider an arbi-
trary (p, q)-biclique B(L, R) in G. Let s be the node in the
recursion tree containing B(L, R). Since we generate the (p,
q)-bicliques on the induced directed graph, where neighbors
and 2-hop neighbors are only kept on the vertices with higher
ranks, it is immediate that s is expanded from the root node
(∅,∅,U (G), V (G)) following a unique path in the recursion
tree. Therefore, B(L, R) is enumerated only once. ��

Next we focus on the recursion procedure VertexBas-
edListing when analyzing the time complexity of BCList.
Note that the time complexity to preprocess the graph for
collecting 2-hop neighbor is shown in Theorem 1.

Theorem 3 The time complexity of BCList is O((|U (G)| +
|V (G)|)(dmax+d2max)

p+q−2), where dmax and d2max are the

maximum degree and 2-hop degree of a vertex in G, respec-
tively.

Proof The time complexity of BCList is clearly determined
by the number of tree nodes in the recursion tree. For
an open node s = (L, R,CL ,CR), the number of child
nodes is |CL | + |CR |. We observe that |CL | = |U (G)| and
|CR | = |V (G)| if s is root, otherwise, |CL | and |CR | are
bounded by d2max and dmax, respectively. Besides, the depth
of the recursion tree is bounded by p + q − 1 since we
expand the partial biclique with one vertex each time. By
ignoring the pruning, we have that the total time complexity
is O((|U (G)| + |V (G)|)(dmax + d2max)

p+q−2). ��

Theorem 4 The space complexity of BCList is O(|E(G)| +
|U (G)|2 + |V (G)|2).

Proof The space to store adjacent lists is O(|E(G)|). In the
worst case, for a vertex u ∈ U (G), any other vertices in
U (G) may be a 2-hop neighbor u. Thus, the overall worst-
case space complexity is O(|E(G)| + |U (G)|2 + |V (G)|2).

��

3.4 Discussion for counting problem

To solve the counting problem, we only need to do minor
changes for BCList. Specifically, in Lines 9–10 and Lines 12–
13 of Algorithm 2, we count the number of results by using(|S|
q

)
and

(|S|
p

)
, respectively, rather than enumerating each sub-

set of S.

4 An advanced approach

In this section, we propose an advanced approach, namely
BCList++, to solve the problem of (p, q)-biclique counting
and enumeration.
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4.1 Motivation

Although BCList offers a useful computation framework to
our problem, our empirical study suggests that it still has the
following two drawbacks.

• Drawback 1: Large Search Space The recursion proce-
dure VertexBasedListing in BCList utilizes a vertex ordering-
based strategy to expand the search space, which may lead to
a large search space in terms of both depth and width of the
recursion tree when the value of p + q is large. As a result,
it can be inefficient since the time complexity of BCList is
exponential to p + q (see Theorem 3 for detials).

• Drawback 2: Inefficient Direct Implementation The
direct implementation of BCList does not yield an efficient
algorithm because it has to produce and store a large number
of intermediate subgraphs. That is, we have to produce new
L , R, CL , and CR for each node in the recursion tree. It is
costly to frequently create such data structures.

The advanced approach – BCList++. Based on the above
analysis, we consider the following two aspects to alleviate
the drawbacks of BCList.

• To resolve Drawback 1, we apply a layer-based explor-
ing strategy to enumeration (p, q)-bicliques by anchoring the
search on either U or V only. This exploring strategy leads
to a time complexity exponential to either p or q (see The-
orem 6). To deal with the unbalanced bipartite graphs and
queries with different p and q, we develop an efficient and
effective cost model to choose a layer with the least compu-
tation cost.

• To tackle Drawback 2, we implement BCList++ using
pre-allocated arrays and vertex labelling techniques such that
the frequent subgraph creating operations can be substituted
by array element switching operations. By using these data
structures and operations, we only need to create them once
during the entire processing of the algorithm.

4.2 BCList++ algorithm

We begin with the important concept of 2-hop graph.

Definition 6 (2-Hop Graph) Given a bipartite graph G =
(U , V , E) and a pair of parameters p and q, the 2-hop graph
H = (U , E) ofG is a graph induced byG with the following
properties2:

(1) U (H) := U (G); and
(2) ∀u, v ∈ U (H), (u, v) ∈ E(H) if u and v are 2-hop

neighbors in G.

2 The construction of H based on V (G) is similar.

Fig. 3 2-hop graph H and vertex neighbor structures

Given a bipartite graph G and its induced 2-hop graph H ,
for each u ∈ U (H), the neighbors of u in H are denoted as
N (u, H) = {v|(u, v) ∈ E(H)}, while N (u,G) is reserved
to keep neighbors of u inG. Note that, we transform H into a
directed acyclic graph (DAG) and sort vertices inU (H) and
N (u, H) in descending order of their ranks as well.

Example 6 Continuing our running example, Fig. 3a shows
the induced 2-hop graph H of G, which contains two edges,
i.e., u2 → u1 and u2 → u3. This is because there are only
two pairs of 2-hop neighbors (i.e., 〈u1, u2〉 and 〈u2, u3〉)
among vertices inU (H), Fig. 3b presents the neighbor struc-
tures of vertices in H . Note that, for each vertex u ∈ U (H),
N (u,G) contains all neighbors of u in G.

Moreover, given a 2-hop graph H , a clique c is a complete
subgraph of H by ignoring the edge direction.We say a clique
c is a p-clique if the number of vertices in c is p. For example,
(u1, u2) is a 2-clique in Fig. 3a.

The details of BCList++. Algorithm 3 illustrates the details
of our advanced method BCList++. We first choose the layer
with least cost as anchor layer, i.e., U (G), by using a cost
model (Lines 1–3), which is introduced in detail in Sect. 4.3.
Then, we collect the 2-hop neighbors for each vertex inU (G)

(Line 4) and compute the vertex ranks according to the 2-
hop degree of a vertex (Line 5). Next, we construct the 2-
hop graph H based on vertices in U (G) (Line 6). In Line 7,
we initialize a set of p empty arrays to store the common
neighbors in G for vertices in U (H). Finally, we enumerate
all (p, q)-bicliques using LayerBasedListing (Line 8).

Generally, in LayerBasedListing, we recursively enumer-
ate p-cliques on H and simultaneously collect their common
neighbors in G using vectors S. By combining the two parts
together, we retrieve the (p, q)-bicliques.

Specifically, we use L to store the clique in H and start
fromdepth 0 (i.e., l = 0). During the processing of LayerBas-
edListing, we first check if l = p (Line 11), which implies
that we have traversed p steps and a p-clique is found. We
simply collect (p, q)-bicliques from L and each q-sized sub-
set R of S[l − 1] (Lines 12–13). Otherwise, we iteratively
select vertex u ∈ U (H) to expand the clique L (Lines 14–
22). We start by computing the common neighbors of u and
previous vertices in L using S[l]. Particularly, if l = 0, we

123



1146 J. Yang et al.

Algorithm 3: BCList++ (G, p, q)
Input : G: a bipartite graph

p, q: two parameters
Output : B: all (p, q)-bicliques
if Cost(U (G), p) > Cost(V (G), q) then1

Swap(U (G), V (G));2
Swap(p, q);3

Collect2HopNeighbors(G, p, q); /* for vertices in4
U (G) */;
Compute the rank r(u) for each u ∈ U (G);5
Construct 2-hop graph H on U (G);6
S ← p arrays initialized as empty;7
LayerBasedListing(0, H , ∅);8
return B;9

procedure LayerBasedListing(l, H , L)10
if l = p then11

for each R ⊆ S[l − 1]: |R| = q do12
B ← B ∪ {(L, R)};13

for each u ∈ U (H) do14
if l = 0 then15

S[l] ← N (u,G);16

else17
S[l] ← S[l − 1] ∩ N (u,G) ;18

if |S[l]| < q or |N (u, H)| < p − l − 1 then19
Continue;20

Construct subgraph H ′ of H induced by N (u, H);21
LayerBasedListing(l + 1, H ′, L ∪ {u});22

simply add all vertices in N (u,G) to S[l] (Line 16). Other-
wise, S[l] is computed by the intersection between S[l − 1]
and N (u,G) since S[l − 1] stores the common neighbors of
existing vertices in L (Line 18). After that, we may be able
to skip the current branch if the number of common neigh-
bors is less than q (i.e., |S[l]| < q), or there is not enough
vertices to expand L (i.e., |N (u, H)| < p − l − 1). Last, we
construct subgraph H ′ of H induced by N (u, H) and enter
the sub-space by expanding L with u (Lines 21–22).

Example 7 Continuing Example 6, we illustrate the over-
all running processing of BCList++. Since the vertices in
U (H) are u2, u1, u3, u0, u4, we start from u2. Thus, we have
S[0] = N (u2,G) = {v0, v1, v2, v3, v4}, and the induced
subgraph H ′ contains two isolated vertices u1 and u3 since
N (u2, H) = {u1, u3} (see Fig. 3). We search the sub-space
by adding u2 to L . Next, we consider u1 and have that
S[1] = {v1, v2, v3} by computing the intersection between
S[0] and N (u1,G). Meanwhile, H ′ is empty due to the fact
that N (u1, H) is empty. After adding u1 to L , we enter the
new search space. Since we have l = p = 2 at this point,
we begin to enumerate (p, q)-bicliques by L and S[1], where
({u1, u2}, {v1, v2, v3}) is found. Continuing this processing,
we can find another (p, q)-biclique ({u2, u3}, {v2, v3, v4}).
Theorem 5 BCList++ enumerates (p, q)-bicliques correctly.

Proof Weprove the correctness of BCList++ according to the
following three aspects, namely soundness, completeness,
and no duplication. Soundness Consider an answer B(L, R)

returned in Line 13. We first prove that |L| = p. Since H ′
is always constructed by the out-neighbors of u and H is a
DAG, we have that L is a vertex set expanded p times with
different vertices. Thus, |L| = p. Together with the fact that
R is a q-sized subset of common neighbors of vertices in
L , we have that B(L, R) is a (p, q)-biclique. Completeness
Consider an arbitrary (p, q)-biclique B(L, R) inG.We prove
B(L, R) must be returned in Line 13. To this end, we only
need to prove that L is processed in Line 13 since vertices in
R are common neighbors of L . Since L is contained in a (p,
q)-biclique, we have that, for any two vertices u, v ∈ L , u
and v are 2-hop neighbors. Therefore, L is a p-clique in H
and must be processed in Line 13. No duplication Since H is
a DAG, it is easy to see that LayerBasedListing enumerates
p-cliques without duplications. Therefore, it follows that the
(p,q)-bicliques returned inLine 13 do not contain duplicates.

��

Efficient implementation. BCList++ can be implemented
efficiently using the following data structures and operations
which are an adaption of the ones used in [12,14] for listing
cliques in generic graphs. Note that the only frequently con-
structed object is the DAG H in Line 6 and Line 21. This
is because L in LayerBasedListing can be represented as an
array of size p and S are a set of p arrays.

For each vertex u ∈ U (H), we use an adjacency list
N (u, H) to store its out-neighbors. No other adjacency lists
will be created during the processing BCList++. Specifically,
given the current 2-hop graph H in the recursion, we make
sure that the out-neighbors of any vertex in H always appear
first in N (u, H). Given H and a vertex u, the subgraph H ′
induced by N (u, H) is built as follows.

– Assign each vertex a label initially set to 0.
– For each v ∈ N (u, H), set its label to l + 1 if its current
label is equal to l. It ensures that v is in the new DAG H ′
induced by N (u, H).

– For each v ∈ N (u, H), move all the neighbors in
N (v, H) with label equal to l + 1 in the first part of
N (v, H) (by swapping vertices) and compute the out-
degree of vertex v in the newDAG H ′ to update d(v). The
first d(v) vertices in N (v, H) are thus the out-neighbors
of v in H ′.

– For each v ∈ N (u, H), set its label back to l after finish-
ing a recursion search branch.
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4.3 Cost analysis

In this section, we first analyze the time and space complex-
ity of BCList++ and then introduce the cost model used by
BCList++.

4.3.1 Time and space complexity analysis

We focus on analyzing the time complexity of themain recur-
sion procedure LayerBasedListing. To this end, we follow the
methodology used in [12], which studies the parameterized
complexity. Particularly, we use the concept of arboricity
a(H), which is defined as the minimum number of edge-
disjoint spanning forests into which H can be decomposed.

Theorem 6 The time complexity of BCList++ is O(a(H)p−2

|E(H)|dmax + �) where dmax is the maximum degree of a
vertex in U and � is the result size.

Proof The time cost of LayerBasedListing can be divided
into three parts, including (i) Lines 11–13, (i i) Lines 15–
18, and (i i i) Line 21. Since Lines 11–13 simply return
the answers, it is immediate that the time cost of (i) is
O(�). Since LayerBasedListing essentially enumerates all
p-cliques on H , where the specific implementation fol-
lows that in [12], we have that the time cost of (i i i) is
O(a(H)p−2|E(H)|) as shown in [12]. Now, since the num-
ber of executions for (i i) can be bounded by O(a(H)p−2

|E(H)|) and the time for each execution is O(dmax), the time
cost of (i i) is at most O(a(H)p−2|E(H)|dmax). Therefore,
the overall time complexity is O(a(H)p−2|E(H)|dmax+�).

��
Theorem 7 The space complexity of BCList++ is O(|E(G)|+
|E(H)|).
Proof Apart from the bipartite graph G and its 2-hop graph
H , the only informationwe need to store is the p vectors (i.e.,
S in Line 7) to collect the common neighbors of vertices in
p-cliques on H . The space for this part is clearly bounded by
graph size (i.e., |E(G)|). Thus, the theorem is immediate. ��

4.3.2 Cost model analysis

In BCList++, the first step is to choose the layer with the least
computation cost to construct the 2-hop graph H (Lines 1–3
inAlgorithms 3). Theorem6 implies that we need to compute
the arboricity a(H) of H , which is suggested as an open
problem [20]. Harold [19] proposes a parametric flow-based
method to compute the arboricity of an undirected graphG =
(V , E) with a time complexity of O(|V ||E | log(|V |2/|E |)),
which is, however, computationally costly for large graphs.

In practice, we observe that the average degree is a good
substitution for the arboricity, since both of them are used to

Algorithm 4: DegreeEstimator(G, p, q)
Input : G : a bipartite graph G

p, q : two parameters
Output : An estimate of D
Choose a vertex u from U (G) uniformly at random;1
Du ← TwoHopDegree(u);2
return n · Du3

procedure TwoHopDegree(u)4
Du ← 0;5
C ← hashmap; /* initialized with zero */;6
for each v ∈ N (u,G) do7

for each w ∈ N (v,G) do8
if u �= w then9

C[w] ← C[w] + 1;10

for each w ∈ C do11
if C[w] ≥ q then12

Du ← Du + 1;13

return Du14

measure the “density” of a graph. Therefore, we use average
degree to estimate the computation cost of BCList++ due to
its high computation efficiency. A straightforward way is to
directly compute the 2-hop neighbors for vertices in both
layers using Algorithm 1. However, Theorem 1 shows that it
is expensive to compute the exact 2-hop degree for all vertices
in G.

In the following, we resort to a random sampling method
to approximate the total 2-hop degree D for a given layer, say
U (G). The intuition is to use the 2-hop degree of a sampled
vertex to estimate the total 2-hop degree of vertices inU (G).
Since the sampled local subgraph is typically much smaller
than the original graph G, it is cost-saving to compute the
2-hop degree of sampled vertex instead.
Degree estimation Algorithm 4 illustrates the details of our
degree estimation method. Note that we only introduce the
computation for layer U (G), and computation for V (G) is
similar. In each sampling, we choose a vertex u from U (G)

uniformly at random (Line 1). We then compute the 2-hop
degree Du of u using procedure TwoHopDegree (Line 2).
Here, we skip introducing the details since it is basically
a subroutine of Algorithm 1. Last, we return n · Du as an
estimation for the total 2-hop degree of vertices in U (G),
where n = |U (G)| (Line 3). It is easy to verify that the time
complexity of DegreeEstimator isO(d(u)dmax), wheredmax

is the maximum degree of vertices in V (G).
Next, we show that Algorithm 4 yields an unbiased esti-

mation for the total degree of H . Let Y denote the value
returned by Algorithm 4. Let D denote the true value of total
degree of H . Let ps denote the number of degree pairs that
attaching the same vertex. We have the following lemma.

Lemma 4 E[Y ] = D, and Var[Y ] ≤ n(D + ps) − (D
2

)
.
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Proof Let X = Du , the degree of the uniformly sampled
vertex u. Consider that the degree in H is numbered from
1 to D. For i = 1, ..., D, let Xi be an indicator random
variable equal to 1 if the i th degree is attaching the vertex u.
We have X = ∑D

i=1 Xi . Since each degree must come from

a single vertex, we have that E[Xi ] = Pr[Xi = 1] = 1

n
.

Thus, E[X ] = E[∑D
i=1 Xi ] = ∑D

i=1 E[Xi ] = D

n
. Since

Y = n · X , we have that E[Y ] = n · E[X ] = D.
Next, we discuss the variance of Y .

Var[Y ] = Var[n
D∑

i=1

Xi ] = n2Var[
D∑

i=1

Xi ]

= n2(
D∑

i=1

Var[Xi ] +
∑

i �= j

Cov(Xi , X j ))

= n2(
D∑

i=1

(E[X2
i ] − (E[Xi ])2)

+
∑

i �= j

(E[Xi X j ] − E[Xi ]E[X j ]))

To calculate the covariance of two random variables Xi

and X j , we evaluate the joint probability of different degrees
being sampled together. Clearly, the set of all degree pairs can
be divided into two categories, namely attaching the same
vertex and attaching different vertices.

For these attaching different vertices, there is zero prob-
ability that two degrees are sampled together since we only
draw a single vertex each time. Hence, E[Xi X j ] = 0 and

Cov(Xi , X j ) = − 1

n2
.

For these attaching the same vertex, E[Xi X j ] = Pr[Xi =
1, X j = 1] = Pr[Xi = 1]Pr[X j = 1|Xi = 1] = 1

n
·1 = 1

n
.

Thus, Cov(Xi , X j ) = 1

n
− 1

n2
.

Recall that ps denote the number of degree pairs attach-
ing the same vertex. Further, by pd , we denote the number
of degree pairs attaching different vertices. Since the total
degree is D, we have that pd + ps = (D

2

)
.

Therefore, we have that Var[Y ] = n2(D(
1

n
− 1

n2
) +

pd(− 1

n2
) + ps(

1

n
− 1

n2
)) = D(n − 1) + nps − pd − ps =

D(n − 1) − (D
2

) + nps ≤ n(D + ps) − (D
2

)
. ��

Let Z be the average of r independent instances of Y .
According to the fact that Var[Z ] = Var[Y ]/r and Cheby-

shev’s inequality, we have Pr[|Z − D| ≥ εD] ≤ Var[Z ]
ε2D2 =

Var[Y ]
rε2D2 . Next, we show that by running Algorithm 4 multi-

ple independent instances, we can obtain an (ε, δ)-estimator
using standard method.

Lemma 5 There is an algorithm that runs r = n

ε2δ
(
1

D
+

ps
D2 )− 1

2ε2δ
independent times of Algorithm 4 and provides

an (ε, δ)-estimator of D.

Proof Since Pr[|Z−D| ≥ εD] ≤ Var[Y ]
rε2D2 , let δ = Var[Y ]

rε2D2 .

It is easy to obtain that r = n

ε2δ
(
1

D
+ ps

D2 ) − 1

2ε2δ
. ��

Overall cost model We now proceed to estimate the over-
all computational cost of LayerBasedListing. According to
Theorem 6, for layer U (G), we have

Cost(U (G), p) = (D/|U (G)|)p−2Ddmax (1)

where D is estimated by Algorithm 4, and dmax is the maxi-
mum degree of vertices in U (G). The cost on V (G) can be
computed similarly. We omit � for both Cost(U (G), p) and
Cost(V (G), q).

5 Optimizations

In this section, we develop optimizations to further boost the
performance of our proposals.

5.1 Graph reduction

We proceed to show how to reduce the bipartite graph by
exploiting some properties of our problem.

Core reduction. To reduce the size of the bipartite graph,
a promising way is to remove vertices having degrees that
are small enough. This is because a vertex u contributing a
(p, q)-biclique must have degree at least q if u ∈ U (G),
otherwise p. We can repeat this operation until all remain-
ing vertices satisfy this condition. Particularly, the remaining
subgraph can be formally formulated by the so-called (α, β)-
core, which is defined as below [16,30].

Definition 7 ((α, β)-core) Given a bipartite graph G =
(U , V , E), and two integers α and β, the (α, β)-core of G,
denoted byCα,β(G), is a maximal subgraph ofG induced by
two vertex setsUC ⊆ U and VC ⊆ V , in which all vertices in
UC have degree at least α and all vertices in VC have degree
at least β, i.e., ∀u ∈ UC , d(u) ≥ α ∧ ∀v ∈ VC , d(v) ≥ β.

Given a bipartite graph G, the state-of-the-art algorithm
computes its (α, β)-core in linear time (i.e.,O(|E(G)|)) [16].
Intuitively, it computes (α, β)-core by iteratively removing
vertices in U (G) with degree smaller than α and vertices

123



(p,q)-biclique counting and enumeration... 1149

Algorithm 5: BCList++ IN PARALLEL
Line 1-Line 7 of Algorithm 3;1
for each u ∈ U (H) in parallel do2

Construct subgraph H ′ of H by N (u, H);3
LayerBasedListing(1, H ′, {u});4

in V (G) with degree smaller than β until no more vertices
can be removed. Based on the (α, β)-core, we derive the
following lemma.

Lemma 6 Given a bipartite graph G = (U , V , E) and two
integers p and q, let C be the (q, p)-core of G. Then, for
any (p, q)-biclique B(L, R) exists in G, B must be in C, i.e.,
∀B(L, R) ⊆ G, we have B ⊆ C.

Proof We prove by contradiction. Suppose B(L, R) exists in
G while not in C . Then, there must be at least one vertex in
B(L, R) not existing in C , say u ∈ L . According to Defi-
nition 7, we have that d(u,G) < q, which is contradicted
to the fact that d(u,G) ≥ q must hold since u is in a (p,
q)-biclique. Thus, the lemma is complete. ��

Based on Lemma 6, we can safely reduce the size of the
bipartite graph without missing results, which can be applied
to both BCList and BCList++.

Example 8 Continuing our running example in Fig. 1 with
p = 2 and q = 3, we compute (3, 2)-core as follows. We
first remove u0 and v0. Then, we remove u4 since d(u4) = 2
which is smaller than q = 3. After that, v5 can be removed
since currently d(u5) = 1. At this point, no more vertex can
be further removed, and the remaining subgraph is a (3, 2)-
core. The number of vertices in the graph is reduced from 11
to 7.

5.2 Parallelization

One appealing property of BCList is that it can enumerate (p,
q)-bicliques in parallel when multiple threading is available.
That is because the entire search space of (p, q)-bicliques
is materialized by a recursion tree, in which the answers fall
only in the leaf nodes. BCList can use a thread to process a
subtree of the recursion tree to enumerate a sub-space inde-
pendently.

Our empirical studies show that BCList++ is much more
efficient and scalable on large datasets. Therefore, in this
paper, we focus on parallelizing BCList++. Particularly, we
initiate a thread for each subgraph H ′ of the 2-hop graph H
induced by each vertex u ∈ U (H). Algorithm 5 illustrates
the details of parallel version of BCList++. Specifically, we
only need to replace Line 8 of Algorithm 3 with Lines 2–4
of Algorithm 5.

Fig. 4 An example uncertain bipartite graph G

6 Handling uncertain graphs

In this section, we extend our techniques to handle uncer-
tain bipartite graphs. We first give the problem definition in
Sect. 6.1. We then introduce a baseline method in Sect. 6.2,
followed by an improved method in Sect. 6.3.

6.1 Problem definition

Definition 8 (Uncertain Bipartite Graph) An uncertain
bipartite graph is a pair G = (G, P), where G = (U , V , E)

is a deterministic bipartite graph, and P : E → (0, 1] is a
mapping function assigned to each edge e ∈ E a nonzero
existential probability Pr(e) ∈ (0, 1].

Given an uncertain bipartite graph G = (G, P), we also
say G is the backbone of G. An example uncertain bipar-
tite graph is shown in Fig. 4. In this paper, we follow the
conventional Possible World Semantics [3,24,32,58]. More
specifically, we assume the existential probability of each
edge in G is independent of each other, and G can be inter-
preted by a set of 2|E | possible worlds {G0, ...,G2|E |−1},
where each possible world Gi represents one possible out-
come by randomly determining if each edge e ∈ E exists
in Gi based on Pr(e). The existential probability of each
possible world Gi ∈ G can be computed as follows.

Pr(Gi ) =
∏

e∈E(Gi )

Pr(e)
∏

e∈E\E(Gi )

(1 − Pr(e)). (2)

Based on the above uncertain bipartite graph model, we
have the following lemma which is the foundation of the
methodology presented in this section.

Lemma 7 Given an uncertain bipartite graph G = (G, P),
for any substructure g ⊆ G, the existential probability of g
can be calculated by Pr(g) = ∏

e∈E(g) Pr(e).

Proof According to the possible world semantics, the exis-
tential probability of g is the total sum of existential prob-
abilities for all possible worlds containing g. We divide the
edges inG into two groups, including E(g) and E(G)\E(g).
Clearly, each existence status for edges in E(G) \ E(g)
defines a unique possible world that contains g. By G̃, we
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denote these 2|E(G)\E(g)| possible worlds. Then, we have:

Pr(g) = Pr(G̃) =
∑

Gi∈G̃
Pr(Gi )

=
∑

Gi∈G̃

∏

e∈E(g)

Pr(e)

·
∏

e∈E(Gi )\E(g)

Pr(e)
∏

e∈E\E(Gi )

(1 − Pr(e))

=
∏

e∈E(g)

Pr(e)

·
∑

Gi∈G̃

∏

e∈E(Gi )\E(g)

Pr(e)
∏

e∈E\E(Gi )

(1 − Pr(e))

=
∏

e∈E(g)

Pr(e),

where the last step is based on Law of Total Probability. ��
Next, we introduce the concept of uncertain (p, q)-

biclique, followed by its counting and enumeration problem.

Definition 9 (Uncertain (p, q)-biclique) Given an uncertain
bipartite graph G = (G, P), and two integer parameters p
and q, an uncertain (p, q)-biclique is topologically a (p, q)-
biclique in the backbone graph G.

Based on Lemma 7, the existential probability of an
uncertain (p, q)-biclique B can be calculated by Pr(B) =∏

e∈E(B) Pr(e). For instance, the existential probability of
the (2, 2)-biclique ({u0, u1}, {v1, v2}) in Fig. 4 is 0.6×0.5×
0.7 × 0.8 = 0.168.

Problem statement. Given an uncertain bipartite graph
G = (G, P), two integers p and q, and an existential prob-
ability threshold t , we study the problem of counting and
enumerating uncertain (p, q)-bicliques in G whose existen-
tial probability are greater than or equal to t .

Example 9 Consider the uncertain bipartite graph in Fig. 4.
Assuming that p = q = 2 and t = 0.1, there is only one
uncertain (p, q)-biclique, i.e., ({u0, u1}, {v1, v2}). Note that,
although ({u2, u3}, {v3, v4}) is also a (2, 2)-biclique, it is not
a final result because its existential probability is 0.06 < t .

6.2 A baselinemethod

In this section, we develop a baseline method to the uncertain
(p, q)-biclique counting and enumeration problem.

A promising baseline method is to extend the algorithms
for the deterministic variation of our problem, such as BCList
and BCList++ proposed in previous sections. Here, we focus
on extending BCList++ due to its superior performance

Algorithm 6: UBCList (G, p, q, t)
Input : G: an uncertain bipartite graph

p, q: two integer parameters
t : uncertainty threshold

Output : B: all uncertain (p, q)-bicliques
G ← Reduce G by discarding edges with existential probability1
lower than t ;
G ← Extract the backbone of G;2
Lines 3-3 of Algorithm 3;3

procedure LayerBasedListing(l, H , L)4
if l = p then5

for each R ⊆ S[l − 1]: |R| = q do6
B ← (L, R);7
if Pr(B) ≥ t then8

B ← B ∪ {B};9

Lines 3-3 of Algorithm 3;10

improvement over BCList as suggested in our experimen-
tal studies in Sect. 7. The main idea of our baseline method
is to enumerate (p, q)-bicliques on the backbone graph and
return these satisfying the existential probability threshold.
To accelerate the computation, we can reduce the uncer-
tain bipartite graph by discarding edges with existential
probability lower than the probability threshold. It is worth
mentioning that all the graph reduction techniques inSect. 5.1
are also applicable to the methods developed in this section.

Lemma 8 Given an edge e and the existential probability
threshold t, if Pr(e) < t , then e cannot be a part of any
uncertain (p, q)-bicliques.

Proof Since all probabilities must not be larger than 1, this
lemma can be proved trivially. ��

Algorithm details. Algorithm 6 illustrates the details of the
baseline algorithm UBCList. We first reduce the graph by
discarding edges with existential probability lower than the
threshold t (Line 1). Then, we extract the backbone graph G
of the uncertain bipartite graphG (Line 2). Last, we utilize the
same strategy of BCList++ to enumerate the (p, q)-bicliques
on the backbone graph G (Line 3). The only difference is the
result verification where we only keep (p, q)-bicliques with
existential probability no less than t (Line 8–9). The correct-
ness of UBCList is immediate since it explicitly examines all
(p, q)-bicliques on the backbone graph. The time and space
complexity of UBCList are the same as BCList++.

6.3 An improvedmethod

In the baseline method, we need to enumerate all (p, q)-
bicliques in the backbone bipartite graph and then discard
those with existential probability lower than the thresh-
old. One may ask the following question. Can we discard
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Fig. 5 An example of intermediate search state

some unpromising (p, q)-bicliques earlier before enumerat-
ing them completely? We answer this question positively. In
this section, we develop efficient pruning techniques to boost
the computation performance.

Early candidate discarding. Recall that, Lemma 8 states
that we can safely reduce the size of the uncertain graph by
removing edges with probability lower than the probability
threshold. In fact, we can generalize this logic to any other
graphlet structures of a (p, q)-biclique. By taking the existen-
tial probability into consideration, we can further refine the
common neighbor set or even terminate the current search
branch early. Next, we start with the concept of k-star.

Definition 10 (k-Star) Given an uncertain bipartite graph
G = (G, P), a k-star of G is a subgraph of G induced by
a vertex in G and its k neighbors.

We say a k-star, denoted by sv , is anchored on vertex v

if v is the center vertex; that is sv is induced by v and its k
neighbors. Clear, a k-star s consists of k edgeswith a common
end vertex, and the existential probability of s is calculated
by Pr(s) = ∏

e∈E(s) Pr(e) according to Lemma 7.

Common neighbors refinement. Recall that, in BCList++,
we generate (p, q)-bicliques by recursively enumerating p-
cliques on the 2-hop graph H , and simultaneously collecting
their common neighbors in G. Specifically, in Lines 3-3 of
Algorithm 3, we collect the common neighbors of vertices in
the partial clique. In the following discussion, we focus on
a specific search state of BCList++, which is represented by
�(L,C), where L is a k-clique in H with 1 ≤ k ≤ p, and
C is a set of common neighbors of L in G. The following
lemma states that we can refine the common neighbors C
by removing vertices with k-star probability lower than the
existential probability threshold.

Lemma 9 Given a search state �(L,C) and the existential
probability threshold t, let v be a vertex in C and sv be the
k-star induced by v and the k vertices in L. Then, v can be
removed from C if Pr(sv) < t .

Proof Since L is the partial clique, for any vertex v ∈ C , v
must be connecting to all k vertices in L . Due to the fact all

probabilities must be lower than 1, the k-star sv cannot be a
part of any (p, q)-biclique if Pr(sv) < t . Therefore, v can
be removed from C . ��
Example 10 Consider the example inFig. 5,whereweassume
p = 3, q = 2, and t = 0.4. In the current search state,
we have L = {u0, u1} and C = {v0, v1, v2, v3}. Based on
Lemma 9, we can remove v3 from C since its corresponding
2-star existential probability is 0.3 < t .

Branch early termination. During the search processing,
if the existential probability of the k-star of vertices in C
is small enough, we may stop exploiting the current branch
without missing any results.

Lemma 10 Given a search state �(L,C) and the existential
probability threshold t, let 	 be the q vertices in C with
the largest k-star existential probability. Then, we can stop
exploiting the current branch if 
v∈	 Pr(sv) < t .

Proof Given any uncertain biclique B generated under the
current search branch, B must contain q vertices inC , which
we denote by 	 ′. Then, we have Pr(B) ≤ 
v∈	 ′ Pr(sv) ≤

v∈	 Pr(sv) < t , where the first inequality follows the facts
that a biclique must contain all stars of the q vertices in 	 ′
and all probabilities must be lower than 1. ��
Example 11 Continuing the example in Fig. 5, we have that
	 = {v0, v1} because they have the largest 2-star existential
probability. Now, since Pr(sv0)Pr(sv1) = 0.9×0.7×0.8×
0.7 = 0.3528 which is smaller than the probability threshold
t = 0.4, we can stop exploiting the current search branch.

Corollary 2 Given a search state�(L,C) and the existential
probability threshold t, let	 be theq−1 vertices inC with the
largest k-star existential probability. Then, for any vertexw ∈
C−	, it can be removed fromC if Pr(sw)
v∈	 Pr(sv) < t .

Clearly, Corollary 2 is a generic case of Lemma 10, which
can be employed to further refine the common neighbors of
vertices in the partial clique.

6.3.1 IUBCList algorithm

Algorithm 7 illustrates the details of our improved method
IUBCList. In general, it adopts the samecomputationparadigm
as the baseline method as shown in Lines 1–3. The improve-
ment is achieved in the recursive searching step by making
use of the k-star structure.

In specific, when collecting the common neighbors of the
vertex u and previous vertices in L , we also calculate the
k-star existential probability and only keep these with exis-
tential probability no smaller than t (Lines 16–20). After that,
we may be able to skip the current branch if the number of
common neighbors is less than q (i.e., |S[l]| < q), or there is
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Algorithm 7: IUBCList (G, p, q,t)
Input : G: an uncertain bipartite graph

p, q: two integer parameters
t : uncertainty threshold

Output : B: all uncertain (p, q)-bicliques
G ← Reduce G by discarding edges with existential probability1
lower than t ;
G ← Extract the backbone of G;2
Lines 3-3 of Algorithm 3;3

procedure LayerBasedListing(l, H , L)4
if l = p then5

for each R ⊆ S[l − 1]: |R| = q do6
B ← (L, R);7
if Pr(B) ≥ t then8

B ← B ∪ {B};9

for each u ∈ U (H) do10
if l = 0 then11

for each v ∈ N (u,G) do12
s ← (v, Pr(u, v)); /* Create 1-star */;13
S[l].append(s);14

else15
for each (v, Pr) ∈ S[l − 1] do16

Pr ← Pr ∗ Pr(u, v);17
if v ∈ N (u,G) and Pr ≥ t then18

s ← (v, Pr); /* Create k-star */;19
S[l].append(s);20

if |S[l]| < q or |N (u, H)| < p − l − 1 then21
Continue;22

	 ← q vertices in S[l] with the largest k-star existential23
probability;
if 
v∈	 Pr(sv) < t then24

Continue;25

	 ← q − 1 vertices in S[l] with the largest k-star existential26
probability;
for each w ∈ S[l] − 	 do27

if Pr(w) ∗ 
v∈	 Pr(sv) < t then28
S[l] ← S[l] \ {w};29

Construct subgraph H ′ of H induced by N (u, H);30
LayerBasedListing(l + 1, H ′, L ∪ {u});31

not enough vertices to expand L (i.e., |N (u, H)| < p−l−1).
We may also be able to skip the current branch if the k-
star probabilities are small enough based on Lemma 10
(Lines 23–25). Besides, we may further refine the common
neighbors of vertices in L according toCorollary 2 (Lines 26–
29).

Theorem 8 IUBCList enumerates uncertain (p, q)-bicliques
correctly.

Proof On the one hand, it is clear that IUBCList is built upon
BCList++, which implies that the uncertain (p, q)-bicliques
enumerated by IUBCList are topologically correct. On the
other hand, the correctness of existential probability-based
pruning rules is guaranteed by Lemma 9, Lemma 10, and
Corollary 2 together. Thus, the theorem holds. ��

Theorem 9 IUBCList has the same time and space complexi-
ties as BCList++.

Proof Time complexityCompared toBCList++, one extra task
is to find q vertices with the largest k-star existential proba-
bility (Lines 23–29). Since the number of common neighbors
is bounded by O(dmax), the time for each execution of this
task is O(dmax) by using Bin sort, which is the same as
common neighbor collecting in BCList++. Space complex-
ity Compared to BCList++, the only extra information we
need to keep is the existential probabilities for k-stars. Since
we only record a single probability value for each common
neighbor, it is immediate the space complexity of IUBCList
is the same as BCList++. ��

6.4 Discussion for counting problem

It is easy to see that the counting problem of our uncertain (p,
q)-bicliques is basically the same as enumeration problem.
This is because, in both UBCList and IUBCList, we need to
verify the existential probability for each enumerated (p, q)-
biclique.

7 Experimental study

In this section, we empirically evaluate the performance
of the proposed techniques. All experiments are conducted
on PCs with Intel Xeon 2 × 2.4GHz CPU containing 40
cores and 128GBRAM running Ubuntu 20.04.2 LTS. Unless
otherwise specified, we run algorithms against a single core.
We terminate an algorithm if the running time is more than
10 hours which is denoted as INF.

7.1 Experimental setup

Algorithms. In the experiments, we evaluate the following
algorithms for counting by default.

– BClist The baseline method proposed in Sect. 3.
– BClist++ The advanced approach devised in Sect. 4.
– PMBE Adapted algorithm from the state of the art for
maximal biclique enumeration proposed in [2].

– BFC-VP++ The state-of-the-art butterfly counting algo-
rithm proposed in [52].

– BFC Butterfly counting algorithm proposed in [40].
– UBCList The baseline method for uncertain (p, q)-

biclique counting and enumeration proposed in 6.2.
– IUBCList The improved method for uncertain (p, q)-

biclique counting and enumeration proposed in 6.3.

It is easy to verify that a (p, q)-biclique must be con-
tained by maximal bicliques with at least p and q vertices
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Table 3 Some characteristics of datasets

Dataset Category |U | U Type |V | V Type |E | d Edge probability

COVID-19 Biological 75 mRNA 293 Sample 21, 965 119.38 Expression level

Record Affiliation 168, 337 Artist 18, 421 record 233, 286 2.50 Normal (0.6, 0.2)

Youtube Affiliation 94, 238 User 30, 087 Group 293, 360 4.72 Normal (0.7, 0.2)

Human Biological 4, 026 Gene 96 Condition 361, 133 175.22 Expression level

Bookcrossing Rating 77, 802 User 185, 955 Book 433, 652 3.29 Rating score

Github Authorship 56, 519 User 120, 867 Project 440, 237 4.96 Normal (0.8, 0.1)

CiteSeer Authorship 105, 353 Author 181, 395 Article 512, 267 3.57 Normal (0.5, 0.2)

Stackoverflow Rating 545, 196 User 96, 680 Post 1, 301, 942 4.06 Normal (0.5, 0.3)

Actor-movie Affiliation 127, 823 Actor 383, 640 Movie 1, 470, 404 5.75 Uniform[0.01, 0.99]
Twitter Interaction 175, 214 User 530, 418 Hashtag 1, 890, 661 5.36 Uniform [0.01, 0.99]
IMDB Affiliation 303, 617 Actor 896, 302 Movie 3, 782, 463 6.30 Normal (0.7, 0.2)

Edit-en Authorship 18, 038 User 2, 192, 849 Article 4, 129, 231 5.94 Normal (0.5, 0.2)

Edit-fr Authorship 6, 666 User 2, 402, 444 Article 4, 408, 423 5.42 Normal (0.4, 0.3)

Amazon Rating 2, 146, 057 User 1, 230, 915 Product 5, 743, 258 3.46 Rating score

Edit-id Authorship 125, 481 User 2, 183, 494 Article 6, 126, 592 5.31 Normal (0.3, 0.2)

Edit-fa Authorship 134, 986 User 3, 597, 380 Article 10, 011, 147 5.36 Normal (0.4, 0.1)

Edit-ar Authorship 209, 373 User 2, 943, 711 Article 10, 489, 226 6.65 Normal (0.3, 0.2)

DBLP Authorship 1, 953, 085 Author 5, 624, 219 Article 12, 282, 059 3.24 Uniform [0.01, 0.99]
Bold italics denotes the default datasets in experiments. Italics denotes the name of datasets

in the left and right side, respectively. With this property, we
can immediately come up with another baseline method as
follows. First, applying the off-the-shelf maximal biclique
enumeration algorithms to list all maximal bicliques with
size constraint and then enumerating all (p, q)-bicliques
from the obtainedmaximal bicliques and removing the dupli-
cates. The state-of-the-art algorithm, called PMBE [2], offers
a threshold-based solution for maximal biclique enumera-
tion, which is much more efficient than the version without
threshold. For presentation convenience, we use the name of
PMBE to denote the adapted algorithm for our problem. We
obtain the source codes of PMBE from the authors of [2].
To ensure the fairness, in our experiments, we only record
the time cost of PMBE for enumerating maximal bicliques,
while ignoring the time for enumerating (p, q)-bicliques and
remvoing duplicates. For BFC-VP++ and BFC, we obtain the
source code from the authors of [52] and [40], respectively.
All algorithms are implemented in standard C++ with STL
library support and compiled with GNUGCC, except PMBE,
which is implemented in Java and the JVM maximum heap
size is set to large enough for all datasets.

Datasets. We use 18 real datasets selected from differ-
ent domains with various data properties. All datasets are
obtained from KONECT,3 some of which are used to evalu-
ate the algorithms for related problems [31,40,52,54]. The

3 http://konect.cc/.

Fig. 6 Effect of vertex orderings (p = 4 and q = 4)

detailed characteristics of the 16 datasets are shown in
Table 3. We choose 4 representative datasets from Table 3
as default datasets, including Youtube, Stackoverflow, Twit-
ter, and Edit-id, which cover different types of datasets,
and various graph scales. To evaluate the uncertain problem,
we employ both real-life probabilistic graphs and simulated
graphs. Specifically, COVID-19 [1] and Human [11] are two
gene expression datasets, where the edge probability value
is a normalized gene expression level, and Bookcrossing and
Amazon are rating graphs, where the edge probability are
is a normalized rating score. We use the value normaliza-
tion strategy adopted by [57]. For the remaining datasets,
we randomly assign a synthetic probability to each edge by
following a specific distribution. In this paper, we choose
uniform and normal distribution, where the parameters for
normal distribution vary between datasets to add variety to
each individual graph. For example, onRecord, themean and
standard deviation are 0.6 and 0.2, respectively.
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Fig. 7 Effect of cost model

Queries. To better evaluate our proposals, we generate mul-
tiple (p, q) settings by fixing the value of p + q = 8 and
varying values of p and q from 2 to 6 by default. Unless
otherwise specified, experiments are conducted with p = 4
and q = 4 by default.

7.2 Performance tuning

Exp-1: Effect of vertex ordering. We start by evaluat-
ing the effect of vertex ordering. We evaluate three vertex
orderings, including degree, core, and random. Note that,
we use the combination of algorithm name and order name.
For example, BCList(Degree) stands for BCList using degree
ordering. Figure6a shows the results for BCList. Generally,
both BCList(Degree) and BCList(Core) run quite stably com-
pared with BCList(Random), and BCList(Degree) is slightly
faster than BCList(Core). Figure6b reports the results for
BCList++. On one hand, we observe that BCList++(Degree)
achieves the best performance under most datasets. On the
other hand, the performance gap between BCList++(Degree)
and others is very marginal. This implies that the perfor-
mance improvement brought by vertex ordering is limited.
In the following experiments, we use degree vertex order for
both BCList and BCList++.

Exp-2: Effect of cost model. We evaluate the effective-
ness of the cost model, which is proposed in Sect. 4.3. By
BCList++(NM), we denote BCList++ without the cost model.
The number of sampling iterations is set to 0.01 × |U (H)|,
where U (H) is the vertex set in the selected layer. Fig-
ure7 reports the experiment results. Not surprisingly, the cost
model has a huge impact on the performance of BCList++.
For example, BCList++(NM) cannot even handle the smallest
dataset Youtube when p = 6 and q = 2, while BCList++
can finish in less than one second. It is generally observed
that BCList++ can achieve at least one order of magnitude
performance improvement by using the cost model. Besides,
the performance improvement enlarges quickly as the differ-
ence between p and q increases. This is because the time
complexity of BCList++ is exponential to the value of p or
q. Overall, our cost model can judiciously choose the layer

with the least cost by taking both the graph size and values
of p and q into consideration.

Exp-3: Evaluating graph reduction. Figure8 evaluates the
effectiveness of the graph reduction techniques proposed
in Sect. 5.1. In particular, Fig. 8a reports the experimental
results for BCList, where BCList(NR) stands for BCList with-
out graph reduction techniques. We observe that, by using
graph reduction, BCList can achieve roughly 10% of perfor-
mance improvement on Stackoverflow and Twitter. Figure8b
reports the experimental results for BCList++. It is observed
that BCList++ runs 4 times faster on Stackoverflow than
BCList++(NR). However, the benefit brought by graph reduc-
tion seems limited for both BCList and BCList++ on Youtube
and Edit-id. The reason is that the most time-consuming part
is the recursion search for enumerating (p, q)-bicliques.

Fig. 8 Evaluating graph reduction (p = 4 and q = 4)

7.3 Performance evaluation

Exp-4: Experiments over all datasets. We now proceed to
compare BCList++ with the two baseline algorithms BCList
and PMBE on all 16 datasets in terms of both processing
time and memory usage. Processing time It is reported in
Fig. 9a that BCList++ significantly outperforms the competi-
tors on most datasets regarding processing time. Among the
two baseline methods, BCList runs much faster than PMBE
does on most datasets. For example, it is at least 2 orders
of magnitude faster than PMBE on Actor-movie, IMDB, or
DBLP. We observe that BCList is beaten by PMBE on two
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datasets Edit-en and Edit-fr. The reason is that these datasets
are rather unbalanced, and the number of 2-hop neighbors
of vertices on the “heavy” layer is quite large. Generally,
PMBE can only process relatively small datasets, e.g.,Record,
Youtube, and CiteSeer, while neither of the two baseline
methods can handle large datasets, e.g., Edit-id, Edit-fa, and
Edit-ar. PMBE even runs into INF on Github, which only
contains 440 thousands of edges. From the results shown
in Fig. 9a, we notice that BCList++ is much more efficient
and scalable than its compititors, and outperforms the com-
petitors by more than one order of magnitude on datasets
such as Youtube, Github, Stackoverflow, and Twitter. This
is because BCList++ adopts an efficient layer-based search
strategy equippedwith a highly effective costmodel as shown
in Fig. 7.Memory usage Fig. 9b reports the memory usage of
the three algorithms. Note that we do not show the mem-
ory usage for an algorithm if its running time is INF on the
corresponding dataset. In general, BCList consumes the least
amount ofmemory, and BCList++ consumes a bit moremem-
ory than BCList. This is becausewe implement BCList++with
extra arrays to avoid creating the subgraphs frequently. The
memory usage of PMBE is much larger than that of our algo-
rithms. For example, PMBE could consume up to an order
of magnitude more memory on datasets such as Youtube and
CiteSeer. The reason is that PMBE needs to build a heavy
index structure to facilitate the enumeration. The only excep-
tions occur on Edit-en and Edit-fr where BCList consumes
the most amount of memory. This is still because the amount
of 2-hop neighbors of vertices on the “heavy” layer of such
unbalanced bipartite graphs is large, which however can be
avoided by BCList++ by selecting the other layer using the
cost model.

Exp-5: Varying values of p and q. To evaluate the effect
of p and q values, we conduct experiments on the default
(p, q) settings where p + q = 8, and p and q vary from 2
to 6. Figure10 reports the experiment results. It is reported
that, compared to the baseline methods, BCList++ is much
more friendly to queries when the difference between p and
q is large. For example, on Twitter shown in Fig. 10c, when

p = 2 and q = 6, BCList runs into INF and PMBE spends
near 10 hours, while it only takes less than 7 seconds for
BCList++ to finish. This is because BCList++ is equipped
with a cost model, which can judiciously select the layer
with the least computation cost as our search layer by con-
sidering the values of p and q. Even under queries with the
same values of p and q (i.e., p = q = 4), BCList++ is still
more than one order of magnitude faster than its competitors
on all datasets. To better evaluate the effect of p and q val-
ues, we conduct experiments on extra (p, q) settings. More
specifically, we fix the ratio p/q or q/p as 2 and increase
the value of p+q from 6 to 12. The experimental results are
shown in Fig. 10e–h. Overall, BCList++ is at least two orders
ofmagnitude faster than the baselinemethods under all query
settings. Interestingly, the running time of BCList++ grows
steadily as p+q increases, while that of PMBE declines con-
trarily. This is because PMBE is a threshold-based method.
Since the number of maximal bicliques decreases as the size
constraints (i.e., values of p and q) increase, PMBE runsmore
efficiently.

Exp-6: Varying graph scale. In this experiment, we test the
effect of graph size. For each dataset, we randomly sample
20%, 40%, 60%, 80%, and 100% edges from the original
dataset, and conduct experiment on each sampled dataset.
Figure11 reports that the running time of the algorithms
grows as the size increases on all datasets, and the perfor-
mance ranks of the algorithms remain the same undermost of
the settings. It is also observed that our algorithms BCList and
BCList++ perform more steadily than PMBE, and BCList++
is much more scalable than others.

Exp-7: Evaluating the parallelization. To better evaluate
the parallel performance of BCList++, we choose 4 most
time-consuming datasets for BCList++, i.e., Github, Edit-id,
Edit-fa, andEdit-ar, as shown in Fig. 9a. Figure12 reports the
experiment results where the thread number varies from 1 to
16. we observe that the running time of BCList++ decreases

Fig. 9 Evaluation over all datasets (p = 4 and q = 4)
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Fig. 10 Varying values of p and q

Fig. 11 Varying graph scale (p = 4 and q = 4)

Fig. 12 Evaluating the parallelization (p = 4 and q = 4)

almost linearly as the thread number increases on all datasets,
which implies that BCList++ is very parallel-friendly.

Exp-8: Evaluating butterfly counting. In this experiment,
we evaluate the performance of algorithms for butterfly
counting (i.e., p = 2 and q = 2). PMBE is excluded from
the evaluation because it failed to give response within 10
hours on most of datasets. Figure13 shows the experiment
results. Interestingly, we observe that although BCList++ is
not particularly designed for butterfly counting, it is still
quite competitive compared with the state-of-the-art butter-
fly counting algorithms, such as BFC-VP++ and BFC. As we
can see, BCList++ even ranks the first on dataset Youtube

and Twitter. BCList++ is relatively slow on Edit-id. This rea-
son is that Edit-id is a large graph, and BCList++ needs to
execute the step of cost estimation, which deteriorates the
performance of BCList++.

7.4 Case study for deterministic graph

(p, q)-biclique can be used to optimize the efficiency of
Graph Neural Network (GNN) which has been one of the
most successful and extensively studied research topics in
recent years [21,49,55]. A pivotal operation in a GNN is to
recursively aggregate information from vertices’ neighbors
in graph. A naive method simply propagates information on
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Fig. 13 Evaluating butterfly counting

Fig. 14 Information aggregation in GNN

Fig. 15 Evaluating GNN information aggregation

each pair of vertices separately. Observing that vertices in a
graph usually share many neighbors, this naive method leads
to redundant computations. To improve the computation
efficiency, Jia et al. [25] propose a new GNN representa-
tion technique called hierarchically aggregated computation
graphs (HAGs) aiming at reducing the number of sum
operations. Interestingly,weobserve that (p,q)-biclique enu-
meration can be applied on the task of GNN information
aggregation.

Example 12 A running example for information aggregation
in a GNN under different methods is shown in Fig. 14, where
Fig. 14a shows the input graph. Figure14b shows just a sin-
gle layer of the GNN-graph of the input graph in Fig. 14a.
For instance, for vertex A, its new activation hkA at layer k
is computed by aggregating its neighbors’ activations hk−1

A ,
hk−1
B , and hk−1

C at layer k−1. Note that we consider aggregat-
ing vertex’s own activation as well. Thus, 2 sum operations
occur on A. The new activations of other vertices can be

computed similarly. Clearly, the naive method generates 8
sum operations in total. In Fig. 14c, HAG considers merg-
ing the common neighbors of A and C , including A, B, and
C , where 2 sum operations are needed for merging them to
a1. Similarly, we have that 1 and 2 sum operations occur on
a2 and B, respectively. Therefore, the total number of sum
operations for HAG is 5. Last, in our (p, q)-biclique-based
method, the two sides of vertices of the aggregation layer are
naturally considered as a bipartite graph (Fig. 14d), where
both sides contain exactly the same number of vertices as
input graph. In the (3, 3)-biclique (marked by dashed rect-
angle), 2 sum operations are required, that is merging Ak−1,
Bk−1, and Ck−1 together. Besides, both Bk and Dk need an
extra sum operation. Thus, our (p, q)-biclique-based method
needs the least amount of 4 sum operations.

We conduct experiments on two datasets, namely IMDB
(with 19, 502 vertices and 197, 806 edges) and PPI (with
56, 944 vertices and 1, 612, 348 edges), both of which are
employed to evaluate the performance of HAG [25]. The
experiment results shown in Fig. 15 report that our (p, q)-
biclique-based method achieves the best performance when
(p, q) are (5, 10) and (4, 10) on IMDB and PPI, respectively,
and outperforms the competitors by near an order of magni-
tude for GNN information aggregation.

Algorithm applying details. According to Example 12, to
reduce the number of activation propagations, a promising
way is to extract bicliques (not necessarily (p, q)-bicliques)
as much and large as possible. To this end, we need to con-
sider two things as follows. (i) The number of edges covered
by bicliques should be large and the number of bicliques
should be small; (i i) There is no overlapping between the
bicliques that we feed to GNN information aggregation. To
realize these two things, we perform the following 3 steps.
First, after retrieving (p, q)-bicliques by algorithms such
as BCList++, we merge them together as much as possible.
That is, for two bicliques B1(L1, R1) and B2(L2, R2), we
merge them together to form a larger biclique if L1 = L2 or
R1 = R2. Second, we apply a greedy method to iteratively
choose the bicliques. In specific, at each step, we choose
the largest biclique which does not contain any edge that is
covered by previously chosen bicliques. We repeat this step
until there is no such bicliques. Last, We feed these selected
bicliques to GNN information aggregation.

One may ask that maximal biclique-based method might
be also applicable to this task. However, our preliminary
experimental results show that maximal biclique enumerat-
ing itself is time-consuming. For example, on both IMDB
and PPI, the state-of-the-art maximal biclique enumerating
method [2] failed to return answers within 10 hours, while
our (p, q)-biclique-based method can finish in one minute.
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Fig. 16 Varying values of uncertainty threshold t (p = 4 and q = 4)

Fig. 17 Evaluating uncertain algorithms over all datasets (p = 4, q = 4 and t = 0.01)

7.5 Evaluations on uncertain graphs

Exp-9: Varying values of threshold t. To evaluate the effect
of the uncertainty threshold t , we conduct experiments on
the 4 default datasets by varying t from 0.00001 to 0.1.
The experiment results are shown in Fig. 16. In specific,
Fig. 16a–d reports the running time for the two uncertain
algorithms. It is observed that IUBCList runs much faster than
UBCList under all settings. Especially, the performance gap
enlarges dramatically as the uncertainty threshold increases.
For example, on Twitter, IUBCList can finish in 49 seconds,
while UBCList needs 18814 seconds when t = 0.01. This is
because the common neighbor refinement and branch early
termination techniques can substantially reduce the search
space when t increases. To better understand the experimen-
tal results, we also report the result size in Fig. 16e–h, where
#Results(Uncertain) and #Results(Deterministic) denote the
number of results in the uncertain graph and its determinis-
tic graph (i.e., backbone graph), respectively. As we can see,
the result size decreases as t increases. Note that both IUB-
CList and UBCList run into INF on Edit-id when t ≤ 0.0001,

as shown in Fig. 16d. This reason is that the result size is
extremely large under these settings since the result size on
backbone graphs is over 1018. Thus, it takes a large amount
of time for IUBCList to verify the existential probability.

Exp-10: Experiments over all datasets. In the last experi-
ment, we evaluate the uncertain algorithms over all datasets.
Figure17 reports the experiment results. We observe from
Fig. 17a that IUBCList significantly outperforms UBCList on
difficult datasets, such as, Twitter, Edit-en, Edit-fr, etc. This
is because IUBCList is equipped with efficient search space
pruning techniques. It is also observed that UBCList can-
not even handle two relatively small datasets COVID-19 and
Human. The reason is that COVID-19 and Human are two
dense gene expression graphs with average degrees 119.38
and 175.22, respectively. Thus, there are a huge amount of
(p,q)-bicliques to verify forUBCList. Thememory consump-
tion is rather similar for IUBCList and UBCList as shown in
Fig. 17b. The reason is that both of the two algorithms are
developed on top of BCList++, and the only extra informa-
tion we need to store is the edge probability.
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Fig. 18 Results on COVID-19 with p = 5, q = 5 and t = 0.68

7.6 Case study for uncertain graph

We focus on a gene expression dataset called COVID-19
which is collected from [1]. As shown in Table 3, COVID-19
contains 293 whole blood samples from COVID-19 con-
valescent donors and healthy donors. These samples are
conducted experiments against 75 mRNAs. Thus, the sam-
ples and mRNAs are naturally modeled as an uncertain
bipartite graph, where the edge probability values reflect the
expression level, which is obtained by NanoString Technolo-
gies. We first conduct experiments with p = 5, q = 5 and
t = 0.68. Figure18 reports a resulting (p, q)-biclique, where
we depict the edge probabilities that are less than 1. In this
biclique, GSM6469396 is a healthy donor and the others are
convalescent donors. As we can see, the 5 mRNAs all shown
high level of expression on the 5 samples, doctors could focus
on these mRNAs to explore the key to dealing with COVID-
19. For example, the 5 mRNAs may work together to protect
the body againstCOVID-19virus.By inspecting suchmRNA
and sample groups, a professional doctor/researchermight be
able to acquire some hints for further analysing this virus.

8 Related work

Motif counting in bipartite graphs. As a special case of
our problem, butterfly counting has attracted many research
efforts recently. Wang et al. [51] for the first time present
exact algorithm for butterfly (rectangle) counting in a bipar-
tite graph, which avoids enumerating all the butterflies. First,
a layer is selected at random. Then, for each vertex u in the
selected layer, they compute its 2-hop neighbors, and for
each 2-hop neighbor w, they count the number of common
neighbors between u and w denoted as nuw. The number of
butterflies starting from u is simply

(nuw

2

)
. Finally, they add

all the counts together, and the added counts divided by two
is the total number of butterflies. Under the same computa-
tion paradigm, Sanei-Mehri et al. [40] propose a layer-based
method to improve the efficiency of [51] by selecting the
layer with the least computation cost. Later, Wang et al. [52]
propose a vertex priority-based method to further accelerate
the computation. Apart from these exact algorithms, research
efforts have also been devoted to approximate approaches
[28,40,44]. Recently, Yang et al. [54] investigate the problem
of bi-triangle counting in bipartite graphs, where a bi-triangle
is defined as a 6-cycle. It is worth mentioning that although
our method BCList++ utilizes a layer-based strategy as well,
the cost models of BCList++ and BFC [40] are different. This
is because we have to consider both the graph unbalance
and values of p and q. Besides, our methods also support
enumeration problem. Those together make our cost model
much more sophisticated than that of BFC.

Maximal biclique enumeration in bipartite graphs. A
closely related problem is maximal biclique enumeration in
bipartite graphs. A biclique is said to be maximal if it is
not contained in any larger bicliques. David Eppstein [17]
provides a linear algorithm to list maximal bicliques in any
graph of bounded arboricity (i.e., a(G) = O(1)). In [39],
maximal bicliques are enumerated by exhaustively enumer-
ating subsets of vertices in one layer, obtaining the vertices in
other layer as their common neighbors, and then checking the
maximality of the obtained bicliques. Li et al. [27] enumer-
ate the maximal bicliques by using efficient algorithms for
mining closed patterns, which have been extensively studied
in the data mining field. Inspired by the classical BK algo-
rithm [9], Zhang et al. [56] propose algorithm iMBEA, which
combines backtracking with branch-and-bound framework,
where useful pruning techniques are employed to filter out
the branches that cannot lead tomaximal bicliques. The state-
of-the-art approach [2] utilizes pivot pruning to improve
the efficiency of maximal biclique enumeration. A variant
problem is maximum biclique search, which has also been
extensively studied recently [10,18,31,42,43]. It is worth
mentioning that although our approaches for (p, q)-biclique
enumeration also adopt the branch-and-bound framework,
the specific pruning and searching strategies are different.
For example, maximal biclique enumeration algorithms uti-
lize the important non-maximality pruning technique, which
is, however, invalid for our problem.

Listing k-cliques in unipartite graphs. The problem of list-
ing k-cliques in unipartite graphs has a long research history
and awide range of applications [6,38,41]. The seminal work
is the algorithm of Chiba and Nishizeki [12], which provides
an efficient implementation of a branch-and-bound approach.
Under the same framework, recently, Danisch et al. [14] pro-
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pose a core ordering-based method to resolve this problem.
The advantages of their proposal are demonstrated by both
theoretical and empirical analyses. Other algorithms initially
devised for counting and listing maximal cliques can also be
adapted to deal with k-clique listing [34,46]. Recently, the
problem of k-clique densest subgraph search has received
increasing attention [35,41,45,48].

Motif counting in uncertain graphs. The problem of motif
counting in uncertain graphs has also been studied in the liter-
ature. A popular analytic model is Possible World Semantics
[3]. Based on this model, Huang et al.[23] calculate the mean
value for a given motif. Later, apart from mean, Todor et
al. [47] also evaluate the variance. More recently, Ma et al.
[32] develop more efficient and scalable algorithms for eval-
uating the occurrence statistics of a given motif, including
pmf (short for probability mass function), mean, variance.
Very recently, Zhou et al. [58] study the problem of butterfly
counting on uncertain bipartite graphs, which is the clos-
est related work to our problem. In particular, the authors
develop efficient algorithms based on the state-of-the-art but-
terfly counting algorithm for deterministic bipartite graphs
[52]. Similar to its variation on deterministic graph, uncer-
tain butterfly counting is also a special case of our uncertain
(p, q)-biclique counting.

9 Conclusion

In this paper, we study the problem of (p, q)-biclique count-
ing and enumeration for large sparse bipartite graphs. To
efficiently solve this problem, we propose a competitive
branch-and-bound baseline method, called BCList, which
offers a useful computation framework to the problem. To
improve the computation efficiency, we propose an advanced
approach, namely BCList++, by anchoring the search on a
single layer of the bipartite graph. Effective cost model and
optimization techniques are proposed to enhance the per-
formance of BCList++. We also extend our techniques to
resolve the problem of (p, q)-biclique counting and enumer-
ation on uncertain bipartite graphs. To resolve this problem,
we develop an efficient method IUBCList, which is equipped
with a couple of pruning techniques. Extensive experiments
on 16 real datasets demonstrate the efficiency of our new
techniques proposed in this paper.
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