
The VLDB Journal (1997) 6: 121–131 The VLDB Journal
c© Springer-Verlag 1997

On applying hash filters to improving the execution
of multi-join queries

Ming-Syan Chen1, Hui-I Hsiao2, Philip S. Yu2

1 Electrical Engineering Department, National Taiwan University, Taipei, Taiwan
2 IBM T.J. Watson Research Center, P.O.Box 704, Yorktown, NY 10598, USA

Edited by G. Gardarin. Received October 1994 / Accepted December 1995

Abstract. In this paper, we explore an approach of inter-
leaving a bushy execution tree with hash filters to improve
the execution of multi-join queries. Similar to semi-joins in
distributed query processing, hash filters can be applied to
eliminate non-matching tuples from joining relations before
the execution of a join, thus reducing the join cost. Note that
hash filters built in different execution stages of a bushy tree
can have different costs and effects. The effect of hash filters
is evaluated first. Then, an efficient scheme to determine an
effective sequence of hash filters for a bushy execution tree
is developed, where hash filters are built and applied based
on the join sequence specified in the bushy tree so that not
only is the reduction effect optimized but also the cost asso-
ciated is minimized. Various schemes using hash filters are
implemented and evaluated via simulation. It is experimen-
tally shown that the application of hash filters is in general a
very powerful means to improve the execution of multi-join
queries, and the improvement becomes more prominent as
the number of relations in a query increases.

Key words: Hash filters – Parallel query processing – Bushy
trees – Sort-merge joins

1 Introduction

Parallel database machines have drawn a considerable a-
mount of attention from both the academic and industrial
communities due to their high potential for parallel exe-
cution of complex database operations [4, 8, 16, 27, 30].
In relational database systems, joins are the most expen-
sive operations to execute, especially with the increases in
database size and query complexity [15, 21, 34]. Database
applications which involve decision support and complex
objects usually have to specify their desired results in terms
of multi-join queries, and some complex queries for such
applications may take hours or even days to complete, thus
degrading the system performance. As a result, it has be-
come imperative to develop solutions for efficient execu-
tion of multi-join queries for future database management
[9, 11, 19, 22].

1R 2R
5R

3R 4R

1R 2R

3R

4R
5R

(a) left-deep tree (c) bushy tree(b) right-deep tree

5R

4R

3R

2R
1R

Fig. 1a–c.Illustration of different query trees

A query plan is usually compiled into a tree of operators,
called a join sequence tree, where a leaf node represents an
input relation and an internal node represents the resulting
relation from joining the two relations associated with its two
child nodes. There are three categories of query trees: left-
deep trees, right-deep trees, and bushy trees, where left-deep
and right-deep trees are also called linear execution trees, or
sequential join sequences. Examples of the three forms of
query trees are shown in Fig. 1. A significant amount of
research efforts has been elaborated upon developing join
sequences to improve the query execution time. The work
reported in [26] was among the first to explore sequential
join sequences, and sparked off many subsequent studies.
Several schemes have been proposed to develop sequential
join sequences [12, 17, 28, 29].

On the other hand, the bushy tree join sequences did
not attract as much attention as sequential ones in the last
decade since it was generally deemed sufficient, by many
researchers, to explore only sequential join sequences for de-
sired performance. This can be in part explained by the fact
that in the past the power/size of a multi-processor system
was limited, and that the query structure used to be too sim-
ple to require further parallelizing as a bushy tree. It is noted,
however, that these two limiting factors have been phased
out by the rapid increase in the capacity of multi-processors
and the trend for queries to become more complicated [34],
thereby justifying the necessity of exploiting bushy trees.
Consequently, it has recently attracted an increasing amount
of attention to explore the use of bushy trees for parallel
query processing. A combination of analytical and experi-
mental results was given in [14] to shed some light on the

122

complexity of choosing left-deep and bushy trees. An inte-
grated approach dealing with both intra-operator and inter-
operator parallelism was presented in [20], where a greedy
scheme taking various join methods and their corresponding
costs into consideration was proposed. As an extension to
[12], an algorithm-handling processor scheduling in a bushy
tree was proposed in [11], where the inter-operator paral-
lelism is achieved by properly selecting IO-bound and CPU-
bound task mix to be executed concurrently. For efficient
solutions, only schemes that execute at most two tasks at
a time were explored in [11]. A two-step approach to deal
with join sequence scheduling and processor allocation for
parallel query processing using sort-merge joins was devised
in [7]. Pipelining hash joins in a bushy tree and processor
allocation within each pipeline were studied in [5] and [18],
respectively. In addition, various query plans in processing
multi-join queries in a shared-nothing architecture were in-
vestigated in [24].

While most prior work on inter-operator parallelism fo-
cused on the execution tree generation to minimize the query
execution cost, there is relatively little result reported on ex-
ploiting the structure of a query tree to further reduce each
individual join cost. It has been shown that the cost of exe-
cuting a join operation can mainly be expressed in terms of
the cardinalities of relations involved. In view of this, one
would naturally like to remove unnecessary tuples and re-
duce the cardinalities of relations involved before a join to
minimize the join cost. As semi-join has traditionally been
relied upon to reduce the amount of inter-site data transmis-
sion required for distributed query processing [2, 6], the tech-
nique of hash filtering can be applied in a parallel database
environment to reduce the relation cardinalities. Note, how-
ever, that previous work on hash filters (or called bit-vector
filters) only considered their use on the joining attribute due
mainly to the focus on linear execution trees [1, 8, 23, 31]1,
thus not fully taking advantage of the opportunity for utiliz-
ing multiple hash filters to reduce a single relation. As can
be seen later, such an opportunity is made available by the
execution of a bushy tree and can lead to a very significant
reduction effect on relation cardinalities, thereby greatly im-
proving the execution of multi-join queries. Consequently,
we explore in this paper the approach of interleaving a bushy
execution tree with hash filters (HFs) to minimize the query
execution time. It is worth mentioning that the algorithm we
propose aims at improving the execution of a bushy tree,
thus providing a solution to an increasingly important prob-
lem. Due to the complexity of a bushy tree, HFs built and
applied in different execution stages can have very differ-
ent costs and reduction effects. How to build HFs so as to
minimize their cost as well as optimize their effect is a very
important issue, and hence taken as the objective of this
study. To the best of our knowledge, despite its importance,
there is no previous work on exploring the approach of in-
terleaving a bushy execution tree with HFs to improve the
execution of multi-join queries, let alone conducting studies
of its performance. This feature distinguishes our work from
that of others.

1 Note that in dealing with a linear execution tree, one usually has only
two joining relations residing in memory at a time, thus limiting the appli-
cability of hash filters to the joining attribute

R1

A B
a1 b1
a2 b1
a2 b2
a2 b4
a3 b4
a4 b7

a4 b9

HFR1(B)

h(bi) set
0 0
1 1
2 1
3 0
4 1

R2

B C
b1 c2
b2 c1
b5 c2
b6 c4
b7 c2
b8 c3(a)

B C
b1 c2
b2 c1
b6 c4
b7 c2

R2 after the application ofHFR1(B) → R2.

(b)

Fig. 2a,b. An example of the use of HFs.

An HF built by relationRi on its attributeA, denoted
by HFRi (A), is an array of bits which are initialized to ze-
ros. LetRi(A) be the set of distinct values of attributeA
in Ri, andh be the corresponding hash function employed.
Thek-th bit of HFRi

(A) is set to one if there exists ana ∈
Ri(A) such thath(a) = k. Similar to the effect of semi-joins,
it can be seen that before joiningRi andRj on their com-
mon attributeA, probing the tuples ofRj againstHFRi

(A)
and removing non-matching tuples will reduce the number
of tuples ofRj to participate in the join. The join cost is
thus reduced. An illustrative example of the use of HFs can
be found in Fig. 2, where anHFR1(B) is built by R1 and
applied toR2, with the corresponding hash functionh(bi)=
i mod 5. It can be verified that, after the application of
HFR1(B), R2 is reduced to the one given in Fig. 2b, thus
reducing the join cost ofR1 on R2. Note that the effect of
HFs is more complicated than that of semi-joins, since hash
collision can occur for different attribute values (such as
b1 andb6 in Fig. 2a) when an HF is built. In this paper, we
shall evaluate the effect of HFs first, and then develop an ef-
ficient scheme to interleave a bushy execution tree with HFs
to minimize the query execution cost. As mentioned earlier,
HFs built in different execution stages of a bushy tree can
have different costs and reduction effects. In view of this,
the proposed scheme will assign a join sequence number to
each join operation in the bushy tree when the tree is being
built at the compile time2. The join sequence numbers spec-
ify the order of the joins to be carried out. Then, based on
the join sequence in the bushy tree, HFs are built and ap-
plied cost-effectively, so that not only is the reduction effect
optimized but also the cost associated is minimized. Several
illustrative examples will be given. Extensive performance
studies are conducted to evaluate various schemes using HFs
via simulation. It is experimentally shown that the applica-
tion of HFs is in general a very powerful means to improve
the execution of multi-join queries, and the improvement be-
comes more prominent as the number of relations in a query
increases.

2 Various heuristics, such as those in [7] and [20], can be applied to build
a bushy execution tree. Note that assigning sequence numbers to joins while
building a bushy tree involves little overhead

123

The rest of this paper is organized as follows. Prelimi-
naries are given in Sect. 2. The effect of HFs and the pro-
posed scheme are presented in Sect. 3. Performance studies
on various schemes using HFs are conducted in Sect. 4 via
simulation. The paper concludes with Sect. 5.

2 Preliminaries

We assume that a query is of the form of conjunctions of
equi-join predicates. A join query graph can be denoted by
a graphG = (V,E), whereV is the set of vertices andE is
the set of edges. Each vertex in a join query graph represents
a relation. Two vertices are connected by an edge if there
exists a join predicate on some attribute of the two corre-
sponding relations. We use|Ri| to denote the cardinality of
a relationRi and|A| to denote the cardinality of the domain
of an attributeA. As in most previous work on the execu-
tion of database operations, we assume that the execution
time incurred is the primary cost measure for the process-
ing of database operations. Also, we focus on the execution
of complex queries, i.e., queries involving many relations.
Notice that such complex queries can become frequent in
real applications due to the use of views [34]. The architec-
ture assumed in the performance study in Sect. 4 is a multi-
processor system with distributed memories and shared disks
containing database data. Barring any tuple placement skew
[32], the scheme developed in this paper is applicable to
the shared-nothing architecture where each disk is acces-
sible only by a single node. To facilitate our presentation
and performance evaluation, the join method on which we
shall demonstrate the application of HFs is the sort-merge
join that most existing database management softwares rely
upon. Note that the concept of interleaving a bushy execu-
tion tree with HFs is also applicable to improving the query
execution time when other join methods, such as hash joins
and nest-loop joins, are employed, and by no means confined
to the use of sort-merge joins.

Both CPU and I/O costs of executing a query are con-
sidered. CPU cost is determined by the path length, i.e., the
total number of tuples processed multiplied by the number
of CPU instructions required for processing each tuple. A
parameter on CPU speed (i.e., MIPS) is used to compute
the CPU processing time from the number of CPU instruc-
tions incurred. I/O cost for processing a query is determined
by disk service time per page multiplied by the total number
of page I/Os. By doing such, we can appropriately vary the
CPU speed to take into consideration both CPU-bound and
I/O-bound query processing, and study the impact of utiliz-
ing HFs in both cases. A detailed performance model on the
cost of sort-merge joins and the system parameters used is
given in Sect. 4.

In addition, we assume for simplicity that the values of
attributes are uniformly distributed over all tuples in a re-
lation and that the values of one attribute are independent
of those in another. Thus, the cardinalities of resulting re-
lations of joins can be estimated according to the formula
used in previous work [7] that is given in the Appendix for

reference3. In the presence of data skew, we only have to
modify the corresponding formula accordingly [10].

3 Using HFs for a bushy execution tree

In this section, we shall first evaluate the effect of HFs and
then propose a scheme to derive HFs for a bushy execution
tree.

3.1 The effect of HFs

Let HFRi
(A)→Rj denote the application of an HF gener-

ated byRi on attributeA to Rj . Note that the reduction
of Rj by HFRi (A)→Rj is proportional to the reduction of
Rj(A). The estimation on the size of the relation reduced is
thus similar to estimating the reduction of projection on the
corresponding attribute. Letρi,A be the reduction ratio by
the application ofHFRi

(A), and the cardinality ofRj after
HFRi

(A)→Rj can be estimated asρi,A|Rj |. Clearly, the
determination ofρi,A depends on the size of an HF since,
as shown in Fig. 2, different attribute values may be hashed
into a same hash entry. To formally deriveρi,A, consider the
ball drawing problem described below first.

Proposition 1. Supposek balls are drawn sequentially and
independently fromm different balls. Then, the expected
number of different balls selected ism(1− (1− 1

m)k).

Proof. Let Xi=1 if the i-th ball is drawn at least once, and
Xi=0 otherwise.S =

∑m
i=1Xi is the number of distinct balls

drawn. ThenE(S)=
∑m

i=1E{Xi}= mE{Xi}= m(1− (1−
1
m)k). Q.E.D.

It can be observed that hashingk = |Ri(A)| different
values into an HF ofm bits is similar to the experiment
of drawingk balls fromm different balls with replacement.
The following proposition thus follows.

Proposition 2. The reduction ratio by the application of
HFRi

(A), ρi,A, can be formulated as

ρi,A =

{
1− (1− 1

m)|Ri(A)|, for m < |A|,
|Ri(A)|
|A| , for m ≥ |A|, (1)

whereRi(A) is the set of distinct values of attributeA in Ri,
andm is the number of hash entries in an HF.

SupposeRj has two attributesA andB. The problem
of estimating the cardinality ofRj projected on the non-
filtered attributeB afterHFRi (A)→Rj is very complicated,
and needs to resort to the following combinatorial problem
to resolve: “There aren balls with r different colors. Each
ball has one color and ther colors are uniformly distributed
over then balls. Find the expected number of colors ifh
balls are randomly selected from then balls.” Denote the ex-
pected number of colors of theh selected balls asg(r, n, h).
Then, as pointed out in [33],g(r, n, h) can be formulated as
follows,

3 Note that this formula offers a more sophisticated model than the one
based on the foreign key assumption

124

R2

B

J#2

J#3

J#1

AB

A A

AC
C

R1 R3 R4

R2

B

J#2

J#3

J#1

AB

A A

AC C
R1 R3 R4

R’1

B

A

A

A

(a)

(b)

R’1

Fig. 3a,b. An example of the effect of HFs

g(r, n, h) = r[1−
h∏
i=1

(
n(r−1)

r − i + 1

n− i + 1
)]. (2)

As shown in [2], Eq. (1) can be approximated as below,

g(r, n, h) '
 r, for r < h

2 ,
h, for h < r

2 ,
(r+h)

3 , otherwise.
(3)

We then obtain the reduction effect of an HF on a non-
filtered attribute by assigning|Rj | = n, |Rj(B)| = r and
|Rj |ρi,A = h. It can be seen that when|Rj(B)| = r is much
less than|Rj |ρi,A = h, the cardinality ofRj(B) remains ap-
proximately the same afterHFRi

(A)→Rj . Thus, we assume
in this paper the number of distinct values of a non-filtered
attribute remains the same after an HF application to sim-
plify our discussion.

As mentioned earlier, in a bushy tree execution, HFs
built in different execution stages can have very different
reduction effects. To further investigate the effect of HFs
in a bushy tree, denote the set of relations within the sub-
tree underRi asS(Ri). It can be seen that the size of an
intermediate relationRi will not be affected by the applica-
tions of HFs between relations inS(Ri). Consider the bushy
tree in Fig. 3a for example. Denote the resulting relation by
Ri on Rj asR′

min{i,j} for convenience.R′
1 in Fig. 3a rep-

resents the resulting relation of join J#1. It can be verified
that the application ofHFR3(A)→R1 will reduce the size
of R1, and then that ofR′

1. On the other hand, the applica-
tion of HFR2(B)→R1 only reducesR1, but notR′

1, since
the effect ofHFR2(B) is offset by the joinR1 on R2. This
phenomenon can be stated by the proposition below.

Proposition 3. SupposeRm is an intermediate relation in a
bushy tree. The size ofRm will be reduced byHFRs

(A)→Rd

if and only ifRd ∈ S(Rm) andRs 6∈ S(Rm).

Note that after a join, non-matched tuples are filtered out,
meaning that|R′

i(A)| ≤ |Ri(A)| whereR′
i = Ri on Rj .

Thus, despite the cardinality of a resulting relation possi-
bly being larger than those of its operands, the cardinality
of distinct values of a certain attribute is always decreasing
along the execution of a join sequence. This is the very rea-
son that we shall generate HFs based on the join sequence
numbers to optimize their reduction effects in the algorithm
to be described. For example, it can be seen that the reduc-
tion effect ofHFR′

1(A)→R3 is more powerful than that of
HFR1(A)→R3 in Fig. 3b. Formally, we have the following
proposition for HFs.

Proposition 4. ρi,A ≤ ρj,A if Rj ∈ S(Ri).

3.2 Interleaving a bushy execution tree with HFs

In light of the results on the effect of HFs in Sect. 3.1, we
shall develop a scheme that applies HFs to improving the ex-
ecution of a bushy tree. The proposed scheme will interleave
a given bushy tree with appropriate HFs, so that not only
is the reduction effect optimized but also the cost is min-
imized. As pointed out earlier, the sort-merge join method
is employed in our discussion on the use of HFs. Let #JRi

be the sequence number of the join in which relationRi

is involved. Joins with smaller sequence numbers execute
first. Ri in #JRi can be either a base relation or an inter-
mediate relation4. As can be seen from algorithmH below,
the sequence number is used to determine the order of HFs
applied. Specifically, if #JRi < #JRj

andRi andRj have a
common attributeA, thenRj will build HFRj

(A) to apply
to Ri. However,Ri does not build an HF forRj . Rather, in
light of Proposition 4, the application of such an HF toRj

will be deferred until the execution reaches the ancestor of
Ri, sayRk, such that #JRk

≥ #JRj
. The reduction effect

by the HF on attributeA to Rj can thus be optimized.
The operations of algorithmH can be described as fol-

lows. In Step 1, a bushy tree is built first. Then, relations
involved in later joins will build HFs for those involved in
earlier joins in Step 2. LetSatt be the set of attributes to
build HFs. The first conditional statement in Step 2 to set
up Satt assures that only necessary HFs will be generated
and applied to other relations. Also, it can be seen that a
relation will be scanned at most once to build HFs for at-
tributes inSatt. Every relation, after receiving and utilizing
all its filters, starts its sorting phase in Step 3. The merge
phase of a join begins when all of its operands are available
in Step 4. It can be observed that building HFs can be carried
out when output tuples are being generated, thus avoiding
another relation scan. The procedure repeats until all joins
are completed as stated in Step 5.
Algorithm H: Interleaving a bushy execution tree with HFs.
Step 1: A join sequence heuristic is applied to determine a
bushy execution tree T.
Step 2:for each leaf nodeRi in T

begin
Satt = φ;
for each join attributeA of Ri

4 In the case of dealing with a segmented right-deep tree, which is a
bushy tree with right-deep subtrees [5], one can use segment sequence
numbers, instead of join sequence numbers, to properly insert HFs into the
bushy tree among different segments

125

Let Rj be the joining relation withRi on attributeA.
begin

if (#JRi ≥ #JRj) then Satt= Satt∪A;
end
if (Satt /= φ)
begin

ScanRi, and∀ A ∈ Satt, build HFRi
(A) by Ri;

SendHFRi
(A) to Rj , whereRj is the joining re-

lation with Ri on attributeA.
end

end

Step 3:for each leaf nodeRi in T
begin

if Ri receives all HFs for its join attributesthen
begin
Ri applies HFs to filter out non-matching tuples.
Ri starts/resumes its sorting phase.

end
end

Step 4:for each join J in T
begin

if both relationsRi andRj under J have completed
their sorting phasesthen
begin

Perform the join J;
(When generating the resulting relationRs,)
GenerateHFRs (A) for attributeA if ∃ a base re-
lation Ry joining with Rs on A
such that #JRs

≥ #JRy
;

SendHFRs
(A) to its recipient;

Update the execution tree T accordingly by remov-
ing Ri andRj .
(Rs becomes a leaf node.)

end
end

Step 5:if |T |=1 then return results
else gotoStep 3.

3.3 Examples and variations

Consider the bushy tree in Fig. 4 for example. SinceR6 on

R7 is the first join to perform, we haveHFR8(F) → R7,
HFR6(G) → R7 andHFR7(G) → R6 before the execution
of R6 on R7. Then, prior to the second joinR4 on R5, four
HFs,HFR8(E) → R5, HFR1(A) → R4, HFR4(D) → R5
andHFR5(D) → R4 are applied. The bushy tree after the
first two joins is shown in Fig. 5. We, in turn, have the HFs
HFR′

4(E) → R8 andHFR′
6(F) → R8 applied as shown

in Fig. 5 before the joinR′
6 on R8. Similarly, following the

operations in algorithmH, the applications of HFs are illus-
trated in Figs. 5 and 6. It can be seen that to have a better
reduction effect according to Proposition 4,HFR′

4(A)→R1
andHFR′

4(E)→R8 are built after the joinR4 on R5, instead
of being built byR4 andR5, respectively, in the bushy tree
in Fig. 4.

Clearly, there are many variations of algorithmH. To
provide more insights into the approach of HFs, extensive
simulation will be conducted in Sect. 4 to evaluate various
schemes using HFs. For notational readability, algorithmH

R1 R2

R3

R4 R5

R6 R7

R8
ABC C

B

AD
ED

G
FG

FE

J#3

J#1

J#2

J#5

J#7

J#6

J#4
AB

A A

AE
E

FD
E

F

G

A

Fig. 4. Application of HFs for joins J#1 and J#2

R1 R2

R3

R8
ABC C

B

FE

J#3

J#5

J#7

J#4
AB

A A

AE
E

F

R’4

R’6

A
B

C

E

F

Fig. 5. Application of HFs for joins J#3 and J#4

R3

B

J#5

J#7

J#6

AB

A A

ER’1 R’4
R’6

B AE

Fig. 6. Application of HFs for joins J#5, J#6 and J#7

will be denoted in the following by CA, where CA stands
for its nature of “check and apply.” Instead of interleaving
the joins in a bushy tree with HFs, the latter can be built
directly from base relations and applied as a preprocessing
of a bushy tree. Such an approach will be referred to as
scheme SM, where SM stands for “simple.” Also, HFs can
be regenerated from intermediate relations, and repeatedly
applied to achieve better reduction effect at the cost of em-
ploying more HFs. This alternative is denoted by RG, stand-
ing for “regeneration.” The conventional approach without
using HFs, denoted by NF (i.e., “no filters”), will also be
implemented for a comparison purpose.

Note that the first step of the sorting phase can be per-
formed while an HF is being built to minimize both CPU
and I/O costs. In addition, in the case that indices are avail-
able for certain attributes, we can scan the corresponding
indices instead of the whole relation in Step 2 to reduce the
cost. Optimization on these issues is system dependent, and
can in fact further increase the performance improvement
achievable by using HFs.

126

4 Performance study

We first describe the performance model used to evalu-
ate the benefit of different HF generation and application
schemes in Sect. 4.1. Parameters used in simulation are given
in Sect. 4.2. Simulation results are then presented and ana-
lyzed in Sect. 4.3.

4.1 Model overview

The performance model consists of three major components:
Query Manager, Optimizer, and Executor. Query Manager
is responsible for generating query requests as follows. The
number of relations in a query is determined by an input
parameter,sn. Relation cardinalities and join attribute car-
dinalities are determined by a set of parameters:Rcard, carv,
fd(R), Acard, attv, and fd(A). Relation cardinalities in a
query are computed from a distribution function,fd(R), with
a mean,Rcard, and a deviation,carv. Cardinalities of join
attributes are determined similarly byAcard, attv, andfd(A).
There is a predetermined probability,p, that an edge (i.e., a
join operation) exists between any two relations in a given
query graph. The largerp is, the larger the number of joins
in a query will be. Note that some queries so generated may
have disconnected query graphs. Without loss of generality,
only queries with connected query graphs were used in our
study, and those with disconnected graphs were discarded.

Optimizer takes a query request from Query Manager
and produces a query plan in the form of a bushy tree. Join
sequence numbers are assigned to internal nodes of the bushy
tree to represent the order of join operations determined by
Optimizer. The bushy tree query plan is determined by the
minimum cost heuristic described in [7] that tries to perform
the join with the minimal cost first.

Executor traverses the query plan tree and carries out join
operations sequentially according to join sequence numbers
determined by Optimizer. As mentioned earlier, the sort-
merge join method is used. Depending upon the schemes
simulated, HFs of join attributes are generated at different
stages of query execution. Note that unlike those HFs in SM
and CA that can only be applied to base relations, those in
RG can even be applied to intermediate relations.

Our model computes both CPU and I/O costs of execut-
ing a query. CPU cost for sorting and merging is determined
by the total number of tuples processed multiplied by the
number of CPU instructions per tuple. We assume that the
costs of sorting and merging for each tuple are the same,
and both are equal toItuple. Using sort-merge joins, it takes
O(N logN) steps to sort a relation with N tuples, and takes
from O(N1 +N2) to O(N1 ×N2) steps to merge two sorted
relations of sizeN1 andN2. Under the assumption that at-
tribute values are uniformly distributed over the attribute do-
main, the CPU cost of joining two relations in our model can
be approximated asItuple×(N1 logN1+N2 logN2+N1+N2).
The CPU processing time is obtained by dividing the total
number of CPU instructions per query by the CPU speed,
CPUspeed. By dealing with the path length per tuple and the
CPU speed, we can vary the CPU speed to make a query
execution either CPU-bound or I/O-bound, and study the
impact of using HFs in both cases.

Table 1. Parameters used in simulation

Parameters Setting
Ituple 300
Ihash 100
Iprob 200
m 2K pages
psize 40 tuples
tpio 15 ms
Rcard 1M tuples
Acard 700K
carv 100K–600K
attv 100K–400K
fd(A) uniform
fd(R) uniform
CPUspeed 2–10 MIPS

I/O cost for processing a query is determined by disk
service time per page,tpio, multiplied by the total number
of page reads and writes. To sort a relation ofP pages,
logm P +1 iterations of disk I/O are required, wherem is the
number of main memory buffer pages available for sorting.
Each iteration readsP pages into memory for sorting and
writesP sorted pages to disk. To merge two sorted relations
of P1 andP2 pages,P1 + P2 pages are read into memory.
The number of pages written to disk after a join operation
is determined by the size of the resulting relation,Pr. Thus,
the total number of I/Os required to join two relations of
sizeP1 andP2 is 2× (P1(logm P1 + 1) + P2(logm P2 + 1)) +
Pr.

CPU cost for generating and applying HFs is determined
by two parameters,Ihash and Iprobe. Ihash is the number of
CPU instructions required to generate hash value and set
the corresponding bit in the HF for each tuple.Iprobe is the
number of instructions needed to check whether an attribute
value of a tuple has a match in the filter, and if that bit is
set, add the tuple to a temporary relation to be joined later.
The CPU cost of generating an HF for a join attribute is
computed by multiplyingIhash by the relation cardinality.
Note that the HF generation phase can be combined with
the first step of the sorting phase of a join, thus avoiding
I/O overhead for HF generation. CPU cost for applying an
HF is equal toIprobe multiplied by the relation cardinality.
Also, in our simulation model, HFs are implemented as bit-
vectors and can in general fit in memory, thus minimizing
extra I/Os required for maintaining them.

4.2 Parameter setting

To simplify our simulation study, we assume that join oper-
ations in a bushy tree are executed sequentially, thus not
resorting to inter-operator parallelism to demonstrate the
power of HFs. The impact of combining the use of HFs
and parallel query execution is slated for future study. We
select queries of four sizes, i.e., queries with 4, 8, 12, and 16
relations. This set of selections covers a wide spectrum of
query sizes ranging from a simple three-way join to a more
than 20-way join. For each query size, 500 query graphs
were generated, and, as mentioned in Sect. 4.1, only queries
with connected query graphs are used in our study.

To conduct the simulation, [3], [8], [13], and [25] were
referenced to determine the values of simulation parameters.

127

Fig. 7. The CPU cost for each scheme when MIPS=10

Fig. 8. The I/O cost for each scheme

Table 1 summarizes the parameter settings used in simula-
tion. The number of CPU instructions per tuple read was set
to 300, while those for HF generation and application are
set to 100 and 200, respectively. The buffer was assumed to
have 2K pages, and each page was assumed to contain 40
tuples. Disk service time per page was assumed to be 15 ms
while the CPU speed was set to either 2 MIPS or 10 MIPS.

4.3 Simulation results

In the simulation program, which was coded in C, the action
for each individual relation to go through join operations, as
well as generate and apply HFs, was simulated. For each
query in the simulation, four schemes, i.e., NF (no filter),
SM (simple), CA (check and apply) and RG (regenerate
HF), were applied to execute the query, and the execution
time for each scheme was obtained.

4.3.1 Experiment 1: 10 MIPS CPU withattv = 100K
andcarv = 100K

In the first experiment, the CPU speed was set to 10 MIPS
while both attv and carv were set to 100K. The average
CPU, I/O, and total costs for this experiment are shown
in Figs. 7, 8, and 9, respectively. In these figures and all
following figures except Fig. 13, the ordinate is the execution

Fig. 9. The total cost for each scheme when MIPS=10

time in seconds while the abscissa denotes the number of
relations in a query. Figures 7 and 8 show that with 10
MIPS CPU, these queries using the sort-merge join method
are I/O bound. The 15 ms page I/O time setting assumes
sequential I/O without prefetching or disk buffering (e.g.,
reading one track at a time). Note that this experiment could
become CPU-bound if disk buffering or a larger page size
was used.

Using the sort-merge join method, the I/O cost of sorting
a relation of P pages is of the ordertpio×P × logm P , while
the CPU cost is of the orderttuple×Rcard× logRcard, where
ttuple is the sorting time per tuple (≈ Ituple/CPUspeed) and
Rcard is equal toP × psize. Given the parameter settings
in Table 1, the I/O cost for sorting two 1M tuple relations
is approximately equal to 1,000 s while the corresponding
CPU cost is approximately 1,200 s. I/O cost for merging two
sorted relations is about 750 s, plus the I/O cost of writing the
resulting relation to disk, whereas the CPU cost associated
is about 60 s. This accounts for the reason that Experiment
1 is I/O bound.

Figures 7 and 8 also show that using HFs results in a
slight performance improvement in terms of both CPU and
I/O costs required whensn is small (sn ≤ 8). The im-
provement increases significantly as the number of relations
increases. It can be seen from Fig. 9 that CA performs the
best among all schemes evaluated, while NF is outperformed
by all other schemes. As described in Sect. 3, CA is devised
with the goal of optimizing the reduction effect of HFs as
well as minimizing the cost associated. The results from
this experiment confirm our analysis in Sect. 3. Note that
SM performs better than RG whensn ≤ 12, while the latter
performs better whensn = 16. This can be explained as fol-
lows. First, the additional filtering (size reduction) effect by
applying an HF generated by an intermediate relation (say
Ri) to relationRj under RG is usually not significant if an
HF on the same attribute has been generated by a offspring
of Ri and applied toRj , or a offspring ofRj , before. Sec-
ond, RG consumes extra system resources to regenerate HFs
after every join operation, except the last one. Whensn is
small, the cost of generating additional HFs is larger than
the benefit of additional size reduction. Whensn increases,
the depth of the query execution tree increases, which in
turn causes more join operations to benefit from the effect

128

Table 2. Statistics for the cost of each scheme when the query size is 12
and MIPS=10.

Standard dev Maximum Minimum
NF 8306 149234 92496
SM 10900 99012 38631
CA 11280 91901 26977
RG 14704 114385 35681

Table 3. The average number of HFs applied in each scheme

No. of relations 4 8 12 16
SM 6 18 32 48
CA 6 18 32 48
RG 8 24 42 62

of additional filtering. As a result, the benefit provided by
additional filtering in RG outweighs the cost of additional
HF generations whensn is large.

The minimum, maximum, and standard deviation of
query execution time for the four schemes whensn= 12
are shown in Table 2. The standard deviation of the query
execution time is about 7.9% of mean for NF, whereas those
are 18.9%, 26.2%, and 25% of mean for SM, CA, and RG,
respectively. Note that the minimum cost heuristic used by
our model to determine the bushy execution tree does not
consider the effect of HFs. Thus, the benefits of using HFs in
different bushy trees vary. This is the very reason that SM,
CA, and RG produce larger relative standard deviations than
NF.

The number of HFs applied in each scheme is shown
in Table 3. SM and CA apply the same number of HFs for
each query, since in both schemes, HFs are applied to base
relations only. In RG, in addition to HFs applied to base
relations, an HF for the next join attribute is regenerated
from the resulting relation after every join. RG therefore
generates and applies the most HFs. However, our simulation
results show that RG performs worse than both CA and SM
when sn is small (sn≤ 12). As previously explained, this
is due to the fact that the effect of HFs diminishes as they
are repeatedly applied, and is thus not worthwhile the cost
of generating additional HFs. This indeed agrees with the
estimation in Eq. (3), which states that the number of distinct
values of a non-filtered attribute only slightly decreases after
the application of an HF. Whensn is large (sn> 12), RG
performs better than SM, but still worse than CA.

As pointed out earlier, the above experiment can become
CPU bound if the disk access time is reduced. To provide
more insight into this phenomenon, an experiment is con-
ducted, where the page size is increased to 480 tuples, ap-
proximately equal to the track size of a typical workstation
disk nowadays. Disk access time per page thus increases to
30 ms accordingly while all other parameters remain un-
changed. The average I/O costs for the four schemes in this
experiment are shown in Fig. 10. Note that since CPU speed
remains at 10 MIPS, CPU costs for the four schemes are
the same as those in Fig. 7. From Figs. 8 and 10, it can be
seen that I/O costs for the four schemes in this experiment
are significantly reduced as compared to those required in
the prior experiment. Consequently, this experiment is CPU
bound as evidenced by the results in Figs. 7 and 10.

Fig. 10. The I/O cost for each scheme

Fig. 11. The CPU cost for each scheme when MIPS=2

Fig. 12. The total cost for each scheme when MIPS=2

4.3.2 Experiment 2: 2 MIPS CPU withattv = 100K
andcarv = 100K

In Experiment 2, the CPU speed was changed to 2 MIPS,
while all other parameters remained the same as in Experi-
ment 1. The average CPU cost for this experiment is shown
in Fig. 11. Since changing the CPU speed does not affect
I/O costs, I/O costs for the four schemes in this experiment
are the same as those in Experiment 1, as shown in Fig. 8.
It can be seen from Figs. 8 and 11 that queries in Experi-
ment 2 are CPU bound under NF. Figures 7 and 11 show

129

Ratio of improvement
CPU+IO cost

4 8 12 16
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The number of relations

R
at

io
 o

f e
xe

cu
tio

n
tim

e
(C

A
 o

ve
r

N
F

)
MIPS=10 MIPS=2

Fig. 13. Execution cost ratio of CA to NF

Table 4. Statistics for the cost of each scheme whensn=12 and MIPS=2

Standard dev Maximum Minimum
NF 15632 293295 184366
SM 20028 180580 67206
CA 21485 165182 41077
RG 27389 206659 60207

that the three HF based schemes lead to larger reductions
on CPU cost when queries are CPU bound, but their rel-
ative improvement over NF is approximately the same in
both experiments. Fig. 12 shows the average query execu-
tion times (i.e, CPU cost + I/O cost) for the four schemes.
It can be observed that relative performance among these
schemes is very similar to that in Experiment 1. CA con-
tinues to outperform the other three schemes, while NF still
performs the worst. The three schemes utilizing HFs reduce
the query execution time of NF by more than 50%, when
sn ≥ 12.

The improvement of CA over NF for both Experiments
1 and 2 is shown in Fig. 13, where the ordinate is the ratio
of execution time of CA to NF, and the abscissa denotes the
number of relations in a query. It can be seen from Fig. 13
that the improvement increases assn increases. Whensn =
4, the execution of CA is about 84% of that of NF with 10
MIPS CPU, and this ratio becomes 76% with 2 MIPS CPU.
When sn = 16, such a ratio decreases to about 39% with
10 MIPS CPU, and to 28% with 2 MIPS CPU. Figure 13
also shows that CA generates a larger cost reduction when
queries are CPU bound. Note that with a slower CPU the
absolute CPU cost reduction achieved by CA is larger. Since
the I/O cost is not affected by the change in CPU speed, the
ratio of cost reduction by CA becomes larger when CPU
is slower. Experiments 1 and 2 demonstrate that HF is a
very powerful means to reduce the query execution time,
especially for complex queries, in both CPU- and I/O-bound
cases.

The minimum, maximum, and standard deviation of
query execution time for each scheme withsn=12 are shown
in Table 4, where CA again has the smallest maximum and
minimum execution times, but the second largest standard
deviation, agreeing with our observation in Experiment 1.

Fig. 14. The CPU cost for each scheme when MIPS=10

Fig. 15. The I/O cost for each scheme when MIPS=10

4.3.3 Experiment 3: 10 MIPS CPU withattv = 400K
andcarv = 600K

In Experiment 3, the CPU speed was set to 10 MIPS while
attv and carv were changed to 400K and 600K, respec-
tively. By changing the variances of relation cardinalities
and attribute cardinalities, the effectiveness of HFs on join
operations with varied relation and attribute cardinalities can
be studied. Figures 14, 15, and 16 show, respectively, the
CPU cost, the I/O cost, and the total cost for each scheme.
Compared to the results in Experiment 1, these three figures
indicate that the effectiveness of applying HFs is very sta-
ble when the variances of relation cardinalities and attribute
cardinalities increase. As before, this experiment shows that
CA is the best scheme among all schemes evaluated.

The minimum, maximum, and standard deviation for the
four schemes in Experiment 3 withsn=12 are given in Ta-
ble 5, which shows that CA has not only the smallest max-
imum and minimum execution times, but also the smallest
standard deviation, meaning that CA is more stable than NF
when the variance of relation cardinalities increases. This
is different from what we observed from the results in the
previous two experiments. Note that in the presence of a
larger variance for relation cardinalities performance of NF
changes drastically. On the other hand, performance of the
other three schemes, due to the applications of HFs, is not so

130

Fig. 16. The total cost for each scheme when MIPS=10

Table 5. Statistics for the cost of each scheme for large relation variance
whensn=12 and MIPS=10

Standard dev Maximum Minimum
NF 35171 296913 44581
SM 28548 227314 23595
CA 27203 211628 15715
RG 59418 246145 19439

sensitive to a variance change as NF, explaining the reason
that CA has the smallest standard deviation in this experi-
ment. In addition, RG continues to have the largest standard
deviation and is outperformed by CA and SM.

5 Conclusions

In this paper, we explored an approach of interleaving a
bushy execution tree with HFs to improve the execution of
multi-join queries. An efficient scheme to determine an ef-
fective sequence of HFs for a bushy execution tree has been
developed, where the HFs are built and applied based on the
join sequence specified in the bushy tree, so that not only is
the reduction effect optimized but also the cost associated is
minimized. Various schemes using HFs were implemented
and evaluated via simulation. By varying the CPU speed,
both CPU- and I/O-bound jobs were investigated. Extensive
simulation results were obtained to provide insight into the
use of HFs. It is experimentally shown that the application
of HFs is in general a very powerful means to improve the
execution of multi-join queries, and the improvement be-
comes more prominent as the number of relations in a query
increases.

Although simulation was conducted assuming sort-merge
joins were employed, the proposed scheme is applicable to
other join methods. Note that in dealing with pipelined hash
joins, HFs can be applied within a pipeline segment to re-
duce the sizes of hash tables and improve the pipeline execu-
tion. In the case of handling a segmented right-deep tree [5],
which is a bushy tree with right-deep subtrees, one can use
segment sequence numbers instead of join sequence num-
bers, to properly insert HFs into the bushy tree among dif-
ferent segments. This is a matter for future research.

Appendix

A. Expected resulting cardinalities of joins

Proposition. Let G = (V,E) be a join query graph.GB =
(VB , EB) is a connected subgraph of G. LetR1, R2, . . ., Rq

be the relations corresponding to vertices inVB , A1, A2, . . .,
Ar be the distinct attributes associated with edges inEB and
mi be the number of different vertices (relations) that edges
with attributeAi are incident to. SupposeRM is the relation
resulting from all the join operations between relations in
GB andNT (GB) is the expected number of tuples inRM .
Then,

NT (GB) =
Πq
i=1|Ri|

Πr
i=1|Ai|mi−1

.

References

1. Babb E (1979) Implementing a relational database by means of spe-
cialized hardware. ACM Trans Database Syst, 4(1):1–29

2. Bernstein PA, Chiu D-MW (1981) Using semi-joins to solve relational
queries. J ACM 28(1):25–40

3. Bitton D, Gray J (1988) Disk shadowing. Proc the 14th International
Conference on Very Large Data Bases

4. Boral H, Alexander W, et al (1990) Prototyping Bubba, a highly par-
allel database system. IEEE Trans Knowl Data Eng, 2(1):4–24

5. Chen M-S, Lo M-L, Yu PS, Young HC (1995) Applying segmented
right-deep trees to pipelining multiple hash joins. IEEE Trans Knowl
Data Eng, 7(4):656–668

6. Chen M-S, Yu PS (1992) Interleaving a join sequence with semi-
joins in distributed query processing. IEEE Trans Parallel Distrib Syst,
3(5):611–621

7. Chen M-S, Yu PS, Wu K-L (1995) Optimization of Parallel Execution
for Multi-Join Queries. IEEE Trans Knowl Data Eng, 8(3): 416–428

8. DeWitt DJ, Ghandeharizadeh S, Schneider DA, Bricker A, Hsiao HI,
Rasmussen R (1990) The Gamma database machine project. IEEE
Trans Knowl Data Eng, 2(1):44–62

9. DeWitt DJ, Gray J (1992) Parallel database systems: the future of high
performance database systems. Commun ACM 35(6):85–98

10. Gardy D, Puech C (1989) On the effect of join operations on relation
sizes. ACM Trans Database Syst 14(4):574–603

11. Hong W (1992) Exploiting Inter-Operator Parallelism in XPRS. Proc
ACM SIGMOD, June, pp 19–28

12. Hong W, Stonebraker M (1991) Optimization of parallel query execu-
tion plans in XPRS. Proc 1st Conf Parallel and Distributed Information
Systems, December, pp 218–225

13. Hsiao H-I, DeWitt D (1991) A performance study of three high avail-
ability data replication strategies. Proc Conference Parallel and Dis-
tributed Information Systems, December, pp 79–84

14. Ioannidis YE, Kang YC (1991) Left-deep vs. bushy trees: an analysis of
strategy spaces and its implication for query optimization. Proc ACM
SIGMOD, May, pp 168–177

15. Jarke M, Koch J (1982) Query optimization in database systems. ACM
Computing Surveys, 16(2):111–152

16. Kitsuregawa M, Tanaka H, Moto-Oka T (1984) Architecture and per-
formance of relational algebra machine GRACE. Proc Int Conf Parallel
Processing, August, pp 241–250

17. Krishnamurthy R, Boral H, Zaniolo C (1986) Optimization of Nonre-
cursive Queries. Proc 12th Int Conf Very Large Data Bases, August,
pp 128–137

18. Lo M-L, Chen M-S, Ravishankar CV, Yu PS (1993) On optimal pro-
cessor allocation to support pipelined hash joins. Proc ACM SIGMOD,
May, pp 69–78

19. Lorie RA, Daudenarde J-J, Stamos JW, Young HC (1991) Exploiting
database parallelism in a message-passing multiprocessor. IBM J Res
Dev 35(5/6):681–695

131

20. Lu H, Shan M-C, Tan K-L (1991) Optimization of multi-way join
queries for parallel execution. Proc 17th Int Conf Very Large Data
Bases, September, pp 549–560

21. Mishra P, Eich MH (1992) Join processing in relational databases.
ACM Computing Surveys 24(1):63–113

22. Pirahesh H, Mohan C, Cheng J, Liu TS, Selinger P (1990) Parallelism
in relational data base systems: architectural issues and design ap-
proaches. Proc 2nd Int Sympos Databases in Parallel and Distributed
Systems, July, pp 4–29

23. Roussopoulos N, Kang H (1991) A pipeline N-way join algorithm
based on the 2-way semijoin program. IEEE Trans Knowl Data Eng,
3(4):461–473

24. Schneider D (1990) Complex query processing in multiprocessor
database machines. Tech Rep 965, Computer Science Department, Uni-
versity of Wisconsin, Madison

25. Schneider D, DeWitt DJ (1989) A performance evaluation of four par-
allel join algorithms in a shared-nothing multiprocessor environment.
Proc ACM SIGMOD, pp 110–121

26. Selinger PG, Astrahan MM, Chamberlin DD, Lorie RA, Price TG
(1979) Access path selection in a relational database management sys-
tem. Proc ACM SIGMOD, pp 23–34

27. Stonebraker M, Katz R, Patterson D, Ousterhout J (1988) The design
of XPRS. Proc 14th Int Conf Very Large Data Bases, pp 318–330

28. Swami A (1989) Optimization of large join queries: combining heuris-
tics with combinatorial techniques. Proc ACM SIGMOD, pp 367–376

29. Swami A, Gupta A (1988) Optimization of large join queries. Proc
ACM SIGMOD, pp 8–17

30. Teradata (1985) DBC/1012 Database computer system manual release
2.0. Tech Rep Doc C10-0001-02, Teradata Corporation

31. Valduriez P, Gardarin G (1984) Join and semijoin algorithms for a
multiprocessor database machine. ACM Trans Database Syst 9(1):133–
161

32. Walton CB, Dale AG, Jenevein RM (1991) A taxonomy and perfor-
mance model of data skew effects in parallel joins. Proc 17th Int Conf
Very Large Data Bases, September, pp 537–548

33. Yao SB (1977) Approximating block access in database organizations.
Commun ACM 20:260–261

34. Yu PS, Chen M-S, Heiss H, Lee SH (1992) On workload characteri-
zation of relational database environments. IEEE Trans Software Eng
18(4):347–355

