The VLDB Journal (1997) 6: 121-131 The VLDB Journal
© Springer-Verlag 1997

On applying hash filters to improving the execution
of multi-join queries

Ming-Syan Chen', Hui-l Hsiao?, Philip S. Yu?

1 Electrical Engineering Department, National Taiwan University, Taipei, Taiwan
2 |IBM T.J. Watson Research Center, P.O.Box 704, Yorktown, NY 10598, USA

Edited by G. Gardarin. Received October 1994 / Accepted December 1995

Abstract. In this paper, we explore an approach of inter-

leaving a bushy execution tree with hash filters to improve

the execution of multi-join queries. Similar to semi-joins in

distributed query processing, hash filters can be applied to 4 4 ﬁ o
. . L . R, R R

eliminate non-matching tuples from joining relations before Rq /\ 1 20& 5

the execution of a join, thus reducing the join cost. Note thal R 0 Ry Ry

hash filters built in different execution stages of a bushy treér 2 2 R

can have different costs and effects. The effect of hash filter@) left-deep tree

is evaluated first. Then, an efficient scheme to determine an])

effective sequence of hash filters for a bushy execution tre&'9- 1a-¢-lllustration of different query trees

is developed, where hash filters are built and applied based

on the join sequence specified in the bushy tree so that not

only is the reduction effect optimized but also the cost asso- A query plan is usually compiled into a tree of operators,

ciated is minimized. Various schemes using hash filters aréalled a join sequence tree, where a leaf node represents an

implemented and evaluated via simulation. It is experimendnput relation and an internal node represents the resulting

ta”y shown that the app]ica’[ion of hash filters is in genera| arelation from jOining the two relations associated with its two

very powerful means to improve the execution of multi-join child nodes. There are three categories of query trees: left-

queries, and the improvement becomes more prominent adeep trees, right-deep trees, and bushy trees, where left-deep
the number of relations in a query increases. and right-deep trees are also called linear execution trees, or

sequential join sequences. Examples of the three forms of
Key words: Hash filters — Parallel query processing — Bushy duery trees are shown in Fig.1. A significant amount of
trees — Sort-merge joins research efforts has been elaborated upon developing join

sequences to improve the query execution time. The work

reported in [26] was among the first to explore sequential

join sequences, and sparked off many subsequent studies.

Several schemes have been proposed to develop sequential
1 Introduction join sequences [12, 17, 28, 29].

On the other hand, the bushy tree join sequences did

Parallel database machines have drawn a considerable aet attract as much attention as sequential ones in the last
mount of attention from both the academic and industrialdecade since it was generally deemed sufficient, by many
communities due to their high potential for parallel exe- researchers, to explore only sequential join sequences for de-
cution of complex database operations [4, 8, 16, 27, 30]sired performance. This can be in part explained by the fact
In relational database systems, joins are the most experhat in the past the power/size of a multi-processor system
sive operations to execute, especially with the increases iwas limited, and that the query structure used to be too sim-
database size and query complexity [15, 21, 34]. Databasple to require further parallelizing as a bushy tree. It is noted,
applications which involve decision support and complexhowever, that these two limiting factors have been phased
objects usually have to specify their desired results in term®ut by the rapid increase in the capacity of multi-processors
of multi-join queries, and some complex queries for suchand the trend for queries to become more complicated [34],
applications may take hours or even days to complete, thuthereby justifying the necessity of exploiting bushy trees.
degrading the system performance. As a result, it has beConsequently, it has recently attracted an increasing amount
come imperative to develop solutions for efficient execu-of attention to explore the use of bushy trees for parallel
tion of multi-join queries for future database managementquery processing. A combination of analytical and experi-
[9, 11, 19, 22]. mental results was given in [14] to shed some light on the

(b) right-deep tree (c) bushy tree

122

complexity of choosing left-deep and bushy trees. An inte- R HFpr,(B) Re

grated approach dealing with both intra-operator and inter- A B h(bi) set B C

operator parallelism was presented in [20], where a greedy “ Zl 0 0 Zl 2
scheme taking various join methods and their corresponding Zz b; ; i b: 2
costs into consideration was proposed. As an extension to 4, p, 3 0 b ca
[12], an algorithm-handling processor scheduling in a bushy az g 4 1 b7 e
tree was proposed in [11], where the inter-operator paral- as by @ bg c3
lelism is achieved by properly selecting |0-bound and CPU- as by

bound task mix to be executed concurrently. For efficient B C

solutions, only schemes that execute at most two tasks at b

a time were explored in [11]. A two-step approach to deal by

with join sequence scheduling and processor allocation for bs ca

parallel query processing using sort-merge joins was devised by

in [7]. Pipelining hash joins in a bushy tree and processor

allocation within each pipeline were studied in [5] and [18], R, after the application of{ Fig, (B) — Ro.

respectively. In addition, various query plans in processing
multi-join queries in a shared-nothing architecture were in-
vestigated in [24].

While most prior work on inter-operator parallelism fo-
cused on the execution tree generation to minimize the query . . _ _
execution cost, there is relatively little result reported on ex-. AN HF built by relationR; on its attributeA, denoted

loiting th f furth rpy HFR,(A),is an array of bits_ vx_/hich are initialize(_j to ze-
ploiting the structure of a query tree to further reduce eac ros. Let R;(A) be the set of distinct values of attribuie

individual join cost. It has been shown that the cost of exe-.n R, andh be the corresponding hash function employed
cuting a join operation can mainly be expressed in terms o i) . ;) :
gal P Y p he k-th bit of H F',(A) is set to one if there exists ane

the cardinalities of relations involved. In view of this, one i\ > 0
would naturally like to remove unnecessary tuples and re-.Ri(A) such thati(a) = k. Similar to the effect of semi-joins,

duce the cardinalities of relations involved before a join to't ¢&" tt:e'bsigz thatbbefotrrt]e J?'n'ld@i af?d R; on ttpﬁ;r COA“'
minimize the join cost. As semi-join has traditionally been MON attributes, probing the tuples of; agains r,(4)

relied upon to reduce the amount of inter-site data transmis‘-ind removing non-matching tuples will reduce the number

sion required for distributed query processing [2, 6], the tech—Of tuples of it; to Participate in the join. The join cost is
nigue of hash filtering can be applied in a parallel databas hus reduc_:ed._An lllustrative example .Of th«_a use of HFs can
environment to reduce the relation cardinalities. Note, how2€ found in Fig. 2, where ail I, (5) is built by Iz, and
ever, that previous work on hash filters (or called bit—vector"_"pp“(ad toRz, with the cc_)r_respondmg hash funcﬂt_hr@bi_)—
filters) only considered their use on the joining attribute due’ mod 5. It can be verified that, aftgr the_ appllcatlon of
mainly to the focus on linear execution trees [1, 8, 23131] 1 £'r.(B), I is reduced to the one given in Fig. 2b, thus
thus not fully taking advantage of the opportunity for utiliz- '€dUcing the join cost ofz; x . Note that the effect of
ing multiple hash filters to reduce a single relation. As cantiFS iS more complicated than that of semi-joins, since hash
be seen later, such an opportunity is made available by thgolhsmn can occur for different attribute values (such as
execution of a bushy tree and can lead to a very significan

1 andbg in Fig. 2a) when an HF is built. In this paper, we
reduction effect on relation cardinalities, thereby greatly im-Shall evaluate the effect of HFs first, and then develop an ef-
proving the execution of multi-join queries. Consequently,

ficient scheme to interleave a bushy execution tree with HFs
we explore in this paper the approach of interleaving a bush

0 minimize the query execution cost. As mentioned earlier,
execution tree with hash filters (HFs) to minimize the queryh Fs bclij.'flft in different ex(;acugon ;tagef? of a Ibus_hy trefe r(]:.an
execution time. It is worth mentioning that the algorithm we Nave difierent costs and reduction effects. In view of this,
propose aims at improving the execution of a bushy treel® Proposed scheme will assign a join sequence number to
thus providing a solution to an increasingly important prob- eaph join operation in the b“?“.y tree when the tree is being
lem. Due to the complexity of a bushy tree, HFs built and built at the compile tim& The join sequence numbers spec-

applied in different execution stages can have very diﬁ‘er-ify the order of the joins to be carried out. Then, based on

ent costs and reduction effects. How to build HFs so as tc}h.e join sequence in the bushy tree,.HFs are built and ap-
minimize their cost as well as optimize their effect is a very Plied cost-effectively, so that not only is the reduction effect

important issue, and hence taken as the objective of thi ptimized but also the cost associated is minimized. Several

study. To the best of our knowledge, despite its importance!ustrative examples will be given. Extensive performance
there is no previous work on exploring the approach of in-Studies are conducted to evaluate various schemes using HFs

terleaving a bushy execution tree with HFs to improve theYia Simulation. Itis experimentally shown that the applica-
execution of multi-join queries, let alone conducting studiestion of HFS is in general a very powerful means to improve

of its performance. This feature distinguishes our work fromtN€ execution of multi-join queries, and the improvement be-
that of others. comes more prominent as the number of relations in a query

increases.

(b)

Fig. 2a,b. An example of the use of HFs.

1 Note that in dealing with a linear execution tree, one usually has only 2 Various heuristics, such as those in [7] and [20], can be applied to build
two joining relations residing in memory at a time, thus limiting the appli- a bushy execution tree. Note that assigning sequence numbers to joins while
cability of hash filters to the joining attribute building a bushy tree involves little overhead

123

The rest of this paper is organized as follows. Prelimi-referencé. In the presence of data skew, we only have to
naries are given in Sect. 2. The effect of HFs and the promodify the corresponding formula accordingly [10].
posed scheme are presented in Sect. 3. Performance studies
on various schemes using HFs are conducted in Sect. 4 via
simulation. The paper concludes with Sect. 5. 3 Using HFs for a bushy execution tree

In this section, we shall first evaluate the effect of HFs and
then propose a scheme to derive HFs for a bushy execution

L tree.
2 Preliminaries

3.1 The effect of HFs
We assume that a query is of the form of conjunctions of
equi-join predicates. A join query graph can be denoted bylet H Fr,(4)—R; denote the application of an HF gener-
a graphG = (V, E), whereV is the set of vertices anfl is ated by R; on attribute A to R;. Note that the reduction
the set of edges. Each vertex in a join query graph representsf R; by H Fr,(A)—R; is proportional to the reduction of
a relation. Two vertices are connected by an edge if there?;(A4). The estimation on the size of the relation reduced is
exists a join predicate on some attribute of the two correthus similar to estimating the reduction of projection on the
sponding relations. We ug&;| to denote the cardinality of corresponding attribute. Let; 4 be the reduction ratio by
arelationR; and|A| to denote the cardinality of the domain the application ofH F'r,(A), and the cardinality oR; after
of an attributeA. As in most previous work on the execu- HFg,(A)—R; can be estimated gs; 4|R;|. Clearly, the
tion of database operations, we assume that the executictetermination ofp; 4 depends on the size of an HF since,
time incurred is the primary cost measure for the processas shown in Fig. 2, different attribute values may be hashed
ing of database operations. Also, we focus on the executiomto a same hash entry. To formally derigg4, consider the
of complex queries, i.e., queries involving many relations.ball drawing problem described below first.
Notice that such complex queries can become frequent in o)
real applications due to the use of views [34]. The architec’roposition 1. Supposé: balls are drawn sequentially and
ture assumed in the performance study in Sect. 4 is a multiindependently fromn different balls. Then, tPek expected
processor system with distributed memories and shared diskdumber of different balls selectedns(1 — (1 —)").

containing database data. Barring any tuple placement Ske\‘-\‘roof Let X-=1 if the i-th ball is drawn at least once. and
[32], the scheme developed in this paper is applicable tOX:O.otherwliseS = 3™ X, is the number of distinct t;alls
the shared-nothing architecture where each disk is acce%—rlaWn ThenE(S)= Z}#E%X}: mE{X,}= m(l - (1 —
sible only by a single node. To facilitate our presentation ., = =1 ’ v

and performance evaluation, the join method on which wem))- QE.D.

shall demonstrate the application of HFs is the sort-merge i can be observed that hashifg= |R;(4)| different
join that most existing database_ management softwares relysjues into an HE ofn bits is similar to the experiment
upon. Note that the concept of interleaving a bushy execuyt grawingk balls fromm different balls with replacement.

tion tree with HFs is also applicable to improving the query The following proposition thus follows.
execution time when other join methods, such as hash joins

and nest-loop joins, are employed, and by no means confineBroposition 2. The reduction ratio by the application of
to the use of sort-merge joins. HFg,(A), pi a, can be formulated as

Both CPU and I/O costs of executing a query are con-
sidered. CPU cost is determined by the path length, i.e., the _ | 1— (1 — L)FWI form < |A], 1
total number of tuples processed multiplied by the number”"4 'ﬁﬁ”ﬂ for m > |A|, (1)
of CPU instructions required for processing each tuple. A
parameter on CPU speed (i.e., MIPS) is used to comput&hereR?;(A) is the set of distinct values of attributein R;,
the CPU processing time from the number of CPU instruc-andm is the number of hash entries in an HF.

tions incurred. 1/O cost for processing a query is determined SupposeR; has two attributesd and B. The problem

by disk service time per page multiplied by the total number RS - .
of page I/Os. By doing such, we can appropriately vary '[he(?f estimating the cardinality oR; pr(_)jected on th_e non-
CPU speed to take into consideration both CPU-bound an&”tered attributeB after F'g, (4)— R; is very complicated,

/0-bound query processing, and study the impact of utiIiZ_and needs to resort to the following combinatorial problem

ing HFs in both cases. A detailed performance model on thi)aresolve: There are balls with r different colors. Each

cost of sort-merge joins and the system parameters used ll'has one color and thecolors are uniformly distributed
given in Sect. 4. over then balls. Find the expected number of colorshif

In addition, we assume for simplicity that the values of balls are randomly selected from theballs.” Denote the ex-
attributes are uniformly distributed over all tuples in a re- pected number of colors of theselected balls ag(r, n, h).
lation and that the values of one attribute are independenf €™ 8s pointed out in [334(r, n, 2) can be formulated as
of those in another. Thus, the cardinalities of resulting re- ollows,

lations of jOi_r]S can be eStimat_Ed .acco.rding to the ermU|a 3 Note that this formula offers a more sophisticated model than the one
used in previous work [7] that is given in the Appendix for based on the foreign key assumption

124

Thus, despite the cardinality of a resulting relation possi-
bly being larger than those of its operands, the cardinality
of distinct values of a certain attribute is always decreasing
along the execution of a join sequence. This is the very rea-
son that we shall generate HFs based on the join sequence
numbers to optimize their reduction effects in the algorithm
to be described. For example, it can be seen that the reduc-

tion effect of H Fr/,(A)— R3 is more powerful than that of
R HFg,(A)—R3 in Fig. 3b. Formally, we have the following

@ proposition for HFs.

Proposition 4. p; 4 < p;j 4 if R; € S(R;).

3.2 Interleaving a bushy execution tree with HFs

In light of the results on the effect of HFs in Sect. 3.1, we
shall develop a scheme that applies HFs to improving the ex-
ecution of a bushy tree. The proposed scheme will interleave
a given bushy tree with appropriate HFs, so that not only
is the reduction effect optimized but also the cost is min-
imized. As pointed out earlier, the sort-merge join method
is employed in our discussion on the use of HFs. Lét#
honr=1) _4q be the sequence number of the join in which relati®n
g(r,n,h) = r[1 — H(T). 2 is involved. Joins with smaller sequence numbers execute
pival 1 first. R; in #Jg, can be either a base relation or an inter-
) , mediate relatioh As can be seen from algorithi below,
As shown in [2], Eq. (1) can be approximated as below,ihe sequence number is used to determine the order of HFs
. forr < b applied. Spe_cifically, if #g, < #JR, _andRi andR; have a
g(rn, h) ~ h forhet (3 common attributed, then R; will build H Fp, (A) to apply
. ! 2’ to R;. However,R; does not build an HF foR;. Rather, in
light of Proposition 4, the application of such an HFRg
We then obtain the reduction effect of an HF on a non-will be deferred until the execution reaches the ancestor of
filtered attribute by assigningR;| = n, |R;(B)| = r and R, say Ry, such that #r, > #Jg,. The reduction effect
|R;|pi.a = h. It can be seen that whe®;(B)| = r is much by the HF on attributed to 12; can thus be optimized.
less than R;|p; 4 = h, the cardinality ofR;(B) remains ap- The operations of algorithni can be described as fol-
proximately the same aftei Fir,(A)— R;. Thus, we assume lows. In Step 1, a bushy tree is built first. Then, relations
in this paper the number of distinct values of a non-filteredinvolved in later joins will build HFs for those involved in
attribute remains the same after an HF application to simearlier joins in Step 2. Leba: be the set of attributes to
plify our discussion. build HFs. The first conditional statement in Step 2 to set
As mentioned earlier, in a bushy tree execution, HFsUP Sat assures that only necessary HFs will be generated
built in different execution stages can have very differentand applied to other relations. Also, it can be seen that a
reduction effects. To further investigate the effect of HFsrelation will be scanned at most once to build HFs for at-
in a bushy tree, denote the set of relations within the subtributes in Sz Every relation, after receiving and utilizing
tree underR; as S(R;). It can be seen that the size of an all its filters, starts its sorting phase in Step 3. The merge
intermediate relatiork; will not be affected by the applica- phase of a join begins when all of its operands are available
tions of HFs between relations B(R;). Consider the bushy in Step 4. It can be observed that building HFs can be carried
tree in Fig. 3a for example. Denote the resulting relation byout when output tuples are being generated, thus avoiding
R; x R; as R'ning; ;3 for convenienceR’; in Fig. 3a rep- another relation scan. The procedure repeats until all joins
resents the resulting relation of join J#1. It can be verifiedare completed as stated in Step 5.
that the application off Fir,(A)— Ry will reduce the size Algorithm H: Interleaving a bushy execution tree with HFs.
of Ry, and then that of?’y. On the other hand, the applica- step 1: A join sequence heuristic is applied to determine a
tion of HFg,(B)—R1 pnly reducesRy, _b_ut not R'y, since pyshy execution tree T.
the effect of H F'i,(B) is offset by the joinR; x R». This
phenomenon can be stated by the proposition below.

Fig. 3a,b. An example of the effect of HFs

(*h) | otherwise.

Step 2:for each leaf nod&?; in T

begin
Proposition 3. SupposeR,, is an intermediate relation in a Satt = ¢; o .
bushy tree. The size &, will be reduced by Fir_(A)— Ry for each join attributed of R;
if and Only ifRq € S(Rm) and R, ¢ S(Rm)- 4In the case of dealing with a segmented right-deep tree, which is a

L. . bushy tree with right-deep subtrees [5], one can use segment sequence
Note that after a join, non-matched tuples are filtered outumbers, instead of join sequence numbers, to properly insert HFs into the

meaning thatR’;(A)| < |R;(A)| whereR’; = R, x R;. bushy tree among different segments

125

Let R; be the joining relation withR; on attributeA.

begin
if (#JR1 > #JRj) then Sa= Sa U A;

end '

if (Satt 7 ¢)

begin
ScanR;, andV A € Say, build HFg,(A) by R;;
SendH F'g,(A) to R;, whereR; is the joining re-
lation with R; on attributeA.

end

end

Step 3:for each leaf node?; in T
begin Fig. 4. Application of HFs for joins J#1 and J#2
if R; receives all HFs for its join attributaben
begin
R; applies HFs to filter out non-matching tuples.
R; starts/resumes its sorting phase.
end
end

Step 4:for each join Jin T
begin
if both relationsRk; and R; under J have completed
their sorting phasethen
begin .
Perform the join J; [2
(When generating the resulting relatidty,) ABC ¢ Ro © FE
GenerateH F' i_(A) for attribute A if 3 a base re- Fig. 5. Application of HFs for joins J#3 and J#4
lation R,, joining with R, on A
such that #r, > #Jg,;
SendH Fr_(A) to its recipient;
Update the execution tree T accordingly by remov-

ing R; and R;.
(Rs becomes a leaf node.)
end
end R}
Step 5:if |T'|=1 then return results
else gotoStep 3. Fig. 6. Application of HFs for joins J#5, J#6 and J#7

3.3 Examples and variations
will be denoted in the following by CA, where CA stands

Consider the bushy tree in Fig. 4 for example. Sidtex for its nature of “check and apply.” Instead of interleaving
Ry is the first join to perform, we havél Fr,(F) — Rz, the joins in a bushy tree with HFs, the latter can be built
HFg,(G) — Ry and H Fr,(G) — Rg before the execution directly from base relations and applied as a preprocessing
of Rg » R7. Then, prior to the second joiRs x Rs, four of a bushy tree. Such an approach will be referred to as
HFs, HFr,(E) — Rs, HFg,(A) — R4, HFg,(D) — Rs scheme SM, where SM stands for “simple.” Also, HFs can
and H Fr, (D) — R4 are applied. The bushy tree after the be regenerated from intermediate relations, and repeatedly
first two joins is shown in Fig. 5. We, in turn, have the HFs applied to achieve better reduction effect at the cost of em-
HFg ,(E) — Rg and HFg(F) — Rg applied as shown ploying more HFs. This alternative is denoted by RG, stand-
in Fig.5 before the joinR; x Rg. Similarly, following the ing for “regeneration.” The conventional approach without
operations in algorithn#, the applications of HFs are illus- using HFs, denoted by NF (i.e., “no filters”), will also be
trated in Figs.5 and 6. It can be seen that to have a bettamplemented for a comparison purpose.
reduction effect according to Proposition & Fr/,(A)— R Note that the first step of the sorting phase can be per-
and H Fr/,(E)— Rg are built after the joinRs x Rs, instead formed while an HF is being built to minimize both CPU
of being built by R4 and Rs, respectively, in the bushy tree and I/O costs. In addition, in the case that indices are avail-
in Fig. 4. able for certain attributes, we can scan the corresponding

Clearly, there are many variations of algorithkh To indices instead of the whole relation in Step 2 to reduce the
provide more insights into the approach of HFs, extensivecost. Optimization on these issues is system dependent, and
simulation will be conducted in Sect.4 to evaluate variouscan in fact further increase the performance improvement
schemes using HFs. For notational readability, algoritim achievable by using HFs.

126

4 Performance study Table 1. Parameters used in simulation

Parameters Setting
We first describe the performance model used to evalu- ftple 300

ate the benefit of different HF generation and application ?‘as'“ ;88
schemes in Sect. 4.1. Parameters used in simulation are given”* 2K pages
in Sect. 4.2. Simulation results are then presented and ana-,,, 40 tuples
lyzed in Sect. 4.3. tpio 15ms
Reard 1M tuples
Acard 700K
. carv 100K-600K
4.1 Model overview atto 100K—400K
A uniform
The performance model consists of three major components:}cZER; uniform

Query Manager, Optimizer, and Executor. Query Manager CPUspeed 2-10 MIPS
is responsible for generating query requests as follows. The

number of relations in a query is determined by an input
parametersn. Relation cardinalities and join attribute car-
dinalities are determined by a set of paramet&g;q, carv,
fa(R), Acarar attv, and fy(A). Relation cardinalities in a
guery are computed from a distribution functigip(R), with

a mean,Rqaq and a deviationgarv. Cardinalities of join
attributes are determined similarly Bdarg, attv, and f4(A).
There is a predetermined probabilify, that an edge (i.e., a

I/O cost for processing a query is determined by disk
service time per pagep,, multiplied by the total number
of page reads and writes. To sort a relation fpages,
log,,, P+1 iterations of disk I/O are required, whereis the
number of main memory buffer pages available for sorting.
Each iteration read#® pages into memory for sorting and
writes P sorted pages to disk. To merge two sorted relations

join operation) exists between any two relations in a givenOf Py and P, pages,Py + P, pages are read into memory.
query graph. The largay is, the larger the number of joins The number of pages written to disk after a join operation

in a query will be. Note that some queries so generated ma;f determined by the size of the resulting relatigh, Thus,

; - ..-the total number of 1/Os required to join two relations of

have disconnected query graphs. Without loss of generalit X
only queries with connected query graphs were used in ou ize Py and P, is 2x (Py(log,, P1+1) + P(log,, P, +1)) +
study, and those with disconnected graphs were discarded. ™

Optimizer takes a query request from Query Manager,
and produces a query plan in the form of a bushy tree. Joi
sequence numbers are assigned to internal nodes of the bus : - .
tree to represent the order of join operations determined b € correspondlng_ bit in the HF for each tuplgiope is the.
Optimizer. The bushy tree query plan is determined by the umber of instructions needed to check whether an attribute

minimum cost heuristic described in [7] that tries to perform value of a tuple has a match in the filter, and if that bit is
the join with the minimal cost first, set, add the tuple to a temporary relation to be joined later.

Executor traverses the query plan tree and carries outjoir:l_he CPU cost of generating an HF for a join atribute is

; . : . omputed by multiplying/nhash by the relation cardinality.
operations sequentially according to join sequence number ! . .
determined by Optimizer. As mentioned earlier, the sort- ote that the HF generation phase can t_)e comblned_ ‘.N'th
merge join method is used. Depending upon the scheme, e first step of the sorting phase of a join, thus av_0|d|ng
simulated, HFs of join attributes are generated at differen O overhead for HF generation. CPU cost for applying an

stages of query execution. Note that unlike those HFs in S F is equal tolpone multiplied by the relation cardinality.

and CA that can only be applied to base relations, those iﬁAIso, inour SImuI_at|on model_, HFs are lmplemented_ as .b't'
RG can even be applied to intermediate relations. vectors and can in general fit in memory, thus minimizing

Our model computes both CPU and 1/O costs of execut-EXtra /Os required for maintaining them.

ing a query. CPU cost for sorting and merging is determined

by the total number of tuples processed multiplied by the)

number of CPU instructions per tuple. We assume that the+-2 Parameter setting

costs of sorting and merging for each tuple are the same,

and both are equal thype. Using sort-merge joins, it takes To simplify our simulation study, we assume that join oper-
O(N log N) steps to sort a relation with N tuples, and takesations in a bushy tree are executed sequentially, thus not
from O(N1 + N) to O(IN1 x N,) steps to merge two sorted resorting to inter-operator parallelism to demonstrate the
relations of sizeN; and N,. Under the assumption that at- power of HFs. The impact of combining the use of HFs
tribute values are uniformly distributed over the attribute do-and parallel query execution is slated for future study. We
main, the CPU cost of joining two relations in our model can select queries of four sizes, i.e., queries with 4, 8, 12, and 16
be approximated aBypie < (IV110g N1+ N> log No+Ni+No). relations. This set of selections covers a wide spectrum of
The CPU processing time is obtained by dividing the totalquery sizes ranging from a simple three-way join to a more
number of CPU instructions per query by the CPU speedthan 20-way join. For each query size, 500 query graphs
C'PUspeed By dealing with the path length per tuple and the were generated, and, as mentioned in Sect. 4.1, only queries
CPU speed, we can vary the CPU speed to make a quenyith connected query graphs are used in our study.
execution either CPU-bound or 1/0-bound, and study the To conduct the simulation, [3], [8], [13], and [25] were
impact of using HFs in both cases. referenced to determine the values of simulation parameters.

CPU cost for generating and applying HFs is determined
y two parametersihash and Iprobe Ihash is the number of
PU instructions required to generate hash value and set

50,000

L NF[ZSMZ]CARG‘
540,000 [. I NN
c
£ 30,000
()
£
=
c [. . . PO RPORORN
S 20000
=]

Q
Q
510,000 [§ .
0
4 8 12

The number of relations
MIPS=10
CPU cost

Fig. 7. The CPU cost for each scheme when MIPS=10

200,000

KnNF [dsm [Jea RGl

%

150,000

100,000 - OO .

50,000 |rrvvvverereeeieoreemeen s

Execution time (second)

4 8 12 16

The number of relations
10 cost

Fig. 8. The 1/O cost for each scheme

127

250,000
- 1
‘NF K sm Jca @RG!
25°200,000 [B RS .
: \
O
(7]
£ 150,000 |-
[0}
£
=
c
§ 100,000 |-
2
3
(8]
[}
T — . S
. : %; %

4 8 12
The number of relations
MIPS=10
CPU+IO cost

Fig. 9. The total cost for each scheme when MIPS=10

time in seconds while the abscissa denotes the number of
relations in a query. Figures 7 and 8 show that with 10
MIPS CPU, these queries using the sort-merge join method
are 1/0O bound. The 15 ms page I/O time setting assumes
sequential 1/0 without prefetching or disk buffering (e.g.,
reading one track at a time). Note that this experiment could
become CPU-bound if disk buffering or a larger page size
was used.

Using the sort-merge join method, the 1/O cost of sorting
a relation of P pages is of the ordgl, x P x log,,, P, while
the CPU cost is of the ordefypie X Rcard % 109 Rcarg, Where
tuple IS the sorting time per tuplex{ Iipie/ CPUspeed and
Rearg is equal toP X psize. Given the parameter settings
in Table 1, the 1/O cost for sorting two 1M tuple relations
is approximately equal to 1,000s while the corresponding

Table 1 summarizes the parameter settings used in simula&ZPU cost is approximately 1,200s. I/O cost for merging two
tion. The number of CPU instructions per tuple read was sesorted relations is about 750 s, plus the 1/O cost of writing the
to 300, while those for HF generation and application areresulting relation to disk, whereas the CPU cost associated
set to 100 and 200, respectively. The buffer was assumed tig about 60s. This accounts for the reason that Experiment
have 2K pages, and each page was assumed to contain 40is 1/0 bound.

tuples. Disk service time per page was assumed to be 15ms Figures 7 and 8 also show that using HFs results in a
while the CPU speed was set to either 2 MIPS or 10 MIPSslight performance improvement in terms of both CPU and
I/O costs required whenn is small n < 8). The im-
provement increases significantly as the number of relations
increases. It can be seen from Fig. 9 that CA performs the
best among all schemes evaluated, while NF is outperformed
In the simulation program, which was coded in C, the actionby all other schemes. As described in Sect. 3, CA is devised
for each individual relation to go through join operations, aswith the goal of optimizing the reduction effect of HFs as
well as generate and apply HFs, was simulated. For eactvell as minimizing the cost associated. The results from
query in the simulation, four schemes, i.e., NF (no filter), this experiment confirm our analysis in Sect.3. Note that
SM (simple), CA (check and apply) and RG (regenerateSM performs better than RG when < 12, while the latter
HF), were applied to execute the query, and the executiomperforms better whesn = 16. This can be explained as fol-
time for each scheme was obtained. lows. First, the additional filtering (size reduction) effect by
applying an HF generated by an intermediate relation (say
R;) to relation R; under RG is usually not significant if an
HF on the same attribute has been generated by a offspring
of R; and applied taR;, or a offspring ofR;, before. Sec-
ond, RG consumes extra system resources to regenerate HFs
In the first experiment, the CPU speed was set to 10 MIPSafter every join operation, except the last one. Whenis
while both attv and carv were set to 100K. The average small, the cost of generating additional HFs is larger than
CPU, 1/0, and total costs for this experiment are shownthe benefit of additional size reduction. Whem increases,

in Figs.7, 8, and 9, respectively. In these figures and althe depth of the query execution tree increases, which in
following figures except Fig. 13, the ordinate is the executionturn causes more join operations to benefit from the effect

4.3 Simulation results

4.3.1 Experiment 1: 10 MIPS CPU withttv = 100K
andcarv = 100K

128

Table 2. Statistics for the cost of each scheme when the query size is 12 30,000
and MIPS=10. » N Disw Aoa Zre| N
Standard dev Maximum Minimum @25'000 ;o I)
NF 8306 149234 92496 3
SM 10900 99012 38631 200
CA 11280 91901 26977 ®
RG 14704 114385 35681 £ 15,000 [
&
Table 3. The average number of HFs applied in each scheme § {
W 5,000 - . - O
No. of relations 4 8 12 16 %7%
SM 6 18 32 48 o LKV
CA 6 18 32 48 4 8 12
RG 8 24 42 62 The number of relations
MIPS=10

10 cost
Large page

Fig. 10. The 1/O cost for each scheme
of additional filtering. As a result, the benefit provided by
additional filtering in RG outweighs the cost of additional
HF generations whesn is large.

The minimum, maximum, and standard deviation of £
qguery execution time for the four schemes wher= 12 g
are shown in Table 2. The standard deviation of the querys *°| [N\
execution time is about 7.9% of mean for NF, whereas thoseg
are 18.9%, 26.2%, and 25% of mean for SM, CA, and RG,g "

respectively. Note that the minimum cost heuristic used byg]
our model to determine the bushy execution tree does ngt *%° | g%
4 8

250,000

RNnF [Asm [Jca RGi

fﬁzoo,ooo —
g

T

consider the effect of HFs. Thus, the benefits of using HFs in
different bushy trees vary. This is the very reason that SM, ° 12 16
CA, and RG produce larger relative standard deviations tharJ“PS , The number of relations
NF. CPU cost
. The number of HFs applied in each scheme is ShOWI’]:ig_ 11. The CPU cost for each scheme when MIPS=2
in Table 3. SM and CA apply the same number of HFs for
each query, since in both schemes, HFs are applied to base g,
relations only. In RG, in addition to HFs applied to base | NF (3 sM [J oA re| [
relations, an HF for the next join attribute is regenerated
from the resulting relation after every join. RG therefore g 300,000
generates and applies the most HFs. However, our simulatiog
results show that RG performs worse than both CA and SMg
when sn is small (sn< 12). As previously explained, this £ 200,000
is due to the fact that the effect of HFs diminishes as theyg
are repeatedly applied, and is thus not worthwhile the cos§
of generating additional HFs. This indeed agrees with theX "% |
estimation in Eq. (3), which states that the number of distinct
values of a non-filtered attribute only slightly decreases after }
the application of an HF. Whegn is large (sn> 12), RG 4 8 12 16
performs better than SM, but still worse than CA. The number of relations

As pointed out earlier, the above experiment can becom&h, o .«
CPU k.)ou.nd If the d.ISk access time Is reduced' To prOVIdeFig. 12. The total cost for each scheme when MIPS=2
more insight into this phenomenon, an experiment is con-
ducted, where the page size is increased to 480 tuples, ap-
proximately equal to the track size of a typical workstation 4.3.2 Experiment 2: 2 MIPS CPU witltv = 100K
disk nowadays. Disk access time per page thus increases tihd carv = 100K
30 ms accordingly while all other parameters remain un-
changed. The average /O costs for the four schemes in thisn Experiment 2, the CPU speed was changed to 2 MIPS,
experiment are shown in Fig. 10. Note that since CPU speetvhile all other parameters remained the same as in Experi-
remains at 10 MIPS, CPU costs for the four schemes arenent 1. The average CPU cost for this experiment is shown
the same as those in Fig. 7. From Figs. 8 and 10, it can b& Fig.11. Since changing the CPU speed does not affect
seen that I/O costs for the four schemes in this experiment/O costs, 1/0O costs for the four schemes in this experiment
are significantly reduced as compared to those required imre the same as those in Experiment 1, as shown in Fig. 8.
the prior experiment. Consequently, this experiment is CPUt can be seen from Figs.8 and 11 that queries in Experi-
bound as evidenced by the results in Figs.7 and 10. ment 2 are CPU bound under NF. Figures 7 and 11 show

T

T

129

0.9 35,000
[i NF@SME}CARG'
5 O 5 N
8 8 25,000 |
8 0.7 - ;8/
3] 2 20,000 |-t R
) .

0.6 |- £
g = 15,000

= 1s, SN N\ 1 I .
c
205 - '%
5 3 10,000 |
3 g .
3 L
3 04 W 5000 |
S |
Q03 0
§ I 4 8 12 16
! ! ! ! The number of relations

o
)

4 8 12 16 MIPS=10

The number of relations CPU cost
. . Large variance
Ratio of improvement

CPUHO cost Fig. 14. The CPU cost for each scheme when MIPS=10

Fig. 13. Execution cost ratio of CA to NF
120,000

}NF Asm [ca RG}
Table 4. Statistics for the cost of each scheme wherr12 and MIPS=2 'cg’ | N
Standard dev Maximum Minimum § 80,000 - - e
NF 15632 293295 184366 o
SM 20028 180580 67206 E 60,000 [
CA 21485 165182 41077 = »
RG 27389 206659 60207 £ 40000 |-
>
Wl 20,000 [
that the three HF based schemes lead to larger reductions

on CPU cost when queries are CPU bound, but their rel- _
ative improvement over NF is approximately the same in, . - The number of refations
both experiments. Fig.12 shows the average query execue cost
tion times (i.e, CPU cost + 1/O cost) for the four schemes, e variance
It can be observed that relative performance among thesEig. 15. The I/O cost for each scheme when MIPS=10
schemes is very similar to that in Experiment 1. CA con-
tinues to outperform the other three schemes, while NF still
performs the worst. The three schemes utilizing HFs reducé.3.3 Experiment 3: 10 MIPS CPU witittv = 400K
the query execution time of NF by more than 50%, whenandcarv = 600K
sn > 12.
The improvement of CA over NF for both Experiments In Experiment 3, the CPU speed was set to 10 MIPS while
1 and 2 is shown in Fig. 13, where the ordinate is the ratioattv and carv were changed to 400K and 600K, respec-
of execution time of CA to NF, and the abscissa denotes théively. By changing the variances of relation cardinalities
number of relations in a query. It can be seen from Fig. 13and attribute cardinalities, the effectiveness of HFs on join
that the improvement increases aasincreases. Whewpn = operations with varied relation and attribute cardinalities can
4, the execution of CA is about 84% of that of NF with 10 be studied. Figures 14, 15, and 16 show, respectively, the
MIPS CPU, and this ratio becomes 76% with 2 MIPS CPU.CPU cost, the 1/0 cost, and the total cost for each scheme.
When sn = 16, such a ratio decreases to about 39% withCompared to the results in Experiment 1, these three figures
10 MIPS CPU, and to 28% with 2 MIPS CPU. Figure 13 indicate that the effectiveness of applying HFs is very sta-
also shows that CA generates a larger cost reduction whehle when the variances of relation cardinalities and attribute
queries are CPU bound. Note that with a slower CPU thecardinalities increase. As before, this experiment shows that
absolute CPU cost reduction achieved by CA is larger. SinceCA is the best scheme among all schemes evaluated.
the 1/0 cost is not affected by the change in CPU speed, the The minimum, maximum, and standard deviation for the
ratio of cost reduction by CA becomes larger when CPUfour schemes in Experiment 3 wittm=12 are given in Ta-
is slower. Experiments 1 and 2 demonstrate that HF is @le 5, which shows that CA has not only the smallest max-
very powerful means to reduce the query execution timejmum and minimum execution times, but also the smallest
especially for complex queries, in both CPU- and 1/0-boundstandard deviation, meaning that CA is more stable than NF
cases. when the variance of relation cardinalities increases. This
The minimum, maximum, and standard deviation ofis different from what we observed from the results in the
guery execution time for each scheme with=12 are shown previous two experiments. Note that in the presence of a
in Table 4, where CA again has the smallest maximum andarger variance for relation cardinalities performance of NF
minimum execution times, but the second largest standardhanges drastically. On the other hand, performance of the
deviation, agreeing with our observation in Experiment 1. other three schemes, due to the applications of HFs, is not so

130

250,000

S8~ PAsm [Jca U RaG
200,000 |- S

second)

(
-
I
14
=]
8

T

Execution time

50,000

The number of relations

MIPS=10
CPU+IO cost
Large variance

Fig. 16. The total cost for each scheme when MIPS=10

Table 5. Statistics for the cost of each scheme for large relation variance

Nr(Gg) =

Appendix
A. Expected resulting cardinalities of joins

Proposition. Let G = (V, E) be a join query graphGp =
(Vs, E) is a connected subgraph of G. LB, Ry, ..
be the relations corresponding to verticeslip, A;, Ay, .. .,
Ay
m;
with attribute A; are incident to. Supposk,, is the relation
resulting from all the join operations between relations in
Gp and Np(Gp) is the expected number of tuples iy, .
Then,

. R,

be the distinct attributes associated with edge&’jpand
be the number of different vertices (relations) that edges

Hg:ﬂRi
I | Ag it

when sn=12 and MIPS=10 References
Standard dev Maximum Minimum
NF 35171 296913 44581 1. Babb E (1979) Implementing a relational database by means of spe-
SM 28548 227314 23595 cialized hardware. ACM Trans Database Syst, 4(1):1-29
CA 27203 211628 15715 2. Bernstein PA, Chiu D-MW (1981) Using semi-joins to solve relational
RG 59418 246145 19439 queries. J ACM 28(1):25-40

3.

sensitive to a variance change as NF, explaining the reasorf"
that CA has the smallest standard deviation in this experi- 5.
ment. In addition, RG continues to have the largest standard

deviation and is outperformed by CA and SM.
6.

5 Conclusions

In this paper, we explored an approach of interleaving a
bushy execution tree with HFs to improve the execution of 9.
multi-join queries. An efficient scheme to determine an ef-
fective sequence of HFs for a bushy execution tree has beelf:
developed, where the HFs are built and applied based on th
join sequence specified in the bushy tree, so that not only is
the reduction effect optimized but also the cost associated ig;.
minimized. Various schemes using HFs were implemented
and evaluated via simulation. By varying the CPU speed,
both CPU- and 1/0-bound jobs were investigated. Extensive-3-
simulation results were obtained to provide insight into the
use of HFs. It is experimentally shown that the application,,
of HFs is in general a very powerful means to improve the
execution of multi-join queries, and the improvement be-
comes more prominent as the number of relations in a querys.
increases.

Although simulation was conducted assuming sort-mergelG'
joins were employed, the proposed scheme is applicable to
other join methods. Note that in dealing with pipelined hash;7.
joins, HFs can be applied within a pipeline segment to re-
duce the sizes of hash tables and improve the pipeline execu-
tion. In the case of handling a segmented right-deep tree [5]:8:
which is a bushy tree with right-deep subtrees, one can use
segment sequence numbers instead of join sequence nuryy
bers, to properly insert HFs into the bushy tree among dif-
ferent segments. This is a matter for future research.

Bitton D, Gray J (1988) Disk shadowing. Proc the 14th International
Conference on Very Large Data Bases

Boral H, Alexander W, et al (1990) Prototyping Bubba, a highly par-
allel database system. IEEE Trans Knowl Data Eng, 2(1):4—-24

Chen M-S, Lo M-L, Yu PS, Young HC (1995) Applying segmented
right-deep trees to pipelining multiple hash joins. IEEE Trans Knowl
Data Eng, 7(4):656—668

Chen M-S, Yu PS (1992) Interleaving a join sequence with semi-
joins in distributed query processing. IEEE Trans Parallel Distrib Syst,
3(5):611-621

. Chen M-S, Yu PS, Wu K-L (1995) Optimization of Parallel Execution

for Multi-Join Queries. IEEE Trans Knowl Data Eng, 8(3): 416—-428

. DeWitt DJ, Ghandeharizadeh S, Schneider DA, Bricker A, Hsiao HI,

Rasmussen R (1990) The Gamma database machine project. IEEE
Trans Knowl Data Eng, 2(1):44-62

DeWitt DJ, Gray J (1992) Parallel database systems: the future of high
performance database systems. Commun ACM 35(6):85-98

Gardy D, Puech C (1989) On the effect of join operations on relation
sizes. ACM Trans Database Syst 14(4):574—603

Fl. Hong W (1992) Exploiting Inter-Operator Parallelism in XPRS. Proc

ACM SIGMOD, June, pp 19-28

Hong W, Stonebraker M (1991) Optimization of parallel query execu-
tion plans in XPRS. Proc 1st Conf Parallel and Distributed Information
Systems, December, pp 218-225

Hsiao H-I, DeWitt D (1991) A performance study of three high avail-
ability data replication strategies. Proc Conference Parallel and Dis-
tributed Information Systems, December, pp 79-84

loannidis YE, Kang YC (1991) Left-deep vs. bushy trees: an analysis of
strategy spaces and its implication for query optimization. Proc ACM
SIGMOD, May, pp 168-177

Jarke M, Koch J (1982) Query optimization in database systems. ACM
Computing Surveys, 16(2):111-152

Kitsuregawa M, Tanaka H, Moto-Oka T (1984) Architecture and per-
formance of relational algebra machine GRACE. Proc Int Conf Parallel
Processing, August, pp 241-250

Krishnamurthy R, Boral H, Zaniolo C (1986) Optimization of Nonre-
cursive Queries. Proc 12th Int Conf Very Large Data Bases, August,
pp 128-137

Lo M-L, Chen M-S, Ravishankar CV, Yu PS (1993) On optimal pro-
cessor allocation to support pipelined hash joins. Proc ACM SIGMOD,
May, pp 69-78

. Lorie RA, Daudenarde J-J, Stamos JW, Young HC (1991) Exploiting

database parallelism in a message-passing multiprocessor. IBM J Res
Dev 35(5/6):681-695

20.

21.

22.

23.

24.

25.

26.

Lu H, Shan M-C, Tan K-L (1991) Optimization of multi-way join
queries for parallel execution. Proc 17th Int Conf Very Large Data
Bases, September, pp 549-560

Mishra P, Eich MH (1992) Join processing in relational databases.
ACM Computing Surveys 24(1):63-113

Pirahesh H, Mohan C, Cheng J, Liu TS, Selinger P (1990) Parallelism

in relational data base systems: architectural issues and design af30.

proaches. Proc 2nd Int Sympos Databases in Parallel and Distributed
Systems, July, pp 4-29

Roussopoulos N, Kang H (1991) A pipeline N-way join algorithm
based on the 2-way semijoin program. IEEE Trans Knowl Data Eng,
3(4):461-473

Schneider D (1990) Complex query processing in multiprocessor
database machines. Tech Rep 965, Computer Science Department, Uni-
versity of Wisconsin, Madison

Schneider D, DeWitt DJ (1989) A performance evaluation of four par-

allel join algorithms in a shared-nothing multiprocessor environment. 34.

Proc ACM SIGMOD, pp 110-121

Selinger PG, Astrahan MM, Chamberlin DD, Lorie RA, Price TG
(1979) Access path selection in a relational database management sys-
tem. Proc ACM SIGMOD, pp 23-34

27.

28.

29.

31.

32.

33.

131

Stonebraker M, Katz R, Patterson D, Ousterhout J (1988) The design
of XPRS. Proc 14th Int Conf Very Large Data Bases, pp 318-330
Swami A (1989) Optimization of large join queries: combining heuris-
tics with combinatorial techniques. Proc ACM SIGMOD, pp 367-376
Swami A, Gupta A (1988) Optimization of large join queries. Proc
ACM SIGMOD, pp 8-17

Teradata (1985) DBC/1012 Database computer system manual release
2.0. Tech Rep Doc C10-0001-02, Teradata Corporation

Valduriez P, Gardarin G (1984) Join and semijoin algorithms for a
multiprocessor database machine. ACM Trans Database Syst 9(1):133—
161

Walton CB, Dale AG, Jenevein RM (1991) A taxonomy and perfor-
mance model of data skew effects in parallel joins. Proc 17th Int Conf
Very Large Data Bases, September, pp 537-548

Yao SB (1977) Approximating block access in database organizations.
Commun ACM 20:260-261

Yu PS, Chen M-S, Heiss H, Lee SH (1992) On workload characteri-
zation of relational database environments. IEEE Trans Software Eng
18(4):347-355

