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Abstract Given a graph G where each node is as-

sociated with a set of attributes, attributed network

embedding (ANE ) maps each node v ∈ G to a com-

pact vector Xv, which can be used in downstream ma-

chine learning tasks. Ideally, Xv should capture node

v’s affinity to each attribute, which considers not only

v’s own attribute associations, but also those of its con-

nected nodes along edges in G. It is challenging to ob-

tain high-utility embeddings that enable accurate pre-

dictions; scaling effective ANE computation to massive

graphs with millions of nodes pushes the difficulty of

the problem to a whole new level. Existing solutions

largely fail on such graphs, leading to prohibitive costs,

low-quality embeddings, or both.

This paper proposes PANE, an effective and scal-

able approach to ANE computation for massive graphs
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that achieves state-of-the-art result quality on multiple

benchmark datasets, measured by the accuracy of three

common prediction tasks: attribute inference, link pre-

diction, and node classification. PANE obtains high scal-

ability and effectiveness through three main algorith-

mic designs. First, it formulates the learning objective

based on a novel random walk model for attributed net-

works. The resulting optimization task is still challeng-

ing on large graphs. Second, PANE includes a highly effi-

cient solver for the above optimization problem, whose

key module is a carefully designed initialization of the

embeddings, which drastically reduces the number of

iterations required to converge. Finally, PANE utilizes

multi-core CPUs through non-trivial parallelization of

the above solver, which achieves scalability while re-

taining the high quality of the resulting embeddings.

The performance of PANE depends upon the num-

ber of attributes in the input network. To handle large

networks with numerous attributes, we further extend

PANE to PANE++, which employs an effective attribute

clustering technique. Extensive experiments, comparing

10 existing approaches on 8 real datasets, demonstrate

that PANE and PANE++ consistently outperform all ex-

isting methods in terms of result quality, while being

orders of magnitude faster.

Keywords Network Embedding · Attributed Graph ·
Random Walk · Matrix Factorization · Scalability

1 Introduction

Network embedding is a fundamental task for graph an-

alytics, which has attracted much attention from both

academia (e.g., [26,58,69]) and industry (e.g., [41,105]).

Given an input graph or networkG, network embedding

converts each node v ∈ G to a compact, fixed-length
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vector Xv, which captures the topological features of

the graph around node v. In practice, however, graph

data often comes with attributes associated to nodes.

While we could treat graph topology and attributes as

separate features, doing so loses the important informa-

tion of node-attribute affinity [53], i.e., attributes that

can be reached by a node through one or more hops

along the edges in G. For instance, consider a graph

containing companies and board members. An impor-

tant type of insights that can be gained from such a

network is that one company (e.g., Tesla) can reach at-

tributes of another related company (e.g., SpaceX) con-

nected via a common board member (Elon Musk). To

incorporate such information, attributed network em-

bedding (ANE) maps both topological and attribute in-

formation surrounding a node to an embedding vector,

which facilitates accurate predictions, either through

the embeddings themselves or in downstream machine

learning tasks.

Effective ANE computation is a highly challenging

task, especially for massive graphs, e.g., with millions

of nodes and billions of edges. In particular, each node

v ∈ G could be associated with a large number of at-

tributes, which correspond to a high dimensional space;

further, each attribute of v could influence not only v’s

own embedding, but also those of v’s neighbors, neigh-

bors’ neighbors, and far-reaching connections via mul-

tiple hops along the edges in G. Existing ANE solu-

tions are immensely expensive and largely fail on mas-

sive graphs. Specifically, as reviewed in Section 8, one

class of previous methods e.g., [34,84,89,98], explicitly

constructs and factorizes an n × n matrix, where n is

the number of nodes in G. For a graph with 50 million

nodes, storing such a matrix of double-precision val-

ues would take over 20 petabytes of memory, which is

clearly infeasible in practice. Another category of meth-

ods, e.g., [18,47,57,101], employs deep neural networks

to extract higher-level features from nodes’ connections

and attributes. For a large dataset, training such a neu-

ral network incurs vast computational costs; further,

the training process is usually done on GPUs with lim-

ited graphics memory, e.g., 80GB on Nvidia’s flagship

H100 cards. Thus, for massive graphs, currently the

only practical option is to compute ANE leveraging a

large cluster, e.g., [105], which is not only expensive but

may also have significant environmental impact.

In addition, to the best of our knowledge, all exist-

ing ANE solutions are designed for undirected graphs.

In particular, it is unclear how to incorporate edge di-

rection information (e.g., asymmetric transitivity [103])

into their resulting embeddings. In practice, many graphs

are directed and existing methods yield suboptimal re-

sult quality on such graphs as shown later in our exper-

imental study. Can we compute effective embeddings of

a massive, attributed, directed graph on a single server?

This paper provides an affirmative answer to the

above question by presenting a novel framework coined

PANE1. It incorporates several variants: a single-thread

version Seq-PANE, a parallel version Par-PANE optimized

for multicore CPUs, and a version called PANE++ de-

signed to handle networks with numerous attributes.

PANE significantly advances the state of the art in ANE

computation. Specifically, as demonstrated in our ex-

periments in Section 7, the embeddings obtained by

PANE simultaneously achieve the highest prediction ac-

curacy compared to existing methods for three common

graph analytics tasks, namely attribute inference, link

prediction, and node classification, on common bench-

mark graph datasets. On the largest Microsoft Aca-

demic Knowledge Graph (MAG) dataset involving tens

of millions of nodes, a billion edges, millions of distinct

attributes (in the MAG-SC variant of the dataset), and

over a billion node-attribute associations, PANE is the

only viable solution on a single server (10 CPU cores,

1TB memory) whose resulting embeddings lead to su-

perior prediction accuracy for all tasks.

PANE achieves effective and scalable ANE computa-

tion through four main contributions: (i) a well-thought-

out problem formulation based on a novel random walk

model, (ii) a highly efficient solver, (iii) non-trivial par-

allelization of the algorithm (i.e., Par-PANE), and (iv) an

effective attribute clustering technique capable of han-

dling networks with a large attribute set (i.e., PANE++).

Specifically, as presented in Section 2.2, PANE formu-

lates the ANE task as an optimization problem with the

objective of approximating normalized multi-hop node-

attribute affinity using node-attribute

co-projections [53], guided by a shifted pairwise mu-

tual information (SPMI) metric. The affinity between

a given node-attribute pair is defined via a random

walk model specifically adapted to attributed networks.

Further, we incorporate edge direction information by

defining separate forward and backward affinity, em-

beddings, and SPMI metrics. Solving this optimization

problem is still immensely expensive with off-the-shelf

algorithms as it involves the joint factorization of two

O(n · d)-sized matrices, where n and d are the numbers

of nodes and attributes in the input data, respectively.

Thus, PANE includes a novel solver with a key mod-

ule that seeds the optimizer through a highly effective

greedy algorithm, which drastically reduces the num-

ber of iterations till convergence. Further, we devise a

non-trivial parallelization of the PANE algorithm that

utilizes modern multi-core CPUs without significantly

compromising the result utility.

1 The work reported here is an extended version of [92,93].
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For networks with numerous attributes and/or node-

attribute associations, the PANE++ variant of the pro-

posed solution exploits an effective attribute cluster-

ing algorithm that groups similar attributes into su-

per attributes to significantly reduce the computational

overhead while retaining the high result quality of the

obtained embeddings. Extensive experiments using 8

real datasets and comparing against 10 existing solu-

tions demonstrate that PANE consistently obtains high-

utility embeddings with superior prediction accuracy

for attribute inference, link prediction and node classi-

fication, at a fraction of the cost compared to existing

methods.

In summary, our main contributions are as follows:

– We formulate the ANE task as an optimization prob-

lem with the objective of approximating multi-hop

node-attribute affinity.

– We further consider edge direction in our objective

by defining forward and backward affinity matrices

using the SPMI metric.

– We propose several techniques to efficiently solve the

optimization problem, including efficient approxima-

tion of the affinity matrices, fast joint factorization

of the affinity matrices, and a key module to greed-

ily seed the optimizer, which drastically reduces the

number of iterations till convergence.

– We develop a non-trivial parallelization technique of

PANE (i.e., Par-PANE) to further boost efficiency on

multicore CPUs.

– We augment PANE to PANE++ with an effective at-

tribute clustering technique that scales well to a mas-

sive attribute set associated with the input network.

– We experimentally demonstrate the superior perfor-

mance of PANE and PANE++, in terms of both effec-

tiveness and efficiency, against 10 competitors on 8

real datasets.

The rest of the paper is organized as follows. We for-

mally define the ANE problem addressed in this paper

in Section 2. We introduce the sequential and paral-

lel versions of PANE in Sections 3 and 4, respectively.

Section 4 presents the extension of PANE to effectively

handle large attribute set associated with an input net-

work. We discuss how the embeddings generated by our

proposed techniques can be exploited by representative

machine learning tasks in Section 6. We report exhaus-

tive performance study of our proposed techniques in

Section 7. Related work is discussed in Section 8. The

last section concludes the paper.

2 Problem Formulation

In this section, we formally define the problem addressed

in this paper. We begin by introducing the notations

Table 1: Frequently used notations.

Notation Description

G=(V,EV , R,ER) A graph G with node set V , edge set EV ,
attribute set R, and node-attribute associ-
ation set ER.

n,m, d The numbers of nodes, edges, and at-
tributes in G, respectively.

k The space budget of embedding vectors.

A,D,P,R The adjacency, out-degree, random walk
and attribute matrices of G.

Rr,Rc The row-normalized and column-
normalized attribute matrices. See
Equation (1).

F,B The forward and backward affinity matri-
ces. See Equations (2) and (3).

F′,B′ The approximate forward and backward
affinity matrices. See Equation (6).

Xf ,Xb,Y The forward and backward embedding vec-
tors, and attribute embedding vectors.

α The random walk stopping probability.

nb The number of threads.

κ The number of super attributes.

and terminology used in this work. Next, we introduce

the notion of node-attribute affinity. Finally, we for-

mally define the ANE problem by exploiting the notion

of node-attribute affinity.

2.1 Notations and Terminology

Let G = (V,EV , R,ER) be an attributed network, con-

sisting of (i) a node set V with cardinality n, (ii) a set

of edges EV with cardinality m, each connecting two

nodes in V , (iii) a set of attributes R with cardinal-

ity d, and (iv) a set of node-attribute associations ER,

where each element is a tuple (vi, rj , wi,j) signifying

that node vi ∈ V is directly associated with attribute

rj ∈ R with a weight wi,j (i.e., the attribute value).

Note that for a categorical attribute such as marital

status, we first apply a pre-processing step that trans-

forms the attribute into a set of binary ones through

one-hot encoding. Without loss of generality, we assume

that G is a directed graph; if G is undirected, then we

treat each edge (vi, vj) in G as a pair of directed edges

with opposing directions: (vi, vj) and (vj , vi).

Given a space budget k � n, a node embedding

maps a node v ∈ V to a length-k vector. The gen-

eral goal of attributed network embedding (ANE) is to

compute such an embedding Xv for each node v in the

input graph, such that Xv captures the graph struc-

ture and attribute information surrounding node v. In

addition, following previous work [53], we also allocate

a space budget k
2 (explained later in Section 2.3) for
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each attribute r ∈ R, and aim to compute an attribute

embedding vector for r of length k
2 .

We denote matrices in bold uppercase, e.g., M. We use

M[vi] to denote the vi-th row vector of M, and M[:, rj ]

to denote the rj-th column vector of M. In addition, we

use M[vi, rj ] to denote the element at the vi-th row and

rj-th column of M. Given an index set S, we let M[S]

(resp. M[:, S]) be the matrix block of M that contains

the row (resp. column) vectors of the indices in S.

Let A be the adjacency matrix of the input graph G,

i.e., A[vi, vj ] = 1 if (vi, vj) ∈ EV , otherwise A[vi, vj ] =

0. Let D be the diagonal out-degree matrix of G, i.e.,

D[vi, vi] =
∑
vj∈V A[vi, vj ]. We define the random walk

matrix of G as P = D−1A.
Furthermore, we define an attribute matrix R ∈

Rn×d, such that R[vi, rj ] = wi,j is the weight associated
with the entry (vi, rj , wij) ∈ ER. We refer to R[vi]
as node vi’s attribute vector. Based on R, we derive
a row-normalized (resp. column-normalized) attribute
matrices Rr (resp. Rc) as follows:

Rr[vi, rj ] =
R[vi, rj ]∑
rl∈RR[vi, rl]

,

Rc[vi, rj ] =
R[vi, rj ]∑

vl∈V R[vl, rj ]
.

(1)

Table 1 lists the frequently used notations in our paper.

Our solution utilizes an extended graph G that incor-

porates additional nodes and edges into G. To illus-

trate, Figure 1 shows an example extended graph G con-

structed based on an input attributed network G with 6

nodes v1-v6 and 3 attributes r1-r3. The left part of the

figure (in black) shows the topology of G, i.e., the edge

set EV . The right part of the figure (in blue) shows the

attribute associations ER in G. Specifically, for each at-

tribute rj ∈ R, we create an additional node in G; then,

for each entry in ER, e.g., (v3, r1, w3,1), we include in G
a pair of edges with opposing directions connecting the

node (e.g., v3) with the corresponding attribute node

(e.g., r1), with an edge weight (e.g., w3,1). Note that in

this example, nodes v1 and v2 are not associated with

any attribute.

2.2 Node-Attribute Affinity via Random Walks

As explained in Section 1, the resulting embedding of a

node v ∈ V should capture its affinity with attributes

in R, where the affinity definition should take into ac-

count both the attributes directly associated with v in

ER, and the attributes of the nodes that v can reach via

edges in EV . To effectively model node-attribute affin-

ity via multiple hops in G, we employ an adaptation

of the random walks with restarts (RWR) [36,70] tech-

nique to our setting with an extended graph G. In the

EV ER

v1

v2

v3

v4

v5

v6

r2

r1

r3

Fig. 1: Extended

graph G

Table 2: Targets for X[vi]·
Y[rj ]

>.

Y[r1] Y[r2] Y[r3]

Xf [v1] 1.0 0.92 0.47

Xb[v1] 0.93 0.88 1.17

Xf [v2] 1.0 0.92 0.47

Xb[v2] 1.11 1.08 0.8

Xf [v3] 1.12 1.04 0.54

Xb[v3] 1.06 0.95 0.99

Xf [v5] 0.98 1.1 1.08

Xb[v5] 1.09 1.22 0.61

Xf [v6] 0.89 0.82 2.05

Xb[v6] 0.53 0.61 1.6

following, we refer to an RWR simply as a random walk.

Specifically, since G is directed, we distinguish two types

of node-attribute affinity: forward affinity, denoted as

F, and backward affinity, denoted as B.

Forward affinity. Given an attributed graphG, a node

vi, and random walk stopping probability α (0 < α <

1), a forward random walk on G starts from node vi.

At each step, assume that the walk is currently at node

vl. Then, the walk can either (i) with proabability α,

terminate at vl , or (ii) with probability 1 − α, follow

an edge in EV to a random out-neighbor of vl. After

a random walk terminates at a node vl, we randomly

follow an edge in ER to an attribute rj , with probabil-

ity Rr[vl, rj ], i.e., a normalized edge weight defined in

Equation (1)2. The forward random walk yields a node-

to-attribute pair (vi, rj) and we add it to a collection

Sf .

Suppose that we sample nr node-to-attribute pairs

for each node vi. The size of Sf is then nr · n, where n

is the number of nodes in G. Denote pf (vi, rj) as the

probability that a forward random walk starting from

vi yields a node-to-attribute pair (vi, rj). Then, the for-

ward affinity F[vi, rj ] between note vi and attribute rj
is defined as follows.

F[vi, rj ] = log

(
n · pf (vi, rj)∑
vh∈V pf (vh, rj)

+ 1

)
(2)

To explain the intuition behind the above defini-

tion, note that in Sf , the probabilities of observing

node vi, attribute rj , and pair (vi, rj) are P(vi) = 1
n ,

P(rj) =
∑
vh∈V

·pf (vh,rj)
n , and P(vi, rj) =

pf (vi,rj)
n , re-

spectively. Thus, the above definition of forward affin-

ity is a variant of the pointwise mutual information

(PMI) [8] between node vi and attribute rj
3. In par-

ticular, given a collection of element pairs S, the PMI

2 In the degenerate case that vl is not associated with any
attribute, e.g., v1 in Figure 1, we simply restart the random
walk from the source node vi and repeat the process.
3 The PMI quantifies how much more or less likely we are

to see the two events co-occur, given their individual prob-
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of element pair (x, y) ∈ S, denoted as PMI(x, y), is de-

fined as PMI(x, y) = log
(

P(x,y)
P(x)·P(y)

)
, where P(x) (resp.

P(y)) is the probability of observing x (resp. y) in S
and P(x, y) is the probability of observing pair (x, y)

in S. The larger PMI(x, y) is, the more likely x and y

co-occur in S. Note that PMI(x, y) can be negative. To

avoid this, we use an alternative: shifted PMI, defined

as SPMI(x, y) = log
(

P(x,y)
P(x)·P(y) + 1

)
, which is guaran-

teed to be non-negative, while retaining the original

order of values of PMI. F[vi, rj ] in Equation (2) is then

SPMI(vi, rj).

Another way to understand Equation (2) is through

an analogy to TF/IDF [62] in natural language pro-

cessing. Specifically, if we view all the forward random

walks as a “document”, then n · pf (vi, rj) is akin to the

term frequency of rj , whereas the denominator in Equa-

tion (2) is similar to the inverse document frequency

of rj . Thus, the normalization penalizes common at-

tributes and compensates for rare attributes.

Backward affinity. Next we define backward affinity

in a similar fashion. Given an attributed network G,

an attribute rj and stopping probability α, a backward

random walk starting from rj first randomly samples

a node vl according to probability Rc[vl, rj ], defined

in Equation (1). Then, the walk starts from node vl;

at each step, the walk either terminates at the current

node with α probability, or randomly jumps to an out-

neighbor of current node with 1−α probability. Suppose

that the walk terminates at node vi; then, it returns an

attribute-to-node pair (rj , vi), which is added to a col-

lection Sb. After sampling nr attribute-to-node pairs for

each attribute, the size of Sb becomes nr·d. Let pb(vi, rj)
be the probability that a backward random walk start-

ing from attribute rj stops at node vi. In collection Sb,
the probabilities of observing attribute rj , node vi and

pair (rj , vi) are P(rj) = 1
d , P(vi) =

∑
rh∈R

pb(vi,rh)

d and

P(vi, rj) =
pb(vi,rj)

d , respectively. By the definition of

SPMI, we define backward affinity B[vi, rj ] as follows.

B[vi, rj ] = log

(
d · pb(vi, rj)∑
rh∈R pb(vi, rh)

+ 1

)
. (3)

2.3 Objective Function

Lastly, we define our objective function for ANE based

on the notions of forward and backward node-attribute

affinity defined in Equation (2) and Equation (3), re-

spectively. Let F[vi, rj ] (resp. B[vi, rj ]) be the forward

affinity (resp. backward affinity) between node vi and

abilities, and relative to the case where they are completely
independent.

attribute rj . Given a space budget k, our objective is

to learn (i) two embedding vectors for each node vi,

namely a forward embedding vector, denoted as Xf [vi] ∈
R
k
2 and a backward embedding vector, denoted as Xb[vi] ∈

R
k
2 , as well as (ii) an attribute embedding vector Y[rj ] ∈

R
k
2 for each attribute rj , such that the following objec-

tive is minimized:

O = min
Xf ,Y,Xb

∑
vi∈V

∑
rj∈R

(
F[vi, rj ]−Xf [vi] ·Y[rj ]

>)2
+
(
B[vi, rj ]−Xb[vi] ·Y[rj ]

>)2 (4)

Intuitively, in the above objective function, we approx-

imate the forward node-attribute affinity F[vi, rj ] be-

tween node vi and attribute rj using the dot prod-

uct of their respective embedding vectors, i.e., Xf [vi] ·
Y[rj ]

>. Similarly, we also approximate the backward

node-attribute affinity using Xb[vi] ·Y[rj ]
>. The objec-

tive is then to minimize the total squared error of such

approximations, over all nodes and all attributes in the

input data.

Running Example. Assume that in the extended graph

G shown in Figure 1, all attribute weights in ER are 1,

and the random walk stopping probability α is set to

0.15 [36,70]. Table 2 lists the inner products of attribute

embedding vectors of r1-r3 and embedding vectors of

node v1-v6, which are the forward and backward affin-

ity values preserved in these embedding vectors. These

values are calculated based on Equations (2) and (3),

using simulated random walks on G in Figure 1. Ob-

serve, for example, that the node v1 has high affinity

values (both forward and backward) with attribute r1,

which agrees with the intuition that v1 is connected to

r1 via many different intermediate nodes, i.e., v3, v4, v5.

Meanwhile, regarding node v5, if we only consider for-

ward affinity, then, observe that v5 has a higher forward

affinity value with r3 than that with r1. Such an affin-

ity value fails to capture the fact that v5 is associated

with r1 but not with r3, which may lead to incorrect

attribute inference. This issue is resolved when we con-

sider both forward and backward affinity.

3 Seq-PANE: Single-Thread PANE

In this section, we describe a single-thread version of

PANE, called Seq-PANE. Further improved versions of

PANE are presented in subsequent sections. Observe that

it is a challenging task to train embeddings of nodes and

attributes that preserve our objective function in Equa-

tion (4), especially on massive attributed networks. First,

node-attribute affinity values are defined by random

walks, which are rather expensive to undertake in a
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Algorithm 1: Seq-PANE

Input: Attributed network G, space budget k,
random walk stopping probability α, error
threshold ε.

Output: Forward and backward embedding vectors
Xf , Xb and attribute embedding vectors
Y.

1 t← log(ε)

log(1−α)
− 1;

2 F′,B′ ← APMI(P,R, α, t);
3 Xf ,Y,Xb ← SVDCCD(F′,B′, k, t);
4 return Xf ,Y,Xb;

Algorithm 2: APMI

Input: P, R, α, t.
Output: F′,B′.

1 Compute Rr and Rc by Equation (1);

2 P
(0)
f ← Rr, P

(0)
b ← Rc;

3 for `← 1 to t do

4 P
(`)
f ← (1− α) ·PP

(`−1)
f + α ·P(0)

f ;

5 P
(`)
b ← (1− α) ·P>P(`−1)

b + α ·P(0)
b ;

6 Normalize P
(t)
f by columns to get P̂

(t)
f ;

7 Normalize P
(t)
b by rows to get P̂

(t)
b ;

8 F′ ← log(n · P̂(t)
f + 1), B′ ← log(d · P̂(t)

b + 1);

9 return F′,B′;

large number from every node and attribute in order

to accurately obtain the affinity values of all possi-

ble node-attribute pairs. Second, our objective func-

tion preserves both forward and backward affinity (i.e.,

considering edge directions), which makes the training
process hard to converge. Further, jointly preserving

both forward and backward affinity involves intensive

computations, severely dragging down the performance.

To address these challenges, we propose Seq-PANE that

can efficiently handle large-scale data and produce high-

quality ANE results.

At a high level, Seq-PANE consists of two phases:

(i) iteratively computing approximated versions F′ and

B′ of the forward and backward affinity matrices with

rigorous approximation error guarantees, without ac-

tually sampling random walks (Section 3.1), and (ii)

initializing the embedding vectors with a greedy algo-

rithm for fast convergence, and then jointly factorizing

F′ and B′ using cyclic coordinate descent [79] to effi-

ciently obtain the output embedding vectors Xf ,Xb,

and Y (Section 3.2). Given an attributed network G,

space budget k, random walk stopping probability α

and an error threshold ε as inputs, Algorithm 1 out-

lines the proposed Seq-PANE algorithm. We elaborate

on these steps now.

3.1 Forward and Backward Affinity Approximation

In Section 2.2, node-attribute affinity values are defined

using a large number of random walks, which are expen-

sive to simulate on a massive graph. Hence, we trans-

form the forward and backward affinity in Equations (2)

and (3) into their matrix forms and propose APMI in Al-

gorithm 2, which efficiently approximates forward and

backward affinity matrices with error guarantee and in

linear time complexity, without actually sampling ran-

dom walks.

Observe that in Equations (2) and (3), the key for

forward and backward affinity computation is to obtain

pf (vi, rj) and pb(vi, rj) for every pair (vi, rj) ∈ V × R.

Recall that pf (vi, rj) is the probability that a forward

random walk starting from node vi picks attribute rj ,

while pb(vi, rj) is the probability of a backward ran-

dom walk from attribute rj stopping at node vi. Given

nodes vi and vl, denote π(vi, vl) as the probability that

a random walk starting from vi stops at vl, i.e., the ran-

dom walk score of vl with respect to vi. By definition,

pf (vi, rj) =
∑
vl∈V π(vi, vl) ·Rr[vl, rj ], where Rr[vl, rj ]

is the probability that node vl selects attribute rj , ac-

cording to Equation (1). Similarly, pb(vi, rj) is formu-

lated as pb(vi, rj) =
∑
vl∈V Rc[vl, rj ] · π(vl, vi), where

Rc[vl, rj ] is the probability that attribute rj picks node

vl from all nodes having rj based on their attribute

weights. By the definition of random walk scores in

[36, 70], we derive the matrix form of pf and pb as fol-

lows.

Pf = α

∞∑
`=0

(1− α)`P`Rr,

Pb = α

∞∑
`=0

(1− α)`P>`Rc.

We only consider t iterations to approximate Pf and

Pb in Equation (5), where t is set to log(ε)
log(1−α) − 1.

P
(t)
f = α

t∑
`=0

(1− α)`P`Rr,

P
(t)
b = α

t∑
`=0

(1− α)`P>`Rc.

(5)

Then, we normalize P
(t)
f by columns and P

(t)
b by rows

as follows.

P̂
(t)
f [vi, rj ] =

P
(t)
f [vi, rj ]∑

vl∈V P
(t)
f [vl, rj ]

,

P̂
(t)
b [vi, rj ] =

P
(t)
b [vi, rj ]∑

rl∈RP
(t)
b [vi, rl]

.
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After normalization, we compute F′ and B′ accord-

ing to the definitions of forward and backward affinity

as follows.

F′ = log(n · P̂(t)
f + 1), B′ = log(d · P̂(t)

b + 1). (6)

Algorithm 2 shows the pseudo-code of APMI to com-

pute F′ and B′. Specifically, APMI takes as inputs ran-

dom walk matrix P, attribute matrix R, random walk

stopping probability α and the number of iterations t.

At Line 1, APMI begins by computing row-normalized

attribute matrix Rr and column-normalized attribute

matrix Rc according to Equation (1). Then, APMI com-

putes P
(t)
f and P

(t)
b based on Equation (5). Note that P

is sparse and has m non-zero entries. Thus, the compu-

tations of α
∑t
`=0 (1− α)`P` and α

∑t
`=0 (1− α)`P>`

in Equation (5) needO(mnt) time, which is prohibitively

expensive on large graphs. We avoid such expensive

overheads and achieve a time cost of O(mdt) for com-

puting P
(t)
f and P

(t)
b by an iterative process as fol-

lows. Initially, we set P
(0)
f = Rr and P

(0)
b = Rc (Line

2). Then, we start an iterative process from Line 3

to 5 with t iterations; at the `-th iteration, we com-

pute P
(`)
f = (1 − α) · PP

(`−1)
f + α · P(0)

f and P
(`)
b =

(1 − α) · P>P
(`−1)
b + α · P(0)

b . After t iterations, APMI

normalizes P
(t)
f by column and P

(t)
b by row (Lines 6-7).

At Line 8, APMI obtains F′ and B′ as the approximate

forward and backward affinity matrices. The following

lemma establishes the accuracy guarantee of APMI.

Lemma 1 Given P,Rr, α, ε as inputs to Algorithm 2,

the returned approximate forward and backward affinity

matrices F′, B′ satisfy that, for every pair (vi, rj) ∈
V ×R,

max
{

0, 1− ε

Pf [vi, rj ]

}
≤ 2F

′[vi,rj ] − 1

2F[vi,rj ] − 1
,

max
{

0, 1− ε

Pb[vi, rj ]

}
≤ 2B

′[vi,rj ] − 1

2B[vi,rj ] − 1
,

and

2F
′[vi,rj ] − 1

2F[vi,rj ] − 1
≤ 1 +

ε∑
vl∈V max{0,Pf [vl, rj ]− ε}

,

2B
′[vi,rj ] − 1

2B[vi,rj ] − 1
≤ 1 +

ε∑
rl∈R max{0,Pb[vi, rl]− ε}

.

Proof First, with t = log(ε)
log(1−α) − 1, we have

∞∑
`=t+1

α(1− α)` = 1−
t∑
`=0

α(1− α)` = (1− α)t+1 = ε. (7)

By the definitions of Pf ,P
(t)
f and Pb,P

(t)
b (i.e., Equa-

tion (5)), for every pair (vi, rj) ∈ V ×R,

Pf [vi, rj ]−P
(t)
f [vi, rj ] =

∞∑
`=t+1

α(1− α)`P`[vi] ·R>r [rj ]

=

 ∞∑
`=t+1

α(1− α)`P`

 [vi] ·R>r [rj ]

≤
∞∑

`=t+1

α(1− α)` = ε,

Pb[vi, rj ]−P
(t)
b [vi, rj ] =

∞∑
`=t+1

α(1− α)`P>`[vi] ·R>c [rj ]

≤
∑
vl∈V

∞∑
`=t+1

α(1− α)` ·Rc[vl, rj ]

≤
∑
vl∈V

ε ·Rc[vl, rj ] = ε.

Based on the above inequalities, ∀(vi, rj) ∈ V ×R,

max{0,Pf [vi, rj ]− ε} ≤ P
(t)
f [vi, rj ] ≤ Pf [vi, rj ], (8)

max{0,Pb[vi, rj ]− ε} ≤ P
(t)
b [vi, rj ] ≤ Pb[vi, rj ]. (9)

According to Lines 6-9 in Algorithm 2, for every pair
(vi, rj) ∈ V ×R,

2F′[vi,rj ] − 1

2F[vi,rj ] − 1
=

P̂
(t)
f [vi, rj ]

P̂f [vi, rj ]
=

P
(t)
f [vi, rj ] ·

∑
vl∈V Pf [vl, rj ]∑

vl∈V P
(t)
f [vl, rj ] ·Pf [vi, rj ]

2B′[vi,rj ] − 1

2B[vi,rj ] − 1
=

P̂
(t)
f [vi, rj ]

P̂f [vi, rj ]
=

P
(t)
b [vi, rj ] ·

∑
rl∈RPb[vi, rl]∑

rl∈RP
(t)
b [vi, rl] ·Pb[vi, rj ]

Plugging in the above equations completes our proof.

�

3.2 Joint Factorization of Affinity Matrices

This section presents the proposed algorithm SVDCCD,

outlined in Algorithm 4, which jointly factorizes the ap-

proximate forward and backward affinity matrices F′

and B′, in order to obtain the embedding vectors of all

nodes and attributes, i.e., Xf ,Xb, and Y. Specifically,

the proposed SVDCCD solver is based on the cyclic co-

ordinate descent (CCD) framework, which iteratively

updates each embedding value towards optimizing the

objective function in Equation (4). Unfortunately, a di-

rect application of CCD, starting from random initial

values of the embeddings, requires numerous iterations

to converge, leading to prohibitive overheads. Further-

more, CCD computation itself is expensive, especially

on large-scale graphs. To overcome these challenges, we
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firstly propose a greedy initialization method to facil-

itate fast convergence, and then design techniques for

efficient refinement of initial embeddings, including dy-

namic maintenance and partial updates of intermediate

results to avoid redundant computations in CCD.

Greedy initialization. In many optimization prob-

lems, all we need for efficiency is a good initialization.

Thus, a key component in the proposed SVDCCD al-

gorithm is such an initialization of embedding values

based on singular value decomposition (SVD) [20]. Note

that unlike other matrix factorization problems, here

SVD by itself cannot solve our problem because the

objective function in Equation (4) requires the joint

factorization of both the forward and backward affin-

ity matrices at the same time, which cannot be directly

addressed with SVD.

Algorithm 3 describes the GInit module of SVDCCD,

which initializes embeddings Xf ,Xb, and Y. Specifi-

cally, the algorithm first employs an efficient random-

ized SVD algorithm [56] at Line 1 to decompose F′

into U ∈ Rn×
k
2 ,Σ ∈ R

k
2×

k
2 , V ∈ Rd×

k
2 , and then ini-

tializes Xf = UΣ and Y = V at Line 2, which satisfies

Xf · Y> ≈ F′. In other words, this initialization im-

mediately gains a good approximation of the forward

affinity matrix.

Recall that our objective function in Equation (4)

also aims to find Xb such that XbY
> ≈ B′, i.e., to

approximate the backward affinity matrix well. We ob-

serve that the matrix V (i.e., Y) returned by exact

SVD is unitary, i.e., Y>Y = I, which implies that

Xb ≈ XbY
>Y ≈ B′Y. Accordingly, we seed Xb with

B′Y at Line 2 of Algorithm 3. This initialization of

Xb also leads to a relatively good approximation of the

backward affinity matrix. Consequently, the number of

iterations required by SVDCCD is drastically reduced, as

confirmed by our experiments in Section 7.

Efficient refinement of the initial embeddings.

In Algorithm 4, after initializing Xf ,Xb and Y at Line

1, we apply cyclic coordinate descent to refine the em-

bedding vectors according to our objective function in

Equation (4) from Lines 2 to 14. The basic idea of CCD

is to cyclically iterate through all entries in Xf ,Xb and

Y, one at a time, minimizing the objective function

with respect to each entry (i.e., coordinate direction).

Specifically, in each iteration, CCD updates each entry

of Xf ,Xb and Y according to the following rules:

Xf [vi, l]←Xf [vi, l]− µf (vi, l), (10)

Xb[vi, l]←Xb[vi, l]− µb(vi, l), (11)

Y[rj , l]←Y[rj , l]− µy(rj , l), (12)

Algorithm 3: GInit

Input: F′,B′, k, t.
Output: Xf ,Xb,Y,Sf ,Sb.

1 U,Σ,V← RandSVD(F′, k
2
, t);

2 Y ← V, Xf ← UΣ, Xb ← B′ ·Y;

3 Sf ← XfY> − F′, Sb ← XbY> −B′;
4 return Xf ,Xb,Y,Sf ,Sb;

with µf (vi, l), µb(vi, l) and µy(rj , l) computed by:

µf (vi, l) =
Sf [vi] ·Y[:, l]

Y>[l] ·Y[:, l]
, µb(vi, l) =

Sb[vi] ·Y[:, l]

Y>[l] ·Y[:, l]
, (13)

µy(rj , l) =
X>f [l] · Sf [:, rj ] + X>b [l] · Sb[:, rj ]
X>f [l] ·Xf [:, l] + X>b [l] ·Xb[:, l]

, (14)

where Sf = XfY
> − F′ and Sb = XbY

> − B′ are

obtained at Line 3 in Algorithm 3.

However, directly applying the above updating rules

to learn Xf ,Xb, and Y is inefficient, leading to many

redundant matrix operations. Lines 2-14 in Algorithm 4

show how to efficiently apply the above updating rules

by dynamically maintaining and partially updating in-

termediate results. Specifically, each iteration in Lines

3-14 first fixes Y and updates each row of Xf and Xb

(Lines 3-9), and then updates each column of Y with

Xf and Xb fixed (Lines 10-14). According to Equations

(13) and (14), µf (vi, l), µb(vi, l), and µy(rj , l) are perti-

nent to Sf [vi], Sb[vi], and Sf [:, rj ],Sb[:, rj ] respectively,

where Sf and Sb further depend on embedding vectors

Xf , Xb and Y. Therefore, whenever Xf [vi, l],Xb[vi, l],

and Y[rj , l] are updated in the iteration (Lines 6-7 and

Line 13), Sf and Sb need to be updated accordingly. It

would be expensive if we directly recompute Sf and Sb
by Sf = XfY

> − F′ and Sb = XbY
> −B′, whenever

an entry in Xf ,Xb and Y is updated.

Instead, we dynamically maintain and partially up-

date Sf and Sb according to Equations (15), (16) and

(17). Specifically, when Xf [vi, l] and Xb[vi, l] are up-

dated (Lines 6-7), we update Sf [vi] and Sb[vi] respec-

tively with O(d) time at Lines 8-9 by

Sf [vi]← Sf [vi]− µf (vi, l) ·Y[:, l]>, (15)

Sb[vi]← Sb[vi]− µb(vi, l) ·Y[:, l]>, (16)

Whenever Y[rj , l] is updated at Line 13, both Sf [:, rj ]

and Sb[:, rj ] are updated in O(n) time at Line 14 by

Sf [:, rj ]← Sf [:, rj ]− µy(rj , l) ·Xf [:, l],

Sb[:, rj ]← Sb[:, rj ]− µy(rj , l) ·Xb[:, l].
(17)

3.3 Complexity Analysis

In the proposed algorithm Seq-PANE (Algorithm 1), the

maximum length of random walk is t = log(ε)
log(1−α) − 1 =
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Algorithm 4: SVDCCD

Input: F′,B′, k, t.
Output: Xf ,Y,Xb.

1 Xf ,Xb,Y,Sf ,Sb ← GInit(F′,B′, k, t);
2 for `← 1 to t do
3 for vi ∈ V do
4 for l← 1 to k

2
do

5 Compute µf (vi, l), µb(vi, l) by Equation
(13);

6 Xf [vi, l]← Xf [vi, l]− µf (vi, l);
7 Xb[vi, l]← Xb[vi, l]− µb(vi, l);
8 Update Sf [vi] by Equation (15);
9 Update Sb[vi] by Equation (16);

10 for rj ∈ R do
11 for l← 1 to k

2
do

12 Compute µy(rj , l) by Equation (14);
13 Y[rj , l]← Y[rj , l]− µy(rj , l);
14 Update Sf [:, rj ],Sb[:, rj ] by Equation

(17);

15 return Xf ,Y,Xb;

Algorithm 5: Par-PANE

Input: Attributed network G, space budget k,
random walk stopping probability α, error
threshold ε, the number of threads nb.

Output: Forward and backward embedding vectors
Xf , Xb and attribute embedding vectors
Y.

1 Partition V into nb subsets V ← {V1, · · · , Vnb}
equally;

2 Partition R into nb subsets R← {R1, · · · , Rnb}
equally;

3 t← log(ε)

log(1−α)
− 1;

4 F′,B′ ← PAPMI(P,R, α, t,V,R);
5 Xf ,Y,Xb ← PSVDCCD(F′,B′,V,R, k, t);
6 return Xf ,Y,Xb;

log( 1
ε )

log( 1
1−α )
−1. According to Section 3.1, Algorithm 2 runs

in time O (md · t) = O
(
md · log 1

ε

)
. Meanwhile, accord-

ing to [56], given F′ ∈ Rn×d as input, RandSVD in Al-

gorithm 3 requires O (ndkt) time, where n, d, k are

the number of nodes, number of attributes, and em-

bedding space budget, respectively. The computation of

Sf ,Sb costs O(ndk) time. In addition, the t iterations

of CCD for updating Xf ,Xb and Y take O(ndkt) =

O(ndk log 1
ε ) time. Therefore, the overall time complex-

ity of Algorithm 1 isO
(
(md+ ndk) · log

(
1
ε

))
. The mem-

ory consumption of intermediate results yielded in Al-

gorithm 1, i.e., F′,B′, U,Σ,V,Sf ,Sb are at mostO(nd).

Hence, the space complexity of Algorithm 1 is bounded

by O(nd+m).

4 Par-PANE: Parallel PANE

Although single-thread PANE (i.e., Seq-PANE in Algo-

rithm 1) runs in linear time to the size of the input

attributed network, it still requires substantial time to

handle large-scale attributed networks in practice. For

instance, on MAG dataset that has 59.3 million nodes,

Seq-PANE (single thread) takes about five days. Note

that it is challenging to develop a parallel algorithm

achieving such linear scalability to the number of threads

on a multi-core CPU. Specifically, Seq-PANE involves

various complex computational steps, including inten-

sive matrix computation, factorization, and CCD up-

dates. Moreover, it is also challenging to maintain the

intermediate result of each thread and combine them

as the final result. To further boost efficiency, in this

section we develop a parallel PANE (Par-PANE in Algo-

rithm 5), which takes only 11.9 hours on MAG when

using 10 threads (i.e., up to 10 times speedup with re-

spect to Seq-PANE). In the first phase, we adopt block

matrix multiplication [21] and propose PAPMI to com-

pute forward and backward affinity matrices in a par-

allel manner (Section 4.1). In the second phase, we de-

velop PSVDCCD with a split-merge-based parallel SVD

technique to efficiently decompose affinity matrices, and

further propose a parallel CCD technique to refine the

embeddings efficiently (Section 4.2).

Algorithm 5 illustrates the pseudo-code of parallel

Par-PANE. Compared to the single-thread version, par-

allel Par-PANE takes as input an additional parameter,

the number of threads nb, and randomly partitions the

node set V , as well as the attribute set R, into nb sub-

sets with equal size, denoted as V and R, respectively

(Lines 1-2). Par-PANE invokes PAPMI (Algorithm 6) at

Line 4 to get F′ and B′, and then invokes PSVDCCD (Al-

gorithm 7) to refine the embeddings.

Note that the parallel version of Seq-PANE does not

return exactly the same outputs as the single-thread

version, as some modules (e.g., the parallel version of

SVD) introduce additional error. Nevertheless, as the

experiments in Section 7 demonstrates, the degradation

of result utility in parallel Seq-PANE is small but the

speedup is significant.

4.1 Parallel Forward and Backward Affinity

Approximation

We propose PAPMI in Algorithm 6 to estimate F′ and

B′ in parallel. After obtaining Rr and Rc based on

Equation (1) at Line 1, PAPMI divides Rr and Rc into

matrix blocks according to two input parameters, the

node subsets V = {V1, V2, · · · , Vnb} and attribute sub-

sets R = {R1, R2, · · · , Rnb}. Then, PAPMI parallelizes
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Algorithm 6: PAPMI

Input: P,R, α, t,V,R
Output: F′,B′

1 Compute Rr and Rc by Equation (1);
2 parallel for Ri ∈ R do

3 Pf
(0)
i ← Rr[:, Ri],Pb

(0)
i ← Rc[:, Ri];

4 for `← 1 to t do

5 Pf
(`)
i ← (1− α) ·PPf

(`−1)
i + α ·Pf (0)

i ;

6 Pb
(`)
i ← (1− α) ·P>Pb(`−1)

i + α ·Pb(0)i ;

7 Pf (t) ← [Pf1

(t) · · ·Pfnb
(t)];

8 Pb(t) ← [Pb
(t)
1 · · ·Pb

(t)
nb ];

Lines 9-10 are the same as Lines 6-7 in Algorithm 2;
11 parallel for Vi ∈ V do

12 F′[Vi]← log(n · P̂(t)
f [Vi] + 1);

13 B′[Vi]← log(d · P̂(t)
b [Vi] + 1);

14 return F′,B′

the matrix multiplications for computing P
(t)
f and P

(t)
b

from Line 2 to 6, using nb threads in t iterations. Specif-

ically, the i-th thread initializes Pfi
(0) by Rr[:, Ri] and

Pbi
(0) by Rc[:, Ri] (Line 3), and then computes Pf

(`)
i =

(1 − α) · PPf
(`−1)
i + α · Pf

(0)
i and Pb

(`)
i = (1 − α) ·

P>Pb
(`−1)
i +α ·Pb

(0)
i (Lines 4-6). Then, we use a main

thread to aggregate the partial results of all threads at

Lines 7-8. Specifically, nb matrix blocks Pfi
(t) (resp.

Pbi
(t)) are concatenated horizontally together as Pf

(t)

(resp. Pb
(t)) at Line 7 (resp. Line 8). At Lines 9-10, we

normalize P̂
(t)
f and P̂

(t)
b in the same way as Lines 6-7

in Algorithm 2. From Lines 11 to 13, PAPMI starts nb
threads to compute F′ and B′ block by block in par-

allel, based on the definitions of forward and backward

affinity. Specifically, the i-th thread computes F′[Vi] =

log(n · P̂(t)
f [Vi] + 1) and B′[Vi] = log(d · P̂(t)

b [Vi] + 1). Fi-

nally, PAPMI returns F′ and B′ as the approximate for-

ward and backward affinity matrices (Line 14). Lemma

2 indicates the accuracy guarantee of PAPMI.

Lemma 2 Given same parameters P,R, α and t as

inputs to Algorithm 2 and Algorithm 6, the two algo-

rithms return the same approximate forward and back-

ward affinity matrices F′, B′.

Proof According to Line 3 in Algorithm 6, we have

Rr =
[
Pf

(0)
1 Pf

(0)
2 · · · Pf

(0)
nb

]
,

where Pf
(0)
1 , · · · ,Pf

(0)
nb−1 ∈ Rn×

d
nb and Pf

(0)
nb
∈ Rn×(d%nb)

(d%nb denotes the remainder of integer d divded by nb),

and

Rc =
[
Pb

(0)
1 Pb

(0)
2 · · · Pb

(0)
nb

]
,

Algorithm 7: PSVDCCD

Input: F′,B′,V,R, k, t.
Output: Xf ,Y,Xb.

1 Xf ,Xb,Y,Sf ,Sb ← SMGInit(F′,B′,V, k, t);
2 for `← 1 to t do
3 parallel for Vh ∈ V do
4 for vi ∈ Vh do

Lines 5-10 are the same as Lines 4-9 in
Algorithm 4;

11 parallel for Rh ∈ R do
12 for rj ∈ Rh do

Lines 13-16 are the same as Lines 11-14
in Algorithm 4;

17 return Xf ,Y,Xb;

where Pb
(0)
1 , · · · ,Pb

(0)
nb−1 ∈ Rn×

d
nb and Pb

(0)
nb
∈ Rn×(d%nb).

After t iterations, by Lines 4-6 in Algorithm 6, we have

Pf
(t)
i = α

t∑
`=0

(1− α)`P`Pf
(0)
i and

Pb
(t)
i = α

t∑
`=0

(1− α)`P>`Pb
(0)
i .

Thus, we can derive that

P
(t)
f =

[
Pf

(t)
1 · · · Pf

(t)
nb

]
= α

t∑
`=0

(1− α)`P`Rr,

P
(t)
b =

[
Pb

(t)
1 · · · Pb

(t)
nb

]
= α

t∑
`=0

(1− α)`P`Rc.

According to Inequality (8) and Inequality (9), for every

pair (vi, rj) ∈ V ×R,

max{0,Pf [vi, rj ]− ε} ≤ P
(t)
f [vi, rj ] ≤ Pf [vi, rj ],

max{0,Pb[vi, rj ]− ε} ≤ P
(t)
b [vi, rj ] ≤ Pb[vi, rj ].

By Lines 9-10 in Algorithm 6, for i-th block and every

pair (vl, rj) ∈ V ×Ri,

P̂
(t)
f [vl, rj ] =

Pf
(t)
i [vl, rj ]∑

vh∈V Pf
(t)
i [vh, rj ]

=
P

(t)
f [vl, rj ]∑

vh∈V P
(t)
f [vh, rj ]

,

P̂
(t)
b [vl, rj ] =

Pb
(t)
i [vl, rj ]∑

Ri∈R
∑
rh∈Ri Pb

(t)
i [vl, rh]

=
P

(t)
b [vl, rj ]∑

rh∈RP
(t)
b [vl, rh]

.

By Lines 11-13 in Algorithm 6, the results in in Lemma

2 are now at hand. �
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Algorithm 8: SMGInit

Input: F′,B′,V, k, t.
Output: Xf ,Xb,Y,Sf ,Sb.

1 parallel for Vi ∈ V do
2 Φ,Σ,Vi ← RandSVD(F′[Vi],

k
2
, t);

3 Ui ← ΦΣ;

4 V← [V1 · · · Vnb ]>;

5 Φ,Σ,Y ← RandSVD(V, k
2
, t);

6 W← ΦΣ;
7 parallel for Vi ∈ V do
8 Xf [Vi]← Ui ·W[(i− 1) · k

2
: i · k

2
];

9 Xb[Vi]← B′[Vi] ·Y;

10 Sf [Vi]← Xf [Vi] ·Y> − F′[Vi];

11 Sb[Vi]← B′[Vi]−Xb[Vi] ·Y>;

12 return Xf ,Xb,Y,Sf ,Sb;

4.2 Parallel Joint Factorization of Affinity Matrices

This section presents the parallel algorithm PSVDCCD in

Algorithm 7 to further improve the efficiency of the

joint affinity matrix factorization process. At Line 1

of the algorithm, we design a parallel initialization al-

gorithm SMGInit with a split-and-merge-based parallel

SVD technique for embedding vector initialization.

Algorithm 8 displays the pseudo-code of SMGInit,

which takes as input F′, B′, V, and k. Based on V,

SMGInit splits matrix F′ into nb blocks and launches

nb threads. Then, the i-th thread applies RandSVD to

block F′[Vi] generated by the rows of F′ based on node

set Vi ∈ V (Line 1-3). After obtaining V1, · · · ,Vnb ,

SMGInit merges them by concatenating V1, · · · ,Vnb

into V = [V1 · · · Vnb ]
> ∈ R

knb
2 ×d, and then applies

RandSVD over it to obtain W ∈ R
knb
2 ×

k
2 and Y ∈ Rd×

k
2

(Lines 4-6). At Line 7, SMGInit creates nb threads, and

uses the i-th thread to handle node subset Vi for ini-

tializing embedding vectors Xf [Vi] and Xb[Vi] at Lines

8-9, as well as computing Sf and Sb at Lines 10-11.

Finally, SMGInit returns initialized embedding vectors

Y, Xf , and Xb as well as intermediate results Sf ,Sb at

Line 12. Lemma 3 indicates that the initial embedding

vectors produced by SMGInit and GInit are close.

After obtaining Xf ,Xb, and Y by SMGInit, Lines

2-16 in Algorithm 7 train embedding vectors by cyclic

coordinate descent in parallel based on subsets V and

R, in t iterations. In each iteration, PSVDCCD first fixes

Y and launches nb threads to update Xf and Xb in

parallel by blocks according to V, and then updates Y

using the nb threads in parallel by blocks according to

R, with Xf and Xb fixed. Specifically, Lines 5-10 are

the same as Lines 4-9 of Algorithm 4, and Lines 13-16

are the same as Lines 11-14 of Algorithm 4. Finally,

Algorithm 7 returns embedding results at Line 17.

Lemma 3 Given the same F′,B′, k and t as inputs to

Algorithm 3 and Algorithm 8, the outputs Xf ,Y,Sf ,Sb
returned by both algorithms satisfy that Xf · Y> =

F′,Y>Y = I and Sf = SbY = 0, when t =∞.

Proof Let the output of Algorithm 3 be Xf ,Xb,Y,Sf
and Sb, and the results returned by Algorithm 8 be X̂f ,

X̂b, Ŷ and Ŝf , Ŝb. According to [56], t =∞ implies that

RandSVD produces the same factorized results as that

returned by exact SVD. Therefore, Xf ·Y> = F′,Sf =

0,Xb = B′Y and Y is unitary, i.e., Y>Y = I. This

leads to SbY = (XbY
> −B′)Y = 0.

On the other hand, consider Algorithm 8. Based on
Lines 2-3, we have UiV

>
i = F′[Vi],

F′ =


F′[V1]
F′[V1]

...
F′[Vnb ]

 =


U1 0 · · · 0
0 U2 · · · 0
...

...
. . .

...
0 0 · · · Unb

 ·

V>1
V>2
...

V>nb

 .

By Lines 5-6, WŶ> = V and Ŷ is a unitary matrix,

i.e., Ŷ>Ŷ = I. Then by Line 8 and Line 10, we derive
that

F′ =


U1 0 · · · 0
0 U2 · · · 0
...

...
. . .

...
0 0 · · · Unb

 ·

W1

W2

...
Wnb

 · Ŷ> =


X̂f [V1]

X̂f [V2]
...

X̂f [Vnb ]

 · Ŷ>

= X̂f · Ŷ>,

and thus Ŝf = 0. In addition, according to Line 9 and

Line 11, we have X̂b = B′Ŷ and ŜbŶ = (X̂bŶ
> −

B′)Ŷ = 0. The proof is complete. �

4.3 Complexity Analysis

Observe that the non-parallel parts of Algorithms 6

(Lines 7-10) and 8 (Lines 4-6) take O(nd) time, as

each of them performs a constant number of opera-

tions on O(nd) matrix entries. Meanwhile, for the par-

allel parts of Algorithms 6 and 7, each thread runs in

O
(
md
nb
· log

(
1
ε

))
and O(ndktnb

) time, respectively, since

we divide the workload evenly to nb threads. Specifi-

cally, each thread in Algorithm 6 runs inO
(
md
nb
· log

(
1
ε

))
time. Algorithm 7 first takes O( nnb dkt) time for each

thread to factorize a n
nb
×d matrix block of F′ (Lines 1-

3 in Algorithm 8). In addition, Lines 4-6 in Algorithm

8 requires O(nbdk) time. In merge course (i.e., Lines

7-11 in Algorithm 8), the matrix multiplications take

O( nnb k
2) time. In the t iterations of CCD (i.e., Lines 2-

16 in Algorithm 7), each thread spends O(ndktnb
) time to

update. Thus, the computational time complexity per

thread in Algorithm 5 is O
(
md+ndk

nb
· log

(
1
ε

))
. Algo-

rithm 6 and Algorithm 7 require O(m+nd) and O(nd)
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space, respectively. Therefore, the space complexity of

Par-PANE is O(m+ nd).

5 PANE++: Scaling to Large Attribute Set

The aforementioned algorithms of PANE run in time lin-

ear to the number d of attributes in G, as shown in Sec-

tions 3.3 and 4.3. Hence, when d is large (e.g., millions

of attributes, as is the case in the MAG-SC dataset in

our experiments in Section 7), PANE (both Seq-PANE

and Par-PANE) may still incur rather high computa-

tional costs. To overcome this problem, this section

introduces PANE++, which significantly improves over

PANE in terms of efficiency in the presence of a large

attribute set, while retaining the high result quality

of PANE. Specifically, PANE++ first compresses the at-

tribute matrix R ∈ Rn×d into a lower-dimensional one

R̃ ∈ Rn×κ. This is achieved by clustering d attributes

into κ super attributes, where κ � d. Then, PANE++

proceeds with the PANE algorithm, with R̃ replacing

R. After obtaining the node embeddings Xf ,Xb, and

the super attribute embeddings Ỹ ∈ Rκ×
k
2 from PANE,

PANE++ reconstructs attribute embeddings Y ∈ Rd×
k
2 ,

based on the cluster information obtained in the first

step.

In the following, we present an effective attribute

clustering technique in Section 5.1, and describe the

complete PANE++ algorithm and its analysis in Sec-

tions 5.2 and 5.3, respectively.

5.1 Attribute Clustering

As explained above, a key step in PANE++ is to cluster

the input d attributes into κ super attributes, denoted

as {c1, c2, · · · , cκ}, where each super attribute cl cor-

responds to an attribute cluster Rcl ⊂ R consisting of

multiple similar attributes. Our clustering ensures (i)

that Rc1 ∪ Rc1 · · · ∪ Rcκ = R, and (ii) that no two at-

tribute clusters have overlapping members. To preserve

the information in the original attribute space, we need

an appropriate attribute similarity measure, as well as

an effective objective function for the attribute cluster-

ing, described in the following.

Attribute Similarity. Let SR[ri, rj ] denote the sim-
ilarity between two attributes ri, rj ∈ R. Recall that
R is the attribute matrix of the input graph G, where
each row vector denotes an attribute vector of a node.
Here, we focus on attributes (i.e., columns of R) in-
stead of nodes (rows of R). In particular, we view each
node as a feature; then, each column of R, say, R[:, ri]
corresponding to attribute ri, can be regarded as a fea-
ture vector of ri. Accordingly, we define the similarity

SR[ri, rj ] between attributes ri, rj as the cosine simi-
larity of their feature vectors:

SR[ri, rj ] = cosine(R[:, ri]
>,R[:, rj ]) =

R[:, ri]> ·R[:, rj ]

‖R[:, ri]‖ · ‖R[:, rj ]‖
= Rs[:, ri]

> ·Rs[:, rj ], (18)

where Rs[vi, rj ] =
R[vi, rj ]√∑
vl∈V R[vl, rj ]2

=
R[vi, rj ]

‖R[:, rj ]‖
. (19)

Equation (18) indicates that we can simply calculate

SR[ri, rj ] using the dot product of the normalized fea-

ture vectors of attributes ri, rj defined in Equation (19).

Objective Function. Let cl be a super attribute and

Rcl is its corresponding attribute cluster. Intuitively, a

good attribute cluster Rcl should satisfy that attributes

within Rcl are similar to each other and dissimilar to

those outside Rcl . Inspired by the RatioCut algorithm

[28,74], we partition the attribute set R into κ disjoint

subsets Rc1 , Rc2 , · · · , Rcκ by solving the mincut prob-

lem, formulated as the following optimization problem:

min
Rc1 ,Rc2 ,··· ,Rcκ

κ∑
l=1

Φ(Rcκ), (20)

where Φ(Rcl) represents the attribute cut of Rcl , defined

as follows.

Φ(Rcl) =
∑

ri∈Rcl ,rj∈R\Rcl

SR[ri, rj ]

|Rcl |
(21)

In the above formulation, Φ(Rcl) measures the av-

eraged similarity between an attribute in Rcl and an-

other outside Rcl ; intuitively, a good attribute cluster

Rcl should have a low Φ(Rcl). As such, our objective in

Equation (20) is to find κ partitions Rc1 , Rc2 , · · · , Rcκ
of R such that the averaged similarities of attributes

crossing different attribute clusters are minimized.

Lemma 4 Given κ disjoint subsets {Rc1 , Rc2 , · · · , Rcκ}
of attribute set R and a clustering indicator matrix

C ∈ 1d×κ such that for each entry with index rj , cl,

C[rj , cl] =

{
1 rj ∈ Rcl ,
0 rj ∈ R \Rcl ,

(22)

the objective in Equation (20) is equivalent to minimiz-
ing the following:

κ∑
l=1

Φ(Rcl) = Tr
(√

C>C
−1

C>(I− SR)C
√
C>C

−1
)
, (23)

where Tr denotes the trace of a matrix.
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Proof According to the definitions of Φ(Rcl) and C in

Equation (21) and Equation (22), respectively, we have

Φ(Rcl) =
∑

ri∈Rcl ,rj∈R\Rcl

SR[ri, rj ]

|Rcl |

=
∑

ri,rj∈R
SR[ri, rj ] ·

(
C[ri, cl]√
|Rcl |

− C[rj , cl]√
|Rcl |

)2

=
C[:, cl]

>√
|Rcl |

· (I− SR) · C[:, cl]√
|Rcl |

.

Note that
√

C>C
−1

is a κ× κ diagonal matrix, whose

(cl, cl) entry is equal to 1√
|Rcl |

. Therefore,

κ∑
l=1

Φ(Rcl) =

κ∑
l=1

C[:, cl]
>√

|Rcl |
· (I− SR) · C[:, cl]√

|Rcl |

= Tr
(√

C>C
−1

C> · (I− SR) ·C
√

C>C
−1)

,

which finishes the proof. �

Using Lemma 4, the optimization objective in Equa-

tion (20) can be transformed into the following:

max
C∈1d×κ

Tr
(√

C>C
−1

C> · SR ·C
√

C>C
−1)

. (24)

Therefore, the problem of finding κ super attributes be-

comes computing a clustering indicator matrix (CIM)

C defined in Equation (22) such that Equation (24) is

optimized.

Computing CIM C. Since CIM C satisfies Equation

(22), we have
√

C>C
−1

C> ·C
√

C>C
−1

= I. Further,
according to [63] and the Rayleigh-Ritz theorem (Sec-
tion 5.5.2 of [50]),

Tr
(√

C>C
−1

C> · SR ·C
√
C>C

−1
)
≤ Tr(U>SRU), (25)

where the columns in the matrix U ∈ Rd×κ are the κ

eigenvectors corresponding to the κ largest eigenvalues

of SR. Inequality (25) suggests that if we can find a CIM

C that minimizes the difference between C
√

C>C
−1

and U as follows:

‖C
√

C>C
−1
−U‖F , (26)

then, our objective in Equation (24) can be roughly

optimized. Recall that CIM C satisfies Equation (22).

Hence, for each attribute ri that belongs to subset Rcl ,

we have
(
C
√

C>C
−1)

[ri, cl] = 1√
|Rcl |

and(
C
√

C>C
−1)

[ri, cj ] = 0 ∀cj ∈ {c1, · · · , cκ} \ cl.

This implies that to minimize Equation (26), for each

attribute ri and its corresponding super attribute cl, we

Algorithm 9: PANE++

Input: G, R, k, α, κ
Output: Xf ,Y,Xb

1 Compute Rs by Equation (19);
2 Let U be the approximate top-κ left singular vectors

returned by RandSVD(R>s , κ,
log(ε)

log(1−α)
− 1);

3 Initialize C← 0 ∈ Rd×κ;
4 for ri ∈ R do
5 cl ← arg max

cj∈{c1,··· ,cκ}
U[ri, cj ];

6 C[ri, cl]← 1

7 R̃← RC;

8 Invoke Seq-PANE with R̃;

9 Let Xf , Ỹ,Xb be the output of Seq-PANE;

10 Y ← CỸ;
11 return Xf ,Y,Xb;

can simply ensure that U[ri, cl] is the maximum entry

in row vector U[ri]. In other words, we choose the super

attribute cl such that cl = arg max
cj∈{c1,··· ,cκ}

U[ri, cl] and

assign ri to the attribute cluster Rcl .

Now, the optimization problem in Equation (24)

is transformed to finding the top-κ eigenvectors U of

SR. However, by Equation (18), the construction of

SR incurs O(nd2) time and O(d2) space, which is pro-

hibitively expensive when d is large. Observe that in

Equation (18), SR is the dot product of Rs and its

transpose.

Suppose the exact SVD of R>s ∈ Rd×n is R>s =

ÛΣ̂V̂>, where Û ∈ Rd×d contains the full left singular

vectors of of R>s and the diagonal entries in Σ̂ are the

singular values of R>s . According to [67], the columns in

Û are the eigenvectors of matrix R>s Rs = SR and the

diagonal entries in Σ̂
2

are the eigenvalues of SR. Since

all singular values are non-negative, the i-th largest

eigenvalue of SR is equal to the square of the i-th largest

singular values of R>s . Therefore, the κ largest eigen-

vectors of SR are equal to the top-κ left singular vectors

of R>s , i.e., the κ left singular vectors corresponding to

the κ largest singular values of R>s . Thus, the problem

is transformed to computing the top-κ left singular vec-

tors of Rs, which eliminates the need to construct and

materialize SR explicitly.

5.2 Complete PANE++ Algorithm

The pseudo-code of PANE++ is displayed in Algorithm

9. Compared to Seq-PANE, PANE++ takes as input an

additional parameter κ, i.e., the number of super at-

tributes. Overall, PANE++ consists two phases: (i) con-

structing CIM C and the super attribute matrix R̃

(Lines 1-7); and (ii) invoking Seq-PANE to obtain node
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embeddings Xf ,Xb and attribute embeddings Y (Lines

8-11). In the first phase, PANE++ starts by normal-

izing attribute matrix R as Rs according to Equa-

tion (19) (Line 1). After that, PANE++ obtains an ap-

proximate top-κ left singular vectors U by utilizing

the efficient randomized SVD algorithm [56] at Line

2, with dimensionality κ and the number of iterations
log(ε)

log(1−α) − 1. Next, Algorithm 9 proceeds to construct-

ing CIM C (Lines 3-6). More specifically, for each at-

tribute ri ∈ R, we find the super attribute cl such

that U[ri, cl] is maximized among all super attributes,

and then set C[ri, cl] = 1 (Lines 4-6). Accordingly, we

obtain R̃ = RC (Line 7). That is, for each node vi,

its attribute value on super attribute cl is computed

by aggregating the values of all attributes in the at-

tribute cluster Rcl that super attribute cl corresponds

to, i.e., R̃[vi, cl] =
∑
rj∈Rcl

R[vi, rj ]. PANE
++ then in-

vokes Seq-PANE with R̃ as the attribute matrix and ob-

tains the returned forward embedding matrix Xf , back-

ward embedding matrix Xb, as well as the embedding

matrix Ỹ ∈ Rκ×
k
2 for κ super attributes {c1, c2, · · · , cκ}

(Lines 8-9). Finally, PANE++ computes Y = CỸ as the

attribute embeddings and return Xf ,Xb, and Y as the

output embeddings.

5.3 Complexity Analysis

First, Line 1 in Algorithm 9 needs to process every

non-zero entry in R, and, thus, takes O(|ER|) time.

Given Rs as input, RandSVD [56] at Line 2 requires

O
(
(|ER|+ dκ) · κ log (1

ε )
)

time. Recall that in Lines 4-

6, we need to find the largest value among κ entries

for each ri ∈ R. This time cost can be bounded by

O(dκ). The sparse matrix multiplications at Line 7 and

Line 10 can be implemented with O(|ER| ·κ) and O(dκ)

time, respectively. According to Section 3.3, the invo-

cation of Seq-PANE (Lines 8-9) in Algorithm 9 takes

O((m + nk) · κ log (1
ε )) time and O(nκ + m) space.

Overall, the total time complexity of PANE++ is O((m+

nk + |ER| + dκ) · κ log (1
ε )). Regarding space complex-

ity, R and R̃ require O(|ER|) and O(dκ) space, respec-

tively. Hence, the space overhead incurred by PANE++

is O(nκ+ dκ+m+ |ER|).

When to use PANE++. Given a space budget b (e.g.,

total available RAM), we employ PANE++ instead of

Seq-PANE/ Par-PANE when d is very large (e.g., d ≥ 104)

or 2nd+ k
2 · (2n+d) ≥ b, where term 2nd represents the

space overhead incurred by constructing F and B, and
k
2 ·(2n+d) is the total space cost for embedding vectors

Xf ,Xb, and Y in PANE. The rationale is that in the first

condition (i.e., d is large), factorizing large n×d affinity

matrices F and B will severely impede the efficacy of

PANE. As for the second condition, 2nd+ k
2 ·(2n+d) ≥ b

means that other variants of PANE would run out of

space due to the large size of the input network and

the intermediate structures.

6 Usage of Embeddings

Given an input attributed network G, our ANE meth-

ods return two embedding vectors Xf [vi] and Xb[vi] for

each node vi, and an embedding vector Y[rj ] for each

attribute rj . In this section, we explain how to use the

embeddings to achieve high performance in downstream

tasks, including node classification, attribute inference,

and link prediction.

Node Classification. We apply L2-normalization over

the forward embedding vector Xf [vi] and backward em-

bedding vector Xb[vi] for each node vi ∈ V , and con-

catenate them as the feature representation of vi, which

is then used as input to train or evaluate node classi-

fiers, such as a linear support-vector machine (SVM)

classifier [10] in Section 7.4.

Attribute Inference. Attribute inference is a super-

vised task that aims to predict the existence of an at-

tribute rj associated to a given node vi. We leverage the

following three heuristics for attribute inference using

the obtained embeddings. First, if the forward affinity

F[vi, rj ] from node vi to attribute rj defined in Equa-

tion (2) and the backward affinity B[vi, rj ] from at-

tribute rj to vi defined in Equation (3) are both high,

then, intuitively, node vi is likely to be associated with

attribute rj . Second, if an attribute rj appears fre-

quently in different nodes of a training set, it tends to

exist in the nodes of the test set. In other words, if the

number of non-zero entries in column R[:, rj ] is large,

rj should be popular in many nodes, where R is the at-

tribute matrix. Lastly, if a node vi has many attributes

(i.e., there are many non-zero entries in row R[vi]), vi
is more likely to be associated with attribute rj .

Based on the above three heuristics, we derive the

following indicator value for predicting whether node vi
is associated with attribute rj :

F[vi, rj ] + B[vi, rj ] + log (γvi + 1) + log (γrj + 1)

(27)

= log
((

n·pf (vi,rj)∑
vh∈V

pf (vh,rj)
+ 1
)
·
√

(γvi + 1) · (γrj + 1)
)

+ log
((

d·pb(vi,rj)∑
rh∈R

pb(vi,rh)
+ 1
)
·
√

(γvi + 1) · (γrj + 1)
)
.

(28)

Specifically, if Equation (27) has a large value, then,

node vi is likely to have attribute rj . Particularly, in
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Equation (27), in addition to the forward and back-

ward affinities F[vi, rj ] and B[vi, rj ], γvi and γrj are

the numbers of non-zero entries in R[vi] and R[:, rj ]

for node vi and attribute rj respectively, which serve

as scaling factors to give more weights if vi and rj are

popular in attribute matrix R. Since forward and back-

ward affinities F[vi, rj ] and B[vi, rj ] are based on shifted

PMI (SPMI) explained in Section 2.2, we also apply

logarithm operation over γvi and γrj shifted by 1, to

make sure the factors are positive. Then Equation (27)

is rewritten into Equation (28), based on Equation (2)

and Equation (3). Equation (28) provides a detailed in-

terpretation about how the two scaling factors γvi and

γrj work together as a factor
√

(γvi + 1) · (γrj + 1) to

affect the forward and backward affinity computations.

Recall that the embedding vectors are expected to

satisfy that Xf [vi]·Y[rj ]
> preserves F[vi, rj ], and Xb[vi]·

Y[rj ]
> preserves B[vi, rj ], according to objective func-

tion in Equation (4). Therefore, after obtaining the em-

beddings, we use p(vi, rj) in Equation (29) to infer if

attribute rj is associated to node vi.

p(vi, rj) =Xf [vi] ·Y[rj ]
> + Xb[vi] ·Y[rj ]

>

+ log (γvi + 1) + log (γrj + 1), (29)

where γvi and γrj are the numbers of non-zero entries

in R[vi] and R[:, rj ], respectively.

Link Prediction. Given two nodes vi and vj that are

not directly connected, link prediction aims to predict

if there will be an edge from vi to vj . Intuitively, if

the affinity between vi to vj is strong, the probability

of forming an edge from vi to vj is high. We propose
to evaluate the affinity by combining forward affinities

from vi and backward affinities to vj over the input at-

tributed network, with the consideration of both graph

topology and attributes. Specifically, given nodes vi and

vj and attribute rl, F[vi, rl] measures the affinity from

vi to rl, B[vj , rl] evaluates the affinity from rl to vj , and

consequently F[vi, rl] ×B[vj , rl] represents the affinity

from node vi to node vj via attribute rl over the at-

tributed network. However, note that F[vi, rl]×B[vj , rl]

does not consider the degrees of vi and vj for link

prediction, while node degrees have been shown to be

crucial in improving the performance of link predic-

tion [91]. Intuitively, if node vi (resp. vj) has large out-

edges (resp. in-edges), vi (resp. vj) tends to connect to

(resp. be connected to by) other nodes. Therefore, we

further use the out-degree dout(vi) of vi and in-degree

din(vj) of vj as weights for the node affinity values. In

particular, the following equation is used to evaluate

the weighted affinity between vi and vj , by summing

up all possible F[vi, rl] ×B[vj , rl] for any rl ∈ R, with

weights
√
dout(vi) + 1 and

√
dout(vj) + 1:∑

rl∈R

√
dout(vi) + 1 · F[vi, rl]×B[vj , rl] ·

√
din(vj) + 1.

As explained above, embedding vectors Xf [vi]·Y[rl]
>

preserves F[vi, rl], and Xb[vj ]·Y[rl]
> preserves B[vj , rl].

Therefore, the node affinity p(vi, vj) between vi and vj
is estimated by Equation (30). For undirected graphs,

we use p(vi, vj) + p(vj , vi) as the score for predicting

the edge between vi and vj .

p(vi, vj) =
∑
rl∈R

((√
dout(vi) + 1 ·Xf [vi] ·Y[rl]

>
)

·
(√

din(vj) + 1 ·Xb[vj ] ·Y[rl]
>
))

. (30)

In the next section, we adopt the above methods to uti-

lize the embedding results for node classification, link

prediction, and attribute inference over real-world at-

tributed networks.

7 Experiments

This section experimentally evaluates our proposed PANE

and PANE++ against 10 competitors on three tasks: node

classification, link prediction, and attribute inference,

over 8 real datasets. All experiments are conducted on

a Linux machine powered by an Intel Xeon(R) E7-8880

v4@2.20GHz CPUs and 1TB RAM. The codes of all

algorithms are collected from their respective authors,

and all are implemented in Python, except NRP, TADW

and LQANR. For fair comparison of efficiency, we re-

implement TADW and LQANR in Python.

7.1 Experiments Setup

Datasets. Table 3 lists the statistics of the datasets

used in our experiments. All graphs are directed except

Facebook and Flickr. |V | and |EV | denote the number

of nodes and edges in the graph, whereas |R| and |ER|
represent the number of attributes and the number of

node-attribute associations (i.e., the number of nonzero

entries in attribute matrix R). In addition, L is the set

of node labels, which are used in the node classifica-

tion task. Citeseer4 and Flickr5 are benchmark datasets

used in prior work [29,47,53,57,84,104]. Facebook6 and

Google+6 are social networks used in [42]. For Face-

book and Google+, we treat each ego-network as a label

4 http://linqs.soe.ucsc.edu/data
5 https://github.com/mengzaiqiao/CAN
6 http://snap.stanford.edu/data

http://linqs.soe.ucsc.edu/data
https://github.com/mengzaiqiao/CAN
http://snap.stanford.edu/data
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Table 3: Datasets. (K=103, M=106)

Name |V | = n |EV | = m |R| = d |ER| |L| Type References

Citeseer 3.3K 4.7K 3.7K 105.2K 6 directed [47,53,57,84,89,104]

Pubmed 19.7K 44.3K 0.5K 988K 3 directed [53,57,101,104]

Facebook 4K 88.2K 1.3K 33.3K 193 undirected [42,53,90,101]

Flickr 7.6K 479.5K 12.1K 182.5K 9 undirected [53]

Google+ 107.6K 13.7M 15.9K 300.6M 468 directed [42,90]

TWeibo 2.3M 50.7M 1.7K 16.8M 8 directed -

MAG 59.3M 978.2M 2K 434.4M 100 directed -

MAG-SC 10.5M 265.2M 2.78M 1.1B 8 directed [4, 94]

and extract attributes from their user profiles, which is

consistent with the experiments in prior work [53,90].

To evaluate the scalability of the proposed solutions,

we also include three large datasets, namely TWeibo7,

MAG8 and MAG-SC9. These datasets have not been

used in existing ANE work due to their massive size.

Specifically, TWeibo [38] is a social network, in which

each node represents a user and each directed edge rep-

resents a following relationship. We extract the 1657

most popular tags and keywords from its user profile

data as the node attributes. The labels are generated

and categorized into eight types according to the ages

of users. MAG dataset is extracted from the well-known

Microsoft Academic Knowledge Graph [66], where each

node represents a paper and each directed edge rep-

resents a citation. We extract frequently used distinct

words from the abstract of all papers as the attribute

set and regard the fields of study of each paper as its

labels. MAG-SC is also a citation graph extracted from

Microsoft Academic Knowledge Graph by [4]. In MAG-

SC, the attributes of a node are the bag-of-words rep-

resentation of the respective paper abstract. In total,

there are 2.78 million distinct attributes in MAG-SC.

Note that Flickr, Google+, and MAG-SC involve

large values of d, i.e., number of attributes, while the

other datasets have relatively small d. Hence, PANE++ is

evaluated on these three datasets to validate its ability

to handle large attribute sets effectively.

Baselines and Parameter Settings. We compare

our methods Seq-PANE (single-thread PANE), Par-PANE

(parallel PANE), and PANE++ against 10 state-of-the-

art competitors: eight recent ANE methods including

BANE [89], CAN [53], STNE [47], PRRE [104], TADW [84],

ARGA [57], DGI [73] and LQANR [88], one state-of-the-art

homogeneous network embedding method NRP [91], and

7 https://www.kaggle.com/c/kddcup2012-track1
8 http://ma-graph.org/rdf-dumps/
9 https://figshare.com/articles/dataset/mag_

scholar/12696653

one latest attributed heterogeneous network embedding

algorithm GATNE [6]. All methods except Par-PANE run

on a single CPU core. Note that although GATNE itself

is a parallel algorithm, its parallel version requires the

proprietary AliGraph platform.

The parameters of all competitors are set as sug-

gested in their respective papers. For Seq-PANE, Par-PANE,

and PANE++, by default we set error threshold ε = 0.015

and random walk stopping probability α = 0.5, and we

use nb = 10 threads for Par-PANE and κ = 1024 for

PANE++. Unless otherwise specified, we set space bud-

get k = 128.

The efficiency evaluation results of all methods are

presented in Section 7.2. We report the evaluation re-

sults of all methods for link prediction, node classifica-

tion, and attribute inference, in Sections 7.3, 7.4, and

7.5 respectively. A method is excluded in our study if

it cannot finish training within one week.

7.2 Efficiency of ANE methods

Figure 2(a) and Figure 2(b) report the running time

required by each ANE method on datasets with small

or large d, respectively. The y-axis is the running time

(seconds) in log-scale. The reported time does not in-

clude the time for loading datasets and outputting em-

bedding vectors. We omit any methods with time ex-

ceeding one week.

As shown in Figure 2(a), both Seq-PANE and Par-PANE

are significantly faster than all ANE competitors, often

by orders of magnitude. For instance, on Pubmed in

Figure 2(a), Par-PANE takes 1.1 seconds and Seq-PANE

requires 8.2 seconds, while the fastest ANE competi-

tor TADW consumes 405.3 seconds, demonstrating that

Seq-PANE (resp. Par-PANE) is 49× (resp. 368×) faster.

On large attributed networks including TWeibo and

MAG, most existing ANE solutions cannot finish within

a week, while Seq-PANE and Par-PANE are able to han-

dle such large-scale networks efficiently. Par-PANE is up

https://www.kaggle.com/c/kddcup2012-track1
http://ma-graph.org/rdf-dumps/
https://figshare.com/articles/dataset/mag_scholar/12696653
https://figshare.com/articles/dataset/mag_scholar/12696653
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Fig. 2: Running time (best viewed in color).

to 9 times faster than Seq-PANE over all datasets. For

instance, on MAG dataset that has 59.3 million nodes,

when using 10 threads, Par-PANE requires 11.9 hours

while Seq-PANE takes about five days, which demon-

strates the power of our parallel techniques in Section

4. Note that PANE++ is not reported in Figure 2(a) since

these datasets have small d values whereas PANE++ is

designed for datasets with a large d.

As shown in Figure 2(b), on datasets with large d,

PANE++ is significantly faster than Seq-PANE (both are

single-threaded), validating the efficiency of techniques

proposed in Section 5 for handling a large number of at-

tributes. Seq-PANE is slower than PANE++ on Flickr and

Google+ since it needs to construct, materialize, and de-

compose two high dimensional dense affinity matrices

in n×d dimensions, while PANE++ works on matrices in

n× κ dimensions to obtain embeddings, where κ � d.

All competitors are slower than our methods. Moreover,

as reported in Figure 2(b), PANE++ is the only method

that can efficiently handle MAG-SC with 2.78M at-

tributes, while all other methods including Seq-PANE

and Par-PANE run out of memory or time. Further, as

we show shortly in Sections 7.3, 7.4, and 7.5, compared

to Seq-PANE, PANE++ achieves comparable and some-

times even superior accuracy for link prediction, node

classification, and attribute inference, which validates

the efficiency and effectiveness of PANE++ on attributed

networks with numerous attributes.

7.3 Link Prediction

Recall from Section 6 that the link prediction task aims

to predict the edges that are most likely to form be-

tween nodes. In this set of experiments, we first ran-

domly remove a certain number of edges Erm (rang-

ing from 10% to 90%) in input graph G, obtaining a

residual graph G′. On undirected graphs, we then ran-

domly sample the same amount of pairs of nodes with-

out edges connecting each other as negative edges Eneg
(non-existing edges). On directed graphs, a node pair

(u, v) is ordered, and link prediction predicts whether

there is a directed edge from u to v. Hence, for directed

graphs, Eneg contains |Erm|/2 non-existing edges ob-

tained by reversing |Erm|/2 edges picked from Erm and

|Erm|/2 non-existing edges that are randomly sampled.

The test set Etest contains both the removed edges Erm
and the negative edges Eneg.

We run all methods on the residual graph G′ to pro-

duce embedding vectors, and then evaluate the link pre-

diction performance with Etest as follows. Recall that

our methods produce a forward embedding Xf [vi] and

a backward embedding Xb[vi] for each node vi ∈ V , as

well as an attribute embedding Y[rl] for each attribute

rl ∈ R. As explained, given a node pair (vi, vj), we use

p(vi, vj) in Equation (30) for our methods to predict

links on directed graphs, and use p(vi, vj) + p(vj , vi) on

undirected graphs. Competitor NRP generates a forward

embedding Xf [vi] and a backward embedding Xb[vi]

for each node vi and uses Xf [vi] ·Xb[vj ]
> as the pre-

diction score for the directed edge (vi, vj) [91], and

Xf [vi] ·Xb[vj ]
>+ Xf [vj ] ·Xb[vi]

> for undirected edges.

In terms of the remaining competitors that only work

for undirected graphs, they learn one embedding X[vi]

for each node vi. In literature, there are four ways to

calculate the link prediction score p(vi, vj), including

inner product method used in CAN and ARGA, cosine

similarity method used in PRRE and ANRL, Hamming

distance method used in BANE, as well as edge feature

method used in [26, 51]. We use all these four predic-

tion methods for each method, and report the method’s

best performance. Following previous work [53, 57], we

use Area under the ROC Curve (AUC) to evaluate link

prediction accuracy.

Figure 3 reports the AUC scores of each method

on each dataset. On undirected graphs including Face-

book and Flickr in Figures 3(c) and 3(d), our methods

Seq-PANE, Par-PANE and PANE++ achieve superior or

comparable performance to the best competitors. More-

over, Seq-PANE, Par-PANE and PANE++ consistently out-
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Fig. 3: Link prediction results on graphs (best viewed in color).
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Fig. 4: Node classification results on graphs (best viewed in color).

perform all competitors over all directed graphs except

NRP on Google+, by a large margin in terms of AUC.

For large attributed networks including Google+,

TWeibo, MAG, and MAG-SC, most existing solutions

cannot finish processing within a week and thus are

not reported. The superiority of our methods over com-

petitors is achieved by (i) learning a forward embed-

ding vector and a backward embedding vector for each

node to capture the asymmetric transitivity (i.e., edge

direction) in directed graphs, and (ii) combining both

node embedding vectors and attribute embedding vec-

tors together for link prediction in Equation (30), with

the consideration of both topological and attribute fea-

tures. On Google+, NRP is slightly better than Seq-PANE

since Google+ has more than 15 thousand attributes

(see Table 3) leading to some accuracy loss when fac-

torizing forward and backward affinity matrices into

low dimensionality k = 128 by Seq-PANE. As shown

in Figure 3, our Par-PANE also outperforms all com-

petitors significantly except NRP on Google+. Par-PANE

also has comparable performance with Seq-PANE over

all datasets. As reported in Section 7.2, Par-PANE is sig-
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nificantly faster than Seq-PANE by up to 9 times, with

almost the same accuracy performance for link predic-

tion. For datasets with a large d, i.e., Flickr, Google+,

and MAG-SC, we can observe that the extended ver-

sion of Seq-PANE, i.e., PANE++ also yields competitive

performance. In particular, PANE++ is the only viable

ANE solution and achieves a considerable gain over the

best competitor NRP.

7.4 Node Classification

Node classification predicts the node labels. Note that

Facebook, Google+ and MAG are multi-labelled. That

is, each node can have multiple labels. We first run

Seq-PANE, Par-PANE, PANE++, and the competitors on

the input attributed network G to obtain their embed-

dings. Then we randomly sample a certain number of

labelled nodes (ranging from 10% to 90%) to train a

linear support-vector machine (SVM) classifier [10] and

use the rest for testing. NRP, Seq-PANE, Par-PANE, and

PANE++ generate a forward embedding vector Xf [vi]

and a backward embedding vector Xb[vi] for each node

vi ∈ V . As explained in Section 6, we normalize the

forward and backward embeddings of each node vi,

and then concatenate them as the feature representa-

tion of vi to be fed into the classifier. Akin to prior

work [32,53,88], we use Micro-F1 and Macro-F1 to mea-

sure node classification performance. We repeat for 5

times and report the average performance.

Figure 4 shows the Micro-F1 results when varying

the percentage of nodes used for training from 10% to

90% (i.e., 0.1 to 0.9). The results of Macro-F1 are simi-

lar and thus omitted for brevity. For graphs with small

d, including Citeseer, Pubmed, Facebook, TWeibo, and

MAG in Figure 4, our methods Seq-PANE, Par-PANE

and PANE++ consistently outperform all competitors,

which demonstrates that our proposed solutions effec-

tively capture the topology and attribute information

of the input attributed networks. Specifically, compared

with the competitors, Seq-PANE achieves a remarkable

improvement on Citeseer, Pubmed, and Facebook. On

the large graphs TWeibo and MAG, most existing solu-

tions fail to finish within a week and thus their results

are omitted. Furthermore, Seq-PANE outperforms NRP

by a notable margin on TWeibo as displayed in Fig-

ure 4(f). In addition, Seq-PANE and Par-PANE are supe-

rior to NRP with a significant gain on MAG. Over all

datasets, Par-PANE has similar performance to that of

Seq-PANE, while as shown in Section 7.2, Par-PANE is

significantly faster than Seq-PANE.

As for the three datasets with large d, i.e., Flickr,

Google+, and MAG-SC in Figure 4, Seq-PANE, Par-PANE,

and PANE++ still outperform all competitors. Further,

we can observe that PANE++ is significantly better than

Seq-PANE and Par-PANE on Flickr, and comparable to

them on Google+. In particular, on Flickr, PANE++ out-

performs Seq-PANE by a significant margin of at least

10% in terms of Micro-F1. On MAG-SC with millions

of attributes in Figure 4, PANE++ can efficiently obtain

effective embeddings for classification, while Seq-PANE

and Par-PANE run out of memory, as reported in Section

7.2. On MAG-SC, PANE++ is far better than the only

competitor NRP, which is designed for homogeneous net-

works without considering the attributes in MAG-SC.

The superior performance of PANE++ over Seq-PANE,

Par-PANE, and all competitors on graphs with a large

number of attributes validates the effectiveness of the

proposed techniques in Section 5.1, which boosts effi-

ciency and also improves effectiveness in obtaining high-

quality embeddings.

Another observation we can make from Figure 4

is that on TWeibo and MAG-SC datasets, the perfor-

mance of all methods remain stable when increasing the

training ratio from 0.1 to 0.9 whereas their performance

on other datasets goes up notably. The reason is as fol-

lows. Note that both TWeibo and MAG-SC datasets

have millions of nodes and most nodes are associated

with only 2 to 4 dominant labels. As such, even with

10% training data, we can learn a classifier with ac-

curacy comparable to that with 90% training data. In

contrast, other datasets either have a small number of

nodes or balanced label distributions, making the clas-

sifiers learned on them more sensitive to the training

ratio.

7.5 Attribute Inference

Attribute inference aims to predict the existence of an

attribute in a node. Note that, except for CAN [53], none

of the other competitors is capable of performing at-

tribute inference since they only generate embedding

vectors for nodes and not attributes. Hence, we com-

pare our solutions against CAN for attribute inference.

Further, we compare against BLA, the state-of-the-art

attribute inference algorithm [87]. Note that BLA is not

an ANE solution.

We split the node-attribute associations ER, and

regard a certain number of these associations (ranging

from 10% to 90%) as the test set EteR and the remain-

ing part as the training set EtrR . In EteR , we also added

an equal number of node-attribute pairs that are not in

the original ER as negative samples. CAN runs over EtrR
to generate node embedding vector X[vi] for each node

vi ∈ V and attribute embedding vector Y[rj ] for each

attribute rj ∈ R, and uses the inner product of X[vi]

and Y[rj ] as the predicted score of attribute rj with
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Fig. 5: Attribute inference results on graphs (best viewed in color).
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respect to node vi. For our methods, we use Equation

(29) to calculate the predicted score of an attribute rj
to a node vi. Following prior work [53], we adopt the

Area under the ROC Curve (AUC) to measure the per-

formance.

In Figure 5, we present the AUC scores of Seq-PANE,

Par-PANE, PANE++, CAN, and BLA in terms of attribute

inference when varying the percentage of node-attribute

associations (i.e., the entries in R) used for training

from 10% to 90% (i.e., 0.1 to 0.9). Observe from Fig-

ure 5 that our methods consistently outperform existing

solutions often by a large margin, demonstrating the

power of the learned embedding vectors Xf ,Xb and

Y, which capture the affinity between nodes and at-

tributes in attributed networks. In particular, on graphs

with small d, including Citeseer, Pubmed, Facebook,

TWeibo, and MAG in Figure 5, Seq-PANE always ob-

tains the highest AUC scores among all methods, while

Par-PANE and PANE++ have comparable performance.

On Pubmed, the difference of AUC between Seq-PANE

and Par-PANE is very small. This negligible difference

is introduced by the split-merge-based parallel SVD
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technique SMGInit for matrix decomposition. As shown

in Section 7.2, parallel Par-PANE is considerably faster

than Seq-PANE by up to 9 times, while obtaining almost

the same accuracy performance. Moreover, on graphs

with large d (Flickr, Google+, and MAG-SC ), PANE++

is the only method able to handle MAG-SC with mil-

lions of attributes (Figure 5(h)) and also is slightly

better than Seq-PANE and Par-PANE on Flickr (Figure

5(d)). It also has comparable performance on Google+

as depicted in Figure 5(e). Moreover, on Flickr, all our

methods outperform competitors CAN and BLA by a re-

markable absolute improvement in terms of AUC. In

addition, CAN and BLA fail to process large attributed

networks, including TWeibo, Google+, MAG and MAG-

SC in one week. Thus, their results are omitted in Fig-

ure 5. Considering the high efficiency of PANE++ demon-

strated in in Section 7.2, we conclude that the tech-

niques in Section 5.1 are effective and efficient to learn

ANE embeddings on graphs with many attributes.

7.6 Parameter Analysis

In this section, we evaluate the performance of our

methods with varying parameter values, to study the

effects of these parameters. First, we vary the embed-

ding dimensionality k, error threshold ε and random

walk stopping probability α in Seq-PANE for link pre-

diction on Facebook and Pubmed. The AUC results are

reported in Figure 6. Specifically, Figure 6(a) displays

the link prediction AUC scores of Seq-PANE on Facebook

and Pubmed, with varying values of the embedding size

k in {16, 32, 64, 128, 256}. Observe that the AUC scores

grow notably when k increases from 16 to 256, indi-

cating that a large embedding dimensionality generally

leads to more effective embedding vectors. Figure 6(b)

reports the AUC scores of Seq-PANE when varying ε

from 0.001 to 0.25. Observe that the link prediction

performance remains relatively stable when increasing

ε from 0.001 to 0.015, and decreases slightly when ε

increases from 0.015 to 0.25. Note that when α = 0.5,

varying ε from 0.001 to 0.25 is equivalent to varying the

number of iterations t from 9 down to 1. We then vary α

from 0.1 to 0.9, and report the AUC scores of Seq-PANE

on link prediction in Figure 6(c). Observe that when α

increases, the performance of Seq-PANE on Facebook is

relatively stable, while that on Pubmed decreases sig-

nificantly when α > 0.5. Therefore, we choose to set

α = 0.5 by default. We speculate that the different be-

haviors of Seq-PANE are due to the different underlying

graph properties of Facebook and Pubmed.

Next, we vary κ from 256 to 4096 in PANE++ on

Flickr and Google+, and report the link prediction per-

formance in Figure 7. When κ increases from 256 to

4096, the AUC performance on Google+ goes up slightly,

while the performance on Flickr increases first and then

decreases after κ > 1024. Therefore, we choose to set

κ = 1024 by default. The different behaviors of PANE++

on Flickr and Google+ are probably due to their differ-

ent graph properties.

Figure 8(a) displays the speedups of Par-PANE over

Seq-PANE on Google+ and TWeibo when varying the

number of threads nb from 1 to 20. When nb increases,

Par-PANE becomes much faster than Seq-PANE, demon-

strating the parallel scalability of Par-PANE with respect

to nb. Figure 8(b) and Figure 8(c) illustrate the running

time of Seq-PANE with varying space budget k from 16

to 256 and error threshold ε from 0.001 to 0.25, re-

spectively. In Figure 8(b), when k is increased from

16 to 256, the running time is quite stable and goes

up slowly, indicating the robust efficiency of our so-

lution. In Figure 8(c), the running time of Seq-PANE

decreases considerably when error threshold ε is in-

creased in {0.001, 0.005, 0.015, 0.05, 0.25}. When ε in-

creases from 0.001 to 0.25, the running time on Google+

and TWeibo reduces by about 10 times, which is con-

sistent with our analysis that Seq-PANE runs in linear

to log (1/ε) in Section 4. Figure 9 presents the running

time of PANE++ when varying the number of attribute

clusters κ from 256 to 4096 on Flickr and Google+.

As κ increases, the running time of PANE++ increases,

which is consistent with the time complexity analysis

of PANE++ in Section 5.3.

8 Related Work

The work reported in this paper is an extended ver-

sion of [92, 93]. It differs from these earlier versions

in the following ways. First, this work introduces the

PANE++ algorithm for handling an input network with

a large attribute set. Second, it presents a detailed de-

scription on how the obtained embeddings are exploited

for downstream machine learning tasks, in particular,

node classification, attribute inference, and link predic-

tion. Lastly, our experimental study is extended by in-

corporating a new dataset, MAG-SC, with millions of

attributes and billions of node-attribute associations,

as well as an extensive parameter analysis.

In the following, we review related work in the lit-

erature.

8.1 Network Embedding

Network embedding (NE) [58] is to learn low-dimensional,

fixed-length vector representations of network nodes such

that the similarity in the embedding space reflects the
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similarity in the network. A pioneering effort is DeepWalk

[58], which adopts the SkipGram model and random

walks to capture the graph structure surrounding a

node and map it into a low-dimensional embedding

vector. Several studies [26, 69, 71, 103] aim to improve

the performance over DeepWalk by exploiting differ-

ent random walk schemes. These random-walk-based

solutions suffer from severe efficiency issues as they

need to sample a large number of random walks and

conduct expensive training processes. To address these

challenges, massively parallel network embedding sys-

tems, including PBG [41], Graphy [106] and LightNE [59],

are developed to utilize a large system with multiple

processing units, including CPUs and GPUs. However,

these systems consume immense amounts of compu-

tational resources that are financially expensive. Qiu

et al. proved that the aforementioned random-walk-

based methods have their equivalent matrix factoriza-

tion forms and proposed an efficient factorization-based

UNE solution [60]. In the literature, there are many

factorization-based UNE solutions exhibiting superior

efficiency and effectiveness, such as RandNE [99], AROPE

[100], STRAP [96], NRP [91], and FREDE [72]. In addition

to preserving the affinities between nodes, a number of

studies [16, 22, 77, 95] propose to incorporate commu-

nity structures into network embedding. However, all

NE solutions ignore attributes associated with nodes,

limiting their utility in real-world attributed networks.

8.2 Attributed Network Embedding

Factorization-based methods. Given an attributed

network G with n nodes, existing factorization-based

methods mainly involve two stages: (i) building a prox-

imity matrix M ∈ Rn×n that models the proximity

between nodes based on graph topology or attribute

information; (ii) factorizing M via techniques such as

SGD [5], ALS [9], and coordinate descent [79]. Specifi-

cally, TADW [84] constructs a second-order proximity ma-

trix M based on the adjacency matrix of G, and aims to

reconstruct M by the product of the learned embedding

matrix and the attribute matrix. HSCA [98] ensures that

the learned embeddings of connected nodes are close in

the embedding space. AANE [34] constructs a proxim-

ity matrix M using the cosine similarities between the

attribute vectors of nodes. BANE [89] learns a binary em-

bedding vector per node, i.e., {−1, 1}k, by minimizing

the reconstruction loss of a unified matrix that incor-

porates both graph topology and attribute information.

BANE reduces space overheads at the cost of accuracy.

To further balance the trade-off between space cost and

representation accuracy, LQANR [88] learns embeddings

∈ {−2b, · · · ,−1, 0, 1, · · · , 2b}k, where b is the bit-width.

GAGE [39] formulates the ANE problem based on multi-

dimensional scaling [11] and employs the tensor factor-

ization over distance matrices to produce node embed-

dings. ANEM [43] utilizes nonnegative matrix factoriza-

tion [1] to jointly decompose the low-order proximity

matrix and community membership strength matrix to

obtain node embeddings. All these factorization-based

methods incur immense overheads in building and fac-

torizing the n × n proximity matrix. Further, these

methods are designed for undirected graphs only.

Auto-encoder-based methods. An auto-encoder [23]

is a neural network model consisting of an encoder that

compresses the input data to obtain embeddings and a

decoder that reconstructs the input data from the em-

beddings, with the goal of minimizing the reconstruc-

tion loss. Existing methods either use different prox-

imity matrices as inputs or design various neural net-

work structures for the auto-encoder. Specifically, ANRL

[101] combines auto-encoder with the SkipGram model

[55] to learn embeddings. DANE [18] designs two auto-

encoders to reconstruct the high-order proximity ma-

trix and the attribute matrix respectively. ARGA [57]

integrates auto-encoder with graph convolutional net-

works [40] and generative adversarial networks [24] to-

gether. STNE [47] samples nodes via random walks and

feeds the attribute vectors of the sampled nodes into a

LSTM-based auto-encoder [30]. NetVAE [37] compresses

the graph structures and node attributes with a shared

encoder for transfer learning and information integra-

tion. CAN [53] embeds both nodes and attributes into

two Gaussian distributions using a graph convolutional

network and a dense encoder. None of these methods

based on auto-encoders considers edge directions. Fur-

ther, they suffer from severe efficiency issues due to the

expensive training process of auto-encoders.

SAGE2VEC [64] proposes an enhanced auto-encoder

model that preserves global graph structure and mean-

while handles the non-linearity and sparsity of both

graph structures and attributes. AdONE [2] designs an

auto-encoder model for detecting and minimizing the

effect of community outliers while generating embed-

dings. SAGES [76] first samples subgraphs containing

highly relevant nodes with the consideration of node

connections and attributes, and then learn the node em-

beddings by applying an unbiased graph autoencoder

on the sampled subgraphs with the guide of structure,

content and community loss.

Other methods. PRRE [104] categorizes node relation-

ships into positive, ambiguous, and negative types, ac-

cording to the graph and attribute proximities between

nodes, and then employs Expectation Maximization [12]
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to learn embeddings. SAGE [29] samples and aggregates

features from a node’s local neighborhood and learns

embeddings by LSTM and pooling. NetHash [81] builds

a rooted tree for each node by expanding along the

neighborhood of the node, and then recursively sketches

the rooted tree to get a summarized attribute list as the

embedding vector of the node. In contrast to learning-

based algorithms, NetHash [81] expands each node along

with its neighboring nodes into a rooted tree and then

recursively sketches the rooted tree to get a summarized

attribute list as the embedding vector. PGE [32] groups

nodes into clusters based on their attributes, and then

trains neural networks with biased neighborhood sam-

ples in clusters to generate embeddings. ProGAN [19]

adopts generative adversarial networks to generate node

proximities, followed by neural networks to learn node

embeddings from the generated node proximities. DGI

[73] derives embeddings via graph convolutional net-

works, such that the mutual information between the

embeddings for nodes and the embedding vector for

the whole graph is maximized. [46] proposes a generic

framework ASNE for embedding social networks, which

captures the structural proximity and attribute prox-

imity using a deep neural network architecture model.

MUSAE [61] extends the SkipGram model with nega-

tive sampling used in homogeneous network embed-

ding [26, 58] for attributed networks and show their

method implicitly factorizes a matrix of pointwise mu-

tual information. SANE [75] trains embeddings via a

united approach which combines the attention network

with CBOW model [54] to learn the similarity of the

graph structure and attributes simultaneously. MARINE

[80] preserves the long-range spatial dependencies be-

tween nodes into embeddings by minimizing the infor-

mation discrepancy in a Reproducing Kernel Hilbert

Space. BiANE [33] jointly models the attribute proxim-

ity and the structure proximity through latent correla-

tion training to embed bipartite attributed networks.

MTSN [49] learns dynamic node embeddings by simulta-

neously modeling both local high-order structural prox-

imities and temporal dynamics for dynamic attributed

networks. Inspired by [29], InfomaxANE [45] leverages

feature aggregation for the combination of topological

features and node attributes, and then trains global

and local embeddings based on mutual information esti-

mation. ANGM [48] focuses on embedding networks with

multipartite, hubs, and hybrid structures by combining

neural networks and the stochastic block model [31].

8.3 Other Related Work

Heterogeneous networks contain nodes and edges of dif-

ferent types. A series of studies focus on embedding

heterogeneous networks as surveyed in [14, 82, 86]. We

review several representative studies as follows. Inspired

by LINE [69] for NE, [68] and [65] preserve first/second-

order proximities into the embeddings with the consid-

eration of edge types. To incorporate high-order prox-

imities, metapath2ec [13], HIN2Vec [17], and JUST [35]

exploit different random walk models that are guided

by pre-defined meta-paths to sample node context for

representation learning. Li et al. [44] propose a biased

correlated random walk model to capture node prox-

imity inside each view (i.e., node type) without user-

specified meta-paths and, further, a cross-view algo-

rithm to transfer information across views. Without the

assumption that different meta-paths share the same

semantic space, SAHE [102] measures the relative prox-

imities on each meta-path in its own semantic space and

then aggregates them to obtain the final node proximity

for embedding generation.

Recently, there are substantial embedding studies

[7,78,85,97] on attributed heterogeneous networks that

consist of not only graph topology and node attributes,

but also node types and edge types. When there are

only one type of node and one type of edge, these meth-

ods effectively work on attributed networks. For in-

stance, Alibaba proposed GATNE [6], to process attributed

heterogeneous network embedding. For each node on

every edge type, it learns an embedding vector, by us-

ing the SkipGram model and random walks over the

attributed heterogeneous network. Then it obtains the

overall embedding vector for each node by concatenat-

ing the embeddings of the node over all edge types.

GATNE incurs expensive training overheads and highly

relies on the power of distributed systems.

To cope with dynamic graphs that evolve over time,

increasing research efforts [83] have been invested in dy-

namic network embedding (DNE) in recent years. For

instance, [15] generalizes the Skip-gram model to DNE

through a decomposable objective equivalent to that of

LINE [69] and a carefully-designed mechanism to se-

lect the greatly affected nodes that need to be up-

dated. DynGEM [25] represents dynamic graphs as a col-

lection of snapshots and incrementally updates the em-

beddings based on the ones from the previous snap-

shot via deep auto-encoders. Building on node2vec [26],

dynnode2vec [52] keeps updating the list of random

walks for evolving nodes and utilizes the dynamic Skip-

gram model to generate updated embeddings. In lieu of

embedding the entire graph, [27] learns embeddings for

a subset of interesting nodes in large graphs with a dy-

namic algorithm for PPR computation. Bielak et al. [3]

develop a general framework FILDNE for DNE, which

integrates embeddings from any existing NE methods
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by an incremental updating scheme with batched data

and an alignment mechanism.

9 Conclusions

This paper presents PANE, an effective solution for ANE

computation that scales to massive graphs with tens of

millions of nodes, while obtaining state-of-the art result

utility. The high scalability and effectiveness of PANE are

mainly due to a novel problem formulation based on a

random walk model, a highly efficient and sophisticated

solver, and non-trivial parallelization. Further, we ex-

tend PANE to PANE++ with an effective attribute clus-

tering algorithm to efficiently handle large attributed

networks with numerous attributes. Extensive experi-

ments show that PANE and PANE++ achieve substantial

performance advantages over the previous state-of-the-

art in terms of both efficiency and result utility. Re-

garding future work, we plan to further develop GPU

/ multi-GPU versions of PANE and extend PANE to het-

erogeneous networks and dynamic graphs.
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paths necessary?: Revisiting heterogeneous graph em-
beddings. In: A. Cuzzocrea, J. Allan, N.W. Paton,
D. Srivastava, R. Agrawal, A.Z. Broder, M.J. Zaki, K.S.
Candan, A. Labrinidis, A. Schuster, H. Wang (eds.)
CIKM, pp. 437–446. ACM (2018). URL https://doi.

org/10.1145/3269206.3271777

36. Jeh, G., Widom, J.: Scaling personalized web search.
TheWebConf pp. 271–279 (2003). URL https://doi.

org/10.1145/775152.775191

37. Jin, D., Li, B., Jiao, P., He, D., Zhang, W.: Network-
specific variational auto-encoder for embedding in at-
tribute networks. IJCAI pp. 2663–2669 (2019). URL
https://doi.org/10.24963/ijcai.2019/370

38. Kaggle: Kdd cup (2012). https://www.kaggle.com/c/

kddcup2012-track1

39. Kanatsoulis, C.I., Sidiropoulos, N.D.: Gage: Geometry
preserving attributed graph embeddings. In: WSDM,
pp. 439–448 (2022). URL https://doi.org/10.1145/

3488560.3498467

40. Kipf, T.N., Welling, M.: Semi-supervised classification
with graph convolutional networks. ICLR (2016)

41. Lerer, A., Wu, L., Shen, J., Lacroix, T., Wehrstedt,
L., Bose, A., Peysakhovich, A.: PyTorch-BigGraph: A
Large-scale Graph Embedding System. SysML pp. 120–
131 (2019)

42. Leskovec, J., Mcauley, J.J.: Learning to discover social
circles in ego networks. NeurIPS pp. 539–547 (2012)

43. Li, J., Huang, L., Wang, C., Huang, D., Lai, J., Chen, P.:
Attributed network embedding with micro-meso struc-
ture. TKDD 15(4), 72:1–72:26 (2021). URL https:

//doi.org/10.1145/3441486

44. Li, Z., Zheng, W., Lin, X., Zhao, Z., Wang, Z., Wang,
Y., Jian, X., Chen, L., Yan, Q., Mao, T.: Transn: Het-
erogeneous network representation learning by translat-
ing node embeddings. In: ICDE, pp. 589–600. IEEE
(2020). URL https://doi.org/10.1109/ICDE48307.

2020.00057

45. Liang, X., Li, D., Madden, A.: Attributed network em-
bedding based on mutual information estimation. In:
M. d’Aquin, S. Dietze, C. Hauff, E. Curry, P. Cudré-
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